xref: /linux/mm/hugetlb.c (revision 040f404b731207935ed644b14bcc2bb8b8488d00)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41 
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46 
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56 
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60 
61 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
62 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
63 
64 /*
65  * Due to ordering constraints across the init code for various
66  * architectures, hugetlb hstate cmdline parameters can't simply
67  * be early_param. early_param might call the setup function
68  * before valid hugetlb page sizes are determined, leading to
69  * incorrect rejection of valid hugepagesz= options.
70  *
71  * So, record the parameters early and consume them whenever the
72  * init code is ready for them, by calling hugetlb_parse_params().
73  */
74 
75 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
76 #define HUGE_MAX_CMDLINE_ARGS	(2 * HUGE_MAX_HSTATE + 1)
77 struct hugetlb_cmdline {
78 	char *val;
79 	int (*setup)(char *val);
80 };
81 
82 /* for command line parsing */
83 static struct hstate * __initdata parsed_hstate;
84 static unsigned long __initdata default_hstate_max_huge_pages;
85 static bool __initdata parsed_valid_hugepagesz = true;
86 static bool __initdata parsed_default_hugepagesz;
87 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
88 static unsigned long hugepage_allocation_threads __initdata;
89 
90 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
91 static int hstate_cmdline_index __initdata;
92 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
93 static int hugetlb_param_index __initdata;
94 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
95 static __init void hugetlb_parse_params(void);
96 
97 #define hugetlb_early_param(str, func) \
98 static __init int func##args(char *s) \
99 { \
100 	return hugetlb_add_param(s, func); \
101 } \
102 early_param(str, func##args)
103 
104 /*
105  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
106  * free_huge_pages, and surplus_huge_pages.
107  */
108 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
109 
110 /*
111  * Serializes faults on the same logical page.  This is used to
112  * prevent spurious OOMs when the hugepage pool is fully utilized.
113  */
114 static int num_fault_mutexes __ro_after_init;
115 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
116 
117 /* Forward declaration */
118 static int hugetlb_acct_memory(struct hstate *h, long delta);
119 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
120 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
121 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
122 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
123 		unsigned long start, unsigned long end);
124 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
125 
126 static void hugetlb_free_folio(struct folio *folio)
127 {
128 	if (folio_test_hugetlb_cma(folio)) {
129 		hugetlb_cma_free_folio(folio);
130 		return;
131 	}
132 
133 	folio_put(folio);
134 }
135 
136 static inline bool subpool_is_free(struct hugepage_subpool *spool)
137 {
138 	if (spool->count)
139 		return false;
140 	if (spool->max_hpages != -1)
141 		return spool->used_hpages == 0;
142 	if (spool->min_hpages != -1)
143 		return spool->rsv_hpages == spool->min_hpages;
144 
145 	return true;
146 }
147 
148 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
149 						unsigned long irq_flags)
150 {
151 	spin_unlock_irqrestore(&spool->lock, irq_flags);
152 
153 	/* If no pages are used, and no other handles to the subpool
154 	 * remain, give up any reservations based on minimum size and
155 	 * free the subpool */
156 	if (subpool_is_free(spool)) {
157 		if (spool->min_hpages != -1)
158 			hugetlb_acct_memory(spool->hstate,
159 						-spool->min_hpages);
160 		kfree(spool);
161 	}
162 }
163 
164 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
165 						long min_hpages)
166 {
167 	struct hugepage_subpool *spool;
168 
169 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
170 	if (!spool)
171 		return NULL;
172 
173 	spin_lock_init(&spool->lock);
174 	spool->count = 1;
175 	spool->max_hpages = max_hpages;
176 	spool->hstate = h;
177 	spool->min_hpages = min_hpages;
178 
179 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
180 		kfree(spool);
181 		return NULL;
182 	}
183 	spool->rsv_hpages = min_hpages;
184 
185 	return spool;
186 }
187 
188 void hugepage_put_subpool(struct hugepage_subpool *spool)
189 {
190 	unsigned long flags;
191 
192 	spin_lock_irqsave(&spool->lock, flags);
193 	BUG_ON(!spool->count);
194 	spool->count--;
195 	unlock_or_release_subpool(spool, flags);
196 }
197 
198 /*
199  * Subpool accounting for allocating and reserving pages.
200  * Return -ENOMEM if there are not enough resources to satisfy the
201  * request.  Otherwise, return the number of pages by which the
202  * global pools must be adjusted (upward).  The returned value may
203  * only be different than the passed value (delta) in the case where
204  * a subpool minimum size must be maintained.
205  */
206 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
207 				      long delta)
208 {
209 	long ret = delta;
210 
211 	if (!spool)
212 		return ret;
213 
214 	spin_lock_irq(&spool->lock);
215 
216 	if (spool->max_hpages != -1) {		/* maximum size accounting */
217 		if ((spool->used_hpages + delta) <= spool->max_hpages)
218 			spool->used_hpages += delta;
219 		else {
220 			ret = -ENOMEM;
221 			goto unlock_ret;
222 		}
223 	}
224 
225 	/* minimum size accounting */
226 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
227 		if (delta > spool->rsv_hpages) {
228 			/*
229 			 * Asking for more reserves than those already taken on
230 			 * behalf of subpool.  Return difference.
231 			 */
232 			ret = delta - spool->rsv_hpages;
233 			spool->rsv_hpages = 0;
234 		} else {
235 			ret = 0;	/* reserves already accounted for */
236 			spool->rsv_hpages -= delta;
237 		}
238 	}
239 
240 unlock_ret:
241 	spin_unlock_irq(&spool->lock);
242 	return ret;
243 }
244 
245 /*
246  * Subpool accounting for freeing and unreserving pages.
247  * Return the number of global page reservations that must be dropped.
248  * The return value may only be different than the passed value (delta)
249  * in the case where a subpool minimum size must be maintained.
250  */
251 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
252 				       long delta)
253 {
254 	long ret = delta;
255 	unsigned long flags;
256 
257 	if (!spool)
258 		return delta;
259 
260 	spin_lock_irqsave(&spool->lock, flags);
261 
262 	if (spool->max_hpages != -1)		/* maximum size accounting */
263 		spool->used_hpages -= delta;
264 
265 	 /* minimum size accounting */
266 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
267 		if (spool->rsv_hpages + delta <= spool->min_hpages)
268 			ret = 0;
269 		else
270 			ret = spool->rsv_hpages + delta - spool->min_hpages;
271 
272 		spool->rsv_hpages += delta;
273 		if (spool->rsv_hpages > spool->min_hpages)
274 			spool->rsv_hpages = spool->min_hpages;
275 	}
276 
277 	/*
278 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
279 	 * quota reference, free it now.
280 	 */
281 	unlock_or_release_subpool(spool, flags);
282 
283 	return ret;
284 }
285 
286 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
287 {
288 	return HUGETLBFS_SB(inode->i_sb)->spool;
289 }
290 
291 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
292 {
293 	return subpool_inode(file_inode(vma->vm_file));
294 }
295 
296 /*
297  * hugetlb vma_lock helper routines
298  */
299 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
300 {
301 	if (__vma_shareable_lock(vma)) {
302 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 
304 		down_read(&vma_lock->rw_sema);
305 	} else if (__vma_private_lock(vma)) {
306 		struct resv_map *resv_map = vma_resv_map(vma);
307 
308 		down_read(&resv_map->rw_sema);
309 	}
310 }
311 
312 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
313 {
314 	if (__vma_shareable_lock(vma)) {
315 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
316 
317 		up_read(&vma_lock->rw_sema);
318 	} else if (__vma_private_lock(vma)) {
319 		struct resv_map *resv_map = vma_resv_map(vma);
320 
321 		up_read(&resv_map->rw_sema);
322 	}
323 }
324 
325 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
326 {
327 	if (__vma_shareable_lock(vma)) {
328 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
329 
330 		down_write(&vma_lock->rw_sema);
331 	} else if (__vma_private_lock(vma)) {
332 		struct resv_map *resv_map = vma_resv_map(vma);
333 
334 		down_write(&resv_map->rw_sema);
335 	}
336 }
337 
338 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
339 {
340 	if (__vma_shareable_lock(vma)) {
341 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
342 
343 		up_write(&vma_lock->rw_sema);
344 	} else if (__vma_private_lock(vma)) {
345 		struct resv_map *resv_map = vma_resv_map(vma);
346 
347 		up_write(&resv_map->rw_sema);
348 	}
349 }
350 
351 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
352 {
353 
354 	if (__vma_shareable_lock(vma)) {
355 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
356 
357 		return down_write_trylock(&vma_lock->rw_sema);
358 	} else if (__vma_private_lock(vma)) {
359 		struct resv_map *resv_map = vma_resv_map(vma);
360 
361 		return down_write_trylock(&resv_map->rw_sema);
362 	}
363 
364 	return 1;
365 }
366 
367 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
368 {
369 	if (__vma_shareable_lock(vma)) {
370 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
371 
372 		lockdep_assert_held(&vma_lock->rw_sema);
373 	} else if (__vma_private_lock(vma)) {
374 		struct resv_map *resv_map = vma_resv_map(vma);
375 
376 		lockdep_assert_held(&resv_map->rw_sema);
377 	}
378 }
379 
380 void hugetlb_vma_lock_release(struct kref *kref)
381 {
382 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
383 			struct hugetlb_vma_lock, refs);
384 
385 	kfree(vma_lock);
386 }
387 
388 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
389 {
390 	struct vm_area_struct *vma = vma_lock->vma;
391 
392 	/*
393 	 * vma_lock structure may or not be released as a result of put,
394 	 * it certainly will no longer be attached to vma so clear pointer.
395 	 * Semaphore synchronizes access to vma_lock->vma field.
396 	 */
397 	vma_lock->vma = NULL;
398 	vma->vm_private_data = NULL;
399 	up_write(&vma_lock->rw_sema);
400 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
401 }
402 
403 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
404 {
405 	if (__vma_shareable_lock(vma)) {
406 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
407 
408 		__hugetlb_vma_unlock_write_put(vma_lock);
409 	} else if (__vma_private_lock(vma)) {
410 		struct resv_map *resv_map = vma_resv_map(vma);
411 
412 		/* no free for anon vmas, but still need to unlock */
413 		up_write(&resv_map->rw_sema);
414 	}
415 }
416 
417 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
418 {
419 	/*
420 	 * Only present in sharable vmas.
421 	 */
422 	if (!vma || !__vma_shareable_lock(vma))
423 		return;
424 
425 	if (vma->vm_private_data) {
426 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
427 
428 		down_write(&vma_lock->rw_sema);
429 		__hugetlb_vma_unlock_write_put(vma_lock);
430 	}
431 }
432 
433 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
434 {
435 	struct hugetlb_vma_lock *vma_lock;
436 
437 	/* Only establish in (flags) sharable vmas */
438 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
439 		return;
440 
441 	/* Should never get here with non-NULL vm_private_data */
442 	if (vma->vm_private_data)
443 		return;
444 
445 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
446 	if (!vma_lock) {
447 		/*
448 		 * If we can not allocate structure, then vma can not
449 		 * participate in pmd sharing.  This is only a possible
450 		 * performance enhancement and memory saving issue.
451 		 * However, the lock is also used to synchronize page
452 		 * faults with truncation.  If the lock is not present,
453 		 * unlikely races could leave pages in a file past i_size
454 		 * until the file is removed.  Warn in the unlikely case of
455 		 * allocation failure.
456 		 */
457 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
458 		return;
459 	}
460 
461 	kref_init(&vma_lock->refs);
462 	init_rwsem(&vma_lock->rw_sema);
463 	vma_lock->vma = vma;
464 	vma->vm_private_data = vma_lock;
465 }
466 
467 /* Helper that removes a struct file_region from the resv_map cache and returns
468  * it for use.
469  */
470 static struct file_region *
471 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
472 {
473 	struct file_region *nrg;
474 
475 	VM_BUG_ON(resv->region_cache_count <= 0);
476 
477 	resv->region_cache_count--;
478 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
479 	list_del(&nrg->link);
480 
481 	nrg->from = from;
482 	nrg->to = to;
483 
484 	return nrg;
485 }
486 
487 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
488 					      struct file_region *rg)
489 {
490 #ifdef CONFIG_CGROUP_HUGETLB
491 	nrg->reservation_counter = rg->reservation_counter;
492 	nrg->css = rg->css;
493 	if (rg->css)
494 		css_get(rg->css);
495 #endif
496 }
497 
498 /* Helper that records hugetlb_cgroup uncharge info. */
499 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
500 						struct hstate *h,
501 						struct resv_map *resv,
502 						struct file_region *nrg)
503 {
504 #ifdef CONFIG_CGROUP_HUGETLB
505 	if (h_cg) {
506 		nrg->reservation_counter =
507 			&h_cg->rsvd_hugepage[hstate_index(h)];
508 		nrg->css = &h_cg->css;
509 		/*
510 		 * The caller will hold exactly one h_cg->css reference for the
511 		 * whole contiguous reservation region. But this area might be
512 		 * scattered when there are already some file_regions reside in
513 		 * it. As a result, many file_regions may share only one css
514 		 * reference. In order to ensure that one file_region must hold
515 		 * exactly one h_cg->css reference, we should do css_get for
516 		 * each file_region and leave the reference held by caller
517 		 * untouched.
518 		 */
519 		css_get(&h_cg->css);
520 		if (!resv->pages_per_hpage)
521 			resv->pages_per_hpage = pages_per_huge_page(h);
522 		/* pages_per_hpage should be the same for all entries in
523 		 * a resv_map.
524 		 */
525 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
526 	} else {
527 		nrg->reservation_counter = NULL;
528 		nrg->css = NULL;
529 	}
530 #endif
531 }
532 
533 static void put_uncharge_info(struct file_region *rg)
534 {
535 #ifdef CONFIG_CGROUP_HUGETLB
536 	if (rg->css)
537 		css_put(rg->css);
538 #endif
539 }
540 
541 static bool has_same_uncharge_info(struct file_region *rg,
542 				   struct file_region *org)
543 {
544 #ifdef CONFIG_CGROUP_HUGETLB
545 	return rg->reservation_counter == org->reservation_counter &&
546 	       rg->css == org->css;
547 
548 #else
549 	return true;
550 #endif
551 }
552 
553 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
554 {
555 	struct file_region *nrg, *prg;
556 
557 	prg = list_prev_entry(rg, link);
558 	if (&prg->link != &resv->regions && prg->to == rg->from &&
559 	    has_same_uncharge_info(prg, rg)) {
560 		prg->to = rg->to;
561 
562 		list_del(&rg->link);
563 		put_uncharge_info(rg);
564 		kfree(rg);
565 
566 		rg = prg;
567 	}
568 
569 	nrg = list_next_entry(rg, link);
570 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
571 	    has_same_uncharge_info(nrg, rg)) {
572 		nrg->from = rg->from;
573 
574 		list_del(&rg->link);
575 		put_uncharge_info(rg);
576 		kfree(rg);
577 	}
578 }
579 
580 static inline long
581 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
582 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
583 		     long *regions_needed)
584 {
585 	struct file_region *nrg;
586 
587 	if (!regions_needed) {
588 		nrg = get_file_region_entry_from_cache(map, from, to);
589 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
590 		list_add(&nrg->link, rg);
591 		coalesce_file_region(map, nrg);
592 	} else
593 		*regions_needed += 1;
594 
595 	return to - from;
596 }
597 
598 /*
599  * Must be called with resv->lock held.
600  *
601  * Calling this with regions_needed != NULL will count the number of pages
602  * to be added but will not modify the linked list. And regions_needed will
603  * indicate the number of file_regions needed in the cache to carry out to add
604  * the regions for this range.
605  */
606 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
607 				     struct hugetlb_cgroup *h_cg,
608 				     struct hstate *h, long *regions_needed)
609 {
610 	long add = 0;
611 	struct list_head *head = &resv->regions;
612 	long last_accounted_offset = f;
613 	struct file_region *iter, *trg = NULL;
614 	struct list_head *rg = NULL;
615 
616 	if (regions_needed)
617 		*regions_needed = 0;
618 
619 	/* In this loop, we essentially handle an entry for the range
620 	 * [last_accounted_offset, iter->from), at every iteration, with some
621 	 * bounds checking.
622 	 */
623 	list_for_each_entry_safe(iter, trg, head, link) {
624 		/* Skip irrelevant regions that start before our range. */
625 		if (iter->from < f) {
626 			/* If this region ends after the last accounted offset,
627 			 * then we need to update last_accounted_offset.
628 			 */
629 			if (iter->to > last_accounted_offset)
630 				last_accounted_offset = iter->to;
631 			continue;
632 		}
633 
634 		/* When we find a region that starts beyond our range, we've
635 		 * finished.
636 		 */
637 		if (iter->from >= t) {
638 			rg = iter->link.prev;
639 			break;
640 		}
641 
642 		/* Add an entry for last_accounted_offset -> iter->from, and
643 		 * update last_accounted_offset.
644 		 */
645 		if (iter->from > last_accounted_offset)
646 			add += hugetlb_resv_map_add(resv, iter->link.prev,
647 						    last_accounted_offset,
648 						    iter->from, h, h_cg,
649 						    regions_needed);
650 
651 		last_accounted_offset = iter->to;
652 	}
653 
654 	/* Handle the case where our range extends beyond
655 	 * last_accounted_offset.
656 	 */
657 	if (!rg)
658 		rg = head->prev;
659 	if (last_accounted_offset < t)
660 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
661 					    t, h, h_cg, regions_needed);
662 
663 	return add;
664 }
665 
666 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
667  */
668 static int allocate_file_region_entries(struct resv_map *resv,
669 					int regions_needed)
670 	__must_hold(&resv->lock)
671 {
672 	LIST_HEAD(allocated_regions);
673 	int to_allocate = 0, i = 0;
674 	struct file_region *trg = NULL, *rg = NULL;
675 
676 	VM_BUG_ON(regions_needed < 0);
677 
678 	/*
679 	 * Check for sufficient descriptors in the cache to accommodate
680 	 * the number of in progress add operations plus regions_needed.
681 	 *
682 	 * This is a while loop because when we drop the lock, some other call
683 	 * to region_add or region_del may have consumed some region_entries,
684 	 * so we keep looping here until we finally have enough entries for
685 	 * (adds_in_progress + regions_needed).
686 	 */
687 	while (resv->region_cache_count <
688 	       (resv->adds_in_progress + regions_needed)) {
689 		to_allocate = resv->adds_in_progress + regions_needed -
690 			      resv->region_cache_count;
691 
692 		/* At this point, we should have enough entries in the cache
693 		 * for all the existing adds_in_progress. We should only be
694 		 * needing to allocate for regions_needed.
695 		 */
696 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
697 
698 		spin_unlock(&resv->lock);
699 		for (i = 0; i < to_allocate; i++) {
700 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
701 			if (!trg)
702 				goto out_of_memory;
703 			list_add(&trg->link, &allocated_regions);
704 		}
705 
706 		spin_lock(&resv->lock);
707 
708 		list_splice(&allocated_regions, &resv->region_cache);
709 		resv->region_cache_count += to_allocate;
710 	}
711 
712 	return 0;
713 
714 out_of_memory:
715 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
716 		list_del(&rg->link);
717 		kfree(rg);
718 	}
719 	return -ENOMEM;
720 }
721 
722 /*
723  * Add the huge page range represented by [f, t) to the reserve
724  * map.  Regions will be taken from the cache to fill in this range.
725  * Sufficient regions should exist in the cache due to the previous
726  * call to region_chg with the same range, but in some cases the cache will not
727  * have sufficient entries due to races with other code doing region_add or
728  * region_del.  The extra needed entries will be allocated.
729  *
730  * regions_needed is the out value provided by a previous call to region_chg.
731  *
732  * Return the number of new huge pages added to the map.  This number is greater
733  * than or equal to zero.  If file_region entries needed to be allocated for
734  * this operation and we were not able to allocate, it returns -ENOMEM.
735  * region_add of regions of length 1 never allocate file_regions and cannot
736  * fail; region_chg will always allocate at least 1 entry and a region_add for
737  * 1 page will only require at most 1 entry.
738  */
739 static long region_add(struct resv_map *resv, long f, long t,
740 		       long in_regions_needed, struct hstate *h,
741 		       struct hugetlb_cgroup *h_cg)
742 {
743 	long add = 0, actual_regions_needed = 0;
744 
745 	spin_lock(&resv->lock);
746 retry:
747 
748 	/* Count how many regions are actually needed to execute this add. */
749 	add_reservation_in_range(resv, f, t, NULL, NULL,
750 				 &actual_regions_needed);
751 
752 	/*
753 	 * Check for sufficient descriptors in the cache to accommodate
754 	 * this add operation. Note that actual_regions_needed may be greater
755 	 * than in_regions_needed, as the resv_map may have been modified since
756 	 * the region_chg call. In this case, we need to make sure that we
757 	 * allocate extra entries, such that we have enough for all the
758 	 * existing adds_in_progress, plus the excess needed for this
759 	 * operation.
760 	 */
761 	if (actual_regions_needed > in_regions_needed &&
762 	    resv->region_cache_count <
763 		    resv->adds_in_progress +
764 			    (actual_regions_needed - in_regions_needed)) {
765 		/* region_add operation of range 1 should never need to
766 		 * allocate file_region entries.
767 		 */
768 		VM_BUG_ON(t - f <= 1);
769 
770 		if (allocate_file_region_entries(
771 			    resv, actual_regions_needed - in_regions_needed)) {
772 			return -ENOMEM;
773 		}
774 
775 		goto retry;
776 	}
777 
778 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
779 
780 	resv->adds_in_progress -= in_regions_needed;
781 
782 	spin_unlock(&resv->lock);
783 	return add;
784 }
785 
786 /*
787  * Examine the existing reserve map and determine how many
788  * huge pages in the specified range [f, t) are NOT currently
789  * represented.  This routine is called before a subsequent
790  * call to region_add that will actually modify the reserve
791  * map to add the specified range [f, t).  region_chg does
792  * not change the number of huge pages represented by the
793  * map.  A number of new file_region structures is added to the cache as a
794  * placeholder, for the subsequent region_add call to use. At least 1
795  * file_region structure is added.
796  *
797  * out_regions_needed is the number of regions added to the
798  * resv->adds_in_progress.  This value needs to be provided to a follow up call
799  * to region_add or region_abort for proper accounting.
800  *
801  * Returns the number of huge pages that need to be added to the existing
802  * reservation map for the range [f, t).  This number is greater or equal to
803  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
804  * is needed and can not be allocated.
805  */
806 static long region_chg(struct resv_map *resv, long f, long t,
807 		       long *out_regions_needed)
808 {
809 	long chg = 0;
810 
811 	spin_lock(&resv->lock);
812 
813 	/* Count how many hugepages in this range are NOT represented. */
814 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
815 				       out_regions_needed);
816 
817 	if (*out_regions_needed == 0)
818 		*out_regions_needed = 1;
819 
820 	if (allocate_file_region_entries(resv, *out_regions_needed))
821 		return -ENOMEM;
822 
823 	resv->adds_in_progress += *out_regions_needed;
824 
825 	spin_unlock(&resv->lock);
826 	return chg;
827 }
828 
829 /*
830  * Abort the in progress add operation.  The adds_in_progress field
831  * of the resv_map keeps track of the operations in progress between
832  * calls to region_chg and region_add.  Operations are sometimes
833  * aborted after the call to region_chg.  In such cases, region_abort
834  * is called to decrement the adds_in_progress counter. regions_needed
835  * is the value returned by the region_chg call, it is used to decrement
836  * the adds_in_progress counter.
837  *
838  * NOTE: The range arguments [f, t) are not needed or used in this
839  * routine.  They are kept to make reading the calling code easier as
840  * arguments will match the associated region_chg call.
841  */
842 static void region_abort(struct resv_map *resv, long f, long t,
843 			 long regions_needed)
844 {
845 	spin_lock(&resv->lock);
846 	VM_BUG_ON(!resv->region_cache_count);
847 	resv->adds_in_progress -= regions_needed;
848 	spin_unlock(&resv->lock);
849 }
850 
851 /*
852  * Delete the specified range [f, t) from the reserve map.  If the
853  * t parameter is LONG_MAX, this indicates that ALL regions after f
854  * should be deleted.  Locate the regions which intersect [f, t)
855  * and either trim, delete or split the existing regions.
856  *
857  * Returns the number of huge pages deleted from the reserve map.
858  * In the normal case, the return value is zero or more.  In the
859  * case where a region must be split, a new region descriptor must
860  * be allocated.  If the allocation fails, -ENOMEM will be returned.
861  * NOTE: If the parameter t == LONG_MAX, then we will never split
862  * a region and possibly return -ENOMEM.  Callers specifying
863  * t == LONG_MAX do not need to check for -ENOMEM error.
864  */
865 static long region_del(struct resv_map *resv, long f, long t)
866 {
867 	struct list_head *head = &resv->regions;
868 	struct file_region *rg, *trg;
869 	struct file_region *nrg = NULL;
870 	long del = 0;
871 
872 retry:
873 	spin_lock(&resv->lock);
874 	list_for_each_entry_safe(rg, trg, head, link) {
875 		/*
876 		 * Skip regions before the range to be deleted.  file_region
877 		 * ranges are normally of the form [from, to).  However, there
878 		 * may be a "placeholder" entry in the map which is of the form
879 		 * (from, to) with from == to.  Check for placeholder entries
880 		 * at the beginning of the range to be deleted.
881 		 */
882 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
883 			continue;
884 
885 		if (rg->from >= t)
886 			break;
887 
888 		if (f > rg->from && t < rg->to) { /* Must split region */
889 			/*
890 			 * Check for an entry in the cache before dropping
891 			 * lock and attempting allocation.
892 			 */
893 			if (!nrg &&
894 			    resv->region_cache_count > resv->adds_in_progress) {
895 				nrg = list_first_entry(&resv->region_cache,
896 							struct file_region,
897 							link);
898 				list_del(&nrg->link);
899 				resv->region_cache_count--;
900 			}
901 
902 			if (!nrg) {
903 				spin_unlock(&resv->lock);
904 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
905 				if (!nrg)
906 					return -ENOMEM;
907 				goto retry;
908 			}
909 
910 			del += t - f;
911 			hugetlb_cgroup_uncharge_file_region(
912 				resv, rg, t - f, false);
913 
914 			/* New entry for end of split region */
915 			nrg->from = t;
916 			nrg->to = rg->to;
917 
918 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
919 
920 			INIT_LIST_HEAD(&nrg->link);
921 
922 			/* Original entry is trimmed */
923 			rg->to = f;
924 
925 			list_add(&nrg->link, &rg->link);
926 			nrg = NULL;
927 			break;
928 		}
929 
930 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
931 			del += rg->to - rg->from;
932 			hugetlb_cgroup_uncharge_file_region(resv, rg,
933 							    rg->to - rg->from, true);
934 			list_del(&rg->link);
935 			kfree(rg);
936 			continue;
937 		}
938 
939 		if (f <= rg->from) {	/* Trim beginning of region */
940 			hugetlb_cgroup_uncharge_file_region(resv, rg,
941 							    t - rg->from, false);
942 
943 			del += t - rg->from;
944 			rg->from = t;
945 		} else {		/* Trim end of region */
946 			hugetlb_cgroup_uncharge_file_region(resv, rg,
947 							    rg->to - f, false);
948 
949 			del += rg->to - f;
950 			rg->to = f;
951 		}
952 	}
953 
954 	spin_unlock(&resv->lock);
955 	kfree(nrg);
956 	return del;
957 }
958 
959 /*
960  * A rare out of memory error was encountered which prevented removal of
961  * the reserve map region for a page.  The huge page itself was free'ed
962  * and removed from the page cache.  This routine will adjust the subpool
963  * usage count, and the global reserve count if needed.  By incrementing
964  * these counts, the reserve map entry which could not be deleted will
965  * appear as a "reserved" entry instead of simply dangling with incorrect
966  * counts.
967  */
968 void hugetlb_fix_reserve_counts(struct inode *inode)
969 {
970 	struct hugepage_subpool *spool = subpool_inode(inode);
971 	long rsv_adjust;
972 	bool reserved = false;
973 
974 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
975 	if (rsv_adjust > 0) {
976 		struct hstate *h = hstate_inode(inode);
977 
978 		if (!hugetlb_acct_memory(h, 1))
979 			reserved = true;
980 	} else if (!rsv_adjust) {
981 		reserved = true;
982 	}
983 
984 	if (!reserved)
985 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
986 }
987 
988 /*
989  * Count and return the number of huge pages in the reserve map
990  * that intersect with the range [f, t).
991  */
992 static long region_count(struct resv_map *resv, long f, long t)
993 {
994 	struct list_head *head = &resv->regions;
995 	struct file_region *rg;
996 	long chg = 0;
997 
998 	spin_lock(&resv->lock);
999 	/* Locate each segment we overlap with, and count that overlap. */
1000 	list_for_each_entry(rg, head, link) {
1001 		long seg_from;
1002 		long seg_to;
1003 
1004 		if (rg->to <= f)
1005 			continue;
1006 		if (rg->from >= t)
1007 			break;
1008 
1009 		seg_from = max(rg->from, f);
1010 		seg_to = min(rg->to, t);
1011 
1012 		chg += seg_to - seg_from;
1013 	}
1014 	spin_unlock(&resv->lock);
1015 
1016 	return chg;
1017 }
1018 
1019 /*
1020  * Convert the address within this vma to the page offset within
1021  * the mapping, huge page units here.
1022  */
1023 static pgoff_t vma_hugecache_offset(struct hstate *h,
1024 			struct vm_area_struct *vma, unsigned long address)
1025 {
1026 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
1027 			(vma->vm_pgoff >> huge_page_order(h));
1028 }
1029 
1030 /**
1031  * vma_kernel_pagesize - Page size granularity for this VMA.
1032  * @vma: The user mapping.
1033  *
1034  * Folios in this VMA will be aligned to, and at least the size of the
1035  * number of bytes returned by this function.
1036  *
1037  * Return: The default size of the folios allocated when backing a VMA.
