1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 #include <linux/jhash.h> 26 27 #include <asm/page.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 31 #include <linux/io.h> 32 #include <linux/hugetlb.h> 33 #include <linux/hugetlb_cgroup.h> 34 #include <linux/node.h> 35 #include "internal.h" 36 37 int hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 /* 43 * Minimum page order among possible hugepage sizes, set to a proper value 44 * at boot time. 45 */ 46 static unsigned int minimum_order __read_mostly = UINT_MAX; 47 48 __initdata LIST_HEAD(huge_boot_pages); 49 50 /* for command line parsing */ 51 static struct hstate * __initdata parsed_hstate; 52 static unsigned long __initdata default_hstate_max_huge_pages; 53 static unsigned long __initdata default_hstate_size; 54 static bool __initdata parsed_valid_hugepagesz = true; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 /* minimum size accounting */ 149 if (spool->min_hpages != -1 && spool->rsv_hpages) { 150 if (delta > spool->rsv_hpages) { 151 /* 152 * Asking for more reserves than those already taken on 153 * behalf of subpool. Return difference. 154 */ 155 ret = delta - spool->rsv_hpages; 156 spool->rsv_hpages = 0; 157 } else { 158 ret = 0; /* reserves already accounted for */ 159 spool->rsv_hpages -= delta; 160 } 161 } 162 163 unlock_ret: 164 spin_unlock(&spool->lock); 165 return ret; 166 } 167 168 /* 169 * Subpool accounting for freeing and unreserving pages. 170 * Return the number of global page reservations that must be dropped. 171 * The return value may only be different than the passed value (delta) 172 * in the case where a subpool minimum size must be maintained. 173 */ 174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 175 long delta) 176 { 177 long ret = delta; 178 179 if (!spool) 180 return delta; 181 182 spin_lock(&spool->lock); 183 184 if (spool->max_hpages != -1) /* maximum size accounting */ 185 spool->used_hpages -= delta; 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 189 if (spool->rsv_hpages + delta <= spool->min_hpages) 190 ret = 0; 191 else 192 ret = spool->rsv_hpages + delta - spool->min_hpages; 193 194 spool->rsv_hpages += delta; 195 if (spool->rsv_hpages > spool->min_hpages) 196 spool->rsv_hpages = spool->min_hpages; 197 } 198 199 /* 200 * If hugetlbfs_put_super couldn't free spool due to an outstanding 201 * quota reference, free it now. 202 */ 203 unlock_or_release_subpool(spool); 204 205 return ret; 206 } 207 208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 209 { 210 return HUGETLBFS_SB(inode->i_sb)->spool; 211 } 212 213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 214 { 215 return subpool_inode(file_inode(vma->vm_file)); 216 } 217 218 /* 219 * Region tracking -- allows tracking of reservations and instantiated pages 220 * across the pages in a mapping. 221 * 222 * The region data structures are embedded into a resv_map and protected 223 * by a resv_map's lock. The set of regions within the resv_map represent 224 * reservations for huge pages, or huge pages that have already been 225 * instantiated within the map. The from and to elements are huge page 226 * indicies into the associated mapping. from indicates the starting index 227 * of the region. to represents the first index past the end of the region. 228 * 229 * For example, a file region structure with from == 0 and to == 4 represents 230 * four huge pages in a mapping. It is important to note that the to element 231 * represents the first element past the end of the region. This is used in 232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 233 * 234 * Interval notation of the form [from, to) will be used to indicate that 235 * the endpoint from is inclusive and to is exclusive. 236 */ 237 struct file_region { 238 struct list_head link; 239 long from; 240 long to; 241 }; 242 243 /* 244 * Add the huge page range represented by [f, t) to the reserve 245 * map. In the normal case, existing regions will be expanded 246 * to accommodate the specified range. Sufficient regions should 247 * exist for expansion due to the previous call to region_chg 248 * with the same range. However, it is possible that region_del 249 * could have been called after region_chg and modifed the map 250 * in such a way that no region exists to be expanded. In this 251 * case, pull a region descriptor from the cache associated with 252 * the map and use that for the new range. 253 * 254 * Return the number of new huge pages added to the map. This 255 * number is greater than or equal to zero. 256 */ 257 static long region_add(struct resv_map *resv, long f, long t) 258 { 259 struct list_head *head = &resv->regions; 260 struct file_region *rg, *nrg, *trg; 261 long add = 0; 262 263 spin_lock(&resv->lock); 264 /* Locate the region we are either in or before. */ 265 list_for_each_entry(rg, head, link) 266 if (f <= rg->to) 267 break; 268 269 /* 270 * If no region exists which can be expanded to include the 271 * specified range, the list must have been modified by an 272 * interleving call to region_del(). Pull a region descriptor 273 * from the cache and use it for this range. 274 */ 275 if (&rg->link == head || t < rg->from) { 276 VM_BUG_ON(resv->region_cache_count <= 0); 277 278 resv->region_cache_count--; 279 nrg = list_first_entry(&resv->region_cache, struct file_region, 280 link); 281 list_del(&nrg->link); 282 283 nrg->from = f; 284 nrg->to = t; 285 list_add(&nrg->link, rg->link.prev); 286 287 add += t - f; 288 goto out_locked; 289 } 290 291 /* Round our left edge to the current segment if it encloses us. */ 292 if (f > rg->from) 293 f = rg->from; 294 295 /* Check for and consume any regions we now overlap with. */ 296 nrg = rg; 297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 298 if (&rg->link == head) 299 break; 300 if (rg->from > t) 301 break; 302 303 /* If this area reaches higher then extend our area to 304 * include it completely. If this is not the first area 305 * which we intend to reuse, free it. */ 306 if (rg->to > t) 307 t = rg->to; 308 if (rg != nrg) { 309 /* Decrement return value by the deleted range. 310 * Another range will span this area so that by 311 * end of routine add will be >= zero 312 */ 313 add -= (rg->to - rg->from); 314 list_del(&rg->link); 315 kfree(rg); 316 } 317 } 318 319 add += (nrg->from - f); /* Added to beginning of region */ 320 nrg->from = f; 321 add += t - nrg->to; /* Added to end of region */ 322 nrg->to = t; 323 324 out_locked: 325 resv->adds_in_progress--; 326 spin_unlock(&resv->lock); 327 VM_BUG_ON(add < 0); 328 return add; 329 } 330 331 /* 332 * Examine the existing reserve map and determine how many 333 * huge pages in the specified range [f, t) are NOT currently 334 * represented. This routine is called before a subsequent 335 * call to region_add that will actually modify the reserve 336 * map to add the specified range [f, t). region_chg does 337 * not change the number of huge pages represented by the 338 * map. However, if the existing regions in the map can not 339 * be expanded to represent the new range, a new file_region 340 * structure is added to the map as a placeholder. This is 341 * so that the subsequent region_add call will have all the 342 * regions it needs and will not fail. 343 * 344 * Upon entry, region_chg will also examine the cache of region descriptors 345 * associated with the map. If there are not enough descriptors cached, one 346 * will be allocated for the in progress add operation. 347 * 348 * Returns the number of huge pages that need to be added to the existing 349 * reservation map for the range [f, t). This number is greater or equal to 350 * zero. -ENOMEM is returned if a new file_region structure or cache entry 351 * is needed and can not be allocated. 352 */ 353 static long region_chg(struct resv_map *resv, long f, long t) 354 { 355 struct list_head *head = &resv->regions; 356 struct file_region *rg, *nrg = NULL; 357 long chg = 0; 358 359 retry: 360 spin_lock(&resv->lock); 361 retry_locked: 362 resv->adds_in_progress++; 363 364 /* 365 * Check for sufficient descriptors in the cache to accommodate 366 * the number of in progress add operations. 367 */ 368 if (resv->adds_in_progress > resv->region_cache_count) { 369 struct file_region *trg; 370 371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 372 /* Must drop lock to allocate a new descriptor. */ 373 resv->adds_in_progress--; 374 spin_unlock(&resv->lock); 375 376 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 377 if (!trg) { 378 kfree(nrg); 379 return -ENOMEM; 380 } 381 382 spin_lock(&resv->lock); 383 list_add(&trg->link, &resv->region_cache); 384 resv->region_cache_count++; 385 goto retry_locked; 386 } 387 388 /* Locate the region we are before or in. */ 389 list_for_each_entry(rg, head, link) 390 if (f <= rg->to) 391 break; 392 393 /* If we are below the current region then a new region is required. 394 * Subtle, allocate a new region at the position but make it zero 395 * size such that we can guarantee to record the reservation. */ 396 if (&rg->link == head || t < rg->from) { 397 if (!nrg) { 398 resv->adds_in_progress--; 399 spin_unlock(&resv->lock); 400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 401 if (!nrg) 402 return -ENOMEM; 403 404 nrg->from = f; 405 nrg->to = f; 406 INIT_LIST_HEAD(&nrg->link); 407 goto retry; 408 } 409 410 list_add(&nrg->link, rg->link.prev); 411 chg = t - f; 412 goto out_nrg; 413 } 414 415 /* Round our left edge to the current segment if it encloses us. */ 416 if (f > rg->from) 417 f = rg->from; 418 chg = t - f; 419 420 /* Check for and consume any regions we now overlap with. */ 421 list_for_each_entry(rg, rg->link.prev, link) { 422 if (&rg->link == head) 423 break; 424 if (rg->from > t) 425 goto out; 426 427 /* We overlap with this area, if it extends further than 428 * us then we must extend ourselves. Account for its 429 * existing reservation. */ 430 if (rg->to > t) { 431 chg += rg->to - t; 432 t = rg->to; 433 } 434 chg -= rg->to - rg->from; 435 } 436 437 out: 438 spin_unlock(&resv->lock); 439 /* We already know we raced and no longer need the new region */ 440 kfree(nrg); 441 return chg; 442 out_nrg: 443 spin_unlock(&resv->lock); 444 return chg; 445 } 446 447 /* 448 * Abort the in progress add operation. The adds_in_progress field 449 * of the resv_map keeps track of the operations in progress between 450 * calls to region_chg and region_add. Operations are sometimes 451 * aborted after the call to region_chg. In such cases, region_abort 452 * is called to decrement the adds_in_progress counter. 453 * 454 * NOTE: The range arguments [f, t) are not needed or used in this 455 * routine. They are kept to make reading the calling code easier as 456 * arguments will match the associated region_chg call. 457 */ 458 static void region_abort(struct resv_map *resv, long f, long t) 459 { 460 spin_lock(&resv->lock); 461 VM_BUG_ON(!resv->region_cache_count); 462 resv->adds_in_progress--; 463 spin_unlock(&resv->lock); 464 } 465 466 /* 467 * Delete the specified range [f, t) from the reserve map. If the 468 * t parameter is LONG_MAX, this indicates that ALL regions after f 469 * should be deleted. Locate the regions which intersect [f, t) 470 * and either trim, delete or split the existing regions. 471 * 472 * Returns the number of huge pages deleted from the reserve map. 473 * In the normal case, the return value is zero or more. In the 474 * case where a region must be split, a new region descriptor must 475 * be allocated. If the allocation fails, -ENOMEM will be returned. 476 * NOTE: If the parameter t == LONG_MAX, then we will never split 477 * a region and possibly return -ENOMEM. Callers specifying 478 * t == LONG_MAX do not need to check for -ENOMEM error. 479 */ 480 static long region_del(struct resv_map *resv, long f, long t) 481 { 482 struct list_head *head = &resv->regions; 483 struct file_region *rg, *trg; 484 struct file_region *nrg = NULL; 485 long del = 0; 486 487 retry: 488 spin_lock(&resv->lock); 489 list_for_each_entry_safe(rg, trg, head, link) { 490 /* 491 * Skip regions before the range to be deleted. file_region 492 * ranges are normally of the form [from, to). However, there 493 * may be a "placeholder" entry in the map which is of the form 494 * (from, to) with from == to. Check for placeholder entries 495 * at the beginning of the range to be deleted. 496 */ 497 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 498 continue; 499 500 if (rg->from >= t) 501 break; 502 503 if (f > rg->from && t < rg->to) { /* Must split region */ 504 /* 505 * Check for an entry in the cache before dropping 506 * lock and attempting allocation. 507 */ 508 if (!nrg && 509 resv->region_cache_count > resv->adds_in_progress) { 510 nrg = list_first_entry(&resv->region_cache, 511 struct file_region, 512 link); 513 list_del(&nrg->link); 514 resv->region_cache_count--; 515 } 516 517 if (!nrg) { 518 spin_unlock(&resv->lock); 519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 520 if (!nrg) 521 return -ENOMEM; 522 goto retry; 523 } 524 525 del += t - f; 526 527 /* New entry for end of split region */ 528 nrg->from = t; 529 nrg->to = rg->to; 530 INIT_LIST_HEAD(&nrg->link); 531 532 /* Original entry is trimmed */ 533 rg->to = f; 534 535 list_add(&nrg->link, &rg->link); 536 nrg = NULL; 537 break; 538 } 539 540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 541 del += rg->to - rg->from; 542 list_del(&rg->link); 543 kfree(rg); 544 continue; 545 } 546 547 if (f <= rg->from) { /* Trim beginning of region */ 548 del += t - rg->from; 549 rg->from = t; 550 } else { /* Trim end of region */ 551 del += rg->to - f; 552 rg->to = f; 553 } 554 } 555 556 spin_unlock(&resv->lock); 557 kfree(nrg); 558 return del; 559 } 560 561 /* 562 * A rare out of memory error was encountered which prevented removal of 563 * the reserve map region for a page. The huge page itself was free'ed 564 * and removed from the page cache. This routine will adjust the subpool 565 * usage count, and the global reserve count if needed. By incrementing 566 * these counts, the reserve map entry which could not be deleted will 567 * appear as a "reserved" entry instead of simply dangling with incorrect 568 * counts. 569 */ 570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 571 { 572 struct hugepage_subpool *spool = subpool_inode(inode); 573 long rsv_adjust; 574 575 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 576 if (restore_reserve && rsv_adjust) { 577 struct hstate *h = hstate_inode(inode); 578 579 hugetlb_acct_memory(h, 1); 580 } 581 } 582 583 /* 584 * Count and return the number of huge pages in the reserve map 585 * that intersect with the range [f, t). 586 */ 587 static long region_count(struct resv_map *resv, long f, long t) 588 { 589 struct list_head *head = &resv->regions; 590 struct file_region *rg; 591 long chg = 0; 592 593 spin_lock(&resv->lock); 594 /* Locate each segment we overlap with, and count that overlap. */ 595 list_for_each_entry(rg, head, link) { 596 long seg_from; 597 long seg_to; 598 599 if (rg->to <= f) 600 continue; 601 if (rg->from >= t) 602 break; 603 604 seg_from = max(rg->from, f); 605 seg_to = min(rg->to, t); 606 607 chg += seg_to - seg_from; 608 } 609 spin_unlock(&resv->lock); 610 611 return chg; 612 } 613 614 /* 615 * Convert the address within this vma to the page offset within 616 * the mapping, in pagecache page units; huge pages here. 617 */ 618 static pgoff_t vma_hugecache_offset(struct hstate *h, 619 struct vm_area_struct *vma, unsigned long address) 620 { 621 return ((address - vma->vm_start) >> huge_page_shift(h)) + 622 (vma->vm_pgoff >> huge_page_order(h)); 623 } 624 625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 626 unsigned long address) 627 { 628 return vma_hugecache_offset(hstate_vma(vma), vma, address); 629 } 630 EXPORT_SYMBOL_GPL(linear_hugepage_index); 631 632 /* 633 * Return the size of the pages allocated when backing a VMA. In the majority 634 * cases this will be same size as used by the page table entries. 