xref: /linux/mm/hugetlb.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36 
37 int hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47 
48 __initdata LIST_HEAD(huge_boot_pages);
49 
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	/* minimum size accounting */
149 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 		if (delta > spool->rsv_hpages) {
151 			/*
152 			 * Asking for more reserves than those already taken on
153 			 * behalf of subpool.  Return difference.
154 			 */
155 			ret = delta - spool->rsv_hpages;
156 			spool->rsv_hpages = 0;
157 		} else {
158 			ret = 0;	/* reserves already accounted for */
159 			spool->rsv_hpages -= delta;
160 		}
161 	}
162 
163 unlock_ret:
164 	spin_unlock(&spool->lock);
165 	return ret;
166 }
167 
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 				       long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return delta;
181 
182 	spin_lock(&spool->lock);
183 
184 	if (spool->max_hpages != -1)		/* maximum size accounting */
185 		spool->used_hpages -= delta;
186 
187 	 /* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 		if (spool->rsv_hpages + delta <= spool->min_hpages)
190 			ret = 0;
191 		else
192 			ret = spool->rsv_hpages + delta - spool->min_hpages;
193 
194 		spool->rsv_hpages += delta;
195 		if (spool->rsv_hpages > spool->min_hpages)
196 			spool->rsv_hpages = spool->min_hpages;
197 	}
198 
199 	/*
200 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 	 * quota reference, free it now.
202 	 */
203 	unlock_or_release_subpool(spool);
204 
205 	return ret;
206 }
207 
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210 	return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212 
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215 	return subpool_inode(file_inode(vma->vm_file));
216 }
217 
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238 	struct list_head link;
239 	long from;
240 	long to;
241 };
242 
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259 	struct list_head *head = &resv->regions;
260 	struct file_region *rg, *nrg, *trg;
261 	long add = 0;
262 
263 	spin_lock(&resv->lock);
264 	/* Locate the region we are either in or before. */
265 	list_for_each_entry(rg, head, link)
266 		if (f <= rg->to)
267 			break;
268 
269 	/*
270 	 * If no region exists which can be expanded to include the
271 	 * specified range, the list must have been modified by an
272 	 * interleving call to region_del().  Pull a region descriptor
273 	 * from the cache and use it for this range.
274 	 */
275 	if (&rg->link == head || t < rg->from) {
276 		VM_BUG_ON(resv->region_cache_count <= 0);
277 
278 		resv->region_cache_count--;
279 		nrg = list_first_entry(&resv->region_cache, struct file_region,
280 					link);
281 		list_del(&nrg->link);
282 
283 		nrg->from = f;
284 		nrg->to = t;
285 		list_add(&nrg->link, rg->link.prev);
286 
287 		add += t - f;
288 		goto out_locked;
289 	}
290 
291 	/* Round our left edge to the current segment if it encloses us. */
292 	if (f > rg->from)
293 		f = rg->from;
294 
295 	/* Check for and consume any regions we now overlap with. */
296 	nrg = rg;
297 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 		if (&rg->link == head)
299 			break;
300 		if (rg->from > t)
301 			break;
302 
303 		/* If this area reaches higher then extend our area to
304 		 * include it completely.  If this is not the first area
305 		 * which we intend to reuse, free it. */
306 		if (rg->to > t)
307 			t = rg->to;
308 		if (rg != nrg) {
309 			/* Decrement return value by the deleted range.
310 			 * Another range will span this area so that by
311 			 * end of routine add will be >= zero
312 			 */
313 			add -= (rg->to - rg->from);
314 			list_del(&rg->link);
315 			kfree(rg);
316 		}
317 	}
318 
319 	add += (nrg->from - f);		/* Added to beginning of region */
320 	nrg->from = f;
321 	add += t - nrg->to;		/* Added to end of region */
322 	nrg->to = t;
323 
324 out_locked:
325 	resv->adds_in_progress--;
326 	spin_unlock(&resv->lock);
327 	VM_BUG_ON(add < 0);
328 	return add;
329 }
330 
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355 	struct list_head *head = &resv->regions;
356 	struct file_region *rg, *nrg = NULL;
357 	long chg = 0;
358 
359 retry:
360 	spin_lock(&resv->lock);
361 retry_locked:
362 	resv->adds_in_progress++;
363 
364 	/*
365 	 * Check for sufficient descriptors in the cache to accommodate
366 	 * the number of in progress add operations.
367 	 */
368 	if (resv->adds_in_progress > resv->region_cache_count) {
369 		struct file_region *trg;
370 
371 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 		/* Must drop lock to allocate a new descriptor. */
373 		resv->adds_in_progress--;
374 		spin_unlock(&resv->lock);
375 
376 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 		if (!trg) {
378 			kfree(nrg);
379 			return -ENOMEM;
380 		}
381 
382 		spin_lock(&resv->lock);
383 		list_add(&trg->link, &resv->region_cache);
384 		resv->region_cache_count++;
385 		goto retry_locked;
386 	}
387 
388 	/* Locate the region we are before or in. */
389 	list_for_each_entry(rg, head, link)
390 		if (f <= rg->to)
391 			break;
392 
393 	/* If we are below the current region then a new region is required.
394 	 * Subtle, allocate a new region at the position but make it zero
395 	 * size such that we can guarantee to record the reservation. */
396 	if (&rg->link == head || t < rg->from) {
397 		if (!nrg) {
398 			resv->adds_in_progress--;
399 			spin_unlock(&resv->lock);
400 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 			if (!nrg)
402 				return -ENOMEM;
403 
404 			nrg->from = f;
405 			nrg->to   = f;
406 			INIT_LIST_HEAD(&nrg->link);
407 			goto retry;
408 		}
409 
410 		list_add(&nrg->link, rg->link.prev);
411 		chg = t - f;
412 		goto out_nrg;
413 	}
414 
415 	/* Round our left edge to the current segment if it encloses us. */
416 	if (f > rg->from)
417 		f = rg->from;
418 	chg = t - f;
419 
420 	/* Check for and consume any regions we now overlap with. */
421 	list_for_each_entry(rg, rg->link.prev, link) {
422 		if (&rg->link == head)
423 			break;
424 		if (rg->from > t)
425 			goto out;
426 
427 		/* We overlap with this area, if it extends further than
428 		 * us then we must extend ourselves.  Account for its
429 		 * existing reservation. */
430 		if (rg->to > t) {
431 			chg += rg->to - t;
432 			t = rg->to;
433 		}
434 		chg -= rg->to - rg->from;
435 	}
436 
437 out:
438 	spin_unlock(&resv->lock);
439 	/*  We already know we raced and no longer need the new region */
440 	kfree(nrg);
441 	return chg;
442 out_nrg:
443 	spin_unlock(&resv->lock);
444 	return chg;
445 }
446 
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460 	spin_lock(&resv->lock);
461 	VM_BUG_ON(!resv->region_cache_count);
462 	resv->adds_in_progress--;
463 	spin_unlock(&resv->lock);
464 }
465 
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482 	struct list_head *head = &resv->regions;
483 	struct file_region *rg, *trg;
484 	struct file_region *nrg = NULL;
485 	long del = 0;
486 
487 retry:
488 	spin_lock(&resv->lock);
489 	list_for_each_entry_safe(rg, trg, head, link) {
490 		/*
491 		 * Skip regions before the range to be deleted.  file_region
492 		 * ranges are normally of the form [from, to).  However, there
493 		 * may be a "placeholder" entry in the map which is of the form
494 		 * (from, to) with from == to.  Check for placeholder entries
495 		 * at the beginning of the range to be deleted.
496 		 */
497 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 			continue;
499 
500 		if (rg->from >= t)
501 			break;
502 
503 		if (f > rg->from && t < rg->to) { /* Must split region */
504 			/*
505 			 * Check for an entry in the cache before dropping
506 			 * lock and attempting allocation.
507 			 */
508 			if (!nrg &&
509 			    resv->region_cache_count > resv->adds_in_progress) {
510 				nrg = list_first_entry(&resv->region_cache,
511 							struct file_region,
512 							link);
513 				list_del(&nrg->link);
514 				resv->region_cache_count--;
515 			}
516 
517 			if (!nrg) {
518 				spin_unlock(&resv->lock);
519 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 				if (!nrg)
521 					return -ENOMEM;
522 				goto retry;
523 			}
524 
525 			del += t - f;
526 
527 			/* New entry for end of split region */
528 			nrg->from = t;
529 			nrg->to = rg->to;
530 			INIT_LIST_HEAD(&nrg->link);
531 
532 			/* Original entry is trimmed */
533 			rg->to = f;
534 
535 			list_add(&nrg->link, &rg->link);
536 			nrg = NULL;
537 			break;
538 		}
539 
540 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 			del += rg->to - rg->from;
542 			list_del(&rg->link);
543 			kfree(rg);
544 			continue;
545 		}
546 
547 		if (f <= rg->from) {	/* Trim beginning of region */
548 			del += t - rg->from;
549 			rg->from = t;
550 		} else {		/* Trim end of region */
551 			del += rg->to - f;
552 			rg->to = f;
553 		}
554 	}
555 
556 	spin_unlock(&resv->lock);
557 	kfree(nrg);
558 	return del;
559 }
560 
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572 	struct hugepage_subpool *spool = subpool_inode(inode);
573 	long rsv_adjust;
574 
575 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 	if (restore_reserve && rsv_adjust) {
577 		struct hstate *h = hstate_inode(inode);
578 
579 		hugetlb_acct_memory(h, 1);
580 	}
581 }
582 
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589 	struct list_head *head = &resv->regions;
590 	struct file_region *rg;
591 	long chg = 0;
592 
593 	spin_lock(&resv->lock);
594 	/* Locate each segment we overlap with, and count that overlap. */
595 	list_for_each_entry(rg, head, link) {
596 		long seg_from;
597 		long seg_to;
598 
599 		if (rg->to <= f)
600 			continue;
601 		if (rg->from >= t)
602 			break;
603 
604 		seg_from = max(rg->from, f);
605 		seg_to = min(rg->to, t);
606 
607 		chg += seg_to - seg_from;
608 	}
609 	spin_unlock(&resv->lock);
610 
611 	return chg;
612 }
613 
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 			struct vm_area_struct *vma, unsigned long address)
620 {
621 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 			(vma->vm_pgoff >> huge_page_order(h));
623 }
624 
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 				     unsigned long address)
627 {
628 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631 
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638 	struct hstate *hstate;
639 
640 	if (!is_vm_hugetlb_page(vma))
641 		return PAGE_SIZE;
642 
643 	hstate = hstate_vma(vma);
644 
645 	return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648 
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658 	return vma_kernel_pagesize(vma);
659 }
660 #endif
661 
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670 
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692 	return (unsigned long)vma->vm_private_data;
693 }
694 
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 							unsigned long value)
697 {
698 	vma->vm_private_data = (void *)value;
699 }
700 
701 struct resv_map *resv_map_alloc(void)
702 {
703 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705 
706 	if (!resv_map || !rg) {
707 		kfree(resv_map);
708 		kfree(rg);
709 		return NULL;
710 	}
711 
712 	kref_init(&resv_map->refs);
713 	spin_lock_init(&resv_map->lock);
714 	INIT_LIST_HEAD(&resv_map->regions);
715 
716 	resv_map->adds_in_progress = 0;
717 
718 	INIT_LIST_HEAD(&resv_map->region_cache);
719 	list_add(&rg->link, &resv_map->region_cache);
720 	resv_map->region_cache_count = 1;
721 
722 	return resv_map;
723 }
724 
725 void resv_map_release(struct kref *ref)
726 {
727 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 	struct list_head *head = &resv_map->region_cache;
729 	struct file_region *rg, *trg;
730 
731 	/* Clear out any active regions before we release the map. */
732 	region_del(resv_map, 0, LONG_MAX);
733 
734 	/* ... and any entries left in the cache */
735 	list_for_each_entry_safe(rg, trg, head, link) {
736 		list_del(&rg->link);
737 		kfree(rg);
738 	}
739 
740 	VM_BUG_ON(resv_map->adds_in_progress);
741 
742 	kfree(resv_map);
743 }
744 
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747 	return inode->i_mapping->private_data;
748 }
749 
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 	if (vma->vm_flags & VM_MAYSHARE) {
754 		struct address_space *mapping = vma->vm_file->f_mapping;
755 		struct inode *inode = mapping->host;
756 
757 		return inode_resv_map(inode);
758 
759 	} else {
760 		return (struct resv_map *)(get_vma_private_data(vma) &
761 							~HPAGE_RESV_MASK);
762 	}
763 }
764 
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769 
770 	set_vma_private_data(vma, (get_vma_private_data(vma) &
771 				HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773 
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 
779 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781 
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 
786 	return (get_vma_private_data(vma) & flag) != 0;
787 }
788 
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 	if (!(vma->vm_flags & VM_MAYSHARE))
794 		vma->vm_private_data = (void *)0;
795 }
796 
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800 	if (vma->vm_flags & VM_NORESERVE) {
801 		/*
802 		 * This address is already reserved by other process(chg == 0),
803 		 * so, we should decrement reserved count. Without decrementing,
804 		 * reserve count remains after releasing inode, because this
805 		 * allocated page will go into page cache and is regarded as
806 		 * coming from reserved pool in releasing step.  Currently, we
807 		 * don't have any other solution to deal with this situation
808 		 * properly, so add work-around here.
809 		 */
810 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 			return true;
812 		else
813 			return false;
814 	}
815 
816 	/* Shared mappings always use reserves */
817 	if (vma->vm_flags & VM_MAYSHARE) {
818 		/*
819 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820 		 * be a region map for all pages.  The only situation where
821 		 * there is no region map is if a hole was punched via
822 		 * fallocate.  In this case, there really are no reverves to
823 		 * use.  This situation is indicated if chg != 0.
824 		 */
825 		if (chg)
826 			return false;
827 		else
828 			return true;
829 	}
830 
831 	/*
832 	 * Only the process that called mmap() has reserves for
833 	 * private mappings.
834 	 */
835 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 		/*
837 		 * Like the shared case above, a hole punch or truncate
838 		 * could have been performed on the private mapping.
839 		 * Examine the value of chg to determine if reserves
840 		 * actually exist or were previously consumed.
841 		 * Very Subtle - The value of chg comes from a previous
842 		 * call to vma_needs_reserves().  The reserve map for
843 		 * private mappings has different (opposite) semantics
844 		 * than that of shared mappings.  vma_needs_reserves()
845 		 * has already taken this difference in semantics into
846 		 * account.  Therefore, the meaning of chg is the same
847 		 * as in the shared case above.  Code could easily be
848 		 * combined, but keeping it separate draws attention to
849 		 * subtle differences.
850 		 */
851 		if (chg)
852 			return false;
853 		else
854 			return true;
855 	}
856 
857 	return false;
858 }
859 
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862 	int nid = page_to_nid(page);
863 	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 	h->free_huge_pages++;
865 	h->free_huge_pages_node[nid]++;
866 }
867 
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870 	struct page *page;
871 
872 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 		if (!is_migrate_isolate_page(page))
874 			break;
875 	/*
876 	 * if 'non-isolated free hugepage' not found on the list,
877 	 * the allocation fails.