1038  */
1039 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1040 {
1041 	if (vma->vm_ops && vma->vm_ops->pagesize)
1042 		return vma->vm_ops->pagesize(vma);
1043 	return PAGE_SIZE;
1044 }
1045 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1046 
1047 /*
1048  * Return the page size being used by the MMU to back a VMA. In the majority
1049  * of cases, the page size used by the kernel matches the MMU size. On
1050  * architectures where it differs, an architecture-specific 'strong'
1051  * version of this symbol is required.
1052  */
1053 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1054 {
1055 	return vma_kernel_pagesize(vma);
1056 }
1057 
1058 /*
1059  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1060  * bits of the reservation map pointer, which are always clear due to
1061  * alignment.
1062  */
1063 #define HPAGE_RESV_OWNER    (1UL << 0)
1064 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1065 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1066 
1067 /*
1068  * These helpers are used to track how many pages are reserved for
1069  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1070  * is guaranteed to have their future faults succeed.
1071  *
1072  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1073  * the reserve counters are updated with the hugetlb_lock held. It is safe
1074  * to reset the VMA at fork() time as it is not in use yet and there is no
1075  * chance of the global counters getting corrupted as a result of the values.
1076  *
1077  * The private mapping reservation is represented in a subtly different
1078  * manner to a shared mapping.  A shared mapping has a region map associated
1079  * with the underlying file, this region map represents the backing file
1080  * pages which have ever had a reservation assigned which this persists even
1081  * after the page is instantiated.  A private mapping has a region map
1082  * associated with the original mmap which is attached to all VMAs which
1083  * reference it, this region map represents those offsets which have consumed
1084  * reservation ie. where pages have been instantiated.
1085  */
1086 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1087 {
1088 	return (unsigned long)vma->vm_private_data;
1089 }
1090 
1091 static void set_vma_private_data(struct vm_area_struct *vma,
1092 							unsigned long value)
1093 {
1094 	vma->vm_private_data = (void *)value;
1095 }
1096 
1097 static void
1098 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1099 					  struct hugetlb_cgroup *h_cg,
1100 					  struct hstate *h)
1101 {
1102 #ifdef CONFIG_CGROUP_HUGETLB
1103 	if (!h_cg || !h) {
1104 		resv_map->reservation_counter = NULL;
1105 		resv_map->pages_per_hpage = 0;
1106 		resv_map->css = NULL;
1107 	} else {
1108 		resv_map->reservation_counter =
1109 			&h_cg->rsvd_hugepage[hstate_index(h)];
1110 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1111 		resv_map->css = &h_cg->css;
1112 	}
1113 #endif
1114 }
1115 
1116 struct resv_map *resv_map_alloc(void)
1117 {
1118 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1119 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1120 
1121 	if (!resv_map || !rg) {
1122 		kfree(resv_map);
1123 		kfree(rg);
1124 		return NULL;
1125 	}
1126 
1127 	kref_init(&resv_map->refs);
1128 	spin_lock_init(&resv_map->lock);
1129 	INIT_LIST_HEAD(&resv_map->regions);
1130 	init_rwsem(&resv_map->rw_sema);
1131 
1132 	resv_map->adds_in_progress = 0;
1133 	/*
1134 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1135 	 * fields don't do cgroup accounting. On private mappings, these will be
1136 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1137 	 * reservations are to be un-charged from here.
1138 	 */
1139 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1140 
1141 	INIT_LIST_HEAD(&resv_map->region_cache);
1142 	list_add(&rg->link, &resv_map->region_cache);
1143 	resv_map->region_cache_count = 1;
1144 
1145 	return resv_map;
1146 }
1147 
1148 void resv_map_release(struct kref *ref)
1149 {
1150 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1151 	struct list_head *head = &resv_map->region_cache;
1152 	struct file_region *rg, *trg;
1153 
1154 	/* Clear out any active regions before we release the map. */
1155 	region_del(resv_map, 0, LONG_MAX);
1156 
1157 	/* ... and any entries left in the cache */
1158 	list_for_each_entry_safe(rg, trg, head, link) {
1159 		list_del(&rg->link);
1160 		kfree(rg);
1161 	}
1162 
1163 	VM_BUG_ON(resv_map->adds_in_progress);
1164 
1165 	kfree(resv_map);
1166 }
1167 
1168 static inline struct resv_map *inode_resv_map(struct inode *inode)
1169 {
1170 	/*
1171 	 * At inode evict time, i_mapping may not point to the original
1172 	 * address space within the inode.  This original address space
1173 	 * contains the pointer to the resv_map.  So, always use the
1174 	 * address space embedded within the inode.
1175 	 * The VERY common case is inode->mapping == &inode->i_data but,
1176 	 * this may not be true for device special inodes.
1177 	 */
1178 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1179 }
1180 
1181 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1182 {
1183 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1184 	if (vma->vm_flags & VM_MAYSHARE) {
1185 		struct address_space *mapping = vma->vm_file->f_mapping;
1186 		struct inode *inode = mapping->host;
1187 
1188 		return inode_resv_map(inode);
1189 
1190 	} else {
1191 		return (struct resv_map *)(get_vma_private_data(vma) &
1192 							~HPAGE_RESV_MASK);
1193 	}
1194 }
1195 
1196 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1197 {
1198 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1199 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1200 
1201 	set_vma_private_data(vma, (unsigned long)map);
1202 }
1203 
1204 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1205 {
1206 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1207 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1208 
1209 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1210 }
1211 
1212 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1213 {
1214 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1215 
1216 	return (get_vma_private_data(vma) & flag) != 0;
1217 }
1218 
1219 bool __vma_private_lock(struct vm_area_struct *vma)
1220 {
1221 	return !(vma->vm_flags & VM_MAYSHARE) &&
1222 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1223 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1224 }
1225 
1226 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1227 {
1228 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1229 	/*
1230 	 * Clear vm_private_data
1231 	 * - For shared mappings this is a per-vma semaphore that may be
1232 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1233 	 *   Before clearing, make sure pointer is not associated with vma
1234 	 *   as this will leak the structure.  This is the case when called
1235 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1236 	 *   been called to allocate a new structure.
1237 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1238 	 *   not apply to children.  Faults generated by the children are
1239 	 *   not guaranteed to succeed, even if read-only.
1240 	 */
1241 	if (vma->vm_flags & VM_MAYSHARE) {
1242 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1243 
1244 		if (vma_lock && vma_lock->vma != vma)
1245 			vma->vm_private_data = NULL;
1246 	} else
1247 		vma->vm_private_data = NULL;
1248 }
1249 
1250 /*
1251  * Reset and decrement one ref on hugepage private reservation.
1252  * Called with mm->mmap_lock writer semaphore held.
1253  * This function should be only used by move_vma() and operate on
1254  * same sized vma. It should never come here with last ref on the
1255  * reservation.
1256  */
1257 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1258 {
1259 	/*
1260 	 * Clear the old hugetlb private page reservation.
1261 	 * It has already been transferred to new_vma.
1262 	 *
1263 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1264 	 * which copies vma into new_vma and unmaps vma. After the copy
1265 	 * operation both new_vma and vma share a reference to the resv_map
1266 	 * struct, and at that point vma is about to be unmapped. We don't
1267 	 * want to return the reservation to the pool at unmap of vma because
1268 	 * the reservation still lives on in new_vma, so simply decrement the
1269 	 * ref here and remove the resv_map reference from this vma.
1270 	 */
1271 	struct resv_map *reservations = vma_resv_map(vma);
1272 
1273 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1274 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1275 		kref_put(&reservations->refs, resv_map_release);
1276 	}
1277 
1278 	hugetlb_dup_vma_private(vma);
1279 }
1280 
1281 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1282 {
1283 	int nid = folio_nid(folio);
1284 
1285 	lockdep_assert_held(&hugetlb_lock);
1286 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1287 
1288 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1289 	h->free_huge_pages++;
1290 	h->free_huge_pages_node[nid]++;
1291 	folio_set_hugetlb_freed(folio);
1292 }
1293 
1294 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1295 								int nid)
1296 {
1297 	struct folio *folio;
1298 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1299 
1300 	lockdep_assert_held(&hugetlb_lock);
1301 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1302 		if (pin && !folio_is_longterm_pinnable(folio))
1303 			continue;
1304 
1305 		if (folio_test_hwpoison(folio))
1306 			continue;
1307 
1308 		if (is_migrate_isolate_page(&folio->page))
1309 			continue;
1310 
1311 		list_move(&folio->lru, &h->hugepage_activelist);
1312 		folio_ref_unfreeze(folio, 1);
1313 		folio_clear_hugetlb_freed(folio);
1314 		h->free_huge_pages--;
1315 		h->free_huge_pages_node[nid]--;
1316 		return folio;
1317 	}
1318 
1319 	return NULL;
1320 }
1321 
1322 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1323 							int nid, nodemask_t *nmask)
1324 {
1325 	unsigned int cpuset_mems_cookie;
1326 	struct zonelist *zonelist;
1327 	struct zone *zone;
1328 	struct zoneref *z;
1329 	int node = NUMA_NO_NODE;
1330 
1331 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1332 	if (nid == NUMA_NO_NODE)
1333 		nid = numa_node_id();
1334 
1335 	zonelist = node_zonelist(nid, gfp_mask);
1336 
1337 retry_cpuset:
1338 	cpuset_mems_cookie = read_mems_allowed_begin();
1339 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1340 		struct folio *folio;
1341 
1342 		if (!cpuset_zone_allowed(zone, gfp_mask))
1343 			continue;
1344 		/*
1345 		 * no need to ask again on the same node. Pool is node rather than
1346 		 * zone aware
1347 		 */
1348 		if (zone_to_nid(zone) == node)
1349 			continue;
1350 		node = zone_to_nid(zone);
1351 
1352 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1353 		if (folio)
1354 			return folio;
1355 	}
1356 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1357 		goto retry_cpuset;
1358 
1359 	return NULL;
1360 }
1361 
1362 static unsigned long available_huge_pages(struct hstate *h)
1363 {
1364 	return h->free_huge_pages - h->resv_huge_pages;
1365 }
1366 
1367 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1368 				struct vm_area_struct *vma,
1369 				unsigned long address, long gbl_chg)
1370 {
1371 	struct folio *folio = NULL;
1372 	struct mempolicy *mpol;
1373 	gfp_t gfp_mask;
1374 	nodemask_t *nodemask;
1375 	int nid;
1376 
1377 	/*
1378 	 * gbl_chg==1 means the allocation requires a new page that was not
1379 	 * reserved before.  Making sure there's at least one free page.
1380 	 */
1381 	if (gbl_chg && !available_huge_pages(h))
1382 		goto err;
1383 
1384 	gfp_mask = htlb_alloc_mask(h);
1385 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1386 
1387 	if (mpol_is_preferred_many(mpol)) {
1388 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 							nid, nodemask);
1390 
1391 		/* Fallback to all nodes if page==NULL */
1392 		nodemask = NULL;
1393 	}
1394 
1395 	if (!folio)
1396 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1397 							nid, nodemask);
1398 
1399 	mpol_cond_put(mpol);
1400 	return folio;
1401 
1402 err:
1403 	return NULL;
1404 }
1405 
1406 /*
1407  * common helper functions for hstate_next_node_to_{alloc|free}.
1408  * We may have allocated or freed a huge page based on a different
1409  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1410  * be outside of *nodes_allowed.  Ensure that we use an allowed
1411  * node for alloc or free.
1412  */
1413 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1414 {
1415 	nid = next_node_in(nid, *nodes_allowed);
1416 	VM_BUG_ON(nid >= MAX_NUMNODES);
1417 
1418 	return nid;
1419 }
1420 
1421 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1422 {
1423 	if (!node_isset(nid, *nodes_allowed))
1424 		nid = next_node_allowed(nid, nodes_allowed);
1425 	return nid;
1426 }
1427 
1428 /*
1429  * returns the previously saved node ["this node"] from which to
1430  * allocate a persistent huge page for the pool and advance the
1431  * next node from which to allocate, handling wrap at end of node
1432  * mask.
1433  */
1434 static int hstate_next_node_to_alloc(int *next_node,
1435 					nodemask_t *nodes_allowed)
1436 {
1437 	int nid;
1438 
1439 	VM_BUG_ON(!nodes_allowed);
1440 
1441 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1442 	*next_node = next_node_allowed(nid, nodes_allowed);
1443 
1444 	return nid;
1445 }
1446 
1447 /*
1448  * helper for remove_pool_hugetlb_folio() - return the previously saved
1449  * node ["this node"] from which to free a huge page.  Advance the
1450  * next node id whether or not we find a free huge page to free so
1451  * that the next attempt to free addresses the next node.
1452  */
1453 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1454 {
1455 	int nid;
1456 
1457 	VM_BUG_ON(!nodes_allowed);
1458 
1459 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1460 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1461 
1462 	return nid;
1463 }
1464 
1465 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1466 	for (nr_nodes = nodes_weight(*mask);				\
1467 		nr_nodes > 0 &&						\
1468 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1469 		nr_nodes--)
1470 
1471 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1472 	for (nr_nodes = nodes_weight(*mask);				\
1473 		nr_nodes > 0 &&						\
1474 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1475 		nr_nodes--)
1476 
1477 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1478 #ifdef CONFIG_CONTIG_ALLOC
1479 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1480 		int nid, nodemask_t *nodemask)
1481 {
1482 	struct folio *folio;
1483 	int order = huge_page_order(h);
1484 	bool retried = false;
1485 
1486 	if (nid == NUMA_NO_NODE)
1487 		nid = numa_mem_id();
1488 retry:
1489 	folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1490 	if (!folio) {
1491 		if (hugetlb_cma_exclusive_alloc())
1492 			return NULL;
1493 
1494 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1495 		if (!folio)
1496 			return NULL;
1497 	}
1498 
1499 	if (folio_ref_freeze(folio, 1))
1500 		return folio;
1501 
1502 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1503 	hugetlb_free_folio(folio);
1504 	if (!retried) {
1505 		retried = true;
1506 		goto retry;
1507 	}
1508 	return NULL;
1509 }
1510 
1511 #else /* !CONFIG_CONTIG_ALLOC */
1512 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1513 					int nid, nodemask_t *nodemask)
1514 {
1515 	return NULL;
1516 }
1517 #endif /* CONFIG_CONTIG_ALLOC */
1518 
1519 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1520 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1521 					int nid, nodemask_t *nodemask)
1522 {
1523 	return NULL;
1524 }
1525 #endif
1526 
1527 /*
1528  * Remove hugetlb folio from lists.
1529  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1530  * folio appears as just a compound page.  Otherwise, wait until after
1531  * allocating vmemmap to clear the flag.
1532  *
1533  * Must be called with hugetlb lock held.
1534  */
1535 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1536 							bool adjust_surplus)
1537 {
1538 	int nid = folio_nid(folio);
1539 
1540 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1541 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1542 
1543 	lockdep_assert_held(&hugetlb_lock);
1544 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1545 		return;
1546 
1547 	list_del(&folio->lru);
1548 
1549 	if (folio_test_hugetlb_freed(folio)) {
1550 		folio_clear_hugetlb_freed(folio);
1551 		h->free_huge_pages--;
1552 		h->free_huge_pages_node[nid]--;
1553 	}
1554 	if (adjust_surplus) {
1555 		h->surplus_huge_pages--;
1556 		h->surplus_huge_pages_node[nid]--;
1557 	}
1558 
1559 	/*
1560 	 * We can only clear the hugetlb flag after allocating vmemmap
1561 	 * pages.  Otherwise, someone (memory error handling) may try to write
1562 	 * to tail struct pages.
1563 	 */
1564 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1565 		__folio_clear_hugetlb(folio);
1566 
1567 	h->nr_huge_pages--;
1568 	h->nr_huge_pages_node[nid]--;
1569 }
1570 
1571 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1572 			     bool adjust_surplus)
1573 {
1574 	int nid = folio_nid(folio);
1575 
1576 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1577 
1578 	lockdep_assert_held(&hugetlb_lock);
1579 
1580 	INIT_LIST_HEAD(&folio->lru);
1581 	h->nr_huge_pages++;
1582 	h->nr_huge_pages_node[nid]++;
1583 
1584 	if (adjust_surplus) {
1585 		h->surplus_huge_pages++;
1586 		h->surplus_huge_pages_node[nid]++;
1587 	}
1588 
1589 	__folio_set_hugetlb(folio);
1590 	folio_change_private(folio, NULL);
1591 	/*
1592 	 * We have to set hugetlb_vmemmap_optimized again as above
1593 	 * folio_change_private(folio, NULL) cleared it.
1594 	 */
1595 	folio_set_hugetlb_vmemmap_optimized(folio);
1596 
1597 	arch_clear_hugetlb_flags(folio);
1598 	enqueue_hugetlb_folio(h, folio);
1599 }
1600 
1601 static void __update_and_free_hugetlb_folio(struct hstate *h,
1602 						struct folio *folio)
1603 {
1604 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1605 
1606 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1607 		return;
1608 
1609 	/*
1610 	 * If we don't know which subpages are hwpoisoned, we can't free
1611 	 * the hugepage, so it's leaked intentionally.
1612 	 */
1613 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1614 		return;
1615 
1616 	/*
1617 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1618 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1619 	 * can only be passed hugetlb pages and will BUG otherwise.
1620 	 */
1621 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1622 		spin_lock_irq(&hugetlb_lock);
1623 		/*
1624 		 * If we cannot allocate vmemmap pages, just refuse to free the
1625 		 * page and put the page back on the hugetlb free list and treat
1626 		 * as a surplus page.
1627 		 */
1628 		add_hugetlb_folio(h, folio, true);
1629 		spin_unlock_irq(&hugetlb_lock);
1630 		return;
1631 	}
1632 
1633 	/*
1634 	 * If vmemmap pages were allocated above, then we need to clear the
1635 	 * hugetlb flag under the hugetlb lock.
1636 	 */
1637 	if (folio_test_hugetlb(folio)) {
1638 		spin_lock_irq(&hugetlb_lock);
1639 		__folio_clear_hugetlb(folio);
1640 		spin_unlock_irq(&hugetlb_lock);
1641 	}
1642 
1643 	/*
1644 	 * Move PageHWPoison flag from head page to the raw error pages,
1645 	 * which makes any healthy subpages reusable.
1646 	 */
1647 	if (unlikely(folio_test_hwpoison(folio)))
1648 		folio_clear_hugetlb_hwpoison(folio);
1649 
1650 	folio_ref_unfreeze(folio, 1);
1651 
1652 	hugetlb_free_folio(folio);
1653 }
1654 
1655 /*
1656  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1657  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1658  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1659  * the vmemmap pages.
1660  *
1661  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1662  * freed and frees them one-by-one. As the page->mapping pointer is going
1663  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1664  * structure of a lockless linked list of huge pages to be freed.
1665  */
1666 static LLIST_HEAD(hpage_freelist);
1667 
1668 static void free_hpage_workfn(struct work_struct *work)
1669 {
1670 	struct llist_node *node;
1671 
1672 	node = llist_del_all(&hpage_freelist);
1673 
1674 	while (node) {
1675 		struct folio *folio;
1676 		struct hstate *h;
1677 
1678 		folio = container_of((struct address_space **)node,
1679 				     struct folio, mapping);
1680 		node = node->next;
1681 		folio->mapping = NULL;
1682 		/*
1683 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1684 		 * folio_hstate() is going to trigger because a previous call to
1685 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1686 		 * not use folio_hstate() directly.
1687 		 */
1688 		h = size_to_hstate(folio_size(folio));
1689 
1690 		__update_and_free_hugetlb_folio(h, folio);
1691 
1692 		cond_resched();
1693 	}
1694 }
1695 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1696 
1697 static inline void flush_free_hpage_work(struct hstate *h)
1698 {
1699 	if (hugetlb_vmemmap_optimizable(h))
1700 		flush_work(&free_hpage_work);
1701 }
1702 
1703 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1704 				 bool atomic)
1705 {
1706 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1707 		__update_and_free_hugetlb_folio(h, folio);
1708 		return;
1709 	}
1710 
1711 	/*
1712 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1713 	 *
1714 	 * Only call schedule_work() if hpage_freelist is previously
1715 	 * empty. Otherwise, schedule_work() had been called but the workfn
1716 	 * hasn't retrieved the list yet.
1717 	 */
1718 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1719 		schedule_work(&free_hpage_work);
1720 }
1721 
1722 static void bulk_vmemmap_restore_error(struct hstate *h,
1723 					struct list_head *folio_list,
1724 					struct list_head *non_hvo_folios)
1725 {
1726 	struct folio *folio, *t_folio;
1727 
1728 	if (!list_empty(non_hvo_folios)) {
1729 		/*
1730 		 * Free any restored hugetlb pages so that restore of the
1731 		 * entire list can be retried.
1732 		 * The idea is that in the common case of ENOMEM errors freeing
1733 		 * hugetlb pages with vmemmap we will free up memory so that we
1734 		 * can allocate vmemmap for more hugetlb pages.
1735 		 */
1736 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1737 			list_del(&folio->lru);
1738 			spin_lock_irq(&hugetlb_lock);
1739 			__folio_clear_hugetlb(folio);
1740 			spin_unlock_irq(&hugetlb_lock);
1741 			update_and_free_hugetlb_folio(h, folio, false);
1742 			cond_resched();
1743 		}
1744 	} else {
1745 		/*
1746 		 * In the case where there are no folios which can be
1747 		 * immediately freed, we loop through the list trying to restore
1748 		 * vmemmap individually in the hope that someone elsewhere may
1749 		 * have done something to cause success (such as freeing some
1750 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1751 		 * page is made a surplus page and removed from the list.
1752 		 * If are able to restore vmemmap and free one hugetlb page, we
1753 		 * quit processing the list to retry the bulk operation.
1754 		 */
1755 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1756 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1757 				list_del(&folio->lru);
1758 				spin_lock_irq(&hugetlb_lock);
1759 				add_hugetlb_folio(h, folio, true);
1760 				spin_unlock_irq(&hugetlb_lock);
1761 			} else {
1762 				list_del(&folio->lru);
1763 				spin_lock_irq(&hugetlb_lock);
1764 				__folio_clear_hugetlb(folio);
1765 				spin_unlock_irq(&hugetlb_lock);
1766 				update_and_free_hugetlb_folio(h, folio, false);
1767 				cond_resched();
1768 				break;
1769 			}
1770 	}
1771 }
1772 
1773 static void update_and_free_pages_bulk(struct hstate *h,
1774 						struct list_head *folio_list)
1775 {
1776 	long ret;
1777 	struct folio *folio, *t_folio;
1778 	LIST_HEAD(non_hvo_folios);
1779 
1780 	/*
1781 	 * First allocate required vmemmmap (if necessary) for all folios.
1782 	 * Carefully handle errors and free up any available hugetlb pages
1783 	 * in an effort to make forward progress.
1784 	 */
1785 retry:
1786 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1787 	if (ret < 0) {
1788 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1789 		goto retry;
1790 	}
1791 
1792 	/*
1793 	 * At this point, list should be empty, ret should be >= 0 and there
1794 	 * should only be pages on the non_hvo_folios list.
1795 	 * Do note that the non_hvo_folios list could be empty.
1796 	 * Without HVO enabled, ret will be 0 and there is no need to call
1797 	 * __folio_clear_hugetlb as this was done previously.
1798 	 */
1799 	VM_WARN_ON(!list_empty(folio_list));
1800 	VM_WARN_ON(ret < 0);
1801 	if (!list_empty(&non_hvo_folios) && ret) {
1802 		spin_lock_irq(&hugetlb_lock);
1803 		list_for_each_entry(folio, &non_hvo_folios, lru)
1804 			__folio_clear_hugetlb(folio);
1805 		spin_unlock_irq(&hugetlb_lock);
1806 	}
1807 
1808 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1809 		update_and_free_hugetlb_folio(h, folio, false);
1810 		cond_resched();
1811 	}
1812 }
1813 
1814 struct hstate *size_to_hstate(unsigned long size)
1815 {
1816 	struct hstate *h;
1817 
1818 	for_each_hstate(h) {
1819 		if (huge_page_size(h) == size)
1820 			return h;
1821 	}
1822 	return NULL;
1823 }
1824 
1825 void free_huge_folio(struct folio *folio)
1826 {
1827 	/*
1828 	 * Can't pass hstate in here because it is called from the
1829 	 * generic mm code.
1830 	 */
1831 	struct hstate *h = folio_hstate(folio);
1832 	int nid = folio_nid(folio);
1833 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1834 	bool restore_reserve;
1835 	unsigned long flags;
1836 
1837 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1838 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1839 
1840 	hugetlb_set_folio_subpool(folio, NULL);
1841 	if (folio_test_anon(folio))
1842 		__ClearPageAnonExclusive(&folio->page);
1843 	folio->mapping = NULL;
1844 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1845 	folio_clear_hugetlb_restore_reserve(folio);
1846 
1847 	/*
1848 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1849 	 * reservation.  If the page was associated with a subpool, there
1850 	 * would have been a page reserved in the subpool before allocation
1851 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1852 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1853 	 * remove the reserved page from the subpool.
1854 	 */
1855 	if (!restore_reserve) {
1856 		/*
1857 		 * A return code of zero implies that the subpool will be
1858 		 * under its minimum size if the reservation is not restored
1859 		 * after page is free.  Therefore, force restore_reserve
1860 		 * operation.
1861 		 */
1862 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1863 			restore_reserve = true;
1864 	}
1865 
1866 	spin_lock_irqsave(&hugetlb_lock, flags);
1867 	folio_clear_hugetlb_migratable(folio);
1868 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1869 				     pages_per_huge_page(h), folio);
1870 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1871 					  pages_per_huge_page(h), folio);
1872 	lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1873 	mem_cgroup_uncharge(folio);
1874 	if (restore_reserve)
1875 		h->resv_huge_pages++;
1876 
1877 	if (folio_test_hugetlb_temporary(folio)) {
1878 		remove_hugetlb_folio(h, folio, false);
1879 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1880 		update_and_free_hugetlb_folio(h, folio, true);
1881 	} else if (h->surplus_huge_pages_node[nid]) {
1882 		/* remove the page from active list */
1883 		remove_hugetlb_folio(h, folio, true);
1884 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1885 		update_and_free_hugetlb_folio(h, folio, true);
1886 	} else {
1887 		arch_clear_hugetlb_flags(folio);
1888 		enqueue_hugetlb_folio(h, folio);
1889 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1890 	}
1891 }
1892 
1893 /*
1894  * Must be called with the hugetlb lock held
1895  */
1896 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1897 {
1898 	lockdep_assert_held(&hugetlb_lock);
1899 	h->nr_huge_pages++;
1900 	h->nr_huge_pages_node[nid]++;
1901 }
1902 
1903 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1904 {
1905 	__folio_set_hugetlb(folio);
1906 	INIT_LIST_HEAD(&folio->lru);
1907 	hugetlb_set_folio_subpool(folio, NULL);
1908 	set_hugetlb_cgroup(folio, NULL);
1909 	set_hugetlb_cgroup_rsvd(folio, NULL);
1910 }
1911 
1912 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1913 {
1914 	init_new_hugetlb_folio(h, folio);
1915 	hugetlb_vmemmap_optimize_folio(h, folio);
1916 }
1917 
1918 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1919 {
1920 	__prep_new_hugetlb_folio(h, folio);
1921 	spin_lock_irq(&hugetlb_lock);
1922 	__prep_account_new_huge_page(h, nid);
1923 	spin_unlock_irq(&hugetlb_lock);
1924 }
1925 
1926 /*
1927  * Find and lock address space (mapping) in write mode.
1928  *
1929  * Upon entry, the folio is locked which means that folio_mapping() is
1930  * stable.  Due to locking order, we can only trylock_write.  If we can
1931  * not get the lock, simply return NULL to caller.
1932  */
1933 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1934 {
1935 	struct address_space *mapping = folio_mapping(folio);
1936 
1937 	if (!mapping)
1938 		return mapping;
1939 
1940 	if (i_mmap_trylock_write(mapping))
1941 		return mapping;
1942 
1943 	return NULL;
1944 }
1945 
1946 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1947 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948 		nodemask_t *node_alloc_noretry)
1949 {
1950 	int order = huge_page_order(h);
1951 	struct folio *folio;
1952 	bool alloc_try_hard = true;
1953 	bool retry = true;
1954 
1955 	/*
1956 	 * By default we always try hard to allocate the folio with
1957 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
1958 	 * a loop (to adjust global huge page counts) and previous allocation
1959 	 * failed, do not continue to try hard on the same node.  Use the
1960 	 * node_alloc_noretry bitmap to manage this state information.
1961 	 */
1962 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 		alloc_try_hard = false;
1964 	if (alloc_try_hard)
1965 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 	if (nid == NUMA_NO_NODE)
1967 		nid = numa_mem_id();
1968 retry:
1969 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
1970 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
1971 	if (folio)
1972 		folio_clear_large_rmappable(folio);
1973 
1974 	if (folio && !folio_ref_freeze(folio, 1)) {
1975 		folio_put(folio);
1976 		if (retry) {	/* retry once */
1977 			retry = false;
1978 			goto retry;
1979 		}
1980 		/* WOW!  twice in a row. */
1981 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
1982 		folio = NULL;
1983 	}
1984 
1985 	/*
1986 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1987 	 * folio this indicates an overall state change.  Clear bit so
1988 	 * that we resume normal 'try hard' allocations.
1989 	 */
1990 	if (node_alloc_noretry && folio && !alloc_try_hard)
1991 		node_clear(nid, *node_alloc_noretry);
1992 
1993 	/*
1994 	 * If we tried hard to get a folio but failed, set bit so that
1995 	 * subsequent attempts will not try as hard until there is an
1996 	 * overall state change.
1997 	 */
1998 	if (node_alloc_noretry && !folio && alloc_try_hard)
1999 		node_set(nid, *node_alloc_noretry);
2000 
2001 	if (!folio) {
2002 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2003 		return NULL;
2004 	}
2005 
2006 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2007 	return folio;
2008 }
2009 
2010 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2011 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2012 		nodemask_t *node_alloc_noretry)
2013 {
2014 	struct folio *folio;
2015 
2016 	if (hstate_is_gigantic(h))
2017 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2018 	else
2019 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2020 	if (folio)
2021 		init_new_hugetlb_folio(h, folio);
2022 	return folio;
2023 }
2024 
2025 /*
2026  * Common helper to allocate a fresh hugetlb page. All specific allocators
2027  * should use this function to get new hugetlb pages
2028  *
2029  * Note that returned page is 'frozen':  ref count of head page and all tail
2030  * pages is zero.
