xref: /linux/mm/hugetlb.c (revision 056b6ccc9d74136a106922f72b26eeef23af2ce8)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Generic hugetlb support.
4   * (C) Nadia Yvette Chambers, April 2004
5   */
6  #include <linux/list.h>
7  #include <linux/init.h>
8  #include <linux/mm.h>
9  #include <linux/seq_file.h>
10  #include <linux/sysctl.h>
11  #include <linux/highmem.h>
12  #include <linux/mmu_notifier.h>
13  #include <linux/nodemask.h>
14  #include <linux/pagemap.h>
15  #include <linux/mempolicy.h>
16  #include <linux/compiler.h>
17  #include <linux/cpuset.h>
18  #include <linux/mutex.h>
19  #include <linux/memblock.h>
20  #include <linux/sysfs.h>
21  #include <linux/slab.h>
22  #include <linux/sched/mm.h>
23  #include <linux/mmdebug.h>
24  #include <linux/sched/signal.h>
25  #include <linux/rmap.h>
26  #include <linux/string_helpers.h>
27  #include <linux/swap.h>
28  #include <linux/swapops.h>
29  #include <linux/jhash.h>
30  #include <linux/numa.h>
31  #include <linux/llist.h>
32  #include <linux/cma.h>
33  #include <linux/migrate.h>
34  #include <linux/nospec.h>
35  #include <linux/delayacct.h>
36  #include <linux/memory.h>
37  
38  #include <asm/page.h>
39  #include <asm/pgalloc.h>
40  #include <asm/tlb.h>
41  
42  #include <linux/io.h>
43  #include <linux/hugetlb.h>
44  #include <linux/hugetlb_cgroup.h>
45  #include <linux/node.h>
46  #include <linux/page_owner.h>
47  #include "internal.h"
48  #include "hugetlb_vmemmap.h"
49  
50  int hugetlb_max_hstate __read_mostly;
51  unsigned int default_hstate_idx;
52  struct hstate hstates[HUGE_MAX_HSTATE];
53  
54  #ifdef CONFIG_CMA
55  static struct cma *hugetlb_cma[MAX_NUMNODES];
56  static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57  static bool hugetlb_cma_page(struct page *page, unsigned int order)
58  {
59  	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60  				1 << order);
61  }
62  #else
63  static bool hugetlb_cma_page(struct page *page, unsigned int order)
64  {
65  	return false;
66  }
67  #endif
68  static unsigned long hugetlb_cma_size __initdata;
69  
70  __initdata LIST_HEAD(huge_boot_pages);
71  
72  /* for command line parsing */
73  static struct hstate * __initdata parsed_hstate;
74  static unsigned long __initdata default_hstate_max_huge_pages;
75  static bool __initdata parsed_valid_hugepagesz = true;
76  static bool __initdata parsed_default_hugepagesz;
77  static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78  
79  /*
80   * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81   * free_huge_pages, and surplus_huge_pages.
82   */
83  DEFINE_SPINLOCK(hugetlb_lock);
84  
85  /*
86   * Serializes faults on the same logical page.  This is used to
87   * prevent spurious OOMs when the hugepage pool is fully utilized.
88   */
89  static int num_fault_mutexes;
90  struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91  
92  /* Forward declaration */
93  static int hugetlb_acct_memory(struct hstate *h, long delta);
94  static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95  static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96  static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97  
98  static inline bool subpool_is_free(struct hugepage_subpool *spool)
99  {
100  	if (spool->count)
101  		return false;
102  	if (spool->max_hpages != -1)
103  		return spool->used_hpages == 0;
104  	if (spool->min_hpages != -1)
105  		return spool->rsv_hpages == spool->min_hpages;
106  
107  	return true;
108  }
109  
110  static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111  						unsigned long irq_flags)
112  {
113  	spin_unlock_irqrestore(&spool->lock, irq_flags);
114  
115  	/* If no pages are used, and no other handles to the subpool
116  	 * remain, give up any reservations based on minimum size and
117  	 * free the subpool */
118  	if (subpool_is_free(spool)) {
119  		if (spool->min_hpages != -1)
120  			hugetlb_acct_memory(spool->hstate,
121  						-spool->min_hpages);
122  		kfree(spool);
123  	}
124  }
125  
126  struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127  						long min_hpages)
128  {
129  	struct hugepage_subpool *spool;
130  
131  	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132  	if (!spool)
133  		return NULL;
134  
135  	spin_lock_init(&spool->lock);
136  	spool->count = 1;
137  	spool->max_hpages = max_hpages;
138  	spool->hstate = h;
139  	spool->min_hpages = min_hpages;
140  
141  	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142  		kfree(spool);
143  		return NULL;
144  	}
145  	spool->rsv_hpages = min_hpages;
146  
147  	return spool;
148  }
149  
150  void hugepage_put_subpool(struct hugepage_subpool *spool)
151  {
152  	unsigned long flags;
153  
154  	spin_lock_irqsave(&spool->lock, flags);
155  	BUG_ON(!spool->count);
156  	spool->count--;
157  	unlock_or_release_subpool(spool, flags);
158  }
159  
160  /*
161   * Subpool accounting for allocating and reserving pages.
162   * Return -ENOMEM if there are not enough resources to satisfy the
163   * request.  Otherwise, return the number of pages by which the
164   * global pools must be adjusted (upward).  The returned value may
165   * only be different than the passed value (delta) in the case where
166   * a subpool minimum size must be maintained.
167   */
168  static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169  				      long delta)
170  {
171  	long ret = delta;
172  
173  	if (!spool)
174  		return ret;
175  
176  	spin_lock_irq(&spool->lock);
177  
178  	if (spool->max_hpages != -1) {		/* maximum size accounting */
179  		if ((spool->used_hpages + delta) <= spool->max_hpages)
180  			spool->used_hpages += delta;
181  		else {
182  			ret = -ENOMEM;
183  			goto unlock_ret;
184  		}
185  	}
186  
187  	/* minimum size accounting */
188  	if (spool->min_hpages != -1 && spool->rsv_hpages) {
189  		if (delta > spool->rsv_hpages) {
190  			/*
191  			 * Asking for more reserves than those already taken on
192  			 * behalf of subpool.  Return difference.
193  			 */
194  			ret = delta - spool->rsv_hpages;
195  			spool->rsv_hpages = 0;
196  		} else {
197  			ret = 0;	/* reserves already accounted for */
198  			spool->rsv_hpages -= delta;
199  		}
200  	}
201  
202  unlock_ret:
203  	spin_unlock_irq(&spool->lock);
204  	return ret;
205  }
206  
207  /*
208   * Subpool accounting for freeing and unreserving pages.
209   * Return the number of global page reservations that must be dropped.
210   * The return value may only be different than the passed value (delta)
211   * in the case where a subpool minimum size must be maintained.
212   */
213  static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214  				       long delta)
215  {
216  	long ret = delta;
217  	unsigned long flags;
218  
219  	if (!spool)
220  		return delta;
221  
222  	spin_lock_irqsave(&spool->lock, flags);
223  
224  	if (spool->max_hpages != -1)		/* maximum size accounting */
225  		spool->used_hpages -= delta;
226  
227  	 /* minimum size accounting */
228  	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229  		if (spool->rsv_hpages + delta <= spool->min_hpages)
230  			ret = 0;
231  		else
232  			ret = spool->rsv_hpages + delta - spool->min_hpages;
233  
234  		spool->rsv_hpages += delta;
235  		if (spool->rsv_hpages > spool->min_hpages)
236  			spool->rsv_hpages = spool->min_hpages;
237  	}
238  
239  	/*
240  	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241  	 * quota reference, free it now.
242  	 */
243  	unlock_or_release_subpool(spool, flags);
244  
245  	return ret;
246  }
247  
248  static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249  {
250  	return HUGETLBFS_SB(inode->i_sb)->spool;
251  }
252  
253  static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254  {
255  	return subpool_inode(file_inode(vma->vm_file));
256  }
257  
258  /* Helper that removes a struct file_region from the resv_map cache and returns
259   * it for use.
260   */
261  static struct file_region *
262  get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263  {
264  	struct file_region *nrg;
265  
266  	VM_BUG_ON(resv->region_cache_count <= 0);
267  
268  	resv->region_cache_count--;
269  	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270  	list_del(&nrg->link);
271  
272  	nrg->from = from;
273  	nrg->to = to;
274  
275  	return nrg;
276  }
277  
278  static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279  					      struct file_region *rg)
280  {
281  #ifdef CONFIG_CGROUP_HUGETLB
282  	nrg->reservation_counter = rg->reservation_counter;
283  	nrg->css = rg->css;
284  	if (rg->css)
285  		css_get(rg->css);
286  #endif
287  }
288  
289  /* Helper that records hugetlb_cgroup uncharge info. */
290  static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291  						struct hstate *h,
292  						struct resv_map *resv,
293  						struct file_region *nrg)
294  {
295  #ifdef CONFIG_CGROUP_HUGETLB
296  	if (h_cg) {
297  		nrg->reservation_counter =
298  			&h_cg->rsvd_hugepage[hstate_index(h)];
299  		nrg->css = &h_cg->css;
300  		/*
301  		 * The caller will hold exactly one h_cg->css reference for the
302  		 * whole contiguous reservation region. But this area might be
303  		 * scattered when there are already some file_regions reside in
304  		 * it. As a result, many file_regions may share only one css
305  		 * reference. In order to ensure that one file_region must hold
306  		 * exactly one h_cg->css reference, we should do css_get for
307  		 * each file_region and leave the reference held by caller
308  		 * untouched.
309  		 */
310  		css_get(&h_cg->css);
311  		if (!resv->pages_per_hpage)
312  			resv->pages_per_hpage = pages_per_huge_page(h);
313  		/* pages_per_hpage should be the same for all entries in
314  		 * a resv_map.
315  		 */
316  		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317  	} else {
318  		nrg->reservation_counter = NULL;
319  		nrg->css = NULL;
320  	}
321  #endif
322  }
323  
324  static void put_uncharge_info(struct file_region *rg)
325  {
326  #ifdef CONFIG_CGROUP_HUGETLB
327  	if (rg->css)
328  		css_put(rg->css);
329  #endif
330  }
331  
332  static bool has_same_uncharge_info(struct file_region *rg,
333  				   struct file_region *org)
334  {
335  #ifdef CONFIG_CGROUP_HUGETLB
336  	return rg->reservation_counter == org->reservation_counter &&
337  	       rg->css == org->css;
338  
339  #else
340  	return true;
341  #endif
342  }
343  
344  static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345  {
346  	struct file_region *nrg, *prg;
347  
348  	prg = list_prev_entry(rg, link);
349  	if (&prg->link != &resv->regions && prg->to == rg->from &&
350  	    has_same_uncharge_info(prg, rg)) {
351  		prg->to = rg->to;
352  
353  		list_del(&rg->link);
354  		put_uncharge_info(rg);
355  		kfree(rg);
356  
357  		rg = prg;
358  	}
359  
360  	nrg = list_next_entry(rg, link);
361  	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362  	    has_same_uncharge_info(nrg, rg)) {
363  		nrg->from = rg->from;
364  
365  		list_del(&rg->link);
366  		put_uncharge_info(rg);
367  		kfree(rg);
368  	}
369  }
370  
371  static inline long
372  hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373  		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
374  		     long *regions_needed)
375  {
376  	struct file_region *nrg;
377  
378  	if (!regions_needed) {
379  		nrg = get_file_region_entry_from_cache(map, from, to);
380  		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381  		list_add(&nrg->link, rg);
382  		coalesce_file_region(map, nrg);
383  	} else
384  		*regions_needed += 1;
385  
386  	return to - from;
387  }
388  
389  /*
390   * Must be called with resv->lock held.
391   *
392   * Calling this with regions_needed != NULL will count the number of pages
393   * to be added but will not modify the linked list. And regions_needed will
394   * indicate the number of file_regions needed in the cache to carry out to add
395   * the regions for this range.
396   */
397  static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398  				     struct hugetlb_cgroup *h_cg,
399  				     struct hstate *h, long *regions_needed)
400  {
401  	long add = 0;
402  	struct list_head *head = &resv->regions;
403  	long last_accounted_offset = f;
404  	struct file_region *iter, *trg = NULL;
405  	struct list_head *rg = NULL;
406  
407  	if (regions_needed)
408  		*regions_needed = 0;
409  
410  	/* In this loop, we essentially handle an entry for the range
411  	 * [last_accounted_offset, iter->from), at every iteration, with some
412  	 * bounds checking.
413  	 */
414  	list_for_each_entry_safe(iter, trg, head, link) {
415  		/* Skip irrelevant regions that start before our range. */
416  		if (iter->from < f) {
417  			/* If this region ends after the last accounted offset,
418  			 * then we need to update last_accounted_offset.
419  			 */
420  			if (iter->to > last_accounted_offset)
421  				last_accounted_offset = iter->to;
422  			continue;
423  		}
424  
425  		/* When we find a region that starts beyond our range, we've
426  		 * finished.
427  		 */
428  		if (iter->from >= t) {
429  			rg = iter->link.prev;
430  			break;
431  		}
432  
433  		/* Add an entry for last_accounted_offset -> iter->from, and
434  		 * update last_accounted_offset.
435  		 */
436  		if (iter->from > last_accounted_offset)
437  			add += hugetlb_resv_map_add(resv, iter->link.prev,
438  						    last_accounted_offset,
439  						    iter->from, h, h_cg,
440  						    regions_needed);
441  
442  		last_accounted_offset = iter->to;
443  	}
444  
445  	/* Handle the case where our range extends beyond
446  	 * last_accounted_offset.
447  	 */
448  	if (!rg)
449  		rg = head->prev;
450  	if (last_accounted_offset < t)
451  		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452  					    t, h, h_cg, regions_needed);
453  
454  	return add;
455  }
456  
457  /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458   */
459  static int allocate_file_region_entries(struct resv_map *resv,
460  					int regions_needed)
461  	__must_hold(&resv->lock)
462  {
463  	LIST_HEAD(allocated_regions);
464  	int to_allocate = 0, i = 0;
465  	struct file_region *trg = NULL, *rg = NULL;
466  
467  	VM_BUG_ON(regions_needed < 0);
468  
469  	/*
470  	 * Check for sufficient descriptors in the cache to accommodate
471  	 * the number of in progress add operations plus regions_needed.
472  	 *
473  	 * This is a while loop because when we drop the lock, some other call
474  	 * to region_add or region_del may have consumed some region_entries,
475  	 * so we keep looping here until we finally have enough entries for
476  	 * (adds_in_progress + regions_needed).
477  	 */
478  	while (resv->region_cache_count <
479  	       (resv->adds_in_progress + regions_needed)) {
480  		to_allocate = resv->adds_in_progress + regions_needed -
481  			      resv->region_cache_count;
482  
483  		/* At this point, we should have enough entries in the cache
484  		 * for all the existing adds_in_progress. We should only be
485  		 * needing to allocate for regions_needed.
486  		 */
487  		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488  
489  		spin_unlock(&resv->lock);
490  		for (i = 0; i < to_allocate; i++) {
491  			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492  			if (!trg)
493  				goto out_of_memory;
494  			list_add(&trg->link, &allocated_regions);
495  		}
496  
497  		spin_lock(&resv->lock);
498  
499  		list_splice(&allocated_regions, &resv->region_cache);
500  		resv->region_cache_count += to_allocate;
501  	}
502  
503  	return 0;
504  
505  out_of_memory:
506  	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507  		list_del(&rg->link);
508  		kfree(rg);
509  	}
510  	return -ENOMEM;
511  }
512  
513  /*
514   * Add the huge page range represented by [f, t) to the reserve
515   * map.  Regions will be taken from the cache to fill in this range.
516   * Sufficient regions should exist in the cache due to the previous
517   * call to region_chg with the same range, but in some cases the cache will not
518   * have sufficient entries due to races with other code doing region_add or
519   * region_del.  The extra needed entries will be allocated.
520   *
521   * regions_needed is the out value provided by a previous call to region_chg.
522   *
523   * Return the number of new huge pages added to the map.  This number is greater
524   * than or equal to zero.  If file_region entries needed to be allocated for
525   * this operation and we were not able to allocate, it returns -ENOMEM.
526   * region_add of regions of length 1 never allocate file_regions and cannot
527   * fail; region_chg will always allocate at least 1 entry and a region_add for
528   * 1 page will only require at most 1 entry.
529   */
530  static long region_add(struct resv_map *resv, long f, long t,
531  		       long in_regions_needed, struct hstate *h,
532  		       struct hugetlb_cgroup *h_cg)
533  {
534  	long add = 0, actual_regions_needed = 0;
535  
536  	spin_lock(&resv->lock);
537  retry:
538  
539  	/* Count how many regions are actually needed to execute this add. */
540  	add_reservation_in_range(resv, f, t, NULL, NULL,
541  				 &actual_regions_needed);
542  
543  	/*
544  	 * Check for sufficient descriptors in the cache to accommodate
545  	 * this add operation. Note that actual_regions_needed may be greater
546  	 * than in_regions_needed, as the resv_map may have been modified since
547  	 * the region_chg call. In this case, we need to make sure that we
548  	 * allocate extra entries, such that we have enough for all the
549  	 * existing adds_in_progress, plus the excess needed for this
550  	 * operation.
551  	 */
552  	if (actual_regions_needed > in_regions_needed &&
553  	    resv->region_cache_count <
554  		    resv->adds_in_progress +
555  			    (actual_regions_needed - in_regions_needed)) {
556  		/* region_add operation of range 1 should never need to
557  		 * allocate file_region entries.
558  		 */
559  		VM_BUG_ON(t - f <= 1);
560  
561  		if (allocate_file_region_entries(
562  			    resv, actual_regions_needed - in_regions_needed)) {
563  			return -ENOMEM;
564  		}
565  
566  		goto retry;
567  	}
568  
569  	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570  
571  	resv->adds_in_progress -= in_regions_needed;
572  
573  	spin_unlock(&resv->lock);
574  	return add;
575  }
576  
577  /*
578   * Examine the existing reserve map and determine how many
579   * huge pages in the specified range [f, t) are NOT currently
580   * represented.  This routine is called before a subsequent
581   * call to region_add that will actually modify the reserve
582   * map to add the specified range [f, t).  region_chg does
583   * not change the number of huge pages represented by the
584   * map.  A number of new file_region structures is added to the cache as a
585   * placeholder, for the subsequent region_add call to use. At least 1
586   * file_region structure is added.
587   *
588   * out_regions_needed is the number of regions added to the
589   * resv->adds_in_progress.  This value needs to be provided to a follow up call
590   * to region_add or region_abort for proper accounting.
591   *
592   * Returns the number of huge pages that need to be added to the existing
593   * reservation map for the range [f, t).  This number is greater or equal to
594   * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595   * is needed and can not be allocated.
596   */
597  static long region_chg(struct resv_map *resv, long f, long t,
598  		       long *out_regions_needed)
599  {
600  	long chg = 0;
601  
602  	spin_lock(&resv->lock);
603  
604  	/* Count how many hugepages in this range are NOT represented. */
605  	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606  				       out_regions_needed);
607  
608  	if (*out_regions_needed == 0)
609  		*out_regions_needed = 1;
610  
611  	if (allocate_file_region_entries(resv, *out_regions_needed))
612  		return -ENOMEM;
613  
614  	resv->adds_in_progress += *out_regions_needed;
615  
616  	spin_unlock(&resv->lock);
617  	return chg;
618  }
619  
620  /*
621   * Abort the in progress add operation.  The adds_in_progress field
622   * of the resv_map keeps track of the operations in progress between
623   * calls to region_chg and region_add.  Operations are sometimes
624   * aborted after the call to region_chg.  In such cases, region_abort
625   * is called to decrement the adds_in_progress counter. regions_needed
626   * is the value returned by the region_chg call, it is used to decrement
627   * the adds_in_progress counter.
628   *
629   * NOTE: The range arguments [f, t) are not needed or used in this
630   * routine.  They are kept to make reading the calling code easier as
631   * arguments will match the associated region_chg call.
632   */
633  static void region_abort(struct resv_map *resv, long f, long t,
634  			 long regions_needed)
635  {
636  	spin_lock(&resv->lock);
637  	VM_BUG_ON(!resv->region_cache_count);
638  	resv->adds_in_progress -= regions_needed;
639  	spin_unlock(&resv->lock);
640  }
641  
642  /*
643   * Delete the specified range [f, t) from the reserve map.  If the
644   * t parameter is LONG_MAX, this indicates that ALL regions after f
645   * should be deleted.  Locate the regions which intersect [f, t)
646   * and either trim, delete or split the existing regions.
647   *
648   * Returns the number of huge pages deleted from the reserve map.
649   * In the normal case, the return value is zero or more.  In the
650   * case where a region must be split, a new region descriptor must
651   * be allocated.  If the allocation fails, -ENOMEM will be returned.
652   * NOTE: If the parameter t == LONG_MAX, then we will never split
653   * a region and possibly return -ENOMEM.  Callers specifying
654   * t == LONG_MAX do not need to check for -ENOMEM error.
655   */
656  static long region_del(struct resv_map *resv, long f, long t)
657  {
658  	struct list_head *head = &resv->regions;
659  	struct file_region *rg, *trg;
660  	struct file_region *nrg = NULL;
661  	long del = 0;
662  
663  retry:
664  	spin_lock(&resv->lock);
665  	list_for_each_entry_safe(rg, trg, head, link) {
666  		/*
667  		 * Skip regions before the range to be deleted.  file_region
668  		 * ranges are normally of the form [from, to).  However, there
669  		 * may be a "placeholder" entry in the map which is of the form
670  		 * (from, to) with from == to.  Check for placeholder entries
671  		 * at the beginning of the range to be deleted.
672  		 */
673  		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674  			continue;
675  
676  		if (rg->from >= t)
677  			break;
678  
679  		if (f > rg->from && t < rg->to) { /* Must split region */
680  			/*
681  			 * Check for an entry in the cache before dropping
682  			 * lock and attempting allocation.
683  			 */
684  			if (!nrg &&
685  			    resv->region_cache_count > resv->adds_in_progress) {
686  				nrg = list_first_entry(&resv->region_cache,
687  							struct file_region,
688  							link);
689  				list_del(&nrg->link);
690  				resv->region_cache_count--;
691  			}
692  
693  			if (!nrg) {
694  				spin_unlock(&resv->lock);
695  				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696  				if (!nrg)
697  					return -ENOMEM;
698  				goto retry;
699  			}
700  
701  			del += t - f;
702  			hugetlb_cgroup_uncharge_file_region(
703  				resv, rg, t - f, false);
704  
705  			/* New entry for end of split region */
706  			nrg->from = t;
707  			nrg->to = rg->to;
708  
709  			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710  
711  			INIT_LIST_HEAD(&nrg->link);
712  
713  			/* Original entry is trimmed */
714  			rg->to = f;
715  
716  			list_add(&nrg->link, &rg->link);
717  			nrg = NULL;
718  			break;
719  		}
720  
721  		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722  			del += rg->to - rg->from;
723  			hugetlb_cgroup_uncharge_file_region(resv, rg,
724  							    rg->to - rg->from, true);
725  			list_del(&rg->link);
726  			kfree(rg);
727  			continue;
728  		}
729  
730  		if (f <= rg->from) {	/* Trim beginning of region */
731  			hugetlb_cgroup_uncharge_file_region(resv, rg,
732  							    t - rg->from, false);
733  
734  			del += t - rg->from;
735  			rg->from = t;
736  		} else {		/* Trim end of region */
737  			hugetlb_cgroup_uncharge_file_region(resv, rg,
738  							    rg->to - f, false);
739  
740  			del += rg->to - f;
741  			rg->to = f;
742  		}
743  	}
744  
745  	spin_unlock(&resv->lock);
746  	kfree(nrg);
747  	return del;
748  }
749  
750  /*
751   * A rare out of memory error was encountered which prevented removal of
752   * the reserve map region for a page.  The huge page itself was free'ed
753   * and removed from the page cache.  This routine will adjust the subpool
754   * usage count, and the global reserve count if needed.  By incrementing
755   * these counts, the reserve map entry which could not be deleted will
756   * appear as a "reserved" entry instead of simply dangling with incorrect
757   * counts.
758   */
759  void hugetlb_fix_reserve_counts(struct inode *inode)
760  {
761  	struct hugepage_subpool *spool = subpool_inode(inode);
762  	long rsv_adjust;
763  	bool reserved = false;
764  
765  	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766  	if (rsv_adjust > 0) {
767  		struct hstate *h = hstate_inode(inode);
768  
769  		if (!hugetlb_acct_memory(h, 1))
770  			reserved = true;
771  	} else if (!rsv_adjust) {
772  		reserved = true;
773  	}
774  
775  	if (!reserved)
776  		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777  }
778  
779  /*
780   * Count and return the number of huge pages in the reserve map
781   * that intersect with the range [f, t).
782   */
783  static long region_count(struct resv_map *resv, long f, long t)
784  {
785  	struct list_head *head = &resv->regions;
786  	struct file_region *rg;
787  	long chg = 0;
788  
789  	spin_lock(&resv->lock);
790  	/* Locate each segment we overlap with, and count that overlap. */
791  	list_for_each_entry(rg, head, link) {
792  		long seg_from;
793  		long seg_to;
794  
795  		if (rg->to <= f)
796  			continue;
797  		if (rg->from >= t)
798  			break;
799  
800  		seg_from = max(rg->from, f);
801  		seg_to = min(rg->to, t);
802  
803  		chg += seg_to - seg_from;
804  	}
805  	spin_unlock(&resv->lock);
806  
807  	return chg;
808  }
809  
810  /*
811   * Convert the address within this vma to the page offset within
812   * the mapping, in pagecache page units; huge pages here.
813   */
814  static pgoff_t vma_hugecache_offset(struct hstate *h,
815  			struct vm_area_struct *vma, unsigned long address)
816  {
817  	return ((address - vma->vm_start) >> huge_page_shift(h)) +
818  			(vma->vm_pgoff >> huge_page_order(h));
819  }
820  
821  pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822  				     unsigned long address)
823  {
824  	return vma_hugecache_offset(hstate_vma(vma), vma, address);
825  }
826  EXPORT_SYMBOL_GPL(linear_hugepage_index);
827  
828  /*
829   * Return the size of the pages allocated when backing a VMA. In the majority
830   * cases this will be same size as used by the page table entries.
831   */
832  unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833  {
834  	if (vma->vm_ops && vma->vm_ops->pagesize)
835  		return vma->vm_ops->pagesize(vma);
836  	return PAGE_SIZE;
837  }
838  EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839  
840  /*
841   * Return the page size being used by the MMU to back a VMA. In the majority
842   * of cases, the page size used by the kernel matches the MMU size. On
843   * architectures where it differs, an architecture-specific 'strong'
844   * version of this symbol is required.
845   */
846  __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847  {
848  	return vma_kernel_pagesize(vma);
849  }
850  
851  /*
852   * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853   * bits of the reservation map pointer, which are always clear due to
854   * alignment.
855   */
856  #define HPAGE_RESV_OWNER    (1UL << 0)
857  #define HPAGE_RESV_UNMAPPED (1UL << 1)
858  #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859  
860  /*
861   * These helpers are used to track how many pages are reserved for
862   * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863   * is guaranteed to have their future faults succeed.
864   *
865   * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866   * the reserve counters are updated with the hugetlb_lock held. It is safe
867   * to reset the VMA at fork() time as it is not in use yet and there is no
868   * chance of the global counters getting corrupted as a result of the values.
869   *
870   * The private mapping reservation is represented in a subtly different
871   * manner to a shared mapping.  A shared mapping has a region map associated
872   * with the underlying file, this region map represents the backing file
873   * pages which have ever had a reservation assigned which this persists even
874   * after the page is instantiated.  A private mapping has a region map
875   * associated with the original mmap which is attached to all VMAs which
876   * reference it, this region map represents those offsets which have consumed
877   * reservation ie. where pages have been instantiated.
878   */
879  static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880  {
881  	return (unsigned long)vma->vm_private_data;
882  }
883  
884  static void set_vma_private_data(struct vm_area_struct *vma,
885  							unsigned long value)
886  {
887  	vma->vm_private_data = (void *)value;
888  }
889  
890  static void
891  resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892  					  struct hugetlb_cgroup *h_cg,
893  					  struct hstate *h)
894  {
895  #ifdef CONFIG_CGROUP_HUGETLB
896  	if (!h_cg || !h) {
897  		resv_map->reservation_counter = NULL;
898  		resv_map->pages_per_hpage = 0;
899  		resv_map->css = NULL;
900  	} else {
901  		resv_map->reservation_counter =
902  			&h_cg->rsvd_hugepage[hstate_index(h)];
903  		resv_map->pages_per_hpage = pages_per_huge_page(h);
904  		resv_map->css = &h_cg->css;
905  	}
906  #endif
907  }
908  
909  struct resv_map *resv_map_alloc(void)
910  {
911  	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912  	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913  
914  	if (!resv_map || !rg) {
915  		kfree(resv_map);
916  		kfree(rg);
917  		return NULL;
918  	}
919  
920  	kref_init(&resv_map->refs);
921  	spin_lock_init(&resv_map->lock);
922  	INIT_LIST_HEAD(&resv_map->regions);
923  
924  	resv_map->adds_in_progress = 0;
925  	/*
926  	 * Initialize these to 0. On shared mappings, 0's here indicate these
927  	 * fields don't do cgroup accounting. On private mappings, these will be
928  	 * re-initialized to the proper values, to indicate that hugetlb cgroup
929  	 * reservations are to be un-charged from here.
930  	 */
931  	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932  
933  	INIT_LIST_HEAD(&resv_map->region_cache);
934  	list_add(&rg->link, &resv_map->region_cache);
935  	resv_map->region_cache_count = 1;
936  
937  	return resv_map;
938  }
939  
940  void resv_map_release(struct kref *ref)
941  {
942  	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943  	struct list_head *head = &resv_map->region_cache;
944  	struct file_region *rg, *trg;
945  
946  	/* Clear out any active regions before we release the map. */
947  	region_del(resv_map, 0, LONG_MAX);
948  
949  	/* ... and any entries left in the cache */
950  	list_for_each_entry_safe(rg, trg, head, link) {
951  		list_del(&rg->link);
952  		kfree(rg);
953  	}
954  
955  	VM_BUG_ON(resv_map->adds_in_progress);
956  
957  	kfree(resv_map);
958  }
959  
960  static inline struct resv_map *inode_resv_map(struct inode *inode)
961  {
962  	/*
963  	 * At inode evict time, i_mapping may not point to the original
964  	 * address space within the inode.  This original address space
965  	 * contains the pointer to the resv_map.  So, always use the
966  	 * address space embedded within the inode.
967  	 * The VERY common case is inode->mapping == &inode->i_data but,
968  	 * this may not be true for device special inodes.