878 	 */
879 	if (&h->hugepage_freelists[nid] == &page->lru)
880 		return NULL;
881 	list_move(&page->lru, &h->hugepage_activelist);
882 	set_page_refcounted(page);
883 	h->free_huge_pages--;
884 	h->free_huge_pages_node[nid]--;
885 	return page;
886 }
887 
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 		return GFP_HIGHUSER_MOVABLE;
893 	else
894 		return GFP_HIGHUSER;
895 }
896 
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 				struct vm_area_struct *vma,
899 				unsigned long address, int avoid_reserve,
900 				long chg)
901 {
902 	struct page *page = NULL;
903 	struct mempolicy *mpol;
904 	nodemask_t *nodemask;
905 	struct zonelist *zonelist;
906 	struct zone *zone;
907 	struct zoneref *z;
908 	unsigned int cpuset_mems_cookie;
909 
910 	/*
911 	 * A child process with MAP_PRIVATE mappings created by their parent
912 	 * have no page reserves. This check ensures that reservations are
913 	 * not "stolen". The child may still get SIGKILLed
914 	 */
915 	if (!vma_has_reserves(vma, chg) &&
916 			h->free_huge_pages - h->resv_huge_pages == 0)
917 		goto err;
918 
919 	/* If reserves cannot be used, ensure enough pages are in the pool */
920 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 		goto err;
922 
923 retry_cpuset:
924 	cpuset_mems_cookie = read_mems_allowed_begin();
925 	zonelist = huge_zonelist(vma, address,
926 					htlb_alloc_mask(h), &mpol, &nodemask);
927 
928 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 						MAX_NR_ZONES - 1, nodemask) {
930 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 			if (page) {
933 				if (avoid_reserve)
934 					break;
935 				if (!vma_has_reserves(vma, chg))
936 					break;
937 
938 				SetPagePrivate(page);
939 				h->resv_huge_pages--;
940 				break;
941 			}
942 		}
943 	}
944 
945 	mpol_cond_put(mpol);
946 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 		goto retry_cpuset;
948 	return page;
949 
950 err:
951 	return NULL;
952 }
953 
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963 	nid = next_node_in(nid, *nodes_allowed);
964 	VM_BUG_ON(nid >= MAX_NUMNODES);
965 
966 	return nid;
967 }
968 
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971 	if (!node_isset(nid, *nodes_allowed))
972 		nid = next_node_allowed(nid, nodes_allowed);
973 	return nid;
974 }
975 
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 					nodemask_t *nodes_allowed)
984 {
985 	int nid;
986 
987 	VM_BUG_ON(!nodes_allowed);
988 
989 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991 
992 	return nid;
993 }
994 
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003 	int nid;
1004 
1005 	VM_BUG_ON(!nodes_allowed);
1006 
1007 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009 
1010 	return nid;
1011 }
1012 
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1014 	for (nr_nodes = nodes_weight(*mask);				\
1015 		nr_nodes > 0 &&						\
1016 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1017 		nr_nodes--)
1018 
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1020 	for (nr_nodes = nodes_weight(*mask);				\
1021 		nr_nodes > 0 &&						\
1022 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1023 		nr_nodes--)
1024 
1025 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1026 static void destroy_compound_gigantic_page(struct page *page,
1027 					unsigned int order)
1028 {
1029 	int i;
1030 	int nr_pages = 1 << order;
1031 	struct page *p = page + 1;
1032 
1033 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1034 		clear_compound_head(p);
1035 		set_page_refcounted(p);
1036 	}
1037 
1038 	set_compound_order(page, 0);
1039 	__ClearPageHead(page);
1040 }
1041 
1042 static void free_gigantic_page(struct page *page, unsigned int order)
1043 {
1044 	free_contig_range(page_to_pfn(page), 1 << order);
1045 }
1046 
1047 static int __alloc_gigantic_page(unsigned long start_pfn,
1048 				unsigned long nr_pages)
1049 {
1050 	unsigned long end_pfn = start_pfn + nr_pages;
1051 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1052 }
1053 
1054 static bool pfn_range_valid_gigantic(struct zone *z,
1055 			unsigned long start_pfn, unsigned long nr_pages)
1056 {
1057 	unsigned long i, end_pfn = start_pfn + nr_pages;
1058 	struct page *page;
1059 
1060 	for (i = start_pfn; i < end_pfn; i++) {
1061 		if (!pfn_valid(i))
1062 			return false;
1063 
1064 		page = pfn_to_page(i);
1065 
1066 		if (page_zone(page) != z)
1067 			return false;
1068 
1069 		if (PageReserved(page))
1070 			return false;
1071 
1072 		if (page_count(page) > 0)
1073 			return false;
1074 
1075 		if (PageHuge(page))
1076 			return false;
1077 	}
1078 
1079 	return true;
1080 }
1081 
1082 static bool zone_spans_last_pfn(const struct zone *zone,
1083 			unsigned long start_pfn, unsigned long nr_pages)
1084 {
1085 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1086 	return zone_spans_pfn(zone, last_pfn);
1087 }
1088 
1089 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1090 {
1091 	unsigned long nr_pages = 1 << order;
1092 	unsigned long ret, pfn, flags;
1093 	struct zone *z;
1094 
1095 	z = NODE_DATA(nid)->node_zones;
1096 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1097 		spin_lock_irqsave(&z->lock, flags);
1098 
1099 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1100 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1101 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1102 				/*
1103 				 * We release the zone lock here because
1104 				 * alloc_contig_range() will also lock the zone
1105 				 * at some point. If there's an allocation
1106 				 * spinning on this lock, it may win the race
1107 				 * and cause alloc_contig_range() to fail...
1108 				 */
1109 				spin_unlock_irqrestore(&z->lock, flags);
1110 				ret = __alloc_gigantic_page(pfn, nr_pages);
1111 				if (!ret)
1112 					return pfn_to_page(pfn);
1113 				spin_lock_irqsave(&z->lock, flags);
1114 			}
1115 			pfn += nr_pages;
1116 		}
1117 
1118 		spin_unlock_irqrestore(&z->lock, flags);
1119 	}
1120 
1121 	return NULL;
1122 }
1123 
1124 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1125 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1126 
1127 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1128 {
1129 	struct page *page;
1130 
1131 	page = alloc_gigantic_page(nid, huge_page_order(h));
1132 	if (page) {
1133 		prep_compound_gigantic_page(page, huge_page_order(h));
1134 		prep_new_huge_page(h, page, nid);
1135 	}
1136 
1137 	return page;
1138 }
1139 
1140 static int alloc_fresh_gigantic_page(struct hstate *h,
1141 				nodemask_t *nodes_allowed)
1142 {
1143 	struct page *page = NULL;
1144 	int nr_nodes, node;
1145 
1146 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1147 		page = alloc_fresh_gigantic_page_node(h, node);
1148 		if (page)
1149 			return 1;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static inline bool gigantic_page_supported(void) { return true; }
1156 #else
1157 static inline bool gigantic_page_supported(void) { return false; }
1158 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1159 static inline void destroy_compound_gigantic_page(struct page *page,
1160 						unsigned int order) { }
1161 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1162 					nodemask_t *nodes_allowed) { return 0; }
1163 #endif
1164 
1165 static void update_and_free_page(struct hstate *h, struct page *page)
1166 {
1167 	int i;
1168 
1169 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1170 		return;
1171 
1172 	h->nr_huge_pages--;
1173 	h->nr_huge_pages_node[page_to_nid(page)]--;
1174 	for (i = 0; i < pages_per_huge_page(h); i++) {
1175 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1176 				1 << PG_referenced | 1 << PG_dirty |
1177 				1 << PG_active | 1 << PG_private |
1178 				1 << PG_writeback);
1179 	}
1180 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1181 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1182 	set_page_refcounted(page);
1183 	if (hstate_is_gigantic(h)) {
1184 		destroy_compound_gigantic_page(page, huge_page_order(h));
1185 		free_gigantic_page(page, huge_page_order(h));
1186 	} else {
1187 		__free_pages(page, huge_page_order(h));
1188 	}
1189 }
1190 
1191 struct hstate *size_to_hstate(unsigned long size)
1192 {
1193 	struct hstate *h;
1194 
1195 	for_each_hstate(h) {
1196 		if (huge_page_size(h) == size)
1197 			return h;
1198 	}
1199 	return NULL;
1200 }
1201 
1202 /*
1203  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1204  * to hstate->hugepage_activelist.)
1205  *
1206  * This function can be called for tail pages, but never returns true for them.
1207  */
1208 bool page_huge_active(struct page *page)
1209 {
1210 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1211 	return PageHead(page) && PagePrivate(&page[1]);
1212 }
1213 
1214 /* never called for tail page */
1215 static void set_page_huge_active(struct page *page)
1216 {
1217 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1218 	SetPagePrivate(&page[1]);
1219 }
1220 
1221 static void clear_page_huge_active(struct page *page)
1222 {
1223 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1224 	ClearPagePrivate(&page[1]);
1225 }
1226 
1227 void free_huge_page(struct page *page)
1228 {
1229 	/*
1230 	 * Can't pass hstate in here because it is called from the
1231 	 * compound page destructor.
1232 	 */
1233 	struct hstate *h = page_hstate(page);
1234 	int nid = page_to_nid(page);
1235 	struct hugepage_subpool *spool =
1236 		(struct hugepage_subpool *)page_private(page);
1237 	bool restore_reserve;
1238 
1239 	set_page_private(page, 0);
1240 	page->mapping = NULL;
1241 	VM_BUG_ON_PAGE(page_count(page), page);
1242 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1243 	restore_reserve = PagePrivate(page);
1244 	ClearPagePrivate(page);
1245 
1246 	/*
1247 	 * A return code of zero implies that the subpool will be under its
1248 	 * minimum size if the reservation is not restored after page is free.
1249 	 * Therefore, force restore_reserve operation.
1250 	 */
1251 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1252 		restore_reserve = true;
1253 
1254 	spin_lock(&hugetlb_lock);
1255 	clear_page_huge_active(page);
1256 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1257 				     pages_per_huge_page(h), page);
1258 	if (restore_reserve)
1259 		h->resv_huge_pages++;
1260 
1261 	if (h->surplus_huge_pages_node[nid]) {
1262 		/* remove the page from active list */
1263 		list_del(&page->lru);
1264 		update_and_free_page(h, page);
1265 		h->surplus_huge_pages--;
1266 		h->surplus_huge_pages_node[nid]--;
1267 	} else {
1268 		arch_clear_hugepage_flags(page);
1269 		enqueue_huge_page(h, page);
1270 	}
1271 	spin_unlock(&hugetlb_lock);
1272 }
1273 
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1275 {
1276 	INIT_LIST_HEAD(&page->lru);
1277 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1278 	spin_lock(&hugetlb_lock);
1279 	set_hugetlb_cgroup(page, NULL);
1280 	h->nr_huge_pages++;
1281 	h->nr_huge_pages_node[nid]++;
1282 	spin_unlock(&hugetlb_lock);
1283 	put_page(page); /* free it into the hugepage allocator */
1284 }
1285 
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1287 {
1288 	int i;
1289 	int nr_pages = 1 << order;
1290 	struct page *p = page + 1;
1291 
1292 	/* we rely on prep_new_huge_page to set the destructor */
1293 	set_compound_order(page, order);
1294 	__ClearPageReserved(page);
1295 	__SetPageHead(page);
1296 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1297 		/*
1298 		 * For gigantic hugepages allocated through bootmem at
1299 		 * boot, it's safer to be consistent with the not-gigantic
1300 		 * hugepages and clear the PG_reserved bit from all tail pages
1301 		 * too.  Otherwse drivers using get_user_pages() to access tail
1302 		 * pages may get the reference counting wrong if they see
1303 		 * PG_reserved set on a tail page (despite the head page not
1304 		 * having PG_reserved set).  Enforcing this consistency between
1305 		 * head and tail pages allows drivers to optimize away a check
1306 		 * on the head page when they need know if put_page() is needed
1307 		 * after get_user_pages().
1308 		 */
1309 		__ClearPageReserved(p);
1310 		set_page_count(p, 0);
1311 		set_compound_head(p, page);
1312 	}
1313 	atomic_set(compound_mapcount_ptr(page), -1);
1314 }
1315 
1316 /*
1317  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1318  * transparent huge pages.  See the PageTransHuge() documentation for more
1319  * details.
1320  */
1321 int PageHuge(struct page *page)
1322 {
1323 	if (!PageCompound(page))
1324 		return 0;
1325 
1326 	page = compound_head(page);
1327 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1328 }
1329 EXPORT_SYMBOL_GPL(PageHuge);
1330 
1331 /*
1332  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1333  * normal or transparent huge pages.
1334  */
1335 int PageHeadHuge(struct page *page_head)
1336 {
1337 	if (!PageHead(page_head))
1338 		return 0;
1339 
1340 	return get_compound_page_dtor(page_head) == free_huge_page;
1341 }
1342 
1343 pgoff_t __basepage_index(struct page *page)
1344 {
1345 	struct page *page_head = compound_head(page);
1346 	pgoff_t index = page_index(page_head);
1347 	unsigned long compound_idx;
1348 
1349 	if (!PageHuge(page_head))
1350 		return page_index(page);
1351 
1352 	if (compound_order(page_head) >= MAX_ORDER)
1353 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1354 	else
1355 		compound_idx = page - page_head;
1356 
1357 	return (index << compound_order(page_head)) + compound_idx;
1358 }
1359 
1360 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1361 {
1362 	struct page *page;
1363 
1364 	page = __alloc_pages_node(nid,
1365 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1366 						__GFP_REPEAT|__GFP_NOWARN,
1367 		huge_page_order(h));
1368 	if (page) {
1369 		prep_new_huge_page(h, page, nid);
1370 	}
1371 
1372 	return page;
1373 }
1374 
1375 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1376 {
1377 	struct page *page;
1378 	int nr_nodes, node;
1379 	int ret = 0;
1380 
1381 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1382 		page = alloc_fresh_huge_page_node(h, node);
1383 		if (page) {
1384 			ret = 1;
1385 			break;
1386 		}
1387 	}
1388 
1389 	if (ret)
1390 		count_vm_event(HTLB_BUDDY_PGALLOC);
1391 	else
1392 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1393 
1394 	return ret;
1395 }
1396 
1397 /*
1398  * Free huge page from pool from next node to free.
1399  * Attempt to keep persistent huge pages more or less
1400  * balanced over allowed nodes.
1401  * Called with hugetlb_lock locked.
1402  */
1403 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1404 							 bool acct_surplus)
1405 {
1406 	int nr_nodes, node;
1407 	int ret = 0;
1408 
1409 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1410 		/*
1411 		 * If we're returning unused surplus pages, only examine
1412 		 * nodes with surplus pages.
1413 		 */
1414 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1415 		    !list_empty(&h->hugepage_freelists[node])) {
1416 			struct page *page =
1417 				list_entry(h->hugepage_freelists[node].next,
1418 					  struct page, lru);
1419 			list_del(&page->lru);
1420 			h->free_huge_pages--;
1421 			h->free_huge_pages_node[node]--;
1422 			if (acct_surplus) {
1423 				h->surplus_huge_pages--;
1424 				h->surplus_huge_pages_node[node]--;
1425 			}
1426 			update_and_free_page(h, page);
1427 			ret = 1;
1428 			break;
1429 		}
1430 	}
1431 
1432 	return ret;
1433 }
1434 
1435 /*
1436  * Dissolve a given free hugepage into free buddy pages. This function does
1437  * nothing for in-use (including surplus) hugepages.
1438  */
1439 static void dissolve_free_huge_page(struct page *page)
1440 {
1441 	spin_lock(&hugetlb_lock);
1442 	if (PageHuge(page) && !page_count(page)) {
1443 		struct hstate *h = page_hstate(page);
1444 		int nid = page_to_nid(page);
1445 		list_del(&page->lru);
1446 		h->free_huge_pages--;
1447 		h->free_huge_pages_node[nid]--;
1448 		update_and_free_page(h, page);
1449 	}
1450 	spin_unlock(&hugetlb_lock);
1451 }
1452 
1453 /*
1454  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1455  * make specified memory blocks removable from the system.
1456  * Note that start_pfn should aligned with (minimum) hugepage size.
1457  */
1458 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1459 {
1460 	unsigned long pfn;
1461 
1462 	if (!hugepages_supported())
1463 		return;
1464 
1465 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1466 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1467 		dissolve_free_huge_page(pfn_to_page(pfn));
1468 }
1469 
1470 /*
1471  * There are 3 ways this can get called:
1472  * 1. With vma+addr: we use the VMA's memory policy
1473  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1474  *    page from any node, and let the buddy allocator itself figure
1475  *    it out.
1476  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1477  *    strictly from 'nid'
1478  */
1479 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1480 		struct vm_area_struct *vma, unsigned long addr, int nid)
1481 {
1482 	int order = huge_page_order(h);
1483 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1484 	unsigned int cpuset_mems_cookie;
1485 
1486 	/*
1487 	 * We need a VMA to get a memory policy.  If we do not
1488 	 * have one, we use the 'nid' argument.