2031  */
2032 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2033 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2034 {
2035 	struct folio *folio;
2036 
2037 	if (hstate_is_gigantic(h))
2038 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2039 	else
2040 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2041 	if (!folio)
2042 		return NULL;
2043 
2044 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2045 	return folio;
2046 }
2047 
2048 static void prep_and_add_allocated_folios(struct hstate *h,
2049 					struct list_head *folio_list)
2050 {
2051 	unsigned long flags;
2052 	struct folio *folio, *tmp_f;
2053 
2054 	/* Send list for bulk vmemmap optimization processing */
2055 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2056 
2057 	/* Add all new pool pages to free lists in one lock cycle */
2058 	spin_lock_irqsave(&hugetlb_lock, flags);
2059 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2060 		__prep_account_new_huge_page(h, folio_nid(folio));
2061 		enqueue_hugetlb_folio(h, folio);
2062 	}
2063 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2064 }
2065 
2066 /*
2067  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2068  * will later be added to the appropriate hugetlb pool.
2069  */
2070 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2071 					nodemask_t *nodes_allowed,
2072 					nodemask_t *node_alloc_noretry,
2073 					int *next_node)
2074 {
2075 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2076 	int nr_nodes, node;
2077 
2078 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2079 		struct folio *folio;
2080 
2081 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2082 					nodes_allowed, node_alloc_noretry);
2083 		if (folio)
2084 			return folio;
2085 	}
2086 
2087 	return NULL;
2088 }
2089 
2090 /*
2091  * Remove huge page from pool from next node to free.  Attempt to keep
2092  * persistent huge pages more or less balanced over allowed nodes.
2093  * This routine only 'removes' the hugetlb page.  The caller must make
2094  * an additional call to free the page to low level allocators.
2095  * Called with hugetlb_lock locked.
2096  */
2097 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2098 		nodemask_t *nodes_allowed, bool acct_surplus)
2099 {
2100 	int nr_nodes, node;
2101 	struct folio *folio = NULL;
2102 
2103 	lockdep_assert_held(&hugetlb_lock);
2104 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2105 		/*
2106 		 * If we're returning unused surplus pages, only examine
2107 		 * nodes with surplus pages.
2108 		 */
2109 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2110 		    !list_empty(&h->hugepage_freelists[node])) {
2111 			folio = list_entry(h->hugepage_freelists[node].next,
2112 					  struct folio, lru);
2113 			remove_hugetlb_folio(h, folio, acct_surplus);
2114 			break;
2115 		}
2116 	}
2117 
2118 	return folio;
2119 }
2120 
2121 /*
2122  * Dissolve a given free hugetlb folio into free buddy pages. This function
2123  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2124  * This function returns values like below:
2125  *
2126  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2127  *           when the system is under memory pressure and the feature of
2128  *           freeing unused vmemmap pages associated with each hugetlb page
2129  *           is enabled.
2130  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2131  *           (allocated or reserved.)
2132  *       0:  successfully dissolved free hugepages or the page is not a
2133  *           hugepage (considered as already dissolved)
2134  */
2135 int dissolve_free_hugetlb_folio(struct folio *folio)
2136 {
2137 	int rc = -EBUSY;
2138 
2139 retry:
2140 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2141 	if (!folio_test_hugetlb(folio))
2142 		return 0;
2143 
2144 	spin_lock_irq(&hugetlb_lock);
2145 	if (!folio_test_hugetlb(folio)) {
2146 		rc = 0;
2147 		goto out;
2148 	}
2149 
2150 	if (!folio_ref_count(folio)) {
2151 		struct hstate *h = folio_hstate(folio);
2152 		bool adjust_surplus = false;
2153 
2154 		if (!available_huge_pages(h))
2155 			goto out;
2156 
2157 		/*
2158 		 * We should make sure that the page is already on the free list
2159 		 * when it is dissolved.
2160 		 */
2161 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2162 			spin_unlock_irq(&hugetlb_lock);
2163 			cond_resched();
2164 
2165 			/*
2166 			 * Theoretically, we should return -EBUSY when we
2167 			 * encounter this race. In fact, we have a chance
2168 			 * to successfully dissolve the page if we do a
2169 			 * retry. Because the race window is quite small.
2170 			 * If we seize this opportunity, it is an optimization
2171 			 * for increasing the success rate of dissolving page.
2172 			 */
2173 			goto retry;
2174 		}
2175 
2176 		if (h->surplus_huge_pages_node[folio_nid(folio)])
2177 			adjust_surplus = true;
2178 		remove_hugetlb_folio(h, folio, adjust_surplus);
2179 		h->max_huge_pages--;
2180 		spin_unlock_irq(&hugetlb_lock);
2181 
2182 		/*
2183 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2184 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2185 		 * free the page if it can not allocate required vmemmap.  We
2186 		 * need to adjust max_huge_pages if the page is not freed.
2187 		 * Attempt to allocate vmemmmap here so that we can take
2188 		 * appropriate action on failure.
2189 		 *
2190 		 * The folio_test_hugetlb check here is because
2191 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2192 		 * non-vmemmap optimized hugetlb folios.
2193 		 */
2194 		if (folio_test_hugetlb(folio)) {
2195 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2196 			if (rc) {
2197 				spin_lock_irq(&hugetlb_lock);
2198 				add_hugetlb_folio(h, folio, adjust_surplus);
2199 				h->max_huge_pages++;
2200 				goto out;
2201 			}
2202 		} else
2203 			rc = 0;
2204 
2205 		update_and_free_hugetlb_folio(h, folio, false);
2206 		return rc;
2207 	}
2208 out:
2209 	spin_unlock_irq(&hugetlb_lock);
2210 	return rc;
2211 }
2212 
2213 /*
2214  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2215  * make specified memory blocks removable from the system.
2216  * Note that this will dissolve a free gigantic hugepage completely, if any
2217  * part of it lies within the given range.
2218  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2219  * free hugetlb folios that were dissolved before that error are lost.
2220  */
2221 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2222 {
2223 	unsigned long pfn;
2224 	struct folio *folio;
2225 	int rc = 0;
2226 	unsigned int order;
2227 	struct hstate *h;
2228 
2229 	if (!hugepages_supported())
2230 		return rc;
2231 
2232 	order = huge_page_order(&default_hstate);
2233 	for_each_hstate(h)
2234 		order = min(order, huge_page_order(h));
2235 
2236 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2237 		folio = pfn_folio(pfn);
2238 		rc = dissolve_free_hugetlb_folio(folio);
2239 		if (rc)
2240 			break;
2241 	}
2242 
2243 	return rc;
2244 }
2245 
2246 /*
2247  * Allocates a fresh surplus page from the page allocator.
2248  */
2249 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2250 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2251 {
2252 	struct folio *folio = NULL;
2253 
2254 	if (hstate_is_gigantic(h))
2255 		return NULL;
2256 
2257 	spin_lock_irq(&hugetlb_lock);
2258 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2259 		goto out_unlock;
2260 	spin_unlock_irq(&hugetlb_lock);
2261 
2262 	folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2263 	if (!folio)
2264 		return NULL;
2265 
2266 	hugetlb_vmemmap_optimize_folio(h, folio);
2267 
2268 	spin_lock_irq(&hugetlb_lock);
2269 	/*
2270 	 * nr_huge_pages needs to be adjusted within the same lock cycle
2271 	 * as surplus_pages, otherwise it might confuse
2272 	 * persistent_huge_pages() momentarily.
2273 	 */
2274 	__prep_account_new_huge_page(h, folio_nid(folio));
2275 
2276 	/*
2277 	 * We could have raced with the pool size change.
2278 	 * Double check that and simply deallocate the new page
2279 	 * if we would end up overcommiting the surpluses. Abuse
2280 	 * temporary page to workaround the nasty free_huge_folio
2281 	 * codeflow
2282 	 */
2283 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2284 		folio_set_hugetlb_temporary(folio);
2285 		spin_unlock_irq(&hugetlb_lock);
2286 		free_huge_folio(folio);
2287 		return NULL;
2288 	}
2289 
2290 	h->surplus_huge_pages++;
2291 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2292 
2293 out_unlock:
2294 	spin_unlock_irq(&hugetlb_lock);
2295 
2296 	return folio;
2297 }
2298 
2299 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2300 				     int nid, nodemask_t *nmask)
2301 {
2302 	struct folio *folio;
2303 
2304 	if (hstate_is_gigantic(h))
2305 		return NULL;
2306 
2307 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2308 	if (!folio)
2309 		return NULL;
2310 
2311 	/* fresh huge pages are frozen */
2312 	folio_ref_unfreeze(folio, 1);
2313 	/*
2314 	 * We do not account these pages as surplus because they are only
2315 	 * temporary and will be released properly on the last reference
2316 	 */
2317 	folio_set_hugetlb_temporary(folio);
2318 
2319 	return folio;
2320 }
2321 
2322 /*
2323  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2324  */
2325 static
2326 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2327 		struct vm_area_struct *vma, unsigned long addr)
2328 {
2329 	struct folio *folio = NULL;
2330 	struct mempolicy *mpol;
2331 	gfp_t gfp_mask = htlb_alloc_mask(h);
2332 	int nid;
2333 	nodemask_t *nodemask;
2334 
2335 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2336 	if (mpol_is_preferred_many(mpol)) {
2337 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2338 
2339 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2340 
2341 		/* Fallback to all nodes if page==NULL */
2342 		nodemask = NULL;
2343 	}
2344 
2345 	if (!folio)
2346 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2347 	mpol_cond_put(mpol);
2348 	return folio;
2349 }
2350 
2351 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2352 		nodemask_t *nmask, gfp_t gfp_mask)
2353 {
2354 	struct folio *folio;
2355 
2356 	spin_lock_irq(&hugetlb_lock);
2357 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2358 					       nmask);
2359 	if (folio) {
2360 		VM_BUG_ON(!h->resv_huge_pages);
2361 		h->resv_huge_pages--;
2362 	}
2363 
2364 	spin_unlock_irq(&hugetlb_lock);
2365 	return folio;
2366 }
2367 
2368 /* folio migration callback function */
2369 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2370 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2371 {
2372 	spin_lock_irq(&hugetlb_lock);
2373 	if (available_huge_pages(h)) {
2374 		struct folio *folio;
2375 
2376 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2377 						preferred_nid, nmask);
2378 		if (folio) {
2379 			spin_unlock_irq(&hugetlb_lock);
2380 			return folio;
2381 		}
2382 	}
2383 	spin_unlock_irq(&hugetlb_lock);
2384 
2385 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2386 	if (!allow_alloc_fallback)
2387 		gfp_mask |= __GFP_THISNODE;
2388 
2389 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2390 }
2391 
2392 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2393 {
2394 #ifdef CONFIG_NUMA
2395 	struct mempolicy *mpol = get_task_policy(current);
2396 
2397 	/*
2398 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2399 	 * (from policy_nodemask) specifically for hugetlb case
2400 	 */
2401 	if (mpol->mode == MPOL_BIND &&
2402 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2403 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2404 		return &mpol->nodes;
2405 #endif
2406 	return NULL;
2407 }
2408 
2409 /*
2410  * Increase the hugetlb pool such that it can accommodate a reservation
2411  * of size 'delta'.
2412  */
2413 static int gather_surplus_pages(struct hstate *h, long delta)
2414 	__must_hold(&hugetlb_lock)
2415 {
2416 	LIST_HEAD(surplus_list);
2417 	struct folio *folio, *tmp;
2418 	int ret;
2419 	long i;
2420 	long needed, allocated;
2421 	bool alloc_ok = true;
2422 	int node;
2423 	nodemask_t *mbind_nodemask, alloc_nodemask;
2424 
2425 	mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2426 	if (mbind_nodemask)
2427 		nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2428 	else
2429 		alloc_nodemask = cpuset_current_mems_allowed;
2430 
2431 	lockdep_assert_held(&hugetlb_lock);
2432 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2433 	if (needed <= 0) {
2434 		h->resv_huge_pages += delta;
2435 		return 0;
2436 	}
2437 
2438 	allocated = 0;
2439 
2440 	ret = -ENOMEM;
2441 retry:
2442 	spin_unlock_irq(&hugetlb_lock);
2443 	for (i = 0; i < needed; i++) {
2444 		folio = NULL;
2445 
2446 		/* Prioritize current node */
2447 		if (node_isset(numa_mem_id(), alloc_nodemask))
2448 			folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2449 					numa_mem_id(), NULL);
2450 
2451 		if (!folio) {
2452 			for_each_node_mask(node, alloc_nodemask) {
2453 				if (node == numa_mem_id())
2454 					continue;
2455 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2456 						node, NULL);
2457 				if (folio)
2458 					break;
2459 			}
2460 		}
2461 		if (!folio) {
2462 			alloc_ok = false;
2463 			break;
2464 		}
2465 		list_add(&folio->lru, &surplus_list);
2466 		cond_resched();
2467 	}
2468 	allocated += i;
2469 
2470 	/*
2471 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2472 	 * because either resv_huge_pages or free_huge_pages may have changed.
2473 	 */
2474 	spin_lock_irq(&hugetlb_lock);
2475 	needed = (h->resv_huge_pages + delta) -
2476 			(h->free_huge_pages + allocated);
2477 	if (needed > 0) {
2478 		if (alloc_ok)
2479 			goto retry;
2480 		/*
2481 		 * We were not able to allocate enough pages to
2482 		 * satisfy the entire reservation so we free what
2483 		 * we've allocated so far.
2484 		 */
2485 		goto free;
2486 	}
2487 	/*
2488 	 * The surplus_list now contains _at_least_ the number of extra pages
2489 	 * needed to accommodate the reservation.  Add the appropriate number
2490 	 * of pages to the hugetlb pool and free the extras back to the buddy
2491 	 * allocator.  Commit the entire reservation here to prevent another
2492 	 * process from stealing the pages as they are added to the pool but
2493 	 * before they are reserved.
2494 	 */
2495 	needed += allocated;
2496 	h->resv_huge_pages += delta;
2497 	ret = 0;
2498 
2499 	/* Free the needed pages to the hugetlb pool */
2500 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2501 		if ((--needed) < 0)
2502 			break;
2503 		/* Add the page to the hugetlb allocator */
2504 		enqueue_hugetlb_folio(h, folio);
2505 	}
2506 free:
2507 	spin_unlock_irq(&hugetlb_lock);
2508 
2509 	/*
2510 	 * Free unnecessary surplus pages to the buddy allocator.
2511 	 * Pages have no ref count, call free_huge_folio directly.
2512 	 */
2513 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2514 		free_huge_folio(folio);
2515 	spin_lock_irq(&hugetlb_lock);
2516 
2517 	return ret;
2518 }
2519 
2520 /*
2521  * This routine has two main purposes:
2522  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2523  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2524  *    to the associated reservation map.
2525  * 2) Free any unused surplus pages that may have been allocated to satisfy
2526  *    the reservation.  As many as unused_resv_pages may be freed.
2527  */
2528 static void return_unused_surplus_pages(struct hstate *h,
2529 					unsigned long unused_resv_pages)
2530 {
2531 	unsigned long nr_pages;
2532 	LIST_HEAD(page_list);
2533 
2534 	lockdep_assert_held(&hugetlb_lock);
2535 	/* Uncommit the reservation */
2536 	h->resv_huge_pages -= unused_resv_pages;
2537 
2538 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2539 		goto out;
2540 
2541 	/*
2542 	 * Part (or even all) of the reservation could have been backed
2543 	 * by pre-allocated pages. Only free surplus pages.
2544 	 */
2545 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2546 
2547 	/*
2548 	 * We want to release as many surplus pages as possible, spread
2549 	 * evenly across all nodes with memory. Iterate across these nodes
2550 	 * until we can no longer free unreserved surplus pages. This occurs
2551 	 * when the nodes with surplus pages have no free pages.
2552 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2553 	 * on-line nodes with memory and will handle the hstate accounting.
2554 	 */
2555 	while (nr_pages--) {
2556 		struct folio *folio;
2557 
2558 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2559 		if (!folio)
2560 			goto out;
2561 
2562 		list_add(&folio->lru, &page_list);
2563 	}
2564 
2565 out:
2566 	spin_unlock_irq(&hugetlb_lock);
2567 	update_and_free_pages_bulk(h, &page_list);
2568 	spin_lock_irq(&hugetlb_lock);
2569 }
2570 
2571 
2572 /*
2573  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2574  * are used by the huge page allocation routines to manage reservations.
2575  *
2576  * vma_needs_reservation is called to determine if the huge page at addr
2577  * within the vma has an associated reservation.  If a reservation is
2578  * needed, the value 1 is returned.  The caller is then responsible for
2579  * managing the global reservation and subpool usage counts.  After
2580  * the huge page has been allocated, vma_commit_reservation is called
2581  * to add the page to the reservation map.  If the page allocation fails,
2582  * the reservation must be ended instead of committed.  vma_end_reservation
2583  * is called in such cases.
2584  *
2585  * In the normal case, vma_commit_reservation returns the same value
2586  * as the preceding vma_needs_reservation call.  The only time this
2587  * is not the case is if a reserve map was changed between calls.  It
2588  * is the responsibility of the caller to notice the difference and
2589  * take appropriate action.
2590  *
2591  * vma_add_reservation is used in error paths where a reservation must
2592  * be restored when a newly allocated huge page must be freed.  It is
2593  * to be called after calling vma_needs_reservation to determine if a
2594  * reservation exists.
2595  *
2596  * vma_del_reservation is used in error paths where an entry in the reserve
2597  * map was created during huge page allocation and must be removed.  It is to
2598  * be called after calling vma_needs_reservation to determine if a reservation
2599  * exists.
2600  */
2601 enum vma_resv_mode {
2602 	VMA_NEEDS_RESV,
2603 	VMA_COMMIT_RESV,
2604 	VMA_END_RESV,
2605 	VMA_ADD_RESV,
2606 	VMA_DEL_RESV,
2607 };
2608 static long __vma_reservation_common(struct hstate *h,
2609 				struct vm_area_struct *vma, unsigned long addr,
2610 				enum vma_resv_mode mode)
2611 {
2612 	struct resv_map *resv;
2613 	pgoff_t idx;
2614 	long ret;
2615 	long dummy_out_regions_needed;
2616 
2617 	resv = vma_resv_map(vma);
2618 	if (!resv)
2619 		return 1;
2620 
2621 	idx = vma_hugecache_offset(h, vma, addr);
2622 	switch (mode) {
2623 	case VMA_NEEDS_RESV:
2624 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2625 		/* We assume that vma_reservation_* routines always operate on
2626 		 * 1 page, and that adding to resv map a 1 page entry can only
2627 		 * ever require 1 region.
2628 		 */
2629 		VM_BUG_ON(dummy_out_regions_needed != 1);
2630 		break;
2631 	case VMA_COMMIT_RESV:
2632 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2633 		/* region_add calls of range 1 should never fail. */
2634 		VM_BUG_ON(ret < 0);
2635 		break;
2636 	case VMA_END_RESV:
2637 		region_abort(resv, idx, idx + 1, 1);
2638 		ret = 0;
2639 		break;
2640 	case VMA_ADD_RESV:
2641 		if (vma->vm_flags & VM_MAYSHARE) {
2642 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2643 			/* region_add calls of range 1 should never fail. */
2644 			VM_BUG_ON(ret < 0);
2645 		} else {
2646 			region_abort(resv, idx, idx + 1, 1);
2647 			ret = region_del(resv, idx, idx + 1);
2648 		}
2649 		break;
2650 	case VMA_DEL_RESV:
2651 		if (vma->vm_flags & VM_MAYSHARE) {
2652 			region_abort(resv, idx, idx + 1, 1);
2653 			ret = region_del(resv, idx, idx + 1);
2654 		} else {
2655 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2656 			/* region_add calls of range 1 should never fail. */
2657 			VM_BUG_ON(ret < 0);
2658 		}
2659 		break;
2660 	default:
2661 		BUG();
2662 	}
2663 
2664 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2665 		return ret;
2666 	/*
2667 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2668 	 *
2669 	 * In most cases, reserves always exist for private mappings.
2670 	 * However, a file associated with mapping could have been
2671 	 * hole punched or truncated after reserves were consumed.
2672 	 * As subsequent fault on such a range will not use reserves.
2673 	 * Subtle - The reserve map for private mappings has the
2674 	 * opposite meaning than that of shared mappings.  If NO
2675 	 * entry is in the reserve map, it means a reservation exists.
2676 	 * If an entry exists in the reserve map, it means the
2677 	 * reservation has already been consumed.  As a result, the
2678 	 * return value of this routine is the opposite of the
2679 	 * value returned from reserve map manipulation routines above.
2680 	 */
2681 	if (ret > 0)
2682 		return 0;
2683 	if (ret == 0)
2684 		return 1;
2685 	return ret;
2686 }
2687 
2688 static long vma_needs_reservation(struct hstate *h,
2689 			struct vm_area_struct *vma, unsigned long addr)
2690 {
2691 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2692 }
2693 
2694 static long vma_commit_reservation(struct hstate *h,
2695 			struct vm_area_struct *vma, unsigned long addr)
2696 {
2697 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2698 }
2699 
2700 static void vma_end_reservation(struct hstate *h,
2701 			struct vm_area_struct *vma, unsigned long addr)
2702 {
2703 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2704 }
2705 
2706 static long vma_add_reservation(struct hstate *h,
2707 			struct vm_area_struct *vma, unsigned long addr)
2708 {
2709 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2710 }
2711 
2712 static long vma_del_reservation(struct hstate *h,
2713 			struct vm_area_struct *vma, unsigned long addr)
2714 {
2715 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2716 }
2717 
2718 /*
2719  * This routine is called to restore reservation information on error paths.
2720  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2721  * and the hugetlb mutex should remain held when calling this routine.
2722  *
2723  * It handles two specific cases:
2724  * 1) A reservation was in place and the folio consumed the reservation.
2725  *    hugetlb_restore_reserve is set in the folio.
2726  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2727  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2728  *
2729  * In case 1, free_huge_folio later in the error path will increment the
2730  * global reserve count.  But, free_huge_folio does not have enough context
2731  * to adjust the reservation map.  This case deals primarily with private
2732  * mappings.  Adjust the reserve map here to be consistent with global
2733  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2734  * reserve map indicates there is a reservation present.
2735  *
2736  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2737  */
2738 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2739 			unsigned long address, struct folio *folio)
2740 {
2741 	long rc = vma_needs_reservation(h, vma, address);
2742 
2743 	if (folio_test_hugetlb_restore_reserve(folio)) {
2744 		if (unlikely(rc < 0))
2745 			/*
2746 			 * Rare out of memory condition in reserve map
2747 			 * manipulation.  Clear hugetlb_restore_reserve so
2748 			 * that global reserve count will not be incremented
2749 			 * by free_huge_folio.  This will make it appear
2750 			 * as though the reservation for this folio was
2751 			 * consumed.  This may prevent the task from
2752 			 * faulting in the folio at a later time.  This
2753 			 * is better than inconsistent global huge page
2754 			 * accounting of reserve counts.
2755 			 */
2756 			folio_clear_hugetlb_restore_reserve(folio);
2757 		else if (rc)
2758 			(void)vma_add_reservation(h, vma, address);
2759 		else
2760 			vma_end_reservation(h, vma, address);
2761 	} else {
2762 		if (!rc) {
2763 			/*
2764 			 * This indicates there is an entry in the reserve map
2765 			 * not added by alloc_hugetlb_folio.  We know it was added
2766 			 * before the alloc_hugetlb_folio call, otherwise
2767 			 * hugetlb_restore_reserve would be set on the folio.
2768 			 * Remove the entry so that a subsequent allocation
2769 			 * does not consume a reservation.
2770 			 */
2771 			rc = vma_del_reservation(h, vma, address);
2772 			if (rc < 0)
2773 				/*
2774 				 * VERY rare out of memory condition.  Since
2775 				 * we can not delete the entry, set
2776 				 * hugetlb_restore_reserve so that the reserve
2777 				 * count will be incremented when the folio
2778 				 * is freed.  This reserve will be consumed
2779 				 * on a subsequent allocation.
2780 				 */
2781 				folio_set_hugetlb_restore_reserve(folio);
2782 		} else if (rc < 0) {
2783 			/*
2784 			 * Rare out of memory condition from
2785 			 * vma_needs_reservation call.  Memory allocation is
2786 			 * only attempted if a new entry is needed.  Therefore,
2787 			 * this implies there is not an entry in the
2788 			 * reserve map.
2789 			 *
2790 			 * For shared mappings, no entry in the map indicates
2791 			 * no reservation.  We are done.
2792 			 */
2793 			if (!(vma->vm_flags & VM_MAYSHARE))
2794 				/*
2795 				 * For private mappings, no entry indicates
2796 				 * a reservation is present.  Since we can
2797 				 * not add an entry, set hugetlb_restore_reserve
2798 				 * on the folio so reserve count will be
2799 				 * incremented when freed.  This reserve will
2800 				 * be consumed on a subsequent allocation.
2801 				 */
2802 				folio_set_hugetlb_restore_reserve(folio);
2803 		} else
2804 			/*
2805 			 * No reservation present, do nothing
2806 			 */
2807 			 vma_end_reservation(h, vma, address);
2808 	}
2809 }
2810 
2811 /*
2812  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2813  * the old one
2814  * @h: struct hstate old page belongs to
2815  * @old_folio: Old folio to dissolve
2816  * @list: List to isolate the page in case we need to
2817  * Returns 0 on success, otherwise negated error.
2818  */
2819 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2820 			struct folio *old_folio, struct list_head *list)
2821 {
2822 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2823 	int nid = folio_nid(old_folio);
2824 	struct folio *new_folio = NULL;
2825 	int ret = 0;
2826 
2827 retry:
2828 	spin_lock_irq(&hugetlb_lock);
2829 	if (!folio_test_hugetlb(old_folio)) {
2830 		/*
2831 		 * Freed from under us. Drop new_folio too.
2832 		 */
2833 		goto free_new;
2834 	} else if (folio_ref_count(old_folio)) {
2835 		bool isolated;
2836 
2837 		/*
2838 		 * Someone has grabbed the folio, try to isolate it here.
2839 		 * Fail with -EBUSY if not possible.
2840 		 */
2841 		spin_unlock_irq(&hugetlb_lock);
2842 		isolated = folio_isolate_hugetlb(old_folio, list);
2843 		ret = isolated ? 0 : -EBUSY;
2844 		spin_lock_irq(&hugetlb_lock);
2845 		goto free_new;
2846 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2847 		/*
2848 		 * Folio's refcount is 0 but it has not been enqueued in the
2849 		 * freelist yet. Race window is small, so we can succeed here if
2850 		 * we retry.
2851 		 */
2852 		spin_unlock_irq(&hugetlb_lock);
2853 		cond_resched();
2854 		goto retry;
2855 	} else {
2856 		if (!new_folio) {
2857 			spin_unlock_irq(&hugetlb_lock);
2858 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2859 							      NULL, NULL);
2860 			if (!new_folio)
2861 				return -ENOMEM;
2862 			__prep_new_hugetlb_folio(h, new_folio);
2863 			goto retry;
2864 		}
2865 
2866 		/*
2867 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2868 		 * the freelist and decrease the counters. These will be
2869 		 * incremented again when calling __prep_account_new_huge_page()
2870 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2871 		 * remain stable since this happens under the lock.
2872 		 */
2873 		remove_hugetlb_folio(h, old_folio, false);
2874 
2875 		/*
2876 		 * Ref count on new_folio is already zero as it was dropped
2877 		 * earlier.  It can be directly added to the pool free list.
2878 		 */
2879 		__prep_account_new_huge_page(h, nid);
2880 		enqueue_hugetlb_folio(h, new_folio);
2881 
2882 		/*
2883 		 * Folio has been replaced, we can safely free the old one.
2884 		 */
2885 		spin_unlock_irq(&hugetlb_lock);
2886 		update_and_free_hugetlb_folio(h, old_folio, false);
2887 	}
2888 
2889 	return ret;
2890 
2891 free_new:
2892 	spin_unlock_irq(&hugetlb_lock);
2893 	if (new_folio)
2894 		update_and_free_hugetlb_folio(h, new_folio, false);
2895 
2896 	return ret;
2897 }
2898 
2899 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2900 {
2901 	struct hstate *h;
2902 	int ret = -EBUSY;
2903 
2904 	/*
2905 	 * The page might have been dissolved from under our feet, so make sure
2906 	 * to carefully check the state under the lock.
2907 	 * Return success when racing as if we dissolved the page ourselves.
2908 	 */
2909 	spin_lock_irq(&hugetlb_lock);
2910 	if (folio_test_hugetlb(folio)) {
2911 		h = folio_hstate(folio);
2912 	} else {
2913 		spin_unlock_irq(&hugetlb_lock);
2914 		return 0;
2915 	}
2916 	spin_unlock_irq(&hugetlb_lock);
2917 
2918 	/*
2919 	 * Fence off gigantic pages as there is a cyclic dependency between
2920 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2921 	 * of bailing out right away without further retrying.
2922 	 */
2923 	if (hstate_is_gigantic(h))
2924 		return -ENOMEM;
2925 
2926 	if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2927 		ret = 0;
2928 	else if (!folio_ref_count(folio))
2929 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2930 
2931 	return ret;
2932 }
2933 
2934 /*
2935  *  replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2936  *  range with new folios.
2937  *  @start_pfn: start pfn of the given pfn range
2938  *  @end_pfn: end pfn of the given pfn range
2939  *  Returns 0 on success, otherwise negated error.