969  	 */
970  	return (struct resv_map *)(&inode->i_data)->private_data;
971  }
972  
973  static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974  {
975  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976  	if (vma->vm_flags & VM_MAYSHARE) {
977  		struct address_space *mapping = vma->vm_file->f_mapping;
978  		struct inode *inode = mapping->host;
979  
980  		return inode_resv_map(inode);
981  
982  	} else {
983  		return (struct resv_map *)(get_vma_private_data(vma) &
984  							~HPAGE_RESV_MASK);
985  	}
986  }
987  
988  static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989  {
990  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991  	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992  
993  	set_vma_private_data(vma, (get_vma_private_data(vma) &
994  				HPAGE_RESV_MASK) | (unsigned long)map);
995  }
996  
997  static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998  {
999  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000  	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001  
1002  	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003  }
1004  
1005  static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006  {
1007  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008  
1009  	return (get_vma_private_data(vma) & flag) != 0;
1010  }
1011  
1012  void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013  {
1014  	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015  	/*
1016  	 * Clear vm_private_data
1017  	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1018  	 *   not apply to children.  Faults generated by the children are
1019  	 *   not guaranteed to succeed, even if read-only.
1020  	 * - For shared mappings this is a per-vma semaphore that may be
1021  	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1022  	 */
1023  	vma->vm_private_data = (void *)0;
1024  	if (!(vma->vm_flags & VM_MAYSHARE))
1025  		return;
1026  }
1027  
1028  /*
1029   * Reset and decrement one ref on hugepage private reservation.
1030   * Called with mm->mmap_sem writer semaphore held.
1031   * This function should be only used by move_vma() and operate on
1032   * same sized vma. It should never come here with last ref on the
1033   * reservation.
1034   */
1035  void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1036  {
1037  	/*
1038  	 * Clear the old hugetlb private page reservation.
1039  	 * It has already been transferred to new_vma.
1040  	 *
1041  	 * During a mremap() operation of a hugetlb vma we call move_vma()
1042  	 * which copies vma into new_vma and unmaps vma. After the copy
1043  	 * operation both new_vma and vma share a reference to the resv_map
1044  	 * struct, and at that point vma is about to be unmapped. We don't
1045  	 * want to return the reservation to the pool at unmap of vma because
1046  	 * the reservation still lives on in new_vma, so simply decrement the
1047  	 * ref here and remove the resv_map reference from this vma.
1048  	 */
1049  	struct resv_map *reservations = vma_resv_map(vma);
1050  
1051  	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1052  		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1053  		kref_put(&reservations->refs, resv_map_release);
1054  	}
1055  
1056  	hugetlb_dup_vma_private(vma);
1057  }
1058  
1059  /* Returns true if the VMA has associated reserve pages */
1060  static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1061  {
1062  	if (vma->vm_flags & VM_NORESERVE) {
1063  		/*
1064  		 * This address is already reserved by other process(chg == 0),
1065  		 * so, we should decrement reserved count. Without decrementing,
1066  		 * reserve count remains after releasing inode, because this
1067  		 * allocated page will go into page cache and is regarded as
1068  		 * coming from reserved pool in releasing step.  Currently, we
1069  		 * don't have any other solution to deal with this situation
1070  		 * properly, so add work-around here.
1071  		 */
1072  		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1073  			return true;
1074  		else
1075  			return false;
1076  	}
1077  
1078  	/* Shared mappings always use reserves */
1079  	if (vma->vm_flags & VM_MAYSHARE) {
1080  		/*
1081  		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1082  		 * be a region map for all pages.  The only situation where
1083  		 * there is no region map is if a hole was punched via
1084  		 * fallocate.  In this case, there really are no reserves to
1085  		 * use.  This situation is indicated if chg != 0.
1086  		 */
1087  		if (chg)
1088  			return false;
1089  		else
1090  			return true;
1091  	}
1092  
1093  	/*
1094  	 * Only the process that called mmap() has reserves for
1095  	 * private mappings.
1096  	 */
1097  	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1098  		/*
1099  		 * Like the shared case above, a hole punch or truncate
1100  		 * could have been performed on the private mapping.
1101  		 * Examine the value of chg to determine if reserves
1102  		 * actually exist or were previously consumed.
1103  		 * Very Subtle - The value of chg comes from a previous
1104  		 * call to vma_needs_reserves().  The reserve map for
1105  		 * private mappings has different (opposite) semantics
1106  		 * than that of shared mappings.  vma_needs_reserves()
1107  		 * has already taken this difference in semantics into
1108  		 * account.  Therefore, the meaning of chg is the same
1109  		 * as in the shared case above.  Code could easily be
1110  		 * combined, but keeping it separate draws attention to
1111  		 * subtle differences.
1112  		 */
1113  		if (chg)
1114  			return false;
1115  		else
1116  			return true;
1117  	}
1118  
1119  	return false;
1120  }
1121  
1122  static void enqueue_huge_page(struct hstate *h, struct page *page)
1123  {
1124  	int nid = page_to_nid(page);
1125  
1126  	lockdep_assert_held(&hugetlb_lock);
1127  	VM_BUG_ON_PAGE(page_count(page), page);
1128  
1129  	list_move(&page->lru, &h->hugepage_freelists[nid]);
1130  	h->free_huge_pages++;
1131  	h->free_huge_pages_node[nid]++;
1132  	SetHPageFreed(page);
1133  }
1134  
1135  static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1136  {
1137  	struct page *page;
1138  	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1139  
1140  	lockdep_assert_held(&hugetlb_lock);
1141  	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1142  		if (pin && !is_longterm_pinnable_page(page))
1143  			continue;
1144  
1145  		if (PageHWPoison(page))
1146  			continue;
1147  
1148  		list_move(&page->lru, &h->hugepage_activelist);
1149  		set_page_refcounted(page);
1150  		ClearHPageFreed(page);
1151  		h->free_huge_pages--;
1152  		h->free_huge_pages_node[nid]--;
1153  		return page;
1154  	}
1155  
1156  	return NULL;
1157  }
1158  
1159  static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1160  		nodemask_t *nmask)
1161  {
1162  	unsigned int cpuset_mems_cookie;
1163  	struct zonelist *zonelist;
1164  	struct zone *zone;
1165  	struct zoneref *z;
1166  	int node = NUMA_NO_NODE;
1167  
1168  	zonelist = node_zonelist(nid, gfp_mask);
1169  
1170  retry_cpuset:
1171  	cpuset_mems_cookie = read_mems_allowed_begin();
1172  	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1173  		struct page *page;
1174  
1175  		if (!cpuset_zone_allowed(zone, gfp_mask))
1176  			continue;
1177  		/*
1178  		 * no need to ask again on the same node. Pool is node rather than
1179  		 * zone aware
1180  		 */
1181  		if (zone_to_nid(zone) == node)
1182  			continue;
1183  		node = zone_to_nid(zone);
1184  
1185  		page = dequeue_huge_page_node_exact(h, node);
1186  		if (page)
1187  			return page;
1188  	}
1189  	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1190  		goto retry_cpuset;
1191  
1192  	return NULL;
1193  }
1194  
1195  static unsigned long available_huge_pages(struct hstate *h)
1196  {
1197  	return h->free_huge_pages - h->resv_huge_pages;
1198  }
1199  
1200  static struct page *dequeue_huge_page_vma(struct hstate *h,
1201  				struct vm_area_struct *vma,
1202  				unsigned long address, int avoid_reserve,
1203  				long chg)
1204  {
1205  	struct page *page = NULL;
1206  	struct mempolicy *mpol;
1207  	gfp_t gfp_mask;
1208  	nodemask_t *nodemask;
1209  	int nid;
1210  
1211  	/*
1212  	 * A child process with MAP_PRIVATE mappings created by their parent
1213  	 * have no page reserves. This check ensures that reservations are
1214  	 * not "stolen". The child may still get SIGKILLed
1215  	 */
1216  	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1217  		goto err;
1218  
1219  	/* If reserves cannot be used, ensure enough pages are in the pool */
1220  	if (avoid_reserve && !available_huge_pages(h))
1221  		goto err;
1222  
1223  	gfp_mask = htlb_alloc_mask(h);
1224  	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1225  
1226  	if (mpol_is_preferred_many(mpol)) {
1227  		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1228  
1229  		/* Fallback to all nodes if page==NULL */
1230  		nodemask = NULL;
1231  	}
1232  
1233  	if (!page)
1234  		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1235  
1236  	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1237  		SetHPageRestoreReserve(page);
1238  		h->resv_huge_pages--;
1239  	}
1240  
1241  	mpol_cond_put(mpol);
1242  	return page;
1243  
1244  err:
1245  	return NULL;
1246  }
1247  
1248  /*
1249   * common helper functions for hstate_next_node_to_{alloc|free}.
1250   * We may have allocated or freed a huge page based on a different
1251   * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1252   * be outside of *nodes_allowed.  Ensure that we use an allowed
1253   * node for alloc or free.
1254   */
1255  static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1256  {
1257  	nid = next_node_in(nid, *nodes_allowed);
1258  	VM_BUG_ON(nid >= MAX_NUMNODES);
1259  
1260  	return nid;
1261  }
1262  
1263  static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1264  {
1265  	if (!node_isset(nid, *nodes_allowed))
1266  		nid = next_node_allowed(nid, nodes_allowed);
1267  	return nid;
1268  }
1269  
1270  /*
1271   * returns the previously saved node ["this node"] from which to
1272   * allocate a persistent huge page for the pool and advance the
1273   * next node from which to allocate, handling wrap at end of node
1274   * mask.
1275   */
1276  static int hstate_next_node_to_alloc(struct hstate *h,
1277  					nodemask_t *nodes_allowed)
1278  {
1279  	int nid;
1280  
1281  	VM_BUG_ON(!nodes_allowed);
1282  
1283  	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1284  	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1285  
1286  	return nid;
1287  }
1288  
1289  /*
1290   * helper for remove_pool_huge_page() - return the previously saved
1291   * node ["this node"] from which to free a huge page.  Advance the
1292   * next node id whether or not we find a free huge page to free so
1293   * that the next attempt to free addresses the next node.
1294   */
1295  static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1296  {
1297  	int nid;
1298  
1299  	VM_BUG_ON(!nodes_allowed);
1300  
1301  	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1302  	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1303  
1304  	return nid;
1305  }
1306  
1307  #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1308  	for (nr_nodes = nodes_weight(*mask);				\
1309  		nr_nodes > 0 &&						\
1310  		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1311  		nr_nodes--)
1312  
1313  #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1314  	for (nr_nodes = nodes_weight(*mask);				\
1315  		nr_nodes > 0 &&						\
1316  		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1317  		nr_nodes--)
1318  
1319  /* used to demote non-gigantic_huge pages as well */
1320  static void __destroy_compound_gigantic_page(struct page *page,
1321  					unsigned int order, bool demote)
1322  {
1323  	int i;
1324  	int nr_pages = 1 << order;
1325  	struct page *p;
1326  
1327  	atomic_set(compound_mapcount_ptr(page), 0);
1328  	atomic_set(compound_pincount_ptr(page), 0);
1329  
1330  	for (i = 1; i < nr_pages; i++) {
1331  		p = nth_page(page, i);
1332  		p->mapping = NULL;
1333  		clear_compound_head(p);
1334  		if (!demote)
1335  			set_page_refcounted(p);
1336  	}
1337  
1338  	set_compound_order(page, 0);
1339  #ifdef CONFIG_64BIT
1340  	page[1].compound_nr = 0;
1341  #endif
1342  	__ClearPageHead(page);
1343  }
1344  
1345  static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1346  					unsigned int order)
1347  {
1348  	__destroy_compound_gigantic_page(page, order, true);
1349  }
1350  
1351  #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1352  static void destroy_compound_gigantic_page(struct page *page,
1353  					unsigned int order)
1354  {
1355  	__destroy_compound_gigantic_page(page, order, false);
1356  }
1357  
1358  static void free_gigantic_page(struct page *page, unsigned int order)
1359  {
1360  	/*
1361  	 * If the page isn't allocated using the cma allocator,
1362  	 * cma_release() returns false.
1363  	 */
1364  #ifdef CONFIG_CMA
1365  	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1366  		return;
1367  #endif
1368  
1369  	free_contig_range(page_to_pfn(page), 1 << order);
1370  }
1371  
1372  #ifdef CONFIG_CONTIG_ALLOC
1373  static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1374  		int nid, nodemask_t *nodemask)
1375  {
1376  	unsigned long nr_pages = pages_per_huge_page(h);
1377  	if (nid == NUMA_NO_NODE)
1378  		nid = numa_mem_id();
1379  
1380  #ifdef CONFIG_CMA
1381  	{
1382  		struct page *page;
1383  		int node;
1384  
1385  		if (hugetlb_cma[nid]) {
1386  			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1387  					huge_page_order(h), true);
1388  			if (page)
1389  				return page;
1390  		}
1391  
1392  		if (!(gfp_mask & __GFP_THISNODE)) {
1393  			for_each_node_mask(node, *nodemask) {
1394  				if (node == nid || !hugetlb_cma[node])
1395  					continue;
1396  
1397  				page = cma_alloc(hugetlb_cma[node], nr_pages,
1398  						huge_page_order(h), true);
1399  				if (page)
1400  					return page;
1401  			}
1402  		}
1403  	}
1404  #endif
1405  
1406  	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1407  }
1408  
1409  #else /* !CONFIG_CONTIG_ALLOC */
1410  static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1411  					int nid, nodemask_t *nodemask)
1412  {
1413  	return NULL;
1414  }
1415  #endif /* CONFIG_CONTIG_ALLOC */
1416  
1417  #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1418  static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419  					int nid, nodemask_t *nodemask)
1420  {
1421  	return NULL;
1422  }
1423  static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1424  static inline void destroy_compound_gigantic_page(struct page *page,
1425  						unsigned int order) { }
1426  #endif
1427  
1428  /*
1429   * Remove hugetlb page from lists, and update dtor so that page appears
1430   * as just a compound page.
1431   *
1432   * A reference is held on the page, except in the case of demote.
1433   *
1434   * Must be called with hugetlb lock held.
1435   */
1436  static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1437  							bool adjust_surplus,
1438  							bool demote)
1439  {
1440  	int nid = page_to_nid(page);
1441  
1442  	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1443  	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1444  
1445  	lockdep_assert_held(&hugetlb_lock);
1446  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1447  		return;
1448  
1449  	list_del(&page->lru);
1450  
1451  	if (HPageFreed(page)) {
1452  		h->free_huge_pages--;
1453  		h->free_huge_pages_node[nid]--;
1454  	}
1455  	if (adjust_surplus) {
1456  		h->surplus_huge_pages--;
1457  		h->surplus_huge_pages_node[nid]--;
1458  	}
1459  
1460  	/*
1461  	 * Very subtle
1462  	 *
1463  	 * For non-gigantic pages set the destructor to the normal compound
1464  	 * page dtor.  This is needed in case someone takes an additional
1465  	 * temporary ref to the page, and freeing is delayed until they drop
1466  	 * their reference.
1467  	 *
1468  	 * For gigantic pages set the destructor to the null dtor.  This
1469  	 * destructor will never be called.  Before freeing the gigantic
1470  	 * page destroy_compound_gigantic_page will turn the compound page
1471  	 * into a simple group of pages.  After this the destructor does not
1472  	 * apply.
1473  	 *
1474  	 * This handles the case where more than one ref is held when and
1475  	 * after update_and_free_page is called.
1476  	 *
1477  	 * In the case of demote we do not ref count the page as it will soon
1478  	 * be turned into a page of smaller size.
1479  	 */
1480  	if (!demote)
1481  		set_page_refcounted(page);
1482  	if (hstate_is_gigantic(h))
1483  		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1484  	else
1485  		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1486  
1487  	h->nr_huge_pages--;
1488  	h->nr_huge_pages_node[nid]--;
1489  }
1490  
1491  static void remove_hugetlb_page(struct hstate *h, struct page *page,
1492  							bool adjust_surplus)
1493  {
1494  	__remove_hugetlb_page(h, page, adjust_surplus, false);
1495  }
1496  
1497  static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1498  							bool adjust_surplus)
1499  {
1500  	__remove_hugetlb_page(h, page, adjust_surplus, true);
1501  }
1502  
1503  static void add_hugetlb_page(struct hstate *h, struct page *page,
1504  			     bool adjust_surplus)
1505  {
1506  	int zeroed;
1507  	int nid = page_to_nid(page);
1508  
1509  	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1510  
1511  	lockdep_assert_held(&hugetlb_lock);
1512  
1513  	INIT_LIST_HEAD(&page->lru);
1514  	h->nr_huge_pages++;
1515  	h->nr_huge_pages_node[nid]++;
1516  
1517  	if (adjust_surplus) {
1518  		h->surplus_huge_pages++;
1519  		h->surplus_huge_pages_node[nid]++;
1520  	}
1521  
1522  	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1523  	set_page_private(page, 0);
1524  	/*
1525  	 * We have to set HPageVmemmapOptimized again as above
1526  	 * set_page_private(page, 0) cleared it.
1527  	 */
1528  	SetHPageVmemmapOptimized(page);
1529  
1530  	/*
1531  	 * This page is about to be managed by the hugetlb allocator and
1532  	 * should have no users.  Drop our reference, and check for others
1533  	 * just in case.
1534  	 */
1535  	zeroed = put_page_testzero(page);
1536  	if (!zeroed)
1537  		/*
1538  		 * It is VERY unlikely soneone else has taken a ref on
1539  		 * the page.  In this case, we simply return as the
1540  		 * hugetlb destructor (free_huge_page) will be called
1541  		 * when this other ref is dropped.
1542  		 */
1543  		return;
1544  
1545  	arch_clear_hugepage_flags(page);
1546  	enqueue_huge_page(h, page);
1547  }
1548  
1549  static void __update_and_free_page(struct hstate *h, struct page *page)
1550  {
1551  	int i;
1552  	struct page *subpage;
1553  
1554  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1555  		return;
1556  
1557  	/*
1558  	 * If we don't know which subpages are hwpoisoned, we can't free
1559  	 * the hugepage, so it's leaked intentionally.
1560  	 */
1561  	if (HPageRawHwpUnreliable(page))
1562  		return;
1563  
1564  	if (hugetlb_vmemmap_restore(h, page)) {
1565  		spin_lock_irq(&hugetlb_lock);
1566  		/*
1567  		 * If we cannot allocate vmemmap pages, just refuse to free the
1568  		 * page and put the page back on the hugetlb free list and treat
1569  		 * as a surplus page.
1570  		 */
1571  		add_hugetlb_page(h, page, true);
1572  		spin_unlock_irq(&hugetlb_lock);
1573  		return;
1574  	}
1575  
1576  	/*
1577  	 * Move PageHWPoison flag from head page to the raw error pages,
1578  	 * which makes any healthy subpages reusable.
1579  	 */
1580  	if (unlikely(PageHWPoison(page)))
1581  		hugetlb_clear_page_hwpoison(page);
1582  
1583  	for (i = 0; i < pages_per_huge_page(h); i++) {
1584  		subpage = nth_page(page, i);
1585  		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1586  				1 << PG_referenced | 1 << PG_dirty |
1587  				1 << PG_active | 1 << PG_private |
1588  				1 << PG_writeback);
1589  	}
1590  
1591  	/*
1592  	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1593  	 * need to be given back to CMA in free_gigantic_page.
1594  	 */
1595  	if (hstate_is_gigantic(h) ||
1596  	    hugetlb_cma_page(page, huge_page_order(h))) {
1597  		destroy_compound_gigantic_page(page, huge_page_order(h));
1598  		free_gigantic_page(page, huge_page_order(h));
1599  	} else {
1600  		__free_pages(page, huge_page_order(h));
1601  	}
1602  }
1603  
1604  /*
1605   * As update_and_free_page() can be called under any context, so we cannot
1606   * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1607   * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1608   * the vmemmap pages.
1609   *
1610   * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1611   * freed and frees them one-by-one. As the page->mapping pointer is going
1612   * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1613   * structure of a lockless linked list of huge pages to be freed.
1614   */
1615  static LLIST_HEAD(hpage_freelist);
1616  
1617  static void free_hpage_workfn(struct work_struct *work)
1618  {
1619  	struct llist_node *node;
1620  
1621  	node = llist_del_all(&hpage_freelist);
1622  
1623  	while (node) {
1624  		struct page *page;
1625  		struct hstate *h;
1626  
1627  		page = container_of((struct address_space **)node,
1628  				     struct page, mapping);
1629  		node = node->next;
1630  		page->mapping = NULL;
1631  		/*
1632  		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1633  		 * is going to trigger because a previous call to
1634  		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1635  		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1636  		 */
1637  		h = size_to_hstate(page_size(page));
1638  
1639  		__update_and_free_page(h, page);
1640  
1641  		cond_resched();
1642  	}
1643  }
1644  static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1645  
1646  static inline void flush_free_hpage_work(struct hstate *h)
1647  {
1648  	if (hugetlb_vmemmap_optimizable(h))
1649  		flush_work(&free_hpage_work);
1650  }
1651  
1652  static void update_and_free_page(struct hstate *h, struct page *page,
1653  				 bool atomic)
1654  {
1655  	if (!HPageVmemmapOptimized(page) || !atomic) {
1656  		__update_and_free_page(h, page);
1657  		return;
1658  	}
1659  
1660  	/*
1661  	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1662  	 *
1663  	 * Only call schedule_work() if hpage_freelist is previously
1664  	 * empty. Otherwise, schedule_work() had been called but the workfn
1665  	 * hasn't retrieved the list yet.
1666  	 */
1667  	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1668  		schedule_work(&free_hpage_work);
1669  }
1670  
1671  static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1672  {
1673  	struct page *page, *t_page;
1674  
1675  	list_for_each_entry_safe(page, t_page, list, lru) {
1676  		update_and_free_page(h, page, false);
1677  		cond_resched();
1678  	}
1679  }
1680  
1681  struct hstate *size_to_hstate(unsigned long size)
1682  {
1683  	struct hstate *h;
1684  
1685  	for_each_hstate(h) {
1686  		if (huge_page_size(h) == size)
1687  			return h;
1688  	}
1689  	return NULL;
1690  }
1691  
1692  void free_huge_page(struct page *page)
1693  {
1694  	/*
1695  	 * Can't pass hstate in here because it is called from the
1696  	 * compound page destructor.
1697  	 */
1698  	struct hstate *h = page_hstate(page);
1699  	int nid = page_to_nid(page);
1700  	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1701  	bool restore_reserve;
1702  	unsigned long flags;
1703  
1704  	VM_BUG_ON_PAGE(page_count(page), page);
1705  	VM_BUG_ON_PAGE(page_mapcount(page), page);
1706  
1707  	hugetlb_set_page_subpool(page, NULL);
1708  	if (PageAnon(page))
1709  		__ClearPageAnonExclusive(page);
1710  	page->mapping = NULL;
1711  	restore_reserve = HPageRestoreReserve(page);
1712  	ClearHPageRestoreReserve(page);
1713  
1714  	/*
1715  	 * If HPageRestoreReserve was set on page, page allocation consumed a
1716  	 * reservation.  If the page was associated with a subpool, there
1717  	 * would have been a page reserved in the subpool before allocation
1718  	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1719  	 * reservation, do not call hugepage_subpool_put_pages() as this will
1720  	 * remove the reserved page from the subpool.
1721  	 */
1722  	if (!restore_reserve) {
1723  		/*
1724  		 * A return code of zero implies that the subpool will be
1725  		 * under its minimum size if the reservation is not restored
1726  		 * after page is free.  Therefore, force restore_reserve
1727  		 * operation.
1728  		 */
1729  		if (hugepage_subpool_put_pages(spool, 1) == 0)
1730  			restore_reserve = true;
1731  	}
1732  
1733  	spin_lock_irqsave(&hugetlb_lock, flags);
1734  	ClearHPageMigratable(page);
1735  	hugetlb_cgroup_uncharge_page(hstate_index(h),
1736  				     pages_per_huge_page(h), page);
1737  	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1738  					  pages_per_huge_page(h), page);
1739  	if (restore_reserve)
1740  		h->resv_huge_pages++;
1741  
1742  	if (HPageTemporary(page)) {
1743  		remove_hugetlb_page(h, page, false);
1744  		spin_unlock_irqrestore(&hugetlb_lock, flags);
1745  		update_and_free_page(h, page, true);
1746  	} else if (h->surplus_huge_pages_node[nid]) {
1747  		/* remove the page from active list */
1748  		remove_hugetlb_page(h, page, true);
1749  		spin_unlock_irqrestore(&hugetlb_lock, flags);
1750  		update_and_free_page(h, page, true);
1751  	} else {
1752  		arch_clear_hugepage_flags(page);
1753  		enqueue_huge_page(h, page);
1754  		spin_unlock_irqrestore(&hugetlb_lock, flags);
1755  	}
1756  }
1757  
1758  /*
1759   * Must be called with the hugetlb lock held
1760   */
1761  static void __prep_account_new_huge_page(struct hstate *h, int nid)
1762  {
1763  	lockdep_assert_held(&hugetlb_lock);
1764  	h->nr_huge_pages++;
1765  	h->nr_huge_pages_node[nid]++;
1766  }
1767  
1768  static void __prep_new_huge_page(struct hstate *h, struct page *page)
1769  {
1770  	hugetlb_vmemmap_optimize(h, page);
1771  	INIT_LIST_HEAD(&page->lru);
1772  	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1773  	hugetlb_set_page_subpool(page, NULL);
1774  	set_hugetlb_cgroup(page, NULL);
1775  	set_hugetlb_cgroup_rsvd(page, NULL);
1776  }
1777  
1778  static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1779  {
1780  	__prep_new_huge_page(h, page);
1781  	spin_lock_irq(&hugetlb_lock);
1782  	__prep_account_new_huge_page(h, nid);
1783  	spin_unlock_irq(&hugetlb_lock);
1784  }
1785  
1786  static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1787  								bool demote)
1788  {
1789  	int i, j;
1790  	int nr_pages = 1 << order;
1791  	struct page *p;
1792  
1793  	/* we rely on prep_new_huge_page to set the destructor */
1794  	set_compound_order(page, order);
1795  	__SetPageHead(page);
1796  	for (i = 0; i < nr_pages; i++) {
1797  		p = nth_page(page, i);
1798  
1799  		/*
1800  		 * For gigantic hugepages allocated through bootmem at
1801  		 * boot, it's safer to be consistent with the not-gigantic
1802  		 * hugepages and clear the PG_reserved bit from all tail pages
1803  		 * too.  Otherwise drivers using get_user_pages() to access tail
1804  		 * pages may get the reference counting wrong if they see
1805  		 * PG_reserved set on a tail page (despite the head page not
1806  		 * having PG_reserved set).  Enforcing this consistency between
1807  		 * head and tail pages allows drivers to optimize away a check
1808  		 * on the head page when they need know if put_page() is needed
1809  		 * after get_user_pages().
1810  		 */
1811  		__ClearPageReserved(p);
1812  		/*
1813  		 * Subtle and very unlikely
1814  		 *
1815  		 * Gigantic 'page allocators' such as memblock or cma will
1816  		 * return a set of pages with each page ref counted.  We need
1817  		 * to turn this set of pages into a compound page with tail
1818  		 * page ref counts set to zero.  Code such as speculative page
1819  		 * cache adding could take a ref on a 'to be' tail page.
1820  		 * We need to respect any increased ref count, and only set
1821  		 * the ref count to zero if count is currently 1.  If count
1822  		 * is not 1, we return an error.  An error return indicates
1823  		 * the set of pages can not be converted to a gigantic page.
1824  		 * The caller who allocated the pages should then discard the
1825  		 * pages using the appropriate free interface.
1826  		 *
1827  		 * In the case of demote, the ref count will be zero.
1828  		 */
1829  		if (!demote) {
1830  			if (!page_ref_freeze(p, 1)) {
1831  				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1832  				goto out_error;
1833  			}
1834  		} else {
1835  			VM_BUG_ON_PAGE(page_count(p), p);
1836  		}
1837  		if (i != 0)
1838  			set_compound_head(p, page);
1839  	}
1840  	atomic_set(compound_mapcount_ptr(page), -1);
1841  	atomic_set(compound_pincount_ptr(page), 0);
1842  	return true;
1843  
1844  out_error:
1845  	/* undo page modifications made above */
1846  	for (j = 0; j < i; j++) {
1847  		p = nth_page(page, j);
1848  		if (j != 0)
1849  			clear_compound_head(p);
1850  		set_page_refcounted(p);
1851  	}
1852  	/* need to clear PG_reserved on remaining tail pages  */
1853  	for (; j < nr_pages; j++) {
1854  		p = nth_page(page, j);
1855  		__ClearPageReserved(p);
1856  	}
1857  	set_compound_order(page, 0);
1858  #ifdef CONFIG_64BIT
1859  	page[1].compound_nr = 0;
1860  #endif
1861  	__ClearPageHead(page);
1862  	return false;
1863  }
1864  
1865  static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1866  {
1867  	return __prep_compound_gigantic_page(page, order, false);
1868  }
1869  
1870  static bool prep_compound_gigantic_page_for_demote(struct page *page,
1871  							unsigned int order)
1872  {
1873  	return __prep_compound_gigantic_page(page, order, true);
1874  }
1875  
1876  /*
1877   * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1878   * transparent huge pages.  See the PageTransHuge() documentation for more
1879   * details.
1880   */
1881  int PageHuge(struct page *page)
1882  {
1883  	if (!PageCompound(page))
1884  		return 0;
1885  
1886  	page = compound_head(page);
1887  	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1888  }
1889  EXPORT_SYMBOL_GPL(PageHuge);
1890  
1891  /*
1892   * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1893   * normal or transparent huge pages.
1894   */
1895  int PageHeadHuge(struct page *page_head)
1896  {
1897  	if (!PageHead(page_head))
1898  		return 0;
1899  
1900  	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1901  }
1902  EXPORT_SYMBOL_GPL(PageHeadHuge);
1903  
1904  /*
1905   * Find and lock address space (mapping) in write mode.
1906   *
1907   * Upon entry, the page is locked which means that page_mapping() is
1908   * stable.  Due to locking order, we can only trylock_write.  If we can
1909   * not get the lock, simply return NULL to caller.
1910   */
1911  struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1912  {
1913  	struct address_space *mapping = page_mapping(hpage);
1914  
1915  	if (!mapping)
1916  		return mapping;
1917  
1918  	if (i_mmap_trylock_write(mapping))
1919  		return mapping;
1920  
1921  	return NULL;
1922  }
1923  
1924  pgoff_t hugetlb_basepage_index(struct page *page)
1925  {
1926  	struct page *page_head = compound_head(page);
1927  	pgoff_t index = page_index(page_head);
1928  	unsigned long compound_idx;
1929  
1930  	if (compound_order(page_head) >= MAX_ORDER)
1931  		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1932  	else
1933  		compound_idx = page - page_head;
1934  
1935  	return (index << compound_order(page_head)) + compound_idx;
1936  }
1937  
1938  static struct page *alloc_buddy_huge_page(struct hstate *h,
1939  		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1940  		nodemask_t *node_alloc_noretry)
1941  {
1942  	int order = huge_page_order(h);
1943  	struct page *page;
1944  	bool alloc_try_hard = true;
1945  	bool retry = true;
1946  
1947  	/*
1948  	 * By default we always try hard to allocate the page with
1949  	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1950  	 * a loop (to adjust global huge page counts) and previous allocation
1951  	 * failed, do not continue to try hard on the same node.  Use the
1952  	 * node_alloc_noretry bitmap to manage this state information.