1489 	 *
1490 	 * The mempolicy stuff below has some non-inlined bits
1491 	 * and calls ->vm_ops.  That makes it hard to optimize at
1492 	 * compile-time, even when NUMA is off and it does
1493 	 * nothing.  This helps the compiler optimize it out.
1494 	 */
1495 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1496 		/*
1497 		 * If a specific node is requested, make sure to
1498 		 * get memory from there, but only when a node
1499 		 * is explicitly specified.
1500 		 */
1501 		if (nid != NUMA_NO_NODE)
1502 			gfp |= __GFP_THISNODE;
1503 		/*
1504 		 * Make sure to call something that can handle
1505 		 * nid=NUMA_NO_NODE
1506 		 */
1507 		return alloc_pages_node(nid, gfp, order);
1508 	}
1509 
1510 	/*
1511 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1512 	 * allocate a huge page with it.  We will only reach this
1513 	 * when CONFIG_NUMA=y.
1514 	 */
1515 	do {
1516 		struct page *page;
1517 		struct mempolicy *mpol;
1518 		struct zonelist *zl;
1519 		nodemask_t *nodemask;
1520 
1521 		cpuset_mems_cookie = read_mems_allowed_begin();
1522 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1523 		mpol_cond_put(mpol);
1524 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1525 		if (page)
1526 			return page;
1527 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1528 
1529 	return NULL;
1530 }
1531 
1532 /*
1533  * There are two ways to allocate a huge page:
1534  * 1. When you have a VMA and an address (like a fault)
1535  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1536  *
1537  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1538  * this case which signifies that the allocation should be done with
1539  * respect for the VMA's memory policy.
1540  *
1541  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1542  * implies that memory policies will not be taken in to account.
1543  */
1544 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1545 		struct vm_area_struct *vma, unsigned long addr, int nid)
1546 {
1547 	struct page *page;
1548 	unsigned int r_nid;
1549 
1550 	if (hstate_is_gigantic(h))
1551 		return NULL;
1552 
1553 	/*
1554 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1555 	 * This makes sure the caller is picking _one_ of the modes with which
1556 	 * we can call this function, not both.
1557 	 */
1558 	if (vma || (addr != -1)) {
1559 		VM_WARN_ON_ONCE(addr == -1);
1560 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1561 	}
1562 	/*
1563 	 * Assume we will successfully allocate the surplus page to
1564 	 * prevent racing processes from causing the surplus to exceed
1565 	 * overcommit
1566 	 *
1567 	 * This however introduces a different race, where a process B
1568 	 * tries to grow the static hugepage pool while alloc_pages() is
1569 	 * called by process A. B will only examine the per-node
1570 	 * counters in determining if surplus huge pages can be
1571 	 * converted to normal huge pages in adjust_pool_surplus(). A
1572 	 * won't be able to increment the per-node counter, until the
1573 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1574 	 * no more huge pages can be converted from surplus to normal
1575 	 * state (and doesn't try to convert again). Thus, we have a
1576 	 * case where a surplus huge page exists, the pool is grown, and
1577 	 * the surplus huge page still exists after, even though it
1578 	 * should just have been converted to a normal huge page. This
1579 	 * does not leak memory, though, as the hugepage will be freed
1580 	 * once it is out of use. It also does not allow the counters to
1581 	 * go out of whack in adjust_pool_surplus() as we don't modify
1582 	 * the node values until we've gotten the hugepage and only the
1583 	 * per-node value is checked there.
1584 	 */
1585 	spin_lock(&hugetlb_lock);
1586 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1587 		spin_unlock(&hugetlb_lock);
1588 		return NULL;
1589 	} else {
1590 		h->nr_huge_pages++;
1591 		h->surplus_huge_pages++;
1592 	}
1593 	spin_unlock(&hugetlb_lock);
1594 
1595 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1596 
1597 	spin_lock(&hugetlb_lock);
1598 	if (page) {
1599 		INIT_LIST_HEAD(&page->lru);
1600 		r_nid = page_to_nid(page);
1601 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1602 		set_hugetlb_cgroup(page, NULL);
1603 		/*
1604 		 * We incremented the global counters already
1605 		 */
1606 		h->nr_huge_pages_node[r_nid]++;
1607 		h->surplus_huge_pages_node[r_nid]++;
1608 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1609 	} else {
1610 		h->nr_huge_pages--;
1611 		h->surplus_huge_pages--;
1612 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1613 	}
1614 	spin_unlock(&hugetlb_lock);
1615 
1616 	return page;
1617 }
1618 
1619 /*
1620  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1621  * NUMA_NO_NODE, which means that it may be allocated
1622  * anywhere.
1623  */
1624 static
1625 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1626 {
1627 	unsigned long addr = -1;
1628 
1629 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1630 }
1631 
1632 /*
1633  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1634  */
1635 static
1636 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1637 		struct vm_area_struct *vma, unsigned long addr)
1638 {
1639 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1640 }
1641 
1642 /*
1643  * This allocation function is useful in the context where vma is irrelevant.
1644  * E.g. soft-offlining uses this function because it only cares physical
1645  * address of error page.
1646  */
1647 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1648 {
1649 	struct page *page = NULL;
1650 
1651 	spin_lock(&hugetlb_lock);
1652 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1653 		page = dequeue_huge_page_node(h, nid);
1654 	spin_unlock(&hugetlb_lock);
1655 
1656 	if (!page)
1657 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1658 
1659 	return page;
1660 }
1661 
1662 /*
1663  * Increase the hugetlb pool such that it can accommodate a reservation
1664  * of size 'delta'.
1665  */
1666 static int gather_surplus_pages(struct hstate *h, int delta)
1667 {
1668 	struct list_head surplus_list;
1669 	struct page *page, *tmp;
1670 	int ret, i;
1671 	int needed, allocated;
1672 	bool alloc_ok = true;
1673 
1674 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1675 	if (needed <= 0) {
1676 		h->resv_huge_pages += delta;
1677 		return 0;
1678 	}
1679 
1680 	allocated = 0;
1681 	INIT_LIST_HEAD(&surplus_list);
1682 
1683 	ret = -ENOMEM;
1684 retry:
1685 	spin_unlock(&hugetlb_lock);
1686 	for (i = 0; i < needed; i++) {
1687 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1688 		if (!page) {
1689 			alloc_ok = false;
1690 			break;
1691 		}
1692 		list_add(&page->lru, &surplus_list);
1693 	}
1694 	allocated += i;
1695 
1696 	/*
1697 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1698 	 * because either resv_huge_pages or free_huge_pages may have changed.
1699 	 */
1700 	spin_lock(&hugetlb_lock);
1701 	needed = (h->resv_huge_pages + delta) -
1702 			(h->free_huge_pages + allocated);
1703 	if (needed > 0) {
1704 		if (alloc_ok)
1705 			goto retry;
1706 		/*
1707 		 * We were not able to allocate enough pages to
1708 		 * satisfy the entire reservation so we free what
1709 		 * we've allocated so far.
1710 		 */
1711 		goto free;
1712 	}
1713 	/*
1714 	 * The surplus_list now contains _at_least_ the number of extra pages
1715 	 * needed to accommodate the reservation.  Add the appropriate number
1716 	 * of pages to the hugetlb pool and free the extras back to the buddy
1717 	 * allocator.  Commit the entire reservation here to prevent another
1718 	 * process from stealing the pages as they are added to the pool but
1719 	 * before they are reserved.
1720 	 */
1721 	needed += allocated;
1722 	h->resv_huge_pages += delta;
1723 	ret = 0;
1724 
1725 	/* Free the needed pages to the hugetlb pool */
1726 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1727 		if ((--needed) < 0)
1728 			break;
1729 		/*
1730 		 * This page is now managed by the hugetlb allocator and has
1731 		 * no users -- drop the buddy allocator's reference.
1732 		 */
1733 		put_page_testzero(page);
1734 		VM_BUG_ON_PAGE(page_count(page), page);
1735 		enqueue_huge_page(h, page);
1736 	}
1737 free:
1738 	spin_unlock(&hugetlb_lock);
1739 
1740 	/* Free unnecessary surplus pages to the buddy allocator */
1741 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1742 		put_page(page);
1743 	spin_lock(&hugetlb_lock);
1744 
1745 	return ret;
1746 }
1747 
1748 /*
1749  * When releasing a hugetlb pool reservation, any surplus pages that were
1750  * allocated to satisfy the reservation must be explicitly freed if they were
1751  * never used.
1752  * Called with hugetlb_lock held.
1753  */
1754 static void return_unused_surplus_pages(struct hstate *h,
1755 					unsigned long unused_resv_pages)
1756 {
1757 	unsigned long nr_pages;
1758 
1759 	/* Uncommit the reservation */
1760 	h->resv_huge_pages -= unused_resv_pages;
1761 
1762 	/* Cannot return gigantic pages currently */
1763 	if (hstate_is_gigantic(h))
1764 		return;
1765 
1766 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1767 
1768 	/*
1769 	 * We want to release as many surplus pages as possible, spread
1770 	 * evenly across all nodes with memory. Iterate across these nodes
1771 	 * until we can no longer free unreserved surplus pages. This occurs
1772 	 * when the nodes with surplus pages have no free pages.
1773 	 * free_pool_huge_page() will balance the the freed pages across the
1774 	 * on-line nodes with memory and will handle the hstate accounting.
1775 	 */
1776 	while (nr_pages--) {
1777 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1778 			break;
1779 		cond_resched_lock(&hugetlb_lock);
1780 	}
1781 }
1782 
1783 
1784 /*
1785  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1786  * are used by the huge page allocation routines to manage reservations.
1787  *
1788  * vma_needs_reservation is called to determine if the huge page at addr
1789  * within the vma has an associated reservation.  If a reservation is
1790  * needed, the value 1 is returned.  The caller is then responsible for
1791  * managing the global reservation and subpool usage counts.  After
1792  * the huge page has been allocated, vma_commit_reservation is called
1793  * to add the page to the reservation map.  If the page allocation fails,
1794  * the reservation must be ended instead of committed.  vma_end_reservation
1795  * is called in such cases.
1796  *
1797  * In the normal case, vma_commit_reservation returns the same value
1798  * as the preceding vma_needs_reservation call.  The only time this
1799  * is not the case is if a reserve map was changed between calls.  It
1800  * is the responsibility of the caller to notice the difference and
1801  * take appropriate action.
1802  */
1803 enum vma_resv_mode {
1804 	VMA_NEEDS_RESV,
1805 	VMA_COMMIT_RESV,
1806 	VMA_END_RESV,
1807 };
1808 static long __vma_reservation_common(struct hstate *h,
1809 				struct vm_area_struct *vma, unsigned long addr,
1810 				enum vma_resv_mode mode)
1811 {
1812 	struct resv_map *resv;
1813 	pgoff_t idx;
1814 	long ret;
1815 
1816 	resv = vma_resv_map(vma);
1817 	if (!resv)
1818 		return 1;
1819 
1820 	idx = vma_hugecache_offset(h, vma, addr);
1821 	switch (mode) {
1822 	case VMA_NEEDS_RESV:
1823 		ret = region_chg(resv, idx, idx + 1);
1824 		break;
1825 	case VMA_COMMIT_RESV:
1826 		ret = region_add(resv, idx, idx + 1);
1827 		break;
1828 	case VMA_END_RESV:
1829 		region_abort(resv, idx, idx + 1);
1830 		ret = 0;
1831 		break;
1832 	default:
1833 		BUG();
1834 	}
1835 
1836 	if (vma->vm_flags & VM_MAYSHARE)
1837 		return ret;
1838 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1839 		/*
1840 		 * In most cases, reserves always exist for private mappings.
1841 		 * However, a file associated with mapping could have been
1842 		 * hole punched or truncated after reserves were consumed.
1843 		 * As subsequent fault on such a range will not use reserves.
1844 		 * Subtle - The reserve map for private mappings has the
1845 		 * opposite meaning than that of shared mappings.  If NO
1846 		 * entry is in the reserve map, it means a reservation exists.
1847 		 * If an entry exists in the reserve map, it means the
1848 		 * reservation has already been consumed.  As a result, the
1849 		 * return value of this routine is the opposite of the
1850 		 * value returned from reserve map manipulation routines above.
1851 		 */
1852 		if (ret)
1853 			return 0;
1854 		else
1855 			return 1;
1856 	}
1857 	else
1858 		return ret < 0 ? ret : 0;
1859 }
1860 
1861 static long vma_needs_reservation(struct hstate *h,
1862 			struct vm_area_struct *vma, unsigned long addr)
1863 {
1864 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1865 }
1866 
1867 static long vma_commit_reservation(struct hstate *h,
1868 			struct vm_area_struct *vma, unsigned long addr)
1869 {
1870 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1871 }
1872 
1873 static void vma_end_reservation(struct hstate *h,
1874 			struct vm_area_struct *vma, unsigned long addr)
1875 {
1876 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1877 }
1878 
1879 struct page *alloc_huge_page(struct vm_area_struct *vma,
1880 				    unsigned long addr, int avoid_reserve)
1881 {
1882 	struct hugepage_subpool *spool = subpool_vma(vma);
1883 	struct hstate *h = hstate_vma(vma);
1884 	struct page *page;
1885 	long map_chg, map_commit;
1886 	long gbl_chg;
1887 	int ret, idx;
1888 	struct hugetlb_cgroup *h_cg;
1889 
1890 	idx = hstate_index(h);
1891 	/*
1892 	 * Examine the region/reserve map to determine if the process
1893 	 * has a reservation for the page to be allocated.  A return
1894 	 * code of zero indicates a reservation exists (no change).
1895 	 */
1896 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1897 	if (map_chg < 0)
1898 		return ERR_PTR(-ENOMEM);
1899 
1900 	/*
1901 	 * Processes that did not create the mapping will have no
1902 	 * reserves as indicated by the region/reserve map. Check
1903 	 * that the allocation will not exceed the subpool limit.
1904 	 * Allocations for MAP_NORESERVE mappings also need to be
1905 	 * checked against any subpool limit.
1906 	 */
1907 	if (map_chg || avoid_reserve) {
1908 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1909 		if (gbl_chg < 0) {
1910 			vma_end_reservation(h, vma, addr);
1911 			return ERR_PTR(-ENOSPC);
1912 		}
1913 
1914 		/*
1915 		 * Even though there was no reservation in the region/reserve
1916 		 * map, there could be reservations associated with the
1917 		 * subpool that can be used.  This would be indicated if the
1918 		 * return value of hugepage_subpool_get_pages() is zero.
1919 		 * However, if avoid_reserve is specified we still avoid even
1920 		 * the subpool reservations.
1921 		 */
1922 		if (avoid_reserve)
1923 			gbl_chg = 1;
1924 	}
1925 
1926 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1927 	if (ret)
1928 		goto out_subpool_put;
1929 
1930 	spin_lock(&hugetlb_lock);
1931 	/*
1932 	 * glb_chg is passed to indicate whether or not a page must be taken
1933 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1934 	 * a reservation exists for the allocation.
1935 	 */
1936 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1937 	if (!page) {
1938 		spin_unlock(&hugetlb_lock);
1939 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1940 		if (!page)
1941 			goto out_uncharge_cgroup;
1942 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1943 			SetPagePrivate(page);
1944 			h->resv_huge_pages--;
1945 		}
1946 		spin_lock(&hugetlb_lock);
1947 		list_move(&page->lru, &h->hugepage_activelist);
1948 		/* Fall through */
1949 	}
1950 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1951 	spin_unlock(&hugetlb_lock);
1952 
1953 	set_page_private(page, (unsigned long)spool);
1954 
1955 	map_commit = vma_commit_reservation(h, vma, addr);
1956 	if (unlikely(map_chg > map_commit)) {
1957 		/*
1958 		 * The page was added to the reservation map between
1959 		 * vma_needs_reservation and vma_commit_reservation.
1960 		 * This indicates a race with hugetlb_reserve_pages.