635 */ 636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 637 { 638 struct hstate *hstate; 639 640 if (!is_vm_hugetlb_page(vma)) 641 return PAGE_SIZE; 642 643 hstate = hstate_vma(vma); 644 645 return 1UL << huge_page_shift(hstate); 646 } 647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 648 649 /* 650 * Return the page size being used by the MMU to back a VMA. In the majority 651 * of cases, the page size used by the kernel matches the MMU size. On 652 * architectures where it differs, an architecture-specific version of this 653 * function is required. 654 */ 655 #ifndef vma_mmu_pagesize 656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 657 { 658 return vma_kernel_pagesize(vma); 659 } 660 #endif 661 662 /* 663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 664 * bits of the reservation map pointer, which are always clear due to 665 * alignment. 666 */ 667 #define HPAGE_RESV_OWNER (1UL << 0) 668 #define HPAGE_RESV_UNMAPPED (1UL << 1) 669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 670 671 /* 672 * These helpers are used to track how many pages are reserved for 673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 674 * is guaranteed to have their future faults succeed. 675 * 676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 677 * the reserve counters are updated with the hugetlb_lock held. It is safe 678 * to reset the VMA at fork() time as it is not in use yet and there is no 679 * chance of the global counters getting corrupted as a result of the values. 680 * 681 * The private mapping reservation is represented in a subtly different 682 * manner to a shared mapping. A shared mapping has a region map associated 683 * with the underlying file, this region map represents the backing file 684 * pages which have ever had a reservation assigned which this persists even 685 * after the page is instantiated. A private mapping has a region map 686 * associated with the original mmap which is attached to all VMAs which 687 * reference it, this region map represents those offsets which have consumed 688 * reservation ie. where pages have been instantiated. 689 */ 690 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 691 { 692 return (unsigned long)vma->vm_private_data; 693 } 694 695 static void set_vma_private_data(struct vm_area_struct *vma, 696 unsigned long value) 697 { 698 vma->vm_private_data = (void *)value; 699 } 700 701 struct resv_map *resv_map_alloc(void) 702 { 703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 705 706 if (!resv_map || !rg) { 707 kfree(resv_map); 708 kfree(rg); 709 return NULL; 710 } 711 712 kref_init(&resv_map->refs); 713 spin_lock_init(&resv_map->lock); 714 INIT_LIST_HEAD(&resv_map->regions); 715 716 resv_map->adds_in_progress = 0; 717 718 INIT_LIST_HEAD(&resv_map->region_cache); 719 list_add(&rg->link, &resv_map->region_cache); 720 resv_map->region_cache_count = 1; 721 722 return resv_map; 723 } 724 725 void resv_map_release(struct kref *ref) 726 { 727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 728 struct list_head *head = &resv_map->region_cache; 729 struct file_region *rg, *trg; 730 731 /* Clear out any active regions before we release the map. */ 732 region_del(resv_map, 0, LONG_MAX); 733 734 /* ... and any entries left in the cache */ 735 list_for_each_entry_safe(rg, trg, head, link) { 736 list_del(&rg->link); 737 kfree(rg); 738 } 739 740 VM_BUG_ON(resv_map->adds_in_progress); 741 742 kfree(resv_map); 743 } 744 745 static inline struct resv_map *inode_resv_map(struct inode *inode) 746 { 747 return inode->i_mapping->private_data; 748 } 749 750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 751 { 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 753 if (vma->vm_flags & VM_MAYSHARE) { 754 struct address_space *mapping = vma->vm_file->f_mapping; 755 struct inode *inode = mapping->host; 756 757 return inode_resv_map(inode); 758 759 } else { 760 return (struct resv_map *)(get_vma_private_data(vma) & 761 ~HPAGE_RESV_MASK); 762 } 763 } 764 765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 766 { 767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 769 770 set_vma_private_data(vma, (get_vma_private_data(vma) & 771 HPAGE_RESV_MASK) | (unsigned long)map); 772 } 773 774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 775 { 776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 778 779 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 780 } 781 782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 783 { 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 785 786 return (get_vma_private_data(vma) & flag) != 0; 787 } 788 789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 791 { 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 793 if (!(vma->vm_flags & VM_MAYSHARE)) 794 vma->vm_private_data = (void *)0; 795 } 796 797 /* Returns true if the VMA has associated reserve pages */ 798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 799 { 800 if (vma->vm_flags & VM_NORESERVE) { 801 /* 802 * This address is already reserved by other process(chg == 0), 803 * so, we should decrement reserved count. Without decrementing, 804 * reserve count remains after releasing inode, because this 805 * allocated page will go into page cache and is regarded as 806 * coming from reserved pool in releasing step. Currently, we 807 * don't have any other solution to deal with this situation 808 * properly, so add work-around here. 809 */ 810 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 811 return true; 812 else 813 return false; 814 } 815 816 /* Shared mappings always use reserves */ 817 if (vma->vm_flags & VM_MAYSHARE) { 818 /* 819 * We know VM_NORESERVE is not set. Therefore, there SHOULD 820 * be a region map for all pages. The only situation where 821 * there is no region map is if a hole was punched via 822 * fallocate. In this case, there really are no reverves to 823 * use. This situation is indicated if chg != 0. 824 */ 825 if (chg) 826 return false; 827 else 828 return true; 829 } 830 831 /* 832 * Only the process that called mmap() has reserves for 833 * private mappings. 834 */ 835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 836 /* 837 * Like the shared case above, a hole punch or truncate 838 * could have been performed on the private mapping. 839 * Examine the value of chg to determine if reserves 840 * actually exist or were previously consumed. 841 * Very Subtle - The value of chg comes from a previous 842 * call to vma_needs_reserves(). The reserve map for 843 * private mappings has different (opposite) semantics 844 * than that of shared mappings. vma_needs_reserves() 845 * has already taken this difference in semantics into 846 * account. Therefore, the meaning of chg is the same 847 * as in the shared case above. Code could easily be 848 * combined, but keeping it separate draws attention to 849 * subtle differences. 850 */ 851 if (chg) 852 return false; 853 else 854 return true; 855 } 856 857 return false; 858 } 859 860 static void enqueue_huge_page(struct hstate *h, struct page *page) 861 { 862 int nid = page_to_nid(page); 863 list_move(&page->lru, &h->hugepage_freelists[nid]); 864 h->free_huge_pages++; 865 h->free_huge_pages_node[nid]++; 866 } 867 868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 869 { 870 struct page *page; 871 872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 873 if (!is_migrate_isolate_page(page)) 874 break; 875 /* 876 * if 'non-isolated free hugepage' not found on the list, 877 * the allocation fails. 878 */ 879 if (&h->hugepage_freelists[nid] == &page->lru) 880 return NULL; 881 list_move(&page->lru, &h->hugepage_activelist); 882 set_page_refcounted(page); 883 h->free_huge_pages--; 884 h->free_huge_pages_node[nid]--; 885 return page; 886 } 887 888 /* Movability of hugepages depends on migration support. */ 889 static inline gfp_t htlb_alloc_mask(struct hstate *h) 890 { 891 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 892 return GFP_HIGHUSER_MOVABLE; 893 else 894 return GFP_HIGHUSER; 895 } 896 897 static struct page *dequeue_huge_page_vma(struct hstate *h, 898 struct vm_area_struct *vma, 899 unsigned long address, int avoid_reserve, 900 long chg) 901 { 902 struct page *page = NULL; 903 struct mempolicy *mpol; 904 nodemask_t *nodemask; 905 struct zonelist *zonelist; 906 struct zone *zone; 907 struct zoneref *z; 908 unsigned int cpuset_mems_cookie; 909 910 /* 911 * A child process with MAP_PRIVATE mappings created by their parent 912 * have no page reserves. This check ensures that reservations are 913 * not "stolen". The child may still get SIGKILLed 914 */ 915 if (!vma_has_reserves(vma, chg) && 916 h->free_huge_pages - h->resv_huge_pages == 0) 917 goto err; 918 919 /* If reserves cannot be used, ensure enough pages are in the pool */ 920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 921 goto err; 922 923 retry_cpuset: 924 cpuset_mems_cookie = read_mems_allowed_begin(); 925 zonelist = huge_zonelist(vma, address, 926 htlb_alloc_mask(h), &mpol, &nodemask); 927 928 for_each_zone_zonelist_nodemask(zone, z, zonelist, 929 MAX_NR_ZONES - 1, nodemask) { 930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 931 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 932 if (page) { 933 if (avoid_reserve) 934 break; 935 if (!vma_has_reserves(vma, chg)) 936 break; 937 938 SetPagePrivate(page); 939 h->resv_huge_pages--; 940 break; 941 } 942 } 943 } 944 945 mpol_cond_put(mpol); 946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 947 goto retry_cpuset; 948 return page; 949 950 err: 951 return NULL; 952 } 953 954 /* 955 * common helper functions for hstate_next_node_to_{alloc|free}. 956 * We may have allocated or freed a huge page based on a different 957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 958 * be outside of *nodes_allowed. Ensure that we use an allowed 959 * node for alloc or free. 960 */ 961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 962 { 963 nid = next_node_in(nid, *nodes_allowed); 964 VM_BUG_ON(nid >= MAX_NUMNODES); 965 966 return nid; 967 } 968 969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 970 { 971 if (!node_isset(nid, *nodes_allowed)) 972 nid = next_node_allowed(nid, nodes_allowed); 973 return nid; 974 } 975 976 /* 977 * returns the previously saved node ["this node"] from which to 978 * allocate a persistent huge page for the pool and advance the 979 * next node from which to allocate, handling wrap at end of node 980 * mask. 981 */ 982 static int hstate_next_node_to_alloc(struct hstate *h, 983 nodemask_t *nodes_allowed) 984 { 985 int nid; 986 987 VM_BUG_ON(!nodes_allowed); 988 989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 991 992 return nid; 993 } 994 995 /* 996 * helper for free_pool_huge_page() - return the previously saved 997 * node ["this node"] from which to free a huge page. Advance the 998 * next node id whether or not we find a free huge page to free so 999 * that the next attempt to free addresses the next node. 1000 */ 1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1002 { 1003 int nid; 1004 1005 VM_BUG_ON(!nodes_allowed); 1006 1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1009 1010 return nid; 1011 } 1012 1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1014 for (nr_nodes = nodes_weight(*mask); \ 1015 nr_nodes > 0 && \ 1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1017 nr_nodes--) 1018 1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1020 for (nr_nodes = nodes_weight(*mask); \ 1021 nr_nodes > 0 && \ 1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1023 nr_nodes--) 1024 1025 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)) 1026 static void destroy_compound_gigantic_page(struct page *page, 1027 unsigned int order) 1028 { 1029 int i; 1030 int nr_pages = 1 << order; 1031 struct page *p = page + 1; 1032 1033 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1034 clear_compound_head(p); 1035 set_page_refcounted(p); 1036 } 1037 1038 set_compound_order(page, 0); 1039 __ClearPageHead(page); 1040 } 1041 1042 static void free_gigantic_page(struct page *page, unsigned int order) 1043 { 1044 free_contig_range(page_to_pfn(page), 1 << order); 1045 } 1046 1047 static int __alloc_gigantic_page(unsigned long start_pfn, 1048 unsigned long nr_pages) 1049 { 1050 unsigned long end_pfn = start_pfn + nr_pages; 1051 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1052 } 1053 1054 static bool pfn_range_valid_gigantic(struct zone *z, 1055 unsigned long start_pfn, unsigned long nr_pages) 1056 { 1057 unsigned long i, end_pfn = start_pfn + nr_pages; 1058 struct page *page; 1059 1060 for (i = start_pfn; i < end_pfn; i++) { 1061 if (!pfn_valid(i)) 1062 return false; 1063 1064 page = pfn_to_page(i); 1065 1066 if (page_zone(page) != z) 1067 return false; 1068 1069 if (PageReserved(page)) 1070 return false; 1071 1072 if (page_count(page) > 0) 1073 return false; 1074 1075 if (PageHuge(page)) 1076 return false; 1077 } 1078 1079 return true; 1080 } 1081 1082 static bool zone_spans_last_pfn(const struct zone *zone, 1083 unsigned long start_pfn, unsigned long nr_pages) 1084 { 1085 unsigned long last_pfn = start_pfn + nr_pages - 1; 1086 return zone_spans_pfn(zone, last_pfn); 1087 } 1088 1089 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1090 { 1091 unsigned long nr_pages = 1 << order; 1092 unsigned long ret, pfn, flags; 1093 struct zone *z; 1094 1095 z = NODE_DATA(nid)->node_zones; 1096 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1097 spin_lock_irqsave(&z->lock, flags); 1098 1099 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1100 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1101 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) { 1102 /* 1103 * We release the zone lock here because 1104 * alloc_contig_range() will also lock the zone 1105 * at some point. If there's an allocation 1106 * spinning on this lock, it may win the race 1107 * and cause alloc_contig_range() to fail... 1108 */ 1109 spin_unlock_irqrestore(&z->lock, flags); 1110 ret = __alloc_gigantic_page(pfn, nr_pages); 1111 if (!ret) 1112 return pfn_to_page(pfn); 1113 spin_lock_irqsave(&z->lock, flags); 1114 } 1115 pfn += nr_pages; 1116 } 1117 1118 spin_unlock_irqrestore(&z->lock, flags); 1119 } 1120 1121 return NULL; 1122 } 1123 1124 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1125 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1126 1127 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1128 { 1129 struct page *page; 1130 1131 page = alloc_gigantic_page(nid, huge_page_order(h)); 1132 if (page) { 1133 prep_compound_gigantic_page(page, huge_page_order(h)); 1134 prep_new_huge_page(h, page, nid); 1135 } 1136 1137 return page; 1138 } 1139 1140 static int alloc_fresh_gigantic_page(struct hstate *h, 1141 nodemask_t *nodes_allowed) 1142 { 1143 struct page *page = NULL; 1144 int nr_nodes, node; 1145 1146 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1147 page = alloc_fresh_gigantic_page_node(h, node); 1148 if (page) 1149 return 1; 1150 } 1151 1152 return 0; 1153 } 1154 1155 static inline bool gigantic_page_supported(void) { return true; } 1156 #else 1157 static inline bool gigantic_page_supported(void) { return false; } 1158 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1159 static inline void destroy_compound_gigantic_page(struct page *page, 1160 unsigned int order) { } 1161 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1162 nodemask_t *nodes_allowed) { return 0; } 1163 #endif 1164 1165 static void update_and_free_page(struct hstate *h, struct page *page) 1166 { 1167 int i; 1168 1169 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1170 return; 1171 1172 h->nr_huge_pages--; 1173 h->nr_huge_pages_node[page_to_nid(page)]--; 1174 for (i = 0; i < pages_per_huge_page(h); i++) { 1175 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1176 1 << PG_referenced | 1 << PG_dirty | 1177 1 << PG_active | 1 << PG_private | 1178 1 << PG_writeback); 1179 } 1180 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1181 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1182 set_page_refcounted(page); 1183 if (hstate_is_gigantic(h)) { 1184 destroy_compound_gigantic_page(page, huge_page_order(h)); 1185 free_gigantic_page(page, huge_page_order(h)); 1186 } else { 1187 __free_pages(page, huge_page_order(h)); 1188 } 1189 } 1190 1191 struct hstate *size_to_hstate(unsigned long size) 1192 { 1193 struct hstate *h; 1194 1195 for_each_hstate(h) { 1196 if (huge_page_size(h) == size) 1197 return h; 1198 } 1199 return NULL; 1200 } 1201 1202 /* 1203 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1204 * to hstate->hugepage_activelist.) 