1953  	 */
1954  	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1955  		alloc_try_hard = false;
1956  	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1957  	if (alloc_try_hard)
1958  		gfp_mask |= __GFP_RETRY_MAYFAIL;
1959  	if (nid == NUMA_NO_NODE)
1960  		nid = numa_mem_id();
1961  retry:
1962  	page = __alloc_pages(gfp_mask, order, nid, nmask);
1963  
1964  	/* Freeze head page */
1965  	if (page && !page_ref_freeze(page, 1)) {
1966  		__free_pages(page, order);
1967  		if (retry) {	/* retry once */
1968  			retry = false;
1969  			goto retry;
1970  		}
1971  		/* WOW!  twice in a row. */
1972  		pr_warn("HugeTLB head page unexpected inflated ref count\n");
1973  		page = NULL;
1974  	}
1975  
1976  	if (page)
1977  		__count_vm_event(HTLB_BUDDY_PGALLOC);
1978  	else
1979  		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1980  
1981  	/*
1982  	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1983  	 * indicates an overall state change.  Clear bit so that we resume
1984  	 * normal 'try hard' allocations.
1985  	 */
1986  	if (node_alloc_noretry && page && !alloc_try_hard)
1987  		node_clear(nid, *node_alloc_noretry);
1988  
1989  	/*
1990  	 * If we tried hard to get a page but failed, set bit so that
1991  	 * subsequent attempts will not try as hard until there is an
1992  	 * overall state change.
1993  	 */
1994  	if (node_alloc_noretry && !page && alloc_try_hard)
1995  		node_set(nid, *node_alloc_noretry);
1996  
1997  	return page;
1998  }
1999  
2000  /*
2001   * Common helper to allocate a fresh hugetlb page. All specific allocators
2002   * should use this function to get new hugetlb pages
2003   *
2004   * Note that returned page is 'frozen':  ref count of head page and all tail
2005   * pages is zero.
2006   */
2007  static struct page *alloc_fresh_huge_page(struct hstate *h,
2008  		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2009  		nodemask_t *node_alloc_noretry)
2010  {
2011  	struct page *page;
2012  	bool retry = false;
2013  
2014  retry:
2015  	if (hstate_is_gigantic(h))
2016  		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2017  	else
2018  		page = alloc_buddy_huge_page(h, gfp_mask,
2019  				nid, nmask, node_alloc_noretry);
2020  	if (!page)
2021  		return NULL;
2022  
2023  	if (hstate_is_gigantic(h)) {
2024  		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2025  			/*
2026  			 * Rare failure to convert pages to compound page.
2027  			 * Free pages and try again - ONCE!
2028  			 */
2029  			free_gigantic_page(page, huge_page_order(h));
2030  			if (!retry) {
2031  				retry = true;
2032  				goto retry;
2033  			}
2034  			return NULL;
2035  		}
2036  	}
2037  	prep_new_huge_page(h, page, page_to_nid(page));
2038  
2039  	return page;
2040  }
2041  
2042  /*
2043   * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2044   * manner.
2045   */
2046  static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2047  				nodemask_t *node_alloc_noretry)
2048  {
2049  	struct page *page;
2050  	int nr_nodes, node;
2051  	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2052  
2053  	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2054  		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2055  						node_alloc_noretry);
2056  		if (page)
2057  			break;
2058  	}
2059  
2060  	if (!page)
2061  		return 0;
2062  
2063  	free_huge_page(page); /* free it into the hugepage allocator */
2064  
2065  	return 1;
2066  }
2067  
2068  /*
2069   * Remove huge page from pool from next node to free.  Attempt to keep
2070   * persistent huge pages more or less balanced over allowed nodes.
2071   * This routine only 'removes' the hugetlb page.  The caller must make
2072   * an additional call to free the page to low level allocators.
2073   * Called with hugetlb_lock locked.
2074   */
2075  static struct page *remove_pool_huge_page(struct hstate *h,
2076  						nodemask_t *nodes_allowed,
2077  						 bool acct_surplus)
2078  {
2079  	int nr_nodes, node;
2080  	struct page *page = NULL;
2081  
2082  	lockdep_assert_held(&hugetlb_lock);
2083  	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2084  		/*
2085  		 * If we're returning unused surplus pages, only examine
2086  		 * nodes with surplus pages.
2087  		 */
2088  		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2089  		    !list_empty(&h->hugepage_freelists[node])) {
2090  			page = list_entry(h->hugepage_freelists[node].next,
2091  					  struct page, lru);
2092  			remove_hugetlb_page(h, page, acct_surplus);
2093  			break;
2094  		}
2095  	}
2096  
2097  	return page;
2098  }
2099  
2100  /*
2101   * Dissolve a given free hugepage into free buddy pages. This function does
2102   * nothing for in-use hugepages and non-hugepages.
2103   * This function returns values like below:
2104   *
2105   *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2106   *           when the system is under memory pressure and the feature of
2107   *           freeing unused vmemmap pages associated with each hugetlb page
2108   *           is enabled.
2109   *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2110   *           (allocated or reserved.)
2111   *       0:  successfully dissolved free hugepages or the page is not a
2112   *           hugepage (considered as already dissolved)
2113   */
2114  int dissolve_free_huge_page(struct page *page)
2115  {
2116  	int rc = -EBUSY;
2117  
2118  retry:
2119  	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2120  	if (!PageHuge(page))
2121  		return 0;
2122  
2123  	spin_lock_irq(&hugetlb_lock);
2124  	if (!PageHuge(page)) {
2125  		rc = 0;
2126  		goto out;
2127  	}
2128  
2129  	if (!page_count(page)) {
2130  		struct page *head = compound_head(page);
2131  		struct hstate *h = page_hstate(head);
2132  		if (!available_huge_pages(h))
2133  			goto out;
2134  
2135  		/*
2136  		 * We should make sure that the page is already on the free list
2137  		 * when it is dissolved.
2138  		 */
2139  		if (unlikely(!HPageFreed(head))) {
2140  			spin_unlock_irq(&hugetlb_lock);
2141  			cond_resched();
2142  
2143  			/*
2144  			 * Theoretically, we should return -EBUSY when we
2145  			 * encounter this race. In fact, we have a chance
2146  			 * to successfully dissolve the page if we do a
2147  			 * retry. Because the race window is quite small.
2148  			 * If we seize this opportunity, it is an optimization
2149  			 * for increasing the success rate of dissolving page.
2150  			 */
2151  			goto retry;
2152  		}
2153  
2154  		remove_hugetlb_page(h, head, false);
2155  		h->max_huge_pages--;
2156  		spin_unlock_irq(&hugetlb_lock);
2157  
2158  		/*
2159  		 * Normally update_and_free_page will allocate required vmemmmap
2160  		 * before freeing the page.  update_and_free_page will fail to
2161  		 * free the page if it can not allocate required vmemmap.  We
2162  		 * need to adjust max_huge_pages if the page is not freed.
2163  		 * Attempt to allocate vmemmmap here so that we can take
2164  		 * appropriate action on failure.
2165  		 */
2166  		rc = hugetlb_vmemmap_restore(h, head);
2167  		if (!rc) {
2168  			update_and_free_page(h, head, false);
2169  		} else {
2170  			spin_lock_irq(&hugetlb_lock);
2171  			add_hugetlb_page(h, head, false);
2172  			h->max_huge_pages++;
2173  			spin_unlock_irq(&hugetlb_lock);
2174  		}
2175  
2176  		return rc;
2177  	}
2178  out:
2179  	spin_unlock_irq(&hugetlb_lock);
2180  	return rc;
2181  }
2182  
2183  /*
2184   * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2185   * make specified memory blocks removable from the system.
2186   * Note that this will dissolve a free gigantic hugepage completely, if any
2187   * part of it lies within the given range.
2188   * Also note that if dissolve_free_huge_page() returns with an error, all
2189   * free hugepages that were dissolved before that error are lost.
2190   */
2191  int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2192  {
2193  	unsigned long pfn;
2194  	struct page *page;
2195  	int rc = 0;
2196  	unsigned int order;
2197  	struct hstate *h;
2198  
2199  	if (!hugepages_supported())
2200  		return rc;
2201  
2202  	order = huge_page_order(&default_hstate);
2203  	for_each_hstate(h)
2204  		order = min(order, huge_page_order(h));
2205  
2206  	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2207  		page = pfn_to_page(pfn);
2208  		rc = dissolve_free_huge_page(page);
2209  		if (rc)
2210  			break;
2211  	}
2212  
2213  	return rc;
2214  }
2215  
2216  /*
2217   * Allocates a fresh surplus page from the page allocator.
2218   */
2219  static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2220  						int nid, nodemask_t *nmask)
2221  {
2222  	struct page *page = NULL;
2223  
2224  	if (hstate_is_gigantic(h))
2225  		return NULL;
2226  
2227  	spin_lock_irq(&hugetlb_lock);
2228  	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2229  		goto out_unlock;
2230  	spin_unlock_irq(&hugetlb_lock);
2231  
2232  	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2233  	if (!page)
2234  		return NULL;
2235  
2236  	spin_lock_irq(&hugetlb_lock);
2237  	/*
2238  	 * We could have raced with the pool size change.
2239  	 * Double check that and simply deallocate the new page
2240  	 * if we would end up overcommiting the surpluses. Abuse
2241  	 * temporary page to workaround the nasty free_huge_page
2242  	 * codeflow
2243  	 */
2244  	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2245  		SetHPageTemporary(page);
2246  		spin_unlock_irq(&hugetlb_lock);
2247  		free_huge_page(page);
2248  		return NULL;
2249  	}
2250  
2251  	h->surplus_huge_pages++;
2252  	h->surplus_huge_pages_node[page_to_nid(page)]++;
2253  
2254  out_unlock:
2255  	spin_unlock_irq(&hugetlb_lock);
2256  
2257  	return page;
2258  }
2259  
2260  static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2261  				     int nid, nodemask_t *nmask)
2262  {
2263  	struct page *page;
2264  
2265  	if (hstate_is_gigantic(h))
2266  		return NULL;
2267  
2268  	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2269  	if (!page)
2270  		return NULL;
2271  
2272  	/* fresh huge pages are frozen */
2273  	set_page_refcounted(page);
2274  
2275  	/*
2276  	 * We do not account these pages as surplus because they are only
2277  	 * temporary and will be released properly on the last reference
2278  	 */
2279  	SetHPageTemporary(page);
2280  
2281  	return page;
2282  }
2283  
2284  /*
2285   * Use the VMA's mpolicy to allocate a huge page from the buddy.
2286   */
2287  static
2288  struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2289  		struct vm_area_struct *vma, unsigned long addr)
2290  {
2291  	struct page *page = NULL;
2292  	struct mempolicy *mpol;
2293  	gfp_t gfp_mask = htlb_alloc_mask(h);
2294  	int nid;
2295  	nodemask_t *nodemask;
2296  
2297  	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2298  	if (mpol_is_preferred_many(mpol)) {
2299  		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2300  
2301  		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2302  		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2303  
2304  		/* Fallback to all nodes if page==NULL */
2305  		nodemask = NULL;
2306  	}
2307  
2308  	if (!page)
2309  		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2310  	mpol_cond_put(mpol);
2311  	return page;
2312  }
2313  
2314  /* page migration callback function */
2315  struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2316  		nodemask_t *nmask, gfp_t gfp_mask)
2317  {
2318  	spin_lock_irq(&hugetlb_lock);
2319  	if (available_huge_pages(h)) {
2320  		struct page *page;
2321  
2322  		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2323  		if (page) {
2324  			spin_unlock_irq(&hugetlb_lock);
2325  			return page;
2326  		}
2327  	}
2328  	spin_unlock_irq(&hugetlb_lock);
2329  
2330  	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2331  }
2332  
2333  /* mempolicy aware migration callback */
2334  struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2335  		unsigned long address)
2336  {
2337  	struct mempolicy *mpol;
2338  	nodemask_t *nodemask;
2339  	struct page *page;
2340  	gfp_t gfp_mask;
2341  	int node;
2342  
2343  	gfp_mask = htlb_alloc_mask(h);
2344  	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2345  	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2346  	mpol_cond_put(mpol);
2347  
2348  	return page;
2349  }
2350  
2351  /*
2352   * Increase the hugetlb pool such that it can accommodate a reservation
2353   * of size 'delta'.
2354   */
2355  static int gather_surplus_pages(struct hstate *h, long delta)
2356  	__must_hold(&hugetlb_lock)
2357  {
2358  	LIST_HEAD(surplus_list);
2359  	struct page *page, *tmp;
2360  	int ret;
2361  	long i;
2362  	long needed, allocated;
2363  	bool alloc_ok = true;
2364  
2365  	lockdep_assert_held(&hugetlb_lock);
2366  	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2367  	if (needed <= 0) {
2368  		h->resv_huge_pages += delta;
2369  		return 0;
2370  	}
2371  
2372  	allocated = 0;
2373  
2374  	ret = -ENOMEM;
2375  retry:
2376  	spin_unlock_irq(&hugetlb_lock);
2377  	for (i = 0; i < needed; i++) {
2378  		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2379  				NUMA_NO_NODE, NULL);
2380  		if (!page) {
2381  			alloc_ok = false;
2382  			break;
2383  		}
2384  		list_add(&page->lru, &surplus_list);
2385  		cond_resched();
2386  	}
2387  	allocated += i;
2388  
2389  	/*
2390  	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2391  	 * because either resv_huge_pages or free_huge_pages may have changed.
2392  	 */
2393  	spin_lock_irq(&hugetlb_lock);
2394  	needed = (h->resv_huge_pages + delta) -
2395  			(h->free_huge_pages + allocated);
2396  	if (needed > 0) {
2397  		if (alloc_ok)
2398  			goto retry;
2399  		/*
2400  		 * We were not able to allocate enough pages to
2401  		 * satisfy the entire reservation so we free what
2402  		 * we've allocated so far.
2403  		 */
2404  		goto free;
2405  	}
2406  	/*
2407  	 * The surplus_list now contains _at_least_ the number of extra pages
2408  	 * needed to accommodate the reservation.  Add the appropriate number
2409  	 * of pages to the hugetlb pool and free the extras back to the buddy
2410  	 * allocator.  Commit the entire reservation here to prevent another
2411  	 * process from stealing the pages as they are added to the pool but
2412  	 * before they are reserved.
2413  	 */
2414  	needed += allocated;
2415  	h->resv_huge_pages += delta;
2416  	ret = 0;
2417  
2418  	/* Free the needed pages to the hugetlb pool */
2419  	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2420  		if ((--needed) < 0)
2421  			break;
2422  		/* Add the page to the hugetlb allocator */
2423  		enqueue_huge_page(h, page);
2424  	}
2425  free:
2426  	spin_unlock_irq(&hugetlb_lock);
2427  
2428  	/*
2429  	 * Free unnecessary surplus pages to the buddy allocator.
2430  	 * Pages have no ref count, call free_huge_page directly.
2431  	 */
2432  	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2433  		free_huge_page(page);
2434  	spin_lock_irq(&hugetlb_lock);
2435  
2436  	return ret;
2437  }
2438  
2439  /*
2440   * This routine has two main purposes:
2441   * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2442   *    in unused_resv_pages.  This corresponds to the prior adjustments made
2443   *    to the associated reservation map.
2444   * 2) Free any unused surplus pages that may have been allocated to satisfy
2445   *    the reservation.  As many as unused_resv_pages may be freed.
2446   */
2447  static void return_unused_surplus_pages(struct hstate *h,
2448  					unsigned long unused_resv_pages)
2449  {
2450  	unsigned long nr_pages;
2451  	struct page *page;
2452  	LIST_HEAD(page_list);
2453  
2454  	lockdep_assert_held(&hugetlb_lock);
2455  	/* Uncommit the reservation */
2456  	h->resv_huge_pages -= unused_resv_pages;
2457  
2458  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2459  		goto out;
2460  
2461  	/*
2462  	 * Part (or even all) of the reservation could have been backed
2463  	 * by pre-allocated pages. Only free surplus pages.
2464  	 */
2465  	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2466  
2467  	/*
2468  	 * We want to release as many surplus pages as possible, spread
2469  	 * evenly across all nodes with memory. Iterate across these nodes
2470  	 * until we can no longer free unreserved surplus pages. This occurs
2471  	 * when the nodes with surplus pages have no free pages.
2472  	 * remove_pool_huge_page() will balance the freed pages across the
2473  	 * on-line nodes with memory and will handle the hstate accounting.
2474  	 */
2475  	while (nr_pages--) {
2476  		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2477  		if (!page)
2478  			goto out;
2479  
2480  		list_add(&page->lru, &page_list);
2481  	}
2482  
2483  out:
2484  	spin_unlock_irq(&hugetlb_lock);
2485  	update_and_free_pages_bulk(h, &page_list);
2486  	spin_lock_irq(&hugetlb_lock);
2487  }
2488  
2489  
2490  /*
2491   * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2492   * are used by the huge page allocation routines to manage reservations.
2493   *
2494   * vma_needs_reservation is called to determine if the huge page at addr
2495   * within the vma has an associated reservation.  If a reservation is
2496   * needed, the value 1 is returned.  The caller is then responsible for
2497   * managing the global reservation and subpool usage counts.  After
2498   * the huge page has been allocated, vma_commit_reservation is called
2499   * to add the page to the reservation map.  If the page allocation fails,
2500   * the reservation must be ended instead of committed.  vma_end_reservation
2501   * is called in such cases.
2502   *
2503   * In the normal case, vma_commit_reservation returns the same value
2504   * as the preceding vma_needs_reservation call.  The only time this
2505   * is not the case is if a reserve map was changed between calls.  It
2506   * is the responsibility of the caller to notice the difference and
2507   * take appropriate action.
2508   *
2509   * vma_add_reservation is used in error paths where a reservation must
2510   * be restored when a newly allocated huge page must be freed.  It is
2511   * to be called after calling vma_needs_reservation to determine if a
2512   * reservation exists.
2513   *
2514   * vma_del_reservation is used in error paths where an entry in the reserve
2515   * map was created during huge page allocation and must be removed.  It is to
2516   * be called after calling vma_needs_reservation to determine if a reservation
2517   * exists.
2518   */
2519  enum vma_resv_mode {
2520  	VMA_NEEDS_RESV,
2521  	VMA_COMMIT_RESV,
2522  	VMA_END_RESV,
2523  	VMA_ADD_RESV,
2524  	VMA_DEL_RESV,
2525  };
2526  static long __vma_reservation_common(struct hstate *h,
2527  				struct vm_area_struct *vma, unsigned long addr,
2528  				enum vma_resv_mode mode)
2529  {
2530  	struct resv_map *resv;
2531  	pgoff_t idx;
2532  	long ret;
2533  	long dummy_out_regions_needed;
2534  
2535  	resv = vma_resv_map(vma);
2536  	if (!resv)
2537  		return 1;
2538  
2539  	idx = vma_hugecache_offset(h, vma, addr);
2540  	switch (mode) {
2541  	case VMA_NEEDS_RESV:
2542  		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2543  		/* We assume that vma_reservation_* routines always operate on
2544  		 * 1 page, and that adding to resv map a 1 page entry can only
2545  		 * ever require 1 region.
2546  		 */
2547  		VM_BUG_ON(dummy_out_regions_needed != 1);
2548  		break;
2549  	case VMA_COMMIT_RESV:
2550  		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2551  		/* region_add calls of range 1 should never fail. */
2552  		VM_BUG_ON(ret < 0);
2553  		break;
2554  	case VMA_END_RESV:
2555  		region_abort(resv, idx, idx + 1, 1);
2556  		ret = 0;
2557  		break;
2558  	case VMA_ADD_RESV:
2559  		if (vma->vm_flags & VM_MAYSHARE) {
2560  			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2561  			/* region_add calls of range 1 should never fail. */
2562  			VM_BUG_ON(ret < 0);
2563  		} else {
2564  			region_abort(resv, idx, idx + 1, 1);
2565  			ret = region_del(resv, idx, idx + 1);
2566  		}
2567  		break;
2568  	case VMA_DEL_RESV:
2569  		if (vma->vm_flags & VM_MAYSHARE) {
2570  			region_abort(resv, idx, idx + 1, 1);
2571  			ret = region_del(resv, idx, idx + 1);
2572  		} else {
2573  			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2574  			/* region_add calls of range 1 should never fail. */
2575  			VM_BUG_ON(ret < 0);
2576  		}
2577  		break;
2578  	default:
2579  		BUG();
2580  	}
2581  
2582  	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2583  		return ret;
2584  	/*
2585  	 * We know private mapping must have HPAGE_RESV_OWNER set.
2586  	 *
2587  	 * In most cases, reserves always exist for private mappings.
2588  	 * However, a file associated with mapping could have been
2589  	 * hole punched or truncated after reserves were consumed.
2590  	 * As subsequent fault on such a range will not use reserves.
2591  	 * Subtle - The reserve map for private mappings has the
2592  	 * opposite meaning than that of shared mappings.  If NO
2593  	 * entry is in the reserve map, it means a reservation exists.
2594  	 * If an entry exists in the reserve map, it means the
2595  	 * reservation has already been consumed.  As a result, the
2596  	 * return value of this routine is the opposite of the
2597  	 * value returned from reserve map manipulation routines above.
2598  	 */
2599  	if (ret > 0)
2600  		return 0;
2601  	if (ret == 0)
2602  		return 1;
2603  	return ret;
2604  }
2605  
2606  static long vma_needs_reservation(struct hstate *h,
2607  			struct vm_area_struct *vma, unsigned long addr)
2608  {
2609  	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2610  }
2611  
2612  static long vma_commit_reservation(struct hstate *h,
2613  			struct vm_area_struct *vma, unsigned long addr)
2614  {
2615  	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2616  }
2617  
2618  static void vma_end_reservation(struct hstate *h,
2619  			struct vm_area_struct *vma, unsigned long addr)
2620  {
2621  	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2622  }
2623  
2624  static long vma_add_reservation(struct hstate *h,
2625  			struct vm_area_struct *vma, unsigned long addr)
2626  {
2627  	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2628  }
2629  
2630  static long vma_del_reservation(struct hstate *h,
2631  			struct vm_area_struct *vma, unsigned long addr)
2632  {
2633  	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2634  }
2635  
2636  /*
2637   * This routine is called to restore reservation information on error paths.
2638   * It should ONLY be called for pages allocated via alloc_huge_page(), and
2639   * the hugetlb mutex should remain held when calling this routine.
2640   *
2641   * It handles two specific cases:
2642   * 1) A reservation was in place and the page consumed the reservation.
2643   *    HPageRestoreReserve is set in the page.
2644   * 2) No reservation was in place for the page, so HPageRestoreReserve is
2645   *    not set.  However, alloc_huge_page always updates the reserve map.
2646   *
2647   * In case 1, free_huge_page later in the error path will increment the
2648   * global reserve count.  But, free_huge_page does not have enough context
2649   * to adjust the reservation map.  This case deals primarily with private
2650   * mappings.  Adjust the reserve map here to be consistent with global
2651   * reserve count adjustments to be made by free_huge_page.  Make sure the
2652   * reserve map indicates there is a reservation present.
2653   *
2654   * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2655   */
2656  void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2657  			unsigned long address, struct page *page)
2658  {
2659  	long rc = vma_needs_reservation(h, vma, address);
2660  
2661  	if (HPageRestoreReserve(page)) {
2662  		if (unlikely(rc < 0))
2663  			/*
2664  			 * Rare out of memory condition in reserve map
2665  			 * manipulation.  Clear HPageRestoreReserve so that
2666  			 * global reserve count will not be incremented
2667  			 * by free_huge_page.  This will make it appear
2668  			 * as though the reservation for this page was
2669  			 * consumed.  This may prevent the task from
2670  			 * faulting in the page at a later time.  This
2671  			 * is better than inconsistent global huge page
2672  			 * accounting of reserve counts.
2673  			 */
2674  			ClearHPageRestoreReserve(page);
2675  		else if (rc)
2676  			(void)vma_add_reservation(h, vma, address);
2677  		else
2678  			vma_end_reservation(h, vma, address);
2679  	} else {
2680  		if (!rc) {
2681  			/*
2682  			 * This indicates there is an entry in the reserve map
2683  			 * not added by alloc_huge_page.  We know it was added
2684  			 * before the alloc_huge_page call, otherwise
2685  			 * HPageRestoreReserve would be set on the page.
2686  			 * Remove the entry so that a subsequent allocation
2687  			 * does not consume a reservation.
2688  			 */
2689  			rc = vma_del_reservation(h, vma, address);
2690  			if (rc < 0)
2691  				/*
2692  				 * VERY rare out of memory condition.  Since
2693  				 * we can not delete the entry, set
2694  				 * HPageRestoreReserve so that the reserve
2695  				 * count will be incremented when the page
2696  				 * is freed.  This reserve will be consumed
2697  				 * on a subsequent allocation.
2698  				 */
2699  				SetHPageRestoreReserve(page);
2700  		} else if (rc < 0) {
2701  			/*
2702  			 * Rare out of memory condition from
2703  			 * vma_needs_reservation call.  Memory allocation is
2704  			 * only attempted if a new entry is needed.  Therefore,
2705  			 * this implies there is not an entry in the
2706  			 * reserve map.
2707  			 *
2708  			 * For shared mappings, no entry in the map indicates
2709  			 * no reservation.  We are done.
2710  			 */
2711  			if (!(vma->vm_flags & VM_MAYSHARE))
2712  				/*
2713  				 * For private mappings, no entry indicates
2714  				 * a reservation is present.  Since we can
2715  				 * not add an entry, set SetHPageRestoreReserve
2716  				 * on the page so reserve count will be
2717  				 * incremented when freed.  This reserve will
2718  				 * be consumed on a subsequent allocation.
2719  				 */
2720  				SetHPageRestoreReserve(page);
2721  		} else
2722  			/*
2723  			 * No reservation present, do nothing
2724  			 */
2725  			 vma_end_reservation(h, vma, address);
2726  	}
2727  }
2728  
2729  /*
2730   * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2731   * @h: struct hstate old page belongs to
2732   * @old_page: Old page to dissolve
2733   * @list: List to isolate the page in case we need to
2734   * Returns 0 on success, otherwise negated error.
2735   */
2736  static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2737  					struct list_head *list)
2738  {
2739  	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2740  	int nid = page_to_nid(old_page);
2741  	struct page *new_page;
2742  	int ret = 0;
2743  
2744  	/*
2745  	 * Before dissolving the page, we need to allocate a new one for the
2746  	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2747  	 * by doing everything but actually updating counters and adding to
2748  	 * the pool.  This simplifies and let us do most of the processing
2749  	 * under the lock.
2750  	 */
2751  	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2752  	if (!new_page)
2753  		return -ENOMEM;
2754  	__prep_new_huge_page(h, new_page);
2755  
2756  retry:
2757  	spin_lock_irq(&hugetlb_lock);
2758  	if (!PageHuge(old_page)) {
2759  		/*
2760  		 * Freed from under us. Drop new_page too.
2761  		 */
2762  		goto free_new;
2763  	} else if (page_count(old_page)) {
2764  		/*
2765  		 * Someone has grabbed the page, try to isolate it here.
2766  		 * Fail with -EBUSY if not possible.
2767  		 */
2768  		spin_unlock_irq(&hugetlb_lock);
2769  		ret = isolate_hugetlb(old_page, list);
2770  		spin_lock_irq(&hugetlb_lock);
2771  		goto free_new;
2772  	} else if (!HPageFreed(old_page)) {
2773  		/*
2774  		 * Page's refcount is 0 but it has not been enqueued in the
2775  		 * freelist yet. Race window is small, so we can succeed here if
2776  		 * we retry.
2777  		 */
2778  		spin_unlock_irq(&hugetlb_lock);
2779  		cond_resched();
2780  		goto retry;
2781  	} else {
2782  		/*
2783  		 * Ok, old_page is still a genuine free hugepage. Remove it from
2784  		 * the freelist and decrease the counters. These will be
2785  		 * incremented again when calling __prep_account_new_huge_page()
2786  		 * and enqueue_huge_page() for new_page. The counters will remain
2787  		 * stable since this happens under the lock.
2788  		 */
2789  		remove_hugetlb_page(h, old_page, false);
2790  
2791  		/*
2792  		 * Ref count on new page is already zero as it was dropped
2793  		 * earlier.  It can be directly added to the pool free list.
2794  		 */
2795  		__prep_account_new_huge_page(h, nid);
2796  		enqueue_huge_page(h, new_page);
2797  
2798  		/*
2799  		 * Pages have been replaced, we can safely free the old one.
2800  		 */
2801  		spin_unlock_irq(&hugetlb_lock);
2802  		update_and_free_page(h, old_page, false);
2803  	}
2804  
2805  	return ret;
2806  
2807  free_new:
2808  	spin_unlock_irq(&hugetlb_lock);
2809  	/* Page has a zero ref count, but needs a ref to be freed */
2810  	set_page_refcounted(new_page);
2811  	update_and_free_page(h, new_page, false);
2812  
2813  	return ret;
2814  }
2815  
2816  int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817  {
2818  	struct hstate *h;
2819  	struct page *head;
2820  	int ret = -EBUSY;
2821  
2822  	/*
2823  	 * The page might have been dissolved from under our feet, so make sure
2824  	 * to carefully check the state under the lock.
2825  	 * Return success when racing as if we dissolved the page ourselves.
2826  	 */
2827  	spin_lock_irq(&hugetlb_lock);
2828  	if (PageHuge(page)) {
2829  		head = compound_head(page);
2830  		h = page_hstate(head);
2831  	} else {
2832  		spin_unlock_irq(&hugetlb_lock);
2833  		return 0;
2834  	}
2835  	spin_unlock_irq(&hugetlb_lock);
2836  
2837  	/*
2838  	 * Fence off gigantic pages as there is a cyclic dependency between
2839  	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840  	 * of bailing out right away without further retrying.
2841  	 */
2842  	if (hstate_is_gigantic(h))
2843  		return -ENOMEM;
2844  
2845  	if (page_count(head) && !isolate_hugetlb(head, list))
2846  		ret = 0;
2847  	else if (!page_count(head))
2848  		ret = alloc_and_dissolve_huge_page(h, head, list);
2849  
2850  	return ret;
2851  }
2852  
2853  struct page *alloc_huge_page(struct vm_area_struct *vma,
2854  				    unsigned long addr, int avoid_reserve)
2855  {
2856  	struct hugepage_subpool *spool = subpool_vma(vma);
2857  	struct hstate *h = hstate_vma(vma);
2858  	struct page *page;
2859  	long map_chg, map_commit;
2860  	long gbl_chg;
2861  	int ret, idx;
2862  	struct hugetlb_cgroup *h_cg;
2863  	bool deferred_reserve;
2864  
2865  	idx = hstate_index(h);
2866  	/*
2867  	 * Examine the region/reserve map to determine if the process
2868  	 * has a reservation for the page to be allocated.  A return
2869  	 * code of zero indicates a reservation exists (no change).