1961 		 * Adjust for the subpool count incremented above AND
1962 		 * in hugetlb_reserve_pages for the same page.  Also,
1963 		 * the reservation count added in hugetlb_reserve_pages
1964 		 * no longer applies.
1965 		 */
1966 		long rsv_adjust;
1967 
1968 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1969 		hugetlb_acct_memory(h, -rsv_adjust);
1970 	}
1971 	return page;
1972 
1973 out_uncharge_cgroup:
1974 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1975 out_subpool_put:
1976 	if (map_chg || avoid_reserve)
1977 		hugepage_subpool_put_pages(spool, 1);
1978 	vma_end_reservation(h, vma, addr);
1979 	return ERR_PTR(-ENOSPC);
1980 }
1981 
1982 /*
1983  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1984  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1985  * where no ERR_VALUE is expected to be returned.
1986  */
1987 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1988 				unsigned long addr, int avoid_reserve)
1989 {
1990 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1991 	if (IS_ERR(page))
1992 		page = NULL;
1993 	return page;
1994 }
1995 
1996 int __weak alloc_bootmem_huge_page(struct hstate *h)
1997 {
1998 	struct huge_bootmem_page *m;
1999 	int nr_nodes, node;
2000 
2001 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2002 		void *addr;
2003 
2004 		addr = memblock_virt_alloc_try_nid_nopanic(
2005 				huge_page_size(h), huge_page_size(h),
2006 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2007 		if (addr) {
2008 			/*
2009 			 * Use the beginning of the huge page to store the
2010 			 * huge_bootmem_page struct (until gather_bootmem
2011 			 * puts them into the mem_map).
2012 			 */
2013 			m = addr;
2014 			goto found;
2015 		}
2016 	}
2017 	return 0;
2018 
2019 found:
2020 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2021 	/* Put them into a private list first because mem_map is not up yet */
2022 	list_add(&m->list, &huge_boot_pages);
2023 	m->hstate = h;
2024 	return 1;
2025 }
2026 
2027 static void __init prep_compound_huge_page(struct page *page,
2028 		unsigned int order)
2029 {
2030 	if (unlikely(order > (MAX_ORDER - 1)))
2031 		prep_compound_gigantic_page(page, order);
2032 	else
2033 		prep_compound_page(page, order);
2034 }
2035 
2036 /* Put bootmem huge pages into the standard lists after mem_map is up */
2037 static void __init gather_bootmem_prealloc(void)
2038 {
2039 	struct huge_bootmem_page *m;
2040 
2041 	list_for_each_entry(m, &huge_boot_pages, list) {
2042 		struct hstate *h = m->hstate;
2043 		struct page *page;
2044 
2045 #ifdef CONFIG_HIGHMEM
2046 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2047 		memblock_free_late(__pa(m),
2048 				   sizeof(struct huge_bootmem_page));
2049 #else
2050 		page = virt_to_page(m);
2051 #endif
2052 		WARN_ON(page_count(page) != 1);
2053 		prep_compound_huge_page(page, h->order);
2054 		WARN_ON(PageReserved(page));
2055 		prep_new_huge_page(h, page, page_to_nid(page));
2056 		/*
2057 		 * If we had gigantic hugepages allocated at boot time, we need
2058 		 * to restore the 'stolen' pages to totalram_pages in order to
2059 		 * fix confusing memory reports from free(1) and another
2060 		 * side-effects, like CommitLimit going negative.
2061 		 */
2062 		if (hstate_is_gigantic(h))
2063 			adjust_managed_page_count(page, 1 << h->order);
2064 	}
2065 }
2066 
2067 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2068 {
2069 	unsigned long i;
2070 
2071 	for (i = 0; i < h->max_huge_pages; ++i) {
2072 		if (hstate_is_gigantic(h)) {
2073 			if (!alloc_bootmem_huge_page(h))
2074 				break;
2075 		} else if (!alloc_fresh_huge_page(h,
2076 					 &node_states[N_MEMORY]))
2077 			break;
2078 	}
2079 	h->max_huge_pages = i;
2080 }
2081 
2082 static void __init hugetlb_init_hstates(void)
2083 {
2084 	struct hstate *h;
2085 
2086 	for_each_hstate(h) {
2087 		if (minimum_order > huge_page_order(h))
2088 			minimum_order = huge_page_order(h);
2089 
2090 		/* oversize hugepages were init'ed in early boot */
2091 		if (!hstate_is_gigantic(h))
2092 			hugetlb_hstate_alloc_pages(h);
2093 	}
2094 	VM_BUG_ON(minimum_order == UINT_MAX);
2095 }
2096 
2097 static char * __init memfmt(char *buf, unsigned long n)
2098 {
2099 	if (n >= (1UL << 30))
2100 		sprintf(buf, "%lu GB", n >> 30);
2101 	else if (n >= (1UL << 20))
2102 		sprintf(buf, "%lu MB", n >> 20);
2103 	else
2104 		sprintf(buf, "%lu KB", n >> 10);
2105 	return buf;
2106 }
2107 
2108 static void __init report_hugepages(void)
2109 {
2110 	struct hstate *h;
2111 
2112 	for_each_hstate(h) {
2113 		char buf[32];
2114 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2115 			memfmt(buf, huge_page_size(h)),
2116 			h->free_huge_pages);
2117 	}
2118 }
2119 
2120 #ifdef CONFIG_HIGHMEM
2121 static void try_to_free_low(struct hstate *h, unsigned long count,
2122 						nodemask_t *nodes_allowed)
2123 {
2124 	int i;
2125 
2126 	if (hstate_is_gigantic(h))
2127 		return;
2128 
2129 	for_each_node_mask(i, *nodes_allowed) {
2130 		struct page *page, *next;
2131 		struct list_head *freel = &h->hugepage_freelists[i];
2132 		list_for_each_entry_safe(page, next, freel, lru) {
2133 			if (count >= h->nr_huge_pages)
2134 				return;
2135 			if (PageHighMem(page))
2136 				continue;
2137 			list_del(&page->lru);
2138 			update_and_free_page(h, page);
2139 			h->free_huge_pages--;
2140 			h->free_huge_pages_node[page_to_nid(page)]--;
2141 		}
2142 	}
2143 }
2144 #else
2145 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2146 						nodemask_t *nodes_allowed)
2147 {
2148 }
2149 #endif
2150 
2151 /*
2152  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2153  * balanced by operating on them in a round-robin fashion.
2154  * Returns 1 if an adjustment was made.
2155  */
2156 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2157 				int delta)
2158 {
2159 	int nr_nodes, node;
2160 
2161 	VM_BUG_ON(delta != -1 && delta != 1);
2162 
2163 	if (delta < 0) {
2164 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2165 			if (h->surplus_huge_pages_node[node])
2166 				goto found;
2167 		}
2168 	} else {
2169 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2170 			if (h->surplus_huge_pages_node[node] <
2171 					h->nr_huge_pages_node[node])
2172 				goto found;
2173 		}
2174 	}
2175 	return 0;
2176 
2177 found:
2178 	h->surplus_huge_pages += delta;
2179 	h->surplus_huge_pages_node[node] += delta;
2180 	return 1;
2181 }
2182 
2183 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2184 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2185 						nodemask_t *nodes_allowed)
2186 {
2187 	unsigned long min_count, ret;
2188 
2189 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2190 		return h->max_huge_pages;
2191 
2192 	/*
2193 	 * Increase the pool size
2194 	 * First take pages out of surplus state.  Then make up the
2195 	 * remaining difference by allocating fresh huge pages.
2196 	 *
2197 	 * We might race with __alloc_buddy_huge_page() here and be unable
2198 	 * to convert a surplus huge page to a normal huge page. That is
2199 	 * not critical, though, it just means the overall size of the
2200 	 * pool might be one hugepage larger than it needs to be, but
2201 	 * within all the constraints specified by the sysctls.
2202 	 */
2203 	spin_lock(&hugetlb_lock);
2204 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2205 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2206 			break;
2207 	}
2208 
2209 	while (count > persistent_huge_pages(h)) {
2210 		/*
2211 		 * If this allocation races such that we no longer need the
2212 		 * page, free_huge_page will handle it by freeing the page
2213 		 * and reducing the surplus.
2214 		 */
2215 		spin_unlock(&hugetlb_lock);
2216 		if (hstate_is_gigantic(h))
2217 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2218 		else
2219 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2220 		spin_lock(&hugetlb_lock);
2221 		if (!ret)
2222 			goto out;
2223 
2224 		/* Bail for signals. Probably ctrl-c from user */
2225 		if (signal_pending(current))
2226 			goto out;
2227 	}
2228 
2229 	/*
2230 	 * Decrease the pool size
2231 	 * First return free pages to the buddy allocator (being careful
2232 	 * to keep enough around to satisfy reservations).  Then place
2233 	 * pages into surplus state as needed so the pool will shrink
2234 	 * to the desired size as pages become free.
2235 	 *
2236 	 * By placing pages into the surplus state independent of the
2237 	 * overcommit value, we are allowing the surplus pool size to
2238 	 * exceed overcommit. There are few sane options here. Since
2239 	 * __alloc_buddy_huge_page() is checking the global counter,
2240 	 * though, we'll note that we're not allowed to exceed surplus
2241 	 * and won't grow the pool anywhere else. Not until one of the
2242 	 * sysctls are changed, or the surplus pages go out of use.
2243 	 */
2244 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2245 	min_count = max(count, min_count);
2246 	try_to_free_low(h, min_count, nodes_allowed);
2247 	while (min_count < persistent_huge_pages(h)) {
2248 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2249 			break;
2250 		cond_resched_lock(&hugetlb_lock);
2251 	}
2252 	while (count < persistent_huge_pages(h)) {
2253 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2254 			break;
2255 	}
2256 out:
2257 	ret = persistent_huge_pages(h);
2258 	spin_unlock(&hugetlb_lock);
2259 	return ret;
2260 }
2261 
2262 #define HSTATE_ATTR_RO(_name) \
2263 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2264 
2265 #define HSTATE_ATTR(_name) \
2266 	static struct kobj_attribute _name##_attr = \
2267 		__ATTR(_name, 0644, _name##_show, _name##_store)
2268 
2269 static struct kobject *hugepages_kobj;
2270 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2271 
2272 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2273 
2274 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2275 {
2276 	int i;
2277 
2278 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2279 		if (hstate_kobjs[i] == kobj) {
2280 			if (nidp)
2281 				*nidp = NUMA_NO_NODE;
2282 			return &hstates[i];
2283 		}
2284 
2285 	return kobj_to_node_hstate(kobj, nidp);
2286 }
2287 
2288 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2289 					struct kobj_attribute *attr, char *buf)
2290 {
2291 	struct hstate *h;
2292 	unsigned long nr_huge_pages;
2293 	int nid;
2294 
2295 	h = kobj_to_hstate(kobj, &nid);
2296 	if (nid == NUMA_NO_NODE)
2297 		nr_huge_pages = h->nr_huge_pages;
2298 	else
2299 		nr_huge_pages = h->nr_huge_pages_node[nid];
2300 
2301 	return sprintf(buf, "%lu\n", nr_huge_pages);
2302 }
2303 
2304 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2305 					   struct hstate *h, int nid,
2306 					   unsigned long count, size_t len)
2307 {
2308 	int err;
2309 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2310 
2311 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2312 		err = -EINVAL;
2313 		goto out;
2314 	}
2315 
2316 	if (nid == NUMA_NO_NODE) {
2317 		/*
2318 		 * global hstate attribute
2319 		 */
2320 		if (!(obey_mempolicy &&
2321 				init_nodemask_of_mempolicy(nodes_allowed))) {
2322 			NODEMASK_FREE(nodes_allowed);
2323 			nodes_allowed = &node_states[N_MEMORY];
2324 		}
2325 	} else if (nodes_allowed) {
2326 		/*
2327 		 * per node hstate attribute: adjust count to global,
2328 		 * but restrict alloc/free to the specified node.
2329 		 */
2330 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2331 		init_nodemask_of_node(nodes_allowed, nid);
2332 	} else
2333 		nodes_allowed = &node_states[N_MEMORY];
2334 
2335 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2336 
2337 	if (nodes_allowed != &node_states[N_MEMORY])
2338 		NODEMASK_FREE(nodes_allowed);
2339 
2340 	return len;
2341 out:
2342 	NODEMASK_FREE(nodes_allowed);
2343 	return err;
2344 }
2345 
2346 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2347 					 struct kobject *kobj, const char *buf,
2348 					 size_t len)
2349 {
2350 	struct hstate *h;
2351 	unsigned long count;
2352 	int nid;
2353 	int err;
2354 
2355 	err = kstrtoul(buf, 10, &count);
2356 	if (err)
2357 		return err;
2358 
2359 	h = kobj_to_hstate(kobj, &nid);
2360 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2361 }
2362 
2363 static ssize_t nr_hugepages_show(struct kobject *kobj,
2364 				       struct kobj_attribute *attr, char *buf)
2365 {
2366 	return nr_hugepages_show_common(kobj, attr, buf);
2367 }
2368 
2369 static ssize_t nr_hugepages_store(struct kobject *kobj,
2370 	       struct kobj_attribute *attr, const char *buf, size_t len)
2371 {
2372 	return nr_hugepages_store_common(false, kobj, buf, len);
2373 }
2374 HSTATE_ATTR(nr_hugepages);
2375 
2376 #ifdef CONFIG_NUMA
2377 
2378 /*
2379  * hstate attribute for optionally mempolicy-based constraint on persistent
2380  * huge page alloc/free.
2381  */
2382 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2383 				       struct kobj_attribute *attr, char *buf)
2384 {
2385 	return nr_hugepages_show_common(kobj, attr, buf);
2386 }
2387 
2388 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2389 	       struct kobj_attribute *attr, const char *buf, size_t len)
2390 {
2391 	return nr_hugepages_store_common(true, kobj, buf, len);
2392 }
2393 HSTATE_ATTR(nr_hugepages_mempolicy);
2394 #endif
2395 
2396 
2397 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2398 					struct kobj_attribute *attr, char *buf)
2399 {
2400 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2401 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2402 }
2403 
2404 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2405 		struct kobj_attribute *attr, const char *buf, size_t count)
2406 {
2407 	int err;
2408 	unsigned long input;
2409 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2410 
2411 	if (hstate_is_gigantic(h))
2412 		return -EINVAL;
2413 
2414 	err = kstrtoul(buf, 10, &input);
2415 	if (err)
2416 		return err;
2417 
2418 	spin_lock(&hugetlb_lock);
2419 	h->nr_overcommit_huge_pages = input;
2420 	spin_unlock(&hugetlb_lock);
2421 
2422 	return count;
2423 }
2424 HSTATE_ATTR(nr_overcommit_hugepages);
2425 
2426 static ssize_t free_hugepages_show(struct kobject *kobj,
2427 					struct kobj_attribute *attr, char *buf)
2428 {
2429 	struct hstate *h;
2430 	unsigned long free_huge_pages;
2431 	int nid;
2432 
2433 	h = kobj_to_hstate(kobj, &nid);
2434 	if (nid == NUMA_NO_NODE)
2435 		free_huge_pages = h->free_huge_pages;
2436 	else
2437 		free_huge_pages = h->free_huge_pages_node[nid];
2438 
2439 	return sprintf(buf, "%lu\n", free_huge_pages);
2440 }
2441 HSTATE_ATTR_RO(free_hugepages);
2442 
2443 static ssize_t resv_hugepages_show(struct kobject *kobj,
2444 					struct kobj_attribute *attr, char *buf)
2445 {
2446 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2447 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2448 }
2449 HSTATE_ATTR_RO(resv_hugepages);
2450 
2451 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2452 					struct kobj_attribute *attr, char *buf)
2453 {
2454 	struct hstate *h;
2455 	unsigned long surplus_huge_pages;
2456 	int nid;
2457 
2458 	h = kobj_to_hstate(kobj, &nid);
2459 	if (nid == NUMA_NO_NODE)
2460 		surplus_huge_pages = h->surplus_huge_pages;
2461 	else
2462 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2463 
2464 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2465 }
2466 HSTATE_ATTR_RO(surplus_hugepages);
2467 
2468 static struct attribute *hstate_attrs[] = {
2469 	&nr_hugepages_attr.attr,
2470 	&nr_overcommit_hugepages_attr.attr,
2471 	&free_hugepages_attr.attr,
2472 	&resv_hugepages_attr.attr,
2473 	&surplus_hugepages_attr.attr,
2474 #ifdef CONFIG_NUMA
2475 	&nr_hugepages_mempolicy_attr.attr,
2476 #endif
2477 	NULL,
2478 };
2479 
2480 static struct attribute_group hstate_attr_group = {
2481 	.attrs = hstate_attrs,
2482 };
2483 
2484 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2485 				    struct kobject **hstate_kobjs,
2486 				    struct attribute_group *hstate_attr_group)
2487 {
2488 	int retval;
2489 	int hi = hstate_index(h);
2490 
2491 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2492 	if (!hstate_kobjs[hi])
2493 		return -ENOMEM;
2494 
2495 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2496 	if (retval)
2497 		kobject_put(hstate_kobjs[hi]);
2498 
2499 	return retval;
2500 }
2501 
2502 static void __init hugetlb_sysfs_init(void)
2503 {
2504 	struct hstate *h;
2505 	int err;
2506 
2507 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2508 	if (!hugepages_kobj)
2509 		return;
2510 
2511 	for_each_hstate(h) {
2512 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2513 					 hstate_kobjs, &hstate_attr_group);
2514 		if (err)
2515 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2516 	}
2517 }
2518 
2519 #ifdef CONFIG_NUMA
2520 
2521 /*
2522  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2523  * with node devices in node_devices[] using a parallel array.  The array
2524  * index of a node device or _hstate == node id.