1205 * 1206 * This function can be called for tail pages, but never returns true for them. 1207 */ 1208 bool page_huge_active(struct page *page) 1209 { 1210 VM_BUG_ON_PAGE(!PageHuge(page), page); 1211 return PageHead(page) && PagePrivate(&page[1]); 1212 } 1213 1214 /* never called for tail page */ 1215 static void set_page_huge_active(struct page *page) 1216 { 1217 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1218 SetPagePrivate(&page[1]); 1219 } 1220 1221 static void clear_page_huge_active(struct page *page) 1222 { 1223 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1224 ClearPagePrivate(&page[1]); 1225 } 1226 1227 void free_huge_page(struct page *page) 1228 { 1229 /* 1230 * Can't pass hstate in here because it is called from the 1231 * compound page destructor. 1232 */ 1233 struct hstate *h = page_hstate(page); 1234 int nid = page_to_nid(page); 1235 struct hugepage_subpool *spool = 1236 (struct hugepage_subpool *)page_private(page); 1237 bool restore_reserve; 1238 1239 set_page_private(page, 0); 1240 page->mapping = NULL; 1241 VM_BUG_ON_PAGE(page_count(page), page); 1242 VM_BUG_ON_PAGE(page_mapcount(page), page); 1243 restore_reserve = PagePrivate(page); 1244 ClearPagePrivate(page); 1245 1246 /* 1247 * A return code of zero implies that the subpool will be under its 1248 * minimum size if the reservation is not restored after page is free. 1249 * Therefore, force restore_reserve operation. 1250 */ 1251 if (hugepage_subpool_put_pages(spool, 1) == 0) 1252 restore_reserve = true; 1253 1254 spin_lock(&hugetlb_lock); 1255 clear_page_huge_active(page); 1256 hugetlb_cgroup_uncharge_page(hstate_index(h), 1257 pages_per_huge_page(h), page); 1258 if (restore_reserve) 1259 h->resv_huge_pages++; 1260 1261 if (h->surplus_huge_pages_node[nid]) { 1262 /* remove the page from active list */ 1263 list_del(&page->lru); 1264 update_and_free_page(h, page); 1265 h->surplus_huge_pages--; 1266 h->surplus_huge_pages_node[nid]--; 1267 } else { 1268 arch_clear_hugepage_flags(page); 1269 enqueue_huge_page(h, page); 1270 } 1271 spin_unlock(&hugetlb_lock); 1272 } 1273 1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1275 { 1276 INIT_LIST_HEAD(&page->lru); 1277 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1278 spin_lock(&hugetlb_lock); 1279 set_hugetlb_cgroup(page, NULL); 1280 h->nr_huge_pages++; 1281 h->nr_huge_pages_node[nid]++; 1282 spin_unlock(&hugetlb_lock); 1283 put_page(page); /* free it into the hugepage allocator */ 1284 } 1285 1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1287 { 1288 int i; 1289 int nr_pages = 1 << order; 1290 struct page *p = page + 1; 1291 1292 /* we rely on prep_new_huge_page to set the destructor */ 1293 set_compound_order(page, order); 1294 __ClearPageReserved(page); 1295 __SetPageHead(page); 1296 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1297 /* 1298 * For gigantic hugepages allocated through bootmem at 1299 * boot, it's safer to be consistent with the not-gigantic 1300 * hugepages and clear the PG_reserved bit from all tail pages 1301 * too. Otherwse drivers using get_user_pages() to access tail 1302 * pages may get the reference counting wrong if they see 1303 * PG_reserved set on a tail page (despite the head page not 1304 * having PG_reserved set). Enforcing this consistency between 1305 * head and tail pages allows drivers to optimize away a check 1306 * on the head page when they need know if put_page() is needed 1307 * after get_user_pages(). 1308 */ 1309 __ClearPageReserved(p); 1310 set_page_count(p, 0); 1311 set_compound_head(p, page); 1312 } 1313 atomic_set(compound_mapcount_ptr(page), -1); 1314 } 1315 1316 /* 1317 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1318 * transparent huge pages. See the PageTransHuge() documentation for more 1319 * details. 1320 */ 1321 int PageHuge(struct page *page) 1322 { 1323 if (!PageCompound(page)) 1324 return 0; 1325 1326 page = compound_head(page); 1327 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1328 } 1329 EXPORT_SYMBOL_GPL(PageHuge); 1330 1331 /* 1332 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1333 * normal or transparent huge pages. 1334 */ 1335 int PageHeadHuge(struct page *page_head) 1336 { 1337 if (!PageHead(page_head)) 1338 return 0; 1339 1340 return get_compound_page_dtor(page_head) == free_huge_page; 1341 } 1342 1343 pgoff_t __basepage_index(struct page *page) 1344 { 1345 struct page *page_head = compound_head(page); 1346 pgoff_t index = page_index(page_head); 1347 unsigned long compound_idx; 1348 1349 if (!PageHuge(page_head)) 1350 return page_index(page); 1351 1352 if (compound_order(page_head) >= MAX_ORDER) 1353 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1354 else 1355 compound_idx = page - page_head; 1356 1357 return (index << compound_order(page_head)) + compound_idx; 1358 } 1359 1360 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1361 { 1362 struct page *page; 1363 1364 page = __alloc_pages_node(nid, 1365 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1366 __GFP_REPEAT|__GFP_NOWARN, 1367 huge_page_order(h)); 1368 if (page) { 1369 prep_new_huge_page(h, page, nid); 1370 } 1371 1372 return page; 1373 } 1374 1375 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1376 { 1377 struct page *page; 1378 int nr_nodes, node; 1379 int ret = 0; 1380 1381 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1382 page = alloc_fresh_huge_page_node(h, node); 1383 if (page) { 1384 ret = 1; 1385 break; 1386 } 1387 } 1388 1389 if (ret) 1390 count_vm_event(HTLB_BUDDY_PGALLOC); 1391 else 1392 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1393 1394 return ret; 1395 } 1396 1397 /* 1398 * Free huge page from pool from next node to free. 1399 * Attempt to keep persistent huge pages more or less 1400 * balanced over allowed nodes. 1401 * Called with hugetlb_lock locked. 1402 */ 1403 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1404 bool acct_surplus) 1405 { 1406 int nr_nodes, node; 1407 int ret = 0; 1408 1409 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1410 /* 1411 * If we're returning unused surplus pages, only examine 1412 * nodes with surplus pages. 1413 */ 1414 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1415 !list_empty(&h->hugepage_freelists[node])) { 1416 struct page *page = 1417 list_entry(h->hugepage_freelists[node].next, 1418 struct page, lru); 1419 list_del(&page->lru); 1420 h->free_huge_pages--; 1421 h->free_huge_pages_node[node]--; 1422 if (acct_surplus) { 1423 h->surplus_huge_pages--; 1424 h->surplus_huge_pages_node[node]--; 1425 } 1426 update_and_free_page(h, page); 1427 ret = 1; 1428 break; 1429 } 1430 } 1431 1432 return ret; 1433 } 1434 1435 /* 1436 * Dissolve a given free hugepage into free buddy pages. This function does 1437 * nothing for in-use (including surplus) hugepages. 1438 */ 1439 static void dissolve_free_huge_page(struct page *page) 1440 { 1441 spin_lock(&hugetlb_lock); 1442 if (PageHuge(page) && !page_count(page)) { 1443 struct hstate *h = page_hstate(page); 1444 int nid = page_to_nid(page); 1445 list_del(&page->lru); 1446 h->free_huge_pages--; 1447 h->free_huge_pages_node[nid]--; 1448 update_and_free_page(h, page); 1449 } 1450 spin_unlock(&hugetlb_lock); 1451 } 1452 1453 /* 1454 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1455 * make specified memory blocks removable from the system. 1456 * Note that start_pfn should aligned with (minimum) hugepage size. 1457 */ 1458 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1459 { 1460 unsigned long pfn; 1461 1462 if (!hugepages_supported()) 1463 return; 1464 1465 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1466 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1467 dissolve_free_huge_page(pfn_to_page(pfn)); 1468 } 1469 1470 /* 1471 * There are 3 ways this can get called: 1472 * 1. With vma+addr: we use the VMA's memory policy 1473 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1474 * page from any node, and let the buddy allocator itself figure 1475 * it out. 1476 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1477 * strictly from 'nid' 1478 */ 1479 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1480 struct vm_area_struct *vma, unsigned long addr, int nid) 1481 { 1482 int order = huge_page_order(h); 1483 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1484 unsigned int cpuset_mems_cookie; 1485 1486 /* 1487 * We need a VMA to get a memory policy. If we do not 1488 * have one, we use the 'nid' argument. 1489 * 1490 * The mempolicy stuff below has some non-inlined bits 1491 * and calls ->vm_ops. That makes it hard to optimize at 1492 * compile-time, even when NUMA is off and it does 1493 * nothing. This helps the compiler optimize it out. 1494 */ 1495 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1496 /* 1497 * If a specific node is requested, make sure to 1498 * get memory from there, but only when a node 1499 * is explicitly specified. 1500 */ 1501 if (nid != NUMA_NO_NODE) 1502 gfp |= __GFP_THISNODE; 1503 /* 1504 * Make sure to call something that can handle 1505 * nid=NUMA_NO_NODE 1506 */ 1507 return alloc_pages_node(nid, gfp, order); 1508 } 1509 1510 /* 1511 * OK, so we have a VMA. Fetch the mempolicy and try to 1512 * allocate a huge page with it. We will only reach this 1513 * when CONFIG_NUMA=y. 1514 */ 1515 do { 1516 struct page *page; 1517 struct mempolicy *mpol; 1518 struct zonelist *zl; 1519 nodemask_t *nodemask; 1520 1521 cpuset_mems_cookie = read_mems_allowed_begin(); 1522 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1523 mpol_cond_put(mpol); 1524 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1525 if (page) 1526 return page; 1527 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1528 1529 return NULL; 1530 } 1531 1532 /* 1533 * There are two ways to allocate a huge page: 1534 * 1. When you have a VMA and an address (like a fault) 1535 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1536 * 1537 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1538 * this case which signifies that the allocation should be done with 1539 * respect for the VMA's memory policy. 1540 * 1541 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1542 * implies that memory policies will not be taken in to account. 1543 */ 1544 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1545 struct vm_area_struct *vma, unsigned long addr, int nid) 1546 { 1547 struct page *page; 1548 unsigned int r_nid; 1549 1550 if (hstate_is_gigantic(h)) 1551 return NULL; 1552 1553 /* 1554 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1555 * This makes sure the caller is picking _one_ of the modes with which 1556 * we can call this function, not both. 1557 */ 1558 if (vma || (addr != -1)) { 1559 VM_WARN_ON_ONCE(addr == -1); 1560 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1561 } 1562 /* 1563 * Assume we will successfully allocate the surplus page to 1564 * prevent racing processes from causing the surplus to exceed 1565 * overcommit 1566 * 1567 * This however introduces a different race, where a process B 1568 * tries to grow the static hugepage pool while alloc_pages() is 1569 * called by process A. B will only examine the per-node 1570 * counters in determining if surplus huge pages can be 1571 * converted to normal huge pages in adjust_pool_surplus(). A 1572 * won't be able to increment the per-node counter, until the 1573 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1574 * no more huge pages can be converted from surplus to normal 1575 * state (and doesn't try to convert again). Thus, we have a 1576 * case where a surplus huge page exists, the pool is grown, and 1577 * the surplus huge page still exists after, even though it 1578 * should just have been converted to a normal huge page. This 1579 * does not leak memory, though, as the hugepage will be freed 1580 * once it is out of use. It also does not allow the counters to 1581 * go out of whack in adjust_pool_surplus() as we don't modify 1582 * the node values until we've gotten the hugepage and only the 1583 * per-node value is checked there. 1584 */ 1585 spin_lock(&hugetlb_lock); 1586 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1587 spin_unlock(&hugetlb_lock); 1588 return NULL; 1589 } else { 1590 h->nr_huge_pages++; 1591 h->surplus_huge_pages++; 1592 } 1593 spin_unlock(&hugetlb_lock); 1594 1595 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1596 1597 spin_lock(&hugetlb_lock); 1598 if (page) { 1599 INIT_LIST_HEAD(&page->lru); 1600 r_nid = page_to_nid(page); 1601 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1602 set_hugetlb_cgroup(page, NULL); 1603 /* 1604 * We incremented the global counters already 1605 */ 1606 h->nr_huge_pages_node[r_nid]++; 1607 h->surplus_huge_pages_node[r_nid]++; 1608 __count_vm_event(HTLB_BUDDY_PGALLOC); 1609 } else { 1610 h->nr_huge_pages--; 1611 h->surplus_huge_pages--; 1612 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1613 } 1614 spin_unlock(&hugetlb_lock); 1615 1616 return page; 1617 } 1618 1619 /* 1620 * Allocate a huge page from 'nid'. Note, 'nid' may be 1621 * NUMA_NO_NODE, which means that it may be allocated 1622 * anywhere. 1623 */ 1624 static 1625 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1626 { 1627 unsigned long addr = -1; 1628 1629 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1630 } 1631 1632 /* 1633 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1634 */ 1635 static 1636 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1637 struct vm_area_struct *vma, unsigned long addr) 1638 { 1639 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1640 } 1641 1642 /* 1643 * This allocation function is useful in the context where vma is irrelevant. 1644 * E.g. soft-offlining uses this function because it only cares physical 1645 * address of error page. 1646 */ 1647 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1648 { 1649 struct page *page = NULL; 1650 1651 spin_lock(&hugetlb_lock); 1652 if (h->free_huge_pages - h->resv_huge_pages > 0) 1653 page = dequeue_huge_page_node(h, nid); 1654 spin_unlock(&hugetlb_lock); 1655 1656 if (!page) 1657 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1658 1659 return page; 1660 } 1661 1662 /* 1663 * Increase the hugetlb pool such that it can accommodate a reservation 1664 * of size 'delta'. 1665 */ 1666 static int gather_surplus_pages(struct hstate *h, int delta) 1667 { 1668 struct list_head surplus_list; 1669 struct page *page, *tmp; 1670 int ret, i; 1671 int needed, allocated; 1672 bool alloc_ok = true; 1673 1674 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1675 if (needed <= 0) { 1676 h->resv_huge_pages += delta; 1677 return 0; 1678 } 1679 1680 allocated = 0; 1681 INIT_LIST_HEAD(&surplus_list); 1682 1683 ret = -ENOMEM; 1684 retry: 1685 spin_unlock(&hugetlb_lock); 1686 for (i = 0; i < needed; i++) { 1687 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1688 if (!page) { 1689 alloc_ok = false; 1690 break; 1691 } 1692 list_add(&page->lru, &surplus_list); 1693 } 1694 allocated += i; 1695 1696 /* 1697 * After retaking hugetlb_lock, we need to recalculate 'needed' 1698 * because either resv_huge_pages or free_huge_pages may have changed. 1699 */ 1700 spin_lock(&hugetlb_lock); 1701 needed = (h->resv_huge_pages + delta) - 1702 (h->free_huge_pages + allocated); 1703 if (needed > 0) { 1704 if (alloc_ok) 1705 goto retry; 1706 /* 1707 * We were not able to allocate enough pages to 1708 * satisfy the entire reservation so we free what 1709 * we've allocated so far. 1710 */ 1711 goto free; 1712 } 1713 /* 1714 * The surplus_list now contains _at_least_ the number of extra pages 1715 * needed to accommodate the reservation. Add the appropriate number 1716 * of pages to the hugetlb pool and free the extras back to the buddy 1717 * allocator. Commit the entire reservation here to prevent another 1718 * process from stealing the pages as they are added to the pool but 1719 * before they are reserved. 1720 */ 1721 needed += allocated; 1722 h->resv_huge_pages += delta; 1723 ret = 0; 1724 1725 /* Free the needed pages to the hugetlb pool */ 1726 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1727 if ((--needed) < 0) 1728 break; 1729 /* 1730 * This page is now managed by the hugetlb allocator and has 1731 * no users -- drop the buddy allocator's reference. 