2940  */
2941 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2942 {
2943 	struct hstate *h;
2944 	struct folio *folio;
2945 	int ret = 0;
2946 
2947 	LIST_HEAD(isolate_list);
2948 
2949 	while (start_pfn < end_pfn) {
2950 		folio = pfn_folio(start_pfn);
2951 		if (folio_test_hugetlb(folio)) {
2952 			h = folio_hstate(folio);
2953 		} else {
2954 			start_pfn++;
2955 			continue;
2956 		}
2957 
2958 		if (!folio_ref_count(folio)) {
2959 			ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2960 							       &isolate_list);
2961 			if (ret)
2962 				break;
2963 
2964 			putback_movable_pages(&isolate_list);
2965 		}
2966 		start_pfn++;
2967 	}
2968 
2969 	return ret;
2970 }
2971 
2972 void wait_for_freed_hugetlb_folios(void)
2973 {
2974 	if (llist_empty(&hpage_freelist))
2975 		return;
2976 
2977 	flush_work(&free_hpage_work);
2978 }
2979 
2980 typedef enum {
2981 	/*
2982 	 * For either 0/1: we checked the per-vma resv map, and one resv
2983 	 * count either can be reused (0), or an extra needed (1).
2984 	 */
2985 	MAP_CHG_REUSE = 0,
2986 	MAP_CHG_NEEDED = 1,
2987 	/*
2988 	 * Cannot use per-vma resv count can be used, hence a new resv
2989 	 * count is enforced.
2990 	 *
2991 	 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2992 	 * that currently vma_needs_reservation() has an unwanted side
2993 	 * effect to either use end() or commit() to complete the
2994 	 * transaction.	 Hence it needs to differenciate from NEEDED.
2995 	 */
2996 	MAP_CHG_ENFORCED = 2,
2997 } map_chg_state;
2998 
2999 /*
3000  * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
3001  * faults of hugetlb private mappings on top of a non-page-cache folio (in
3002  * which case even if there's a private vma resv map it won't cover such
3003  * allocation).  New call sites should (probably) never set it to true!!
3004  * When it's set, the allocation will bypass all vma level reservations.
3005  */
3006 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3007 				    unsigned long addr, bool cow_from_owner)
3008 {
3009 	struct hugepage_subpool *spool = subpool_vma(vma);
3010 	struct hstate *h = hstate_vma(vma);
3011 	struct folio *folio;
3012 	long retval, gbl_chg, gbl_reserve;
3013 	map_chg_state map_chg;
3014 	int ret, idx;
3015 	struct hugetlb_cgroup *h_cg = NULL;
3016 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3017 
3018 	idx = hstate_index(h);
3019 
3020 	/* Whether we need a separate per-vma reservation? */
3021 	if (cow_from_owner) {
3022 		/*
3023 		 * Special case!  Since it's a CoW on top of a reserved
3024 		 * page, the private resv map doesn't count.  So it cannot
3025 		 * consume the per-vma resv map even if it's reserved.
3026 		 */
3027 		map_chg = MAP_CHG_ENFORCED;
3028 	} else {
3029 		/*
3030 		 * Examine the region/reserve map to determine if the process
3031 		 * has a reservation for the page to be allocated.  A return
3032 		 * code of zero indicates a reservation exists (no change).
3033 		 */
3034 		retval = vma_needs_reservation(h, vma, addr);
3035 		if (retval < 0)
3036 			return ERR_PTR(-ENOMEM);
3037 		map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3038 	}
3039 
3040 	/*
3041 	 * Whether we need a separate global reservation?
3042 	 *
3043 	 * Processes that did not create the mapping will have no
3044 	 * reserves as indicated by the region/reserve map. Check
3045 	 * that the allocation will not exceed the subpool limit.
3046 	 * Or if it can get one from the pool reservation directly.
3047 	 */
3048 	if (map_chg) {
3049 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3050 		if (gbl_chg < 0)
3051 			goto out_end_reservation;
3052 	} else {
3053 		/*
3054 		 * If we have the vma reservation ready, no need for extra
3055 		 * global reservation.
3056 		 */
3057 		gbl_chg = 0;
3058 	}
3059 
3060 	/*
3061 	 * If this allocation is not consuming a per-vma reservation,
3062 	 * charge the hugetlb cgroup now.
3063 	 */
3064 	if (map_chg) {
3065 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3066 			idx, pages_per_huge_page(h), &h_cg);
3067 		if (ret)
3068 			goto out_subpool_put;
3069 	}
3070 
3071 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3072 	if (ret)
3073 		goto out_uncharge_cgroup_reservation;
3074 
3075 	spin_lock_irq(&hugetlb_lock);
3076 	/*
3077 	 * glb_chg is passed to indicate whether or not a page must be taken
3078 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3079 	 * a reservation exists for the allocation.
3080 	 */
3081 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3082 	if (!folio) {
3083 		spin_unlock_irq(&hugetlb_lock);
3084 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3085 		if (!folio)
3086 			goto out_uncharge_cgroup;
3087 		spin_lock_irq(&hugetlb_lock);
3088 		list_add(&folio->lru, &h->hugepage_activelist);
3089 		folio_ref_unfreeze(folio, 1);
3090 		/* Fall through */
3091 	}
3092 
3093 	/*
3094 	 * Either dequeued or buddy-allocated folio needs to add special
3095 	 * mark to the folio when it consumes a global reservation.
3096 	 */
3097 	if (!gbl_chg) {
3098 		folio_set_hugetlb_restore_reserve(folio);
3099 		h->resv_huge_pages--;
3100 	}
3101 
3102 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3103 	/* If allocation is not consuming a reservation, also store the
3104 	 * hugetlb_cgroup pointer on the page.
3105 	 */
3106 	if (map_chg) {
3107 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3108 						  h_cg, folio);
3109 	}
3110 
3111 	spin_unlock_irq(&hugetlb_lock);
3112 
3113 	hugetlb_set_folio_subpool(folio, spool);
3114 
3115 	if (map_chg != MAP_CHG_ENFORCED) {
3116 		/* commit() is only needed if the map_chg is not enforced */
3117 		retval = vma_commit_reservation(h, vma, addr);
3118 		/*
3119 		 * Check for possible race conditions. When it happens..
3120 		 * The page was added to the reservation map between
3121 		 * vma_needs_reservation and vma_commit_reservation.
3122 		 * This indicates a race with hugetlb_reserve_pages.
3123 		 * Adjust for the subpool count incremented above AND
3124 		 * in hugetlb_reserve_pages for the same page.	Also,
3125 		 * the reservation count added in hugetlb_reserve_pages
3126 		 * no longer applies.
3127 		 */
3128 		if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3129 			long rsv_adjust;
3130 
3131 			rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3132 			hugetlb_acct_memory(h, -rsv_adjust);
3133 			if (map_chg) {
3134 				spin_lock_irq(&hugetlb_lock);
3135 				hugetlb_cgroup_uncharge_folio_rsvd(
3136 				    hstate_index(h), pages_per_huge_page(h),
3137 				    folio);
3138 				spin_unlock_irq(&hugetlb_lock);
3139 			}
3140 		}
3141 	}
3142 
3143 	ret = mem_cgroup_charge_hugetlb(folio, gfp);
3144 	/*
3145 	 * Unconditionally increment NR_HUGETLB here. If it turns out that
3146 	 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3147 	 * decrement NR_HUGETLB.
3148 	 */
3149 	lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3150 
3151 	if (ret == -ENOMEM) {
3152 		free_huge_folio(folio);
3153 		return ERR_PTR(-ENOMEM);
3154 	}
3155 
3156 	return folio;
3157 
3158 out_uncharge_cgroup:
3159 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3160 out_uncharge_cgroup_reservation:
3161 	if (map_chg)
3162 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3163 						    h_cg);
3164 out_subpool_put:
3165 	/*
3166 	 * put page to subpool iff the quota of subpool's rsv_hpages is used
3167 	 * during hugepage_subpool_get_pages.
3168 	 */
3169 	if (map_chg && !gbl_chg) {
3170 		gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3171 		hugetlb_acct_memory(h, -gbl_reserve);
3172 	}
3173 
3174 
3175 out_end_reservation:
3176 	if (map_chg != MAP_CHG_ENFORCED)
3177 		vma_end_reservation(h, vma, addr);
3178 	return ERR_PTR(-ENOSPC);
3179 }
3180 
3181 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3182 {
3183 	struct huge_bootmem_page *m;
3184 	int listnode = nid;
3185 
3186 	if (hugetlb_early_cma(h))
3187 		m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3188 	else {
3189 		if (node_exact)
3190 			m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3191 				huge_page_size(h), 0,
3192 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3193 		else {
3194 			m = memblock_alloc_try_nid_raw(huge_page_size(h),
3195 				huge_page_size(h), 0,
3196 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3197 			/*
3198 			 * For pre-HVO to work correctly, pages need to be on
3199 			 * the list for the node they were actually allocated
3200 			 * from. That node may be different in the case of
3201 			 * fallback by memblock_alloc_try_nid_raw. So,
3202 			 * extract the actual node first.
3203 			 */
3204 			if (m)
3205 				listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3206 		}
3207 
3208 		if (m) {
3209 			m->flags = 0;
3210 			m->cma = NULL;
3211 		}
3212 	}
3213 
3214 	if (m) {
3215 		/*
3216 		 * Use the beginning of the huge page to store the
3217 		 * huge_bootmem_page struct (until gather_bootmem
3218 		 * puts them into the mem_map).
3219 		 *
3220 		 * Put them into a private list first because mem_map
3221 		 * is not up yet.
3222 		 */
3223 		INIT_LIST_HEAD(&m->list);
3224 		list_add(&m->list, &huge_boot_pages[listnode]);
3225 		m->hstate = h;
3226 	}
3227 
3228 	return m;
3229 }
3230 
3231 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3232 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3233 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3234 {
3235 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3236 	int nr_nodes, node = nid;
3237 
3238 	/* do node specific alloc */
3239 	if (nid != NUMA_NO_NODE) {
3240 		m = alloc_bootmem(h, node, true);
3241 		if (!m)
3242 			return 0;
3243 		goto found;
3244 	}
3245 
3246 	/* allocate from next node when distributing huge pages */
3247 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) {
3248 		m = alloc_bootmem(h, node, false);
3249 		if (!m)
3250 			return 0;
3251 		goto found;
3252 	}
3253 
3254 found:
3255 
3256 	/*
3257 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3258 	 * rest of the struct pages will be initialized by the HugeTLB
3259 	 * subsystem itself.
3260 	 * The head struct page is used to get folio information by the HugeTLB
3261 	 * subsystem like zone id and node id.
3262 	 */
3263 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3264 		huge_page_size(h) - PAGE_SIZE);
3265 
3266 	return 1;
3267 }
3268 
3269 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3270 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3271 					unsigned long start_page_number,
3272 					unsigned long end_page_number)
3273 {
3274 	enum zone_type zone = zone_idx(folio_zone(folio));
3275 	int nid = folio_nid(folio);
3276 	unsigned long head_pfn = folio_pfn(folio);
3277 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3278 	int ret;
3279 
3280 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3281 		struct page *page = pfn_to_page(pfn);
3282 
3283 		__init_single_page(page, pfn, zone, nid);
3284 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3285 		ret = page_ref_freeze(page, 1);
3286 		VM_BUG_ON(!ret);
3287 	}
3288 }
3289 
3290 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3291 					      struct hstate *h,
3292 					      unsigned long nr_pages)
3293 {
3294 	int ret;
3295 
3296 	/* Prepare folio head */
3297 	__folio_clear_reserved(folio);
3298 	__folio_set_head(folio);
3299 	ret = folio_ref_freeze(folio, 1);
3300 	VM_BUG_ON(!ret);
3301 	/* Initialize the necessary tail struct pages */
3302 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3303 	prep_compound_head((struct page *)folio, huge_page_order(h));
3304 }
3305 
3306 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3307 {
3308 	return m->flags & HUGE_BOOTMEM_HVO;
3309 }
3310 
3311 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3312 {
3313 	return m->flags & HUGE_BOOTMEM_CMA;
3314 }
3315 
3316 /*
3317  * memblock-allocated pageblocks might not have the migrate type set
3318  * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3319  * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3320  * reservation.
3321  *
3322  * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3323  * read-only, but that's ok - for sparse vmemmap this does not write to
3324  * the page structure.
3325  */
3326 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3327 							  struct hstate *h)
3328 {
3329 	unsigned long nr_pages = pages_per_huge_page(h), i;
3330 
3331 	WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3332 
3333 	for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3334 		if (folio_test_hugetlb_cma(folio))
3335 			init_cma_pageblock(folio_page(folio, i));
3336 		else
3337 			set_pageblock_migratetype(folio_page(folio, i),
3338 					  MIGRATE_MOVABLE);
3339 	}
3340 }
3341 
3342 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3343 					struct list_head *folio_list)
3344 {
3345 	unsigned long flags;
3346 	struct folio *folio, *tmp_f;
3347 
3348 	/* Send list for bulk vmemmap optimization processing */
3349 	hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3350 
3351 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3352 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3353 			/*
3354 			 * If HVO fails, initialize all tail struct pages
3355 			 * We do not worry about potential long lock hold
3356 			 * time as this is early in boot and there should
3357 			 * be no contention.
3358 			 */
3359 			hugetlb_folio_init_tail_vmemmap(folio,
3360 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3361 					pages_per_huge_page(h));
3362 		}
3363 		hugetlb_bootmem_init_migratetype(folio, h);
3364 		/* Subdivide locks to achieve better parallel performance */
3365 		spin_lock_irqsave(&hugetlb_lock, flags);
3366 		__prep_account_new_huge_page(h, folio_nid(folio));
3367 		enqueue_hugetlb_folio(h, folio);
3368 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3369 	}
3370 }
3371 
3372 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3373 					     struct huge_bootmem_page *m)
3374 {
3375 	unsigned long start_pfn;
3376 	bool valid;
3377 
3378 	if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3379 		/*
3380 		 * Already validated, skip check.
3381 		 */
3382 		return true;
3383 	}
3384 
3385 	if (hugetlb_bootmem_page_earlycma(m)) {
3386 		valid = cma_validate_zones(m->cma);
3387 		goto out;
3388 	}
3389 
3390 	start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3391 
3392 	valid = !pfn_range_intersects_zones(nid, start_pfn,
3393 			pages_per_huge_page(m->hstate));
3394 out:
3395 	if (!valid)
3396 		hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3397 
3398 	return valid;
3399 }
3400 
3401 /*
3402  * Free a bootmem page that was found to be invalid (intersecting with
3403  * multiple zones).
3404  *
3405  * Since it intersects with multiple zones, we can't just do a free
3406  * operation on all pages at once, but instead have to walk all
3407  * pages, freeing them one by one.
3408  */
3409 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3410 					     struct hstate *h)
3411 {
3412 	unsigned long npages = pages_per_huge_page(h);
3413 	unsigned long pfn;
3414 
3415 	while (npages--) {
3416 		pfn = page_to_pfn(page);
3417 		__init_page_from_nid(pfn, nid);
3418 		free_reserved_page(page);
3419 		page++;
3420 	}
3421 }
3422 
3423 /*
3424  * Put bootmem huge pages into the standard lists after mem_map is up.
3425  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3426  */
3427 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3428 {
3429 	LIST_HEAD(folio_list);
3430 	struct huge_bootmem_page *m, *tm;
3431 	struct hstate *h = NULL, *prev_h = NULL;
3432 
3433 	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3434 		struct page *page = virt_to_page(m);
3435 		struct folio *folio = (void *)page;
3436 
3437 		h = m->hstate;
3438 		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3439 			/*
3440 			 * Can't use this page. Initialize the
3441 			 * page structures if that hasn't already
3442 			 * been done, and give them to the page
3443 			 * allocator.
3444 			 */
3445 			hugetlb_bootmem_free_invalid_page(nid, page, h);
3446 			continue;
3447 		}
3448 
3449 		/*
3450 		 * It is possible to have multiple huge page sizes (hstates)
3451 		 * in this list.  If so, process each size separately.
3452 		 */
3453 		if (h != prev_h && prev_h != NULL)
3454 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3455 		prev_h = h;
3456 
3457 		VM_BUG_ON(!hstate_is_gigantic(h));
3458 		WARN_ON(folio_ref_count(folio) != 1);
3459 
3460 		hugetlb_folio_init_vmemmap(folio, h,
3461 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3462 		init_new_hugetlb_folio(h, folio);
3463 
3464 		if (hugetlb_bootmem_page_prehvo(m))
3465 			/*
3466 			 * If pre-HVO was done, just set the
3467 			 * flag, the HVO code will then skip
3468 			 * this folio.
3469 			 */
3470 			folio_set_hugetlb_vmemmap_optimized(folio);
3471 
3472 		if (hugetlb_bootmem_page_earlycma(m))
3473 			folio_set_hugetlb_cma(folio);
3474 
3475 		list_add(&folio->lru, &folio_list);
3476 
3477 		/*
3478 		 * We need to restore the 'stolen' pages to totalram_pages
3479 		 * in order to fix confusing memory reports from free(1) and
3480 		 * other side-effects, like CommitLimit going negative.
3481 		 *
3482 		 * For CMA pages, this is done in init_cma_pageblock
3483 		 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3484 		 */
3485 		if (!folio_test_hugetlb_cma(folio))
3486 			adjust_managed_page_count(page, pages_per_huge_page(h));
3487 		cond_resched();
3488 	}
3489 
3490 	prep_and_add_bootmem_folios(h, &folio_list);
3491 }
3492 
3493 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3494 						    unsigned long end, void *arg)
3495 {
3496 	int nid;
3497 
3498 	for (nid = start; nid < end; nid++)
3499 		gather_bootmem_prealloc_node(nid);
3500 }
3501 
3502 static void __init gather_bootmem_prealloc(void)
3503 {
3504 	struct padata_mt_job job = {
3505 		.thread_fn	= gather_bootmem_prealloc_parallel,
3506 		.fn_arg		= NULL,
3507 		.start		= 0,
3508 		.size		= nr_node_ids,
3509 		.align		= 1,
3510 		.min_chunk	= 1,
3511 		.max_threads	= num_node_state(N_MEMORY),
3512 		.numa_aware	= true,
3513 	};
3514 
3515 	padata_do_multithreaded(&job);
3516 }
3517 
3518 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3519 {
3520 	unsigned long i;
3521 	char buf[32];
3522 	LIST_HEAD(folio_list);
3523 
3524 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3525 		if (hstate_is_gigantic(h)) {
3526 			if (!alloc_bootmem_huge_page(h, nid))
3527 				break;
3528 		} else {
3529 			struct folio *folio;
3530 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3531 
3532 			folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3533 					&node_states[N_MEMORY], NULL);
3534 			if (!folio)
3535 				break;
3536 			list_add(&folio->lru, &folio_list);
3537 		}
3538 		cond_resched();
3539 	}
3540 
3541 	if (!list_empty(&folio_list))
3542 		prep_and_add_allocated_folios(h, &folio_list);
3543 
3544 	if (i == h->max_huge_pages_node[nid])
3545 		return;
3546 
3547 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3548 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3549 		h->max_huge_pages_node[nid], buf, nid, i);
3550 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3551 	h->max_huge_pages_node[nid] = i;
3552 }
3553 
3554 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3555 {
3556 	int i;
3557 	bool node_specific_alloc = false;
3558 
3559 	for_each_online_node(i) {
3560 		if (h->max_huge_pages_node[i] > 0) {
3561 			hugetlb_hstate_alloc_pages_onenode(h, i);
3562 			node_specific_alloc = true;
3563 		}
3564 	}
3565 
3566 	return node_specific_alloc;
3567 }
3568 
3569 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3570 {
3571 	if (allocated < h->max_huge_pages) {
3572 		char buf[32];
3573 
3574 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3575 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3576 			h->max_huge_pages, buf, allocated);
3577 		h->max_huge_pages = allocated;
3578 	}
3579 }
3580 
3581 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3582 {
3583 	struct hstate *h = (struct hstate *)arg;
3584 	int i, num = end - start;
3585 	nodemask_t node_alloc_noretry;
3586 	LIST_HEAD(folio_list);
3587 	int next_node = first_online_node;
3588 
3589 	/* Bit mask controlling how hard we retry per-node allocations.*/
3590 	nodes_clear(node_alloc_noretry);
3591 
3592 	for (i = 0; i < num; ++i) {
3593 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3594 						&node_alloc_noretry, &next_node);
3595 		if (!folio)
3596 			break;
3597 
3598 		list_move(&folio->lru, &folio_list);
3599 		cond_resched();
3600 	}
3601 
3602 	prep_and_add_allocated_folios(h, &folio_list);
3603 }
3604 
3605 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3606 {
3607 	unsigned long i;
3608 
3609 	for (i = 0; i < h->max_huge_pages; ++i) {
3610 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3611 			break;
3612 		cond_resched();
3613 	}
3614 
3615 	return i;
3616 }
3617 
3618 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3619 {
3620 	struct padata_mt_job job = {
3621 		.fn_arg		= h,
3622 		.align		= 1,
3623 		.numa_aware	= true
3624 	};
3625 
3626 	unsigned long jiffies_start;
3627 	unsigned long jiffies_end;
3628 
3629 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3630 	job.start	= 0;
3631 	job.size	= h->max_huge_pages;
3632 
3633 	/*
3634 	 * job.max_threads is 25% of the available cpu threads by default.
3635 	 *
3636 	 * On large servers with terabytes of memory, huge page allocation
3637 	 * can consume a considerably amount of time.
3638 	 *
3639 	 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3640 	 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3641 	 *
3642 	 * +-----------------------+-------+-------+-------+-------+-------+
3643 	 * | threads               |   8   |   16  |   32  |   64  |   128 |
3644 	 * +-----------------------+-------+-------+-------+-------+-------+
3645 	 * | skylake      144 cpus |   44s |   22s |   16s |   19s |   20s |
3646 	 * | cascade lake 192 cpus |   39s |   20s |   11s |   10s |    9s |
3647 	 * +-----------------------+-------+-------+-------+-------+-------+
3648 	 */
3649 	if (hugepage_allocation_threads == 0) {
3650 		hugepage_allocation_threads = num_online_cpus() / 4;
3651 		hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3652 	}
3653 
3654 	job.max_threads	= hugepage_allocation_threads;
3655 	job.min_chunk	= h->max_huge_pages / hugepage_allocation_threads;
3656 
3657 	jiffies_start = jiffies;
3658 	padata_do_multithreaded(&job);
3659 	jiffies_end = jiffies;
3660 
3661 	pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3662 		jiffies_to_msecs(jiffies_end - jiffies_start),
3663 		hugepage_allocation_threads);
3664 
3665 	return h->nr_huge_pages;
3666 }
3667 
3668 /*
3669  * NOTE: this routine is called in different contexts for gigantic and
3670  * non-gigantic pages.
3671  * - For gigantic pages, this is called early in the boot process and
3672  *   pages are allocated from memblock allocated or something similar.
3673  *   Gigantic pages are actually added to pools later with the routine
3674  *   gather_bootmem_prealloc.
3675  * - For non-gigantic pages, this is called later in the boot process after
3676  *   all of mm is up and functional.  Pages are allocated from buddy and
3677  *   then added to hugetlb pools.
3678  */
3679 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3680 {
3681 	unsigned long allocated;
3682 
3683 	/*
3684 	 * Skip gigantic hugepages allocation if early CMA
3685 	 * reservations are not available.
3686 	 */
3687 	if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3688 	    !hugetlb_early_cma(h)) {
3689 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3690 		return;
3691 	}
3692 
3693 	/* do node specific alloc */
3694 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3695 		return;
3696 
3697 	/* below will do all node balanced alloc */
3698 	if (hstate_is_gigantic(h))
3699 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3700 	else
3701 		allocated = hugetlb_pages_alloc_boot(h);
3702 
3703 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3704 }
3705 
3706 static void __init hugetlb_init_hstates(void)
3707 {
3708 	struct hstate *h, *h2;
3709 
3710 	for_each_hstate(h) {
3711 		/* oversize hugepages were init'ed in early boot */
3712 		if (!hstate_is_gigantic(h))
3713 			hugetlb_hstate_alloc_pages(h);
3714 
3715 		/*
3716 		 * Set demote order for each hstate.  Note that
3717 		 * h->demote_order is initially 0.
3718 		 * - We can not demote gigantic pages if runtime freeing
3719 		 *   is not supported, so skip this.
3720 		 * - If CMA allocation is possible, we can not demote
3721 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3722 		 */
3723 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3724 			continue;
3725 		if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3726 			continue;
3727 		for_each_hstate(h2) {
3728 			if (h2 == h)
3729 				continue;
3730 			if (h2->order < h->order &&
3731 			    h2->order > h->demote_order)
3732 				h->demote_order = h2->order;
3733 		}
3734 	}
3735 }
3736 
3737 static void __init report_hugepages(void)
3738 {
3739 	struct hstate *h;
3740 	unsigned long nrinvalid;
3741 
3742 	for_each_hstate(h) {
3743 		char buf[32];
3744 
3745 		nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3746 		h->max_huge_pages -= nrinvalid;
3747 
3748 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3749 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3750 			buf, h->free_huge_pages);
3751 		if (nrinvalid)
3752 			pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3753 					buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3754 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3755 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3756 	}
3757 }
3758 
3759 #ifdef CONFIG_HIGHMEM
3760 static void try_to_free_low(struct hstate *h, unsigned long count,
3761 						nodemask_t *nodes_allowed)
3762 {
3763 	int i;
3764 	LIST_HEAD(page_list);
3765 
3766 	lockdep_assert_held(&hugetlb_lock);
3767 	if (hstate_is_gigantic(h))
3768 		return;
3769 
3770 	/*
3771 	 * Collect pages to be freed on a list, and free after dropping lock
3772 	 */
3773 	for_each_node_mask(i, *nodes_allowed) {
3774 		struct folio *folio, *next;
3775 		struct list_head *freel = &h->hugepage_freelists[i];
3776 		list_for_each_entry_safe(folio, next, freel, lru) {
3777 			if (count >= h->nr_huge_pages)
3778 				goto out;
3779 			if (folio_test_highmem(folio))
3780 				continue;
3781 			remove_hugetlb_folio(h, folio, false);
3782 			list_add(&folio->lru, &page_list);
3783 		}
3784 	}
3785 
3786 out:
3787 	spin_unlock_irq(&hugetlb_lock);
3788 	update_and_free_pages_bulk(h, &page_list);
3789 	spin_lock_irq(&hugetlb_lock);
3790 }
3791 #else
3792 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3793 						nodemask_t *nodes_allowed)
3794 {
3795 }
3796 #endif
3797 
3798 /*
3799  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3800  * balanced by operating on them in a round-robin fashion.
3801  * Returns 1 if an adjustment was made.
3802  */
3803 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3804 				int delta)
3805 {
3806 	int nr_nodes, node;
3807 
3808 	lockdep_assert_held(&hugetlb_lock);
3809 	VM_BUG_ON(delta != -1 && delta != 1);
3810 
3811 	if (delta < 0) {
3812 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3813 			if (h->surplus_huge_pages_node[node])
3814 				goto found;
3815 		}
3816 	} else {
3817 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3818 			if (h->surplus_huge_pages_node[node] <
3819 					h->nr_huge_pages_node[node])
3820 				goto found;
3821 		}
3822 	}
3823 	return 0;
3824 
3825 found:
3826 	h->surplus_huge_pages += delta;
3827 	h->surplus_huge_pages_node[node] += delta;
3828 	return 1;
3829 }
3830 
3831 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3832 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3833 			      nodemask_t *nodes_allowed)
3834 {
3835 	unsigned long persistent_free_count;
3836 	unsigned long min_count;
3837 	unsigned long allocated;
3838 	struct folio *folio;
3839 	LIST_HEAD(page_list);
3840 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3841 
3842 	/*
3843 	 * Bit mask controlling how hard we retry per-node allocations.
3844 	 * If we can not allocate the bit mask, do not attempt to allocate
3845 	 * the requested huge pages.
3846 	 */
3847 	if (node_alloc_noretry)
3848 		nodes_clear(*node_alloc_noretry);
3849 	else
3850 		return -ENOMEM;
3851 
3852 	/*
3853 	 * resize_lock mutex prevents concurrent adjustments to number of
3854 	 * pages in hstate via the proc/sysfs interfaces.
3855 	 */
3856 	mutex_lock(&h->resize_lock);
3857 	flush_free_hpage_work(h);
3858 	spin_lock_irq(&hugetlb_lock);
3859 
3860 	/*
3861 	 * Check for a node specific request.
3862 	 * Changing node specific huge page count may require a corresponding
3863 	 * change to the global count.  In any case, the passed node mask
3864 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3865 	 */
3866 	if (nid != NUMA_NO_NODE) {
3867 		unsigned long old_count = count;
3868 
3869 		count += persistent_huge_pages(h) -
3870 			 (h->nr_huge_pages_node[nid] -
3871 			  h->surplus_huge_pages_node[nid]);
3872 		/*
3873 		 * User may have specified a large count value which caused the
3874 		 * above calculation to overflow.  In this case, they wanted
3875 		 * to allocate as many huge pages as possible.  Set count to
3876 		 * largest possible value to align with their intention.
3877 		 */
3878 		if (count < old_count)
3879 			count = ULONG_MAX;
3880 	}
3881 
3882 	/*
3883 	 * Gigantic pages runtime allocation depend on the capability for large
3884 	 * page range allocation.
3885 	 * If the system does not provide this feature, return an error when
3886 	 * the user tries to allocate gigantic pages but let the user free the
3887 	 * boottime allocated gigantic pages.
3888 	 */
3889 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3890 		if (count > persistent_huge_pages(h)) {
3891 			spin_unlock_irq(&hugetlb_lock);
3892 			mutex_unlock(&h->resize_lock);
3893 			NODEMASK_FREE(node_alloc_noretry);
3894 			return -EINVAL;
3895 		}
3896 		/* Fall through to decrease pool */
3897 	}
3898 
3899 	/*
3900 	 * Increase the pool size
3901 	 * First take pages out of surplus state.  Then make up the
3902 	 * remaining difference by allocating fresh huge pages.
3903 	 *
3904 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3905 	 * to convert a surplus huge page to a normal huge page. That is
3906 	 * not critical, though, it just means the overall size of the
3907 	 * pool might be one hugepage larger than it needs to be, but
3908 	 * within all the constraints specified by the sysctls.