2525  * This is here to avoid any static dependency of the node device driver, in
2526  * the base kernel, on the hugetlb module.
2527  */
2528 struct node_hstate {
2529 	struct kobject		*hugepages_kobj;
2530 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2531 };
2532 static struct node_hstate node_hstates[MAX_NUMNODES];
2533 
2534 /*
2535  * A subset of global hstate attributes for node devices
2536  */
2537 static struct attribute *per_node_hstate_attrs[] = {
2538 	&nr_hugepages_attr.attr,
2539 	&free_hugepages_attr.attr,
2540 	&surplus_hugepages_attr.attr,
2541 	NULL,
2542 };
2543 
2544 static struct attribute_group per_node_hstate_attr_group = {
2545 	.attrs = per_node_hstate_attrs,
2546 };
2547 
2548 /*
2549  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2550  * Returns node id via non-NULL nidp.
2551  */
2552 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2553 {
2554 	int nid;
2555 
2556 	for (nid = 0; nid < nr_node_ids; nid++) {
2557 		struct node_hstate *nhs = &node_hstates[nid];
2558 		int i;
2559 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2560 			if (nhs->hstate_kobjs[i] == kobj) {
2561 				if (nidp)
2562 					*nidp = nid;
2563 				return &hstates[i];
2564 			}
2565 	}
2566 
2567 	BUG();
2568 	return NULL;
2569 }
2570 
2571 /*
2572  * Unregister hstate attributes from a single node device.
2573  * No-op if no hstate attributes attached.
2574  */
2575 static void hugetlb_unregister_node(struct node *node)
2576 {
2577 	struct hstate *h;
2578 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2579 
2580 	if (!nhs->hugepages_kobj)
2581 		return;		/* no hstate attributes */
2582 
2583 	for_each_hstate(h) {
2584 		int idx = hstate_index(h);
2585 		if (nhs->hstate_kobjs[idx]) {
2586 			kobject_put(nhs->hstate_kobjs[idx]);
2587 			nhs->hstate_kobjs[idx] = NULL;
2588 		}
2589 	}
2590 
2591 	kobject_put(nhs->hugepages_kobj);
2592 	nhs->hugepages_kobj = NULL;
2593 }
2594 
2595 
2596 /*
2597  * Register hstate attributes for a single node device.
2598  * No-op if attributes already registered.
2599  */
2600 static void hugetlb_register_node(struct node *node)
2601 {
2602 	struct hstate *h;
2603 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2604 	int err;
2605 
2606 	if (nhs->hugepages_kobj)
2607 		return;		/* already allocated */
2608 
2609 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2610 							&node->dev.kobj);
2611 	if (!nhs->hugepages_kobj)
2612 		return;
2613 
2614 	for_each_hstate(h) {
2615 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2616 						nhs->hstate_kobjs,
2617 						&per_node_hstate_attr_group);
2618 		if (err) {
2619 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2620 				h->name, node->dev.id);
2621 			hugetlb_unregister_node(node);
2622 			break;
2623 		}
2624 	}
2625 }
2626 
2627 /*
2628  * hugetlb init time:  register hstate attributes for all registered node
2629  * devices of nodes that have memory.  All on-line nodes should have
2630  * registered their associated device by this time.
2631  */
2632 static void __init hugetlb_register_all_nodes(void)
2633 {
2634 	int nid;
2635 
2636 	for_each_node_state(nid, N_MEMORY) {
2637 		struct node *node = node_devices[nid];
2638 		if (node->dev.id == nid)
2639 			hugetlb_register_node(node);
2640 	}
2641 
2642 	/*
2643 	 * Let the node device driver know we're here so it can
2644 	 * [un]register hstate attributes on node hotplug.
2645 	 */
2646 	register_hugetlbfs_with_node(hugetlb_register_node,
2647 				     hugetlb_unregister_node);
2648 }
2649 #else	/* !CONFIG_NUMA */
2650 
2651 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2652 {
2653 	BUG();
2654 	if (nidp)
2655 		*nidp = -1;
2656 	return NULL;
2657 }
2658 
2659 static void hugetlb_register_all_nodes(void) { }
2660 
2661 #endif
2662 
2663 static int __init hugetlb_init(void)
2664 {
2665 	int i;
2666 
2667 	if (!hugepages_supported())
2668 		return 0;
2669 
2670 	if (!size_to_hstate(default_hstate_size)) {
2671 		default_hstate_size = HPAGE_SIZE;
2672 		if (!size_to_hstate(default_hstate_size))
2673 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2674 	}
2675 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2676 	if (default_hstate_max_huge_pages) {
2677 		if (!default_hstate.max_huge_pages)
2678 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2679 	}
2680 
2681 	hugetlb_init_hstates();
2682 	gather_bootmem_prealloc();
2683 	report_hugepages();
2684 
2685 	hugetlb_sysfs_init();
2686 	hugetlb_register_all_nodes();
2687 	hugetlb_cgroup_file_init();
2688 
2689 #ifdef CONFIG_SMP
2690 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2691 #else
2692 	num_fault_mutexes = 1;
2693 #endif
2694 	hugetlb_fault_mutex_table =
2695 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2696 	BUG_ON(!hugetlb_fault_mutex_table);
2697 
2698 	for (i = 0; i < num_fault_mutexes; i++)
2699 		mutex_init(&hugetlb_fault_mutex_table[i]);
2700 	return 0;
2701 }
2702 subsys_initcall(hugetlb_init);
2703 
2704 /* Should be called on processing a hugepagesz=... option */
2705 void __init hugetlb_bad_size(void)
2706 {
2707 	parsed_valid_hugepagesz = false;
2708 }
2709 
2710 void __init hugetlb_add_hstate(unsigned int order)
2711 {
2712 	struct hstate *h;
2713 	unsigned long i;
2714 
2715 	if (size_to_hstate(PAGE_SIZE << order)) {
2716 		pr_warn("hugepagesz= specified twice, ignoring\n");
2717 		return;
2718 	}
2719 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2720 	BUG_ON(order == 0);
2721 	h = &hstates[hugetlb_max_hstate++];
2722 	h->order = order;
2723 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2724 	h->nr_huge_pages = 0;
2725 	h->free_huge_pages = 0;
2726 	for (i = 0; i < MAX_NUMNODES; ++i)
2727 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2728 	INIT_LIST_HEAD(&h->hugepage_activelist);
2729 	h->next_nid_to_alloc = first_memory_node;
2730 	h->next_nid_to_free = first_memory_node;
2731 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2732 					huge_page_size(h)/1024);
2733 
2734 	parsed_hstate = h;
2735 }
2736 
2737 static int __init hugetlb_nrpages_setup(char *s)
2738 {
2739 	unsigned long *mhp;
2740 	static unsigned long *last_mhp;
2741 
2742 	if (!parsed_valid_hugepagesz) {
2743 		pr_warn("hugepages = %s preceded by "
2744 			"an unsupported hugepagesz, ignoring\n", s);
2745 		parsed_valid_hugepagesz = true;
2746 		return 1;
2747 	}
2748 	/*
2749 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2750 	 * so this hugepages= parameter goes to the "default hstate".
2751 	 */
2752 	else if (!hugetlb_max_hstate)
2753 		mhp = &default_hstate_max_huge_pages;
2754 	else
2755 		mhp = &parsed_hstate->max_huge_pages;
2756 
2757 	if (mhp == last_mhp) {
2758 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2759 		return 1;
2760 	}
2761 
2762 	if (sscanf(s, "%lu", mhp) <= 0)
2763 		*mhp = 0;
2764 
2765 	/*
2766 	 * Global state is always initialized later in hugetlb_init.
2767 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2768 	 * use the bootmem allocator.
2769 	 */
2770 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2771 		hugetlb_hstate_alloc_pages(parsed_hstate);
2772 
2773 	last_mhp = mhp;
2774 
2775 	return 1;
2776 }
2777 __setup("hugepages=", hugetlb_nrpages_setup);
2778 
2779 static int __init hugetlb_default_setup(char *s)
2780 {
2781 	default_hstate_size = memparse(s, &s);
2782 	return 1;
2783 }
2784 __setup("default_hugepagesz=", hugetlb_default_setup);
2785 
2786 static unsigned int cpuset_mems_nr(unsigned int *array)
2787 {
2788 	int node;
2789 	unsigned int nr = 0;
2790 
2791 	for_each_node_mask(node, cpuset_current_mems_allowed)
2792 		nr += array[node];
2793 
2794 	return nr;
2795 }
2796 
2797 #ifdef CONFIG_SYSCTL
2798 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2799 			 struct ctl_table *table, int write,
2800 			 void __user *buffer, size_t *length, loff_t *ppos)
2801 {
2802 	struct hstate *h = &default_hstate;
2803 	unsigned long tmp = h->max_huge_pages;
2804 	int ret;
2805 
2806 	if (!hugepages_supported())
2807 		return -EOPNOTSUPP;
2808 
2809 	table->data = &tmp;
2810 	table->maxlen = sizeof(unsigned long);
2811 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2812 	if (ret)
2813 		goto out;
2814 
2815 	if (write)
2816 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2817 						  NUMA_NO_NODE, tmp, *length);
2818 out:
2819 	return ret;
2820 }
2821 
2822 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2823 			  void __user *buffer, size_t *length, loff_t *ppos)
2824 {
2825 
2826 	return hugetlb_sysctl_handler_common(false, table, write,
2827 							buffer, length, ppos);
2828 }
2829 
2830 #ifdef CONFIG_NUMA
2831 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2832 			  void __user *buffer, size_t *length, loff_t *ppos)
2833 {
2834 	return hugetlb_sysctl_handler_common(true, table, write,
2835 							buffer, length, ppos);
2836 }
2837 #endif /* CONFIG_NUMA */
2838 
2839 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2840 			void __user *buffer,
2841 			size_t *length, loff_t *ppos)
2842 {
2843 	struct hstate *h = &default_hstate;
2844 	unsigned long tmp;
2845 	int ret;
2846 
2847 	if (!hugepages_supported())
2848 		return -EOPNOTSUPP;
2849 
2850 	tmp = h->nr_overcommit_huge_pages;
2851 
2852 	if (write && hstate_is_gigantic(h))
2853 		return -EINVAL;
2854 
2855 	table->data = &tmp;
2856 	table->maxlen = sizeof(unsigned long);
2857 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2858 	if (ret)
2859 		goto out;
2860 
2861 	if (write) {
2862 		spin_lock(&hugetlb_lock);
2863 		h->nr_overcommit_huge_pages = tmp;
2864 		spin_unlock(&hugetlb_lock);
2865 	}
2866 out:
2867 	return ret;
2868 }
2869 
2870 #endif /* CONFIG_SYSCTL */
2871 
2872 void hugetlb_report_meminfo(struct seq_file *m)
2873 {
2874 	struct hstate *h = &default_hstate;
2875 	if (!hugepages_supported())
2876 		return;
2877 	seq_printf(m,
2878 			"HugePages_Total:   %5lu\n"
2879 			"HugePages_Free:    %5lu\n"
2880 			"HugePages_Rsvd:    %5lu\n"
2881 			"HugePages_Surp:    %5lu\n"
2882 			"Hugepagesize:   %8lu kB\n",
2883 			h->nr_huge_pages,
2884 			h->free_huge_pages,
2885 			h->resv_huge_pages,
2886 			h->surplus_huge_pages,
2887 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2888 }
2889 
2890 int hugetlb_report_node_meminfo(int nid, char *buf)
2891 {
2892 	struct hstate *h = &default_hstate;
2893 	if (!hugepages_supported())
2894 		return 0;
2895 	return sprintf(buf,
2896 		"Node %d HugePages_Total: %5u\n"
2897 		"Node %d HugePages_Free:  %5u\n"
2898 		"Node %d HugePages_Surp:  %5u\n",
2899 		nid, h->nr_huge_pages_node[nid],
2900 		nid, h->free_huge_pages_node[nid],
2901 		nid, h->surplus_huge_pages_node[nid]);
2902 }
2903 
2904 void hugetlb_show_meminfo(void)
2905 {
2906 	struct hstate *h;
2907 	int nid;
2908 
2909 	if (!hugepages_supported())
2910 		return;
2911 
2912 	for_each_node_state(nid, N_MEMORY)
2913 		for_each_hstate(h)
2914 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2915 				nid,
2916 				h->nr_huge_pages_node[nid],
2917 				h->free_huge_pages_node[nid],
2918 				h->surplus_huge_pages_node[nid],
2919 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2920 }
2921 
2922 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2923 {
2924 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2925 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2926 }
2927 
2928 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2929 unsigned long hugetlb_total_pages(void)
2930 {
2931 	struct hstate *h;
2932 	unsigned long nr_total_pages = 0;
2933 
2934 	for_each_hstate(h)
2935 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2936 	return nr_total_pages;
2937 }
2938 
2939 static int hugetlb_acct_memory(struct hstate *h, long delta)
2940 {
2941 	int ret = -ENOMEM;
2942 
2943 	spin_lock(&hugetlb_lock);
2944 	/*
2945 	 * When cpuset is configured, it breaks the strict hugetlb page
2946 	 * reservation as the accounting is done on a global variable. Such
2947 	 * reservation is completely rubbish in the presence of cpuset because
2948 	 * the reservation is not checked against page availability for the
2949 	 * current cpuset. Application can still potentially OOM'ed by kernel
2950 	 * with lack of free htlb page in cpuset that the task is in.
2951 	 * Attempt to enforce strict accounting with cpuset is almost
2952 	 * impossible (or too ugly) because cpuset is too fluid that
2953 	 * task or memory node can be dynamically moved between cpusets.
2954 	 *
2955 	 * The change of semantics for shared hugetlb mapping with cpuset is
2956 	 * undesirable. However, in order to preserve some of the semantics,
2957 	 * we fall back to check against current free page availability as
2958 	 * a best attempt and hopefully to minimize the impact of changing
2959 	 * semantics that cpuset has.
2960 	 */
2961 	if (delta > 0) {
2962 		if (gather_surplus_pages(h, delta) < 0)
2963 			goto out;
2964 
2965 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2966 			return_unused_surplus_pages(h, delta);
2967 			goto out;
2968 		}
2969 	}
2970 
2971 	ret = 0;
2972 	if (delta < 0)
2973 		return_unused_surplus_pages(h, (unsigned long) -delta);
2974 
2975 out:
2976 	spin_unlock(&hugetlb_lock);
2977 	return ret;
2978 }
2979 
2980 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2981 {
2982 	struct resv_map *resv = vma_resv_map(vma);
2983 
2984 	/*
2985 	 * This new VMA should share its siblings reservation map if present.