1732 */ 1733 put_page_testzero(page); 1734 VM_BUG_ON_PAGE(page_count(page), page); 1735 enqueue_huge_page(h, page); 1736 } 1737 free: 1738 spin_unlock(&hugetlb_lock); 1739 1740 /* Free unnecessary surplus pages to the buddy allocator */ 1741 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1742 put_page(page); 1743 spin_lock(&hugetlb_lock); 1744 1745 return ret; 1746 } 1747 1748 /* 1749 * When releasing a hugetlb pool reservation, any surplus pages that were 1750 * allocated to satisfy the reservation must be explicitly freed if they were 1751 * never used. 1752 * Called with hugetlb_lock held. 1753 */ 1754 static void return_unused_surplus_pages(struct hstate *h, 1755 unsigned long unused_resv_pages) 1756 { 1757 unsigned long nr_pages; 1758 1759 /* Uncommit the reservation */ 1760 h->resv_huge_pages -= unused_resv_pages; 1761 1762 /* Cannot return gigantic pages currently */ 1763 if (hstate_is_gigantic(h)) 1764 return; 1765 1766 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1767 1768 /* 1769 * We want to release as many surplus pages as possible, spread 1770 * evenly across all nodes with memory. Iterate across these nodes 1771 * until we can no longer free unreserved surplus pages. This occurs 1772 * when the nodes with surplus pages have no free pages. 1773 * free_pool_huge_page() will balance the the freed pages across the 1774 * on-line nodes with memory and will handle the hstate accounting. 1775 */ 1776 while (nr_pages--) { 1777 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1778 break; 1779 cond_resched_lock(&hugetlb_lock); 1780 } 1781 } 1782 1783 1784 /* 1785 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1786 * are used by the huge page allocation routines to manage reservations. 1787 * 1788 * vma_needs_reservation is called to determine if the huge page at addr 1789 * within the vma has an associated reservation. If a reservation is 1790 * needed, the value 1 is returned. The caller is then responsible for 1791 * managing the global reservation and subpool usage counts. After 1792 * the huge page has been allocated, vma_commit_reservation is called 1793 * to add the page to the reservation map. If the page allocation fails, 1794 * the reservation must be ended instead of committed. vma_end_reservation 1795 * is called in such cases. 1796 * 1797 * In the normal case, vma_commit_reservation returns the same value 1798 * as the preceding vma_needs_reservation call. The only time this 1799 * is not the case is if a reserve map was changed between calls. It 1800 * is the responsibility of the caller to notice the difference and 1801 * take appropriate action. 1802 */ 1803 enum vma_resv_mode { 1804 VMA_NEEDS_RESV, 1805 VMA_COMMIT_RESV, 1806 VMA_END_RESV, 1807 }; 1808 static long __vma_reservation_common(struct hstate *h, 1809 struct vm_area_struct *vma, unsigned long addr, 1810 enum vma_resv_mode mode) 1811 { 1812 struct resv_map *resv; 1813 pgoff_t idx; 1814 long ret; 1815 1816 resv = vma_resv_map(vma); 1817 if (!resv) 1818 return 1; 1819 1820 idx = vma_hugecache_offset(h, vma, addr); 1821 switch (mode) { 1822 case VMA_NEEDS_RESV: 1823 ret = region_chg(resv, idx, idx + 1); 1824 break; 1825 case VMA_COMMIT_RESV: 1826 ret = region_add(resv, idx, idx + 1); 1827 break; 1828 case VMA_END_RESV: 1829 region_abort(resv, idx, idx + 1); 1830 ret = 0; 1831 break; 1832 default: 1833 BUG(); 1834 } 1835 1836 if (vma->vm_flags & VM_MAYSHARE) 1837 return ret; 1838 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1839 /* 1840 * In most cases, reserves always exist for private mappings. 1841 * However, a file associated with mapping could have been 1842 * hole punched or truncated after reserves were consumed. 1843 * As subsequent fault on such a range will not use reserves. 1844 * Subtle - The reserve map for private mappings has the 1845 * opposite meaning than that of shared mappings. If NO 1846 * entry is in the reserve map, it means a reservation exists. 1847 * If an entry exists in the reserve map, it means the 1848 * reservation has already been consumed. As a result, the 1849 * return value of this routine is the opposite of the 1850 * value returned from reserve map manipulation routines above. 1851 */ 1852 if (ret) 1853 return 0; 1854 else 1855 return 1; 1856 } 1857 else 1858 return ret < 0 ? ret : 0; 1859 } 1860 1861 static long vma_needs_reservation(struct hstate *h, 1862 struct vm_area_struct *vma, unsigned long addr) 1863 { 1864 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1865 } 1866 1867 static long vma_commit_reservation(struct hstate *h, 1868 struct vm_area_struct *vma, unsigned long addr) 1869 { 1870 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1871 } 1872 1873 static void vma_end_reservation(struct hstate *h, 1874 struct vm_area_struct *vma, unsigned long addr) 1875 { 1876 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1877 } 1878 1879 struct page *alloc_huge_page(struct vm_area_struct *vma, 1880 unsigned long addr, int avoid_reserve) 1881 { 1882 struct hugepage_subpool *spool = subpool_vma(vma); 1883 struct hstate *h = hstate_vma(vma); 1884 struct page *page; 1885 long map_chg, map_commit; 1886 long gbl_chg; 1887 int ret, idx; 1888 struct hugetlb_cgroup *h_cg; 1889 1890 idx = hstate_index(h); 1891 /* 1892 * Examine the region/reserve map to determine if the process 1893 * has a reservation for the page to be allocated. A return 1894 * code of zero indicates a reservation exists (no change). 1895 */ 1896 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1897 if (map_chg < 0) 1898 return ERR_PTR(-ENOMEM); 1899 1900 /* 1901 * Processes that did not create the mapping will have no 1902 * reserves as indicated by the region/reserve map. Check 1903 * that the allocation will not exceed the subpool limit. 1904 * Allocations for MAP_NORESERVE mappings also need to be 1905 * checked against any subpool limit. 1906 */ 1907 if (map_chg || avoid_reserve) { 1908 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1909 if (gbl_chg < 0) { 1910 vma_end_reservation(h, vma, addr); 1911 return ERR_PTR(-ENOSPC); 1912 } 1913 1914 /* 1915 * Even though there was no reservation in the region/reserve 1916 * map, there could be reservations associated with the 1917 * subpool that can be used. This would be indicated if the 1918 * return value of hugepage_subpool_get_pages() is zero. 1919 * However, if avoid_reserve is specified we still avoid even 1920 * the subpool reservations. 1921 */ 1922 if (avoid_reserve) 1923 gbl_chg = 1; 1924 } 1925 1926 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1927 if (ret) 1928 goto out_subpool_put; 1929 1930 spin_lock(&hugetlb_lock); 1931 /* 1932 * glb_chg is passed to indicate whether or not a page must be taken 1933 * from the global free pool (global change). gbl_chg == 0 indicates 1934 * a reservation exists for the allocation. 1935 */ 1936 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1937 if (!page) { 1938 spin_unlock(&hugetlb_lock); 1939 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1940 if (!page) 1941 goto out_uncharge_cgroup; 1942 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 1943 SetPagePrivate(page); 1944 h->resv_huge_pages--; 1945 } 1946 spin_lock(&hugetlb_lock); 1947 list_move(&page->lru, &h->hugepage_activelist); 1948 /* Fall through */ 1949 } 1950 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1951 spin_unlock(&hugetlb_lock); 1952 1953 set_page_private(page, (unsigned long)spool); 1954 1955 map_commit = vma_commit_reservation(h, vma, addr); 1956 if (unlikely(map_chg > map_commit)) { 1957 /* 1958 * The page was added to the reservation map between 1959 * vma_needs_reservation and vma_commit_reservation. 1960 * This indicates a race with hugetlb_reserve_pages. 1961 * Adjust for the subpool count incremented above AND 1962 * in hugetlb_reserve_pages for the same page. Also, 1963 * the reservation count added in hugetlb_reserve_pages 1964 * no longer applies. 1965 */ 1966 long rsv_adjust; 1967 1968 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1969 hugetlb_acct_memory(h, -rsv_adjust); 1970 } 1971 return page; 1972 1973 out_uncharge_cgroup: 1974 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1975 out_subpool_put: 1976 if (map_chg || avoid_reserve) 1977 hugepage_subpool_put_pages(spool, 1); 1978 vma_end_reservation(h, vma, addr); 1979 return ERR_PTR(-ENOSPC); 1980 } 1981 1982 /* 1983 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1984 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1985 * where no ERR_VALUE is expected to be returned. 1986 */ 1987 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1988 unsigned long addr, int avoid_reserve) 1989 { 1990 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1991 if (IS_ERR(page)) 1992 page = NULL; 1993 return page; 1994 } 1995 1996 int __weak alloc_bootmem_huge_page(struct hstate *h) 1997 { 1998 struct huge_bootmem_page *m; 1999 int nr_nodes, node; 2000 2001 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2002 void *addr; 2003 2004 addr = memblock_virt_alloc_try_nid_nopanic( 2005 huge_page_size(h), huge_page_size(h), 2006 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2007 if (addr) { 2008 /* 2009 * Use the beginning of the huge page to store the 2010 * huge_bootmem_page struct (until gather_bootmem 2011 * puts them into the mem_map). 2012 */ 2013 m = addr; 2014 goto found; 2015 } 2016 } 2017 return 0; 2018 2019 found: 2020 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2021 /* Put them into a private list first because mem_map is not up yet */ 2022 list_add(&m->list, &huge_boot_pages); 2023 m->hstate = h; 2024 return 1; 2025 } 2026 2027 static void __init prep_compound_huge_page(struct page *page, 2028 unsigned int order) 2029 { 2030 if (unlikely(order > (MAX_ORDER - 1))) 2031 prep_compound_gigantic_page(page, order); 2032 else 2033 prep_compound_page(page, order); 2034 } 2035 2036 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2037 static void __init gather_bootmem_prealloc(void) 2038 { 2039 struct huge_bootmem_page *m; 2040 2041 list_for_each_entry(m, &huge_boot_pages, list) { 2042 struct hstate *h = m->hstate; 2043 struct page *page; 2044 2045 #ifdef CONFIG_HIGHMEM 2046 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2047 memblock_free_late(__pa(m), 2048 sizeof(struct huge_bootmem_page)); 2049 #else 2050 page = virt_to_page(m); 2051 #endif 2052 WARN_ON(page_count(page) != 1); 2053 prep_compound_huge_page(page, h->order); 2054 WARN_ON(PageReserved(page)); 2055 prep_new_huge_page(h, page, page_to_nid(page)); 2056 /* 2057 * If we had gigantic hugepages allocated at boot time, we need 2058 * to restore the 'stolen' pages to totalram_pages in order to 2059 * fix confusing memory reports from free(1) and another 2060 * side-effects, like CommitLimit going negative. 2061 */ 2062 if (hstate_is_gigantic(h)) 2063 adjust_managed_page_count(page, 1 << h->order); 2064 } 2065 } 2066 2067 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2068 { 2069 unsigned long i; 2070 2071 for (i = 0; i < h->max_huge_pages; ++i) { 2072 if (hstate_is_gigantic(h)) { 2073 if (!alloc_bootmem_huge_page(h)) 2074 break; 2075 } else if (!alloc_fresh_huge_page(h, 2076 &node_states[N_MEMORY])) 2077 break; 2078 } 2079 h->max_huge_pages = i; 2080 } 2081 2082 static void __init hugetlb_init_hstates(void) 2083 { 2084 struct hstate *h; 2085 2086 for_each_hstate(h) { 2087 if (minimum_order > huge_page_order(h)) 2088 minimum_order = huge_page_order(h); 2089 2090 /* oversize hugepages were init'ed in early boot */ 2091 if (!hstate_is_gigantic(h)) 2092 hugetlb_hstate_alloc_pages(h); 2093 } 2094 VM_BUG_ON(minimum_order == UINT_MAX); 2095 } 2096 2097 static char * __init memfmt(char *buf, unsigned long n) 2098 { 2099 if (n >= (1UL << 30)) 2100 sprintf(buf, "%lu GB", n >> 30); 2101 else if (n >= (1UL << 20)) 2102 sprintf(buf, "%lu MB", n >> 20); 2103 else 2104 sprintf(buf, "%lu KB", n >> 10); 2105 return buf; 2106 } 2107 2108 static void __init report_hugepages(void) 2109 { 2110 struct hstate *h; 2111 2112 for_each_hstate(h) { 2113 char buf[32]; 2114 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2115 memfmt(buf, huge_page_size(h)), 2116 h->free_huge_pages); 2117 } 2118 } 2119 2120 #ifdef CONFIG_HIGHMEM 2121 static void try_to_free_low(struct hstate *h, unsigned long count, 2122 nodemask_t *nodes_allowed) 2123 { 2124 int i; 2125 2126 if (hstate_is_gigantic(h)) 2127 return; 2128 2129 for_each_node_mask(i, *nodes_allowed) { 2130 struct page *page, *next; 2131 struct list_head *freel = &h->hugepage_freelists[i]; 2132 list_for_each_entry_safe(page, next, freel, lru) { 2133 if (count >= h->nr_huge_pages) 2134 return; 2135 if (PageHighMem(page)) 2136 continue; 2137 list_del(&page->lru); 2138 update_and_free_page(h, page); 2139 h->free_huge_pages--; 2140 h->free_huge_pages_node[page_to_nid(page)]--; 2141 } 2142 } 2143 } 2144 #else 2145 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2146 nodemask_t *nodes_allowed) 2147 { 2148 } 2149 #endif 2150 2151 /* 2152 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2153 * balanced by operating on them in a round-robin fashion. 2154 * Returns 1 if an adjustment was made. 2155 */ 2156 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2157 int delta) 2158 { 2159 int nr_nodes, node; 2160 2161 VM_BUG_ON(delta != -1 && delta != 1); 2162 2163 if (delta < 0) { 2164 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2165 if (h->surplus_huge_pages_node[node]) 2166 goto found; 2167 } 2168 } else { 2169 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2170 if (h->surplus_huge_pages_node[node] < 2171 h->nr_huge_pages_node[node]) 2172 goto found; 2173 } 2174 } 2175 return 0; 2176 2177 found: 2178 h->surplus_huge_pages += delta; 2179 h->surplus_huge_pages_node[node] += delta; 2180 return 1; 2181 } 2182 2183 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2184 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2185 nodemask_t *nodes_allowed) 2186 { 2187 unsigned long min_count, ret; 2188 2189 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2190 return h->max_huge_pages; 2191 2192 /* 2193 * Increase the pool size 2194 * First take pages out of surplus state. Then make up the 2195 * remaining difference by allocating fresh huge pages. 2196 * 2197 * We might race with __alloc_buddy_huge_page() here and be unable 2198 * to convert a surplus huge page to a normal huge page. That is 2199 * not critical, though, it just means the overall size of the 2200 * pool might be one hugepage larger than it needs to be, but 2201 * within all the constraints specified by the sysctls. 2202 */ 2203 spin_lock(&hugetlb_lock); 2204 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2205 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2206 break; 2207 } 2208 2209 while (count > persistent_huge_pages(h)) { 2210 /* 2211 * If this allocation races such that we no longer need the 2212 * page, free_huge_page will handle it by freeing the page 2213 * and reducing the surplus. 