2870  	 */
2871  	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872  	if (map_chg < 0)
2873  		return ERR_PTR(-ENOMEM);
2874  
2875  	/*
2876  	 * Processes that did not create the mapping will have no
2877  	 * reserves as indicated by the region/reserve map. Check
2878  	 * that the allocation will not exceed the subpool limit.
2879  	 * Allocations for MAP_NORESERVE mappings also need to be
2880  	 * checked against any subpool limit.
2881  	 */
2882  	if (map_chg || avoid_reserve) {
2883  		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884  		if (gbl_chg < 0) {
2885  			vma_end_reservation(h, vma, addr);
2886  			return ERR_PTR(-ENOSPC);
2887  		}
2888  
2889  		/*
2890  		 * Even though there was no reservation in the region/reserve
2891  		 * map, there could be reservations associated with the
2892  		 * subpool that can be used.  This would be indicated if the
2893  		 * return value of hugepage_subpool_get_pages() is zero.
2894  		 * However, if avoid_reserve is specified we still avoid even
2895  		 * the subpool reservations.
2896  		 */
2897  		if (avoid_reserve)
2898  			gbl_chg = 1;
2899  	}
2900  
2901  	/* If this allocation is not consuming a reservation, charge it now.
2902  	 */
2903  	deferred_reserve = map_chg || avoid_reserve;
2904  	if (deferred_reserve) {
2905  		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906  			idx, pages_per_huge_page(h), &h_cg);
2907  		if (ret)
2908  			goto out_subpool_put;
2909  	}
2910  
2911  	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912  	if (ret)
2913  		goto out_uncharge_cgroup_reservation;
2914  
2915  	spin_lock_irq(&hugetlb_lock);
2916  	/*
2917  	 * glb_chg is passed to indicate whether or not a page must be taken
2918  	 * from the global free pool (global change).  gbl_chg == 0 indicates
2919  	 * a reservation exists for the allocation.
2920  	 */
2921  	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922  	if (!page) {
2923  		spin_unlock_irq(&hugetlb_lock);
2924  		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925  		if (!page)
2926  			goto out_uncharge_cgroup;
2927  		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928  			SetHPageRestoreReserve(page);
2929  			h->resv_huge_pages--;
2930  		}
2931  		spin_lock_irq(&hugetlb_lock);
2932  		list_add(&page->lru, &h->hugepage_activelist);
2933  		set_page_refcounted(page);
2934  		/* Fall through */
2935  	}
2936  	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2937  	/* If allocation is not consuming a reservation, also store the
2938  	 * hugetlb_cgroup pointer on the page.
2939  	 */
2940  	if (deferred_reserve) {
2941  		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2942  						  h_cg, page);
2943  	}
2944  
2945  	spin_unlock_irq(&hugetlb_lock);
2946  
2947  	hugetlb_set_page_subpool(page, spool);
2948  
2949  	map_commit = vma_commit_reservation(h, vma, addr);
2950  	if (unlikely(map_chg > map_commit)) {
2951  		/*
2952  		 * The page was added to the reservation map between
2953  		 * vma_needs_reservation and vma_commit_reservation.
2954  		 * This indicates a race with hugetlb_reserve_pages.
2955  		 * Adjust for the subpool count incremented above AND
2956  		 * in hugetlb_reserve_pages for the same page.  Also,
2957  		 * the reservation count added in hugetlb_reserve_pages
2958  		 * no longer applies.
2959  		 */
2960  		long rsv_adjust;
2961  
2962  		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2963  		hugetlb_acct_memory(h, -rsv_adjust);
2964  		if (deferred_reserve)
2965  			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2966  					pages_per_huge_page(h), page);
2967  	}
2968  	return page;
2969  
2970  out_uncharge_cgroup:
2971  	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2972  out_uncharge_cgroup_reservation:
2973  	if (deferred_reserve)
2974  		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2975  						    h_cg);
2976  out_subpool_put:
2977  	if (map_chg || avoid_reserve)
2978  		hugepage_subpool_put_pages(spool, 1);
2979  	vma_end_reservation(h, vma, addr);
2980  	return ERR_PTR(-ENOSPC);
2981  }
2982  
2983  int alloc_bootmem_huge_page(struct hstate *h, int nid)
2984  	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2985  int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2986  {
2987  	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2988  	int nr_nodes, node;
2989  
2990  	/* do node specific alloc */
2991  	if (nid != NUMA_NO_NODE) {
2992  		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2993  				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2994  		if (!m)
2995  			return 0;
2996  		goto found;
2997  	}
2998  	/* allocate from next node when distributing huge pages */
2999  	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3000  		m = memblock_alloc_try_nid_raw(
3001  				huge_page_size(h), huge_page_size(h),
3002  				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3003  		/*
3004  		 * Use the beginning of the huge page to store the
3005  		 * huge_bootmem_page struct (until gather_bootmem
3006  		 * puts them into the mem_map).
3007  		 */
3008  		if (!m)
3009  			return 0;
3010  		goto found;
3011  	}
3012  
3013  found:
3014  	/* Put them into a private list first because mem_map is not up yet */
3015  	INIT_LIST_HEAD(&m->list);
3016  	list_add(&m->list, &huge_boot_pages);
3017  	m->hstate = h;
3018  	return 1;
3019  }
3020  
3021  /*
3022   * Put bootmem huge pages into the standard lists after mem_map is up.
3023   * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3024   */
3025  static void __init gather_bootmem_prealloc(void)
3026  {
3027  	struct huge_bootmem_page *m;
3028  
3029  	list_for_each_entry(m, &huge_boot_pages, list) {
3030  		struct page *page = virt_to_page(m);
3031  		struct hstate *h = m->hstate;
3032  
3033  		VM_BUG_ON(!hstate_is_gigantic(h));
3034  		WARN_ON(page_count(page) != 1);
3035  		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3036  			WARN_ON(PageReserved(page));
3037  			prep_new_huge_page(h, page, page_to_nid(page));
3038  			free_huge_page(page); /* add to the hugepage allocator */
3039  		} else {
3040  			/* VERY unlikely inflated ref count on a tail page */
3041  			free_gigantic_page(page, huge_page_order(h));
3042  		}
3043  
3044  		/*
3045  		 * We need to restore the 'stolen' pages to totalram_pages
3046  		 * in order to fix confusing memory reports from free(1) and
3047  		 * other side-effects, like CommitLimit going negative.
3048  		 */
3049  		adjust_managed_page_count(page, pages_per_huge_page(h));
3050  		cond_resched();
3051  	}
3052  }
3053  static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3054  {
3055  	unsigned long i;
3056  	char buf[32];
3057  
3058  	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3059  		if (hstate_is_gigantic(h)) {
3060  			if (!alloc_bootmem_huge_page(h, nid))
3061  				break;
3062  		} else {
3063  			struct page *page;
3064  			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3065  
3066  			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3067  					&node_states[N_MEMORY], NULL);
3068  			if (!page)
3069  				break;
3070  			free_huge_page(page); /* free it into the hugepage allocator */
3071  		}
3072  		cond_resched();
3073  	}
3074  	if (i == h->max_huge_pages_node[nid])
3075  		return;
3076  
3077  	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3078  	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3079  		h->max_huge_pages_node[nid], buf, nid, i);
3080  	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3081  	h->max_huge_pages_node[nid] = i;
3082  }
3083  
3084  static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3085  {
3086  	unsigned long i;
3087  	nodemask_t *node_alloc_noretry;
3088  	bool node_specific_alloc = false;
3089  
3090  	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3091  	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3092  		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3093  		return;
3094  	}
3095  
3096  	/* do node specific alloc */
3097  	for_each_online_node(i) {
3098  		if (h->max_huge_pages_node[i] > 0) {
3099  			hugetlb_hstate_alloc_pages_onenode(h, i);
3100  			node_specific_alloc = true;
3101  		}
3102  	}
3103  
3104  	if (node_specific_alloc)
3105  		return;
3106  
3107  	/* below will do all node balanced alloc */
3108  	if (!hstate_is_gigantic(h)) {
3109  		/*
3110  		 * Bit mask controlling how hard we retry per-node allocations.
3111  		 * Ignore errors as lower level routines can deal with
3112  		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3113  		 * time, we are likely in bigger trouble.
3114  		 */
3115  		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3116  						GFP_KERNEL);
3117  	} else {
3118  		/* allocations done at boot time */
3119  		node_alloc_noretry = NULL;
3120  	}
3121  
3122  	/* bit mask controlling how hard we retry per-node allocations */
3123  	if (node_alloc_noretry)
3124  		nodes_clear(*node_alloc_noretry);
3125  
3126  	for (i = 0; i < h->max_huge_pages; ++i) {
3127  		if (hstate_is_gigantic(h)) {
3128  			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3129  				break;
3130  		} else if (!alloc_pool_huge_page(h,
3131  					 &node_states[N_MEMORY],
3132  					 node_alloc_noretry))
3133  			break;
3134  		cond_resched();
3135  	}
3136  	if (i < h->max_huge_pages) {
3137  		char buf[32];
3138  
3139  		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3140  		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3141  			h->max_huge_pages, buf, i);
3142  		h->max_huge_pages = i;
3143  	}
3144  	kfree(node_alloc_noretry);
3145  }
3146  
3147  static void __init hugetlb_init_hstates(void)
3148  {
3149  	struct hstate *h, *h2;
3150  
3151  	for_each_hstate(h) {
3152  		/* oversize hugepages were init'ed in early boot */
3153  		if (!hstate_is_gigantic(h))
3154  			hugetlb_hstate_alloc_pages(h);
3155  
3156  		/*
3157  		 * Set demote order for each hstate.  Note that
3158  		 * h->demote_order is initially 0.
3159  		 * - We can not demote gigantic pages if runtime freeing
3160  		 *   is not supported, so skip this.
3161  		 * - If CMA allocation is possible, we can not demote
3162  		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3163  		 */
3164  		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3165  			continue;
3166  		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3167  			continue;
3168  		for_each_hstate(h2) {
3169  			if (h2 == h)
3170  				continue;
3171  			if (h2->order < h->order &&
3172  			    h2->order > h->demote_order)
3173  				h->demote_order = h2->order;
3174  		}
3175  	}
3176  }
3177  
3178  static void __init report_hugepages(void)
3179  {
3180  	struct hstate *h;
3181  
3182  	for_each_hstate(h) {
3183  		char buf[32];
3184  
3185  		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3186  		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3187  			buf, h->free_huge_pages);
3188  		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3189  			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3190  	}
3191  }
3192  
3193  #ifdef CONFIG_HIGHMEM
3194  static void try_to_free_low(struct hstate *h, unsigned long count,
3195  						nodemask_t *nodes_allowed)
3196  {
3197  	int i;
3198  	LIST_HEAD(page_list);
3199  
3200  	lockdep_assert_held(&hugetlb_lock);
3201  	if (hstate_is_gigantic(h))
3202  		return;
3203  
3204  	/*
3205  	 * Collect pages to be freed on a list, and free after dropping lock
3206  	 */
3207  	for_each_node_mask(i, *nodes_allowed) {
3208  		struct page *page, *next;
3209  		struct list_head *freel = &h->hugepage_freelists[i];
3210  		list_for_each_entry_safe(page, next, freel, lru) {
3211  			if (count >= h->nr_huge_pages)
3212  				goto out;
3213  			if (PageHighMem(page))
3214  				continue;
3215  			remove_hugetlb_page(h, page, false);
3216  			list_add(&page->lru, &page_list);
3217  		}
3218  	}
3219  
3220  out:
3221  	spin_unlock_irq(&hugetlb_lock);
3222  	update_and_free_pages_bulk(h, &page_list);
3223  	spin_lock_irq(&hugetlb_lock);
3224  }
3225  #else
3226  static inline void try_to_free_low(struct hstate *h, unsigned long count,
3227  						nodemask_t *nodes_allowed)
3228  {
3229  }
3230  #endif
3231  
3232  /*
3233   * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3234   * balanced by operating on them in a round-robin fashion.
3235   * Returns 1 if an adjustment was made.
3236   */
3237  static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3238  				int delta)
3239  {
3240  	int nr_nodes, node;
3241  
3242  	lockdep_assert_held(&hugetlb_lock);
3243  	VM_BUG_ON(delta != -1 && delta != 1);
3244  
3245  	if (delta < 0) {
3246  		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3247  			if (h->surplus_huge_pages_node[node])
3248  				goto found;
3249  		}
3250  	} else {
3251  		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3252  			if (h->surplus_huge_pages_node[node] <
3253  					h->nr_huge_pages_node[node])
3254  				goto found;
3255  		}
3256  	}
3257  	return 0;
3258  
3259  found:
3260  	h->surplus_huge_pages += delta;
3261  	h->surplus_huge_pages_node[node] += delta;
3262  	return 1;
3263  }
3264  
3265  #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3266  static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3267  			      nodemask_t *nodes_allowed)
3268  {
3269  	unsigned long min_count, ret;
3270  	struct page *page;
3271  	LIST_HEAD(page_list);
3272  	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3273  
3274  	/*
3275  	 * Bit mask controlling how hard we retry per-node allocations.
3276  	 * If we can not allocate the bit mask, do not attempt to allocate
3277  	 * the requested huge pages.
3278  	 */
3279  	if (node_alloc_noretry)
3280  		nodes_clear(*node_alloc_noretry);
3281  	else
3282  		return -ENOMEM;
3283  
3284  	/*
3285  	 * resize_lock mutex prevents concurrent adjustments to number of
3286  	 * pages in hstate via the proc/sysfs interfaces.
3287  	 */
3288  	mutex_lock(&h->resize_lock);
3289  	flush_free_hpage_work(h);
3290  	spin_lock_irq(&hugetlb_lock);
3291  
3292  	/*
3293  	 * Check for a node specific request.
3294  	 * Changing node specific huge page count may require a corresponding
3295  	 * change to the global count.  In any case, the passed node mask
3296  	 * (nodes_allowed) will restrict alloc/free to the specified node.
3297  	 */
3298  	if (nid != NUMA_NO_NODE) {
3299  		unsigned long old_count = count;
3300  
3301  		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3302  		/*
3303  		 * User may have specified a large count value which caused the
3304  		 * above calculation to overflow.  In this case, they wanted
3305  		 * to allocate as many huge pages as possible.  Set count to
3306  		 * largest possible value to align with their intention.
3307  		 */
3308  		if (count < old_count)
3309  			count = ULONG_MAX;
3310  	}
3311  
3312  	/*
3313  	 * Gigantic pages runtime allocation depend on the capability for large
3314  	 * page range allocation.
3315  	 * If the system does not provide this feature, return an error when
3316  	 * the user tries to allocate gigantic pages but let the user free the
3317  	 * boottime allocated gigantic pages.
3318  	 */
3319  	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3320  		if (count > persistent_huge_pages(h)) {
3321  			spin_unlock_irq(&hugetlb_lock);
3322  			mutex_unlock(&h->resize_lock);
3323  			NODEMASK_FREE(node_alloc_noretry);
3324  			return -EINVAL;
3325  		}
3326  		/* Fall through to decrease pool */
3327  	}
3328  
3329  	/*
3330  	 * Increase the pool size
3331  	 * First take pages out of surplus state.  Then make up the
3332  	 * remaining difference by allocating fresh huge pages.
3333  	 *
3334  	 * We might race with alloc_surplus_huge_page() here and be unable
3335  	 * to convert a surplus huge page to a normal huge page. That is
3336  	 * not critical, though, it just means the overall size of the
3337  	 * pool might be one hugepage larger than it needs to be, but
3338  	 * within all the constraints specified by the sysctls.
3339  	 */
3340  	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3341  		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3342  			break;
3343  	}
3344  
3345  	while (count > persistent_huge_pages(h)) {
3346  		/*
3347  		 * If this allocation races such that we no longer need the
3348  		 * page, free_huge_page will handle it by freeing the page
3349  		 * and reducing the surplus.
3350  		 */
3351  		spin_unlock_irq(&hugetlb_lock);
3352  
3353  		/* yield cpu to avoid soft lockup */
3354  		cond_resched();
3355  
3356  		ret = alloc_pool_huge_page(h, nodes_allowed,
3357  						node_alloc_noretry);
3358  		spin_lock_irq(&hugetlb_lock);
3359  		if (!ret)
3360  			goto out;
3361  
3362  		/* Bail for signals. Probably ctrl-c from user */
3363  		if (signal_pending(current))
3364  			goto out;
3365  	}
3366  
3367  	/*
3368  	 * Decrease the pool size
3369  	 * First return free pages to the buddy allocator (being careful
3370  	 * to keep enough around to satisfy reservations).  Then place
3371  	 * pages into surplus state as needed so the pool will shrink
3372  	 * to the desired size as pages become free.
3373  	 *
3374  	 * By placing pages into the surplus state independent of the
3375  	 * overcommit value, we are allowing the surplus pool size to
3376  	 * exceed overcommit. There are few sane options here. Since
3377  	 * alloc_surplus_huge_page() is checking the global counter,
3378  	 * though, we'll note that we're not allowed to exceed surplus
3379  	 * and won't grow the pool anywhere else. Not until one of the
3380  	 * sysctls are changed, or the surplus pages go out of use.
3381  	 */
3382  	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3383  	min_count = max(count, min_count);
3384  	try_to_free_low(h, min_count, nodes_allowed);
3385  
3386  	/*
3387  	 * Collect pages to be removed on list without dropping lock
3388  	 */
3389  	while (min_count < persistent_huge_pages(h)) {
3390  		page = remove_pool_huge_page(h, nodes_allowed, 0);
3391  		if (!page)
3392  			break;
3393  
3394  		list_add(&page->lru, &page_list);
3395  	}
3396  	/* free the pages after dropping lock */
3397  	spin_unlock_irq(&hugetlb_lock);
3398  	update_and_free_pages_bulk(h, &page_list);
3399  	flush_free_hpage_work(h);
3400  	spin_lock_irq(&hugetlb_lock);
3401  
3402  	while (count < persistent_huge_pages(h)) {
3403  		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3404  			break;
3405  	}
3406  out:
3407  	h->max_huge_pages = persistent_huge_pages(h);
3408  	spin_unlock_irq(&hugetlb_lock);
3409  	mutex_unlock(&h->resize_lock);
3410  
3411  	NODEMASK_FREE(node_alloc_noretry);
3412  
3413  	return 0;
3414  }
3415  
3416  static int demote_free_huge_page(struct hstate *h, struct page *page)
3417  {
3418  	int i, nid = page_to_nid(page);
3419  	struct hstate *target_hstate;
3420  	struct page *subpage;
3421  	int rc = 0;
3422  
3423  	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424  
3425  	remove_hugetlb_page_for_demote(h, page, false);
3426  	spin_unlock_irq(&hugetlb_lock);
3427  
3428  	rc = hugetlb_vmemmap_restore(h, page);
3429  	if (rc) {
3430  		/* Allocation of vmemmmap failed, we can not demote page */
3431  		spin_lock_irq(&hugetlb_lock);
3432  		set_page_refcounted(page);
3433  		add_hugetlb_page(h, page, false);
3434  		return rc;
3435  	}
3436  
3437  	/*
3438  	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439  	 * sizes as it will not ref count pages.
3440  	 */
3441  	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442  
3443  	/*
3444  	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445  	 * Without the mutex, pages added to target hstate could be marked
3446  	 * as surplus.
3447  	 *
3448  	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3449  	 * use the convention of always taking larger size hstate mutex first.
3450  	 */
3451  	mutex_lock(&target_hstate->resize_lock);
3452  	for (i = 0; i < pages_per_huge_page(h);
3453  				i += pages_per_huge_page(target_hstate)) {
3454  		subpage = nth_page(page, i);
3455  		if (hstate_is_gigantic(target_hstate))
3456  			prep_compound_gigantic_page_for_demote(subpage,
3457  							target_hstate->order);
3458  		else
3459  			prep_compound_page(subpage, target_hstate->order);
3460  		set_page_private(subpage, 0);
3461  		prep_new_huge_page(target_hstate, subpage, nid);
3462  		free_huge_page(subpage);
3463  	}
3464  	mutex_unlock(&target_hstate->resize_lock);
3465  
3466  	spin_lock_irq(&hugetlb_lock);
3467  
3468  	/*
3469  	 * Not absolutely necessary, but for consistency update max_huge_pages
3470  	 * based on pool changes for the demoted page.
3471  	 */
3472  	h->max_huge_pages--;
3473  	target_hstate->max_huge_pages +=
3474  		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3475  
3476  	return rc;
3477  }
3478  
3479  static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3480  	__must_hold(&hugetlb_lock)
3481  {
3482  	int nr_nodes, node;
3483  	struct page *page;
3484  
3485  	lockdep_assert_held(&hugetlb_lock);
3486  
3487  	/* We should never get here if no demote order */
3488  	if (!h->demote_order) {
3489  		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3490  		return -EINVAL;		/* internal error */
3491  	}
3492  
3493  	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3494  		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3495  			if (PageHWPoison(page))
3496  				continue;
3497  
3498  			return demote_free_huge_page(h, page);
3499  		}
3500  	}
3501  
3502  	/*
3503  	 * Only way to get here is if all pages on free lists are poisoned.
3504  	 * Return -EBUSY so that caller will not retry.
3505  	 */
3506  	return -EBUSY;
3507  }
3508  
3509  #define HSTATE_ATTR_RO(_name) \
3510  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3511  
3512  #define HSTATE_ATTR_WO(_name) \
3513  	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3514  
3515  #define HSTATE_ATTR(_name) \
3516  	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3517  
3518  static struct kobject *hugepages_kobj;
3519  static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3520  
3521  static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3522  
3523  static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3524  {
3525  	int i;
3526  
3527  	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3528  		if (hstate_kobjs[i] == kobj) {
3529  			if (nidp)
3530  				*nidp = NUMA_NO_NODE;
3531  			return &hstates[i];
3532  		}
3533  
3534  	return kobj_to_node_hstate(kobj, nidp);
3535  }
3536  
3537  static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3538  					struct kobj_attribute *attr, char *buf)
3539  {
3540  	struct hstate *h;
3541  	unsigned long nr_huge_pages;
3542  	int nid;
3543  
3544  	h = kobj_to_hstate(kobj, &nid);
3545  	if (nid == NUMA_NO_NODE)
3546  		nr_huge_pages = h->nr_huge_pages;
3547  	else
3548  		nr_huge_pages = h->nr_huge_pages_node[nid];
3549  
3550  	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3551  }
3552  
3553  static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3554  					   struct hstate *h, int nid,
3555  					   unsigned long count, size_t len)
3556  {
3557  	int err;
3558  	nodemask_t nodes_allowed, *n_mask;
3559  
3560  	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3561  		return -EINVAL;
3562  
3563  	if (nid == NUMA_NO_NODE) {
3564  		/*
3565  		 * global hstate attribute
3566  		 */
3567  		if (!(obey_mempolicy &&
3568  				init_nodemask_of_mempolicy(&nodes_allowed)))
3569  			n_mask = &node_states[N_MEMORY];
3570  		else
3571  			n_mask = &nodes_allowed;
3572  	} else {
3573  		/*
3574  		 * Node specific request.  count adjustment happens in
3575  		 * set_max_huge_pages() after acquiring hugetlb_lock.
3576  		 */
3577  		init_nodemask_of_node(&nodes_allowed, nid);
3578  		n_mask = &nodes_allowed;
3579  	}
3580  
3581  	err = set_max_huge_pages(h, count, nid, n_mask);
3582  
3583  	return err ? err : len;
3584  }
3585  
3586  static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3587  					 struct kobject *kobj, const char *buf,
3588  					 size_t len)
3589  {
3590  	struct hstate *h;
3591  	unsigned long count;
3592  	int nid;
3593  	int err;
3594  
3595  	err = kstrtoul(buf, 10, &count);
3596  	if (err)
3597  		return err;
3598  
3599  	h = kobj_to_hstate(kobj, &nid);
3600  	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3601  }
3602  
3603  static ssize_t nr_hugepages_show(struct kobject *kobj,
3604  				       struct kobj_attribute *attr, char *buf)
3605  {
3606  	return nr_hugepages_show_common(kobj, attr, buf);
3607  }
3608  
3609  static ssize_t nr_hugepages_store(struct kobject *kobj,
3610  	       struct kobj_attribute *attr, const char *buf, size_t len)
3611  {
3612  	return nr_hugepages_store_common(false, kobj, buf, len);
3613  }
3614  HSTATE_ATTR(nr_hugepages);
3615  
3616  #ifdef CONFIG_NUMA
3617  
3618  /*
3619   * hstate attribute for optionally mempolicy-based constraint on persistent
3620   * huge page alloc/free.
3621   */
3622  static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3623  					   struct kobj_attribute *attr,
3624  					   char *buf)
3625  {
3626  	return nr_hugepages_show_common(kobj, attr, buf);
3627  }
3628  
3629  static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3630  	       struct kobj_attribute *attr, const char *buf, size_t len)
3631  {
3632  	return nr_hugepages_store_common(true, kobj, buf, len);
3633  }
3634  HSTATE_ATTR(nr_hugepages_mempolicy);
3635  #endif
3636  
3637  
3638  static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3639  					struct kobj_attribute *attr, char *buf)
3640  {
3641  	struct hstate *h = kobj_to_hstate(kobj, NULL);
3642  	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3643  }
3644  
3645  static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3646  		struct kobj_attribute *attr, const char *buf, size_t count)
3647  {
3648  	int err;
3649  	unsigned long input;
3650  	struct hstate *h = kobj_to_hstate(kobj, NULL);
3651  
3652  	if (hstate_is_gigantic(h))
3653  		return -EINVAL;
3654  
3655  	err = kstrtoul(buf, 10, &input);
3656  	if (err)
3657  		return err;
3658  
3659  	spin_lock_irq(&hugetlb_lock);
3660  	h->nr_overcommit_huge_pages = input;
3661  	spin_unlock_irq(&hugetlb_lock);
3662  
3663  	return count;
3664  }
3665  HSTATE_ATTR(nr_overcommit_hugepages);
3666  
3667  static ssize_t free_hugepages_show(struct kobject *kobj,
3668  					struct kobj_attribute *attr, char *buf)
3669  {
3670  	struct hstate *h;
3671  	unsigned long free_huge_pages;
3672  	int nid;
3673  
3674  	h = kobj_to_hstate(kobj, &nid);
3675  	if (nid == NUMA_NO_NODE)
3676  		free_huge_pages = h->free_huge_pages;
3677  	else
3678  		free_huge_pages = h->free_huge_pages_node[nid];
3679  
3680  	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3681  }
3682  HSTATE_ATTR_RO(free_hugepages);
3683  
3684  static ssize_t resv_hugepages_show(struct kobject *kobj,
3685  					struct kobj_attribute *attr, char *buf)
3686  {
3687  	struct hstate *h = kobj_to_hstate(kobj, NULL);
3688  	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3689  }
3690  HSTATE_ATTR_RO(resv_hugepages);
3691  
3692  static ssize_t surplus_hugepages_show(struct kobject *kobj,
3693  					struct kobj_attribute *attr, char *buf)
3694  {
3695  	struct hstate *h;
3696  	unsigned long surplus_huge_pages;
3697  	int nid;
3698  
3699  	h = kobj_to_hstate(kobj, &nid);
3700  	if (nid == NUMA_NO_NODE)
3701  		surplus_huge_pages = h->surplus_huge_pages;
3702  	else
3703  		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3704  
3705  	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3706  }
3707  HSTATE_ATTR_RO(surplus_hugepages);
3708  
3709  static ssize_t demote_store(struct kobject *kobj,
3710  	       struct kobj_attribute *attr, const char *buf, size_t len)
3711  {
3712  	unsigned long nr_demote;
3713  	unsigned long nr_available;
3714  	nodemask_t nodes_allowed, *n_mask;
3715  	struct hstate *h;
3716  	int err;
3717  	int nid;
3718  
3719  	err = kstrtoul(buf, 10, &nr_demote);
3720  	if (err)
3721  		return err;
3722  	h = kobj_to_hstate(kobj, &nid);
3723  
3724  	if (nid != NUMA_NO_NODE) {
3725  		init_nodemask_of_node(&nodes_allowed, nid);
3726  		n_mask = &nodes_allowed;
3727  	} else {
3728  		n_mask = &node_states[N_MEMORY];
3729  	}
3730  
3731  	/* Synchronize with other sysfs operations modifying huge pages */
3732  	mutex_lock(&h->resize_lock);
3733  	spin_lock_irq(&hugetlb_lock);
3734  
3735  	while (nr_demote) {
3736  		/*
3737  		 * Check for available pages to demote each time thorough the
3738  		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3739  		 */
3740  		if (nid != NUMA_NO_NODE)
3741  			nr_available = h->free_huge_pages_node[nid];
3742  		else
3743  			nr_available = h->free_huge_pages;
3744  		nr_available -= h->resv_huge_pages;
3745  		if (!nr_available)
3746  			break;
3747  
3748  		err = demote_pool_huge_page(h, n_mask);
3749  		if (err)
3750  			break;
3751  
3752  		nr_demote--;
3753  	}
3754  
3755  	spin_unlock_irq(&hugetlb_lock);
3756  	mutex_unlock(&h->resize_lock);
3757  
3758  	if (err)
3759  		return err;
3760  	return len;
3761  }
3762  HSTATE_ATTR_WO(demote);
3763  
3764  static ssize_t demote_size_show(struct kobject *kobj,
3765  					struct kobj_attribute *attr, char *buf)
3766  {
3767  	struct hstate *h = kobj_to_hstate(kobj, NULL);
3768  	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769  
3770  	return sysfs_emit(buf, "%lukB\n", demote_size);
3771  }
3772  
3773  static ssize_t demote_size_store(struct kobject *kobj,
3774  					struct kobj_attribute *attr,
3775  					const char *buf, size_t count)
3776  {
3777  	struct hstate *h, *demote_hstate;
3778  	unsigned long demote_size;
3779  	unsigned int demote_order;
3780  
3781  	demote_size = (unsigned long)memparse(buf, NULL);
3782  
3783  	demote_hstate = size_to_hstate(demote_size);
3784  	if (!demote_hstate)
3785  		return -EINVAL;
3786  	demote_order = demote_hstate->order;
3787  	if (demote_order < HUGETLB_PAGE_ORDER)
3788  		return -EINVAL;
3789  
3790  	/* demote order must be smaller than hstate order */
3791  	h = kobj_to_hstate(kobj, NULL);
3792  	if (demote_order >= h->order)
3793  		return -EINVAL;
3794  
3795  	/* resize_lock synchronizes access to demote size and writes */
3796  	mutex_lock(&h->resize_lock);
3797  	h->demote_order = demote_order;
3798  	mutex_unlock(&h->resize_lock);
3799  
3800  	return count;
3801  }
3802  HSTATE_ATTR(demote_size);
3803  
3804  static struct attribute *hstate_attrs[] = {
3805  	&nr_hugepages_attr.attr,
3806  	&nr_overcommit_hugepages_attr.attr,
3807  	&free_hugepages_attr.attr,
3808  	&resv_hugepages_attr.attr,
3809  	&surplus_hugepages_attr.attr,
3810  #ifdef CONFIG_NUMA
3811  	&nr_hugepages_mempolicy_attr.attr,
3812  #endif
3813  	NULL,
3814  };
3815  
3816  static const struct attribute_group hstate_attr_group = {
3817  	.attrs = hstate_attrs,
3818  };
3819  
3820  static struct attribute *hstate_demote_attrs[] = {
3821  	&demote_size_attr.attr,
3822  	&demote_attr.attr,
3823  	NULL,
3824  };
3825  
3826  static const struct attribute_group hstate_demote_attr_group = {
3827  	.attrs = hstate_demote_attrs,
3828  };
3829  
3830  static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3831  				    struct kobject **hstate_kobjs,
3832  				    const struct attribute_group *hstate_attr_group)
3833  {
3834  	int retval;
3835  	int hi = hstate_index(h);
3836  
3837  	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3838  	if (!hstate_kobjs[hi])
3839  		return -ENOMEM;
3840  
3841  	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3842  	if (retval) {
3843  		kobject_put(hstate_kobjs[hi]);
3844  		hstate_kobjs[hi] = NULL;
3845  		return retval;
3846  	}
3847  
3848  	if (h->demote_order) {
3849  		retval = sysfs_create_group(hstate_kobjs[hi],
3850  					    &hstate_demote_attr_group);
3851  		if (retval) {
3852  			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3853  			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3854  			kobject_put(hstate_kobjs[hi]);
3855  			hstate_kobjs[hi] = NULL;
3856  			return retval;
3857  		}
3858  	}
3859  
3860  	return 0;
3861  }
3862  
3863  #ifdef CONFIG_NUMA
3864  static bool hugetlb_sysfs_initialized __ro_after_init;
3865  
3866  /*
3867   * node_hstate/s - associate per node hstate attributes, via their kobjects,
3868   * with node devices in node_devices[] using a parallel array.  The array
3869   * index of a node device or _hstate == node id.