2986 	 * The VMA will only ever have a valid reservation map pointer where
2987 	 * it is being copied for another still existing VMA.  As that VMA
2988 	 * has a reference to the reservation map it cannot disappear until
2989 	 * after this open call completes.  It is therefore safe to take a
2990 	 * new reference here without additional locking.
2991 	 */
2992 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2993 		kref_get(&resv->refs);
2994 }
2995 
2996 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2997 {
2998 	struct hstate *h = hstate_vma(vma);
2999 	struct resv_map *resv = vma_resv_map(vma);
3000 	struct hugepage_subpool *spool = subpool_vma(vma);
3001 	unsigned long reserve, start, end;
3002 	long gbl_reserve;
3003 
3004 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3005 		return;
3006 
3007 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3008 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3009 
3010 	reserve = (end - start) - region_count(resv, start, end);
3011 
3012 	kref_put(&resv->refs, resv_map_release);
3013 
3014 	if (reserve) {
3015 		/*
3016 		 * Decrement reserve counts.  The global reserve count may be
3017 		 * adjusted if the subpool has a minimum size.
3018 		 */
3019 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3020 		hugetlb_acct_memory(h, -gbl_reserve);
3021 	}
3022 }
3023 
3024 /*
3025  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3026  * handle_mm_fault() to try to instantiate regular-sized pages in the
3027  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3028  * this far.
3029  */
3030 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3031 {
3032 	BUG();
3033 	return 0;
3034 }
3035 
3036 const struct vm_operations_struct hugetlb_vm_ops = {
3037 	.fault = hugetlb_vm_op_fault,
3038 	.open = hugetlb_vm_op_open,
3039 	.close = hugetlb_vm_op_close,
3040 };
3041 
3042 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3043 				int writable)
3044 {
3045 	pte_t entry;
3046 
3047 	if (writable) {
3048 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3049 					 vma->vm_page_prot)));
3050 	} else {
3051 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3052 					   vma->vm_page_prot));
3053 	}
3054 	entry = pte_mkyoung(entry);
3055 	entry = pte_mkhuge(entry);
3056 	entry = arch_make_huge_pte(entry, vma, page, writable);
3057 
3058 	return entry;
3059 }
3060 
3061 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3062 				   unsigned long address, pte_t *ptep)
3063 {
3064 	pte_t entry;
3065 
3066 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3067 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3068 		update_mmu_cache(vma, address, ptep);
3069 }
3070 
3071 static int is_hugetlb_entry_migration(pte_t pte)
3072 {
3073 	swp_entry_t swp;
3074 
3075 	if (huge_pte_none(pte) || pte_present(pte))
3076 		return 0;
3077 	swp = pte_to_swp_entry(pte);
3078 	if (non_swap_entry(swp) && is_migration_entry(swp))
3079 		return 1;
3080 	else
3081 		return 0;
3082 }
3083 
3084 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3085 {
3086 	swp_entry_t swp;
3087 
3088 	if (huge_pte_none(pte) || pte_present(pte))
3089 		return 0;
3090 	swp = pte_to_swp_entry(pte);
3091 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3092 		return 1;
3093 	else
3094 		return 0;
3095 }
3096 
3097 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3098 			    struct vm_area_struct *vma)
3099 {
3100 	pte_t *src_pte, *dst_pte, entry;
3101 	struct page *ptepage;
3102 	unsigned long addr;
3103 	int cow;
3104 	struct hstate *h = hstate_vma(vma);
3105 	unsigned long sz = huge_page_size(h);
3106 	unsigned long mmun_start;	/* For mmu_notifiers */
3107 	unsigned long mmun_end;		/* For mmu_notifiers */
3108 	int ret = 0;
3109 
3110 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3111 
3112 	mmun_start = vma->vm_start;
3113 	mmun_end = vma->vm_end;
3114 	if (cow)
3115 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3116 
3117 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3118 		spinlock_t *src_ptl, *dst_ptl;
3119 		src_pte = huge_pte_offset(src, addr);
3120 		if (!src_pte)
3121 			continue;
3122 		dst_pte = huge_pte_alloc(dst, addr, sz);
3123 		if (!dst_pte) {
3124 			ret = -ENOMEM;
3125 			break;
3126 		}
3127 
3128 		/* If the pagetables are shared don't copy or take references */
3129 		if (dst_pte == src_pte)
3130 			continue;
3131 
3132 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3133 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3134 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3135 		entry = huge_ptep_get(src_pte);
3136 		if (huge_pte_none(entry)) { /* skip none entry */
3137 			;
3138 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3139 				    is_hugetlb_entry_hwpoisoned(entry))) {
3140 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3141 
3142 			if (is_write_migration_entry(swp_entry) && cow) {
3143 				/*
3144 				 * COW mappings require pages in both
3145 				 * parent and child to be set to read.
3146 				 */
3147 				make_migration_entry_read(&swp_entry);
3148 				entry = swp_entry_to_pte(swp_entry);
3149 				set_huge_pte_at(src, addr, src_pte, entry);
3150 			}
3151 			set_huge_pte_at(dst, addr, dst_pte, entry);
3152 		} else {
3153 			if (cow) {
3154 				huge_ptep_set_wrprotect(src, addr, src_pte);
3155 				mmu_notifier_invalidate_range(src, mmun_start,
3156 								   mmun_end);
3157 			}
3158 			entry = huge_ptep_get(src_pte);
3159 			ptepage = pte_page(entry);
3160 			get_page(ptepage);
3161 			page_dup_rmap(ptepage, true);
3162 			set_huge_pte_at(dst, addr, dst_pte, entry);
3163 			hugetlb_count_add(pages_per_huge_page(h), dst);
3164 		}
3165 		spin_unlock(src_ptl);
3166 		spin_unlock(dst_ptl);
3167 	}
3168 
3169 	if (cow)
3170 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3171 
3172 	return ret;
3173 }
3174 
3175 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3176 			    unsigned long start, unsigned long end,
3177 			    struct page *ref_page)
3178 {
3179 	int force_flush = 0;
3180 	struct mm_struct *mm = vma->vm_mm;
3181 	unsigned long address;
3182 	pte_t *ptep;
3183 	pte_t pte;
3184 	spinlock_t *ptl;
3185 	struct page *page;
3186 	struct hstate *h = hstate_vma(vma);
3187 	unsigned long sz = huge_page_size(h);
3188 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3189 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3190 
3191 	WARN_ON(!is_vm_hugetlb_page(vma));
3192 	BUG_ON(start & ~huge_page_mask(h));
3193 	BUG_ON(end & ~huge_page_mask(h));
3194 
3195 	tlb_start_vma(tlb, vma);
3196 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3197 	address = start;
3198 again:
3199 	for (; address < end; address += sz) {
3200 		ptep = huge_pte_offset(mm, address);
3201 		if (!ptep)
3202 			continue;
3203 
3204 		ptl = huge_pte_lock(h, mm, ptep);
3205 		if (huge_pmd_unshare(mm, &address, ptep))
3206 			goto unlock;
3207 
3208 		pte = huge_ptep_get(ptep);
3209 		if (huge_pte_none(pte))
3210 			goto unlock;
3211 
3212 		/*
3213 		 * Migrating hugepage or HWPoisoned hugepage is already
3214 		 * unmapped and its refcount is dropped, so just clear pte here.
3215 		 */
3216 		if (unlikely(!pte_present(pte))) {
3217 			huge_pte_clear(mm, address, ptep);
3218 			goto unlock;
3219 		}
3220 
3221 		page = pte_page(pte);
3222 		/*
3223 		 * If a reference page is supplied, it is because a specific
3224 		 * page is being unmapped, not a range. Ensure the page we
3225 		 * are about to unmap is the actual page of interest.
3226 		 */
3227 		if (ref_page) {
3228 			if (page != ref_page)
3229 				goto unlock;
3230 
3231 			/*
3232 			 * Mark the VMA as having unmapped its page so that
3233 			 * future faults in this VMA will fail rather than
3234 			 * looking like data was lost
3235 			 */
3236 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3237 		}
3238 
3239 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3240 		tlb_remove_tlb_entry(tlb, ptep, address);
3241 		if (huge_pte_dirty(pte))
3242 			set_page_dirty(page);
3243 
3244 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3245 		page_remove_rmap(page, true);
3246 		force_flush = !__tlb_remove_page(tlb, page);
3247 		if (force_flush) {
3248 			address += sz;
3249 			spin_unlock(ptl);
3250 			break;
3251 		}
3252 		/* Bail out after unmapping reference page if supplied */
3253 		if (ref_page) {
3254 			spin_unlock(ptl);
3255 			break;
3256 		}
3257 unlock:
3258 		spin_unlock(ptl);
3259 	}
3260 	/*
3261 	 * mmu_gather ran out of room to batch pages, we break out of
3262 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3263 	 * and page-free while holding it.
3264 	 */
3265 	if (force_flush) {
3266 		force_flush = 0;
3267 		tlb_flush_mmu(tlb);
3268 		if (address < end && !ref_page)
3269 			goto again;
3270 	}
3271 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3272 	tlb_end_vma(tlb, vma);
3273 }
3274 
3275 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3276 			  struct vm_area_struct *vma, unsigned long start,
3277 			  unsigned long end, struct page *ref_page)
3278 {
3279 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3280 
3281 	/*
3282 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3283 	 * test will fail on a vma being torn down, and not grab a page table
3284 	 * on its way out.  We're lucky that the flag has such an appropriate
3285 	 * name, and can in fact be safely cleared here. We could clear it
3286 	 * before the __unmap_hugepage_range above, but all that's necessary
3287 	 * is to clear it before releasing the i_mmap_rwsem. This works
3288 	 * because in the context this is called, the VMA is about to be
3289 	 * destroyed and the i_mmap_rwsem is held.
3290 	 */
3291 	vma->vm_flags &= ~VM_MAYSHARE;
3292 }
3293 
3294 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3295 			  unsigned long end, struct page *ref_page)
3296 {
3297 	struct mm_struct *mm;
3298 	struct mmu_gather tlb;
3299 
3300 	mm = vma->vm_mm;
3301 
3302 	tlb_gather_mmu(&tlb, mm, start, end);
3303 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3304 	tlb_finish_mmu(&tlb, start, end);
3305 }
3306 
3307 /*
3308  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3309  * mappping it owns the reserve page for. The intention is to unmap the page
3310  * from other VMAs and let the children be SIGKILLed if they are faulting the
3311  * same region.
3312  */
3313 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3314 			      struct page *page, unsigned long address)
3315 {
3316 	struct hstate *h = hstate_vma(vma);
3317 	struct vm_area_struct *iter_vma;
3318 	struct address_space *mapping;
3319 	pgoff_t pgoff;
3320 
3321 	/*
3322 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3323 	 * from page cache lookup which is in HPAGE_SIZE units.
3324 	 */
3325 	address = address & huge_page_mask(h);
3326 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3327 			vma->vm_pgoff;
3328 	mapping = file_inode(vma->vm_file)->i_mapping;
3329 
3330 	/*
3331 	 * Take the mapping lock for the duration of the table walk. As
3332 	 * this mapping should be shared between all the VMAs,
3333 	 * __unmap_hugepage_range() is called as the lock is already held
3334 	 */
3335 	i_mmap_lock_write(mapping);
3336 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3337 		/* Do not unmap the current VMA */
3338 		if (iter_vma == vma)
3339 			continue;
3340 
3341 		/*
3342 		 * Shared VMAs have their own reserves and do not affect
3343 		 * MAP_PRIVATE accounting but it is possible that a shared
3344 		 * VMA is using the same page so check and skip such VMAs.
3345 		 */
3346 		if (iter_vma->vm_flags & VM_MAYSHARE)
3347 			continue;
3348 
3349 		/*
3350 		 * Unmap the page from other VMAs without their own reserves.
3351 		 * They get marked to be SIGKILLed if they fault in these
3352 		 * areas. This is because a future no-page fault on this VMA
3353 		 * could insert a zeroed page instead of the data existing
3354 		 * from the time of fork. This would look like data corruption
3355 		 */
3356 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3357 			unmap_hugepage_range(iter_vma, address,
3358 					     address + huge_page_size(h), page);
3359 	}
3360 	i_mmap_unlock_write(mapping);
3361 }
3362 
3363 /*
3364  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3365  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3366  * cannot race with other handlers or page migration.
3367  * Keep the pte_same checks anyway to make transition from the mutex easier.
3368  */
3369 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3370 			unsigned long address, pte_t *ptep, pte_t pte,
3371 			struct page *pagecache_page, spinlock_t *ptl)
3372 {
3373 	struct hstate *h = hstate_vma(vma);
3374 	struct page *old_page, *new_page;
3375 	int ret = 0, outside_reserve = 0;
3376 	unsigned long mmun_start;	/* For mmu_notifiers */
3377 	unsigned long mmun_end;		/* For mmu_notifiers */
3378 
3379 	old_page = pte_page(pte);
3380 
3381 retry_avoidcopy:
3382 	/* If no-one else is actually using this page, avoid the copy
3383 	 * and just make the page writable */
3384 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3385 		page_move_anon_rmap(old_page, vma, address);
3386 		set_huge_ptep_writable(vma, address, ptep);
3387 		return 0;
3388 	}
3389 
3390 	/*
3391 	 * If the process that created a MAP_PRIVATE mapping is about to
3392 	 * perform a COW due to a shared page count, attempt to satisfy
3393 	 * the allocation without using the existing reserves. The pagecache
3394 	 * page is used to determine if the reserve at this address was
3395 	 * consumed or not. If reserves were used, a partial faulted mapping
3396 	 * at the time of fork() could consume its reserves on COW instead
3397 	 * of the full address range.
3398 	 */
3399 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3400 			old_page != pagecache_page)
3401 		outside_reserve = 1;
3402 
3403 	get_page(old_page);
3404 
3405 	/*
3406 	 * Drop page table lock as buddy allocator may be called. It will
3407 	 * be acquired again before returning to the caller, as expected.
3408 	 */
3409 	spin_unlock(ptl);
3410 	new_page = alloc_huge_page(vma, address, outside_reserve);
3411 
3412 	if (IS_ERR(new_page)) {
3413 		/*
3414 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3415 		 * it is due to references held by a child and an insufficient
3416 		 * huge page pool. To guarantee the original mappers
3417 		 * reliability, unmap the page from child processes. The child
3418 		 * may get SIGKILLed if it later faults.
3419 		 */
3420 		if (outside_reserve) {
3421 			put_page(old_page);
3422 			BUG_ON(huge_pte_none(pte));
3423 			unmap_ref_private(mm, vma, old_page, address);
3424 			BUG_ON(huge_pte_none(pte));
3425 			spin_lock(ptl);
3426 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3427 			if (likely(ptep &&
3428 				   pte_same(huge_ptep_get(ptep), pte)))
3429 				goto retry_avoidcopy;
3430 			/*
3431 			 * race occurs while re-acquiring page table
3432 			 * lock, and our job is done.
3433 			 */
3434 			return 0;
3435 		}
3436 
3437 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3438 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3439 		goto out_release_old;
3440 	}
3441 
3442 	/*
3443 	 * When the original hugepage is shared one, it does not have
3444 	 * anon_vma prepared.