2214 */ 2215 spin_unlock(&hugetlb_lock); 2216 if (hstate_is_gigantic(h)) 2217 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2218 else 2219 ret = alloc_fresh_huge_page(h, nodes_allowed); 2220 spin_lock(&hugetlb_lock); 2221 if (!ret) 2222 goto out; 2223 2224 /* Bail for signals. Probably ctrl-c from user */ 2225 if (signal_pending(current)) 2226 goto out; 2227 } 2228 2229 /* 2230 * Decrease the pool size 2231 * First return free pages to the buddy allocator (being careful 2232 * to keep enough around to satisfy reservations). Then place 2233 * pages into surplus state as needed so the pool will shrink 2234 * to the desired size as pages become free. 2235 * 2236 * By placing pages into the surplus state independent of the 2237 * overcommit value, we are allowing the surplus pool size to 2238 * exceed overcommit. There are few sane options here. Since 2239 * __alloc_buddy_huge_page() is checking the global counter, 2240 * though, we'll note that we're not allowed to exceed surplus 2241 * and won't grow the pool anywhere else. Not until one of the 2242 * sysctls are changed, or the surplus pages go out of use. 2243 */ 2244 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2245 min_count = max(count, min_count); 2246 try_to_free_low(h, min_count, nodes_allowed); 2247 while (min_count < persistent_huge_pages(h)) { 2248 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2249 break; 2250 cond_resched_lock(&hugetlb_lock); 2251 } 2252 while (count < persistent_huge_pages(h)) { 2253 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2254 break; 2255 } 2256 out: 2257 ret = persistent_huge_pages(h); 2258 spin_unlock(&hugetlb_lock); 2259 return ret; 2260 } 2261 2262 #define HSTATE_ATTR_RO(_name) \ 2263 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2264 2265 #define HSTATE_ATTR(_name) \ 2266 static struct kobj_attribute _name##_attr = \ 2267 __ATTR(_name, 0644, _name##_show, _name##_store) 2268 2269 static struct kobject *hugepages_kobj; 2270 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2271 2272 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2273 2274 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2275 { 2276 int i; 2277 2278 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2279 if (hstate_kobjs[i] == kobj) { 2280 if (nidp) 2281 *nidp = NUMA_NO_NODE; 2282 return &hstates[i]; 2283 } 2284 2285 return kobj_to_node_hstate(kobj, nidp); 2286 } 2287 2288 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2289 struct kobj_attribute *attr, char *buf) 2290 { 2291 struct hstate *h; 2292 unsigned long nr_huge_pages; 2293 int nid; 2294 2295 h = kobj_to_hstate(kobj, &nid); 2296 if (nid == NUMA_NO_NODE) 2297 nr_huge_pages = h->nr_huge_pages; 2298 else 2299 nr_huge_pages = h->nr_huge_pages_node[nid]; 2300 2301 return sprintf(buf, "%lu\n", nr_huge_pages); 2302 } 2303 2304 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2305 struct hstate *h, int nid, 2306 unsigned long count, size_t len) 2307 { 2308 int err; 2309 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2310 2311 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2312 err = -EINVAL; 2313 goto out; 2314 } 2315 2316 if (nid == NUMA_NO_NODE) { 2317 /* 2318 * global hstate attribute 2319 */ 2320 if (!(obey_mempolicy && 2321 init_nodemask_of_mempolicy(nodes_allowed))) { 2322 NODEMASK_FREE(nodes_allowed); 2323 nodes_allowed = &node_states[N_MEMORY]; 2324 } 2325 } else if (nodes_allowed) { 2326 /* 2327 * per node hstate attribute: adjust count to global, 2328 * but restrict alloc/free to the specified node. 2329 */ 2330 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2331 init_nodemask_of_node(nodes_allowed, nid); 2332 } else 2333 nodes_allowed = &node_states[N_MEMORY]; 2334 2335 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2336 2337 if (nodes_allowed != &node_states[N_MEMORY]) 2338 NODEMASK_FREE(nodes_allowed); 2339 2340 return len; 2341 out: 2342 NODEMASK_FREE(nodes_allowed); 2343 return err; 2344 } 2345 2346 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2347 struct kobject *kobj, const char *buf, 2348 size_t len) 2349 { 2350 struct hstate *h; 2351 unsigned long count; 2352 int nid; 2353 int err; 2354 2355 err = kstrtoul(buf, 10, &count); 2356 if (err) 2357 return err; 2358 2359 h = kobj_to_hstate(kobj, &nid); 2360 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2361 } 2362 2363 static ssize_t nr_hugepages_show(struct kobject *kobj, 2364 struct kobj_attribute *attr, char *buf) 2365 { 2366 return nr_hugepages_show_common(kobj, attr, buf); 2367 } 2368 2369 static ssize_t nr_hugepages_store(struct kobject *kobj, 2370 struct kobj_attribute *attr, const char *buf, size_t len) 2371 { 2372 return nr_hugepages_store_common(false, kobj, buf, len); 2373 } 2374 HSTATE_ATTR(nr_hugepages); 2375 2376 #ifdef CONFIG_NUMA 2377 2378 /* 2379 * hstate attribute for optionally mempolicy-based constraint on persistent 2380 * huge page alloc/free. 2381 */ 2382 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2383 struct kobj_attribute *attr, char *buf) 2384 { 2385 return nr_hugepages_show_common(kobj, attr, buf); 2386 } 2387 2388 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2389 struct kobj_attribute *attr, const char *buf, size_t len) 2390 { 2391 return nr_hugepages_store_common(true, kobj, buf, len); 2392 } 2393 HSTATE_ATTR(nr_hugepages_mempolicy); 2394 #endif 2395 2396 2397 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2398 struct kobj_attribute *attr, char *buf) 2399 { 2400 struct hstate *h = kobj_to_hstate(kobj, NULL); 2401 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2402 } 2403 2404 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2405 struct kobj_attribute *attr, const char *buf, size_t count) 2406 { 2407 int err; 2408 unsigned long input; 2409 struct hstate *h = kobj_to_hstate(kobj, NULL); 2410 2411 if (hstate_is_gigantic(h)) 2412 return -EINVAL; 2413 2414 err = kstrtoul(buf, 10, &input); 2415 if (err) 2416 return err; 2417 2418 spin_lock(&hugetlb_lock); 2419 h->nr_overcommit_huge_pages = input; 2420 spin_unlock(&hugetlb_lock); 2421 2422 return count; 2423 } 2424 HSTATE_ATTR(nr_overcommit_hugepages); 2425 2426 static ssize_t free_hugepages_show(struct kobject *kobj, 2427 struct kobj_attribute *attr, char *buf) 2428 { 2429 struct hstate *h; 2430 unsigned long free_huge_pages; 2431 int nid; 2432 2433 h = kobj_to_hstate(kobj, &nid); 2434 if (nid == NUMA_NO_NODE) 2435 free_huge_pages = h->free_huge_pages; 2436 else 2437 free_huge_pages = h->free_huge_pages_node[nid]; 2438 2439 return sprintf(buf, "%lu\n", free_huge_pages); 2440 } 2441 HSTATE_ATTR_RO(free_hugepages); 2442 2443 static ssize_t resv_hugepages_show(struct kobject *kobj, 2444 struct kobj_attribute *attr, char *buf) 2445 { 2446 struct hstate *h = kobj_to_hstate(kobj, NULL); 2447 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2448 } 2449 HSTATE_ATTR_RO(resv_hugepages); 2450 2451 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2452 struct kobj_attribute *attr, char *buf) 2453 { 2454 struct hstate *h; 2455 unsigned long surplus_huge_pages; 2456 int nid; 2457 2458 h = kobj_to_hstate(kobj, &nid); 2459 if (nid == NUMA_NO_NODE) 2460 surplus_huge_pages = h->surplus_huge_pages; 2461 else 2462 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2463 2464 return sprintf(buf, "%lu\n", surplus_huge_pages); 2465 } 2466 HSTATE_ATTR_RO(surplus_hugepages); 2467 2468 static struct attribute *hstate_attrs[] = { 2469 &nr_hugepages_attr.attr, 2470 &nr_overcommit_hugepages_attr.attr, 2471 &free_hugepages_attr.attr, 2472 &resv_hugepages_attr.attr, 2473 &surplus_hugepages_attr.attr, 2474 #ifdef CONFIG_NUMA 2475 &nr_hugepages_mempolicy_attr.attr, 2476 #endif 2477 NULL, 2478 }; 2479 2480 static struct attribute_group hstate_attr_group = { 2481 .attrs = hstate_attrs, 2482 }; 2483 2484 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2485 struct kobject **hstate_kobjs, 2486 struct attribute_group *hstate_attr_group) 2487 { 2488 int retval; 2489 int hi = hstate_index(h); 2490 2491 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2492 if (!hstate_kobjs[hi]) 2493 return -ENOMEM; 2494 2495 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2496 if (retval) 2497 kobject_put(hstate_kobjs[hi]); 2498 2499 return retval; 2500 } 2501 2502 static void __init hugetlb_sysfs_init(void) 2503 { 2504 struct hstate *h; 2505 int err; 2506 2507 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2508 if (!hugepages_kobj) 2509 return; 2510 2511 for_each_hstate(h) { 2512 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2513 hstate_kobjs, &hstate_attr_group); 2514 if (err) 2515 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2516 } 2517 } 2518 2519 #ifdef CONFIG_NUMA 2520 2521 /* 2522 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2523 * with node devices in node_devices[] using a parallel array. The array 2524 * index of a node device or _hstate == node id. 2525 * This is here to avoid any static dependency of the node device driver, in 2526 * the base kernel, on the hugetlb module. 2527 */ 2528 struct node_hstate { 2529 struct kobject *hugepages_kobj; 2530 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2531 }; 2532 static struct node_hstate node_hstates[MAX_NUMNODES]; 2533 2534 /* 2535 * A subset of global hstate attributes for node devices 2536 */ 2537 static struct attribute *per_node_hstate_attrs[] = { 2538 &nr_hugepages_attr.attr, 2539 &free_hugepages_attr.attr, 2540 &surplus_hugepages_attr.attr, 2541 NULL, 2542 }; 2543 2544 static struct attribute_group per_node_hstate_attr_group = { 2545 .attrs = per_node_hstate_attrs, 2546 }; 2547 2548 /* 2549 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2550 * Returns node id via non-NULL nidp. 2551 */ 2552 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2553 { 2554 int nid; 2555 2556 for (nid = 0; nid < nr_node_ids; nid++) { 2557 struct node_hstate *nhs = &node_hstates[nid]; 2558 int i; 2559 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2560 if (nhs->hstate_kobjs[i] == kobj) { 2561 if (nidp) 2562 *nidp = nid; 2563 return &hstates[i]; 2564 } 2565 } 2566 2567 BUG(); 2568 return NULL; 2569 } 2570 2571 /* 2572 * Unregister hstate attributes from a single node device. 2573 * No-op if no hstate attributes attached. 2574 */ 2575 static void hugetlb_unregister_node(struct node *node) 2576 { 2577 struct hstate *h; 2578 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2579 2580 if (!nhs->hugepages_kobj) 2581 return; /* no hstate attributes */ 2582 2583 for_each_hstate(h) { 2584 int idx = hstate_index(h); 2585 if (nhs->hstate_kobjs[idx]) { 2586 kobject_put(nhs->hstate_kobjs[idx]); 2587 nhs->hstate_kobjs[idx] = NULL; 2588 } 2589 } 2590 2591 kobject_put(nhs->hugepages_kobj); 2592 nhs->hugepages_kobj = NULL; 2593 } 2594 2595 2596 /* 2597 * Register hstate attributes for a single node device. 2598 * No-op if attributes already registered. 2599 */ 2600 static void hugetlb_register_node(struct node *node) 2601 { 2602 struct hstate *h; 2603 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2604 int err; 2605 2606 if (nhs->hugepages_kobj) 2607 return; /* already allocated */ 2608 2609 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2610 &node->dev.kobj); 2611 if (!nhs->hugepages_kobj) 2612 return; 2613 2614 for_each_hstate(h) { 2615 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2616 nhs->hstate_kobjs, 2617 &per_node_hstate_attr_group); 2618 if (err) { 2619 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2620 h->name, node->dev.id); 2621 hugetlb_unregister_node(node); 2622 break; 2623 } 2624 } 2625 } 2626 2627 /* 2628 * hugetlb init time: register hstate attributes for all registered node 2629 * devices of nodes that have memory. All on-line nodes should have 2630 * registered their associated device by this time. 2631 */ 2632 static void __init hugetlb_register_all_nodes(void) 2633 { 2634 int nid; 2635 2636 for_each_node_state(nid, N_MEMORY) { 2637 struct node *node = node_devices[nid]; 2638 if (node->dev.id == nid) 2639 hugetlb_register_node(node); 2640 } 2641 2642 /* 2643 * Let the node device driver know we're here so it can 2644 * [un]register hstate attributes on node hotplug. 2645 */ 2646 register_hugetlbfs_with_node(hugetlb_register_node, 2647 hugetlb_unregister_node); 2648 } 2649 #else /* !CONFIG_NUMA */ 2650 2651 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2652 { 2653 BUG(); 2654 if (nidp) 2655 *nidp = -1; 2656 return NULL; 2657 } 2658 2659 static void hugetlb_register_all_nodes(void) { } 2660 2661 #endif 2662 2663 static int __init hugetlb_init(void) 2664 { 2665 int i; 2666 2667 if (!hugepages_supported()) 2668 return 0; 2669 2670 if (!size_to_hstate(default_hstate_size)) { 2671 default_hstate_size = HPAGE_SIZE; 2672 if (!size_to_hstate(default_hstate_size)) 2673 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2674 } 2675 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2676 if (default_hstate_max_huge_pages) { 2677 if (!default_hstate.max_huge_pages) 2678 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2679 } 2680 2681 hugetlb_init_hstates(); 2682 gather_bootmem_prealloc(); 2683 report_hugepages(); 2684 2685 hugetlb_sysfs_init(); 2686 hugetlb_register_all_nodes(); 2687 hugetlb_cgroup_file_init(); 2688 2689 #ifdef CONFIG_SMP 2690 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2691 #else 2692 num_fault_mutexes = 1; 2693 #endif 2694 hugetlb_fault_mutex_table = 2695 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2696 BUG_ON(!hugetlb_fault_mutex_table); 2697 2698 for (i = 0; i < num_fault_mutexes; i++) 2699 mutex_init(&hugetlb_fault_mutex_table[i]); 2700 return 0; 2701 } 2702 subsys_initcall(hugetlb_init); 2703 2704 /* Should be called on processing a hugepagesz=... option */ 2705 void __init hugetlb_bad_size(void) 2706 { 2707 parsed_valid_hugepagesz = false; 2708 } 2709 2710 void __init hugetlb_add_hstate(unsigned int order) 2711 { 2712 struct hstate *h; 2713 unsigned long i; 2714 2715 if (size_to_hstate(PAGE_SIZE << order)) { 2716 pr_warn("hugepagesz= specified twice, ignoring\n"); 2717 return; 2718 } 2719 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2720 BUG_ON(order == 0); 2721 h = &hstates[hugetlb_max_hstate++]; 2722 h->order = order; 2723 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2724 h->nr_huge_pages = 0; 2725 h->free_huge_pages = 0; 2726 for (i = 0; i < MAX_NUMNODES; ++i) 2727 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2728 INIT_LIST_HEAD(&h->hugepage_activelist); 2729 h->next_nid_to_alloc = first_memory_node; 2730 h->next_nid_to_free = first_memory_node; 2731 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2732 huge_page_size(h)/1024); 2733 2734 parsed_hstate = h; 2735 } 2736 2737 static int __init hugetlb_nrpages_setup(char *s) 2738 { 2739 unsigned long *mhp; 2740 static unsigned long *last_mhp; 2741 2742 if (!parsed_valid_hugepagesz) { 2743 pr_warn("hugepages = %s preceded by " 2744 "an unsupported hugepagesz, ignoring\n", s); 2745 parsed_valid_hugepagesz = true; 2746 return 1; 2747 } 2748 /* 2749 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2750 * so this hugepages= parameter goes to the "default hstate". 2751 */ 2752 else if (!hugetlb_max_hstate) 2753 mhp = &default_hstate_max_huge_pages; 2754 else 2755 mhp = &parsed_hstate->max_huge_pages; 2756 2757 if (mhp == last_mhp) { 2758 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2759 return 1; 2760 } 2761 2762 if (sscanf(s, "%lu", mhp) <= 0) 2763 *mhp = 0; 2764 2765 /* 2766 * Global state is always initialized later in hugetlb_init. 2767 * But we need to allocate >= MAX_ORDER hstates here early to still 2768 * use the bootmem allocator. 