3870   * This is here to avoid any static dependency of the node device driver, in
3871   * the base kernel, on the hugetlb module.
3872   */
3873  struct node_hstate {
3874  	struct kobject		*hugepages_kobj;
3875  	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3876  };
3877  static struct node_hstate node_hstates[MAX_NUMNODES];
3878  
3879  /*
3880   * A subset of global hstate attributes for node devices
3881   */
3882  static struct attribute *per_node_hstate_attrs[] = {
3883  	&nr_hugepages_attr.attr,
3884  	&free_hugepages_attr.attr,
3885  	&surplus_hugepages_attr.attr,
3886  	NULL,
3887  };
3888  
3889  static const struct attribute_group per_node_hstate_attr_group = {
3890  	.attrs = per_node_hstate_attrs,
3891  };
3892  
3893  /*
3894   * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3895   * Returns node id via non-NULL nidp.
3896   */
3897  static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3898  {
3899  	int nid;
3900  
3901  	for (nid = 0; nid < nr_node_ids; nid++) {
3902  		struct node_hstate *nhs = &node_hstates[nid];
3903  		int i;
3904  		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3905  			if (nhs->hstate_kobjs[i] == kobj) {
3906  				if (nidp)
3907  					*nidp = nid;
3908  				return &hstates[i];
3909  			}
3910  	}
3911  
3912  	BUG();
3913  	return NULL;
3914  }
3915  
3916  /*
3917   * Unregister hstate attributes from a single node device.
3918   * No-op if no hstate attributes attached.
3919   */
3920  void hugetlb_unregister_node(struct node *node)
3921  {
3922  	struct hstate *h;
3923  	struct node_hstate *nhs = &node_hstates[node->dev.id];
3924  
3925  	if (!nhs->hugepages_kobj)
3926  		return;		/* no hstate attributes */
3927  
3928  	for_each_hstate(h) {
3929  		int idx = hstate_index(h);
3930  		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3931  
3932  		if (!hstate_kobj)
3933  			continue;
3934  		if (h->demote_order)
3935  			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3936  		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3937  		kobject_put(hstate_kobj);
3938  		nhs->hstate_kobjs[idx] = NULL;
3939  	}
3940  
3941  	kobject_put(nhs->hugepages_kobj);
3942  	nhs->hugepages_kobj = NULL;
3943  }
3944  
3945  
3946  /*
3947   * Register hstate attributes for a single node device.
3948   * No-op if attributes already registered.
3949   */
3950  void hugetlb_register_node(struct node *node)
3951  {
3952  	struct hstate *h;
3953  	struct node_hstate *nhs = &node_hstates[node->dev.id];
3954  	int err;
3955  
3956  	if (!hugetlb_sysfs_initialized)
3957  		return;
3958  
3959  	if (nhs->hugepages_kobj)
3960  		return;		/* already allocated */
3961  
3962  	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3963  							&node->dev.kobj);
3964  	if (!nhs->hugepages_kobj)
3965  		return;
3966  
3967  	for_each_hstate(h) {
3968  		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3969  						nhs->hstate_kobjs,
3970  						&per_node_hstate_attr_group);
3971  		if (err) {
3972  			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3973  				h->name, node->dev.id);
3974  			hugetlb_unregister_node(node);
3975  			break;
3976  		}
3977  	}
3978  }
3979  
3980  /*
3981   * hugetlb init time:  register hstate attributes for all registered node
3982   * devices of nodes that have memory.  All on-line nodes should have
3983   * registered their associated device by this time.
3984   */
3985  static void __init hugetlb_register_all_nodes(void)
3986  {
3987  	int nid;
3988  
3989  	for_each_online_node(nid)
3990  		hugetlb_register_node(node_devices[nid]);
3991  }
3992  #else	/* !CONFIG_NUMA */
3993  
3994  static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3995  {
3996  	BUG();
3997  	if (nidp)
3998  		*nidp = -1;
3999  	return NULL;
4000  }
4001  
4002  static void hugetlb_register_all_nodes(void) { }
4003  
4004  #endif
4005  
4006  #ifdef CONFIG_CMA
4007  static void __init hugetlb_cma_check(void);
4008  #else
4009  static inline __init void hugetlb_cma_check(void)
4010  {
4011  }
4012  #endif
4013  
4014  static void __init hugetlb_sysfs_init(void)
4015  {
4016  	struct hstate *h;
4017  	int err;
4018  
4019  	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4020  	if (!hugepages_kobj)
4021  		return;
4022  
4023  	for_each_hstate(h) {
4024  		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4025  					 hstate_kobjs, &hstate_attr_group);
4026  		if (err)
4027  			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4028  	}
4029  
4030  #ifdef CONFIG_NUMA
4031  	hugetlb_sysfs_initialized = true;
4032  #endif
4033  	hugetlb_register_all_nodes();
4034  }
4035  
4036  static int __init hugetlb_init(void)
4037  {
4038  	int i;
4039  
4040  	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4041  			__NR_HPAGEFLAGS);
4042  
4043  	if (!hugepages_supported()) {
4044  		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4045  			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4046  		return 0;
4047  	}
4048  
4049  	/*
4050  	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4051  	 * architectures depend on setup being done here.
4052  	 */
4053  	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4054  	if (!parsed_default_hugepagesz) {
4055  		/*
4056  		 * If we did not parse a default huge page size, set
4057  		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4058  		 * number of huge pages for this default size was implicitly
4059  		 * specified, set that here as well.
4060  		 * Note that the implicit setting will overwrite an explicit
4061  		 * setting.  A warning will be printed in this case.
4062  		 */
4063  		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4064  		if (default_hstate_max_huge_pages) {
4065  			if (default_hstate.max_huge_pages) {
4066  				char buf[32];
4067  
4068  				string_get_size(huge_page_size(&default_hstate),
4069  					1, STRING_UNITS_2, buf, 32);
4070  				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4071  					default_hstate.max_huge_pages, buf);
4072  				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4073  					default_hstate_max_huge_pages);
4074  			}
4075  			default_hstate.max_huge_pages =
4076  				default_hstate_max_huge_pages;
4077  
4078  			for_each_online_node(i)
4079  				default_hstate.max_huge_pages_node[i] =
4080  					default_hugepages_in_node[i];
4081  		}
4082  	}
4083  
4084  	hugetlb_cma_check();
4085  	hugetlb_init_hstates();
4086  	gather_bootmem_prealloc();
4087  	report_hugepages();
4088  
4089  	hugetlb_sysfs_init();
4090  	hugetlb_cgroup_file_init();
4091  
4092  #ifdef CONFIG_SMP
4093  	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4094  #else
4095  	num_fault_mutexes = 1;
4096  #endif
4097  	hugetlb_fault_mutex_table =
4098  		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4099  			      GFP_KERNEL);
4100  	BUG_ON(!hugetlb_fault_mutex_table);
4101  
4102  	for (i = 0; i < num_fault_mutexes; i++)
4103  		mutex_init(&hugetlb_fault_mutex_table[i]);
4104  	return 0;
4105  }
4106  subsys_initcall(hugetlb_init);
4107  
4108  /* Overwritten by architectures with more huge page sizes */
4109  bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4110  {
4111  	return size == HPAGE_SIZE;
4112  }
4113  
4114  void __init hugetlb_add_hstate(unsigned int order)
4115  {
4116  	struct hstate *h;
4117  	unsigned long i;
4118  
4119  	if (size_to_hstate(PAGE_SIZE << order)) {
4120  		return;
4121  	}
4122  	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4123  	BUG_ON(order == 0);
4124  	h = &hstates[hugetlb_max_hstate++];
4125  	mutex_init(&h->resize_lock);
4126  	h->order = order;
4127  	h->mask = ~(huge_page_size(h) - 1);
4128  	for (i = 0; i < MAX_NUMNODES; ++i)
4129  		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4130  	INIT_LIST_HEAD(&h->hugepage_activelist);
4131  	h->next_nid_to_alloc = first_memory_node;
4132  	h->next_nid_to_free = first_memory_node;
4133  	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4134  					huge_page_size(h)/SZ_1K);
4135  
4136  	parsed_hstate = h;
4137  }
4138  
4139  bool __init __weak hugetlb_node_alloc_supported(void)
4140  {
4141  	return true;
4142  }
4143  
4144  static void __init hugepages_clear_pages_in_node(void)
4145  {
4146  	if (!hugetlb_max_hstate) {
4147  		default_hstate_max_huge_pages = 0;
4148  		memset(default_hugepages_in_node, 0,
4149  			sizeof(default_hugepages_in_node));
4150  	} else {
4151  		parsed_hstate->max_huge_pages = 0;
4152  		memset(parsed_hstate->max_huge_pages_node, 0,
4153  			sizeof(parsed_hstate->max_huge_pages_node));
4154  	}
4155  }
4156  
4157  /*
4158   * hugepages command line processing
4159   * hugepages normally follows a valid hugepagsz or default_hugepagsz
4160   * specification.  If not, ignore the hugepages value.  hugepages can also
4161   * be the first huge page command line  option in which case it implicitly
4162   * specifies the number of huge pages for the default size.
4163   */
4164  static int __init hugepages_setup(char *s)
4165  {
4166  	unsigned long *mhp;
4167  	static unsigned long *last_mhp;
4168  	int node = NUMA_NO_NODE;
4169  	int count;
4170  	unsigned long tmp;
4171  	char *p = s;
4172  
4173  	if (!parsed_valid_hugepagesz) {
4174  		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4175  		parsed_valid_hugepagesz = true;
4176  		return 1;
4177  	}
4178  
4179  	/*
4180  	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4181  	 * yet, so this hugepages= parameter goes to the "default hstate".
4182  	 * Otherwise, it goes with the previously parsed hugepagesz or
4183  	 * default_hugepagesz.
4184  	 */
4185  	else if (!hugetlb_max_hstate)
4186  		mhp = &default_hstate_max_huge_pages;
4187  	else
4188  		mhp = &parsed_hstate->max_huge_pages;
4189  
4190  	if (mhp == last_mhp) {
4191  		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4192  		return 1;
4193  	}
4194  
4195  	while (*p) {
4196  		count = 0;
4197  		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4198  			goto invalid;
4199  		/* Parameter is node format */
4200  		if (p[count] == ':') {
4201  			if (!hugetlb_node_alloc_supported()) {
4202  				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4203  				return 1;
4204  			}
4205  			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4206  				goto invalid;
4207  			node = array_index_nospec(tmp, MAX_NUMNODES);
4208  			p += count + 1;
4209  			/* Parse hugepages */
4210  			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4211  				goto invalid;
4212  			if (!hugetlb_max_hstate)
4213  				default_hugepages_in_node[node] = tmp;
4214  			else
4215  				parsed_hstate->max_huge_pages_node[node] = tmp;
4216  			*mhp += tmp;
4217  			/* Go to parse next node*/
4218  			if (p[count] == ',')
4219  				p += count + 1;
4220  			else
4221  				break;
4222  		} else {
4223  			if (p != s)
4224  				goto invalid;
4225  			*mhp = tmp;
4226  			break;
4227  		}
4228  	}
4229  
4230  	/*
4231  	 * Global state is always initialized later in hugetlb_init.
4232  	 * But we need to allocate gigantic hstates here early to still
4233  	 * use the bootmem allocator.
4234  	 */
4235  	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4236  		hugetlb_hstate_alloc_pages(parsed_hstate);
4237  
4238  	last_mhp = mhp;
4239  
4240  	return 1;
4241  
4242  invalid:
4243  	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4244  	hugepages_clear_pages_in_node();
4245  	return 1;
4246  }
4247  __setup("hugepages=", hugepages_setup);
4248  
4249  /*
4250   * hugepagesz command line processing
4251   * A specific huge page size can only be specified once with hugepagesz.
4252   * hugepagesz is followed by hugepages on the command line.  The global
4253   * variable 'parsed_valid_hugepagesz' is used to determine if prior
4254   * hugepagesz argument was valid.
4255   */
4256  static int __init hugepagesz_setup(char *s)
4257  {
4258  	unsigned long size;
4259  	struct hstate *h;
4260  
4261  	parsed_valid_hugepagesz = false;
4262  	size = (unsigned long)memparse(s, NULL);
4263  
4264  	if (!arch_hugetlb_valid_size(size)) {
4265  		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4266  		return 1;
4267  	}
4268  
4269  	h = size_to_hstate(size);
4270  	if (h) {
4271  		/*
4272  		 * hstate for this size already exists.  This is normally
4273  		 * an error, but is allowed if the existing hstate is the
4274  		 * default hstate.  More specifically, it is only allowed if
4275  		 * the number of huge pages for the default hstate was not
4276  		 * previously specified.
4277  		 */
4278  		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4279  		    default_hstate.max_huge_pages) {
4280  			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4281  			return 1;
4282  		}
4283  
4284  		/*
4285  		 * No need to call hugetlb_add_hstate() as hstate already
4286  		 * exists.  But, do set parsed_hstate so that a following
4287  		 * hugepages= parameter will be applied to this hstate.
4288  		 */
4289  		parsed_hstate = h;
4290  		parsed_valid_hugepagesz = true;
4291  		return 1;
4292  	}
4293  
4294  	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4295  	parsed_valid_hugepagesz = true;
4296  	return 1;
4297  }
4298  __setup("hugepagesz=", hugepagesz_setup);
4299  
4300  /*
4301   * default_hugepagesz command line input
4302   * Only one instance of default_hugepagesz allowed on command line.
4303   */
4304  static int __init default_hugepagesz_setup(char *s)
4305  {
4306  	unsigned long size;
4307  	int i;
4308  
4309  	parsed_valid_hugepagesz = false;
4310  	if (parsed_default_hugepagesz) {
4311  		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4312  		return 1;
4313  	}
4314  
4315  	size = (unsigned long)memparse(s, NULL);
4316  
4317  	if (!arch_hugetlb_valid_size(size)) {
4318  		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4319  		return 1;
4320  	}
4321  
4322  	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4323  	parsed_valid_hugepagesz = true;
4324  	parsed_default_hugepagesz = true;
4325  	default_hstate_idx = hstate_index(size_to_hstate(size));
4326  
4327  	/*
4328  	 * The number of default huge pages (for this size) could have been
4329  	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4330  	 * then default_hstate_max_huge_pages is set.  If the default huge
4331  	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4332  	 * allocated here from bootmem allocator.
4333  	 */
4334  	if (default_hstate_max_huge_pages) {
4335  		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4336  		for_each_online_node(i)
4337  			default_hstate.max_huge_pages_node[i] =
4338  				default_hugepages_in_node[i];
4339  		if (hstate_is_gigantic(&default_hstate))
4340  			hugetlb_hstate_alloc_pages(&default_hstate);
4341  		default_hstate_max_huge_pages = 0;
4342  	}
4343  
4344  	return 1;
4345  }
4346  __setup("default_hugepagesz=", default_hugepagesz_setup);
4347  
4348  static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4349  {
4350  #ifdef CONFIG_NUMA
4351  	struct mempolicy *mpol = get_task_policy(current);
4352  
4353  	/*
4354  	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4355  	 * (from policy_nodemask) specifically for hugetlb case
4356  	 */
4357  	if (mpol->mode == MPOL_BIND &&
4358  		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4359  		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4360  		return &mpol->nodes;
4361  #endif
4362  	return NULL;
4363  }
4364  
4365  static unsigned int allowed_mems_nr(struct hstate *h)
4366  {
4367  	int node;
4368  	unsigned int nr = 0;
4369  	nodemask_t *mbind_nodemask;
4370  	unsigned int *array = h->free_huge_pages_node;
4371  	gfp_t gfp_mask = htlb_alloc_mask(h);
4372  
4373  	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4374  	for_each_node_mask(node, cpuset_current_mems_allowed) {
4375  		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4376  			nr += array[node];
4377  	}
4378  
4379  	return nr;
4380  }
4381  
4382  #ifdef CONFIG_SYSCTL
4383  static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4384  					  void *buffer, size_t *length,
4385  					  loff_t *ppos, unsigned long *out)
4386  {
4387  	struct ctl_table dup_table;
4388  
4389  	/*
4390  	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4391  	 * can duplicate the @table and alter the duplicate of it.
4392  	 */
4393  	dup_table = *table;
4394  	dup_table.data = out;
4395  
4396  	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4397  }
4398  
4399  static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4400  			 struct ctl_table *table, int write,
4401  			 void *buffer, size_t *length, loff_t *ppos)
4402  {
4403  	struct hstate *h = &default_hstate;
4404  	unsigned long tmp = h->max_huge_pages;
4405  	int ret;
4406  
4407  	if (!hugepages_supported())
4408  		return -EOPNOTSUPP;
4409  
4410  	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4411  					     &tmp);
4412  	if (ret)
4413  		goto out;
4414  
4415  	if (write)
4416  		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4417  						  NUMA_NO_NODE, tmp, *length);
4418  out:
4419  	return ret;
4420  }
4421  
4422  int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4423  			  void *buffer, size_t *length, loff_t *ppos)
4424  {
4425  
4426  	return hugetlb_sysctl_handler_common(false, table, write,
4427  							buffer, length, ppos);
4428  }
4429  
4430  #ifdef CONFIG_NUMA
4431  int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4432  			  void *buffer, size_t *length, loff_t *ppos)
4433  {
4434  	return hugetlb_sysctl_handler_common(true, table, write,
4435  							buffer, length, ppos);
4436  }
4437  #endif /* CONFIG_NUMA */
4438  
4439  int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4440  		void *buffer, size_t *length, loff_t *ppos)
4441  {
4442  	struct hstate *h = &default_hstate;
4443  	unsigned long tmp;
4444  	int ret;
4445  
4446  	if (!hugepages_supported())
4447  		return -EOPNOTSUPP;
4448  
4449  	tmp = h->nr_overcommit_huge_pages;
4450  
4451  	if (write && hstate_is_gigantic(h))
4452  		return -EINVAL;
4453  
4454  	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4455  					     &tmp);
4456  	if (ret)
4457  		goto out;
4458  
4459  	if (write) {
4460  		spin_lock_irq(&hugetlb_lock);
4461  		h->nr_overcommit_huge_pages = tmp;
4462  		spin_unlock_irq(&hugetlb_lock);
4463  	}
4464  out:
4465  	return ret;
4466  }
4467  
4468  #endif /* CONFIG_SYSCTL */
4469  
4470  void hugetlb_report_meminfo(struct seq_file *m)
4471  {
4472  	struct hstate *h;
4473  	unsigned long total = 0;
4474  
4475  	if (!hugepages_supported())
4476  		return;
4477  
4478  	for_each_hstate(h) {
4479  		unsigned long count = h->nr_huge_pages;
4480  
4481  		total += huge_page_size(h) * count;
4482  
4483  		if (h == &default_hstate)
4484  			seq_printf(m,
4485  				   "HugePages_Total:   %5lu\n"
4486  				   "HugePages_Free:    %5lu\n"
4487  				   "HugePages_Rsvd:    %5lu\n"
4488  				   "HugePages_Surp:    %5lu\n"
4489  				   "Hugepagesize:   %8lu kB\n",
4490  				   count,
4491  				   h->free_huge_pages,
4492  				   h->resv_huge_pages,
4493  				   h->surplus_huge_pages,
4494  				   huge_page_size(h) / SZ_1K);
4495  	}
4496  
4497  	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4498  }
4499  
4500  int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4501  {
4502  	struct hstate *h = &default_hstate;
4503  
4504  	if (!hugepages_supported())
4505  		return 0;
4506  
4507  	return sysfs_emit_at(buf, len,
4508  			     "Node %d HugePages_Total: %5u\n"
4509  			     "Node %d HugePages_Free:  %5u\n"
4510  			     "Node %d HugePages_Surp:  %5u\n",
4511  			     nid, h->nr_huge_pages_node[nid],
4512  			     nid, h->free_huge_pages_node[nid],
4513  			     nid, h->surplus_huge_pages_node[nid]);
4514  }
4515  
4516  void hugetlb_show_meminfo_node(int nid)
4517  {
4518  	struct hstate *h;
4519  
4520  	if (!hugepages_supported())
4521  		return;
4522  
4523  	for_each_hstate(h)
4524  		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4525  			nid,
4526  			h->nr_huge_pages_node[nid],
4527  			h->free_huge_pages_node[nid],
4528  			h->surplus_huge_pages_node[nid],
4529  			huge_page_size(h) / SZ_1K);
4530  }
4531  
4532  void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4533  {
4534  	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4535  		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4536  }
4537  
4538  /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4539  unsigned long hugetlb_total_pages(void)
4540  {
4541  	struct hstate *h;
4542  	unsigned long nr_total_pages = 0;
4543  
4544  	for_each_hstate(h)
4545  		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4546  	return nr_total_pages;
4547  }
4548  
4549  static int hugetlb_acct_memory(struct hstate *h, long delta)
4550  {
4551  	int ret = -ENOMEM;
4552  
4553  	if (!delta)
4554  		return 0;
4555  
4556  	spin_lock_irq(&hugetlb_lock);
4557  	/*
4558  	 * When cpuset is configured, it breaks the strict hugetlb page
4559  	 * reservation as the accounting is done on a global variable. Such
4560  	 * reservation is completely rubbish in the presence of cpuset because
4561  	 * the reservation is not checked against page availability for the
4562  	 * current cpuset. Application can still potentially OOM'ed by kernel
4563  	 * with lack of free htlb page in cpuset that the task is in.
4564  	 * Attempt to enforce strict accounting with cpuset is almost
4565  	 * impossible (or too ugly) because cpuset is too fluid that
4566  	 * task or memory node can be dynamically moved between cpusets.
4567  	 *
4568  	 * The change of semantics for shared hugetlb mapping with cpuset is
4569  	 * undesirable. However, in order to preserve some of the semantics,
4570  	 * we fall back to check against current free page availability as
4571  	 * a best attempt and hopefully to minimize the impact of changing
4572  	 * semantics that cpuset has.
4573  	 *
4574  	 * Apart from cpuset, we also have memory policy mechanism that
4575  	 * also determines from which node the kernel will allocate memory
4576  	 * in a NUMA system. So similar to cpuset, we also should consider
4577  	 * the memory policy of the current task. Similar to the description
4578  	 * above.
4579  	 */
4580  	if (delta > 0) {
4581  		if (gather_surplus_pages(h, delta) < 0)
4582  			goto out;
4583  
4584  		if (delta > allowed_mems_nr(h)) {
4585  			return_unused_surplus_pages(h, delta);
4586  			goto out;
4587  		}
4588  	}
4589  
4590  	ret = 0;
4591  	if (delta < 0)
4592  		return_unused_surplus_pages(h, (unsigned long) -delta);
4593  
4594  out:
4595  	spin_unlock_irq(&hugetlb_lock);
4596  	return ret;
4597  }
4598  
4599  static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4600  {
4601  	struct resv_map *resv = vma_resv_map(vma);
4602  
4603  	/*
4604  	 * This new VMA should share its siblings reservation map if present.
4605  	 * The VMA will only ever have a valid reservation map pointer where
4606  	 * it is being copied for another still existing VMA.  As that VMA
4607  	 * has a reference to the reservation map it cannot disappear until
4608  	 * after this open call completes.  It is therefore safe to take a
4609  	 * new reference here without additional locking.
4610  	 */
4611  	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4612  		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4613  		kref_get(&resv->refs);
4614  	}
4615  
4616  	/*
4617  	 * vma_lock structure for sharable mappings is vma specific.
4618  	 * Clear old pointer (if copied via vm_area_dup) and create new.
4619  	 */
4620  	if (vma->vm_flags & VM_MAYSHARE) {
4621  		vma->vm_private_data = NULL;
4622  		hugetlb_vma_lock_alloc(vma);
4623  	}
4624  }
4625  
4626  static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4627  {
4628  	struct hstate *h = hstate_vma(vma);
4629  	struct resv_map *resv;
4630  	struct hugepage_subpool *spool = subpool_vma(vma);
4631  	unsigned long reserve, start, end;
4632  	long gbl_reserve;
4633  
4634  	hugetlb_vma_lock_free(vma);
4635  
4636  	resv = vma_resv_map(vma);
4637  	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4638  		return;
4639  
4640  	start = vma_hugecache_offset(h, vma, vma->vm_start);
4641  	end = vma_hugecache_offset(h, vma, vma->vm_end);
4642  
4643  	reserve = (end - start) - region_count(resv, start, end);
4644  	hugetlb_cgroup_uncharge_counter(resv, start, end);
4645  	if (reserve) {
4646  		/*
4647  		 * Decrement reserve counts.  The global reserve count may be
4648  		 * adjusted if the subpool has a minimum size.
4649  		 */
4650  		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4651  		hugetlb_acct_memory(h, -gbl_reserve);
4652  	}
4653  
4654  	kref_put(&resv->refs, resv_map_release);
4655  }
4656  
4657  static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4658  {
4659  	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4660  		return -EINVAL;
4661  	return 0;
4662  }
4663  
4664  static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4665  {
4666  	return huge_page_size(hstate_vma(vma));
4667  }
4668  
4669  /*
4670   * We cannot handle pagefaults against hugetlb pages at all.  They cause
4671   * handle_mm_fault() to try to instantiate regular-sized pages in the
4672   * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4673   * this far.
4674   */
4675  static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4676  {
4677  	BUG();
4678  	return 0;
4679  }
4680  
4681  /*
4682   * When a new function is introduced to vm_operations_struct and added
4683   * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4684   * This is because under System V memory model, mappings created via
4685   * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4686   * their original vm_ops are overwritten with shm_vm_ops.
4687   */
4688  const struct vm_operations_struct hugetlb_vm_ops = {
4689  	.fault = hugetlb_vm_op_fault,
4690  	.open = hugetlb_vm_op_open,
4691  	.close = hugetlb_vm_op_close,
4692  	.may_split = hugetlb_vm_op_split,
4693  	.pagesize = hugetlb_vm_op_pagesize,
4694  };
4695  
4696  static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4697  				int writable)
4698  {
4699  	pte_t entry;
4700  	unsigned int shift = huge_page_shift(hstate_vma(vma));
4701  
4702  	if (writable) {
4703  		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4704  					 vma->vm_page_prot)));
4705  	} else {
4706  		entry = huge_pte_wrprotect(mk_huge_pte(page,
4707  					   vma->vm_page_prot));
4708  	}
4709  	entry = pte_mkyoung(entry);
4710  	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4711  
4712  	return entry;
4713  }
4714  
4715  static void set_huge_ptep_writable(struct vm_area_struct *vma,
4716  				   unsigned long address, pte_t *ptep)
4717  {
4718  	pte_t entry;
4719  
4720  	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4721  	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4722  		update_mmu_cache(vma, address, ptep);
4723  }
4724  
4725  bool is_hugetlb_entry_migration(pte_t pte)
4726  {
4727  	swp_entry_t swp;
4728  
4729  	if (huge_pte_none(pte) || pte_present(pte))
4730  		return false;
4731  	swp = pte_to_swp_entry(pte);
4732  	if (is_migration_entry(swp))
4733  		return true;
4734  	else
4735  		return false;
4736  }
4737  
4738  static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4739  {
4740  	swp_entry_t swp;
4741  
4742  	if (huge_pte_none(pte) || pte_present(pte))
4743  		return false;
4744  	swp = pte_to_swp_entry(pte);
4745  	if (is_hwpoison_entry(swp))
4746  		return true;
4747  	else
4748  		return false;
4749  }
4750  
4751  static void
4752  hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4753  		     struct page *new_page)
4754  {
4755  	__SetPageUptodate(new_page);
4756  	hugepage_add_new_anon_rmap(new_page, vma, addr);
4757  	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4758  	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4759  	ClearHPageRestoreReserve(new_page);
4760  	SetHPageMigratable(new_page);
4761  }
4762  
4763  int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4764  			    struct vm_area_struct *dst_vma,
4765  			    struct vm_area_struct *src_vma)
4766  {
4767  	pte_t *src_pte, *dst_pte, entry;
4768  	struct page *ptepage;
4769  	unsigned long addr;
4770  	bool cow = is_cow_mapping(src_vma->vm_flags);
4771  	struct hstate *h = hstate_vma(src_vma);
4772  	unsigned long sz = huge_page_size(h);
4773  	unsigned long npages = pages_per_huge_page(h);
4774  	struct mmu_notifier_range range;
4775  	unsigned long last_addr_mask;
4776  	int ret = 0;
4777  
4778  	if (cow) {
4779  		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4780  					src_vma->vm_start,
4781  					src_vma->vm_end);
4782  		mmu_notifier_invalidate_range_start(&range);
4783  		mmap_assert_write_locked(src);
4784  		raw_write_seqcount_begin(&src->write_protect_seq);
4785  	} else {
4786  		/*
4787  		 * For shared mappings the vma lock must be held before
4788  		 * calling huge_pte_offset in the src vma. Otherwise, the
4789  		 * returned ptep could go away if part of a shared pmd and
4790  		 * another thread calls huge_pmd_unshare.