3909 	 */
3910 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3911 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3912 			break;
3913 	}
3914 
3915 	allocated = 0;
3916 	while (count > (persistent_huge_pages(h) + allocated)) {
3917 		/*
3918 		 * If this allocation races such that we no longer need the
3919 		 * page, free_huge_folio will handle it by freeing the page
3920 		 * and reducing the surplus.
3921 		 */
3922 		spin_unlock_irq(&hugetlb_lock);
3923 
3924 		/* yield cpu to avoid soft lockup */
3925 		cond_resched();
3926 
3927 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3928 						node_alloc_noretry,
3929 						&h->next_nid_to_alloc);
3930 		if (!folio) {
3931 			prep_and_add_allocated_folios(h, &page_list);
3932 			spin_lock_irq(&hugetlb_lock);
3933 			goto out;
3934 		}
3935 
3936 		list_add(&folio->lru, &page_list);
3937 		allocated++;
3938 
3939 		/* Bail for signals. Probably ctrl-c from user */
3940 		if (signal_pending(current)) {
3941 			prep_and_add_allocated_folios(h, &page_list);
3942 			spin_lock_irq(&hugetlb_lock);
3943 			goto out;
3944 		}
3945 
3946 		spin_lock_irq(&hugetlb_lock);
3947 	}
3948 
3949 	/* Add allocated pages to the pool */
3950 	if (!list_empty(&page_list)) {
3951 		spin_unlock_irq(&hugetlb_lock);
3952 		prep_and_add_allocated_folios(h, &page_list);
3953 		spin_lock_irq(&hugetlb_lock);
3954 	}
3955 
3956 	/*
3957 	 * Decrease the pool size
3958 	 * First return free pages to the buddy allocator (being careful
3959 	 * to keep enough around to satisfy reservations).  Then place
3960 	 * pages into surplus state as needed so the pool will shrink
3961 	 * to the desired size as pages become free.
3962 	 *
3963 	 * By placing pages into the surplus state independent of the
3964 	 * overcommit value, we are allowing the surplus pool size to
3965 	 * exceed overcommit. There are few sane options here. Since
3966 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3967 	 * though, we'll note that we're not allowed to exceed surplus
3968 	 * and won't grow the pool anywhere else. Not until one of the
3969 	 * sysctls are changed, or the surplus pages go out of use.
3970 	 *
3971 	 * min_count is the expected number of persistent pages, we
3972 	 * shouldn't calculate min_count by using
3973 	 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3974 	 * because there may exist free surplus huge pages, and this will
3975 	 * lead to subtracting twice. Free surplus huge pages come from HVO
3976 	 * failing to restore vmemmap, see comments in the callers of
3977 	 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3978 	 * persistent free count first.
3979 	 */
3980 	persistent_free_count = h->free_huge_pages;
3981 	if (h->free_huge_pages > persistent_huge_pages(h)) {
3982 		if (h->free_huge_pages > h->surplus_huge_pages)
3983 			persistent_free_count -= h->surplus_huge_pages;
3984 		else
3985 			persistent_free_count = 0;
3986 	}
3987 	min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3988 	min_count = max(count, min_count);
3989 	try_to_free_low(h, min_count, nodes_allowed);
3990 
3991 	/*
3992 	 * Collect pages to be removed on list without dropping lock
3993 	 */
3994 	while (min_count < persistent_huge_pages(h)) {
3995 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3996 		if (!folio)
3997 			break;
3998 
3999 		list_add(&folio->lru, &page_list);
4000 	}
4001 	/* free the pages after dropping lock */
4002 	spin_unlock_irq(&hugetlb_lock);
4003 	update_and_free_pages_bulk(h, &page_list);
4004 	flush_free_hpage_work(h);
4005 	spin_lock_irq(&hugetlb_lock);
4006 
4007 	while (count < persistent_huge_pages(h)) {
4008 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
4009 			break;
4010 	}
4011 out:
4012 	h->max_huge_pages = persistent_huge_pages(h);
4013 	spin_unlock_irq(&hugetlb_lock);
4014 	mutex_unlock(&h->resize_lock);
4015 
4016 	NODEMASK_FREE(node_alloc_noretry);
4017 
4018 	return 0;
4019 }
4020 
4021 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
4022 				       struct list_head *src_list)
4023 {
4024 	long rc;
4025 	struct folio *folio, *next;
4026 	LIST_HEAD(dst_list);
4027 	LIST_HEAD(ret_list);
4028 
4029 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4030 	list_splice_init(&ret_list, src_list);
4031 
4032 	/*
4033 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4034 	 * Without the mutex, pages added to target hstate could be marked
4035 	 * as surplus.
4036 	 *
4037 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
4038 	 * use the convention of always taking larger size hstate mutex first.
4039 	 */
4040 	mutex_lock(&dst->resize_lock);
4041 
4042 	list_for_each_entry_safe(folio, next, src_list, lru) {
4043 		int i;
4044 		bool cma;
4045 
4046 		if (folio_test_hugetlb_vmemmap_optimized(folio))
4047 			continue;
4048 
4049 		cma = folio_test_hugetlb_cma(folio);
4050 
4051 		list_del(&folio->lru);
4052 
4053 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4054 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4055 
4056 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4057 			struct page *page = folio_page(folio, i);
4058 			/* Careful: see __split_huge_page_tail() */
4059 			struct folio *new_folio = (struct folio *)page;
4060 
4061 			clear_compound_head(page);
4062 			prep_compound_page(page, dst->order);
4063 
4064 			new_folio->mapping = NULL;
4065 			init_new_hugetlb_folio(dst, new_folio);
4066 			/* Copy the CMA flag so that it is freed correctly */
4067 			if (cma)
4068 				folio_set_hugetlb_cma(new_folio);
4069 			list_add(&new_folio->lru, &dst_list);
4070 		}
4071 	}
4072 
4073 	prep_and_add_allocated_folios(dst, &dst_list);
4074 
4075 	mutex_unlock(&dst->resize_lock);
4076 
4077 	return rc;
4078 }
4079 
4080 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4081 				  unsigned long nr_to_demote)
4082 	__must_hold(&hugetlb_lock)
4083 {
4084 	int nr_nodes, node;
4085 	struct hstate *dst;
4086 	long rc = 0;
4087 	long nr_demoted = 0;
4088 
4089 	lockdep_assert_held(&hugetlb_lock);
4090 
4091 	/* We should never get here if no demote order */
4092 	if (!src->demote_order) {
4093 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4094 		return -EINVAL;		/* internal error */
4095 	}
4096 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4097 
4098 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4099 		LIST_HEAD(list);
4100 		struct folio *folio, *next;
4101 
4102 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4103 			if (folio_test_hwpoison(folio))
4104 				continue;
4105 
4106 			remove_hugetlb_folio(src, folio, false);
4107 			list_add(&folio->lru, &list);
4108 
4109 			if (++nr_demoted == nr_to_demote)
4110 				break;
4111 		}
4112 
4113 		spin_unlock_irq(&hugetlb_lock);
4114 
4115 		rc = demote_free_hugetlb_folios(src, dst, &list);
4116 
4117 		spin_lock_irq(&hugetlb_lock);
4118 
4119 		list_for_each_entry_safe(folio, next, &list, lru) {
4120 			list_del(&folio->lru);
4121 			add_hugetlb_folio(src, folio, false);
4122 
4123 			nr_demoted--;
4124 		}
4125 
4126 		if (rc < 0 || nr_demoted == nr_to_demote)
4127 			break;
4128 	}
4129 
4130 	/*
4131 	 * Not absolutely necessary, but for consistency update max_huge_pages
4132 	 * based on pool changes for the demoted page.
4133 	 */
4134 	src->max_huge_pages -= nr_demoted;
4135 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4136 
4137 	if (rc < 0)
4138 		return rc;
4139 
4140 	if (nr_demoted)
4141 		return nr_demoted;
4142 	/*
4143 	 * Only way to get here is if all pages on free lists are poisoned.
4144 	 * Return -EBUSY so that caller will not retry.
4145 	 */
4146 	return -EBUSY;
4147 }
4148 
4149 #define HSTATE_ATTR_RO(_name) \
4150 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4151 
4152 #define HSTATE_ATTR_WO(_name) \
4153 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4154 
4155 #define HSTATE_ATTR(_name) \
4156 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4157 
4158 static struct kobject *hugepages_kobj;
4159 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4160 
4161 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4162 
4163 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4164 {
4165 	int i;
4166 
4167 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
4168 		if (hstate_kobjs[i] == kobj) {
4169 			if (nidp)
4170 				*nidp = NUMA_NO_NODE;
4171 			return &hstates[i];
4172 		}
4173 
4174 	return kobj_to_node_hstate(kobj, nidp);
4175 }
4176 
4177 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4178 					struct kobj_attribute *attr, char *buf)
4179 {
4180 	struct hstate *h;
4181 	unsigned long nr_huge_pages;
4182 	int nid;
4183 
4184 	h = kobj_to_hstate(kobj, &nid);
4185 	if (nid == NUMA_NO_NODE)
4186 		nr_huge_pages = h->nr_huge_pages;
4187 	else
4188 		nr_huge_pages = h->nr_huge_pages_node[nid];
4189 
4190 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4191 }
4192 
4193 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4194 					   struct hstate *h, int nid,
4195 					   unsigned long count, size_t len)
4196 {
4197 	int err;
4198 	nodemask_t nodes_allowed, *n_mask;
4199 
4200 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4201 		return -EINVAL;
4202 
4203 	if (nid == NUMA_NO_NODE) {
4204 		/*
4205 		 * global hstate attribute
4206 		 */
4207 		if (!(obey_mempolicy &&
4208 				init_nodemask_of_mempolicy(&nodes_allowed)))
4209 			n_mask = &node_states[N_MEMORY];
4210 		else
4211 			n_mask = &nodes_allowed;
4212 	} else {
4213 		/*
4214 		 * Node specific request.  count adjustment happens in
4215 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4216 		 */
4217 		init_nodemask_of_node(&nodes_allowed, nid);
4218 		n_mask = &nodes_allowed;
4219 	}
4220 
4221 	err = set_max_huge_pages(h, count, nid, n_mask);
4222 
4223 	return err ? err : len;
4224 }
4225 
4226 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4227 					 struct kobject *kobj, const char *buf,
4228 					 size_t len)
4229 {
4230 	struct hstate *h;
4231 	unsigned long count;
4232 	int nid;
4233 	int err;
4234 
4235 	err = kstrtoul(buf, 10, &count);
4236 	if (err)
4237 		return err;
4238 
4239 	h = kobj_to_hstate(kobj, &nid);
4240 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4241 }
4242 
4243 static ssize_t nr_hugepages_show(struct kobject *kobj,
4244 				       struct kobj_attribute *attr, char *buf)
4245 {
4246 	return nr_hugepages_show_common(kobj, attr, buf);
4247 }
4248 
4249 static ssize_t nr_hugepages_store(struct kobject *kobj,
4250 	       struct kobj_attribute *attr, const char *buf, size_t len)
4251 {
4252 	return nr_hugepages_store_common(false, kobj, buf, len);
4253 }
4254 HSTATE_ATTR(nr_hugepages);
4255 
4256 #ifdef CONFIG_NUMA
4257 
4258 /*
4259  * hstate attribute for optionally mempolicy-based constraint on persistent
4260  * huge page alloc/free.
4261  */
4262 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4263 					   struct kobj_attribute *attr,
4264 					   char *buf)
4265 {
4266 	return nr_hugepages_show_common(kobj, attr, buf);
4267 }
4268 
4269 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4270 	       struct kobj_attribute *attr, const char *buf, size_t len)
4271 {
4272 	return nr_hugepages_store_common(true, kobj, buf, len);
4273 }
4274 HSTATE_ATTR(nr_hugepages_mempolicy);
4275 #endif
4276 
4277 
4278 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4279 					struct kobj_attribute *attr, char *buf)
4280 {
4281 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4282 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4283 }
4284 
4285 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4286 		struct kobj_attribute *attr, const char *buf, size_t count)
4287 {
4288 	int err;
4289 	unsigned long input;
4290 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4291 
4292 	if (hstate_is_gigantic(h))
4293 		return -EINVAL;
4294 
4295 	err = kstrtoul(buf, 10, &input);
4296 	if (err)
4297 		return err;
4298 
4299 	spin_lock_irq(&hugetlb_lock);
4300 	h->nr_overcommit_huge_pages = input;
4301 	spin_unlock_irq(&hugetlb_lock);
4302 
4303 	return count;
4304 }
4305 HSTATE_ATTR(nr_overcommit_hugepages);
4306 
4307 static ssize_t free_hugepages_show(struct kobject *kobj,
4308 					struct kobj_attribute *attr, char *buf)
4309 {
4310 	struct hstate *h;
4311 	unsigned long free_huge_pages;
4312 	int nid;
4313 
4314 	h = kobj_to_hstate(kobj, &nid);
4315 	if (nid == NUMA_NO_NODE)
4316 		free_huge_pages = h->free_huge_pages;
4317 	else
4318 		free_huge_pages = h->free_huge_pages_node[nid];
4319 
4320 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4321 }
4322 HSTATE_ATTR_RO(free_hugepages);
4323 
4324 static ssize_t resv_hugepages_show(struct kobject *kobj,
4325 					struct kobj_attribute *attr, char *buf)
4326 {
4327 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4328 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4329 }
4330 HSTATE_ATTR_RO(resv_hugepages);
4331 
4332 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4333 					struct kobj_attribute *attr, char *buf)
4334 {
4335 	struct hstate *h;
4336 	unsigned long surplus_huge_pages;
4337 	int nid;
4338 
4339 	h = kobj_to_hstate(kobj, &nid);
4340 	if (nid == NUMA_NO_NODE)
4341 		surplus_huge_pages = h->surplus_huge_pages;
4342 	else
4343 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4344 
4345 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4346 }
4347 HSTATE_ATTR_RO(surplus_hugepages);
4348 
4349 static ssize_t demote_store(struct kobject *kobj,
4350 	       struct kobj_attribute *attr, const char *buf, size_t len)
4351 {
4352 	unsigned long nr_demote;
4353 	unsigned long nr_available;
4354 	nodemask_t nodes_allowed, *n_mask;
4355 	struct hstate *h;
4356 	int err;
4357 	int nid;
4358 
4359 	err = kstrtoul(buf, 10, &nr_demote);
4360 	if (err)
4361 		return err;
4362 	h = kobj_to_hstate(kobj, &nid);
4363 
4364 	if (nid != NUMA_NO_NODE) {
4365 		init_nodemask_of_node(&nodes_allowed, nid);
4366 		n_mask = &nodes_allowed;
4367 	} else {
4368 		n_mask = &node_states[N_MEMORY];
4369 	}
4370 
4371 	/* Synchronize with other sysfs operations modifying huge pages */
4372 	mutex_lock(&h->resize_lock);
4373 	spin_lock_irq(&hugetlb_lock);
4374 
4375 	while (nr_demote) {
4376 		long rc;
4377 
4378 		/*
4379 		 * Check for available pages to demote each time thorough the
4380 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4381 		 */
4382 		if (nid != NUMA_NO_NODE)
4383 			nr_available = h->free_huge_pages_node[nid];
4384 		else
4385 			nr_available = h->free_huge_pages;
4386 		nr_available -= h->resv_huge_pages;
4387 		if (!nr_available)
4388 			break;
4389 
4390 		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4391 		if (rc < 0) {
4392 			err = rc;
4393 			break;
4394 		}
4395 
4396 		nr_demote -= rc;
4397 	}
4398 
4399 	spin_unlock_irq(&hugetlb_lock);
4400 	mutex_unlock(&h->resize_lock);
4401 
4402 	if (err)
4403 		return err;
4404 	return len;
4405 }
4406 HSTATE_ATTR_WO(demote);
4407 
4408 static ssize_t demote_size_show(struct kobject *kobj,
4409 					struct kobj_attribute *attr, char *buf)
4410 {
4411 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4412 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4413 
4414 	return sysfs_emit(buf, "%lukB\n", demote_size);
4415 }
4416 
4417 static ssize_t demote_size_store(struct kobject *kobj,
4418 					struct kobj_attribute *attr,
4419 					const char *buf, size_t count)
4420 {
4421 	struct hstate *h, *demote_hstate;
4422 	unsigned long demote_size;
4423 	unsigned int demote_order;
4424 
4425 	demote_size = (unsigned long)memparse(buf, NULL);
4426 
4427 	demote_hstate = size_to_hstate(demote_size);
4428 	if (!demote_hstate)
4429 		return -EINVAL;
4430 	demote_order = demote_hstate->order;
4431 	if (demote_order < HUGETLB_PAGE_ORDER)
4432 		return -EINVAL;
4433 
4434 	/* demote order must be smaller than hstate order */
4435 	h = kobj_to_hstate(kobj, NULL);
4436 	if (demote_order >= h->order)
4437 		return -EINVAL;
4438 
4439 	/* resize_lock synchronizes access to demote size and writes */
4440 	mutex_lock(&h->resize_lock);
4441 	h->demote_order = demote_order;
4442 	mutex_unlock(&h->resize_lock);
4443 
4444 	return count;
4445 }
4446 HSTATE_ATTR(demote_size);
4447 
4448 static struct attribute *hstate_attrs[] = {
4449 	&nr_hugepages_attr.attr,
4450 	&nr_overcommit_hugepages_attr.attr,
4451 	&free_hugepages_attr.attr,
4452 	&resv_hugepages_attr.attr,
4453 	&surplus_hugepages_attr.attr,
4454 #ifdef CONFIG_NUMA
4455 	&nr_hugepages_mempolicy_attr.attr,
4456 #endif
4457 	NULL,
4458 };
4459 
4460 static const struct attribute_group hstate_attr_group = {
4461 	.attrs = hstate_attrs,
4462 };
4463 
4464 static struct attribute *hstate_demote_attrs[] = {
4465 	&demote_size_attr.attr,
4466 	&demote_attr.attr,
4467 	NULL,
4468 };
4469 
4470 static const struct attribute_group hstate_demote_attr_group = {
4471 	.attrs = hstate_demote_attrs,
4472 };
4473 
4474 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4475 				    struct kobject **hstate_kobjs,
4476 				    const struct attribute_group *hstate_attr_group)
4477 {
4478 	int retval;
4479 	int hi = hstate_index(h);
4480 
4481 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4482 	if (!hstate_kobjs[hi])
4483 		return -ENOMEM;
4484 
4485 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4486 	if (retval) {
4487 		kobject_put(hstate_kobjs[hi]);
4488 		hstate_kobjs[hi] = NULL;
4489 		return retval;
4490 	}
4491 
4492 	if (h->demote_order) {
4493 		retval = sysfs_create_group(hstate_kobjs[hi],
4494 					    &hstate_demote_attr_group);
4495 		if (retval) {
4496 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4497 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4498 			kobject_put(hstate_kobjs[hi]);
4499 			hstate_kobjs[hi] = NULL;
4500 			return retval;
4501 		}
4502 	}
4503 
4504 	return 0;
4505 }
4506 
4507 #ifdef CONFIG_NUMA
4508 static bool hugetlb_sysfs_initialized __ro_after_init;
4509 
4510 /*
4511  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4512  * with node devices in node_devices[] using a parallel array.  The array
4513  * index of a node device or _hstate == node id.
4514  * This is here to avoid any static dependency of the node device driver, in
4515  * the base kernel, on the hugetlb module.
4516  */
4517 struct node_hstate {
4518 	struct kobject		*hugepages_kobj;
4519 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4520 };
4521 static struct node_hstate node_hstates[MAX_NUMNODES];
4522 
4523 /*
4524  * A subset of global hstate attributes for node devices
4525  */
4526 static struct attribute *per_node_hstate_attrs[] = {
4527 	&nr_hugepages_attr.attr,
4528 	&free_hugepages_attr.attr,
4529 	&surplus_hugepages_attr.attr,
4530 	NULL,
4531 };
4532 
4533 static const struct attribute_group per_node_hstate_attr_group = {
4534 	.attrs = per_node_hstate_attrs,
4535 };
4536 
4537 /*
4538  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4539  * Returns node id via non-NULL nidp.
4540  */
4541 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4542 {
4543 	int nid;
4544 
4545 	for (nid = 0; nid < nr_node_ids; nid++) {
4546 		struct node_hstate *nhs = &node_hstates[nid];
4547 		int i;
4548 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4549 			if (nhs->hstate_kobjs[i] == kobj) {
4550 				if (nidp)
4551 					*nidp = nid;
4552 				return &hstates[i];
4553 			}
4554 	}
4555 
4556 	BUG();
4557 	return NULL;
4558 }
4559 
4560 /*
4561  * Unregister hstate attributes from a single node device.
4562  * No-op if no hstate attributes attached.
4563  */
4564 void hugetlb_unregister_node(struct node *node)
4565 {
4566 	struct hstate *h;
4567 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4568 
4569 	if (!nhs->hugepages_kobj)
4570 		return;		/* no hstate attributes */
4571 
4572 	for_each_hstate(h) {
4573 		int idx = hstate_index(h);
4574 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4575 
4576 		if (!hstate_kobj)
4577 			continue;
4578 		if (h->demote_order)
4579 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4580 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4581 		kobject_put(hstate_kobj);
4582 		nhs->hstate_kobjs[idx] = NULL;
4583 	}
4584 
4585 	kobject_put(nhs->hugepages_kobj);
4586 	nhs->hugepages_kobj = NULL;
4587 }
4588 
4589 
4590 /*
4591  * Register hstate attributes for a single node device.
4592  * No-op if attributes already registered.
4593  */
4594 void hugetlb_register_node(struct node *node)
4595 {
4596 	struct hstate *h;
4597 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4598 	int err;
4599 
4600 	if (!hugetlb_sysfs_initialized)
4601 		return;
4602 
4603 	if (nhs->hugepages_kobj)
4604 		return;		/* already allocated */
4605 
4606 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4607 							&node->dev.kobj);
4608 	if (!nhs->hugepages_kobj)
4609 		return;
4610 
4611 	for_each_hstate(h) {
4612 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4613 						nhs->hstate_kobjs,
4614 						&per_node_hstate_attr_group);
4615 		if (err) {
4616 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4617 				h->name, node->dev.id);
4618 			hugetlb_unregister_node(node);
4619 			break;
4620 		}
4621 	}
4622 }
4623 
4624 /*
4625  * hugetlb init time:  register hstate attributes for all registered node
4626  * devices of nodes that have memory.  All on-line nodes should have
4627  * registered their associated device by this time.
4628  */
4629 static void __init hugetlb_register_all_nodes(void)
4630 {
4631 	int nid;
4632 
4633 	for_each_online_node(nid)
4634 		hugetlb_register_node(node_devices[nid]);
4635 }
4636 #else	/* !CONFIG_NUMA */
4637 
4638 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4639 {
4640 	BUG();
4641 	if (nidp)
4642 		*nidp = -1;
4643 	return NULL;
4644 }
4645 
4646 static void hugetlb_register_all_nodes(void) { }
4647 
4648 #endif
4649 
4650 static void __init hugetlb_sysfs_init(void)
4651 {
4652 	struct hstate *h;
4653 	int err;
4654 
4655 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4656 	if (!hugepages_kobj)
4657 		return;
4658 
4659 	for_each_hstate(h) {
4660 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4661 					 hstate_kobjs, &hstate_attr_group);
4662 		if (err)
4663 			pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4664 	}
4665 
4666 #ifdef CONFIG_NUMA
4667 	hugetlb_sysfs_initialized = true;
4668 #endif
4669 	hugetlb_register_all_nodes();
4670 }
4671 
4672 #ifdef CONFIG_SYSCTL
4673 static void hugetlb_sysctl_init(void);
4674 #else
4675 static inline void hugetlb_sysctl_init(void) { }
4676 #endif
4677 
4678 static int __init hugetlb_init(void)
4679 {
4680 	int i;
4681 
4682 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4683 			__NR_HPAGEFLAGS);
4684 
4685 	if (!hugepages_supported()) {
4686 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4687 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4688 		return 0;
4689 	}
4690 
4691 	/*
4692 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4693 	 * architectures depend on setup being done here.
4694 	 */
4695 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4696 	if (!parsed_default_hugepagesz) {
4697 		/*
4698 		 * If we did not parse a default huge page size, set
4699 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4700 		 * number of huge pages for this default size was implicitly
4701 		 * specified, set that here as well.
4702 		 * Note that the implicit setting will overwrite an explicit
4703 		 * setting.  A warning will be printed in this case.
4704 		 */
4705 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4706 		if (default_hstate_max_huge_pages) {
4707 			if (default_hstate.max_huge_pages) {
4708 				char buf[32];
4709 
4710 				string_get_size(huge_page_size(&default_hstate),
4711 					1, STRING_UNITS_2, buf, 32);
4712 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4713 					default_hstate.max_huge_pages, buf);
4714 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4715 					default_hstate_max_huge_pages);
4716 			}
4717 			default_hstate.max_huge_pages =
4718 				default_hstate_max_huge_pages;
4719 
4720 			for_each_online_node(i)
4721 				default_hstate.max_huge_pages_node[i] =
4722 					default_hugepages_in_node[i];
4723 		}
4724 	}
4725 
4726 	hugetlb_cma_check();
4727 	hugetlb_init_hstates();
4728 	gather_bootmem_prealloc();
4729 	report_hugepages();
4730 
4731 	hugetlb_sysfs_init();
4732 	hugetlb_cgroup_file_init();
4733 	hugetlb_sysctl_init();
4734 
4735 #ifdef CONFIG_SMP
4736 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4737 #else
4738 	num_fault_mutexes = 1;
4739 #endif
4740 	hugetlb_fault_mutex_table =
4741 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4742 			      GFP_KERNEL);
4743 	BUG_ON(!hugetlb_fault_mutex_table);
4744 
4745 	for (i = 0; i < num_fault_mutexes; i++)
4746 		mutex_init(&hugetlb_fault_mutex_table[i]);
4747 	return 0;
4748 }
4749 subsys_initcall(hugetlb_init);
4750 
4751 /* Overwritten by architectures with more huge page sizes */
4752 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4753 {
4754 	return size == HPAGE_SIZE;
4755 }
4756 
4757 void __init hugetlb_add_hstate(unsigned int order)
4758 {
4759 	struct hstate *h;
4760 	unsigned long i;
4761 
4762 	if (size_to_hstate(PAGE_SIZE << order)) {
4763 		return;
4764 	}
4765 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4766 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4767 	h = &hstates[hugetlb_max_hstate++];
4768 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4769 	h->order = order;
4770 	h->mask = ~(huge_page_size(h) - 1);
4771 	for (i = 0; i < MAX_NUMNODES; ++i)
4772 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4773 	INIT_LIST_HEAD(&h->hugepage_activelist);
4774 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4775 					huge_page_size(h)/SZ_1K);
4776 
4777 	parsed_hstate = h;
4778 }
4779 
4780 bool __init __weak hugetlb_node_alloc_supported(void)
4781 {
4782 	return true;
4783 }
4784 
4785 static void __init hugepages_clear_pages_in_node(void)
4786 {
4787 	if (!hugetlb_max_hstate) {
4788 		default_hstate_max_huge_pages = 0;
4789 		memset(default_hugepages_in_node, 0,
4790 			sizeof(default_hugepages_in_node));
4791 	} else {
4792 		parsed_hstate->max_huge_pages = 0;
4793 		memset(parsed_hstate->max_huge_pages_node, 0,
4794 			sizeof(parsed_hstate->max_huge_pages_node));
4795 	}
4796 }
4797 
4798 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4799 {
4800 	size_t len;
4801 	char *p;
4802 
4803 	if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4804 		return -EINVAL;
4805 
4806 	len = strlen(s) + 1;
4807 	if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4808 		return -EINVAL;
4809 
4810 	p = &hstate_cmdline_buf[hstate_cmdline_index];
4811 	memcpy(p, s, len);
4812 	hstate_cmdline_index += len;
4813 
4814 	hugetlb_params[hugetlb_param_index].val = p;
4815 	hugetlb_params[hugetlb_param_index].setup = setup;
4816 
4817 	hugetlb_param_index++;
4818 
4819 	return 0;
4820 }
4821 
4822 static __init void hugetlb_parse_params(void)
4823 {
4824 	int i;
4825 	struct hugetlb_cmdline *hcp;
4826 
4827 	for (i = 0; i < hugetlb_param_index; i++) {
4828 		hcp = &hugetlb_params[i];
4829 
4830 		hcp->setup(hcp->val);
4831 	}
4832 
4833 	hugetlb_cma_validate_params();
4834 }
4835 
4836 /*
4837  * hugepages command line processing
4838  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4839  * specification.  If not, ignore the hugepages value.  hugepages can also
4840  * be the first huge page command line  option in which case it implicitly
4841  * specifies the number of huge pages for the default size.
4842  */
4843 static int __init hugepages_setup(char *s)
4844 {
4845 	unsigned long *mhp;
4846 	static unsigned long *last_mhp;
4847 	int node = NUMA_NO_NODE;
4848 	int count;
4849 	unsigned long tmp;
4850 	char *p = s;
4851 
4852 	if (!parsed_valid_hugepagesz) {
4853 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4854 		parsed_valid_hugepagesz = true;
4855 		return -EINVAL;
4856 	}
4857 
4858 	/*
4859 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4860 	 * yet, so this hugepages= parameter goes to the "default hstate".
4861 	 * Otherwise, it goes with the previously parsed hugepagesz or
4862 	 * default_hugepagesz.