2769 */ 2770 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2771 hugetlb_hstate_alloc_pages(parsed_hstate); 2772 2773 last_mhp = mhp; 2774 2775 return 1; 2776 } 2777 __setup("hugepages=", hugetlb_nrpages_setup); 2778 2779 static int __init hugetlb_default_setup(char *s) 2780 { 2781 default_hstate_size = memparse(s, &s); 2782 return 1; 2783 } 2784 __setup("default_hugepagesz=", hugetlb_default_setup); 2785 2786 static unsigned int cpuset_mems_nr(unsigned int *array) 2787 { 2788 int node; 2789 unsigned int nr = 0; 2790 2791 for_each_node_mask(node, cpuset_current_mems_allowed) 2792 nr += array[node]; 2793 2794 return nr; 2795 } 2796 2797 #ifdef CONFIG_SYSCTL 2798 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2799 struct ctl_table *table, int write, 2800 void __user *buffer, size_t *length, loff_t *ppos) 2801 { 2802 struct hstate *h = &default_hstate; 2803 unsigned long tmp = h->max_huge_pages; 2804 int ret; 2805 2806 if (!hugepages_supported()) 2807 return -EOPNOTSUPP; 2808 2809 table->data = &tmp; 2810 table->maxlen = sizeof(unsigned long); 2811 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2812 if (ret) 2813 goto out; 2814 2815 if (write) 2816 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2817 NUMA_NO_NODE, tmp, *length); 2818 out: 2819 return ret; 2820 } 2821 2822 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2823 void __user *buffer, size_t *length, loff_t *ppos) 2824 { 2825 2826 return hugetlb_sysctl_handler_common(false, table, write, 2827 buffer, length, ppos); 2828 } 2829 2830 #ifdef CONFIG_NUMA 2831 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2832 void __user *buffer, size_t *length, loff_t *ppos) 2833 { 2834 return hugetlb_sysctl_handler_common(true, table, write, 2835 buffer, length, ppos); 2836 } 2837 #endif /* CONFIG_NUMA */ 2838 2839 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2840 void __user *buffer, 2841 size_t *length, loff_t *ppos) 2842 { 2843 struct hstate *h = &default_hstate; 2844 unsigned long tmp; 2845 int ret; 2846 2847 if (!hugepages_supported()) 2848 return -EOPNOTSUPP; 2849 2850 tmp = h->nr_overcommit_huge_pages; 2851 2852 if (write && hstate_is_gigantic(h)) 2853 return -EINVAL; 2854 2855 table->data = &tmp; 2856 table->maxlen = sizeof(unsigned long); 2857 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2858 if (ret) 2859 goto out; 2860 2861 if (write) { 2862 spin_lock(&hugetlb_lock); 2863 h->nr_overcommit_huge_pages = tmp; 2864 spin_unlock(&hugetlb_lock); 2865 } 2866 out: 2867 return ret; 2868 } 2869 2870 #endif /* CONFIG_SYSCTL */ 2871 2872 void hugetlb_report_meminfo(struct seq_file *m) 2873 { 2874 struct hstate *h = &default_hstate; 2875 if (!hugepages_supported()) 2876 return; 2877 seq_printf(m, 2878 "HugePages_Total: %5lu\n" 2879 "HugePages_Free: %5lu\n" 2880 "HugePages_Rsvd: %5lu\n" 2881 "HugePages_Surp: %5lu\n" 2882 "Hugepagesize: %8lu kB\n", 2883 h->nr_huge_pages, 2884 h->free_huge_pages, 2885 h->resv_huge_pages, 2886 h->surplus_huge_pages, 2887 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2888 } 2889 2890 int hugetlb_report_node_meminfo(int nid, char *buf) 2891 { 2892 struct hstate *h = &default_hstate; 2893 if (!hugepages_supported()) 2894 return 0; 2895 return sprintf(buf, 2896 "Node %d HugePages_Total: %5u\n" 2897 "Node %d HugePages_Free: %5u\n" 2898 "Node %d HugePages_Surp: %5u\n", 2899 nid, h->nr_huge_pages_node[nid], 2900 nid, h->free_huge_pages_node[nid], 2901 nid, h->surplus_huge_pages_node[nid]); 2902 } 2903 2904 void hugetlb_show_meminfo(void) 2905 { 2906 struct hstate *h; 2907 int nid; 2908 2909 if (!hugepages_supported()) 2910 return; 2911 2912 for_each_node_state(nid, N_MEMORY) 2913 for_each_hstate(h) 2914 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2915 nid, 2916 h->nr_huge_pages_node[nid], 2917 h->free_huge_pages_node[nid], 2918 h->surplus_huge_pages_node[nid], 2919 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2920 } 2921 2922 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2923 { 2924 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2925 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2926 } 2927 2928 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2929 unsigned long hugetlb_total_pages(void) 2930 { 2931 struct hstate *h; 2932 unsigned long nr_total_pages = 0; 2933 2934 for_each_hstate(h) 2935 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2936 return nr_total_pages; 2937 } 2938 2939 static int hugetlb_acct_memory(struct hstate *h, long delta) 2940 { 2941 int ret = -ENOMEM; 2942 2943 spin_lock(&hugetlb_lock); 2944 /* 2945 * When cpuset is configured, it breaks the strict hugetlb page 2946 * reservation as the accounting is done on a global variable. Such 2947 * reservation is completely rubbish in the presence of cpuset because 2948 * the reservation is not checked against page availability for the 2949 * current cpuset. Application can still potentially OOM'ed by kernel 2950 * with lack of free htlb page in cpuset that the task is in. 2951 * Attempt to enforce strict accounting with cpuset is almost 2952 * impossible (or too ugly) because cpuset is too fluid that 2953 * task or memory node can be dynamically moved between cpusets. 2954 * 2955 * The change of semantics for shared hugetlb mapping with cpuset is 2956 * undesirable. However, in order to preserve some of the semantics, 2957 * we fall back to check against current free page availability as 2958 * a best attempt and hopefully to minimize the impact of changing 2959 * semantics that cpuset has. 2960 */ 2961 if (delta > 0) { 2962 if (gather_surplus_pages(h, delta) < 0) 2963 goto out; 2964 2965 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2966 return_unused_surplus_pages(h, delta); 2967 goto out; 2968 } 2969 } 2970 2971 ret = 0; 2972 if (delta < 0) 2973 return_unused_surplus_pages(h, (unsigned long) -delta); 2974 2975 out: 2976 spin_unlock(&hugetlb_lock); 2977 return ret; 2978 } 2979 2980 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2981 { 2982 struct resv_map *resv = vma_resv_map(vma); 2983 2984 /* 2985 * This new VMA should share its siblings reservation map if present. 2986 * The VMA will only ever have a valid reservation map pointer where 2987 * it is being copied for another still existing VMA. As that VMA 2988 * has a reference to the reservation map it cannot disappear until 2989 * after this open call completes. It is therefore safe to take a 2990 * new reference here without additional locking. 2991 */ 2992 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2993 kref_get(&resv->refs); 2994 } 2995 2996 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2997 { 2998 struct hstate *h = hstate_vma(vma); 2999 struct resv_map *resv = vma_resv_map(vma); 3000 struct hugepage_subpool *spool = subpool_vma(vma); 3001 unsigned long reserve, start, end; 3002 long gbl_reserve; 3003 3004 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3005 return; 3006 3007 start = vma_hugecache_offset(h, vma, vma->vm_start); 3008 end = vma_hugecache_offset(h, vma, vma->vm_end); 3009 3010 reserve = (end - start) - region_count(resv, start, end); 3011 3012 kref_put(&resv->refs, resv_map_release); 3013 3014 if (reserve) { 3015 /* 3016 * Decrement reserve counts. The global reserve count may be 3017 * adjusted if the subpool has a minimum size. 3018 */ 3019 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3020 hugetlb_acct_memory(h, -gbl_reserve); 3021 } 3022 } 3023 3024 /* 3025 * We cannot handle pagefaults against hugetlb pages at all. They cause 3026 * handle_mm_fault() to try to instantiate regular-sized pages in the 3027 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3028 * this far. 3029 */ 3030 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3031 { 3032 BUG(); 3033 return 0; 3034 } 3035 3036 const struct vm_operations_struct hugetlb_vm_ops = { 3037 .fault = hugetlb_vm_op_fault, 3038 .open = hugetlb_vm_op_open, 3039 .close = hugetlb_vm_op_close, 3040 }; 3041 3042 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3043 int writable) 3044 { 3045 pte_t entry; 3046 3047 if (writable) { 3048 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3049 vma->vm_page_prot))); 3050 } else { 3051 entry = huge_pte_wrprotect(mk_huge_pte(page, 3052 vma->vm_page_prot)); 3053 } 3054 entry = pte_mkyoung(entry); 3055 entry = pte_mkhuge(entry); 3056 entry = arch_make_huge_pte(entry, vma, page, writable); 3057 3058 return entry; 3059 } 3060 3061 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3062 unsigned long address, pte_t *ptep) 3063 { 3064 pte_t entry; 3065 3066 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3067 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3068 update_mmu_cache(vma, address, ptep); 3069 } 3070 3071 static int is_hugetlb_entry_migration(pte_t pte) 3072 { 3073 swp_entry_t swp; 3074 3075 if (huge_pte_none(pte) || pte_present(pte)) 3076 return 0; 3077 swp = pte_to_swp_entry(pte); 3078 if (non_swap_entry(swp) && is_migration_entry(swp)) 3079 return 1; 3080 else 3081 return 0; 3082 } 3083 3084 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3085 { 3086 swp_entry_t swp; 3087 3088 if (huge_pte_none(pte) || pte_present(pte)) 3089 return 0; 3090 swp = pte_to_swp_entry(pte); 3091 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3092 return 1; 3093 else 3094 return 0; 3095 } 3096 3097 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3098 struct vm_area_struct *vma) 3099 { 3100 pte_t *src_pte, *dst_pte, entry; 3101 struct page *ptepage; 3102 unsigned long addr; 3103 int cow; 3104 struct hstate *h = hstate_vma(vma); 3105 unsigned long sz = huge_page_size(h); 3106 unsigned long mmun_start; /* For mmu_notifiers */ 3107 unsigned long mmun_end; /* For mmu_notifiers */ 3108 int ret = 0; 3109 3110 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3111 3112 mmun_start = vma->vm_start; 3113 mmun_end = vma->vm_end; 3114 if (cow) 3115 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3116 3117 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3118 spinlock_t *src_ptl, *dst_ptl; 3119 src_pte = huge_pte_offset(src, addr); 3120 if (!src_pte) 3121 continue; 3122 dst_pte = huge_pte_alloc(dst, addr, sz); 3123 if (!dst_pte) { 3124 ret = -ENOMEM; 3125 break; 3126 } 3127 3128 /* If the pagetables are shared don't copy or take references */ 3129 if (dst_pte == src_pte) 3130 continue; 3131 3132 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3133 src_ptl = huge_pte_lockptr(h, src, src_pte); 3134 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3135 entry = huge_ptep_get(src_pte); 3136 if (huge_pte_none(entry)) { /* skip none entry */ 3137 ; 3138 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3139 is_hugetlb_entry_hwpoisoned(entry))) { 3140 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3141 3142 if (is_write_migration_entry(swp_entry) && cow) { 3143 /* 3144 * COW mappings require pages in both 3145 * parent and child to be set to read. 3146 */ 3147 make_migration_entry_read(&swp_entry); 3148 entry = swp_entry_to_pte(swp_entry); 3149 set_huge_pte_at(src, addr, src_pte, entry); 3150 } 3151 set_huge_pte_at(dst, addr, dst_pte, entry); 3152 } else { 3153 if (cow) { 3154 huge_ptep_set_wrprotect(src, addr, src_pte); 3155 mmu_notifier_invalidate_range(src, mmun_start, 3156 mmun_end); 3157 } 3158 entry = huge_ptep_get(src_pte); 3159 ptepage = pte_page(entry); 3160 get_page(ptepage); 3161 page_dup_rmap(ptepage, true); 3162 set_huge_pte_at(dst, addr, dst_pte, entry); 3163 hugetlb_count_add(pages_per_huge_page(h), dst); 3164 } 3165 spin_unlock(src_ptl); 3166 spin_unlock(dst_ptl); 3167 } 3168 3169 if (cow) 3170 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3171 3172 return ret; 3173 } 3174 3175 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3176 unsigned long start, unsigned long end, 3177 struct page *ref_page) 3178 { 3179 int force_flush = 0; 3180 struct mm_struct *mm = vma->vm_mm; 3181 unsigned long address; 3182 pte_t *ptep; 3183 pte_t pte; 3184 spinlock_t *ptl; 3185 struct page *page; 3186 struct hstate *h = hstate_vma(vma); 3187 unsigned long sz = huge_page_size(h); 3188 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3189 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3190 3191 WARN_ON(!is_vm_hugetlb_page(vma)); 3192 BUG_ON(start & ~huge_page_mask(h)); 3193 BUG_ON(end & ~huge_page_mask(h)); 3194 3195 tlb_start_vma(tlb, vma); 3196 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3197 address = start; 3198 again: 3199 for (; address < end; address += sz) { 3200 ptep = huge_pte_offset(mm, address); 3201 if (!ptep) 3202 continue; 3203 3204 ptl = huge_pte_lock(h, mm, ptep); 3205 if (huge_pmd_unshare(mm, &address, ptep)) 3206 goto unlock; 3207 3208 pte = huge_ptep_get(ptep); 3209 if (huge_pte_none(pte)) 3210 goto unlock; 3211 3212 /* 3213 * Migrating hugepage or HWPoisoned hugepage is already 3214 * unmapped and its refcount is dropped, so just clear pte here. 3215 */ 3216 if (unlikely(!pte_present(pte))) { 3217 huge_pte_clear(mm, address, ptep); 3218 goto unlock; 3219 } 3220 3221 page = pte_page(pte); 3222 /* 3223 * If a reference page is supplied, it is because a specific 3224 * page is being unmapped, not a range. Ensure the page we 3225 * are about to unmap is the actual page of interest. 3226 */ 3227 if (ref_page) { 3228 if (page != ref_page) 3229 goto unlock; 3230 3231 /* 3232 * Mark the VMA as having unmapped its page so that 3233 * future faults in this VMA will fail rather than 3234 * looking like data was lost 3235 */ 3236 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3237 } 3238 3239 pte = huge_ptep_get_and_clear(mm, address, ptep); 3240 tlb_remove_tlb_entry(tlb, ptep, address); 3241 if (huge_pte_dirty(pte)) 3242 set_page_dirty(page); 3243 3244 hugetlb_count_sub(pages_per_huge_page(h), mm); 3245 page_remove_rmap(page, true); 3246 force_flush = !__tlb_remove_page(tlb, page); 3247 if (force_flush) { 3248 address += sz; 3249 spin_unlock(ptl); 3250 break; 3251 } 3252 /* Bail out after unmapping reference page if supplied */ 3253 if (ref_page) { 3254 spin_unlock(ptl); 3255 break; 3256 } 3257 unlock: 3258 spin_unlock(ptl); 3259 } 3260 /* 3261 * mmu_gather ran out of room to batch pages, we break out of 3262 * the PTE lock to avoid doing the potential expensive TLB invalidate 3263 * and page-free while holding it. 3264 */ 3265 if (force_flush) { 3266 force_flush = 0; 3267 tlb_flush_mmu(tlb); 3268 if (address < end && !ref_page) 3269 goto again; 3270 } 3271 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3272 tlb_end_vma(tlb, vma); 3273 } 3274 3275 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3276 struct vm_area_struct *vma, unsigned long start, 3277 unsigned long end, struct page *ref_page) 3278 { 3279 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3280 3281 /* 3282 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3283 * test will fail on a vma being torn down, and not grab a page table 3284 * on its way out. We're lucky that the flag has such an appropriate 3285 * name, and can in fact be safely cleared here. We could clear it 3286 * before the __unmap_hugepage_range above, but all that's necessary 3287 * is to clear it before releasing the i_mmap_rwsem. This works 3288 * because in the context this is called, the VMA is about to be 3289 * destroyed and the i_mmap_rwsem is held. 3290 */ 3291 vma->vm_flags &= ~VM_MAYSHARE; 3292 } 3293 3294 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3295 unsigned long end, struct page *ref_page) 3296 { 3297 struct mm_struct *mm; 3298 struct mmu_gather tlb; 3299 3300 mm = vma->vm_mm; 3301 3302 tlb_gather_mmu(&tlb, mm, start, end); 3303 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3304 tlb_finish_mmu(&tlb, start, end); 3305 } 3306 3307 /* 3308 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3309 * mappping it owns the reserve page for. The intention is to unmap the page 3310 * from other VMAs and let the children be SIGKILLed if they are faulting the 3311 * same region. 3312 */ 3313 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3314 struct page *page, unsigned long address) 3315 { 3316 struct hstate *h = hstate_vma(vma); 3317 struct vm_area_struct *iter_vma; 3318 struct address_space *mapping; 3319 pgoff_t pgoff; 3320 3321 /* 3322 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3323 * from page cache lookup which is in HPAGE_SIZE units. 3324 */ 3325 address = address & huge_page_mask(h); 3326 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3327 vma->vm_pgoff; 3328 mapping = file_inode(vma->vm_file)->i_mapping; 3329 3330 /* 3331 * Take the mapping lock for the duration of the table walk. As 3332 * this mapping should be shared between all the VMAs, 3333 * __unmap_hugepage_range() is called as the lock is already held 3334 */ 3335 i_mmap_lock_write(mapping); 3336 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3337 /* Do not unmap the current VMA */ 3338 if (iter_vma == vma) 3339 continue; 3340 3341 /* 3342 * Shared VMAs have their own reserves and do not affect 3343 * MAP_PRIVATE accounting but it is possible that a shared 3344 * VMA is using the same page so check and skip such VMAs. 3345 */ 3346 if (iter_vma->vm_flags & VM_MAYSHARE) 3347 continue; 3348 3349 /* 3350 * Unmap the page from other VMAs without their own reserves. 3351 * They get marked to be SIGKILLed if they fault in these 3352 * areas. This is because a future no-page fault on this VMA 3353 * could insert a zeroed page instead of the data existing 3354 * from the time of fork. This would look like data corruption 3355 */ 3356 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3357 unmap_hugepage_range(iter_vma, address, 3358 address + huge_page_size(h), page); 3359 } 3360 i_mmap_unlock_write(mapping); 3361 } 3362 3363 /* 3364 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3365 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3366 * cannot race with other handlers or page migration. 3367 * Keep the pte_same checks anyway to make transition from the mutex easier. 