4791  		 */
4792  		hugetlb_vma_lock_read(src_vma);
4793  	}
4794  
4795  	last_addr_mask = hugetlb_mask_last_page(h);
4796  	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4797  		spinlock_t *src_ptl, *dst_ptl;
4798  		src_pte = huge_pte_offset(src, addr, sz);
4799  		if (!src_pte) {
4800  			addr |= last_addr_mask;
4801  			continue;
4802  		}
4803  		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4804  		if (!dst_pte) {
4805  			ret = -ENOMEM;
4806  			break;
4807  		}
4808  
4809  		/*
4810  		 * If the pagetables are shared don't copy or take references.
4811  		 *
4812  		 * dst_pte == src_pte is the common case of src/dest sharing.
4813  		 * However, src could have 'unshared' and dst shares with
4814  		 * another vma. So page_count of ptep page is checked instead
4815  		 * to reliably determine whether pte is shared.
4816  		 */
4817  		if (page_count(virt_to_page(dst_pte)) > 1) {
4818  			addr |= last_addr_mask;
4819  			continue;
4820  		}
4821  
4822  		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4823  		src_ptl = huge_pte_lockptr(h, src, src_pte);
4824  		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4825  		entry = huge_ptep_get(src_pte);
4826  again:
4827  		if (huge_pte_none(entry)) {
4828  			/*
4829  			 * Skip if src entry none.
4830  			 */
4831  			;
4832  		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4833  			bool uffd_wp = huge_pte_uffd_wp(entry);
4834  
4835  			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4836  				entry = huge_pte_clear_uffd_wp(entry);
4837  			set_huge_pte_at(dst, addr, dst_pte, entry);
4838  		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4839  			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4840  			bool uffd_wp = huge_pte_uffd_wp(entry);
4841  
4842  			if (!is_readable_migration_entry(swp_entry) && cow) {
4843  				/*
4844  				 * COW mappings require pages in both
4845  				 * parent and child to be set to read.
4846  				 */
4847  				swp_entry = make_readable_migration_entry(
4848  							swp_offset(swp_entry));
4849  				entry = swp_entry_to_pte(swp_entry);
4850  				if (userfaultfd_wp(src_vma) && uffd_wp)
4851  					entry = huge_pte_mkuffd_wp(entry);
4852  				set_huge_pte_at(src, addr, src_pte, entry);
4853  			}
4854  			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855  				entry = huge_pte_clear_uffd_wp(entry);
4856  			set_huge_pte_at(dst, addr, dst_pte, entry);
4857  		} else if (unlikely(is_pte_marker(entry))) {
4858  			/*
4859  			 * We copy the pte marker only if the dst vma has
4860  			 * uffd-wp enabled.
4861  			 */
4862  			if (userfaultfd_wp(dst_vma))
4863  				set_huge_pte_at(dst, addr, dst_pte, entry);
4864  		} else {
4865  			entry = huge_ptep_get(src_pte);
4866  			ptepage = pte_page(entry);
4867  			get_page(ptepage);
4868  
4869  			/*
4870  			 * Failing to duplicate the anon rmap is a rare case
4871  			 * where we see pinned hugetlb pages while they're
4872  			 * prone to COW. We need to do the COW earlier during
4873  			 * fork.
4874  			 *
4875  			 * When pre-allocating the page or copying data, we
4876  			 * need to be without the pgtable locks since we could
4877  			 * sleep during the process.
4878  			 */
4879  			if (!PageAnon(ptepage)) {
4880  				page_dup_file_rmap(ptepage, true);
4881  			} else if (page_try_dup_anon_rmap(ptepage, true,
4882  							  src_vma)) {
4883  				pte_t src_pte_old = entry;
4884  				struct page *new;
4885  
4886  				spin_unlock(src_ptl);
4887  				spin_unlock(dst_ptl);
4888  				/* Do not use reserve as it's private owned */
4889  				new = alloc_huge_page(dst_vma, addr, 1);
4890  				if (IS_ERR(new)) {
4891  					put_page(ptepage);
4892  					ret = PTR_ERR(new);
4893  					break;
4894  				}
4895  				copy_user_huge_page(new, ptepage, addr, dst_vma,
4896  						    npages);
4897  				put_page(ptepage);
4898  
4899  				/* Install the new huge page if src pte stable */
4900  				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4901  				src_ptl = huge_pte_lockptr(h, src, src_pte);
4902  				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4903  				entry = huge_ptep_get(src_pte);
4904  				if (!pte_same(src_pte_old, entry)) {
4905  					restore_reserve_on_error(h, dst_vma, addr,
4906  								new);
4907  					put_page(new);
4908  					/* huge_ptep of dst_pte won't change as in child */
4909  					goto again;
4910  				}
4911  				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4912  				spin_unlock(src_ptl);
4913  				spin_unlock(dst_ptl);
4914  				continue;
4915  			}
4916  
4917  			if (cow) {
4918  				/*
4919  				 * No need to notify as we are downgrading page
4920  				 * table protection not changing it to point
4921  				 * to a new page.
4922  				 *
4923  				 * See Documentation/mm/mmu_notifier.rst
4924  				 */
4925  				huge_ptep_set_wrprotect(src, addr, src_pte);
4926  				entry = huge_pte_wrprotect(entry);
4927  			}
4928  
4929  			set_huge_pte_at(dst, addr, dst_pte, entry);
4930  			hugetlb_count_add(npages, dst);
4931  		}
4932  		spin_unlock(src_ptl);
4933  		spin_unlock(dst_ptl);
4934  	}
4935  
4936  	if (cow) {
4937  		raw_write_seqcount_end(&src->write_protect_seq);
4938  		mmu_notifier_invalidate_range_end(&range);
4939  	} else {
4940  		hugetlb_vma_unlock_read(src_vma);
4941  	}
4942  
4943  	return ret;
4944  }
4945  
4946  static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4947  			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4948  {
4949  	struct hstate *h = hstate_vma(vma);
4950  	struct mm_struct *mm = vma->vm_mm;
4951  	spinlock_t *src_ptl, *dst_ptl;
4952  	pte_t pte;
4953  
4954  	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4955  	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4956  
4957  	/*
4958  	 * We don't have to worry about the ordering of src and dst ptlocks
4959  	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4960  	 */
4961  	if (src_ptl != dst_ptl)
4962  		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4963  
4964  	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4965  	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4966  
4967  	if (src_ptl != dst_ptl)
4968  		spin_unlock(src_ptl);
4969  	spin_unlock(dst_ptl);
4970  }
4971  
4972  int move_hugetlb_page_tables(struct vm_area_struct *vma,
4973  			     struct vm_area_struct *new_vma,
4974  			     unsigned long old_addr, unsigned long new_addr,
4975  			     unsigned long len)
4976  {
4977  	struct hstate *h = hstate_vma(vma);
4978  	struct address_space *mapping = vma->vm_file->f_mapping;
4979  	unsigned long sz = huge_page_size(h);
4980  	struct mm_struct *mm = vma->vm_mm;
4981  	unsigned long old_end = old_addr + len;
4982  	unsigned long last_addr_mask;
4983  	pte_t *src_pte, *dst_pte;
4984  	struct mmu_notifier_range range;
4985  	bool shared_pmd = false;
4986  
4987  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4988  				old_end);
4989  	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4990  	/*
4991  	 * In case of shared PMDs, we should cover the maximum possible
4992  	 * range.
4993  	 */
4994  	flush_cache_range(vma, range.start, range.end);
4995  
4996  	mmu_notifier_invalidate_range_start(&range);
4997  	last_addr_mask = hugetlb_mask_last_page(h);
4998  	/* Prevent race with file truncation */
4999  	hugetlb_vma_lock_write(vma);
5000  	i_mmap_lock_write(mapping);
5001  	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5002  		src_pte = huge_pte_offset(mm, old_addr, sz);
5003  		if (!src_pte) {
5004  			old_addr |= last_addr_mask;
5005  			new_addr |= last_addr_mask;
5006  			continue;
5007  		}
5008  		if (huge_pte_none(huge_ptep_get(src_pte)))
5009  			continue;
5010  
5011  		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5012  			shared_pmd = true;
5013  			old_addr |= last_addr_mask;
5014  			new_addr |= last_addr_mask;
5015  			continue;
5016  		}
5017  
5018  		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5019  		if (!dst_pte)
5020  			break;
5021  
5022  		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5023  	}
5024  
5025  	if (shared_pmd)
5026  		flush_tlb_range(vma, range.start, range.end);
5027  	else
5028  		flush_tlb_range(vma, old_end - len, old_end);
5029  	mmu_notifier_invalidate_range_end(&range);
5030  	i_mmap_unlock_write(mapping);
5031  	hugetlb_vma_unlock_write(vma);
5032  
5033  	return len + old_addr - old_end;
5034  }
5035  
5036  static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5037  				   unsigned long start, unsigned long end,
5038  				   struct page *ref_page, zap_flags_t zap_flags)
5039  {
5040  	struct mm_struct *mm = vma->vm_mm;
5041  	unsigned long address;
5042  	pte_t *ptep;
5043  	pte_t pte;
5044  	spinlock_t *ptl;
5045  	struct page *page;
5046  	struct hstate *h = hstate_vma(vma);
5047  	unsigned long sz = huge_page_size(h);
5048  	struct mmu_notifier_range range;
5049  	unsigned long last_addr_mask;
5050  	bool force_flush = false;
5051  
5052  	WARN_ON(!is_vm_hugetlb_page(vma));
5053  	BUG_ON(start & ~huge_page_mask(h));
5054  	BUG_ON(end & ~huge_page_mask(h));
5055  
5056  	/*
5057  	 * This is a hugetlb vma, all the pte entries should point
5058  	 * to huge page.
5059  	 */
5060  	tlb_change_page_size(tlb, sz);
5061  	tlb_start_vma(tlb, vma);
5062  
5063  	/*
5064  	 * If sharing possible, alert mmu notifiers of worst case.
5065  	 */
5066  	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5067  				end);
5068  	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5069  	mmu_notifier_invalidate_range_start(&range);
5070  	last_addr_mask = hugetlb_mask_last_page(h);
5071  	address = start;
5072  	for (; address < end; address += sz) {
5073  		ptep = huge_pte_offset(mm, address, sz);
5074  		if (!ptep) {
5075  			address |= last_addr_mask;
5076  			continue;
5077  		}
5078  
5079  		ptl = huge_pte_lock(h, mm, ptep);
5080  		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5081  			spin_unlock(ptl);
5082  			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5083  			force_flush = true;
5084  			address |= last_addr_mask;
5085  			continue;
5086  		}
5087  
5088  		pte = huge_ptep_get(ptep);
5089  		if (huge_pte_none(pte)) {
5090  			spin_unlock(ptl);
5091  			continue;
5092  		}
5093  
5094  		/*
5095  		 * Migrating hugepage or HWPoisoned hugepage is already
5096  		 * unmapped and its refcount is dropped, so just clear pte here.
5097  		 */
5098  		if (unlikely(!pte_present(pte))) {
5099  #ifdef CONFIG_PTE_MARKER_UFFD_WP
5100  			/*
5101  			 * If the pte was wr-protected by uffd-wp in any of the
5102  			 * swap forms, meanwhile the caller does not want to
5103  			 * drop the uffd-wp bit in this zap, then replace the
5104  			 * pte with a marker.
5105  			 */
5106  			if (pte_swp_uffd_wp_any(pte) &&
5107  			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5108  				set_huge_pte_at(mm, address, ptep,
5109  						make_pte_marker(PTE_MARKER_UFFD_WP));
5110  			else
5111  #endif
5112  				huge_pte_clear(mm, address, ptep, sz);
5113  			spin_unlock(ptl);
5114  			continue;
5115  		}
5116  
5117  		page = pte_page(pte);
5118  		/*
5119  		 * If a reference page is supplied, it is because a specific
5120  		 * page is being unmapped, not a range. Ensure the page we
5121  		 * are about to unmap is the actual page of interest.
5122  		 */
5123  		if (ref_page) {
5124  			if (page != ref_page) {
5125  				spin_unlock(ptl);
5126  				continue;
5127  			}
5128  			/*
5129  			 * Mark the VMA as having unmapped its page so that
5130  			 * future faults in this VMA will fail rather than
5131  			 * looking like data was lost
5132  			 */
5133  			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5134  		}
5135  
5136  		pte = huge_ptep_get_and_clear(mm, address, ptep);
5137  		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5138  		if (huge_pte_dirty(pte))
5139  			set_page_dirty(page);
5140  #ifdef CONFIG_PTE_MARKER_UFFD_WP
5141  		/* Leave a uffd-wp pte marker if needed */
5142  		if (huge_pte_uffd_wp(pte) &&
5143  		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5144  			set_huge_pte_at(mm, address, ptep,
5145  					make_pte_marker(PTE_MARKER_UFFD_WP));
5146  #endif
5147  		hugetlb_count_sub(pages_per_huge_page(h), mm);
5148  		page_remove_rmap(page, vma, true);
5149  
5150  		spin_unlock(ptl);
5151  		tlb_remove_page_size(tlb, page, huge_page_size(h));
5152  		/*
5153  		 * Bail out after unmapping reference page if supplied
5154  		 */
5155  		if (ref_page)
5156  			break;
5157  	}
5158  	mmu_notifier_invalidate_range_end(&range);
5159  	tlb_end_vma(tlb, vma);
5160  
5161  	/*
5162  	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5163  	 * could defer the flush until now, since by holding i_mmap_rwsem we
5164  	 * guaranteed that the last refernece would not be dropped. But we must
5165  	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5166  	 * dropped and the last reference to the shared PMDs page might be
5167  	 * dropped as well.
5168  	 *
5169  	 * In theory we could defer the freeing of the PMD pages as well, but
5170  	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5171  	 * detect sharing, so we cannot defer the release of the page either.
5172  	 * Instead, do flush now.
5173  	 */
5174  	if (force_flush)
5175  		tlb_flush_mmu_tlbonly(tlb);
5176  }
5177  
5178  void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5179  			  struct vm_area_struct *vma, unsigned long start,
5180  			  unsigned long end, struct page *ref_page,
5181  			  zap_flags_t zap_flags)
5182  {
5183  	hugetlb_vma_lock_write(vma);
5184  	i_mmap_lock_write(vma->vm_file->f_mapping);
5185  
5186  	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5187  
5188  	/*
5189  	 * Unlock and free the vma lock before releasing i_mmap_rwsem.  When
5190  	 * the vma_lock is freed, this makes the vma ineligible for pmd
5191  	 * sharing.  And, i_mmap_rwsem is required to set up pmd sharing.
5192  	 * This is important as page tables for this unmapped range will
5193  	 * be asynchrously deleted.  If the page tables are shared, there
5194  	 * will be issues when accessed by someone else.
5195  	 */
5196  	__hugetlb_vma_unlock_write_free(vma);
5197  
5198  	i_mmap_unlock_write(vma->vm_file->f_mapping);
5199  }
5200  
5201  void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5202  			  unsigned long end, struct page *ref_page,
5203  			  zap_flags_t zap_flags)
5204  {
5205  	struct mmu_gather tlb;
5206  
5207  	tlb_gather_mmu(&tlb, vma->vm_mm);
5208  	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5209  	tlb_finish_mmu(&tlb);
5210  }
5211  
5212  /*
5213   * This is called when the original mapper is failing to COW a MAP_PRIVATE
5214   * mapping it owns the reserve page for. The intention is to unmap the page
5215   * from other VMAs and let the children be SIGKILLed if they are faulting the
5216   * same region.
5217   */
5218  static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5219  			      struct page *page, unsigned long address)
5220  {
5221  	struct hstate *h = hstate_vma(vma);
5222  	struct vm_area_struct *iter_vma;
5223  	struct address_space *mapping;
5224  	pgoff_t pgoff;
5225  
5226  	/*
5227  	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5228  	 * from page cache lookup which is in HPAGE_SIZE units.
5229  	 */
5230  	address = address & huge_page_mask(h);
5231  	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5232  			vma->vm_pgoff;
5233  	mapping = vma->vm_file->f_mapping;
5234  
5235  	/*
5236  	 * Take the mapping lock for the duration of the table walk. As
5237  	 * this mapping should be shared between all the VMAs,
5238  	 * __unmap_hugepage_range() is called as the lock is already held
5239  	 */
5240  	i_mmap_lock_write(mapping);
5241  	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5242  		/* Do not unmap the current VMA */
5243  		if (iter_vma == vma)
5244  			continue;
5245  
5246  		/*
5247  		 * Shared VMAs have their own reserves and do not affect
5248  		 * MAP_PRIVATE accounting but it is possible that a shared
5249  		 * VMA is using the same page so check and skip such VMAs.
5250  		 */
5251  		if (iter_vma->vm_flags & VM_MAYSHARE)
5252  			continue;
5253  
5254  		/*
5255  		 * Unmap the page from other VMAs without their own reserves.
5256  		 * They get marked to be SIGKILLed if they fault in these
5257  		 * areas. This is because a future no-page fault on this VMA
5258  		 * could insert a zeroed page instead of the data existing
5259  		 * from the time of fork. This would look like data corruption
5260  		 */
5261  		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5262  			unmap_hugepage_range(iter_vma, address,
5263  					     address + huge_page_size(h), page, 0);
5264  	}
5265  	i_mmap_unlock_write(mapping);
5266  }
5267  
5268  /*
5269   * hugetlb_wp() should be called with page lock of the original hugepage held.
5270   * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5271   * cannot race with other handlers or page migration.
5272   * Keep the pte_same checks anyway to make transition from the mutex easier.
5273   */
5274  static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5275  		       unsigned long address, pte_t *ptep, unsigned int flags,
5276  		       struct page *pagecache_page, spinlock_t *ptl)
5277  {
5278  	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5279  	pte_t pte;
5280  	struct hstate *h = hstate_vma(vma);
5281  	struct page *old_page, *new_page;
5282  	int outside_reserve = 0;
5283  	vm_fault_t ret = 0;
5284  	unsigned long haddr = address & huge_page_mask(h);
5285  	struct mmu_notifier_range range;
5286  
5287  	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5288  	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5289  
5290  	/*
5291  	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5292  	 * PTE mapped R/O such as maybe_mkwrite() would do.
5293  	 */
5294  	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5295  		return VM_FAULT_SIGSEGV;
5296  
5297  	/* Let's take out MAP_SHARED mappings first. */
5298  	if (vma->vm_flags & VM_MAYSHARE) {
5299  		if (unlikely(unshare))
5300  			return 0;
5301  		set_huge_ptep_writable(vma, haddr, ptep);
5302  		return 0;
5303  	}
5304  
5305  	pte = huge_ptep_get(ptep);
5306  	old_page = pte_page(pte);
5307  
5308  	delayacct_wpcopy_start();
5309  
5310  retry_avoidcopy:
5311  	/*
5312  	 * If no-one else is actually using this page, we're the exclusive
5313  	 * owner and can reuse this page.
5314  	 */
5315  	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5316  		if (!PageAnonExclusive(old_page))
5317  			page_move_anon_rmap(old_page, vma);
5318  		if (likely(!unshare))
5319  			set_huge_ptep_writable(vma, haddr, ptep);
5320  
5321  		delayacct_wpcopy_end();
5322  		return 0;
5323  	}
5324  	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5325  		       old_page);
5326  
5327  	/*
5328  	 * If the process that created a MAP_PRIVATE mapping is about to
5329  	 * perform a COW due to a shared page count, attempt to satisfy
5330  	 * the allocation without using the existing reserves. The pagecache
5331  	 * page is used to determine if the reserve at this address was
5332  	 * consumed or not. If reserves were used, a partial faulted mapping
5333  	 * at the time of fork() could consume its reserves on COW instead
5334  	 * of the full address range.
5335  	 */
5336  	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5337  			old_page != pagecache_page)
5338  		outside_reserve = 1;
5339  
5340  	get_page(old_page);
5341  
5342  	/*
5343  	 * Drop page table lock as buddy allocator may be called. It will
5344  	 * be acquired again before returning to the caller, as expected.
5345  	 */
5346  	spin_unlock(ptl);
5347  	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5348  
5349  	if (IS_ERR(new_page)) {
5350  		/*
5351  		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5352  		 * it is due to references held by a child and an insufficient
5353  		 * huge page pool. To guarantee the original mappers
5354  		 * reliability, unmap the page from child processes. The child
5355  		 * may get SIGKILLed if it later faults.
5356  		 */
5357  		if (outside_reserve) {
5358  			struct address_space *mapping = vma->vm_file->f_mapping;
5359  			pgoff_t idx;
5360  			u32 hash;
5361  
5362  			put_page(old_page);
5363  			/*
5364  			 * Drop hugetlb_fault_mutex and vma_lock before
5365  			 * unmapping.  unmapping needs to hold vma_lock
5366  			 * in write mode.  Dropping vma_lock in read mode
5367  			 * here is OK as COW mappings do not interact with
5368  			 * PMD sharing.
5369  			 *
5370  			 * Reacquire both after unmap operation.
5371  			 */
5372  			idx = vma_hugecache_offset(h, vma, haddr);
5373  			hash = hugetlb_fault_mutex_hash(mapping, idx);
5374  			hugetlb_vma_unlock_read(vma);
5375  			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5376  
5377  			unmap_ref_private(mm, vma, old_page, haddr);
5378  
5379  			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5380  			hugetlb_vma_lock_read(vma);
5381  			spin_lock(ptl);
5382  			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5383  			if (likely(ptep &&
5384  				   pte_same(huge_ptep_get(ptep), pte)))
5385  				goto retry_avoidcopy;
5386  			/*
5387  			 * race occurs while re-acquiring page table
5388  			 * lock, and our job is done.
5389  			 */
5390  			delayacct_wpcopy_end();
5391  			return 0;
5392  		}
5393  
5394  		ret = vmf_error(PTR_ERR(new_page));
5395  		goto out_release_old;
5396  	}
5397  
5398  	/*
5399  	 * When the original hugepage is shared one, it does not have
5400  	 * anon_vma prepared.
5401  	 */
5402  	if (unlikely(anon_vma_prepare(vma))) {
5403  		ret = VM_FAULT_OOM;
5404  		goto out_release_all;
5405  	}
5406  
5407  	copy_user_huge_page(new_page, old_page, address, vma,
5408  			    pages_per_huge_page(h));
5409  	__SetPageUptodate(new_page);
5410  
5411  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5412  				haddr + huge_page_size(h));
5413  	mmu_notifier_invalidate_range_start(&range);
5414  
5415  	/*
5416  	 * Retake the page table lock to check for racing updates
5417  	 * before the page tables are altered
5418  	 */
5419  	spin_lock(ptl);
5420  	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5421  	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5422  		ClearHPageRestoreReserve(new_page);
5423  
5424  		/* Break COW or unshare */
5425  		huge_ptep_clear_flush(vma, haddr, ptep);
5426  		mmu_notifier_invalidate_range(mm, range.start, range.end);
5427  		page_remove_rmap(old_page, vma, true);
5428  		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5429  		set_huge_pte_at(mm, haddr, ptep,
5430  				make_huge_pte(vma, new_page, !unshare));
5431  		SetHPageMigratable(new_page);
5432  		/* Make the old page be freed below */
5433  		new_page = old_page;
5434  	}
5435  	spin_unlock(ptl);
5436  	mmu_notifier_invalidate_range_end(&range);
5437  out_release_all:
5438  	/*
5439  	 * No restore in case of successful pagetable update (Break COW or
5440  	 * unshare)
5441  	 */
5442  	if (new_page != old_page)
5443  		restore_reserve_on_error(h, vma, haddr, new_page);
5444  	put_page(new_page);
5445  out_release_old:
5446  	put_page(old_page);
5447  
5448  	spin_lock(ptl); /* Caller expects lock to be held */
5449  
5450  	delayacct_wpcopy_end();
5451  	return ret;
5452  }
5453  
5454  /*
5455   * Return whether there is a pagecache page to back given address within VMA.
5456   * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5457   */
5458  static bool hugetlbfs_pagecache_present(struct hstate *h,
5459  			struct vm_area_struct *vma, unsigned long address)
5460  {
5461  	struct address_space *mapping;
5462  	pgoff_t idx;
5463  	struct page *page;
5464  
5465  	mapping = vma->vm_file->f_mapping;
5466  	idx = vma_hugecache_offset(h, vma, address);
5467  
5468  	page = find_get_page(mapping, idx);
5469  	if (page)
5470  		put_page(page);
5471  	return page != NULL;
5472  }
5473  
5474  int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5475  			   pgoff_t idx)
5476  {
5477  	struct folio *folio = page_folio(page);
5478  	struct inode *inode = mapping->host;
5479  	struct hstate *h = hstate_inode(inode);
5480  	int err;
5481  
5482  	__folio_set_locked(folio);
5483  	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5484  
5485  	if (unlikely(err)) {
5486  		__folio_clear_locked(folio);
5487  		return err;
5488  	}
5489  	ClearHPageRestoreReserve(page);
5490  
5491  	/*
5492  	 * mark folio dirty so that it will not be removed from cache/file
5493  	 * by non-hugetlbfs specific code paths.
5494  	 */
5495  	folio_mark_dirty(folio);
5496  
5497  	spin_lock(&inode->i_lock);
5498  	inode->i_blocks += blocks_per_huge_page(h);
5499  	spin_unlock(&inode->i_lock);
5500  	return 0;
5501  }
5502  
5503  static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5504  						  struct address_space *mapping,
5505  						  pgoff_t idx,
5506  						  unsigned int flags,
5507  						  unsigned long haddr,
5508  						  unsigned long addr,
5509  						  unsigned long reason)
5510  {
5511  	u32 hash;
5512  	struct vm_fault vmf = {
5513  		.vma = vma,
5514  		.address = haddr,
5515  		.real_address = addr,
5516  		.flags = flags,
5517  
5518  		/*
5519  		 * Hard to debug if it ends up being
5520  		 * used by a callee that assumes
5521  		 * something about the other
5522  		 * uninitialized fields... same as in
5523  		 * memory.c
5524  		 */
5525  	};
5526  
5527  	/*
5528  	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5529  	 * userfault. Also mmap_lock could be dropped due to handling
5530  	 * userfault, any vma operation should be careful from here.
5531  	 */
5532  	hugetlb_vma_unlock_read(vma);
5533  	hash = hugetlb_fault_mutex_hash(mapping, idx);
5534  	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5535  	return handle_userfault(&vmf, reason);
5536  }
5537  
5538  /*
5539   * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5540   * false if pte changed or is changing.
5541   */
5542  static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5543  			       pte_t *ptep, pte_t old_pte)
5544  {
5545  	spinlock_t *ptl;
5546  	bool same;
5547  
5548  	ptl = huge_pte_lock(h, mm, ptep);
5549  	same = pte_same(huge_ptep_get(ptep), old_pte);
5550  	spin_unlock(ptl);
5551  
5552  	return same;
5553  }
5554  
5555  static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5556  			struct vm_area_struct *vma,
5557  			struct address_space *mapping, pgoff_t idx,
5558  			unsigned long address, pte_t *ptep,
5559  			pte_t old_pte, unsigned int flags)
5560  {
5561  	struct hstate *h = hstate_vma(vma);
5562  	vm_fault_t ret = VM_FAULT_SIGBUS;
5563  	int anon_rmap = 0;
5564  	unsigned long size;
5565  	struct page *page;
5566  	pte_t new_pte;
5567  	spinlock_t *ptl;
5568  	unsigned long haddr = address & huge_page_mask(h);
5569  	bool new_page, new_pagecache_page = false;
5570  	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5571  
5572  	/*
5573  	 * Currently, we are forced to kill the process in the event the
5574  	 * original mapper has unmapped pages from the child due to a failed
5575  	 * COW/unsharing. Warn that such a situation has occurred as it may not
5576  	 * be obvious.
5577  	 */
5578  	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5579  		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5580  			   current->pid);
5581  		goto out;
5582  	}
5583  
5584  	/*
5585  	 * Use page lock to guard against racing truncation
5586  	 * before we get page_table_lock.
5587  	 */
5588  	new_page = false;
5589  	page = find_lock_page(mapping, idx);
5590  	if (!page) {
5591  		size = i_size_read(mapping->host) >> huge_page_shift(h);
5592  		if (idx >= size)
5593  			goto out;
5594  		/* Check for page in userfault range */
5595  		if (userfaultfd_missing(vma)) {
5596  			/*
5597  			 * Since hugetlb_no_page() was examining pte
5598  			 * without pgtable lock, we need to re-test under
5599  			 * lock because the pte may not be stable and could
5600  			 * have changed from under us.  Try to detect
5601  			 * either changed or during-changing ptes and retry
5602  			 * properly when needed.
5603  			 *
5604  			 * Note that userfaultfd is actually fine with
5605  			 * false positives (e.g. caused by pte changed),
5606  			 * but not wrong logical events (e.g. caused by
5607  			 * reading a pte during changing).  The latter can
5608  			 * confuse the userspace, so the strictness is very
5609  			 * much preferred.  E.g., MISSING event should
5610  			 * never happen on the page after UFFDIO_COPY has
5611  			 * correctly installed the page and returned.
5612  			 */
5613  			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5614  				ret = 0;
5615  				goto out;
5616  			}
5617  
5618  			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5619  							haddr, address,
5620  							VM_UFFD_MISSING);
5621  		}
5622  
5623  		page = alloc_huge_page(vma, haddr, 0);
5624  		if (IS_ERR(page)) {
5625  			/*
5626  			 * Returning error will result in faulting task being
5627  			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5628  			 * tasks from racing to fault in the same page which
5629  			 * could result in false unable to allocate errors.
5630  			 * Page migration does not take the fault mutex, but
5631  			 * does a clear then write of pte's under page table
5632  			 * lock.  Page fault code could race with migration,
5633  			 * notice the clear pte and try to allocate a page
5634  			 * here.  Before returning error, get ptl and make
5635  			 * sure there really is no pte entry.
5636  			 */
5637  			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5638  				ret = vmf_error(PTR_ERR(page));
5639  			else
5640  				ret = 0;
5641  			goto out;
5642  		}
5643  		clear_huge_page(page, address, pages_per_huge_page(h));
5644  		__SetPageUptodate(page);
5645  		new_page = true;
5646  
5647  		if (vma->vm_flags & VM_MAYSHARE) {
5648  			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5649  			if (err) {
5650  				/*
5651  				 * err can't be -EEXIST which implies someone
5652  				 * else consumed the reservation since hugetlb
5653  				 * fault mutex is held when add a hugetlb page
5654  				 * to the page cache. So it's safe to call
5655  				 * restore_reserve_on_error() here.
5656  				 */
5657  				restore_reserve_on_error(h, vma, haddr, page);
5658  				put_page(page);
5659  				goto out;
5660  			}
5661  			new_pagecache_page = true;
5662  		} else {
5663  			lock_page(page);
5664  			if (unlikely(anon_vma_prepare(vma))) {
5665  				ret = VM_FAULT_OOM;
5666  				goto backout_unlocked;
5667  			}
5668  			anon_rmap = 1;
5669  		}
5670  	} else {
5671  		/*
5672  		 * If memory error occurs between mmap() and fault, some process
5673  		 * don't have hwpoisoned swap entry for errored virtual address.