3445 	 */
3446 	if (unlikely(anon_vma_prepare(vma))) {
3447 		ret = VM_FAULT_OOM;
3448 		goto out_release_all;
3449 	}
3450 
3451 	copy_user_huge_page(new_page, old_page, address, vma,
3452 			    pages_per_huge_page(h));
3453 	__SetPageUptodate(new_page);
3454 	set_page_huge_active(new_page);
3455 
3456 	mmun_start = address & huge_page_mask(h);
3457 	mmun_end = mmun_start + huge_page_size(h);
3458 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3459 
3460 	/*
3461 	 * Retake the page table lock to check for racing updates
3462 	 * before the page tables are altered
3463 	 */
3464 	spin_lock(ptl);
3465 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3466 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3467 		ClearPagePrivate(new_page);
3468 
3469 		/* Break COW */
3470 		huge_ptep_clear_flush(vma, address, ptep);
3471 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3472 		set_huge_pte_at(mm, address, ptep,
3473 				make_huge_pte(vma, new_page, 1));
3474 		page_remove_rmap(old_page, true);
3475 		hugepage_add_new_anon_rmap(new_page, vma, address);
3476 		/* Make the old page be freed below */
3477 		new_page = old_page;
3478 	}
3479 	spin_unlock(ptl);
3480 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3481 out_release_all:
3482 	put_page(new_page);
3483 out_release_old:
3484 	put_page(old_page);
3485 
3486 	spin_lock(ptl); /* Caller expects lock to be held */
3487 	return ret;
3488 }
3489 
3490 /* Return the pagecache page at a given address within a VMA */
3491 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3492 			struct vm_area_struct *vma, unsigned long address)
3493 {
3494 	struct address_space *mapping;
3495 	pgoff_t idx;
3496 
3497 	mapping = vma->vm_file->f_mapping;
3498 	idx = vma_hugecache_offset(h, vma, address);
3499 
3500 	return find_lock_page(mapping, idx);
3501 }
3502 
3503 /*
3504  * Return whether there is a pagecache page to back given address within VMA.
3505  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3506  */
3507 static bool hugetlbfs_pagecache_present(struct hstate *h,
3508 			struct vm_area_struct *vma, unsigned long address)
3509 {
3510 	struct address_space *mapping;
3511 	pgoff_t idx;
3512 	struct page *page;
3513 
3514 	mapping = vma->vm_file->f_mapping;
3515 	idx = vma_hugecache_offset(h, vma, address);
3516 
3517 	page = find_get_page(mapping, idx);
3518 	if (page)
3519 		put_page(page);
3520 	return page != NULL;
3521 }
3522 
3523 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3524 			   pgoff_t idx)
3525 {
3526 	struct inode *inode = mapping->host;
3527 	struct hstate *h = hstate_inode(inode);
3528 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3529 
3530 	if (err)
3531 		return err;
3532 	ClearPagePrivate(page);
3533 
3534 	spin_lock(&inode->i_lock);
3535 	inode->i_blocks += blocks_per_huge_page(h);
3536 	spin_unlock(&inode->i_lock);
3537 	return 0;
3538 }
3539 
3540 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3541 			   struct address_space *mapping, pgoff_t idx,
3542 			   unsigned long address, pte_t *ptep, unsigned int flags)
3543 {
3544 	struct hstate *h = hstate_vma(vma);
3545 	int ret = VM_FAULT_SIGBUS;
3546 	int anon_rmap = 0;
3547 	unsigned long size;
3548 	struct page *page;
3549 	pte_t new_pte;
3550 	spinlock_t *ptl;
3551 
3552 	/*
3553 	 * Currently, we are forced to kill the process in the event the
3554 	 * original mapper has unmapped pages from the child due to a failed
3555 	 * COW. Warn that such a situation has occurred as it may not be obvious
3556 	 */
3557 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3558 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3559 			   current->pid);
3560 		return ret;
3561 	}
3562 
3563 	/*
3564 	 * Use page lock to guard against racing truncation
3565 	 * before we get page_table_lock.
3566 	 */
3567 retry:
3568 	page = find_lock_page(mapping, idx);
3569 	if (!page) {
3570 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3571 		if (idx >= size)
3572 			goto out;
3573 		page = alloc_huge_page(vma, address, 0);
3574 		if (IS_ERR(page)) {
3575 			ret = PTR_ERR(page);
3576 			if (ret == -ENOMEM)
3577 				ret = VM_FAULT_OOM;
3578 			else
3579 				ret = VM_FAULT_SIGBUS;
3580 			goto out;
3581 		}
3582 		clear_huge_page(page, address, pages_per_huge_page(h));
3583 		__SetPageUptodate(page);
3584 		set_page_huge_active(page);
3585 
3586 		if (vma->vm_flags & VM_MAYSHARE) {
3587 			int err = huge_add_to_page_cache(page, mapping, idx);
3588 			if (err) {
3589 				put_page(page);
3590 				if (err == -EEXIST)
3591 					goto retry;
3592 				goto out;
3593 			}
3594 		} else {
3595 			lock_page(page);
3596 			if (unlikely(anon_vma_prepare(vma))) {
3597 				ret = VM_FAULT_OOM;
3598 				goto backout_unlocked;
3599 			}
3600 			anon_rmap = 1;
3601 		}
3602 	} else {
3603 		/*
3604 		 * If memory error occurs between mmap() and fault, some process
3605 		 * don't have hwpoisoned swap entry for errored virtual address.
3606 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3607 		 */
3608 		if (unlikely(PageHWPoison(page))) {
3609 			ret = VM_FAULT_HWPOISON |
3610 				VM_FAULT_SET_HINDEX(hstate_index(h));
3611 			goto backout_unlocked;
3612 		}
3613 	}
3614 
3615 	/*
3616 	 * If we are going to COW a private mapping later, we examine the
3617 	 * pending reservations for this page now. This will ensure that
3618 	 * any allocations necessary to record that reservation occur outside
3619 	 * the spinlock.
3620 	 */
3621 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3622 		if (vma_needs_reservation(h, vma, address) < 0) {
3623 			ret = VM_FAULT_OOM;
3624 			goto backout_unlocked;
3625 		}
3626 		/* Just decrements count, does not deallocate */
3627 		vma_end_reservation(h, vma, address);
3628 	}
3629 
3630 	ptl = huge_pte_lockptr(h, mm, ptep);
3631 	spin_lock(ptl);
3632 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3633 	if (idx >= size)
3634 		goto backout;
3635 
3636 	ret = 0;
3637 	if (!huge_pte_none(huge_ptep_get(ptep)))
3638 		goto backout;
3639 
3640 	if (anon_rmap) {
3641 		ClearPagePrivate(page);
3642 		hugepage_add_new_anon_rmap(page, vma, address);
3643 	} else
3644 		page_dup_rmap(page, true);
3645 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3646 				&& (vma->vm_flags & VM_SHARED)));
3647 	set_huge_pte_at(mm, address, ptep, new_pte);
3648 
3649 	hugetlb_count_add(pages_per_huge_page(h), mm);
3650 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3651 		/* Optimization, do the COW without a second fault */
3652 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3653 	}
3654 
3655 	spin_unlock(ptl);
3656 	unlock_page(page);
3657 out:
3658 	return ret;
3659 
3660 backout:
3661 	spin_unlock(ptl);
3662 backout_unlocked:
3663 	unlock_page(page);
3664 	put_page(page);
3665 	goto out;
3666 }
3667 
3668 #ifdef CONFIG_SMP
3669 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3670 			    struct vm_area_struct *vma,
3671 			    struct address_space *mapping,
3672 			    pgoff_t idx, unsigned long address)
3673 {
3674 	unsigned long key[2];
3675 	u32 hash;
3676 
3677 	if (vma->vm_flags & VM_SHARED) {
3678 		key[0] = (unsigned long) mapping;
3679 		key[1] = idx;
3680 	} else {
3681 		key[0] = (unsigned long) mm;
3682 		key[1] = address >> huge_page_shift(h);
3683 	}
3684 
3685 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3686 
3687 	return hash & (num_fault_mutexes - 1);
3688 }
3689 #else
3690 /*
3691  * For uniprocesor systems we always use a single mutex, so just
3692  * return 0 and avoid the hashing overhead.
3693  */
3694 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3695 			    struct vm_area_struct *vma,
3696 			    struct address_space *mapping,
3697 			    pgoff_t idx, unsigned long address)
3698 {
3699 	return 0;
3700 }
3701 #endif
3702 
3703 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3704 			unsigned long address, unsigned int flags)
3705 {
3706 	pte_t *ptep, entry;
3707 	spinlock_t *ptl;
3708 	int ret;
3709 	u32 hash;
3710 	pgoff_t idx;
3711 	struct page *page = NULL;
3712 	struct page *pagecache_page = NULL;
3713 	struct hstate *h = hstate_vma(vma);
3714 	struct address_space *mapping;
3715 	int need_wait_lock = 0;
3716 
3717 	address &= huge_page_mask(h);
3718 
3719 	ptep = huge_pte_offset(mm, address);
3720 	if (ptep) {
3721 		entry = huge_ptep_get(ptep);
3722 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3723 			migration_entry_wait_huge(vma, mm, ptep);
3724 			return 0;
3725 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3726 			return VM_FAULT_HWPOISON_LARGE |
3727 				VM_FAULT_SET_HINDEX(hstate_index(h));
3728 	} else {
3729 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3730 		if (!ptep)
3731 			return VM_FAULT_OOM;
3732 	}
3733 
3734 	mapping = vma->vm_file->f_mapping;
3735 	idx = vma_hugecache_offset(h, vma, address);
3736 
3737 	/*
3738 	 * Serialize hugepage allocation and instantiation, so that we don't
3739 	 * get spurious allocation failures if two CPUs race to instantiate
3740 	 * the same page in the page cache.
3741 	 */
3742 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3743 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3744 
3745 	entry = huge_ptep_get(ptep);
3746 	if (huge_pte_none(entry)) {
3747 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3748 		goto out_mutex;
3749 	}
3750 
3751 	ret = 0;
3752 
3753 	/*
3754 	 * entry could be a migration/hwpoison entry at this point, so this
3755 	 * check prevents the kernel from going below assuming that we have
3756 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3757 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3758 	 * handle it.
3759 	 */
3760 	if (!pte_present(entry))
3761 		goto out_mutex;
3762 
3763 	/*
3764 	 * If we are going to COW the mapping later, we examine the pending
3765 	 * reservations for this page now. This will ensure that any
3766 	 * allocations necessary to record that reservation occur outside the
3767 	 * spinlock. For private mappings, we also lookup the pagecache
3768 	 * page now as it is used to determine if a reservation has been
3769 	 * consumed.
3770 	 */
3771 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3772 		if (vma_needs_reservation(h, vma, address) < 0) {
3773 			ret = VM_FAULT_OOM;
3774 			goto out_mutex;
3775 		}
3776 		/* Just decrements count, does not deallocate */
3777 		vma_end_reservation(h, vma, address);
3778 
3779 		if (!(vma->vm_flags & VM_MAYSHARE))
3780 			pagecache_page = hugetlbfs_pagecache_page(h,
3781 								vma, address);
3782 	}
3783 
3784 	ptl = huge_pte_lock(h, mm, ptep);
3785 
3786 	/* Check for a racing update before calling hugetlb_cow */
3787 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3788 		goto out_ptl;
3789 
3790 	/*
3791 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3792 	 * pagecache_page, so here we need take the former one
3793 	 * when page != pagecache_page or !pagecache_page.
3794 	 */
3795 	page = pte_page(entry);
3796 	if (page != pagecache_page)
3797 		if (!trylock_page(page)) {
3798 			need_wait_lock = 1;
3799 			goto out_ptl;
3800 		}
3801 
3802 	get_page(page);
3803 
3804 	if (flags & FAULT_FLAG_WRITE) {
3805 		if (!huge_pte_write(entry)) {
3806 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3807 					pagecache_page, ptl);
3808 			goto out_put_page;
3809 		}
3810 		entry = huge_pte_mkdirty(entry);
3811 	}
3812 	entry = pte_mkyoung(entry);
3813 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3814 						flags & FAULT_FLAG_WRITE))
3815 		update_mmu_cache(vma, address, ptep);
3816 out_put_page:
3817 	if (page != pagecache_page)
3818 		unlock_page(page);
3819 	put_page(page);
3820 out_ptl:
3821 	spin_unlock(ptl);
3822 
3823 	if (pagecache_page) {
3824 		unlock_page(pagecache_page);
3825 		put_page(pagecache_page);
3826 	}
3827 out_mutex:
3828 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3829 	/*
3830 	 * Generally it's safe to hold refcount during waiting page lock. But
3831 	 * here we just wait to defer the next page fault to avoid busy loop and
3832 	 * the page is not used after unlocked before returning from the current
3833 	 * page fault. So we are safe from accessing freed page, even if we wait
3834 	 * here without taking refcount.
3835 	 */
3836 	if (need_wait_lock)
3837 		wait_on_page_locked(page);
3838 	return ret;
3839 }
3840 
3841 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3842 			 struct page **pages, struct vm_area_struct **vmas,
3843 			 unsigned long *position, unsigned long *nr_pages,
3844 			 long i, unsigned int flags)
3845 {
3846 	unsigned long pfn_offset;
3847 	unsigned long vaddr = *position;
3848 	unsigned long remainder = *nr_pages;
3849 	struct hstate *h = hstate_vma(vma);
3850 
3851 	while (vaddr < vma->vm_end && remainder) {
3852 		pte_t *pte;
3853 		spinlock_t *ptl = NULL;
3854 		int absent;
3855 		struct page *page;
3856 
3857 		/*
3858 		 * If we have a pending SIGKILL, don't keep faulting pages and
3859 		 * potentially allocating memory.
3860 		 */
3861 		if (unlikely(fatal_signal_pending(current))) {
3862 			remainder = 0;
3863 			break;
3864 		}
3865 
3866 		/*
3867 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3868 		 * each hugepage.  We have to make sure we get the
3869 		 * first, for the page indexing below to work.
3870 		 *
3871 		 * Note that page table lock is not held when pte is null.
3872 		 */
3873 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3874 		if (pte)
3875 			ptl = huge_pte_lock(h, mm, pte);
3876 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3877 
3878 		/*
3879 		 * When coredumping, it suits get_dump_page if we just return
3880 		 * an error where there's an empty slot with no huge pagecache
3881 		 * to back it.  This way, we avoid allocating a hugepage, and
3882 		 * the sparse dumpfile avoids allocating disk blocks, but its
3883 		 * huge holes still show up with zeroes where they need to be.
3884 		 */
3885 		if (absent && (flags & FOLL_DUMP) &&
3886 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3887 			if (pte)
3888 				spin_unlock(ptl);
3889 			remainder = 0;
3890 			break;
3891 		}
3892 
3893 		/*
3894 		 * We need call hugetlb_fault for both hugepages under migration
3895 		 * (in which case hugetlb_fault waits for the migration,) and
3896 		 * hwpoisoned hugepages (in which case we need to prevent the
3897 		 * caller from accessing to them.) In order to do this, we use
3898 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3899 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3900 		 * both cases, and because we can't follow correct pages
3901 		 * directly from any kind of swap entries.
3902 		 */
3903 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3904 		    ((flags & FOLL_WRITE) &&
3905 		      !huge_pte_write(huge_ptep_get(pte)))) {
3906 			int ret;
3907 
3908 			if (pte)
3909 				spin_unlock(ptl);
3910 			ret = hugetlb_fault(mm, vma, vaddr,
3911 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3912 			if (!(ret & VM_FAULT_ERROR))
3913 				continue;
3914 
3915 			remainder = 0;
3916 			break;
3917 		}
3918 
3919 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3920 		page = pte_page(huge_ptep_get(pte));
3921 same_page:
3922 		if (pages) {
3923 			pages[i] = mem_map_offset(page, pfn_offset);
3924 			get_page(pages[i]);
3925 		}
3926 
3927 		if (vmas)
3928 			vmas[i] = vma;
3929 
3930 		vaddr += PAGE_SIZE;
3931 		++pfn_offset;
3932 		--remainder;
3933 		++i;
3934 		if (vaddr < vma->vm_end && remainder &&
3935 				pfn_offset < pages_per_huge_page(h)) {
3936 			/*
3937 			 * We use pfn_offset to avoid touching the pageframes
3938 			 * of this compound page.