3368 */ 3369 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3370 unsigned long address, pte_t *ptep, pte_t pte, 3371 struct page *pagecache_page, spinlock_t *ptl) 3372 { 3373 struct hstate *h = hstate_vma(vma); 3374 struct page *old_page, *new_page; 3375 int ret = 0, outside_reserve = 0; 3376 unsigned long mmun_start; /* For mmu_notifiers */ 3377 unsigned long mmun_end; /* For mmu_notifiers */ 3378 3379 old_page = pte_page(pte); 3380 3381 retry_avoidcopy: 3382 /* If no-one else is actually using this page, avoid the copy 3383 * and just make the page writable */ 3384 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3385 page_move_anon_rmap(old_page, vma, address); 3386 set_huge_ptep_writable(vma, address, ptep); 3387 return 0; 3388 } 3389 3390 /* 3391 * If the process that created a MAP_PRIVATE mapping is about to 3392 * perform a COW due to a shared page count, attempt to satisfy 3393 * the allocation without using the existing reserves. The pagecache 3394 * page is used to determine if the reserve at this address was 3395 * consumed or not. If reserves were used, a partial faulted mapping 3396 * at the time of fork() could consume its reserves on COW instead 3397 * of the full address range. 3398 */ 3399 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3400 old_page != pagecache_page) 3401 outside_reserve = 1; 3402 3403 get_page(old_page); 3404 3405 /* 3406 * Drop page table lock as buddy allocator may be called. It will 3407 * be acquired again before returning to the caller, as expected. 3408 */ 3409 spin_unlock(ptl); 3410 new_page = alloc_huge_page(vma, address, outside_reserve); 3411 3412 if (IS_ERR(new_page)) { 3413 /* 3414 * If a process owning a MAP_PRIVATE mapping fails to COW, 3415 * it is due to references held by a child and an insufficient 3416 * huge page pool. To guarantee the original mappers 3417 * reliability, unmap the page from child processes. The child 3418 * may get SIGKILLed if it later faults. 3419 */ 3420 if (outside_reserve) { 3421 put_page(old_page); 3422 BUG_ON(huge_pte_none(pte)); 3423 unmap_ref_private(mm, vma, old_page, address); 3424 BUG_ON(huge_pte_none(pte)); 3425 spin_lock(ptl); 3426 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3427 if (likely(ptep && 3428 pte_same(huge_ptep_get(ptep), pte))) 3429 goto retry_avoidcopy; 3430 /* 3431 * race occurs while re-acquiring page table 3432 * lock, and our job is done. 3433 */ 3434 return 0; 3435 } 3436 3437 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3438 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3439 goto out_release_old; 3440 } 3441 3442 /* 3443 * When the original hugepage is shared one, it does not have 3444 * anon_vma prepared. 3445 */ 3446 if (unlikely(anon_vma_prepare(vma))) { 3447 ret = VM_FAULT_OOM; 3448 goto out_release_all; 3449 } 3450 3451 copy_user_huge_page(new_page, old_page, address, vma, 3452 pages_per_huge_page(h)); 3453 __SetPageUptodate(new_page); 3454 set_page_huge_active(new_page); 3455 3456 mmun_start = address & huge_page_mask(h); 3457 mmun_end = mmun_start + huge_page_size(h); 3458 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3459 3460 /* 3461 * Retake the page table lock to check for racing updates 3462 * before the page tables are altered 3463 */ 3464 spin_lock(ptl); 3465 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3466 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3467 ClearPagePrivate(new_page); 3468 3469 /* Break COW */ 3470 huge_ptep_clear_flush(vma, address, ptep); 3471 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3472 set_huge_pte_at(mm, address, ptep, 3473 make_huge_pte(vma, new_page, 1)); 3474 page_remove_rmap(old_page, true); 3475 hugepage_add_new_anon_rmap(new_page, vma, address); 3476 /* Make the old page be freed below */ 3477 new_page = old_page; 3478 } 3479 spin_unlock(ptl); 3480 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3481 out_release_all: 3482 put_page(new_page); 3483 out_release_old: 3484 put_page(old_page); 3485 3486 spin_lock(ptl); /* Caller expects lock to be held */ 3487 return ret; 3488 } 3489 3490 /* Return the pagecache page at a given address within a VMA */ 3491 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3492 struct vm_area_struct *vma, unsigned long address) 3493 { 3494 struct address_space *mapping; 3495 pgoff_t idx; 3496 3497 mapping = vma->vm_file->f_mapping; 3498 idx = vma_hugecache_offset(h, vma, address); 3499 3500 return find_lock_page(mapping, idx); 3501 } 3502 3503 /* 3504 * Return whether there is a pagecache page to back given address within VMA. 3505 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3506 */ 3507 static bool hugetlbfs_pagecache_present(struct hstate *h, 3508 struct vm_area_struct *vma, unsigned long address) 3509 { 3510 struct address_space *mapping; 3511 pgoff_t idx; 3512 struct page *page; 3513 3514 mapping = vma->vm_file->f_mapping; 3515 idx = vma_hugecache_offset(h, vma, address); 3516 3517 page = find_get_page(mapping, idx); 3518 if (page) 3519 put_page(page); 3520 return page != NULL; 3521 } 3522 3523 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3524 pgoff_t idx) 3525 { 3526 struct inode *inode = mapping->host; 3527 struct hstate *h = hstate_inode(inode); 3528 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3529 3530 if (err) 3531 return err; 3532 ClearPagePrivate(page); 3533 3534 spin_lock(&inode->i_lock); 3535 inode->i_blocks += blocks_per_huge_page(h); 3536 spin_unlock(&inode->i_lock); 3537 return 0; 3538 } 3539 3540 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3541 struct address_space *mapping, pgoff_t idx, 3542 unsigned long address, pte_t *ptep, unsigned int flags) 3543 { 3544 struct hstate *h = hstate_vma(vma); 3545 int ret = VM_FAULT_SIGBUS; 3546 int anon_rmap = 0; 3547 unsigned long size; 3548 struct page *page; 3549 pte_t new_pte; 3550 spinlock_t *ptl; 3551 3552 /* 3553 * Currently, we are forced to kill the process in the event the 3554 * original mapper has unmapped pages from the child due to a failed 3555 * COW. Warn that such a situation has occurred as it may not be obvious 3556 */ 3557 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3558 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3559 current->pid); 3560 return ret; 3561 } 3562 3563 /* 3564 * Use page lock to guard against racing truncation 3565 * before we get page_table_lock. 3566 */ 3567 retry: 3568 page = find_lock_page(mapping, idx); 3569 if (!page) { 3570 size = i_size_read(mapping->host) >> huge_page_shift(h); 3571 if (idx >= size) 3572 goto out; 3573 page = alloc_huge_page(vma, address, 0); 3574 if (IS_ERR(page)) { 3575 ret = PTR_ERR(page); 3576 if (ret == -ENOMEM) 3577 ret = VM_FAULT_OOM; 3578 else 3579 ret = VM_FAULT_SIGBUS; 3580 goto out; 3581 } 3582 clear_huge_page(page, address, pages_per_huge_page(h)); 3583 __SetPageUptodate(page); 3584 set_page_huge_active(page); 3585 3586 if (vma->vm_flags & VM_MAYSHARE) { 3587 int err = huge_add_to_page_cache(page, mapping, idx); 3588 if (err) { 3589 put_page(page); 3590 if (err == -EEXIST) 3591 goto retry; 3592 goto out; 3593 } 3594 } else { 3595 lock_page(page); 3596 if (unlikely(anon_vma_prepare(vma))) { 3597 ret = VM_FAULT_OOM; 3598 goto backout_unlocked; 3599 } 3600 anon_rmap = 1; 3601 } 3602 } else { 3603 /* 3604 * If memory error occurs between mmap() and fault, some process 3605 * don't have hwpoisoned swap entry for errored virtual address. 3606 * So we need to block hugepage fault by PG_hwpoison bit check. 3607 */ 3608 if (unlikely(PageHWPoison(page))) { 3609 ret = VM_FAULT_HWPOISON | 3610 VM_FAULT_SET_HINDEX(hstate_index(h)); 3611 goto backout_unlocked; 3612 } 3613 } 3614 3615 /* 3616 * If we are going to COW a private mapping later, we examine the 3617 * pending reservations for this page now. This will ensure that 3618 * any allocations necessary to record that reservation occur outside 3619 * the spinlock. 3620 */ 3621 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3622 if (vma_needs_reservation(h, vma, address) < 0) { 3623 ret = VM_FAULT_OOM; 3624 goto backout_unlocked; 3625 } 3626 /* Just decrements count, does not deallocate */ 3627 vma_end_reservation(h, vma, address); 3628 } 3629 3630 ptl = huge_pte_lockptr(h, mm, ptep); 3631 spin_lock(ptl); 3632 size = i_size_read(mapping->host) >> huge_page_shift(h); 3633 if (idx >= size) 3634 goto backout; 3635 3636 ret = 0; 3637 if (!huge_pte_none(huge_ptep_get(ptep))) 3638 goto backout; 3639 3640 if (anon_rmap) { 3641 ClearPagePrivate(page); 3642 hugepage_add_new_anon_rmap(page, vma, address); 3643 } else 3644 page_dup_rmap(page, true); 3645 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3646 && (vma->vm_flags & VM_SHARED))); 3647 set_huge_pte_at(mm, address, ptep, new_pte); 3648 3649 hugetlb_count_add(pages_per_huge_page(h), mm); 3650 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3651 /* Optimization, do the COW without a second fault */ 3652 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3653 } 3654 3655 spin_unlock(ptl); 3656 unlock_page(page); 3657 out: 3658 return ret; 3659 3660 backout: 3661 spin_unlock(ptl); 3662 backout_unlocked: 3663 unlock_page(page); 3664 put_page(page); 3665 goto out; 3666 } 3667 3668 #ifdef CONFIG_SMP 3669 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3670 struct vm_area_struct *vma, 3671 struct address_space *mapping, 3672 pgoff_t idx, unsigned long address) 3673 { 3674 unsigned long key[2]; 3675 u32 hash; 3676 3677 if (vma->vm_flags & VM_SHARED) { 3678 key[0] = (unsigned long) mapping; 3679 key[1] = idx; 3680 } else { 3681 key[0] = (unsigned long) mm; 3682 key[1] = address >> huge_page_shift(h); 3683 } 3684 3685 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3686 3687 return hash & (num_fault_mutexes - 1); 3688 } 3689 #else 3690 /* 3691 * For uniprocesor systems we always use a single mutex, so just 3692 * return 0 and avoid the hashing overhead. 3693 */ 3694 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3695 struct vm_area_struct *vma, 3696 struct address_space *mapping, 3697 pgoff_t idx, unsigned long address) 3698 { 3699 return 0; 3700 } 3701 #endif 3702 3703 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3704 unsigned long address, unsigned int flags) 3705 { 3706 pte_t *ptep, entry; 3707 spinlock_t *ptl; 3708 int ret; 3709 u32 hash; 3710 pgoff_t idx; 3711 struct page *page = NULL; 3712 struct page *pagecache_page = NULL; 3713 struct hstate *h = hstate_vma(vma); 3714 struct address_space *mapping; 3715 int need_wait_lock = 0; 3716 3717 address &= huge_page_mask(h); 3718 3719 ptep = huge_pte_offset(mm, address); 3720 if (ptep) { 3721 entry = huge_ptep_get(ptep); 3722 if (unlikely(is_hugetlb_entry_migration(entry))) { 3723 migration_entry_wait_huge(vma, mm, ptep); 3724 return 0; 3725 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3726 return VM_FAULT_HWPOISON_LARGE | 3727 VM_FAULT_SET_HINDEX(hstate_index(h)); 3728 } else { 3729 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3730 if (!ptep) 3731 return VM_FAULT_OOM; 3732 } 3733 3734 mapping = vma->vm_file->f_mapping; 3735 idx = vma_hugecache_offset(h, vma, address); 3736 3737 /* 3738 * Serialize hugepage allocation and instantiation, so that we don't 3739 * get spurious allocation failures if two CPUs race to instantiate 3740 * the same page in the page cache. 3741 */ 3742 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3743 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3744 3745 entry = huge_ptep_get(ptep); 3746 if (huge_pte_none(entry)) { 3747 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3748 goto out_mutex; 3749 } 3750 3751 ret = 0; 3752 3753 /* 3754 * entry could be a migration/hwpoison entry at this point, so this 3755 * check prevents the kernel from going below assuming that we have 3756 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3757 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3758 * handle it. 3759 */ 3760 if (!pte_present(entry)) 3761 goto out_mutex; 3762 3763 /* 3764 * If we are going to COW the mapping later, we examine the pending 3765 * reservations for this page now. This will ensure that any 3766 * allocations necessary to record that reservation occur outside the 3767 * spinlock. For private mappings, we also lookup the pagecache 3768 * page now as it is used to determine if a reservation has been 3769 * consumed. 3770 */ 3771 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3772 if (vma_needs_reservation(h, vma, address) < 0) { 3773 ret = VM_FAULT_OOM; 3774 goto out_mutex; 3775 } 3776 /* Just decrements count, does not deallocate */ 3777 vma_end_reservation(h, vma, address); 3778 3779 if (!(vma->vm_flags & VM_MAYSHARE)) 3780 pagecache_page = hugetlbfs_pagecache_page(h, 3781 vma, address); 3782 } 3783 3784 ptl = huge_pte_lock(h, mm, ptep); 3785 3786 /* Check for a racing update before calling hugetlb_cow */ 3787 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3788 goto out_ptl; 3789 3790 /* 3791 * hugetlb_cow() requires page locks of pte_page(entry) and 3792 * pagecache_page, so here we need take the former one 3793 * when page != pagecache_page or !pagecache_page. 3794 */ 3795 page = pte_page(entry); 3796 if (page != pagecache_page) 3797 if (!trylock_page(page)) { 3798 need_wait_lock = 1; 3799 goto out_ptl; 3800 } 3801 3802 get_page(page); 3803 3804 if (flags & FAULT_FLAG_WRITE) { 3805 if (!huge_pte_write(entry)) { 3806 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3807 pagecache_page, ptl); 3808 goto out_put_page; 3809 } 3810 entry = huge_pte_mkdirty(entry); 3811 } 3812 entry = pte_mkyoung(entry); 3813 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3814 flags & FAULT_FLAG_WRITE)) 3815 update_mmu_cache(vma, address, ptep); 3816 out_put_page: 3817 if (page != pagecache_page) 3818 unlock_page(page); 3819 put_page(page); 3820 out_ptl: 3821 spin_unlock(ptl); 3822 3823 if (pagecache_page) { 3824 unlock_page(pagecache_page); 3825 put_page(pagecache_page); 3826 } 3827 out_mutex: 3828 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3829 /* 3830 * Generally it's safe to hold refcount during waiting page lock. But 3831 * here we just wait to defer the next page fault to avoid busy loop and 3832 * the page is not used after unlocked before returning from the current 3833 * page fault. So we are safe from accessing freed page, even if we wait 3834 * here without taking refcount. 3835 */ 3836 if (need_wait_lock) 3837 wait_on_page_locked(page); 3838 return ret; 3839 } 3840 3841 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3842 struct page **pages, struct vm_area_struct **vmas, 3843 unsigned long *position, unsigned long *nr_pages, 3844 long i, unsigned int flags) 3845 { 3846 unsigned long pfn_offset; 3847 unsigned long vaddr = *position; 3848 unsigned long remainder = *nr_pages; 3849 struct hstate *h = hstate_vma(vma); 3850 3851 while (vaddr < vma->vm_end && remainder) { 3852 pte_t *pte; 3853 spinlock_t *ptl = NULL; 3854 int absent; 3855 struct page *page; 3856 3857 /* 3858 * If we have a pending SIGKILL, don't keep faulting pages and 3859 * potentially allocating memory. 3860 */ 3861 if (unlikely(fatal_signal_pending(current))) { 3862 remainder = 0; 3863 break; 3864 } 3865 3866 /* 3867 * Some archs (sparc64, sh*) have multiple pte_ts to 3868 * each hugepage. We have to make sure we get the 3869 * first, for the page indexing below to work. 3870 * 3871 * Note that page table lock is not held when pte is null. 3872 */ 3873 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3874 if (pte) 3875 ptl = huge_pte_lock(h, mm, pte); 3876 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3877 3878 /* 3879 * When coredumping, it suits get_dump_page if we just return 3880 * an error where there's an empty slot with no huge pagecache 3881 * to back it. This way, we avoid allocating a hugepage, and 3882 * the sparse dumpfile avoids allocating disk blocks, but its 3883 * huge holes still show up with zeroes where they need to be. 3884 */ 3885 if (absent && (flags & FOLL_DUMP) && 3886 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3887 if (pte) 3888 spin_unlock(ptl); 3889 remainder = 0; 3890 break; 3891 } 3892 3893 /* 3894 * We need call hugetlb_fault for both hugepages under migration 3895 * (in which case hugetlb_fault waits for the migration,) and 3896 * hwpoisoned hugepages (in which case we need to prevent the 3897 * caller from accessing to them.) In order to do this, we use 3898 * here is_swap_pte instead of is_hugetlb_entry_migration and 3899 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3900 * both cases, and because we can't follow correct pages 3901 * directly from any kind of swap entries. 