5674  		 * So we need to block hugepage fault by PG_hwpoison bit check.
5675  		 */
5676  		if (unlikely(PageHWPoison(page))) {
5677  			ret = VM_FAULT_HWPOISON_LARGE |
5678  				VM_FAULT_SET_HINDEX(hstate_index(h));
5679  			goto backout_unlocked;
5680  		}
5681  
5682  		/* Check for page in userfault range. */
5683  		if (userfaultfd_minor(vma)) {
5684  			unlock_page(page);
5685  			put_page(page);
5686  			/* See comment in userfaultfd_missing() block above */
5687  			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5688  				ret = 0;
5689  				goto out;
5690  			}
5691  			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5692  							haddr, address,
5693  							VM_UFFD_MINOR);
5694  		}
5695  	}
5696  
5697  	/*
5698  	 * If we are going to COW a private mapping later, we examine the
5699  	 * pending reservations for this page now. This will ensure that
5700  	 * any allocations necessary to record that reservation occur outside
5701  	 * the spinlock.
5702  	 */
5703  	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5704  		if (vma_needs_reservation(h, vma, haddr) < 0) {
5705  			ret = VM_FAULT_OOM;
5706  			goto backout_unlocked;
5707  		}
5708  		/* Just decrements count, does not deallocate */
5709  		vma_end_reservation(h, vma, haddr);
5710  	}
5711  
5712  	ptl = huge_pte_lock(h, mm, ptep);
5713  	ret = 0;
5714  	/* If pte changed from under us, retry */
5715  	if (!pte_same(huge_ptep_get(ptep), old_pte))
5716  		goto backout;
5717  
5718  	if (anon_rmap) {
5719  		ClearHPageRestoreReserve(page);
5720  		hugepage_add_new_anon_rmap(page, vma, haddr);
5721  	} else
5722  		page_dup_file_rmap(page, true);
5723  	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5724  				&& (vma->vm_flags & VM_SHARED)));
5725  	/*
5726  	 * If this pte was previously wr-protected, keep it wr-protected even
5727  	 * if populated.
5728  	 */
5729  	if (unlikely(pte_marker_uffd_wp(old_pte)))
5730  		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5731  	set_huge_pte_at(mm, haddr, ptep, new_pte);
5732  
5733  	hugetlb_count_add(pages_per_huge_page(h), mm);
5734  	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5735  		/* Optimization, do the COW without a second fault */
5736  		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5737  	}
5738  
5739  	spin_unlock(ptl);
5740  
5741  	/*
5742  	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5743  	 * found in the pagecache may not have HPageMigratableset if they have
5744  	 * been isolated for migration.
5745  	 */
5746  	if (new_page)
5747  		SetHPageMigratable(page);
5748  
5749  	unlock_page(page);
5750  out:
5751  	hugetlb_vma_unlock_read(vma);
5752  	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5753  	return ret;
5754  
5755  backout:
5756  	spin_unlock(ptl);
5757  backout_unlocked:
5758  	if (new_page && !new_pagecache_page)
5759  		restore_reserve_on_error(h, vma, haddr, page);
5760  
5761  	unlock_page(page);
5762  	put_page(page);
5763  	goto out;
5764  }
5765  
5766  #ifdef CONFIG_SMP
5767  u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5768  {
5769  	unsigned long key[2];
5770  	u32 hash;
5771  
5772  	key[0] = (unsigned long) mapping;
5773  	key[1] = idx;
5774  
5775  	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5776  
5777  	return hash & (num_fault_mutexes - 1);
5778  }
5779  #else
5780  /*
5781   * For uniprocessor systems we always use a single mutex, so just
5782   * return 0 and avoid the hashing overhead.
5783   */
5784  u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5785  {
5786  	return 0;
5787  }
5788  #endif
5789  
5790  vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5791  			unsigned long address, unsigned int flags)
5792  {
5793  	pte_t *ptep, entry;
5794  	spinlock_t *ptl;
5795  	vm_fault_t ret;
5796  	u32 hash;
5797  	pgoff_t idx;
5798  	struct page *page = NULL;
5799  	struct page *pagecache_page = NULL;
5800  	struct hstate *h = hstate_vma(vma);
5801  	struct address_space *mapping;
5802  	int need_wait_lock = 0;
5803  	unsigned long haddr = address & huge_page_mask(h);
5804  
5805  	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5806  	if (ptep) {
5807  		/*
5808  		 * Since we hold no locks, ptep could be stale.  That is
5809  		 * OK as we are only making decisions based on content and
5810  		 * not actually modifying content here.
5811  		 */
5812  		entry = huge_ptep_get(ptep);
5813  		if (unlikely(is_hugetlb_entry_migration(entry))) {
5814  			migration_entry_wait_huge(vma, ptep);
5815  			return 0;
5816  		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5817  			return VM_FAULT_HWPOISON_LARGE |
5818  				VM_FAULT_SET_HINDEX(hstate_index(h));
5819  	}
5820  
5821  	/*
5822  	 * Serialize hugepage allocation and instantiation, so that we don't
5823  	 * get spurious allocation failures if two CPUs race to instantiate
5824  	 * the same page in the page cache.
5825  	 */
5826  	mapping = vma->vm_file->f_mapping;
5827  	idx = vma_hugecache_offset(h, vma, haddr);
5828  	hash = hugetlb_fault_mutex_hash(mapping, idx);
5829  	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5830  
5831  	/*
5832  	 * Acquire vma lock before calling huge_pte_alloc and hold
5833  	 * until finished with ptep.  This prevents huge_pmd_unshare from
5834  	 * being called elsewhere and making the ptep no longer valid.
5835  	 *
5836  	 * ptep could have already be assigned via huge_pte_offset.  That
5837  	 * is OK, as huge_pte_alloc will return the same value unless
5838  	 * something has changed.
5839  	 */
5840  	hugetlb_vma_lock_read(vma);
5841  	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5842  	if (!ptep) {
5843  		hugetlb_vma_unlock_read(vma);
5844  		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5845  		return VM_FAULT_OOM;
5846  	}
5847  
5848  	entry = huge_ptep_get(ptep);
5849  	/* PTE markers should be handled the same way as none pte */
5850  	if (huge_pte_none_mostly(entry))
5851  		/*
5852  		 * hugetlb_no_page will drop vma lock and hugetlb fault
5853  		 * mutex internally, which make us return immediately.
5854  		 */
5855  		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5856  				      entry, flags);
5857  
5858  	ret = 0;
5859  
5860  	/*
5861  	 * entry could be a migration/hwpoison entry at this point, so this
5862  	 * check prevents the kernel from going below assuming that we have
5863  	 * an active hugepage in pagecache. This goto expects the 2nd page
5864  	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5865  	 * properly handle it.
5866  	 */
5867  	if (!pte_present(entry))
5868  		goto out_mutex;
5869  
5870  	/*
5871  	 * If we are going to COW/unshare the mapping later, we examine the
5872  	 * pending reservations for this page now. This will ensure that any
5873  	 * allocations necessary to record that reservation occur outside the
5874  	 * spinlock. Also lookup the pagecache page now as it is used to
5875  	 * determine if a reservation has been consumed.
5876  	 */
5877  	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5878  	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5879  		if (vma_needs_reservation(h, vma, haddr) < 0) {
5880  			ret = VM_FAULT_OOM;
5881  			goto out_mutex;
5882  		}
5883  		/* Just decrements count, does not deallocate */
5884  		vma_end_reservation(h, vma, haddr);
5885  
5886  		pagecache_page = find_lock_page(mapping, idx);
5887  	}
5888  
5889  	ptl = huge_pte_lock(h, mm, ptep);
5890  
5891  	/* Check for a racing update before calling hugetlb_wp() */
5892  	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5893  		goto out_ptl;
5894  
5895  	/* Handle userfault-wp first, before trying to lock more pages */
5896  	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5897  	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5898  		struct vm_fault vmf = {
5899  			.vma = vma,
5900  			.address = haddr,
5901  			.real_address = address,
5902  			.flags = flags,
5903  		};
5904  
5905  		spin_unlock(ptl);
5906  		if (pagecache_page) {
5907  			unlock_page(pagecache_page);
5908  			put_page(pagecache_page);
5909  		}
5910  		hugetlb_vma_unlock_read(vma);
5911  		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5912  		return handle_userfault(&vmf, VM_UFFD_WP);
5913  	}
5914  
5915  	/*
5916  	 * hugetlb_wp() requires page locks of pte_page(entry) and
5917  	 * pagecache_page, so here we need take the former one
5918  	 * when page != pagecache_page or !pagecache_page.
5919  	 */
5920  	page = pte_page(entry);
5921  	if (page != pagecache_page)
5922  		if (!trylock_page(page)) {
5923  			need_wait_lock = 1;
5924  			goto out_ptl;
5925  		}
5926  
5927  	get_page(page);
5928  
5929  	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5930  		if (!huge_pte_write(entry)) {
5931  			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5932  					 pagecache_page, ptl);
5933  			goto out_put_page;
5934  		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5935  			entry = huge_pte_mkdirty(entry);
5936  		}
5937  	}
5938  	entry = pte_mkyoung(entry);
5939  	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5940  						flags & FAULT_FLAG_WRITE))
5941  		update_mmu_cache(vma, haddr, ptep);
5942  out_put_page:
5943  	if (page != pagecache_page)
5944  		unlock_page(page);
5945  	put_page(page);
5946  out_ptl:
5947  	spin_unlock(ptl);
5948  
5949  	if (pagecache_page) {
5950  		unlock_page(pagecache_page);
5951  		put_page(pagecache_page);
5952  	}
5953  out_mutex:
5954  	hugetlb_vma_unlock_read(vma);
5955  	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5956  	/*
5957  	 * Generally it's safe to hold refcount during waiting page lock. But
5958  	 * here we just wait to defer the next page fault to avoid busy loop and
5959  	 * the page is not used after unlocked before returning from the current
5960  	 * page fault. So we are safe from accessing freed page, even if we wait
5961  	 * here without taking refcount.
5962  	 */
5963  	if (need_wait_lock)
5964  		wait_on_page_locked(page);
5965  	return ret;
5966  }
5967  
5968  #ifdef CONFIG_USERFAULTFD
5969  /*
5970   * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5971   * modifications for huge pages.
5972   */
5973  int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5974  			    pte_t *dst_pte,
5975  			    struct vm_area_struct *dst_vma,
5976  			    unsigned long dst_addr,
5977  			    unsigned long src_addr,
5978  			    enum mcopy_atomic_mode mode,
5979  			    struct page **pagep,
5980  			    bool wp_copy)
5981  {
5982  	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5983  	struct hstate *h = hstate_vma(dst_vma);
5984  	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5985  	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5986  	unsigned long size;
5987  	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5988  	pte_t _dst_pte;
5989  	spinlock_t *ptl;
5990  	int ret = -ENOMEM;
5991  	struct page *page;
5992  	int writable;
5993  	bool page_in_pagecache = false;
5994  
5995  	if (is_continue) {
5996  		ret = -EFAULT;
5997  		page = find_lock_page(mapping, idx);
5998  		if (!page)
5999  			goto out;
6000  		page_in_pagecache = true;
6001  	} else if (!*pagep) {
6002  		/* If a page already exists, then it's UFFDIO_COPY for
6003  		 * a non-missing case. Return -EEXIST.
6004  		 */
6005  		if (vm_shared &&
6006  		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6007  			ret = -EEXIST;
6008  			goto out;
6009  		}
6010  
6011  		page = alloc_huge_page(dst_vma, dst_addr, 0);
6012  		if (IS_ERR(page)) {
6013  			ret = -ENOMEM;
6014  			goto out;
6015  		}
6016  
6017  		ret = copy_huge_page_from_user(page,
6018  						(const void __user *) src_addr,
6019  						pages_per_huge_page(h), false);
6020  
6021  		/* fallback to copy_from_user outside mmap_lock */
6022  		if (unlikely(ret)) {
6023  			ret = -ENOENT;
6024  			/* Free the allocated page which may have
6025  			 * consumed a reservation.
6026  			 */
6027  			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6028  			put_page(page);
6029  
6030  			/* Allocate a temporary page to hold the copied
6031  			 * contents.
6032  			 */
6033  			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6034  			if (!page) {
6035  				ret = -ENOMEM;
6036  				goto out;
6037  			}
6038  			*pagep = page;
6039  			/* Set the outparam pagep and return to the caller to
6040  			 * copy the contents outside the lock. Don't free the
6041  			 * page.
6042  			 */
6043  			goto out;
6044  		}
6045  	} else {
6046  		if (vm_shared &&
6047  		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6048  			put_page(*pagep);
6049  			ret = -EEXIST;
6050  			*pagep = NULL;
6051  			goto out;
6052  		}
6053  
6054  		page = alloc_huge_page(dst_vma, dst_addr, 0);
6055  		if (IS_ERR(page)) {
6056  			put_page(*pagep);
6057  			ret = -ENOMEM;
6058  			*pagep = NULL;
6059  			goto out;
6060  		}
6061  		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6062  				    pages_per_huge_page(h));
6063  		put_page(*pagep);
6064  		*pagep = NULL;
6065  	}
6066  
6067  	/*
6068  	 * The memory barrier inside __SetPageUptodate makes sure that
6069  	 * preceding stores to the page contents become visible before
6070  	 * the set_pte_at() write.
6071  	 */
6072  	__SetPageUptodate(page);
6073  
6074  	/* Add shared, newly allocated pages to the page cache. */
6075  	if (vm_shared && !is_continue) {
6076  		size = i_size_read(mapping->host) >> huge_page_shift(h);
6077  		ret = -EFAULT;
6078  		if (idx >= size)
6079  			goto out_release_nounlock;
6080  
6081  		/*
6082  		 * Serialization between remove_inode_hugepages() and
6083  		 * hugetlb_add_to_page_cache() below happens through the
6084  		 * hugetlb_fault_mutex_table that here must be hold by
6085  		 * the caller.
6086  		 */
6087  		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6088  		if (ret)
6089  			goto out_release_nounlock;
6090  		page_in_pagecache = true;
6091  	}
6092  
6093  	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6094  
6095  	/*
6096  	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6097  	 * registered, we firstly wr-protect a none pte which has no page cache
6098  	 * page backing it, then access the page.
6099  	 */
6100  	ret = -EEXIST;
6101  	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6102  		goto out_release_unlock;
6103  
6104  	if (page_in_pagecache) {
6105  		page_dup_file_rmap(page, true);
6106  	} else {
6107  		ClearHPageRestoreReserve(page);
6108  		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6109  	}
6110  
6111  	/*
6112  	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6113  	 * with wp flag set, don't set pte write bit.
6114  	 */
6115  	if (wp_copy || (is_continue && !vm_shared))
6116  		writable = 0;
6117  	else
6118  		writable = dst_vma->vm_flags & VM_WRITE;
6119  
6120  	_dst_pte = make_huge_pte(dst_vma, page, writable);
6121  	/*
6122  	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6123  	 * extremely important for hugetlbfs for now since swapping is not
6124  	 * supported, but we should still be clear in that this page cannot be
6125  	 * thrown away at will, even if write bit not set.
6126  	 */
6127  	_dst_pte = huge_pte_mkdirty(_dst_pte);
6128  	_dst_pte = pte_mkyoung(_dst_pte);
6129  
6130  	if (wp_copy)
6131  		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6132  
6133  	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6134  
6135  	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6136  
6137  	/* No need to invalidate - it was non-present before */
6138  	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6139  
6140  	spin_unlock(ptl);
6141  	if (!is_continue)
6142  		SetHPageMigratable(page);
6143  	if (vm_shared || is_continue)
6144  		unlock_page(page);
6145  	ret = 0;
6146  out:
6147  	return ret;
6148  out_release_unlock:
6149  	spin_unlock(ptl);
6150  	if (vm_shared || is_continue)
6151  		unlock_page(page);
6152  out_release_nounlock:
6153  	if (!page_in_pagecache)
6154  		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6155  	put_page(page);
6156  	goto out;
6157  }
6158  #endif /* CONFIG_USERFAULTFD */
6159  
6160  static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6161  				 int refs, struct page **pages,
6162  				 struct vm_area_struct **vmas)
6163  {
6164  	int nr;
6165  
6166  	for (nr = 0; nr < refs; nr++) {
6167  		if (likely(pages))
6168  			pages[nr] = nth_page(page, nr);
6169  		if (vmas)
6170  			vmas[nr] = vma;
6171  	}
6172  }
6173  
6174  static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6175  					       bool *unshare)
6176  {
6177  	pte_t pteval = huge_ptep_get(pte);
6178  
6179  	*unshare = false;
6180  	if (is_swap_pte(pteval))
6181  		return true;
6182  	if (huge_pte_write(pteval))
6183  		return false;
6184  	if (flags & FOLL_WRITE)
6185  		return true;
6186  	if (gup_must_unshare(flags, pte_page(pteval))) {
6187  		*unshare = true;
6188  		return true;
6189  	}
6190  	return false;
6191  }
6192  
6193  long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6194  			 struct page **pages, struct vm_area_struct **vmas,
6195  			 unsigned long *position, unsigned long *nr_pages,
6196  			 long i, unsigned int flags, int *locked)
6197  {
6198  	unsigned long pfn_offset;
6199  	unsigned long vaddr = *position;
6200  	unsigned long remainder = *nr_pages;
6201  	struct hstate *h = hstate_vma(vma);
6202  	int err = -EFAULT, refs;
6203  
6204  	while (vaddr < vma->vm_end && remainder) {
6205  		pte_t *pte;
6206  		spinlock_t *ptl = NULL;
6207  		bool unshare = false;
6208  		int absent;
6209  		struct page *page;
6210  
6211  		/*
6212  		 * If we have a pending SIGKILL, don't keep faulting pages and
6213  		 * potentially allocating memory.
6214  		 */
6215  		if (fatal_signal_pending(current)) {
6216  			remainder = 0;
6217  			break;
6218  		}
6219  
6220  		/*
6221  		 * Some archs (sparc64, sh*) have multiple pte_ts to
6222  		 * each hugepage.  We have to make sure we get the
6223  		 * first, for the page indexing below to work.
6224  		 *
6225  		 * Note that page table lock is not held when pte is null.
6226  		 */
6227  		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6228  				      huge_page_size(h));
6229  		if (pte)
6230  			ptl = huge_pte_lock(h, mm, pte);
6231  		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6232  
6233  		/*
6234  		 * When coredumping, it suits get_dump_page if we just return
6235  		 * an error where there's an empty slot with no huge pagecache
6236  		 * to back it.  This way, we avoid allocating a hugepage, and
6237  		 * the sparse dumpfile avoids allocating disk blocks, but its
6238  		 * huge holes still show up with zeroes where they need to be.
6239  		 */
6240  		if (absent && (flags & FOLL_DUMP) &&
6241  		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6242  			if (pte)
6243  				spin_unlock(ptl);
6244  			remainder = 0;
6245  			break;
6246  		}
6247  
6248  		/*
6249  		 * We need call hugetlb_fault for both hugepages under migration
6250  		 * (in which case hugetlb_fault waits for the migration,) and
6251  		 * hwpoisoned hugepages (in which case we need to prevent the
6252  		 * caller from accessing to them.) In order to do this, we use
6253  		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6254  		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6255  		 * both cases, and because we can't follow correct pages
6256  		 * directly from any kind of swap entries.
6257  		 */
6258  		if (absent ||
6259  		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6260  			vm_fault_t ret;
6261  			unsigned int fault_flags = 0;
6262  
6263  			if (pte)
6264  				spin_unlock(ptl);
6265  			if (flags & FOLL_WRITE)
6266  				fault_flags |= FAULT_FLAG_WRITE;
6267  			else if (unshare)
6268  				fault_flags |= FAULT_FLAG_UNSHARE;
6269  			if (locked)
6270  				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6271  					FAULT_FLAG_KILLABLE;
6272  			if (flags & FOLL_NOWAIT)
6273  				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6274  					FAULT_FLAG_RETRY_NOWAIT;
6275  			if (flags & FOLL_TRIED) {
6276  				/*
6277  				 * Note: FAULT_FLAG_ALLOW_RETRY and
6278  				 * FAULT_FLAG_TRIED can co-exist
6279  				 */
6280  				fault_flags |= FAULT_FLAG_TRIED;
6281  			}
6282  			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6283  			if (ret & VM_FAULT_ERROR) {
6284  				err = vm_fault_to_errno(ret, flags);
6285  				remainder = 0;
6286  				break;
6287  			}
6288  			if (ret & VM_FAULT_RETRY) {
6289  				if (locked &&
6290  				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6291  					*locked = 0;
6292  				*nr_pages = 0;
6293  				/*
6294  				 * VM_FAULT_RETRY must not return an
6295  				 * error, it will return zero
6296  				 * instead.
6297  				 *
6298  				 * No need to update "position" as the
6299  				 * caller will not check it after
6300  				 * *nr_pages is set to 0.
6301  				 */
6302  				return i;
6303  			}
6304  			continue;
6305  		}
6306  
6307  		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6308  		page = pte_page(huge_ptep_get(pte));
6309  
6310  		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6311  			       !PageAnonExclusive(page), page);
6312  
6313  		/*
6314  		 * If subpage information not requested, update counters
6315  		 * and skip the same_page loop below.
6316  		 */
6317  		if (!pages && !vmas && !pfn_offset &&
6318  		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6319  		    (remainder >= pages_per_huge_page(h))) {
6320  			vaddr += huge_page_size(h);
6321  			remainder -= pages_per_huge_page(h);
6322  			i += pages_per_huge_page(h);
6323  			spin_unlock(ptl);
6324  			continue;
6325  		}
6326  
6327  		/* vaddr may not be aligned to PAGE_SIZE */
6328  		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6329  		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6330  
6331  		if (pages || vmas)
6332  			record_subpages_vmas(nth_page(page, pfn_offset),
6333  					     vma, refs,
6334  					     likely(pages) ? pages + i : NULL,
6335  					     vmas ? vmas + i : NULL);
6336  
6337  		if (pages) {
6338  			/*
6339  			 * try_grab_folio() should always succeed here,
6340  			 * because: a) we hold the ptl lock, and b) we've just
6341  			 * checked that the huge page is present in the page
6342  			 * tables. If the huge page is present, then the tail
6343  			 * pages must also be present. The ptl prevents the
6344  			 * head page and tail pages from being rearranged in
6345  			 * any way. So this page must be available at this
6346  			 * point, unless the page refcount overflowed:
6347  			 */
6348  			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6349  							 flags))) {
6350  				spin_unlock(ptl);
6351  				remainder = 0;
6352  				err = -ENOMEM;
6353  				break;
6354  			}
6355  		}
6356  
6357  		vaddr += (refs << PAGE_SHIFT);
6358  		remainder -= refs;
6359  		i += refs;
6360  
6361  		spin_unlock(ptl);
6362  	}
6363  	*nr_pages = remainder;
6364  	/*
6365  	 * setting position is actually required only if remainder is
6366  	 * not zero but it's faster not to add a "if (remainder)"
6367  	 * branch.
6368  	 */
6369  	*position = vaddr;
6370  
6371  	return i ? i : err;
6372  }
6373  
6374  unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6375  		unsigned long address, unsigned long end,
6376  		pgprot_t newprot, unsigned long cp_flags)
6377  {
6378  	struct mm_struct *mm = vma->vm_mm;
6379  	unsigned long start = address;
6380  	pte_t *ptep;
6381  	pte_t pte;
6382  	struct hstate *h = hstate_vma(vma);
6383  	unsigned long pages = 0, psize = huge_page_size(h);
6384  	bool shared_pmd = false;
6385  	struct mmu_notifier_range range;
6386  	unsigned long last_addr_mask;
6387  	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6388  	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6389  
6390  	/*
6391  	 * In the case of shared PMDs, the area to flush could be beyond
6392  	 * start/end.  Set range.start/range.end to cover the maximum possible
6393  	 * range if PMD sharing is possible.
6394  	 */
6395  	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6396  				0, vma, mm, start, end);
6397  	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6398  
6399  	BUG_ON(address >= end);
6400  	flush_cache_range(vma, range.start, range.end);
6401  
6402  	mmu_notifier_invalidate_range_start(&range);
6403  	hugetlb_vma_lock_write(vma);
6404  	i_mmap_lock_write(vma->vm_file->f_mapping);
6405  	last_addr_mask = hugetlb_mask_last_page(h);
6406  	for (; address < end; address += psize) {
6407  		spinlock_t *ptl;
6408  		ptep = huge_pte_offset(mm, address, psize);
6409  		if (!ptep) {
6410  			address |= last_addr_mask;
6411  			continue;
6412  		}
6413  		ptl = huge_pte_lock(h, mm, ptep);
6414  		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6415  			/*
6416  			 * When uffd-wp is enabled on the vma, unshare
6417  			 * shouldn't happen at all.  Warn about it if it
6418  			 * happened due to some reason.
6419  			 */
6420  			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6421  			pages++;
6422  			spin_unlock(ptl);
6423  			shared_pmd = true;
6424  			address |= last_addr_mask;
6425  			continue;
6426  		}
6427  		pte = huge_ptep_get(ptep);
6428  		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6429  			spin_unlock(ptl);
6430  			continue;
6431  		}
6432  		if (unlikely(is_hugetlb_entry_migration(pte))) {
6433  			swp_entry_t entry = pte_to_swp_entry(pte);
6434  			struct page *page = pfn_swap_entry_to_page(entry);
6435  
6436  			if (!is_readable_migration_entry(entry)) {
6437  				pte_t newpte;
6438  
6439  				if (PageAnon(page))
6440  					entry = make_readable_exclusive_migration_entry(
6441  								swp_offset(entry));
6442  				else
6443  					entry = make_readable_migration_entry(
6444  								swp_offset(entry));
6445  				newpte = swp_entry_to_pte(entry);
6446  				if (uffd_wp)
6447  					newpte = pte_swp_mkuffd_wp(newpte);
6448  				else if (uffd_wp_resolve)
6449  					newpte = pte_swp_clear_uffd_wp(newpte);
6450  				set_huge_pte_at(mm, address, ptep, newpte);
6451  				pages++;
6452  			}
6453  			spin_unlock(ptl);
6454  			continue;
6455  		}
6456  		if (unlikely(pte_marker_uffd_wp(pte))) {
6457  			/*
6458  			 * This is changing a non-present pte into a none pte,
6459  			 * no need for huge_ptep_modify_prot_start/commit().
6460  			 */
6461  			if (uffd_wp_resolve)
6462  				huge_pte_clear(mm, address, ptep, psize);
6463  		}
6464  		if (!huge_pte_none(pte)) {
6465  			pte_t old_pte;
6466  			unsigned int shift = huge_page_shift(hstate_vma(vma));
6467  
6468  			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6469  			pte = huge_pte_modify(old_pte, newprot);
6470  			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6471  			if (uffd_wp)
6472  				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6473  			else if (uffd_wp_resolve)
6474  				pte = huge_pte_clear_uffd_wp(pte);
6475  			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6476  			pages++;
6477  		} else {
6478  			/* None pte */
6479  			if (unlikely(uffd_wp))
6480  				/* Safe to modify directly (none->non-present). */
6481  				set_huge_pte_at(mm, address, ptep,
6482  						make_pte_marker(PTE_MARKER_UFFD_WP));
6483  		}
6484  		spin_unlock(ptl);
6485  	}
6486  	/*
6487  	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6488  	 * may have cleared our pud entry and done put_page on the page table:
6489  	 * once we release i_mmap_rwsem, another task can do the final put_page
6490  	 * and that page table be reused and filled with junk.  If we actually
6491  	 * did unshare a page of pmds, flush the range corresponding to the pud.
6492  	 */
6493  	if (shared_pmd)
6494  		flush_hugetlb_tlb_range(vma, range.start, range.end);
6495  	else
6496  		flush_hugetlb_tlb_range(vma, start, end);
6497  	/*
6498  	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6499  	 * page table protection not changing it to point to a new page.
6500  	 *
6501  	 * See Documentation/mm/mmu_notifier.rst
6502  	 */
6503  	i_mmap_unlock_write(vma->vm_file->f_mapping);
6504  	hugetlb_vma_unlock_write(vma);
6505  	mmu_notifier_invalidate_range_end(&range);
6506  
6507  	return pages << h->order;
6508  }
6509  
6510  /* Return true if reservation was successful, false otherwise.  */
6511  bool hugetlb_reserve_pages(struct inode *inode,
6512  					long from, long to,
6513  					struct vm_area_struct *vma,
6514  					vm_flags_t vm_flags)
6515  {
6516  	long chg, add = -1;
6517  	struct hstate *h = hstate_inode(inode);
6518  	struct hugepage_subpool *spool = subpool_inode(inode);
6519  	struct resv_map *resv_map;
6520  	struct hugetlb_cgroup *h_cg = NULL;
6521  	long gbl_reserve, regions_needed = 0;
6522  
6523  	/* This should never happen */
6524  	if (from > to) {
6525  		VM_WARN(1, "%s called with a negative range\n", __func__);
6526  		return false;
6527  	}
6528  
6529  	/*
6530  	 * vma specific semaphore used for pmd sharing synchronization
6531  	 */
6532  	hugetlb_vma_lock_alloc(vma);
6533  
6534  	/*
6535  	 * Only apply hugepage reservation if asked. At fault time, an
6536  	 * attempt will be made for VM_NORESERVE to allocate a page
6537  	 * without using reserves
6538  	 */
6539  	if (vm_flags & VM_NORESERVE)
6540  		return true;
6541  
6542  	/*
6543  	 * Shared mappings base their reservation on the number of pages that
6544  	 * are already allocated on behalf of the file. Private mappings need
6545  	 * to reserve the full area even if read-only as mprotect() may be
6546  	 * called to make the mapping read-write. Assume !vma is a shm mapping
6547  	 */
6548  	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6549  		/*
6550  		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6551  		 * called for inodes for which resv_maps were created (see
6552  		 * hugetlbfs_get_inode).
6553  		 */
6554  		resv_map = inode_resv_map(inode);
6555  
6556  		chg = region_chg(resv_map, from, to, &regions_needed);
6557  	} else {
6558  		/* Private mapping. */
6559  		resv_map = resv_map_alloc();
6560  		if (!resv_map)
6561  			goto out_err;
6562  
6563  		chg = to - from;
6564  
6565  		set_vma_resv_map(vma, resv_map);
6566  		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6567  	}
6568  
6569  	if (chg < 0)
6570  		goto out_err;
6571  
6572  	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6573  				chg * pages_per_huge_page(h), &h_cg) < 0)
6574  		goto out_err;
6575  
6576  	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6577  		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6578  		 * of the resv_map.
6579  		 */
6580  		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6581  	}
6582  
6583  	/*
6584  	 * There must be enough pages in the subpool for the mapping. If
6585  	 * the subpool has a minimum size, there may be some global
6586  	 * reservations already in place (gbl_reserve).