3939 			 */
3940 			goto same_page;
3941 		}
3942 		spin_unlock(ptl);
3943 	}
3944 	*nr_pages = remainder;
3945 	*position = vaddr;
3946 
3947 	return i ? i : -EFAULT;
3948 }
3949 
3950 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3951 		unsigned long address, unsigned long end, pgprot_t newprot)
3952 {
3953 	struct mm_struct *mm = vma->vm_mm;
3954 	unsigned long start = address;
3955 	pte_t *ptep;
3956 	pte_t pte;
3957 	struct hstate *h = hstate_vma(vma);
3958 	unsigned long pages = 0;
3959 
3960 	BUG_ON(address >= end);
3961 	flush_cache_range(vma, address, end);
3962 
3963 	mmu_notifier_invalidate_range_start(mm, start, end);
3964 	i_mmap_lock_write(vma->vm_file->f_mapping);
3965 	for (; address < end; address += huge_page_size(h)) {
3966 		spinlock_t *ptl;
3967 		ptep = huge_pte_offset(mm, address);
3968 		if (!ptep)
3969 			continue;
3970 		ptl = huge_pte_lock(h, mm, ptep);
3971 		if (huge_pmd_unshare(mm, &address, ptep)) {
3972 			pages++;
3973 			spin_unlock(ptl);
3974 			continue;
3975 		}
3976 		pte = huge_ptep_get(ptep);
3977 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3978 			spin_unlock(ptl);
3979 			continue;
3980 		}
3981 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3982 			swp_entry_t entry = pte_to_swp_entry(pte);
3983 
3984 			if (is_write_migration_entry(entry)) {
3985 				pte_t newpte;
3986 
3987 				make_migration_entry_read(&entry);
3988 				newpte = swp_entry_to_pte(entry);
3989 				set_huge_pte_at(mm, address, ptep, newpte);
3990 				pages++;
3991 			}
3992 			spin_unlock(ptl);
3993 			continue;
3994 		}
3995 		if (!huge_pte_none(pte)) {
3996 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3997 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3998 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3999 			set_huge_pte_at(mm, address, ptep, pte);
4000 			pages++;
4001 		}
4002 		spin_unlock(ptl);
4003 	}
4004 	/*
4005 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4006 	 * may have cleared our pud entry and done put_page on the page table:
4007 	 * once we release i_mmap_rwsem, another task can do the final put_page
4008 	 * and that page table be reused and filled with junk.
4009 	 */
4010 	flush_tlb_range(vma, start, end);
4011 	mmu_notifier_invalidate_range(mm, start, end);
4012 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4013 	mmu_notifier_invalidate_range_end(mm, start, end);
4014 
4015 	return pages << h->order;
4016 }
4017 
4018 int hugetlb_reserve_pages(struct inode *inode,
4019 					long from, long to,
4020 					struct vm_area_struct *vma,
4021 					vm_flags_t vm_flags)
4022 {
4023 	long ret, chg;
4024 	struct hstate *h = hstate_inode(inode);
4025 	struct hugepage_subpool *spool = subpool_inode(inode);
4026 	struct resv_map *resv_map;
4027 	long gbl_reserve;
4028 
4029 	/*
4030 	 * Only apply hugepage reservation if asked. At fault time, an
4031 	 * attempt will be made for VM_NORESERVE to allocate a page
4032 	 * without using reserves
4033 	 */
4034 	if (vm_flags & VM_NORESERVE)
4035 		return 0;
4036 
4037 	/*
4038 	 * Shared mappings base their reservation on the number of pages that
4039 	 * are already allocated on behalf of the file. Private mappings need
4040 	 * to reserve the full area even if read-only as mprotect() may be
4041 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4042 	 */
4043 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044 		resv_map = inode_resv_map(inode);
4045 
4046 		chg = region_chg(resv_map, from, to);
4047 
4048 	} else {
4049 		resv_map = resv_map_alloc();
4050 		if (!resv_map)
4051 			return -ENOMEM;
4052 
4053 		chg = to - from;
4054 
4055 		set_vma_resv_map(vma, resv_map);
4056 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4057 	}
4058 
4059 	if (chg < 0) {
4060 		ret = chg;
4061 		goto out_err;
4062 	}
4063 
4064 	/*
4065 	 * There must be enough pages in the subpool for the mapping. If
4066 	 * the subpool has a minimum size, there may be some global
4067 	 * reservations already in place (gbl_reserve).
4068 	 */
4069 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4070 	if (gbl_reserve < 0) {
4071 		ret = -ENOSPC;
4072 		goto out_err;
4073 	}
4074 
4075 	/*
4076 	 * Check enough hugepages are available for the reservation.
4077 	 * Hand the pages back to the subpool if there are not
4078 	 */
4079 	ret = hugetlb_acct_memory(h, gbl_reserve);
4080 	if (ret < 0) {
4081 		/* put back original number of pages, chg */
4082 		(void)hugepage_subpool_put_pages(spool, chg);
4083 		goto out_err;
4084 	}
4085 
4086 	/*
4087 	 * Account for the reservations made. Shared mappings record regions
4088 	 * that have reservations as they are shared by multiple VMAs.
4089 	 * When the last VMA disappears, the region map says how much
4090 	 * the reservation was and the page cache tells how much of
4091 	 * the reservation was consumed. Private mappings are per-VMA and
4092 	 * only the consumed reservations are tracked. When the VMA
4093 	 * disappears, the original reservation is the VMA size and the
4094 	 * consumed reservations are stored in the map. Hence, nothing
4095 	 * else has to be done for private mappings here
4096 	 */
4097 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4098 		long add = region_add(resv_map, from, to);
4099 
4100 		if (unlikely(chg > add)) {
4101 			/*
4102 			 * pages in this range were added to the reserve
4103 			 * map between region_chg and region_add.  This
4104 			 * indicates a race with alloc_huge_page.  Adjust
4105 			 * the subpool and reserve counts modified above
4106 			 * based on the difference.
4107 			 */
4108 			long rsv_adjust;
4109 
4110 			rsv_adjust = hugepage_subpool_put_pages(spool,
4111 								chg - add);
4112 			hugetlb_acct_memory(h, -rsv_adjust);
4113 		}
4114 	}
4115 	return 0;
4116 out_err:
4117 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4118 		region_abort(resv_map, from, to);
4119 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4120 		kref_put(&resv_map->refs, resv_map_release);
4121 	return ret;
4122 }
4123 
4124 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4125 								long freed)
4126 {
4127 	struct hstate *h = hstate_inode(inode);
4128 	struct resv_map *resv_map = inode_resv_map(inode);
4129 	long chg = 0;
4130 	struct hugepage_subpool *spool = subpool_inode(inode);
4131 	long gbl_reserve;
4132 
4133 	if (resv_map) {
4134 		chg = region_del(resv_map, start, end);
4135 		/*
4136 		 * region_del() can fail in the rare case where a region
4137 		 * must be split and another region descriptor can not be
4138 		 * allocated.  If end == LONG_MAX, it will not fail.
4139 		 */
4140 		if (chg < 0)
4141 			return chg;
4142 	}
4143 
4144 	spin_lock(&inode->i_lock);
4145 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4146 	spin_unlock(&inode->i_lock);
4147 
4148 	/*
4149 	 * If the subpool has a minimum size, the number of global
4150 	 * reservations to be released may be adjusted.
4151 	 */
4152 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4153 	hugetlb_acct_memory(h, -gbl_reserve);
4154 
4155 	return 0;
4156 }
4157 
4158 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4159 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4160 				struct vm_area_struct *vma,
4161 				unsigned long addr, pgoff_t idx)
4162 {
4163 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4164 				svma->vm_start;
4165 	unsigned long sbase = saddr & PUD_MASK;
4166 	unsigned long s_end = sbase + PUD_SIZE;
4167 
4168 	/* Allow segments to share if only one is marked locked */
4169 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4170 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4171 
4172 	/*
4173 	 * match the virtual addresses, permission and the alignment of the
4174 	 * page table page.
4175 	 */
4176 	if (pmd_index(addr) != pmd_index(saddr) ||
4177 	    vm_flags != svm_flags ||
4178 	    sbase < svma->vm_start || svma->vm_end < s_end)
4179 		return 0;
4180 
4181 	return saddr;
4182 }
4183 
4184 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4185 {
4186 	unsigned long base = addr & PUD_MASK;
4187 	unsigned long end = base + PUD_SIZE;
4188 
4189 	/*
4190 	 * check on proper vm_flags and page table alignment
4191 	 */
4192 	if (vma->vm_flags & VM_MAYSHARE &&
4193 	    vma->vm_start <= base && end <= vma->vm_end)
4194 		return true;
4195 	return false;
4196 }
4197 
4198 /*
4199  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4200  * and returns the corresponding pte. While this is not necessary for the
4201  * !shared pmd case because we can allocate the pmd later as well, it makes the
4202  * code much cleaner. pmd allocation is essential for the shared case because
4203  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4204  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4205  * bad pmd for sharing.
4206  */
4207 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4208 {
4209 	struct vm_area_struct *vma = find_vma(mm, addr);
4210 	struct address_space *mapping = vma->vm_file->f_mapping;
4211 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4212 			vma->vm_pgoff;
4213 	struct vm_area_struct *svma;
4214 	unsigned long saddr;
4215 	pte_t *spte = NULL;
4216 	pte_t *pte;
4217 	spinlock_t *ptl;
4218 
4219 	if (!vma_shareable(vma, addr))
4220 		return (pte_t *)pmd_alloc(mm, pud, addr);
4221 
4222 	i_mmap_lock_write(mapping);
4223 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4224 		if (svma == vma)
4225 			continue;
4226 
4227 		saddr = page_table_shareable(svma, vma, addr, idx);
4228 		if (saddr) {
4229 			spte = huge_pte_offset(svma->vm_mm, saddr);
4230 			if (spte) {
4231 				mm_inc_nr_pmds(mm);
4232 				get_page(virt_to_page(spte));
4233 				break;
4234 			}
4235 		}
4236 	}
4237 
4238 	if (!spte)
4239 		goto out;
4240 
4241 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4242 	spin_lock(ptl);
4243 	if (pud_none(*pud)) {
4244 		pud_populate(mm, pud,
4245 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4246 	} else {
4247 		put_page(virt_to_page(spte));
4248 		mm_inc_nr_pmds(mm);
4249 	}
4250 	spin_unlock(ptl);
4251 out:
4252 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4253 	i_mmap_unlock_write(mapping);
4254 	return pte;
4255 }
4256 
4257 /*
4258  * unmap huge page backed by shared pte.
4259  *
4260  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4261  * indicated by page_count > 1, unmap is achieved by clearing pud and
4262  * decrementing the ref count. If count == 1, the pte page is not shared.
4263  *
4264  * called with page table lock held.
4265  *
4266  * returns: 1 successfully unmapped a shared pte page
4267  *	    0 the underlying pte page is not shared, or it is the last user
4268  */
4269 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4270 {
4271 	pgd_t *pgd = pgd_offset(mm, *addr);
4272 	pud_t *pud = pud_offset(pgd, *addr);
4273 
4274 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4275 	if (page_count(virt_to_page(ptep)) == 1)
4276 		return 0;
4277 
4278 	pud_clear(pud);
4279 	put_page(virt_to_page(ptep));
4280 	mm_dec_nr_pmds(mm);
4281 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4282 	return 1;
4283 }
4284 #define want_pmd_share()	(1)
4285 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4286 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4287 {
4288 	return NULL;
4289 }
4290 
4291 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4292 {
4293 	return 0;
4294 }
4295 #define want_pmd_share()	(0)
4296 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4297 
4298 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4299 pte_t *huge_pte_alloc(struct mm_struct *mm,
4300 			unsigned long addr, unsigned long sz)
4301 {
4302 	pgd_t *pgd;
4303 	pud_t *pud;
4304 	pte_t *pte = NULL;
4305 
4306 	pgd = pgd_offset(mm, addr);
4307 	pud = pud_alloc(mm, pgd, addr);
4308 	if (pud) {
4309 		if (sz == PUD_SIZE) {
4310 			pte = (pte_t *)pud;
4311 		} else {
4312 			BUG_ON(sz != PMD_SIZE);
4313 			if (want_pmd_share() && pud_none(*pud))
4314 				pte = huge_pmd_share(mm, addr, pud);
4315 			else
4316 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4317 		}
4318 	}
4319 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4320 
4321 	return pte;
4322 }
4323 
4324 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4325 {
4326 	pgd_t *pgd;
4327 	pud_t *pud;
4328 	pmd_t *pmd = NULL;
4329 
4330 	pgd = pgd_offset(mm, addr);
4331 	if (pgd_present(*pgd)) {
4332 		pud = pud_offset(pgd, addr);
4333 		if (pud_present(*pud)) {
4334 			if (pud_huge(*pud))
4335 				return (pte_t *)pud;
4336 			pmd = pmd_offset(pud, addr);
4337 		}
4338 	}
4339 	return (pte_t *) pmd;
4340 }
4341 
4342 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4343 
4344 /*
4345  * These functions are overwritable if your architecture needs its own
4346  * behavior.
4347  */
4348 struct page * __weak
4349 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4350 			      int write)
4351 {
4352 	return ERR_PTR(-EINVAL);
4353 }
4354 
4355 struct page * __weak
4356 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4357 		pmd_t *pmd, int flags)
4358 {
4359 	struct page *page = NULL;
4360 	spinlock_t *ptl;
4361 retry:
4362 	ptl = pmd_lockptr(mm, pmd);
4363 	spin_lock(ptl);
4364 	/*
4365 	 * make sure that the address range covered by this pmd is not
4366 	 * unmapped from other threads.
4367 	 */
4368 	if (!pmd_huge(*pmd))
4369 		goto out;
4370 	if (pmd_present(*pmd)) {
4371 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4372 		if (flags & FOLL_GET)
4373 			get_page(page);
4374 	} else {
4375 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4376 			spin_unlock(ptl);
4377 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4378 			goto retry;
4379 		}
4380 		/*
4381 		 * hwpoisoned entry is treated as no_page_table in
4382 		 * follow_page_mask().
4383 		 */
4384 	}
4385 out:
4386 	spin_unlock(ptl);
4387 	return page;
4388 }
4389 
4390 struct page * __weak
4391 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4392 		pud_t *pud, int flags)
4393 {
4394 	if (flags & FOLL_GET)
4395 		return NULL;
4396 
4397 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4398 }
4399 
4400 #ifdef CONFIG_MEMORY_FAILURE
4401 
4402 /*
4403  * This function is called from memory failure code.
4404  * Assume the caller holds page lock of the head page.
4405  */
4406 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4407 {
4408 	struct hstate *h = page_hstate(hpage);
4409 	int nid = page_to_nid(hpage);
4410 	int ret = -EBUSY;
4411 
4412 	spin_lock(&hugetlb_lock);
4413 	/*
4414 	 * Just checking !page_huge_active is not enough, because that could be
4415 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4416 	 */
4417 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4418 		/*
4419 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4420 		 * but dangling hpage->lru can trigger list-debug warnings
4421 		 * (this happens when we call unpoison_memory() on it),
4422 		 * so let it point to itself with list_del_init().
4423 		 */
4424 		list_del_init(&hpage->lru);
4425 		set_page_refcounted(hpage);
4426 		h->free_huge_pages--;
4427 		h->free_huge_pages_node[nid]--;
4428 		ret = 0;
4429 	}
4430 	spin_unlock(&hugetlb_lock);
4431 	return ret;
4432 }
4433 #endif
4434 
4435 bool isolate_huge_page(struct page *page, struct list_head *list)
4436 {
4437 	bool ret = true;
4438 
4439 	VM_BUG_ON_PAGE(!PageHead(page), page);
4440 	spin_lock(&hugetlb_lock);
4441 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4442 		ret = false;
4443 		goto unlock;
4444 	}
4445 	clear_page_huge_active(page);
4446 	list_move_tail(&page->lru, list);
4447 unlock:
4448 	spin_unlock(&hugetlb_lock);
4449 	return ret;
4450 }
4451 
4452 void putback_active_hugepage(struct page *page)
4453 {
4454 	VM_BUG_ON_PAGE(!PageHead(page), page);
4455 	spin_lock(&hugetlb_lock);
4456 	set_page_huge_active(page);
4457 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4458 	spin_unlock(&hugetlb_lock);
4459 	put_page(page);
4460 }
4461