4863 	 */
4864 	else if (!hugetlb_max_hstate)
4865 		mhp = &default_hstate_max_huge_pages;
4866 	else
4867 		mhp = &parsed_hstate->max_huge_pages;
4868 
4869 	if (mhp == last_mhp) {
4870 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4871 		return 1;
4872 	}
4873 
4874 	while (*p) {
4875 		count = 0;
4876 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4877 			goto invalid;
4878 		/* Parameter is node format */
4879 		if (p[count] == ':') {
4880 			if (!hugetlb_node_alloc_supported()) {
4881 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4882 				return 1;
4883 			}
4884 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4885 				goto invalid;
4886 			node = array_index_nospec(tmp, MAX_NUMNODES);
4887 			p += count + 1;
4888 			/* Parse hugepages */
4889 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4890 				goto invalid;
4891 			if (!hugetlb_max_hstate)
4892 				default_hugepages_in_node[node] = tmp;
4893 			else
4894 				parsed_hstate->max_huge_pages_node[node] = tmp;
4895 			*mhp += tmp;
4896 			/* Go to parse next node*/
4897 			if (p[count] == ',')
4898 				p += count + 1;
4899 			else
4900 				break;
4901 		} else {
4902 			if (p != s)
4903 				goto invalid;
4904 			*mhp = tmp;
4905 			break;
4906 		}
4907 	}
4908 
4909 	last_mhp = mhp;
4910 
4911 	return 0;
4912 
4913 invalid:
4914 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4915 	hugepages_clear_pages_in_node();
4916 	return -EINVAL;
4917 }
4918 hugetlb_early_param("hugepages", hugepages_setup);
4919 
4920 /*
4921  * hugepagesz command line processing
4922  * A specific huge page size can only be specified once with hugepagesz.
4923  * hugepagesz is followed by hugepages on the command line.  The global
4924  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4925  * hugepagesz argument was valid.
4926  */
4927 static int __init hugepagesz_setup(char *s)
4928 {
4929 	unsigned long size;
4930 	struct hstate *h;
4931 
4932 	parsed_valid_hugepagesz = false;
4933 	size = (unsigned long)memparse(s, NULL);
4934 
4935 	if (!arch_hugetlb_valid_size(size)) {
4936 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4937 		return -EINVAL;
4938 	}
4939 
4940 	h = size_to_hstate(size);
4941 	if (h) {
4942 		/*
4943 		 * hstate for this size already exists.  This is normally
4944 		 * an error, but is allowed if the existing hstate is the
4945 		 * default hstate.  More specifically, it is only allowed if
4946 		 * the number of huge pages for the default hstate was not
4947 		 * previously specified.
4948 		 */
4949 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4950 		    default_hstate.max_huge_pages) {
4951 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4952 			return -EINVAL;
4953 		}
4954 
4955 		/*
4956 		 * No need to call hugetlb_add_hstate() as hstate already
4957 		 * exists.  But, do set parsed_hstate so that a following
4958 		 * hugepages= parameter will be applied to this hstate.
4959 		 */
4960 		parsed_hstate = h;
4961 		parsed_valid_hugepagesz = true;
4962 		return 0;
4963 	}
4964 
4965 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4966 	parsed_valid_hugepagesz = true;
4967 	return 0;
4968 }
4969 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4970 
4971 /*
4972  * default_hugepagesz command line input
4973  * Only one instance of default_hugepagesz allowed on command line.
4974  */
4975 static int __init default_hugepagesz_setup(char *s)
4976 {
4977 	unsigned long size;
4978 	int i;
4979 
4980 	parsed_valid_hugepagesz = false;
4981 	if (parsed_default_hugepagesz) {
4982 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4983 		return -EINVAL;
4984 	}
4985 
4986 	size = (unsigned long)memparse(s, NULL);
4987 
4988 	if (!arch_hugetlb_valid_size(size)) {
4989 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4990 		return -EINVAL;
4991 	}
4992 
4993 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4994 	parsed_valid_hugepagesz = true;
4995 	parsed_default_hugepagesz = true;
4996 	default_hstate_idx = hstate_index(size_to_hstate(size));
4997 
4998 	/*
4999 	 * The number of default huge pages (for this size) could have been
5000 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
5001 	 * then default_hstate_max_huge_pages is set.  If the default huge
5002 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
5003 	 * allocated here from bootmem allocator.
5004 	 */
5005 	if (default_hstate_max_huge_pages) {
5006 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
5007 		/*
5008 		 * Since this is an early parameter, we can't check
5009 		 * NUMA node state yet, so loop through MAX_NUMNODES.
5010 		 */
5011 		for (i = 0; i < MAX_NUMNODES; i++) {
5012 			if (default_hugepages_in_node[i] != 0)
5013 				default_hstate.max_huge_pages_node[i] =
5014 					default_hugepages_in_node[i];
5015 		}
5016 		default_hstate_max_huge_pages = 0;
5017 	}
5018 
5019 	return 0;
5020 }
5021 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
5022 
5023 static bool __hugetlb_bootmem_allocated __initdata;
5024 
5025 bool __init hugetlb_bootmem_allocated(void)
5026 {
5027 	return __hugetlb_bootmem_allocated;
5028 }
5029 
5030 void __init hugetlb_bootmem_alloc(void)
5031 {
5032 	struct hstate *h;
5033 	int i;
5034 
5035 	if (__hugetlb_bootmem_allocated)
5036 		return;
5037 
5038 	for (i = 0; i < MAX_NUMNODES; i++)
5039 		INIT_LIST_HEAD(&huge_boot_pages[i]);
5040 
5041 	hugetlb_parse_params();
5042 
5043 	for_each_hstate(h) {
5044 		h->next_nid_to_alloc = first_online_node;
5045 		h->next_nid_to_free = first_online_node;
5046 
5047 		if (hstate_is_gigantic(h))
5048 			hugetlb_hstate_alloc_pages(h);
5049 	}
5050 
5051 	__hugetlb_bootmem_allocated = true;
5052 }
5053 
5054 /*
5055  * hugepage_alloc_threads command line parsing.
5056  *
5057  * When set, use this specific number of threads for the boot
5058  * allocation of hugepages.
5059  */
5060 static int __init hugepage_alloc_threads_setup(char *s)
5061 {
5062 	unsigned long allocation_threads;
5063 
5064 	if (kstrtoul(s, 0, &allocation_threads) != 0)
5065 		return 1;
5066 
5067 	if (allocation_threads == 0)
5068 		return 1;
5069 
5070 	hugepage_allocation_threads = allocation_threads;
5071 
5072 	return 1;
5073 }
5074 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5075 
5076 static unsigned int allowed_mems_nr(struct hstate *h)
5077 {
5078 	int node;
5079 	unsigned int nr = 0;
5080 	nodemask_t *mbind_nodemask;
5081 	unsigned int *array = h->free_huge_pages_node;
5082 	gfp_t gfp_mask = htlb_alloc_mask(h);
5083 
5084 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5085 	for_each_node_mask(node, cpuset_current_mems_allowed) {
5086 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5087 			nr += array[node];
5088 	}
5089 
5090 	return nr;
5091 }
5092 
5093 #ifdef CONFIG_SYSCTL
5094 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5095 					  void *buffer, size_t *length,
5096 					  loff_t *ppos, unsigned long *out)
5097 {
5098 	struct ctl_table dup_table;
5099 
5100 	/*
5101 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5102 	 * can duplicate the @table and alter the duplicate of it.
5103 	 */
5104 	dup_table = *table;
5105 	dup_table.data = out;
5106 
5107 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5108 }
5109 
5110 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5111 			 const struct ctl_table *table, int write,
5112 			 void *buffer, size_t *length, loff_t *ppos)
5113 {
5114 	struct hstate *h = &default_hstate;
5115 	unsigned long tmp = h->max_huge_pages;
5116 	int ret;
5117 
5118 	if (!hugepages_supported())
5119 		return -EOPNOTSUPP;
5120 
5121 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5122 					     &tmp);
5123 	if (ret)
5124 		goto out;
5125 
5126 	if (write)
5127 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
5128 						  NUMA_NO_NODE, tmp, *length);
5129 out:
5130 	return ret;
5131 }
5132 
5133 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5134 			  void *buffer, size_t *length, loff_t *ppos)
5135 {
5136 
5137 	return hugetlb_sysctl_handler_common(false, table, write,
5138 							buffer, length, ppos);
5139 }
5140 
5141 #ifdef CONFIG_NUMA
5142 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5143 			  void *buffer, size_t *length, loff_t *ppos)
5144 {
5145 	return hugetlb_sysctl_handler_common(true, table, write,
5146 							buffer, length, ppos);
5147 }
5148 #endif /* CONFIG_NUMA */
5149 
5150 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5151 		void *buffer, size_t *length, loff_t *ppos)
5152 {
5153 	struct hstate *h = &default_hstate;
5154 	unsigned long tmp;
5155 	int ret;
5156 
5157 	if (!hugepages_supported())
5158 		return -EOPNOTSUPP;
5159 
5160 	tmp = h->nr_overcommit_huge_pages;
5161 
5162 	if (write && hstate_is_gigantic(h))
5163 		return -EINVAL;
5164 
5165 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5166 					     &tmp);
5167 	if (ret)
5168 		goto out;
5169 
5170 	if (write) {
5171 		spin_lock_irq(&hugetlb_lock);
5172 		h->nr_overcommit_huge_pages = tmp;
5173 		spin_unlock_irq(&hugetlb_lock);
5174 	}
5175 out:
5176 	return ret;
5177 }
5178 
5179 static const struct ctl_table hugetlb_table[] = {
5180 	{
5181 		.procname	= "nr_hugepages",
5182 		.data		= NULL,
5183 		.maxlen		= sizeof(unsigned long),
5184 		.mode		= 0644,
5185 		.proc_handler	= hugetlb_sysctl_handler,
5186 	},
5187 #ifdef CONFIG_NUMA
5188 	{
5189 		.procname       = "nr_hugepages_mempolicy",
5190 		.data           = NULL,
5191 		.maxlen         = sizeof(unsigned long),
5192 		.mode           = 0644,
5193 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5194 	},
5195 #endif
5196 	{
5197 		.procname	= "hugetlb_shm_group",
5198 		.data		= &sysctl_hugetlb_shm_group,
5199 		.maxlen		= sizeof(gid_t),
5200 		.mode		= 0644,
5201 		.proc_handler	= proc_dointvec,
5202 	},
5203 	{
5204 		.procname	= "nr_overcommit_hugepages",
5205 		.data		= NULL,
5206 		.maxlen		= sizeof(unsigned long),
5207 		.mode		= 0644,
5208 		.proc_handler	= hugetlb_overcommit_handler,
5209 	},
5210 };
5211 
5212 static void __init hugetlb_sysctl_init(void)
5213 {
5214 	register_sysctl_init("vm", hugetlb_table);
5215 }
5216 #endif /* CONFIG_SYSCTL */
5217 
5218 void hugetlb_report_meminfo(struct seq_file *m)
5219 {
5220 	struct hstate *h;
5221 	unsigned long total = 0;
5222 
5223 	if (!hugepages_supported())
5224 		return;
5225 
5226 	for_each_hstate(h) {
5227 		unsigned long count = h->nr_huge_pages;
5228 
5229 		total += huge_page_size(h) * count;
5230 
5231 		if (h == &default_hstate)
5232 			seq_printf(m,
5233 				   "HugePages_Total:   %5lu\n"
5234 				   "HugePages_Free:    %5lu\n"
5235 				   "HugePages_Rsvd:    %5lu\n"
5236 				   "HugePages_Surp:    %5lu\n"
5237 				   "Hugepagesize:   %8lu kB\n",
5238 				   count,
5239 				   h->free_huge_pages,
5240 				   h->resv_huge_pages,
5241 				   h->surplus_huge_pages,
5242 				   huge_page_size(h) / SZ_1K);
5243 	}
5244 
5245 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5246 }
5247 
5248 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5249 {
5250 	struct hstate *h = &default_hstate;
5251 
5252 	if (!hugepages_supported())
5253 		return 0;
5254 
5255 	return sysfs_emit_at(buf, len,
5256 			     "Node %d HugePages_Total: %5u\n"
5257 			     "Node %d HugePages_Free:  %5u\n"
5258 			     "Node %d HugePages_Surp:  %5u\n",
5259 			     nid, h->nr_huge_pages_node[nid],
5260 			     nid, h->free_huge_pages_node[nid],
5261 			     nid, h->surplus_huge_pages_node[nid]);
5262 }
5263 
5264 void hugetlb_show_meminfo_node(int nid)
5265 {
5266 	struct hstate *h;
5267 
5268 	if (!hugepages_supported())
5269 		return;
5270 
5271 	for_each_hstate(h)
5272 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5273 			nid,
5274 			h->nr_huge_pages_node[nid],
5275 			h->free_huge_pages_node[nid],
5276 			h->surplus_huge_pages_node[nid],
5277 			huge_page_size(h) / SZ_1K);
5278 }
5279 
5280 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5281 {
5282 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5283 		   K(atomic_long_read(&mm->hugetlb_usage)));
5284 }
5285 
5286 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5287 unsigned long hugetlb_total_pages(void)
5288 {
5289 	struct hstate *h;
5290 	unsigned long nr_total_pages = 0;
5291 
5292 	for_each_hstate(h)
5293 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5294 	return nr_total_pages;
5295 }
5296 
5297 static int hugetlb_acct_memory(struct hstate *h, long delta)
5298 {
5299 	int ret = -ENOMEM;
5300 
5301 	if (!delta)
5302 		return 0;
5303 
5304 	spin_lock_irq(&hugetlb_lock);
5305 	/*
5306 	 * When cpuset is configured, it breaks the strict hugetlb page
5307 	 * reservation as the accounting is done on a global variable. Such
5308 	 * reservation is completely rubbish in the presence of cpuset because
5309 	 * the reservation is not checked against page availability for the
5310 	 * current cpuset. Application can still potentially OOM'ed by kernel
5311 	 * with lack of free htlb page in cpuset that the task is in.
5312 	 * Attempt to enforce strict accounting with cpuset is almost
5313 	 * impossible (or too ugly) because cpuset is too fluid that
5314 	 * task or memory node can be dynamically moved between cpusets.
5315 	 *
5316 	 * The change of semantics for shared hugetlb mapping with cpuset is
5317 	 * undesirable. However, in order to preserve some of the semantics,
5318 	 * we fall back to check against current free page availability as
5319 	 * a best attempt and hopefully to minimize the impact of changing
5320 	 * semantics that cpuset has.
5321 	 *
5322 	 * Apart from cpuset, we also have memory policy mechanism that
5323 	 * also determines from which node the kernel will allocate memory
5324 	 * in a NUMA system. So similar to cpuset, we also should consider
5325 	 * the memory policy of the current task. Similar to the description
5326 	 * above.
5327 	 */
5328 	if (delta > 0) {
5329 		if (gather_surplus_pages(h, delta) < 0)
5330 			goto out;
5331 
5332 		if (delta > allowed_mems_nr(h)) {
5333 			return_unused_surplus_pages(h, delta);
5334 			goto out;
5335 		}
5336 	}
5337 
5338 	ret = 0;
5339 	if (delta < 0)
5340 		return_unused_surplus_pages(h, (unsigned long) -delta);
5341 
5342 out:
5343 	spin_unlock_irq(&hugetlb_lock);
5344 	return ret;
5345 }
5346 
5347 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5348 {
5349 	struct resv_map *resv = vma_resv_map(vma);
5350 
5351 	/*
5352 	 * HPAGE_RESV_OWNER indicates a private mapping.
5353 	 * This new VMA should share its siblings reservation map if present.
5354 	 * The VMA will only ever have a valid reservation map pointer where
5355 	 * it is being copied for another still existing VMA.  As that VMA
5356 	 * has a reference to the reservation map it cannot disappear until
5357 	 * after this open call completes.  It is therefore safe to take a
5358 	 * new reference here without additional locking.
5359 	 */
5360 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5361 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5362 		kref_get(&resv->refs);
5363 	}
5364 
5365 	/*
5366 	 * vma_lock structure for sharable mappings is vma specific.
5367 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5368 	 * new structure.  Before clearing, make sure vma_lock is not
5369 	 * for this vma.
5370 	 */
5371 	if (vma->vm_flags & VM_MAYSHARE) {
5372 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5373 
5374 		if (vma_lock) {
5375 			if (vma_lock->vma != vma) {
5376 				vma->vm_private_data = NULL;
5377 				hugetlb_vma_lock_alloc(vma);
5378 			} else
5379 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5380 		} else
5381 			hugetlb_vma_lock_alloc(vma);
5382 	}
5383 }
5384 
5385 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5386 {
5387 	struct hstate *h = hstate_vma(vma);
5388 	struct resv_map *resv;
5389 	struct hugepage_subpool *spool = subpool_vma(vma);
5390 	unsigned long reserve, start, end;
5391 	long gbl_reserve;
5392 
5393 	hugetlb_vma_lock_free(vma);
5394 
5395 	resv = vma_resv_map(vma);
5396 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5397 		return;
5398 
5399 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5400 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5401 
5402 	reserve = (end - start) - region_count(resv, start, end);
5403 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5404 	if (reserve) {
5405 		/*
5406 		 * Decrement reserve counts.  The global reserve count may be
5407 		 * adjusted if the subpool has a minimum size.
5408 		 */
5409 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5410 		hugetlb_acct_memory(h, -gbl_reserve);
5411 	}
5412 
5413 	kref_put(&resv->refs, resv_map_release);
5414 }
5415 
5416 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5417 {
5418 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5419 		return -EINVAL;
5420 
5421 	/*
5422 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5423 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5424 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5425 	 */
5426 	if (addr & ~PUD_MASK) {
5427 		/*
5428 		 * hugetlb_vm_op_split is called right before we attempt to
5429 		 * split the VMA. We will need to unshare PMDs in the old and
5430 		 * new VMAs, so let's unshare before we split.
5431 		 */
5432 		unsigned long floor = addr & PUD_MASK;
5433 		unsigned long ceil = floor + PUD_SIZE;
5434 
5435 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5436 			hugetlb_unshare_pmds(vma, floor, ceil);
5437 	}
5438 
5439 	return 0;
5440 }
5441 
5442 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5443 {
5444 	return huge_page_size(hstate_vma(vma));
5445 }
5446 
5447 /*
5448  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5449  * handle_mm_fault() to try to instantiate regular-sized pages in the
5450  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5451  * this far.
5452  */
5453 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5454 {
5455 	BUG();
5456 	return 0;
5457 }
5458 
5459 /*
5460  * When a new function is introduced to vm_operations_struct and added
5461  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5462  * This is because under System V memory model, mappings created via
5463  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5464  * their original vm_ops are overwritten with shm_vm_ops.
5465  */
5466 const struct vm_operations_struct hugetlb_vm_ops = {
5467 	.fault = hugetlb_vm_op_fault,
5468 	.open = hugetlb_vm_op_open,
5469 	.close = hugetlb_vm_op_close,
5470 	.may_split = hugetlb_vm_op_split,
5471 	.pagesize = hugetlb_vm_op_pagesize,
5472 };
5473 
5474 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
5475 		bool try_mkwrite)
5476 {
5477 	pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
5478 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5479 
5480 	if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5481 		entry = pte_mkwrite_novma(pte_mkdirty(entry));
5482 	} else {
5483 		entry = pte_wrprotect(entry);
5484 	}
5485 	entry = pte_mkyoung(entry);
5486 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5487 
5488 	return entry;
5489 }
5490 
5491 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5492 				   unsigned long address, pte_t *ptep)
5493 {
5494 	pte_t entry;
5495 
5496 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5497 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5498 		update_mmu_cache(vma, address, ptep);
5499 }
5500 
5501 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5502 					 unsigned long address, pte_t *ptep)
5503 {
5504 	if (vma->vm_flags & VM_WRITE)
5505 		set_huge_ptep_writable(vma, address, ptep);
5506 }
5507 
5508 bool is_hugetlb_entry_migration(pte_t pte)
5509 {
5510 	swp_entry_t swp;
5511 
5512 	if (huge_pte_none(pte) || pte_present(pte))
5513 		return false;
5514 	swp = pte_to_swp_entry(pte);
5515 	if (is_migration_entry(swp))
5516 		return true;
5517 	else
5518 		return false;
5519 }
5520 
5521 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5522 {
5523 	swp_entry_t swp;
5524 
5525 	if (huge_pte_none(pte) || pte_present(pte))
5526 		return false;
5527 	swp = pte_to_swp_entry(pte);
5528 	if (is_hwpoison_entry(swp))
5529 		return true;
5530 	else
5531 		return false;
5532 }
5533 
5534 static void
5535 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5536 		      struct folio *new_folio, pte_t old, unsigned long sz)
5537 {
5538 	pte_t newpte = make_huge_pte(vma, new_folio, true);
5539 
5540 	__folio_mark_uptodate(new_folio);
5541 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5542 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5543 		newpte = huge_pte_mkuffd_wp(newpte);
5544 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5545 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5546 	folio_set_hugetlb_migratable(new_folio);
5547 }
5548 
5549 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5550 			    struct vm_area_struct *dst_vma,
5551 			    struct vm_area_struct *src_vma)
5552 {
5553 	pte_t *src_pte, *dst_pte, entry;
5554 	struct folio *pte_folio;
5555 	unsigned long addr;
5556 	bool cow = is_cow_mapping(src_vma->vm_flags);
5557 	struct hstate *h = hstate_vma(src_vma);
5558 	unsigned long sz = huge_page_size(h);
5559 	unsigned long npages = pages_per_huge_page(h);
5560 	struct mmu_notifier_range range;
5561 	unsigned long last_addr_mask;
5562 	int ret = 0;
5563 
5564 	if (cow) {
5565 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5566 					src_vma->vm_start,
5567 					src_vma->vm_end);
5568 		mmu_notifier_invalidate_range_start(&range);
5569 		vma_assert_write_locked(src_vma);
5570 		raw_write_seqcount_begin(&src->write_protect_seq);
5571 	} else {
5572 		/*
5573 		 * For shared mappings the vma lock must be held before
5574 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5575 		 * returned ptep could go away if part of a shared pmd and
5576 		 * another thread calls huge_pmd_unshare.
5577 		 */
5578 		hugetlb_vma_lock_read(src_vma);
5579 	}
5580 
5581 	last_addr_mask = hugetlb_mask_last_page(h);
5582 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5583 		spinlock_t *src_ptl, *dst_ptl;
5584 		src_pte = hugetlb_walk(src_vma, addr, sz);
5585 		if (!src_pte) {
5586 			addr |= last_addr_mask;
5587 			continue;
5588 		}
5589 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5590 		if (!dst_pte) {
5591 			ret = -ENOMEM;
5592 			break;
5593 		}
5594 
5595 		/*
5596 		 * If the pagetables are shared don't copy or take references.
5597 		 *
5598 		 * dst_pte == src_pte is the common case of src/dest sharing.
5599 		 * However, src could have 'unshared' and dst shares with
5600 		 * another vma. So page_count of ptep page is checked instead
5601 		 * to reliably determine whether pte is shared.
5602 		 */
5603 		if (page_count(virt_to_page(dst_pte)) > 1) {
5604 			addr |= last_addr_mask;
5605 			continue;
5606 		}
5607 
5608 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5609 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5610 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5611 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5612 again:
5613 		if (huge_pte_none(entry)) {
5614 			/*
5615 			 * Skip if src entry none.
5616 			 */
5617 			;
5618 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5619 			if (!userfaultfd_wp(dst_vma))
5620 				entry = huge_pte_clear_uffd_wp(entry);
5621 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5622 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5623 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5624 			bool uffd_wp = pte_swp_uffd_wp(entry);
5625 
5626 			if (!is_readable_migration_entry(swp_entry) && cow) {
5627 				/*
5628 				 * COW mappings require pages in both
5629 				 * parent and child to be set to read.
5630 				 */
5631 				swp_entry = make_readable_migration_entry(
5632 							swp_offset(swp_entry));
5633 				entry = swp_entry_to_pte(swp_entry);
5634 				if (userfaultfd_wp(src_vma) && uffd_wp)
5635 					entry = pte_swp_mkuffd_wp(entry);
5636 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5637 			}
5638 			if (!userfaultfd_wp(dst_vma))
5639 				entry = huge_pte_clear_uffd_wp(entry);
5640 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5641 		} else if (unlikely(is_pte_marker(entry))) {
5642 			pte_marker marker = copy_pte_marker(
5643 				pte_to_swp_entry(entry), dst_vma);
5644 
5645 			if (marker)
5646 				set_huge_pte_at(dst, addr, dst_pte,
5647 						make_pte_marker(marker), sz);
5648 		} else {
5649 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5650 			pte_folio = page_folio(pte_page(entry));
5651 			folio_get(pte_folio);
5652 
5653 			/*
5654 			 * Failing to duplicate the anon rmap is a rare case
5655 			 * where we see pinned hugetlb pages while they're
5656 			 * prone to COW. We need to do the COW earlier during
5657 			 * fork.
5658 			 *
5659 			 * When pre-allocating the page or copying data, we
5660 			 * need to be without the pgtable locks since we could
5661 			 * sleep during the process.
5662 			 */
5663 			if (!folio_test_anon(pte_folio)) {
5664 				hugetlb_add_file_rmap(pte_folio);
5665 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5666 				pte_t src_pte_old = entry;
5667 				struct folio *new_folio;
5668 
5669 				spin_unlock(src_ptl);
5670 				spin_unlock(dst_ptl);
5671 				/* Do not use reserve as it's private owned */
5672 				new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5673 				if (IS_ERR(new_folio)) {
5674 					folio_put(pte_folio);
5675 					ret = PTR_ERR(new_folio);
5676 					break;
5677 				}
5678 				ret = copy_user_large_folio(new_folio, pte_folio,
5679 							    addr, dst_vma);
5680 				folio_put(pte_folio);
5681 				if (ret) {
5682 					folio_put(new_folio);
5683 					break;
5684 				}
5685 
5686 				/* Install the new hugetlb folio if src pte stable */
5687 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5688 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5689 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5690 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5691 				if (!pte_same(src_pte_old, entry)) {
5692 					restore_reserve_on_error(h, dst_vma, addr,
5693 								new_folio);
5694 					folio_put(new_folio);
5695 					/* huge_ptep of dst_pte won't change as in child */
5696 					goto again;
5697 				}
5698 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5699 						      new_folio, src_pte_old, sz);
5700 				spin_unlock(src_ptl);
5701 				spin_unlock(dst_ptl);
5702 				continue;
5703 			}
5704 
5705 			if (cow) {
5706 				/*
5707 				 * No need to notify as we are downgrading page
5708 				 * table protection not changing it to point
5709 				 * to a new page.
5710 				 *
5711 				 * See Documentation/mm/mmu_notifier.rst
5712 				 */
5713 				huge_ptep_set_wrprotect(src, addr, src_pte);
5714 				entry = huge_pte_wrprotect(entry);
5715 			}
5716 
5717 			if (!userfaultfd_wp(dst_vma))
5718 				entry = huge_pte_clear_uffd_wp(entry);
5719 
5720 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5721 			hugetlb_count_add(npages, dst);
5722 		}
5723 		spin_unlock(src_ptl);
5724 		spin_unlock(dst_ptl);
5725 	}
5726 
5727 	if (cow) {
5728 		raw_write_seqcount_end(&src->write_protect_seq);
5729 		mmu_notifier_invalidate_range_end(&range);
5730 	} else {
5731 		hugetlb_vma_unlock_read(src_vma);
5732 	}
5733 
5734 	return ret;
5735 }
5736 
5737 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5738 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5739 			  unsigned long sz)
5740 {
5741 	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5742 	struct hstate *h = hstate_vma(vma);
5743 	struct mm_struct *mm = vma->vm_mm;
5744 	spinlock_t *src_ptl, *dst_ptl;
5745 	pte_t pte;
5746 
5747 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5748 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5749 
5750 	/*
5751 	 * We don't have to worry about the ordering of src and dst ptlocks
5752 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5753 	 */
5754 	if (src_ptl != dst_ptl)
5755 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5756 
5757 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5758 
5759 	if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5760 		huge_pte_clear(mm, new_addr, dst_pte, sz);
5761 	else {
5762 		if (need_clear_uffd_wp) {
5763 			if (pte_present(pte))
5764 				pte = huge_pte_clear_uffd_wp(pte);
5765 			else if (is_swap_pte(pte))
5766 				pte = pte_swp_clear_uffd_wp(pte);
5767 		}
5768 		set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5769 	}
5770 
5771 	if (src_ptl != dst_ptl)
5772 		spin_unlock(src_ptl);
5773 	spin_unlock(dst_ptl);
5774 }
5775 
5776 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5777 			     struct vm_area_struct *new_vma,
5778 			     unsigned long old_addr, unsigned long new_addr,
5779 			     unsigned long len)
5780 {
5781 	struct hstate *h = hstate_vma(vma);
5782 	struct address_space *mapping = vma->vm_file->f_mapping;
5783 	unsigned long sz = huge_page_size(h);
5784 	struct mm_struct *mm = vma->vm_mm;
5785 	unsigned long old_end = old_addr + len;
5786 	unsigned long last_addr_mask;
5787 	pte_t *src_pte, *dst_pte;
5788 	struct mmu_notifier_range range;
5789 	bool shared_pmd = false;
5790 
5791 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5792 				old_end);
5793 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5794 	/*
5795 	 * In case of shared PMDs, we should cover the maximum possible
5796 	 * range.
5797 	 */
5798 	flush_cache_range(vma, range.start, range.end);
5799 
5800 	mmu_notifier_invalidate_range_start(&range);
5801 	last_addr_mask = hugetlb_mask_last_page(h);
5802 	/* Prevent race with file truncation */
5803 	hugetlb_vma_lock_write(vma);
5804 	i_mmap_lock_write(mapping);
5805 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5806 		src_pte = hugetlb_walk(vma, old_addr, sz);
5807 		if (!src_pte) {
5808 			old_addr |= last_addr_mask;
5809 			new_addr |= last_addr_mask;
5810 			continue;
5811 		}
5812 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5813 			continue;
5814 
5815 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5816 			shared_pmd = true;
5817 			old_addr |= last_addr_mask;
5818 			new_addr |= last_addr_mask;
5819 			continue;
5820 		}
5821 
5822 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5823 		if (!dst_pte)
5824 			break;
5825 
5826 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5827 	}
5828 
5829 	if (shared_pmd)
5830 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5831 	else
5832 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5833 	mmu_notifier_invalidate_range_end(&range);
5834 	i_mmap_unlock_write(mapping);
5835 	hugetlb_vma_unlock_write(vma);
5836 
5837 	return len + old_addr - old_end;
5838 }
5839 
5840 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5841 			    unsigned long start, unsigned long end,
5842 			    struct page *ref_page, zap_flags_t zap_flags)
5843 {
5844 	struct mm_struct *mm = vma->vm_mm;
5845 	unsigned long address;
5846 	pte_t *ptep;
5847 	pte_t pte;
5848 	spinlock_t *ptl;
5849 	struct page *page;
5850 	struct hstate *h = hstate_vma(vma);
5851 	unsigned long sz = huge_page_size(h);
5852 	bool adjust_reservation = false;
5853 	unsigned long last_addr_mask;
5854 	bool force_flush = false;
5855 
5856 	WARN_ON(!is_vm_hugetlb_page(vma));
5857 	BUG_ON(start & ~huge_page_mask(h));
5858 	BUG_ON(end & ~huge_page_mask(h));
5859 
5860 	/*
5861 	 * This is a hugetlb vma, all the pte entries should point
5862 	 * to huge page.