6587  	 */
6588  	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6589  	if (gbl_reserve < 0)
6590  		goto out_uncharge_cgroup;
6591  
6592  	/*
6593  	 * Check enough hugepages are available for the reservation.
6594  	 * Hand the pages back to the subpool if there are not
6595  	 */
6596  	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6597  		goto out_put_pages;
6598  
6599  	/*
6600  	 * Account for the reservations made. Shared mappings record regions
6601  	 * that have reservations as they are shared by multiple VMAs.
6602  	 * When the last VMA disappears, the region map says how much
6603  	 * the reservation was and the page cache tells how much of
6604  	 * the reservation was consumed. Private mappings are per-VMA and
6605  	 * only the consumed reservations are tracked. When the VMA
6606  	 * disappears, the original reservation is the VMA size and the
6607  	 * consumed reservations are stored in the map. Hence, nothing
6608  	 * else has to be done for private mappings here
6609  	 */
6610  	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6611  		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6612  
6613  		if (unlikely(add < 0)) {
6614  			hugetlb_acct_memory(h, -gbl_reserve);
6615  			goto out_put_pages;
6616  		} else if (unlikely(chg > add)) {
6617  			/*
6618  			 * pages in this range were added to the reserve
6619  			 * map between region_chg and region_add.  This
6620  			 * indicates a race with alloc_huge_page.  Adjust
6621  			 * the subpool and reserve counts modified above
6622  			 * based on the difference.
6623  			 */
6624  			long rsv_adjust;
6625  
6626  			/*
6627  			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6628  			 * reference to h_cg->css. See comment below for detail.
6629  			 */
6630  			hugetlb_cgroup_uncharge_cgroup_rsvd(
6631  				hstate_index(h),
6632  				(chg - add) * pages_per_huge_page(h), h_cg);
6633  
6634  			rsv_adjust = hugepage_subpool_put_pages(spool,
6635  								chg - add);
6636  			hugetlb_acct_memory(h, -rsv_adjust);
6637  		} else if (h_cg) {
6638  			/*
6639  			 * The file_regions will hold their own reference to
6640  			 * h_cg->css. So we should release the reference held
6641  			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6642  			 * done.
6643  			 */
6644  			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6645  		}
6646  	}
6647  	return true;
6648  
6649  out_put_pages:
6650  	/* put back original number of pages, chg */
6651  	(void)hugepage_subpool_put_pages(spool, chg);
6652  out_uncharge_cgroup:
6653  	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6654  					    chg * pages_per_huge_page(h), h_cg);
6655  out_err:
6656  	hugetlb_vma_lock_free(vma);
6657  	if (!vma || vma->vm_flags & VM_MAYSHARE)
6658  		/* Only call region_abort if the region_chg succeeded but the
6659  		 * region_add failed or didn't run.
6660  		 */
6661  		if (chg >= 0 && add < 0)
6662  			region_abort(resv_map, from, to, regions_needed);
6663  	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6664  		kref_put(&resv_map->refs, resv_map_release);
6665  	return false;
6666  }
6667  
6668  long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6669  								long freed)
6670  {
6671  	struct hstate *h = hstate_inode(inode);
6672  	struct resv_map *resv_map = inode_resv_map(inode);
6673  	long chg = 0;
6674  	struct hugepage_subpool *spool = subpool_inode(inode);
6675  	long gbl_reserve;
6676  
6677  	/*
6678  	 * Since this routine can be called in the evict inode path for all
6679  	 * hugetlbfs inodes, resv_map could be NULL.
6680  	 */
6681  	if (resv_map) {
6682  		chg = region_del(resv_map, start, end);
6683  		/*
6684  		 * region_del() can fail in the rare case where a region
6685  		 * must be split and another region descriptor can not be
6686  		 * allocated.  If end == LONG_MAX, it will not fail.
6687  		 */
6688  		if (chg < 0)
6689  			return chg;
6690  	}
6691  
6692  	spin_lock(&inode->i_lock);
6693  	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6694  	spin_unlock(&inode->i_lock);
6695  
6696  	/*
6697  	 * If the subpool has a minimum size, the number of global
6698  	 * reservations to be released may be adjusted.
6699  	 *
6700  	 * Note that !resv_map implies freed == 0. So (chg - freed)
6701  	 * won't go negative.
6702  	 */
6703  	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6704  	hugetlb_acct_memory(h, -gbl_reserve);
6705  
6706  	return 0;
6707  }
6708  
6709  #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6710  static unsigned long page_table_shareable(struct vm_area_struct *svma,
6711  				struct vm_area_struct *vma,
6712  				unsigned long addr, pgoff_t idx)
6713  {
6714  	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6715  				svma->vm_start;
6716  	unsigned long sbase = saddr & PUD_MASK;
6717  	unsigned long s_end = sbase + PUD_SIZE;
6718  
6719  	/* Allow segments to share if only one is marked locked */
6720  	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6721  	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6722  
6723  	/*
6724  	 * match the virtual addresses, permission and the alignment of the
6725  	 * page table page.
6726  	 *
6727  	 * Also, vma_lock (vm_private_data) is required for sharing.
6728  	 */
6729  	if (pmd_index(addr) != pmd_index(saddr) ||
6730  	    vm_flags != svm_flags ||
6731  	    !range_in_vma(svma, sbase, s_end) ||
6732  	    !svma->vm_private_data)
6733  		return 0;
6734  
6735  	return saddr;
6736  }
6737  
6738  bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6739  {
6740  	unsigned long start = addr & PUD_MASK;
6741  	unsigned long end = start + PUD_SIZE;
6742  
6743  #ifdef CONFIG_USERFAULTFD
6744  	if (uffd_disable_huge_pmd_share(vma))
6745  		return false;
6746  #endif
6747  	/*
6748  	 * check on proper vm_flags and page table alignment
6749  	 */
6750  	if (!(vma->vm_flags & VM_MAYSHARE))
6751  		return false;
6752  	if (!vma->vm_private_data)	/* vma lock required for sharing */
6753  		return false;
6754  	if (!range_in_vma(vma, start, end))
6755  		return false;
6756  	return true;
6757  }
6758  
6759  /*
6760   * Determine if start,end range within vma could be mapped by shared pmd.
6761   * If yes, adjust start and end to cover range associated with possible
6762   * shared pmd mappings.
6763   */
6764  void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6765  				unsigned long *start, unsigned long *end)
6766  {
6767  	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6768  		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6769  
6770  	/*
6771  	 * vma needs to span at least one aligned PUD size, and the range
6772  	 * must be at least partially within in.
6773  	 */
6774  	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6775  		(*end <= v_start) || (*start >= v_end))
6776  		return;
6777  
6778  	/* Extend the range to be PUD aligned for a worst case scenario */
6779  	if (*start > v_start)
6780  		*start = ALIGN_DOWN(*start, PUD_SIZE);
6781  
6782  	if (*end < v_end)
6783  		*end = ALIGN(*end, PUD_SIZE);
6784  }
6785  
6786  static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6787  {
6788  	return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6789  		vma->vm_private_data;
6790  }
6791  
6792  void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6793  {
6794  	if (__vma_shareable_flags_pmd(vma)) {
6795  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6796  
6797  		down_read(&vma_lock->rw_sema);
6798  	}
6799  }
6800  
6801  void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6802  {
6803  	if (__vma_shareable_flags_pmd(vma)) {
6804  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6805  
6806  		up_read(&vma_lock->rw_sema);
6807  	}
6808  }
6809  
6810  void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6811  {
6812  	if (__vma_shareable_flags_pmd(vma)) {
6813  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6814  
6815  		down_write(&vma_lock->rw_sema);
6816  	}
6817  }
6818  
6819  void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6820  {
6821  	if (__vma_shareable_flags_pmd(vma)) {
6822  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6823  
6824  		up_write(&vma_lock->rw_sema);
6825  	}
6826  }
6827  
6828  int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6829  {
6830  	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6831  
6832  	if (!__vma_shareable_flags_pmd(vma))
6833  		return 1;
6834  
6835  	return down_write_trylock(&vma_lock->rw_sema);
6836  }
6837  
6838  void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6839  {
6840  	if (__vma_shareable_flags_pmd(vma)) {
6841  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6842  
6843  		lockdep_assert_held(&vma_lock->rw_sema);
6844  	}
6845  }
6846  
6847  void hugetlb_vma_lock_release(struct kref *kref)
6848  {
6849  	struct hugetlb_vma_lock *vma_lock = container_of(kref,
6850  			struct hugetlb_vma_lock, refs);
6851  
6852  	kfree(vma_lock);
6853  }
6854  
6855  static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6856  {
6857  	struct vm_area_struct *vma = vma_lock->vma;
6858  
6859  	/*
6860  	 * vma_lock structure may or not be released as a result of put,
6861  	 * it certainly will no longer be attached to vma so clear pointer.
6862  	 * Semaphore synchronizes access to vma_lock->vma field.
6863  	 */
6864  	vma_lock->vma = NULL;
6865  	vma->vm_private_data = NULL;
6866  	up_write(&vma_lock->rw_sema);
6867  	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6868  }
6869  
6870  static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6871  {
6872  	if (__vma_shareable_flags_pmd(vma)) {
6873  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6874  
6875  		__hugetlb_vma_unlock_write_put(vma_lock);
6876  	}
6877  }
6878  
6879  static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6880  {
6881  	/*
6882  	 * Only present in sharable vmas.
6883  	 */
6884  	if (!vma || !__vma_shareable_flags_pmd(vma))
6885  		return;
6886  
6887  	if (vma->vm_private_data) {
6888  		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6889  
6890  		down_write(&vma_lock->rw_sema);
6891  		__hugetlb_vma_unlock_write_put(vma_lock);
6892  	}
6893  }
6894  
6895  static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6896  {
6897  	struct hugetlb_vma_lock *vma_lock;
6898  
6899  	/* Only establish in (flags) sharable vmas */
6900  	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6901  		return;
6902  
6903  	/* Should never get here with non-NULL vm_private_data */
6904  	if (vma->vm_private_data)
6905  		return;
6906  
6907  	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6908  	if (!vma_lock) {
6909  		/*
6910  		 * If we can not allocate structure, then vma can not
6911  		 * participate in pmd sharing.  This is only a possible
6912  		 * performance enhancement and memory saving issue.
6913  		 * However, the lock is also used to synchronize page
6914  		 * faults with truncation.  If the lock is not present,
6915  		 * unlikely races could leave pages in a file past i_size
6916  		 * until the file is removed.  Warn in the unlikely case of
6917  		 * allocation failure.
6918  		 */
6919  		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6920  		return;
6921  	}
6922  
6923  	kref_init(&vma_lock->refs);
6924  	init_rwsem(&vma_lock->rw_sema);
6925  	vma_lock->vma = vma;
6926  	vma->vm_private_data = vma_lock;
6927  }
6928  
6929  /*
6930   * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6931   * and returns the corresponding pte. While this is not necessary for the
6932   * !shared pmd case because we can allocate the pmd later as well, it makes the
6933   * code much cleaner. pmd allocation is essential for the shared case because
6934   * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6935   * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6936   * bad pmd for sharing.
6937   */
6938  pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6939  		      unsigned long addr, pud_t *pud)
6940  {
6941  	struct address_space *mapping = vma->vm_file->f_mapping;
6942  	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6943  			vma->vm_pgoff;
6944  	struct vm_area_struct *svma;
6945  	unsigned long saddr;
6946  	pte_t *spte = NULL;
6947  	pte_t *pte;
6948  	spinlock_t *ptl;
6949  
6950  	i_mmap_lock_read(mapping);
6951  	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6952  		if (svma == vma)
6953  			continue;
6954  
6955  		saddr = page_table_shareable(svma, vma, addr, idx);
6956  		if (saddr) {
6957  			spte = huge_pte_offset(svma->vm_mm, saddr,
6958  					       vma_mmu_pagesize(svma));
6959  			if (spte) {
6960  				get_page(virt_to_page(spte));
6961  				break;
6962  			}
6963  		}
6964  	}
6965  
6966  	if (!spte)
6967  		goto out;
6968  
6969  	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6970  	if (pud_none(*pud)) {
6971  		pud_populate(mm, pud,
6972  				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6973  		mm_inc_nr_pmds(mm);
6974  	} else {
6975  		put_page(virt_to_page(spte));
6976  	}
6977  	spin_unlock(ptl);
6978  out:
6979  	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6980  	i_mmap_unlock_read(mapping);
6981  	return pte;
6982  }
6983  
6984  /*
6985   * unmap huge page backed by shared pte.
6986   *
6987   * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6988   * indicated by page_count > 1, unmap is achieved by clearing pud and
6989   * decrementing the ref count. If count == 1, the pte page is not shared.
6990   *
6991   * Called with page table lock held.
6992   *
6993   * returns: 1 successfully unmapped a shared pte page
6994   *	    0 the underlying pte page is not shared, or it is the last user
6995   */
6996  int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6997  					unsigned long addr, pte_t *ptep)
6998  {
6999  	pgd_t *pgd = pgd_offset(mm, addr);
7000  	p4d_t *p4d = p4d_offset(pgd, addr);
7001  	pud_t *pud = pud_offset(p4d, addr);
7002  
7003  	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7004  	hugetlb_vma_assert_locked(vma);
7005  	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7006  	if (page_count(virt_to_page(ptep)) == 1)
7007  		return 0;
7008  
7009  	pud_clear(pud);
7010  	put_page(virt_to_page(ptep));
7011  	mm_dec_nr_pmds(mm);
7012  	return 1;
7013  }
7014  
7015  #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7016  
7017  void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7018  {
7019  }
7020  
7021  void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7022  {
7023  }
7024  
7025  void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7026  {
7027  }
7028  
7029  void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7030  {
7031  }
7032  
7033  int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7034  {
7035  	return 1;
7036  }
7037  
7038  void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7039  {
7040  }
7041  
7042  void hugetlb_vma_lock_release(struct kref *kref)
7043  {
7044  }
7045  
7046  static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7047  {
7048  }
7049  
7050  static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7051  {
7052  }
7053  
7054  static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7055  {
7056  }
7057  
7058  pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7059  		      unsigned long addr, pud_t *pud)
7060  {
7061  	return NULL;
7062  }
7063  
7064  int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7065  				unsigned long addr, pte_t *ptep)
7066  {
7067  	return 0;
7068  }
7069  
7070  void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7071  				unsigned long *start, unsigned long *end)
7072  {
7073  }
7074  
7075  bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7076  {
7077  	return false;
7078  }
7079  #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7080  
7081  #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7082  pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7083  			unsigned long addr, unsigned long sz)
7084  {
7085  	pgd_t *pgd;
7086  	p4d_t *p4d;
7087  	pud_t *pud;
7088  	pte_t *pte = NULL;
7089  
7090  	pgd = pgd_offset(mm, addr);
7091  	p4d = p4d_alloc(mm, pgd, addr);
7092  	if (!p4d)
7093  		return NULL;
7094  	pud = pud_alloc(mm, p4d, addr);
7095  	if (pud) {
7096  		if (sz == PUD_SIZE) {
7097  			pte = (pte_t *)pud;
7098  		} else {
7099  			BUG_ON(sz != PMD_SIZE);
7100  			if (want_pmd_share(vma, addr) && pud_none(*pud))
7101  				pte = huge_pmd_share(mm, vma, addr, pud);
7102  			else
7103  				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7104  		}
7105  	}
7106  	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7107  
7108  	return pte;
7109  }
7110  
7111  /*
7112   * huge_pte_offset() - Walk the page table to resolve the hugepage
7113   * entry at address @addr
7114   *
7115   * Return: Pointer to page table entry (PUD or PMD) for
7116   * address @addr, or NULL if a !p*d_present() entry is encountered and the
7117   * size @sz doesn't match the hugepage size at this level of the page
7118   * table.
7119   */
7120  pte_t *huge_pte_offset(struct mm_struct *mm,
7121  		       unsigned long addr, unsigned long sz)
7122  {
7123  	pgd_t *pgd;
7124  	p4d_t *p4d;
7125  	pud_t *pud;
7126  	pmd_t *pmd;
7127  
7128  	pgd = pgd_offset(mm, addr);
7129  	if (!pgd_present(*pgd))
7130  		return NULL;
7131  	p4d = p4d_offset(pgd, addr);
7132  	if (!p4d_present(*p4d))
7133  		return NULL;
7134  
7135  	pud = pud_offset(p4d, addr);
7136  	if (sz == PUD_SIZE)
7137  		/* must be pud huge, non-present or none */
7138  		return (pte_t *)pud;
7139  	if (!pud_present(*pud))
7140  		return NULL;
7141  	/* must have a valid entry and size to go further */
7142  
7143  	pmd = pmd_offset(pud, addr);
7144  	/* must be pmd huge, non-present or none */
7145  	return (pte_t *)pmd;
7146  }
7147  
7148  /*
7149   * Return a mask that can be used to update an address to the last huge
7150   * page in a page table page mapping size.  Used to skip non-present
7151   * page table entries when linearly scanning address ranges.  Architectures
7152   * with unique huge page to page table relationships can define their own
7153   * version of this routine.
7154   */
7155  unsigned long hugetlb_mask_last_page(struct hstate *h)
7156  {
7157  	unsigned long hp_size = huge_page_size(h);
7158  
7159  	if (hp_size == PUD_SIZE)
7160  		return P4D_SIZE - PUD_SIZE;
7161  	else if (hp_size == PMD_SIZE)
7162  		return PUD_SIZE - PMD_SIZE;
7163  	else
7164  		return 0UL;
7165  }
7166  
7167  #else
7168  
7169  /* See description above.  Architectures can provide their own version. */
7170  __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7171  {
7172  #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7173  	if (huge_page_size(h) == PMD_SIZE)
7174  		return PUD_SIZE - PMD_SIZE;
7175  #endif
7176  	return 0UL;
7177  }
7178  
7179  #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7180  
7181  /*
7182   * These functions are overwritable if your architecture needs its own
7183   * behavior.
7184   */
7185  struct page * __weak
7186  follow_huge_addr(struct mm_struct *mm, unsigned long address,
7187  			      int write)
7188  {
7189  	return ERR_PTR(-EINVAL);
7190  }
7191  
7192  struct page * __weak
7193  follow_huge_pd(struct vm_area_struct *vma,
7194  	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
7195  {
7196  	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7197  	return NULL;
7198  }
7199  
7200  struct page * __weak
7201  follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7202  {
7203  	struct hstate *h = hstate_vma(vma);
7204  	struct mm_struct *mm = vma->vm_mm;
7205  	struct page *page = NULL;
7206  	spinlock_t *ptl;
7207  	pte_t *ptep, pte;
7208  
7209  	/*
7210  	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7211  	 * follow_hugetlb_page().
7212  	 */
7213  	if (WARN_ON_ONCE(flags & FOLL_PIN))
7214  		return NULL;
7215  
7216  retry:
7217  	ptep = huge_pte_offset(mm, address, huge_page_size(h));
7218  	if (!ptep)
7219  		return NULL;
7220  
7221  	ptl = huge_pte_lock(h, mm, ptep);
7222  	pte = huge_ptep_get(ptep);
7223  	if (pte_present(pte)) {
7224  		page = pte_page(pte) +
7225  			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7226  		/*
7227  		 * try_grab_page() should always succeed here, because: a) we
7228  		 * hold the pmd (ptl) lock, and b) we've just checked that the
7229  		 * huge pmd (head) page is present in the page tables. The ptl
7230  		 * prevents the head page and tail pages from being rearranged
7231  		 * in any way. So this page must be available at this point,
7232  		 * unless the page refcount overflowed:
7233  		 */
7234  		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7235  			page = NULL;
7236  			goto out;
7237  		}
7238  	} else {
7239  		if (is_hugetlb_entry_migration(pte)) {
7240  			spin_unlock(ptl);
7241  			__migration_entry_wait_huge(ptep, ptl);
7242  			goto retry;
7243  		}
7244  		/*
7245  		 * hwpoisoned entry is treated as no_page_table in
7246  		 * follow_page_mask().
7247  		 */
7248  	}
7249  out:
7250  	spin_unlock(ptl);
7251  	return page;
7252  }
7253  
7254  struct page * __weak
7255  follow_huge_pud(struct mm_struct *mm, unsigned long address,
7256  		pud_t *pud, int flags)
7257  {
7258  	struct page *page = NULL;
7259  	spinlock_t *ptl;
7260  	pte_t pte;
7261  
7262  	if (WARN_ON_ONCE(flags & FOLL_PIN))
7263  		return NULL;
7264  
7265  retry:
7266  	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7267  	if (!pud_huge(*pud))
7268  		goto out;
7269  	pte = huge_ptep_get((pte_t *)pud);
7270  	if (pte_present(pte)) {
7271  		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7272  		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7273  			page = NULL;
7274  			goto out;
7275  		}
7276  	} else {
7277  		if (is_hugetlb_entry_migration(pte)) {
7278  			spin_unlock(ptl);
7279  			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7280  			goto retry;
7281  		}
7282  		/*
7283  		 * hwpoisoned entry is treated as no_page_table in
7284  		 * follow_page_mask().
7285  		 */
7286  	}
7287  out:
7288  	spin_unlock(ptl);
7289  	return page;
7290  }
7291  
7292  struct page * __weak
7293  follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7294  {
7295  	if (flags & (FOLL_GET | FOLL_PIN))
7296  		return NULL;
7297  
7298  	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7299  }
7300  
7301  int isolate_hugetlb(struct page *page, struct list_head *list)
7302  {
7303  	int ret = 0;
7304  
7305  	spin_lock_irq(&hugetlb_lock);
7306  	if (!PageHeadHuge(page) ||
7307  	    !HPageMigratable(page) ||
7308  	    !get_page_unless_zero(page)) {
7309  		ret = -EBUSY;
7310  		goto unlock;
7311  	}
7312  	ClearHPageMigratable(page);
7313  	list_move_tail(&page->lru, list);
7314  unlock:
7315  	spin_unlock_irq(&hugetlb_lock);
7316  	return ret;
7317  }
7318  
7319  int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7320  {
7321  	int ret = 0;
7322  
7323  	*hugetlb = false;
7324  	spin_lock_irq(&hugetlb_lock);
7325  	if (PageHeadHuge(page)) {
7326  		*hugetlb = true;
7327  		if (HPageFreed(page))
7328  			ret = 0;
7329  		else if (HPageMigratable(page))
7330  			ret = get_page_unless_zero(page);
7331  		else
7332  			ret = -EBUSY;
7333  	}
7334  	spin_unlock_irq(&hugetlb_lock);
7335  	return ret;
7336  }
7337  
7338  int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7339  {
7340  	int ret;
7341  
7342  	spin_lock_irq(&hugetlb_lock);
7343  	ret = __get_huge_page_for_hwpoison(pfn, flags);
7344  	spin_unlock_irq(&hugetlb_lock);
7345  	return ret;
7346  }
7347  
7348  void putback_active_hugepage(struct page *page)
7349  {
7350  	spin_lock_irq(&hugetlb_lock);
7351  	SetHPageMigratable(page);
7352  	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7353  	spin_unlock_irq(&hugetlb_lock);
7354  	put_page(page);
7355  }
7356  
7357  void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7358  {
7359  	struct hstate *h = page_hstate(oldpage);
7360  
7361  	hugetlb_cgroup_migrate(oldpage, newpage);
7362  	set_page_owner_migrate_reason(newpage, reason);
7363  
7364  	/*
7365  	 * transfer temporary state of the new huge page. This is
7366  	 * reverse to other transitions because the newpage is going to
7367  	 * be final while the old one will be freed so it takes over
7368  	 * the temporary status.
7369  	 *
7370  	 * Also note that we have to transfer the per-node surplus state
7371  	 * here as well otherwise the global surplus count will not match
7372  	 * the per-node's.
7373  	 */
7374  	if (HPageTemporary(newpage)) {
7375  		int old_nid = page_to_nid(oldpage);
7376  		int new_nid = page_to_nid(newpage);
7377  
7378  		SetHPageTemporary(oldpage);
7379  		ClearHPageTemporary(newpage);
7380  
7381  		/*
7382  		 * There is no need to transfer the per-node surplus state
7383  		 * when we do not cross the node.
7384  		 */
7385  		if (new_nid == old_nid)
7386  			return;
7387  		spin_lock_irq(&hugetlb_lock);
7388  		if (h->surplus_huge_pages_node[old_nid]) {
7389  			h->surplus_huge_pages_node[old_nid]--;
7390  			h->surplus_huge_pages_node[new_nid]++;
7391  		}
7392  		spin_unlock_irq(&hugetlb_lock);
7393  	}
7394  }
7395  
7396  /*
7397   * This function will unconditionally remove all the shared pmd pgtable entries
7398   * within the specific vma for a hugetlbfs memory range.
7399   */
7400  void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7401  {
7402  	struct hstate *h = hstate_vma(vma);
7403  	unsigned long sz = huge_page_size(h);
7404  	struct mm_struct *mm = vma->vm_mm;
7405  	struct mmu_notifier_range range;
7406  	unsigned long address, start, end;
7407  	spinlock_t *ptl;
7408  	pte_t *ptep;
7409  
7410  	if (!(vma->vm_flags & VM_MAYSHARE))
7411  		return;
7412  
7413  	start = ALIGN(vma->vm_start, PUD_SIZE);
7414  	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7415  
7416  	if (start >= end)
7417  		return;
7418  
7419  	flush_cache_range(vma, start, end);
7420  	/*
7421  	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7422  	 * we have already done the PUD_SIZE alignment.
7423  	 */
7424  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7425  				start, end);
7426  	mmu_notifier_invalidate_range_start(&range);
7427  	hugetlb_vma_lock_write(vma);
7428  	i_mmap_lock_write(vma->vm_file->f_mapping);
7429  	for (address = start; address < end; address += PUD_SIZE) {
7430  		ptep = huge_pte_offset(mm, address, sz);
7431  		if (!ptep)
7432  			continue;
7433  		ptl = huge_pte_lock(h, mm, ptep);
7434  		huge_pmd_unshare(mm, vma, address, ptep);
7435  		spin_unlock(ptl);
7436  	}
7437  	flush_hugetlb_tlb_range(vma, start, end);
7438  	i_mmap_unlock_write(vma->vm_file->f_mapping);
7439  	hugetlb_vma_unlock_write(vma);
7440  	/*
7441  	 * No need to call mmu_notifier_invalidate_range(), see
7442  	 * Documentation/mm/mmu_notifier.rst.
7443  	 */
7444  	mmu_notifier_invalidate_range_end(&range);
7445  }
7446  
7447  #ifdef CONFIG_CMA
7448  static bool cma_reserve_called __initdata;
7449  
7450  static int __init cmdline_parse_hugetlb_cma(char *p)
7451  {
7452  	int nid, count = 0;
7453  	unsigned long tmp;
7454  	char *s = p;
7455  
7456  	while (*s) {
7457  		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7458  			break;
7459  
7460  		if (s[count] == ':') {
7461  			if (tmp >= MAX_NUMNODES)
7462  				break;
7463  			nid = array_index_nospec(tmp, MAX_NUMNODES);
7464  
7465  			s += count + 1;
7466  			tmp = memparse(s, &s);
7467  			hugetlb_cma_size_in_node[nid] = tmp;
7468  			hugetlb_cma_size += tmp;
7469  
7470  			/*
7471  			 * Skip the separator if have one, otherwise
7472  			 * break the parsing.
7473  			 */
7474  			if (*s == ',')
7475  				s++;
7476  			else
7477  				break;
7478  		} else {
7479  			hugetlb_cma_size = memparse(p, &p);
7480  			break;
7481  		}
7482  	}
7483  
7484  	return 0;
7485  }
7486  
7487  early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7488  
7489  void __init hugetlb_cma_reserve(int order)
7490  {
7491  	unsigned long size, reserved, per_node;
7492  	bool node_specific_cma_alloc = false;
7493  	int nid;
7494  
7495  	cma_reserve_called = true;
7496  
7497  	if (!hugetlb_cma_size)
7498  		return;
7499  
7500  	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7501  		if (hugetlb_cma_size_in_node[nid] == 0)
7502  			continue;
7503  
7504  		if (!node_online(nid)) {
7505  			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7506  			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7507  			hugetlb_cma_size_in_node[nid] = 0;
7508  			continue;
7509  		}
7510  
7511  		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7512  			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7513  				nid, (PAGE_SIZE << order) / SZ_1M);
7514  			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7515  			hugetlb_cma_size_in_node[nid] = 0;
7516  		} else {
7517  			node_specific_cma_alloc = true;
7518  		}
7519  	}
7520  
7521  	/* Validate the CMA size again in case some invalid nodes specified. */
7522  	if (!hugetlb_cma_size)
7523  		return;
7524  
7525  	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7526  		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7527  			(PAGE_SIZE << order) / SZ_1M);
7528  		hugetlb_cma_size = 0;
7529  		return;
7530  	}
7531  
7532  	if (!node_specific_cma_alloc) {
7533  		/*
7534  		 * If 3 GB area is requested on a machine with 4 numa nodes,
7535  		 * let's allocate 1 GB on first three nodes and ignore the last one.
7536  		 */
7537  		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7538  		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7539  			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7540  	}
7541  
7542  	reserved = 0;
7543  	for_each_online_node(nid) {
7544  		int res;
7545  		char name[CMA_MAX_NAME];
7546  
7547  		if (node_specific_cma_alloc) {
7548  			if (hugetlb_cma_size_in_node[nid] == 0)
7549  				continue;
7550  
7551  			size = hugetlb_cma_size_in_node[nid];
7552  		} else {
7553  			size = min(per_node, hugetlb_cma_size - reserved);
7554  		}
7555  
7556  		size = round_up(size, PAGE_SIZE << order);
7557  
7558  		snprintf(name, sizeof(name), "hugetlb%d", nid);
7559  		/*
7560  		 * Note that 'order per bit' is based on smallest size that
7561  		 * may be returned to CMA allocator in the case of
7562  		 * huge page demotion.
7563  		 */
7564  		res = cma_declare_contiguous_nid(0, size, 0,
7565  						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7566  						 0, false, name,
7567  						 &hugetlb_cma[nid], nid);
7568  		if (res) {
7569  			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7570  				res, nid);
7571  			continue;
7572  		}
7573  
7574  		reserved += size;
7575  		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7576  			size / SZ_1M, nid);
7577  
7578  		if (reserved >= hugetlb_cma_size)
7579  			break;
7580  	}
7581  
7582  	if (!reserved)
7583  		/*
7584  		 * hugetlb_cma_size is used to determine if allocations from
7585  		 * cma are possible.  Set to zero if no cma regions are set up.
7586  		 */
7587  		hugetlb_cma_size = 0;
7588  }
7589  
7590  static void __init hugetlb_cma_check(void)
7591  {
7592  	if (!hugetlb_cma_size || cma_reserve_called)
7593  		return;
7594  
7595  	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7596  }
7597  
7598  #endif /* CONFIG_CMA */
7599