3902 */ 3903 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3904 ((flags & FOLL_WRITE) && 3905 !huge_pte_write(huge_ptep_get(pte)))) { 3906 int ret; 3907 3908 if (pte) 3909 spin_unlock(ptl); 3910 ret = hugetlb_fault(mm, vma, vaddr, 3911 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3912 if (!(ret & VM_FAULT_ERROR)) 3913 continue; 3914 3915 remainder = 0; 3916 break; 3917 } 3918 3919 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3920 page = pte_page(huge_ptep_get(pte)); 3921 same_page: 3922 if (pages) { 3923 pages[i] = mem_map_offset(page, pfn_offset); 3924 get_page(pages[i]); 3925 } 3926 3927 if (vmas) 3928 vmas[i] = vma; 3929 3930 vaddr += PAGE_SIZE; 3931 ++pfn_offset; 3932 --remainder; 3933 ++i; 3934 if (vaddr < vma->vm_end && remainder && 3935 pfn_offset < pages_per_huge_page(h)) { 3936 /* 3937 * We use pfn_offset to avoid touching the pageframes 3938 * of this compound page. 3939 */ 3940 goto same_page; 3941 } 3942 spin_unlock(ptl); 3943 } 3944 *nr_pages = remainder; 3945 *position = vaddr; 3946 3947 return i ? i : -EFAULT; 3948 } 3949 3950 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3951 unsigned long address, unsigned long end, pgprot_t newprot) 3952 { 3953 struct mm_struct *mm = vma->vm_mm; 3954 unsigned long start = address; 3955 pte_t *ptep; 3956 pte_t pte; 3957 struct hstate *h = hstate_vma(vma); 3958 unsigned long pages = 0; 3959 3960 BUG_ON(address >= end); 3961 flush_cache_range(vma, address, end); 3962 3963 mmu_notifier_invalidate_range_start(mm, start, end); 3964 i_mmap_lock_write(vma->vm_file->f_mapping); 3965 for (; address < end; address += huge_page_size(h)) { 3966 spinlock_t *ptl; 3967 ptep = huge_pte_offset(mm, address); 3968 if (!ptep) 3969 continue; 3970 ptl = huge_pte_lock(h, mm, ptep); 3971 if (huge_pmd_unshare(mm, &address, ptep)) { 3972 pages++; 3973 spin_unlock(ptl); 3974 continue; 3975 } 3976 pte = huge_ptep_get(ptep); 3977 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3978 spin_unlock(ptl); 3979 continue; 3980 } 3981 if (unlikely(is_hugetlb_entry_migration(pte))) { 3982 swp_entry_t entry = pte_to_swp_entry(pte); 3983 3984 if (is_write_migration_entry(entry)) { 3985 pte_t newpte; 3986 3987 make_migration_entry_read(&entry); 3988 newpte = swp_entry_to_pte(entry); 3989 set_huge_pte_at(mm, address, ptep, newpte); 3990 pages++; 3991 } 3992 spin_unlock(ptl); 3993 continue; 3994 } 3995 if (!huge_pte_none(pte)) { 3996 pte = huge_ptep_get_and_clear(mm, address, ptep); 3997 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3998 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3999 set_huge_pte_at(mm, address, ptep, pte); 4000 pages++; 4001 } 4002 spin_unlock(ptl); 4003 } 4004 /* 4005 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4006 * may have cleared our pud entry and done put_page on the page table: 4007 * once we release i_mmap_rwsem, another task can do the final put_page 4008 * and that page table be reused and filled with junk. 4009 */ 4010 flush_tlb_range(vma, start, end); 4011 mmu_notifier_invalidate_range(mm, start, end); 4012 i_mmap_unlock_write(vma->vm_file->f_mapping); 4013 mmu_notifier_invalidate_range_end(mm, start, end); 4014 4015 return pages << h->order; 4016 } 4017 4018 int hugetlb_reserve_pages(struct inode *inode, 4019 long from, long to, 4020 struct vm_area_struct *vma, 4021 vm_flags_t vm_flags) 4022 { 4023 long ret, chg; 4024 struct hstate *h = hstate_inode(inode); 4025 struct hugepage_subpool *spool = subpool_inode(inode); 4026 struct resv_map *resv_map; 4027 long gbl_reserve; 4028 4029 /* 4030 * Only apply hugepage reservation if asked. At fault time, an 4031 * attempt will be made for VM_NORESERVE to allocate a page 4032 * without using reserves 4033 */ 4034 if (vm_flags & VM_NORESERVE) 4035 return 0; 4036 4037 /* 4038 * Shared mappings base their reservation on the number of pages that 4039 * are already allocated on behalf of the file. Private mappings need 4040 * to reserve the full area even if read-only as mprotect() may be 4041 * called to make the mapping read-write. Assume !vma is a shm mapping 4042 */ 4043 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4044 resv_map = inode_resv_map(inode); 4045 4046 chg = region_chg(resv_map, from, to); 4047 4048 } else { 4049 resv_map = resv_map_alloc(); 4050 if (!resv_map) 4051 return -ENOMEM; 4052 4053 chg = to - from; 4054 4055 set_vma_resv_map(vma, resv_map); 4056 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4057 } 4058 4059 if (chg < 0) { 4060 ret = chg; 4061 goto out_err; 4062 } 4063 4064 /* 4065 * There must be enough pages in the subpool for the mapping. If 4066 * the subpool has a minimum size, there may be some global 4067 * reservations already in place (gbl_reserve). 4068 */ 4069 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4070 if (gbl_reserve < 0) { 4071 ret = -ENOSPC; 4072 goto out_err; 4073 } 4074 4075 /* 4076 * Check enough hugepages are available for the reservation. 4077 * Hand the pages back to the subpool if there are not 4078 */ 4079 ret = hugetlb_acct_memory(h, gbl_reserve); 4080 if (ret < 0) { 4081 /* put back original number of pages, chg */ 4082 (void)hugepage_subpool_put_pages(spool, chg); 4083 goto out_err; 4084 } 4085 4086 /* 4087 * Account for the reservations made. Shared mappings record regions 4088 * that have reservations as they are shared by multiple VMAs. 4089 * When the last VMA disappears, the region map says how much 4090 * the reservation was and the page cache tells how much of 4091 * the reservation was consumed. Private mappings are per-VMA and 4092 * only the consumed reservations are tracked. When the VMA 4093 * disappears, the original reservation is the VMA size and the 4094 * consumed reservations are stored in the map. Hence, nothing 4095 * else has to be done for private mappings here 4096 */ 4097 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4098 long add = region_add(resv_map, from, to); 4099 4100 if (unlikely(chg > add)) { 4101 /* 4102 * pages in this range were added to the reserve 4103 * map between region_chg and region_add. This 4104 * indicates a race with alloc_huge_page. Adjust 4105 * the subpool and reserve counts modified above 4106 * based on the difference. 4107 */ 4108 long rsv_adjust; 4109 4110 rsv_adjust = hugepage_subpool_put_pages(spool, 4111 chg - add); 4112 hugetlb_acct_memory(h, -rsv_adjust); 4113 } 4114 } 4115 return 0; 4116 out_err: 4117 if (!vma || vma->vm_flags & VM_MAYSHARE) 4118 region_abort(resv_map, from, to); 4119 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4120 kref_put(&resv_map->refs, resv_map_release); 4121 return ret; 4122 } 4123 4124 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4125 long freed) 4126 { 4127 struct hstate *h = hstate_inode(inode); 4128 struct resv_map *resv_map = inode_resv_map(inode); 4129 long chg = 0; 4130 struct hugepage_subpool *spool = subpool_inode(inode); 4131 long gbl_reserve; 4132 4133 if (resv_map) { 4134 chg = region_del(resv_map, start, end); 4135 /* 4136 * region_del() can fail in the rare case where a region 4137 * must be split and another region descriptor can not be 4138 * allocated. If end == LONG_MAX, it will not fail. 4139 */ 4140 if (chg < 0) 4141 return chg; 4142 } 4143 4144 spin_lock(&inode->i_lock); 4145 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4146 spin_unlock(&inode->i_lock); 4147 4148 /* 4149 * If the subpool has a minimum size, the number of global 4150 * reservations to be released may be adjusted. 4151 */ 4152 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4153 hugetlb_acct_memory(h, -gbl_reserve); 4154 4155 return 0; 4156 } 4157 4158 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4159 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4160 struct vm_area_struct *vma, 4161 unsigned long addr, pgoff_t idx) 4162 { 4163 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4164 svma->vm_start; 4165 unsigned long sbase = saddr & PUD_MASK; 4166 unsigned long s_end = sbase + PUD_SIZE; 4167 4168 /* Allow segments to share if only one is marked locked */ 4169 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4170 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4171 4172 /* 4173 * match the virtual addresses, permission and the alignment of the 4174 * page table page. 4175 */ 4176 if (pmd_index(addr) != pmd_index(saddr) || 4177 vm_flags != svm_flags || 4178 sbase < svma->vm_start || svma->vm_end < s_end) 4179 return 0; 4180 4181 return saddr; 4182 } 4183 4184 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4185 { 4186 unsigned long base = addr & PUD_MASK; 4187 unsigned long end = base + PUD_SIZE; 4188 4189 /* 4190 * check on proper vm_flags and page table alignment 4191 */ 4192 if (vma->vm_flags & VM_MAYSHARE && 4193 vma->vm_start <= base && end <= vma->vm_end) 4194 return true; 4195 return false; 4196 } 4197 4198 /* 4199 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4200 * and returns the corresponding pte. While this is not necessary for the 4201 * !shared pmd case because we can allocate the pmd later as well, it makes the 4202 * code much cleaner. pmd allocation is essential for the shared case because 4203 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4204 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4205 * bad pmd for sharing. 4206 */ 4207 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4208 { 4209 struct vm_area_struct *vma = find_vma(mm, addr); 4210 struct address_space *mapping = vma->vm_file->f_mapping; 4211 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4212 vma->vm_pgoff; 4213 struct vm_area_struct *svma; 4214 unsigned long saddr; 4215 pte_t *spte = NULL; 4216 pte_t *pte; 4217 spinlock_t *ptl; 4218 4219 if (!vma_shareable(vma, addr)) 4220 return (pte_t *)pmd_alloc(mm, pud, addr); 4221 4222 i_mmap_lock_write(mapping); 4223 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4224 if (svma == vma) 4225 continue; 4226 4227 saddr = page_table_shareable(svma, vma, addr, idx); 4228 if (saddr) { 4229 spte = huge_pte_offset(svma->vm_mm, saddr); 4230 if (spte) { 4231 mm_inc_nr_pmds(mm); 4232 get_page(virt_to_page(spte)); 4233 break; 4234 } 4235 } 4236 } 4237 4238 if (!spte) 4239 goto out; 4240 4241 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4242 spin_lock(ptl); 4243 if (pud_none(*pud)) { 4244 pud_populate(mm, pud, 4245 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4246 } else { 4247 put_page(virt_to_page(spte)); 4248 mm_inc_nr_pmds(mm); 4249 } 4250 spin_unlock(ptl); 4251 out: 4252 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4253 i_mmap_unlock_write(mapping); 4254 return pte; 4255 } 4256 4257 /* 4258 * unmap huge page backed by shared pte. 4259 * 4260 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4261 * indicated by page_count > 1, unmap is achieved by clearing pud and 4262 * decrementing the ref count. If count == 1, the pte page is not shared. 4263 * 4264 * called with page table lock held. 4265 * 4266 * returns: 1 successfully unmapped a shared pte page 4267 * 0 the underlying pte page is not shared, or it is the last user 4268 */ 4269 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4270 { 4271 pgd_t *pgd = pgd_offset(mm, *addr); 4272 pud_t *pud = pud_offset(pgd, *addr); 4273 4274 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4275 if (page_count(virt_to_page(ptep)) == 1) 4276 return 0; 4277 4278 pud_clear(pud); 4279 put_page(virt_to_page(ptep)); 4280 mm_dec_nr_pmds(mm); 4281 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4282 return 1; 4283 } 4284 #define want_pmd_share() (1) 4285 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4286 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4287 { 4288 return NULL; 4289 } 4290 4291 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4292 { 4293 return 0; 4294 } 4295 #define want_pmd_share() (0) 4296 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4297 4298 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4299 pte_t *huge_pte_alloc(struct mm_struct *mm, 4300 unsigned long addr, unsigned long sz) 4301 { 4302 pgd_t *pgd; 4303 pud_t *pud; 4304 pte_t *pte = NULL; 4305 4306 pgd = pgd_offset(mm, addr); 4307 pud = pud_alloc(mm, pgd, addr); 4308 if (pud) { 4309 if (sz == PUD_SIZE) { 4310 pte = (pte_t *)pud; 4311 } else { 4312 BUG_ON(sz != PMD_SIZE); 4313 if (want_pmd_share() && pud_none(*pud)) 4314 pte = huge_pmd_share(mm, addr, pud); 4315 else 4316 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4317 } 4318 } 4319 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4320 4321 return pte; 4322 } 4323 4324 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4325 { 4326 pgd_t *pgd; 4327 pud_t *pud; 4328 pmd_t *pmd = NULL; 4329 4330 pgd = pgd_offset(mm, addr); 4331 if (pgd_present(*pgd)) { 4332 pud = pud_offset(pgd, addr); 4333 if (pud_present(*pud)) { 4334 if (pud_huge(*pud)) 4335 return (pte_t *)pud; 4336 pmd = pmd_offset(pud, addr); 4337 } 4338 } 4339 return (pte_t *) pmd; 4340 } 4341 4342 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4343 4344 /* 4345 * These functions are overwritable if your architecture needs its own 4346 * behavior. 4347 */ 4348 struct page * __weak 4349 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4350 int write) 4351 { 4352 return ERR_PTR(-EINVAL); 4353 } 4354 4355 struct page * __weak 4356 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4357 pmd_t *pmd, int flags) 4358 { 4359 struct page *page = NULL; 4360 spinlock_t *ptl; 4361 retry: 4362 ptl = pmd_lockptr(mm, pmd); 4363 spin_lock(ptl); 4364 /* 4365 * make sure that the address range covered by this pmd is not 4366 * unmapped from other threads. 4367 */ 4368 if (!pmd_huge(*pmd)) 4369 goto out; 4370 if (pmd_present(*pmd)) { 4371 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4372 if (flags & FOLL_GET) 4373 get_page(page); 4374 } else { 4375 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4376 spin_unlock(ptl); 4377 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4378 goto retry; 4379 } 4380 /* 4381 * hwpoisoned entry is treated as no_page_table in 4382 * follow_page_mask(). 4383 */ 4384 } 4385 out: 4386 spin_unlock(ptl); 4387 return page; 4388 } 4389 4390 struct page * __weak 4391 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4392 pud_t *pud, int flags) 4393 { 4394 if (flags & FOLL_GET) 4395 return NULL; 4396 4397 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4398 } 4399 4400 #ifdef CONFIG_MEMORY_FAILURE 4401 4402 /* 4403 * This function is called from memory failure code. 4404 * Assume the caller holds page lock of the head page. 4405 */ 4406 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4407 { 4408 struct hstate *h = page_hstate(hpage); 4409 int nid = page_to_nid(hpage); 4410 int ret = -EBUSY; 4411 4412 spin_lock(&hugetlb_lock); 4413 /* 4414 * Just checking !page_huge_active is not enough, because that could be 4415 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4416 */ 4417 if (!page_huge_active(hpage) && !page_count(hpage)) { 4418 /* 4419 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4420 * but dangling hpage->lru can trigger list-debug warnings 4421 * (this happens when we call unpoison_memory() on it), 4422 * so let it point to itself with list_del_init(). 4423 */ 4424 list_del_init(&hpage->lru); 4425 set_page_refcounted(hpage); 4426 h->free_huge_pages--; 4427 h->free_huge_pages_node[nid]--; 4428 ret = 0; 4429 } 4430 spin_unlock(&hugetlb_lock); 4431 return ret; 4432 } 4433 #endif 4434 4435 bool isolate_huge_page(struct page *page, struct list_head *list) 4436 { 4437 bool ret = true; 4438 4439 VM_BUG_ON_PAGE(!PageHead(page), page); 4440 spin_lock(&hugetlb_lock); 4441 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4442 ret = false; 4443 goto unlock; 4444 } 4445 clear_page_huge_active(page); 4446 list_move_tail(&page->lru, list); 4447 unlock: 4448 spin_unlock(&hugetlb_lock); 4449 return ret; 4450 } 4451 4452 void putback_active_hugepage(struct page *page) 4453 { 4454 VM_BUG_ON_PAGE(!PageHead(page), page); 4455 spin_lock(&hugetlb_lock); 4456 set_page_huge_active(page); 4457 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4458 spin_unlock(&hugetlb_lock); 4459 put_page(page); 4460 } 4461