5863 	 */
5864 	tlb_change_page_size(tlb, sz);
5865 	tlb_start_vma(tlb, vma);
5866 
5867 	last_addr_mask = hugetlb_mask_last_page(h);
5868 	address = start;
5869 	for (; address < end; address += sz) {
5870 		ptep = hugetlb_walk(vma, address, sz);
5871 		if (!ptep) {
5872 			address |= last_addr_mask;
5873 			continue;
5874 		}
5875 
5876 		ptl = huge_pte_lock(h, mm, ptep);
5877 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5878 			spin_unlock(ptl);
5879 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5880 			force_flush = true;
5881 			address |= last_addr_mask;
5882 			continue;
5883 		}
5884 
5885 		pte = huge_ptep_get(mm, address, ptep);
5886 		if (huge_pte_none(pte)) {
5887 			spin_unlock(ptl);
5888 			continue;
5889 		}
5890 
5891 		/*
5892 		 * Migrating hugepage or HWPoisoned hugepage is already
5893 		 * unmapped and its refcount is dropped, so just clear pte here.
5894 		 */
5895 		if (unlikely(!pte_present(pte))) {
5896 			/*
5897 			 * If the pte was wr-protected by uffd-wp in any of the
5898 			 * swap forms, meanwhile the caller does not want to
5899 			 * drop the uffd-wp bit in this zap, then replace the
5900 			 * pte with a marker.
5901 			 */
5902 			if (pte_swp_uffd_wp_any(pte) &&
5903 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5904 				set_huge_pte_at(mm, address, ptep,
5905 						make_pte_marker(PTE_MARKER_UFFD_WP),
5906 						sz);
5907 			else
5908 				huge_pte_clear(mm, address, ptep, sz);
5909 			spin_unlock(ptl);
5910 			continue;
5911 		}
5912 
5913 		page = pte_page(pte);
5914 		/*
5915 		 * If a reference page is supplied, it is because a specific
5916 		 * page is being unmapped, not a range. Ensure the page we
5917 		 * are about to unmap is the actual page of interest.
5918 		 */
5919 		if (ref_page) {
5920 			if (page != ref_page) {
5921 				spin_unlock(ptl);
5922 				continue;
5923 			}
5924 			/*
5925 			 * Mark the VMA as having unmapped its page so that
5926 			 * future faults in this VMA will fail rather than
5927 			 * looking like data was lost
5928 			 */
5929 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5930 		}
5931 
5932 		pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5933 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5934 		if (huge_pte_dirty(pte))
5935 			set_page_dirty(page);
5936 		/* Leave a uffd-wp pte marker if needed */
5937 		if (huge_pte_uffd_wp(pte) &&
5938 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5939 			set_huge_pte_at(mm, address, ptep,
5940 					make_pte_marker(PTE_MARKER_UFFD_WP),
5941 					sz);
5942 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5943 		hugetlb_remove_rmap(page_folio(page));
5944 
5945 		/*
5946 		 * Restore the reservation for anonymous page, otherwise the
5947 		 * backing page could be stolen by someone.
5948 		 * If there we are freeing a surplus, do not set the restore
5949 		 * reservation bit.
5950 		 */
5951 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5952 		    folio_test_anon(page_folio(page))) {
5953 			folio_set_hugetlb_restore_reserve(page_folio(page));
5954 			/* Reservation to be adjusted after the spin lock */
5955 			adjust_reservation = true;
5956 		}
5957 
5958 		spin_unlock(ptl);
5959 
5960 		/*
5961 		 * Adjust the reservation for the region that will have the
5962 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5963 		 * resv->adds_in_progress if it succeeds. If this is not done,
5964 		 * do_exit() will not see it, and will keep the reservation
5965 		 * forever.
5966 		 */
5967 		if (adjust_reservation) {
5968 			int rc = vma_needs_reservation(h, vma, address);
5969 
5970 			if (rc < 0)
5971 				/* Pressumably allocate_file_region_entries failed
5972 				 * to allocate a file_region struct. Clear
5973 				 * hugetlb_restore_reserve so that global reserve
5974 				 * count will not be incremented by free_huge_folio.
5975 				 * Act as if we consumed the reservation.
5976 				 */
5977 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5978 			else if (rc)
5979 				vma_add_reservation(h, vma, address);
5980 		}
5981 
5982 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5983 		/*
5984 		 * Bail out after unmapping reference page if supplied
5985 		 */
5986 		if (ref_page)
5987 			break;
5988 	}
5989 	tlb_end_vma(tlb, vma);
5990 
5991 	/*
5992 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5993 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5994 	 * guaranteed that the last refernece would not be dropped. But we must
5995 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5996 	 * dropped and the last reference to the shared PMDs page might be
5997 	 * dropped as well.
5998 	 *
5999 	 * In theory we could defer the freeing of the PMD pages as well, but
6000 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6001 	 * detect sharing, so we cannot defer the release of the page either.
6002 	 * Instead, do flush now.
6003 	 */
6004 	if (force_flush)
6005 		tlb_flush_mmu_tlbonly(tlb);
6006 }
6007 
6008 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6009 			 unsigned long *start, unsigned long *end)
6010 {
6011 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
6012 		return;
6013 
6014 	adjust_range_if_pmd_sharing_possible(vma, start, end);
6015 	hugetlb_vma_lock_write(vma);
6016 	if (vma->vm_file)
6017 		i_mmap_lock_write(vma->vm_file->f_mapping);
6018 }
6019 
6020 void __hugetlb_zap_end(struct vm_area_struct *vma,
6021 		       struct zap_details *details)
6022 {
6023 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
6024 
6025 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
6026 		return;
6027 
6028 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
6029 		/*
6030 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6031 		 * When the vma_lock is freed, this makes the vma ineligible
6032 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
6033 		 * pmd sharing.  This is important as page tables for this
6034 		 * unmapped range will be asynchrously deleted.  If the page
6035 		 * tables are shared, there will be issues when accessed by
6036 		 * someone else.
6037 		 */
6038 		__hugetlb_vma_unlock_write_free(vma);
6039 	} else {
6040 		hugetlb_vma_unlock_write(vma);
6041 	}
6042 
6043 	if (vma->vm_file)
6044 		i_mmap_unlock_write(vma->vm_file->f_mapping);
6045 }
6046 
6047 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6048 			  unsigned long end, struct page *ref_page,
6049 			  zap_flags_t zap_flags)
6050 {
6051 	struct mmu_notifier_range range;
6052 	struct mmu_gather tlb;
6053 
6054 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6055 				start, end);
6056 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6057 	mmu_notifier_invalidate_range_start(&range);
6058 	tlb_gather_mmu(&tlb, vma->vm_mm);
6059 
6060 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
6061 
6062 	mmu_notifier_invalidate_range_end(&range);
6063 	tlb_finish_mmu(&tlb);
6064 }
6065 
6066 /*
6067  * This is called when the original mapper is failing to COW a MAP_PRIVATE
6068  * mapping it owns the reserve page for. The intention is to unmap the page
6069  * from other VMAs and let the children be SIGKILLed if they are faulting the
6070  * same region.
6071  */
6072 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6073 			      struct page *page, unsigned long address)
6074 {
6075 	struct hstate *h = hstate_vma(vma);
6076 	struct vm_area_struct *iter_vma;
6077 	struct address_space *mapping;
6078 	pgoff_t pgoff;
6079 
6080 	/*
6081 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6082 	 * from page cache lookup which is in HPAGE_SIZE units.
6083 	 */
6084 	address = address & huge_page_mask(h);
6085 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6086 			vma->vm_pgoff;
6087 	mapping = vma->vm_file->f_mapping;
6088 
6089 	/*
6090 	 * Take the mapping lock for the duration of the table walk. As
6091 	 * this mapping should be shared between all the VMAs,
6092 	 * __unmap_hugepage_range() is called as the lock is already held
6093 	 */
6094 	i_mmap_lock_write(mapping);
6095 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6096 		/* Do not unmap the current VMA */
6097 		if (iter_vma == vma)
6098 			continue;
6099 
6100 		/*
6101 		 * Shared VMAs have their own reserves and do not affect
6102 		 * MAP_PRIVATE accounting but it is possible that a shared
6103 		 * VMA is using the same page so check and skip such VMAs.
6104 		 */
6105 		if (iter_vma->vm_flags & VM_MAYSHARE)
6106 			continue;
6107 
6108 		/*
6109 		 * Unmap the page from other VMAs without their own reserves.
6110 		 * They get marked to be SIGKILLed if they fault in these
6111 		 * areas. This is because a future no-page fault on this VMA
6112 		 * could insert a zeroed page instead of the data existing
6113 		 * from the time of fork. This would look like data corruption
6114 		 */
6115 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6116 			unmap_hugepage_range(iter_vma, address,
6117 					     address + huge_page_size(h), page, 0);
6118 	}
6119 	i_mmap_unlock_write(mapping);
6120 }
6121 
6122 /*
6123  * hugetlb_wp() should be called with page lock of the original hugepage held.
6124  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6125  * cannot race with other handlers or page migration.
6126  * Keep the pte_same checks anyway to make transition from the mutex easier.
6127  */
6128 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6129 		       struct vm_fault *vmf)
6130 {
6131 	struct vm_area_struct *vma = vmf->vma;
6132 	struct mm_struct *mm = vma->vm_mm;
6133 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6134 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6135 	struct hstate *h = hstate_vma(vma);
6136 	struct folio *old_folio;
6137 	struct folio *new_folio;
6138 	bool cow_from_owner = 0;
6139 	vm_fault_t ret = 0;
6140 	struct mmu_notifier_range range;
6141 
6142 	/*
6143 	 * Never handle CoW for uffd-wp protected pages.  It should be only
6144 	 * handled when the uffd-wp protection is removed.
6145 	 *
6146 	 * Note that only the CoW optimization path (in hugetlb_no_page())
6147 	 * can trigger this, because hugetlb_fault() will always resolve
6148 	 * uffd-wp bit first.
6149 	 */
6150 	if (!unshare && huge_pte_uffd_wp(pte))
6151 		return 0;
6152 
6153 	/* Let's take out MAP_SHARED mappings first. */
6154 	if (vma->vm_flags & VM_MAYSHARE) {
6155 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6156 		return 0;
6157 	}
6158 
6159 	old_folio = page_folio(pte_page(pte));
6160 
6161 	delayacct_wpcopy_start();
6162 
6163 retry_avoidcopy:
6164 	/*
6165 	 * If no-one else is actually using this page, we're the exclusive
6166 	 * owner and can reuse this page.
6167 	 *
6168 	 * Note that we don't rely on the (safer) folio refcount here, because
6169 	 * copying the hugetlb folio when there are unexpected (temporary)
6170 	 * folio references could harm simple fork()+exit() users when
6171 	 * we run out of free hugetlb folios: we would have to kill processes
6172 	 * in scenarios that used to work. As a side effect, there can still
6173 	 * be leaks between processes, for example, with FOLL_GET users.
6174 	 */
6175 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6176 		if (!PageAnonExclusive(&old_folio->page)) {
6177 			folio_move_anon_rmap(old_folio, vma);
6178 			SetPageAnonExclusive(&old_folio->page);
6179 		}
6180 		if (likely(!unshare))
6181 			set_huge_ptep_maybe_writable(vma, vmf->address,
6182 						     vmf->pte);
6183 
6184 		delayacct_wpcopy_end();
6185 		return 0;
6186 	}
6187 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6188 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
6189 
6190 	/*
6191 	 * If the process that created a MAP_PRIVATE mapping is about to
6192 	 * perform a COW due to a shared page count, attempt to satisfy
6193 	 * the allocation without using the existing reserves. The pagecache
6194 	 * page is used to determine if the reserve at this address was
6195 	 * consumed or not. If reserves were used, a partial faulted mapping
6196 	 * at the time of fork() could consume its reserves on COW instead
6197 	 * of the full address range.
6198 	 */
6199 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6200 			old_folio != pagecache_folio)
6201 		cow_from_owner = true;
6202 
6203 	folio_get(old_folio);
6204 
6205 	/*
6206 	 * Drop page table lock as buddy allocator may be called. It will
6207 	 * be acquired again before returning to the caller, as expected.
6208 	 */
6209 	spin_unlock(vmf->ptl);
6210 	new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6211 
6212 	if (IS_ERR(new_folio)) {
6213 		/*
6214 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
6215 		 * it is due to references held by a child and an insufficient
6216 		 * huge page pool. To guarantee the original mappers
6217 		 * reliability, unmap the page from child processes. The child
6218 		 * may get SIGKILLed if it later faults.
6219 		 */
6220 		if (cow_from_owner) {
6221 			struct address_space *mapping = vma->vm_file->f_mapping;
6222 			pgoff_t idx;
6223 			u32 hash;
6224 
6225 			folio_put(old_folio);
6226 			/*
6227 			 * Drop hugetlb_fault_mutex and vma_lock before
6228 			 * unmapping.  unmapping needs to hold vma_lock
6229 			 * in write mode.  Dropping vma_lock in read mode
6230 			 * here is OK as COW mappings do not interact with
6231 			 * PMD sharing.
6232 			 *
6233 			 * Reacquire both after unmap operation.
6234 			 */
6235 			idx = vma_hugecache_offset(h, vma, vmf->address);
6236 			hash = hugetlb_fault_mutex_hash(mapping, idx);
6237 			hugetlb_vma_unlock_read(vma);
6238 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6239 
6240 			unmap_ref_private(mm, vma, &old_folio->page,
6241 					vmf->address);
6242 
6243 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
6244 			hugetlb_vma_lock_read(vma);
6245 			spin_lock(vmf->ptl);
6246 			vmf->pte = hugetlb_walk(vma, vmf->address,
6247 					huge_page_size(h));
6248 			if (likely(vmf->pte &&
6249 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6250 				goto retry_avoidcopy;
6251 			/*
6252 			 * race occurs while re-acquiring page table
6253 			 * lock, and our job is done.
6254 			 */
6255 			delayacct_wpcopy_end();
6256 			return 0;
6257 		}
6258 
6259 		ret = vmf_error(PTR_ERR(new_folio));
6260 		goto out_release_old;
6261 	}
6262 
6263 	/*
6264 	 * When the original hugepage is shared one, it does not have
6265 	 * anon_vma prepared.
6266 	 */
6267 	ret = __vmf_anon_prepare(vmf);
6268 	if (unlikely(ret))
6269 		goto out_release_all;
6270 
6271 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6272 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6273 		goto out_release_all;
6274 	}
6275 	__folio_mark_uptodate(new_folio);
6276 
6277 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6278 				vmf->address + huge_page_size(h));
6279 	mmu_notifier_invalidate_range_start(&range);
6280 
6281 	/*
6282 	 * Retake the page table lock to check for racing updates
6283 	 * before the page tables are altered
6284 	 */
6285 	spin_lock(vmf->ptl);
6286 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6287 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6288 		pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
6289 
6290 		/* Break COW or unshare */
6291 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6292 		hugetlb_remove_rmap(old_folio);
6293 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6294 		if (huge_pte_uffd_wp(pte))
6295 			newpte = huge_pte_mkuffd_wp(newpte);
6296 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6297 				huge_page_size(h));
6298 		folio_set_hugetlb_migratable(new_folio);
6299 		/* Make the old page be freed below */
6300 		new_folio = old_folio;
6301 	}
6302 	spin_unlock(vmf->ptl);
6303 	mmu_notifier_invalidate_range_end(&range);
6304 out_release_all:
6305 	/*
6306 	 * No restore in case of successful pagetable update (Break COW or
6307 	 * unshare)
6308 	 */
6309 	if (new_folio != old_folio)
6310 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
6311 	folio_put(new_folio);
6312 out_release_old:
6313 	folio_put(old_folio);
6314 
6315 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
6316 
6317 	delayacct_wpcopy_end();
6318 	return ret;
6319 }
6320 
6321 /*
6322  * Return whether there is a pagecache page to back given address within VMA.
6323  */
6324 bool hugetlbfs_pagecache_present(struct hstate *h,
6325 				 struct vm_area_struct *vma, unsigned long address)
6326 {
6327 	struct address_space *mapping = vma->vm_file->f_mapping;
6328 	pgoff_t idx = linear_page_index(vma, address);
6329 	struct folio *folio;
6330 
6331 	folio = filemap_get_folio(mapping, idx);
6332 	if (IS_ERR(folio))
6333 		return false;
6334 	folio_put(folio);
6335 	return true;
6336 }
6337 
6338 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6339 			   pgoff_t idx)
6340 {
6341 	struct inode *inode = mapping->host;
6342 	struct hstate *h = hstate_inode(inode);
6343 	int err;
6344 
6345 	idx <<= huge_page_order(h);
6346 	__folio_set_locked(folio);
6347 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6348 
6349 	if (unlikely(err)) {
6350 		__folio_clear_locked(folio);
6351 		return err;
6352 	}
6353 	folio_clear_hugetlb_restore_reserve(folio);
6354 
6355 	/*
6356 	 * mark folio dirty so that it will not be removed from cache/file
6357 	 * by non-hugetlbfs specific code paths.
6358 	 */
6359 	folio_mark_dirty(folio);
6360 
6361 	spin_lock(&inode->i_lock);
6362 	inode->i_blocks += blocks_per_huge_page(h);
6363 	spin_unlock(&inode->i_lock);
6364 	return 0;
6365 }
6366 
6367 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6368 						  struct address_space *mapping,
6369 						  unsigned long reason)
6370 {
6371 	u32 hash;
6372 
6373 	/*
6374 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6375 	 * userfault. Also mmap_lock could be dropped due to handling
6376 	 * userfault, any vma operation should be careful from here.
6377 	 */
6378 	hugetlb_vma_unlock_read(vmf->vma);
6379 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6380 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6381 	return handle_userfault(vmf, reason);
6382 }
6383 
6384 /*
6385  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6386  * false if pte changed or is changing.
6387  */
6388 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6389 			       pte_t *ptep, pte_t old_pte)
6390 {
6391 	spinlock_t *ptl;
6392 	bool same;
6393 
6394 	ptl = huge_pte_lock(h, mm, ptep);
6395 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6396 	spin_unlock(ptl);
6397 
6398 	return same;
6399 }
6400 
6401 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6402 			struct vm_fault *vmf)
6403 {
6404 	struct vm_area_struct *vma = vmf->vma;
6405 	struct mm_struct *mm = vma->vm_mm;
6406 	struct hstate *h = hstate_vma(vma);
6407 	vm_fault_t ret = VM_FAULT_SIGBUS;
6408 	int anon_rmap = 0;
6409 	unsigned long size;
6410 	struct folio *folio;
6411 	pte_t new_pte;
6412 	bool new_folio, new_pagecache_folio = false;
6413 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6414 
6415 	/*
6416 	 * Currently, we are forced to kill the process in the event the
6417 	 * original mapper has unmapped pages from the child due to a failed
6418 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6419 	 * be obvious.
6420 	 */
6421 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6422 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6423 			   current->pid);
6424 		goto out;
6425 	}
6426 
6427 	/*
6428 	 * Use page lock to guard against racing truncation
6429 	 * before we get page_table_lock.
6430 	 */
6431 	new_folio = false;
6432 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6433 	if (IS_ERR(folio)) {
6434 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6435 		if (vmf->pgoff >= size)
6436 			goto out;
6437 		/* Check for page in userfault range */
6438 		if (userfaultfd_missing(vma)) {
6439 			/*
6440 			 * Since hugetlb_no_page() was examining pte
6441 			 * without pgtable lock, we need to re-test under
6442 			 * lock because the pte may not be stable and could
6443 			 * have changed from under us.  Try to detect
6444 			 * either changed or during-changing ptes and retry
6445 			 * properly when needed.
6446 			 *
6447 			 * Note that userfaultfd is actually fine with
6448 			 * false positives (e.g. caused by pte changed),
6449 			 * but not wrong logical events (e.g. caused by
6450 			 * reading a pte during changing).  The latter can
6451 			 * confuse the userspace, so the strictness is very
6452 			 * much preferred.  E.g., MISSING event should
6453 			 * never happen on the page after UFFDIO_COPY has
6454 			 * correctly installed the page and returned.
6455 			 */
6456 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6457 				ret = 0;
6458 				goto out;
6459 			}
6460 
6461 			return hugetlb_handle_userfault(vmf, mapping,
6462 							VM_UFFD_MISSING);
6463 		}
6464 
6465 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6466 			ret = __vmf_anon_prepare(vmf);
6467 			if (unlikely(ret))
6468 				goto out;
6469 		}
6470 
6471 		folio = alloc_hugetlb_folio(vma, vmf->address, false);
6472 		if (IS_ERR(folio)) {
6473 			/*
6474 			 * Returning error will result in faulting task being
6475 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6476 			 * tasks from racing to fault in the same page which
6477 			 * could result in false unable to allocate errors.
6478 			 * Page migration does not take the fault mutex, but
6479 			 * does a clear then write of pte's under page table
6480 			 * lock.  Page fault code could race with migration,
6481 			 * notice the clear pte and try to allocate a page
6482 			 * here.  Before returning error, get ptl and make
6483 			 * sure there really is no pte entry.
6484 			 */
6485 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6486 				ret = vmf_error(PTR_ERR(folio));
6487 			else
6488 				ret = 0;
6489 			goto out;
6490 		}
6491 		folio_zero_user(folio, vmf->real_address);
6492 		__folio_mark_uptodate(folio);
6493 		new_folio = true;
6494 
6495 		if (vma->vm_flags & VM_MAYSHARE) {
6496 			int err = hugetlb_add_to_page_cache(folio, mapping,
6497 							vmf->pgoff);
6498 			if (err) {
6499 				/*
6500 				 * err can't be -EEXIST which implies someone
6501 				 * else consumed the reservation since hugetlb
6502 				 * fault mutex is held when add a hugetlb page
6503 				 * to the page cache. So it's safe to call
6504 				 * restore_reserve_on_error() here.
6505 				 */
6506 				restore_reserve_on_error(h, vma, vmf->address,
6507 							folio);
6508 				folio_put(folio);
6509 				ret = VM_FAULT_SIGBUS;
6510 				goto out;
6511 			}
6512 			new_pagecache_folio = true;
6513 		} else {
6514 			folio_lock(folio);
6515 			anon_rmap = 1;
6516 		}
6517 	} else {
6518 		/*
6519 		 * If memory error occurs between mmap() and fault, some process
6520 		 * don't have hwpoisoned swap entry for errored virtual address.
6521 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6522 		 */
6523 		if (unlikely(folio_test_hwpoison(folio))) {
6524 			ret = VM_FAULT_HWPOISON_LARGE |
6525 				VM_FAULT_SET_HINDEX(hstate_index(h));
6526 			goto backout_unlocked;
6527 		}
6528 
6529 		/* Check for page in userfault range. */
6530 		if (userfaultfd_minor(vma)) {
6531 			folio_unlock(folio);
6532 			folio_put(folio);
6533 			/* See comment in userfaultfd_missing() block above */
6534 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6535 				ret = 0;
6536 				goto out;
6537 			}
6538 			return hugetlb_handle_userfault(vmf, mapping,
6539 							VM_UFFD_MINOR);
6540 		}
6541 	}
6542 
6543 	/*
6544 	 * If we are going to COW a private mapping later, we examine the
6545 	 * pending reservations for this page now. This will ensure that
6546 	 * any allocations necessary to record that reservation occur outside
6547 	 * the spinlock.
6548 	 */
6549 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6550 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6551 			ret = VM_FAULT_OOM;
6552 			goto backout_unlocked;
6553 		}
6554 		/* Just decrements count, does not deallocate */
6555 		vma_end_reservation(h, vma, vmf->address);
6556 	}
6557 
6558 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6559 	ret = 0;
6560 	/* If pte changed from under us, retry */
6561 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6562 		goto backout;
6563 
6564 	if (anon_rmap)
6565 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6566 	else
6567 		hugetlb_add_file_rmap(folio);
6568 	new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
6569 	/*
6570 	 * If this pte was previously wr-protected, keep it wr-protected even
6571 	 * if populated.
6572 	 */
6573 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6574 		new_pte = huge_pte_mkuffd_wp(new_pte);
6575 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6576 
6577 	hugetlb_count_add(pages_per_huge_page(h), mm);
6578 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6579 		/* Optimization, do the COW without a second fault */
6580 		ret = hugetlb_wp(folio, vmf);
6581 	}
6582 
6583 	spin_unlock(vmf->ptl);
6584 
6585 	/*
6586 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6587 	 * found in the pagecache may not have hugetlb_migratable if they have
6588 	 * been isolated for migration.
6589 	 */
6590 	if (new_folio)
6591 		folio_set_hugetlb_migratable(folio);
6592 
6593 	folio_unlock(folio);
6594 out:
6595 	hugetlb_vma_unlock_read(vma);
6596 
6597 	/*
6598 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6599 	 * the only way ret can be set to VM_FAULT_RETRY.
6600 	 */
6601 	if (unlikely(ret & VM_FAULT_RETRY))
6602 		vma_end_read(vma);
6603 
6604 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6605 	return ret;
6606 
6607 backout:
6608 	spin_unlock(vmf->ptl);
6609 backout_unlocked:
6610 	if (new_folio && !new_pagecache_folio)
6611 		restore_reserve_on_error(h, vma, vmf->address, folio);
6612 
6613 	folio_unlock(folio);
6614 	folio_put(folio);
6615 	goto out;
6616 }
6617 
6618 #ifdef CONFIG_SMP
6619 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6620 {
6621 	unsigned long key[2];
6622 	u32 hash;
6623 
6624 	key[0] = (unsigned long) mapping;
6625 	key[1] = idx;
6626 
6627 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6628 
6629 	return hash & (num_fault_mutexes - 1);
6630 }
6631 #else
6632 /*
6633  * For uniprocessor systems we always use a single mutex, so just
6634  * return 0 and avoid the hashing overhead.
6635  */
6636 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6637 {
6638 	return 0;
6639 }
6640 #endif
6641 
6642 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6643 			unsigned long address, unsigned int flags)
6644 {
6645 	vm_fault_t ret;
6646 	u32 hash;
6647 	struct folio *folio = NULL;
6648 	struct folio *pagecache_folio = NULL;
6649 	struct hstate *h = hstate_vma(vma);
6650 	struct address_space *mapping;
6651 	int need_wait_lock = 0;
6652 	struct vm_fault vmf = {
6653 		.vma = vma,
6654 		.address = address & huge_page_mask(h),
6655 		.real_address = address,
6656 		.flags = flags,
6657 		.pgoff = vma_hugecache_offset(h, vma,
6658 				address & huge_page_mask(h)),
6659 		/* TODO: Track hugetlb faults using vm_fault */
6660 
6661 		/*
6662 		 * Some fields may not be initialized, be careful as it may
6663 		 * be hard to debug if called functions make assumptions
6664 		 */
6665 	};
6666 
6667 	/*
6668 	 * Serialize hugepage allocation and instantiation, so that we don't
6669 	 * get spurious allocation failures if two CPUs race to instantiate
6670 	 * the same page in the page cache.
6671 	 */
6672 	mapping = vma->vm_file->f_mapping;
6673 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6674 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6675 
6676 	/*
6677 	 * Acquire vma lock before calling huge_pte_alloc and hold
6678 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6679 	 * being called elsewhere and making the vmf.pte no longer valid.
6680 	 */
6681 	hugetlb_vma_lock_read(vma);
6682 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6683 	if (!vmf.pte) {
6684 		hugetlb_vma_unlock_read(vma);
6685 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6686 		return VM_FAULT_OOM;
6687 	}
6688 
6689 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6690 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6691 		if (is_pte_marker(vmf.orig_pte)) {
6692 			pte_marker marker =
6693 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6694 
6695 			if (marker & PTE_MARKER_POISONED) {
6696 				ret = VM_FAULT_HWPOISON_LARGE |
6697 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6698 				goto out_mutex;
6699 			} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6700 				/* This isn't supported in hugetlb. */
6701 				ret = VM_FAULT_SIGSEGV;
6702 				goto out_mutex;
6703 			}
6704 		}
6705 
6706 		/*
6707 		 * Other PTE markers should be handled the same way as none PTE.
6708 		 *
6709 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6710 		 * mutex internally, which make us return immediately.
6711 		 */
6712 		return hugetlb_no_page(mapping, &vmf);
6713 	}
6714 
6715 	ret = 0;
6716 
6717 	/*
6718 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6719 	 * point, so this check prevents the kernel from going below assuming
6720 	 * that we have an active hugepage in pagecache. This goto expects
6721 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6722 	 * check will properly handle it.
6723 	 */
6724 	if (!pte_present(vmf.orig_pte)) {
6725 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6726 			/*
6727 			 * Release the hugetlb fault lock now, but retain
6728 			 * the vma lock, because it is needed to guard the
6729 			 * huge_pte_lockptr() later in
6730 			 * migration_entry_wait_huge(). The vma lock will
6731 			 * be released there.
6732 			 */
6733 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6734 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6735 			return 0;
6736 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6737 			ret = VM_FAULT_HWPOISON_LARGE |
6738 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6739 		goto out_mutex;
6740 	}
6741 
6742 	/*
6743 	 * If we are going to COW/unshare the mapping later, we examine the
6744 	 * pending reservations for this page now. This will ensure that any
6745 	 * allocations necessary to record that reservation occur outside the
6746 	 * spinlock. Also lookup the pagecache page now as it is used to
6747 	 * determine if a reservation has been consumed.
6748 	 */
6749 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6750 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6751 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6752 			ret = VM_FAULT_OOM;
6753 			goto out_mutex;
6754 		}
6755 		/* Just decrements count, does not deallocate */
6756 		vma_end_reservation(h, vma, vmf.address);
6757 
6758 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6759 							     vmf.pgoff);
6760 		if (IS_ERR(pagecache_folio))
6761 			pagecache_folio = NULL;
6762 	}
6763 
6764 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6765 
6766 	/* Check for a racing update before calling hugetlb_wp() */
6767 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6768 		goto out_ptl;
6769 
6770 	/* Handle userfault-wp first, before trying to lock more pages */
6771 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6772 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6773 		if (!userfaultfd_wp_async(vma)) {
6774 			spin_unlock(vmf.ptl);
6775 			if (pagecache_folio) {
6776 				folio_unlock(pagecache_folio);
6777 				folio_put(pagecache_folio);
6778 			}
6779 			hugetlb_vma_unlock_read(vma);
6780 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6781 			return handle_userfault(&vmf, VM_UFFD_WP);
6782 		}
6783 
6784 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6785 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6786 				huge_page_size(hstate_vma(vma)));
6787 		/* Fallthrough to CoW */
6788 	}
6789 
6790 	/*
6791 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6792 	 * pagecache_folio, so here we need take the former one
6793 	 * when folio != pagecache_folio or !pagecache_folio.
6794 	 */
6795 	folio = page_folio(pte_page(vmf.orig_pte));
6796 	if (folio != pagecache_folio)
6797 		if (!folio_trylock(folio)) {
6798 			need_wait_lock = 1;
6799 			goto out_ptl;
6800 		}
6801 
6802 	folio_get(folio);
6803 
6804 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6805 		if (!huge_pte_write(vmf.orig_pte)) {
6806 			ret = hugetlb_wp(pagecache_folio, &vmf);
6807 			goto out_put_page;
6808 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6809 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6810 		}
6811 	}
6812 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6813 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6814 						flags & FAULT_FLAG_WRITE))
6815 		update_mmu_cache(vma, vmf.address, vmf.pte);
6816 out_put_page:
6817 	if (folio != pagecache_folio)
6818 		folio_unlock(folio);
6819 	folio_put(folio);
6820 out_ptl:
6821 	spin_unlock(vmf.ptl);
6822 
6823 	if (pagecache_folio) {
6824 		folio_unlock(pagecache_folio);
6825 		folio_put(pagecache_folio);
6826 	}
6827 out_mutex:
6828 	hugetlb_vma_unlock_read(vma);
6829 
6830 	/*
6831 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6832 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6833 	 */
6834 	if (unlikely(ret & VM_FAULT_RETRY))
6835 		vma_end_read(vma);
6836 
6837 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6838 	/*
6839 	 * Generally it's safe to hold refcount during waiting page lock. But
6840 	 * here we just wait to defer the next page fault to avoid busy loop and
6841 	 * the page is not used after unlocked before returning from the current
6842 	 * page fault. So we are safe from accessing freed page, even if we wait
6843 	 * here without taking refcount.
6844 	 */
6845 	if (need_wait_lock)
6846 		folio_wait_locked(folio);
6847 	return ret;
6848 }
6849 
6850 #ifdef CONFIG_USERFAULTFD
6851 /*
6852  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6853  */
6854 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6855 		struct vm_area_struct *vma, unsigned long address)
6856 {
6857 	struct mempolicy *mpol;
6858 	nodemask_t *nodemask;
6859 	struct folio *folio;
6860 	gfp_t gfp_mask;
6861 	int node;
6862 
6863 	gfp_mask = htlb_alloc_mask(h);
6864 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6865 	/*
6866 	 * This is used to allocate a temporary hugetlb to hold the copied
6867 	 * content, which will then be copied again to the final hugetlb
6868 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6869 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6870 	 */
6871 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6872 	mpol_cond_put(mpol);
6873 
6874 	return folio;
6875 }
6876 
6877 /*
6878  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6879  * with modifications for hugetlb pages.
6880  */
6881 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6882 			     struct vm_area_struct *dst_vma,
6883 			     unsigned long dst_addr,
6884 			     unsigned long src_addr,
6885 			     uffd_flags_t flags,
6886 			     struct folio **foliop)
6887 {
6888 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6889 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6890 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6891 	struct hstate *h = hstate_vma(dst_vma);
6892 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6893 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6894 	unsigned long size = huge_page_size(h);
6895 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6896 	pte_t _dst_pte;
6897 	spinlock_t *ptl;
6898 	int ret = -ENOMEM;
6899 	struct folio *folio;
6900 	bool folio_in_pagecache = false;
6901 
6902 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6903 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6904 
6905 		/* Don't overwrite any existing PTEs (even markers) */
6906 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6907 			spin_unlock(ptl);
6908 			return -EEXIST;
6909 		}
6910 
6911 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6912 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6913 
6914 		/* No need to invalidate - it was non-present before */
6915 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6916 
6917 		spin_unlock(ptl);
6918 		return 0;
6919 	}
6920 
6921 	if (is_continue) {
6922 		ret = -EFAULT;
6923 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6924 		if (IS_ERR(folio))
6925 			goto out;
6926 		folio_in_pagecache = true;
6927 	} else if (!*foliop) {
6928 		/* If a folio already exists, then it's UFFDIO_COPY for
6929 		 * a non-missing case. Return -EEXIST.
6930 		 */
6931 		if (vm_shared &&
6932 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6933 			ret = -EEXIST;
6934 			goto out;
6935 		}
6936 
6937 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6938 		if (IS_ERR(folio)) {
6939 			ret = -ENOMEM;
6940 			goto out;
6941 		}
6942 
6943 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6944 					   false);
6945 
6946 		/* fallback to copy_from_user outside mmap_lock */
6947 		if (unlikely(ret)) {
6948 			ret = -ENOENT;
6949 			/* Free the allocated folio which may have
6950 			 * consumed a reservation.
6951 			 */
6952 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6953 			folio_put(folio);
6954 
6955 			/* Allocate a temporary folio to hold the copied
6956 			 * contents.
6957 			 */
6958 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6959 			if (!folio) {
6960 				ret = -ENOMEM;
6961 				goto out;
6962 			}
6963 			*foliop = folio;
6964 			/* Set the outparam foliop and return to the caller to
6965 			 * copy the contents outside the lock. Don't free the
6966 			 * folio.
6967 			 */
6968 			goto out;
6969 		}
6970 	} else {
6971 		if (vm_shared &&
6972 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6973 			folio_put(*foliop);
6974 			ret = -EEXIST;
6975 			*foliop = NULL;
6976 			goto out;
6977 		}
6978 
6979 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6980 		if (IS_ERR(folio)) {
6981 			folio_put(*foliop);
6982 			ret = -ENOMEM;
6983 			*foliop = NULL;
6984 			goto out;
6985 		}
6986 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6987 		folio_put(*foliop);
6988 		*foliop = NULL;
6989 		if (ret) {
6990 			folio_put(folio);
6991 			goto out;
6992 		}
6993 	}
6994 
6995 	/*
6996 	 * If we just allocated a new page, we need a memory barrier to ensure
6997 	 * that preceding stores to the page become visible before the
6998 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6999 	 * is what we need.
7000 	 *
7001 	 * In the case where we have not allocated a new page (is_continue),
7002 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
7003 	 * an earlier smp_wmb() to ensure that prior stores will be visible
7004 	 * before the set_pte_at() write.
7005 	 */
7006 	if (!is_continue)
7007 		__folio_mark_uptodate(folio);
7008 	else
7009 		WARN_ON_ONCE(!folio_test_uptodate(folio));
7010 
7011 	/* Add shared, newly allocated pages to the page cache. */
7012 	if (vm_shared && !is_continue) {
7013 		ret = -EFAULT;
7014 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7015 			goto out_release_nounlock;
7016 
7017 		/*
7018 		 * Serialization between remove_inode_hugepages() and
7019 		 * hugetlb_add_to_page_cache() below happens through the
7020 		 * hugetlb_fault_mutex_table that here must be hold by
7021 		 * the caller.
7022 		 */
7023 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7024 		if (ret)
7025 			goto out_release_nounlock;
7026 		folio_in_pagecache = true;
7027 	}
7028 
7029 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
7030 
7031 	ret = -EIO;
7032 	if (folio_test_hwpoison(folio))
7033 		goto out_release_unlock;
7034 
7035 	/*
7036 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
7037 	 * registered, we firstly wr-protect a none pte which has no page cache
7038 	 * page backing it, then access the page.
7039 	 */
7040 	ret = -EEXIST;
7041 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7042 		goto out_release_unlock;
7043 
7044 	if (folio_in_pagecache)
7045 		hugetlb_add_file_rmap(folio);
7046 	else
7047 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7048 
7049 	/*
7050 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7051 	 * with wp flag set, don't set pte write bit.
7052 	 */
7053 	_dst_pte = make_huge_pte(dst_vma, folio,
7054 				 !wp_enabled && !(is_continue && !vm_shared));
7055 	/*
7056 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
7057 	 * extremely important for hugetlbfs for now since swapping is not
7058 	 * supported, but we should still be clear in that this page cannot be
7059 	 * thrown away at will, even if write bit not set.
7060 	 */
7061 	_dst_pte = huge_pte_mkdirty(_dst_pte);
7062 	_dst_pte = pte_mkyoung(_dst_pte);
7063 
7064 	if (wp_enabled)
7065 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7066 
7067 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7068 
7069 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7070 
7071 	/* No need to invalidate - it was non-present before */
7072 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
7073 
7074 	spin_unlock(ptl);
7075 	if (!is_continue)
7076 		folio_set_hugetlb_migratable(folio);
7077 	if (vm_shared || is_continue)
7078 		folio_unlock(folio);
7079 	ret = 0;
7080 out:
7081 	return ret;
7082 out_release_unlock:
7083 	spin_unlock(ptl);
7084 	if (vm_shared || is_continue)
7085 		folio_unlock(folio);
7086 out_release_nounlock:
7087 	if (!folio_in_pagecache)
7088 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7089 	folio_put(folio);
7090 	goto out;
7091 }
7092 #endif /* CONFIG_USERFAULTFD */
7093 
7094 long hugetlb_change_protection(struct vm_area_struct *vma,
7095 		unsigned long address, unsigned long end,
7096 		pgprot_t newprot, unsigned long cp_flags)
7097 {
7098 	struct mm_struct *mm = vma->vm_mm;
7099 	unsigned long start = address;
7100 	pte_t *ptep;
7101 	pte_t pte;
7102 	struct hstate *h = hstate_vma(vma);
7103 	long pages = 0, psize = huge_page_size(h);
7104 	bool shared_pmd = false;
7105 	struct mmu_notifier_range range;
7106 	unsigned long last_addr_mask;
7107 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7108 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7109 
7110 	/*
7111 	 * In the case of shared PMDs, the area to flush could be beyond
7112 	 * start/end.  Set range.start/range.end to cover the maximum possible
7113 	 * range if PMD sharing is possible.
7114 	 */
7115 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7116 				0, mm, start, end);
7117 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7118 
7119 	BUG_ON(address >= end);
7120 	flush_cache_range(vma, range.start, range.end);
7121 
7122 	mmu_notifier_invalidate_range_start(&range);
7123 	hugetlb_vma_lock_write(vma);
7124 	i_mmap_lock_write(vma->vm_file->f_mapping);
7125 	last_addr_mask = hugetlb_mask_last_page(h);
7126 	for (; address < end; address += psize) {
7127 		spinlock_t *ptl;
7128 		ptep = hugetlb_walk(vma, address, psize);
7129 		if (!ptep) {
7130 			if (!uffd_wp) {
7131 				address |= last_addr_mask;
7132 				continue;
7133 			}
7134 			/*
7135 			 * Userfaultfd wr-protect requires pgtable
7136 			 * pre-allocations to install pte markers.
7137 			 */
7138 			ptep = huge_pte_alloc(mm, vma, address, psize);
7139 			if (!ptep) {
7140 				pages = -ENOMEM;
7141 				break;
7142 			}
7143 		}
7144 		ptl = huge_pte_lock(h, mm, ptep);
7145 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
7146 			/*
7147 			 * When uffd-wp is enabled on the vma, unshare
7148 			 * shouldn't happen at all.  Warn about it if it
7149 			 * happened due to some reason.
7150 			 */
7151 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7152 			pages++;
7153 			spin_unlock(ptl);
7154 			shared_pmd = true;
7155 			address |= last_addr_mask;
7156 			continue;
7157 		}
7158 		pte = huge_ptep_get(mm, address, ptep);
7159 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7160 			/* Nothing to do. */
7161 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
7162 			swp_entry_t entry = pte_to_swp_entry(pte);
7163 			struct page *page = pfn_swap_entry_to_page(entry);
7164 			pte_t newpte = pte;
7165 
7166 			if (is_writable_migration_entry(entry)) {
7167 				if (PageAnon(page))
7168 					entry = make_readable_exclusive_migration_entry(
7169 								swp_offset(entry));
7170 				else
7171 					entry = make_readable_migration_entry(
7172 								swp_offset(entry));
7173 				newpte = swp_entry_to_pte(entry);
7174 				pages++;
7175 			}
7176 
7177 			if (uffd_wp)
7178 				newpte = pte_swp_mkuffd_wp(newpte);
7179 			else if (uffd_wp_resolve)
7180 				newpte = pte_swp_clear_uffd_wp(newpte);
7181 			if (!pte_same(pte, newpte))
7182 				set_huge_pte_at(mm, address, ptep, newpte, psize);
7183 		} else if (unlikely(is_pte_marker(pte))) {
7184 			/*
7185 			 * Do nothing on a poison marker; page is
7186 			 * corrupted, permissons do not apply.  Here
7187 			 * pte_marker_uffd_wp()==true implies !poison
7188 			 * because they're mutual exclusive.
7189 			 */
7190 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7191 				/* Safe to modify directly (non-present->none). */
7192 				huge_pte_clear(mm, address, ptep, psize);
7193 		} else if (!huge_pte_none(pte)) {
7194 			pte_t old_pte;
7195 			unsigned int shift = huge_page_shift(hstate_vma(vma));
7196 
7197 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7198 			pte = huge_pte_modify(old_pte, newprot);
7199 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7200 			if (uffd_wp)
7201 				pte = huge_pte_mkuffd_wp(pte);
7202 			else if (uffd_wp_resolve)
7203 				pte = huge_pte_clear_uffd_wp(pte);
7204 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7205 			pages++;
7206 		} else {
7207 			/* None pte */
7208 			if (unlikely(uffd_wp))
7209 				/* Safe to modify directly (none->non-present). */
7210 				set_huge_pte_at(mm, address, ptep,
7211 						make_pte_marker(PTE_MARKER_UFFD_WP),
7212 						psize);
7213 		}
7214 		spin_unlock(ptl);
7215 	}
7216 	/*
7217 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7218 	 * may have cleared our pud entry and done put_page on the page table:
7219 	 * once we release i_mmap_rwsem, another task can do the final put_page
7220 	 * and that page table be reused and filled with junk.  If we actually
7221 	 * did unshare a page of pmds, flush the range corresponding to the pud.
7222 	 */
7223 	if (shared_pmd)
7224 		flush_hugetlb_tlb_range(vma, range.start, range.end);
7225 	else
7226 		flush_hugetlb_tlb_range(vma, start, end);
7227 	/*
7228 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7229 	 * downgrading page table protection not changing it to point to a new
7230 	 * page.
7231 	 *
7232 	 * See Documentation/mm/mmu_notifier.rst
7233 	 */
7234 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7235 	hugetlb_vma_unlock_write(vma);
7236 	mmu_notifier_invalidate_range_end(&range);
7237 
7238 	return pages > 0 ? (pages << h->order) : pages;
7239 }
7240 
7241 /* Return true if reservation was successful, false otherwise.  */
7242 bool hugetlb_reserve_pages(struct inode *inode,
7243 					long from, long to,
7244 					struct vm_area_struct *vma,
7245 					vm_flags_t vm_flags)
7246 {
7247 	long chg = -1, add = -1, spool_resv, gbl_resv;
7248 	struct hstate *h = hstate_inode(inode);
7249 	struct hugepage_subpool *spool = subpool_inode(inode);
7250 	struct resv_map *resv_map;
7251 	struct hugetlb_cgroup *h_cg = NULL;
7252 	long gbl_reserve, regions_needed = 0;
7253 
7254 	/* This should never happen */
7255 	if (from > to) {
7256 		VM_WARN(1, "%s called with a negative range\n", __func__);
7257 		return false;
7258 	}
7259 
7260 	/*
7261 	 * vma specific semaphore used for pmd sharing and fault/truncation
7262 	 * synchronization
7263 	 */
7264 	hugetlb_vma_lock_alloc(vma);
7265 
7266 	/*
7267 	 * Only apply hugepage reservation if asked. At fault time, an
7268 	 * attempt will be made for VM_NORESERVE to allocate a page
7269 	 * without using reserves
7270 	 */
7271 	if (vm_flags & VM_NORESERVE)
7272 		return true;
7273 
7274 	/*
7275 	 * Shared mappings base their reservation on the number of pages that
7276 	 * are already allocated on behalf of the file. Private mappings need
7277 	 * to reserve the full area even if read-only as mprotect() may be
7278 	 * called to make the mapping read-write. Assume !vma is a shm mapping
7279 	 */
7280 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7281 		/*
7282 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
7283 		 * called for inodes for which resv_maps were created (see
7284 		 * hugetlbfs_get_inode).
7285 		 */
7286 		resv_map = inode_resv_map(inode);
7287 
7288 		chg = region_chg(resv_map, from, to, &regions_needed);
7289 	} else {
7290 		/* Private mapping. */
7291 		resv_map = resv_map_alloc();
7292 		if (!resv_map)
7293 			goto out_err;
7294 
7295 		chg = to - from;
7296 
7297 		set_vma_resv_map(vma, resv_map);
7298 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7299 	}
7300 
7301 	if (chg < 0)
7302 		goto out_err;
7303 
7304 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7305 				chg * pages_per_huge_page(h), &h_cg) < 0)
7306 		goto out_err;
7307 
7308 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7309 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7310 		 * of the resv_map.
7311 		 */
7312 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7313 	}
7314 
7315 	/*
7316 	 * There must be enough pages in the subpool for the mapping. If
7317 	 * the subpool has a minimum size, there may be some global
7318 	 * reservations already in place (gbl_reserve).
7319 	 */
7320 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7321 	if (gbl_reserve < 0)
7322 		goto out_uncharge_cgroup;
7323 
7324 	/*
7325 	 * Check enough hugepages are available for the reservation.
7326 	 * Hand the pages back to the subpool if there are not
7327 	 */
7328 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7329 		goto out_put_pages;
7330 
7331 	/*
7332 	 * Account for the reservations made. Shared mappings record regions
7333 	 * that have reservations as they are shared by multiple VMAs.
7334 	 * When the last VMA disappears, the region map says how much
7335 	 * the reservation was and the page cache tells how much of
7336 	 * the reservation was consumed. Private mappings are per-VMA and
7337 	 * only the consumed reservations are tracked. When the VMA
7338 	 * disappears, the original reservation is the VMA size and the
7339 	 * consumed reservations are stored in the map. Hence, nothing
7340 	 * else has to be done for private mappings here
7341 	 */
7342 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7343 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7344 
7345 		if (unlikely(add < 0)) {
7346 			hugetlb_acct_memory(h, -gbl_reserve);
7347 			goto out_put_pages;
7348 		} else if (unlikely(chg > add)) {
7349 			/*
7350 			 * pages in this range were added to the reserve
7351 			 * map between region_chg and region_add.  This
7352 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7353 			 * the subpool and reserve counts modified above
7354 			 * based on the difference.
7355 			 */
7356 			long rsv_adjust;
7357 
7358 			/*
7359 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7360 			 * reference to h_cg->css. See comment below for detail.
7361 			 */
7362 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7363 				hstate_index(h),
7364 				(chg - add) * pages_per_huge_page(h), h_cg);
7365 
7366 			rsv_adjust = hugepage_subpool_put_pages(spool,
7367 								chg - add);
7368 			hugetlb_acct_memory(h, -rsv_adjust);
7369 		} else if (h_cg) {
7370 			/*
7371 			 * The file_regions will hold their own reference to
7372 			 * h_cg->css. So we should release the reference held
7373 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7374 			 * done.
7375 			 */
7376 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7377 		}
7378 	}
7379 	return true;
7380 
7381 out_put_pages:
7382 	spool_resv = chg - gbl_reserve;
7383 	if (spool_resv) {
7384 		/* put sub pool's reservation back, chg - gbl_reserve */
7385 		gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7386 		/*
7387 		 * subpool's reserved pages can not be put back due to race,
7388 		 * return to hstate.
7389 		 */
7390 		hugetlb_acct_memory(h, -gbl_resv);
7391 	}
7392 out_uncharge_cgroup:
7393 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7394 					    chg * pages_per_huge_page(h), h_cg);
7395 out_err:
7396 	hugetlb_vma_lock_free(vma);
7397 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7398 		/* Only call region_abort if the region_chg succeeded but the
7399 		 * region_add failed or didn't run.
7400 		 */
7401 		if (chg >= 0 && add < 0)
7402 			region_abort(resv_map, from, to, regions_needed);
7403 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7404 		kref_put(&resv_map->refs, resv_map_release);
7405 		set_vma_resv_map(vma, NULL);
7406 	}
7407 	return false;
7408 }
7409 
7410 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7411 								long freed)
7412 {
7413 	struct hstate *h = hstate_inode(inode);
7414 	struct resv_map *resv_map = inode_resv_map(inode);
7415 	long chg = 0;
7416 	struct hugepage_subpool *spool = subpool_inode(inode);
7417 	long gbl_reserve;
7418 
7419 	/*
7420 	 * Since this routine can be called in the evict inode path for all
7421 	 * hugetlbfs inodes, resv_map could be NULL.
7422 	 */
7423 	if (resv_map) {
7424 		chg = region_del(resv_map, start, end);
7425 		/*
7426 		 * region_del() can fail in the rare case where a region
7427 		 * must be split and another region descriptor can not be
7428 		 * allocated.  If end == LONG_MAX, it will not fail.
7429 		 */
7430 		if (chg < 0)
7431 			return chg;
7432 	}
7433 
7434 	spin_lock(&inode->i_lock);
7435 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7436 	spin_unlock(&inode->i_lock);
7437 
7438 	/*
7439 	 * If the subpool has a minimum size, the number of global
7440 	 * reservations to be released may be adjusted.
7441 	 *
7442 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7443 	 * won't go negative.
7444 	 */
7445 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7446 	hugetlb_acct_memory(h, -gbl_reserve);
7447 
7448 	return 0;
7449 }
7450 
7451 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7452 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7453 				struct vm_area_struct *vma,
7454 				unsigned long addr, pgoff_t idx)
7455 {
7456 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7457 				svma->vm_start;
7458 	unsigned long sbase = saddr & PUD_MASK;
7459 	unsigned long s_end = sbase + PUD_SIZE;
7460 
7461 	/* Allow segments to share if only one is marked locked */
7462 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7463 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7464 
7465 	/*
7466 	 * match the virtual addresses, permission and the alignment of the
7467 	 * page table page.
7468 	 *
7469 	 * Also, vma_lock (vm_private_data) is required for sharing.
7470 	 */
7471 	if (pmd_index(addr) != pmd_index(saddr) ||
7472 	    vm_flags != svm_flags ||
7473 	    !range_in_vma(svma, sbase, s_end) ||
7474 	    !svma->vm_private_data)
7475 		return 0;
7476 
7477 	return saddr;
7478 }
7479 
7480 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7481 {
7482 	unsigned long start = addr & PUD_MASK;
7483 	unsigned long end = start + PUD_SIZE;
7484 
7485 #ifdef CONFIG_USERFAULTFD
7486 	if (uffd_disable_huge_pmd_share(vma))
7487 		return false;
7488 #endif
7489 	/*
7490 	 * check on proper vm_flags and page table alignment
7491 	 */
7492 	if (!(vma->vm_flags & VM_MAYSHARE))
7493 		return false;
7494 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7495 		return false;
7496 	if (!range_in_vma(vma, start, end))
7497 		return false;
7498 	return true;
7499 }
7500 
7501 /*
7502  * Determine if start,end range within vma could be mapped by shared pmd.
7503  * If yes, adjust start and end to cover range associated with possible
7504  * shared pmd mappings.
7505  */
7506 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7507 				unsigned long *start, unsigned long *end)
7508 {
7509 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7510 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7511 
7512 	/*
7513 	 * vma needs to span at least one aligned PUD size, and the range
7514 	 * must be at least partially within in.
7515 	 */
7516 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7517 		(*end <= v_start) || (*start >= v_end))
7518 		return;
7519 
7520 	/* Extend the range to be PUD aligned for a worst case scenario */
7521 	if (*start > v_start)
7522 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7523 
7524 	if (*end < v_end)
7525 		*end = ALIGN(*end, PUD_SIZE);
7526 }
7527 
7528 /*
7529  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7530  * and returns the corresponding pte. While this is not necessary for the
7531  * !shared pmd case because we can allocate the pmd later as well, it makes the
7532  * code much cleaner. pmd allocation is essential for the shared case because
7533  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7534  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7535  * bad pmd for sharing.
7536  */
7537 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7538 		      unsigned long addr, pud_t *pud)
7539 {
7540 	struct address_space *mapping = vma->vm_file->f_mapping;
7541 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7542 			vma->vm_pgoff;
7543 	struct vm_area_struct *svma;
7544 	unsigned long saddr;
7545 	pte_t *spte = NULL;
7546 	pte_t *pte;
7547 
7548 	i_mmap_lock_read(mapping);
7549 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7550 		if (svma == vma)
7551 			continue;
7552 
7553 		saddr = page_table_shareable(svma, vma, addr, idx);
7554 		if (saddr) {
7555 			spte = hugetlb_walk(svma, saddr,
7556 					    vma_mmu_pagesize(svma));
7557 			if (spte) {
7558 				ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7559 				break;
7560 			}
7561 		}
7562 	}
7563 
7564 	if (!spte)
7565 		goto out;
7566 
7567 	spin_lock(&mm->page_table_lock);
7568 	if (pud_none(*pud)) {
7569 		pud_populate(mm, pud,
7570 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7571 		mm_inc_nr_pmds(mm);
7572 	} else {
7573 		ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7574 	}
7575 	spin_unlock(&mm->page_table_lock);
7576 out:
7577 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7578 	i_mmap_unlock_read(mapping);
7579 	return pte;
7580 }
7581 
7582 /*
7583  * unmap huge page backed by shared pte.
7584  *
7585  * Called with page table lock held.
7586  *
7587  * returns: 1 successfully unmapped a shared pte page
7588  *	    0 the underlying pte page is not shared, or it is the last user
7589  */
7590 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7591 					unsigned long addr, pte_t *ptep)
7592 {
7593 	unsigned long sz = huge_page_size(hstate_vma(vma));
7594 	pgd_t *pgd = pgd_offset(mm, addr);
7595 	p4d_t *p4d = p4d_offset(pgd, addr);
7596 	pud_t *pud = pud_offset(p4d, addr);
7597 
7598 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7599 	hugetlb_vma_assert_locked(vma);
7600 	if (sz != PMD_SIZE)
7601 		return 0;
7602 	if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7603 		return 0;
7604 
7605 	pud_clear(pud);
7606 	ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7607 	mm_dec_nr_pmds(mm);
7608 	return 1;
7609 }
7610 
7611 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7612 
7613 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7614 		      unsigned long addr, pud_t *pud)
7615 {
7616 	return NULL;
7617 }
7618 
7619 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7620 				unsigned long addr, pte_t *ptep)
7621 {
7622 	return 0;
7623 }
7624 
7625 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7626 				unsigned long *start, unsigned long *end)
7627 {
7628 }
7629 
7630 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7631 {
7632 	return false;
7633 }
7634 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7635 
7636 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7637 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7638 			unsigned long addr, unsigned long sz)
7639 {
7640 	pgd_t *pgd;
7641 	p4d_t *p4d;
7642 	pud_t *pud;
7643 	pte_t *pte = NULL;
7644 
7645 	pgd = pgd_offset(mm, addr);
7646 	p4d = p4d_alloc(mm, pgd, addr);
7647 	if (!p4d)
7648 		return NULL;
7649 	pud = pud_alloc(mm, p4d, addr);
7650 	if (pud) {
7651 		if (sz == PUD_SIZE) {
7652 			pte = (pte_t *)pud;
7653 		} else {
7654 			BUG_ON(sz != PMD_SIZE);
7655 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7656 				pte = huge_pmd_share(mm, vma, addr, pud);
7657 			else
7658 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7659 		}
7660 	}
7661 
7662 	if (pte) {
7663 		pte_t pteval = ptep_get_lockless(pte);
7664 
7665 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7666 	}
7667 
7668 	return pte;
7669 }
7670 
7671 /*
7672  * huge_pte_offset() - Walk the page table to resolve the hugepage
7673  * entry at address @addr
7674  *
7675  * Return: Pointer to page table entry (PUD or PMD) for
7676  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7677  * size @sz doesn't match the hugepage size at this level of the page
7678  * table.
7679  */
7680 pte_t *huge_pte_offset(struct mm_struct *mm,
7681 		       unsigned long addr, unsigned long sz)
7682 {
7683 	pgd_t *pgd;
7684 	p4d_t *p4d;
7685 	pud_t *pud;
7686 	pmd_t *pmd;
7687 
7688 	pgd = pgd_offset(mm, addr);
7689 	if (!pgd_present(*pgd))
7690 		return NULL;
7691 	p4d = p4d_offset(pgd, addr);
7692 	if (!p4d_present(*p4d))
7693 		return NULL;
7694 
7695 	pud = pud_offset(p4d, addr);
7696 	if (sz == PUD_SIZE)
7697 		/* must be pud huge, non-present or none */
7698 		return (pte_t *)pud;
7699 	if (!pud_present(*pud))
7700 		return NULL;
7701 	/* must have a valid entry and size to go further */
7702 
7703 	pmd = pmd_offset(pud, addr);
7704 	/* must be pmd huge, non-present or none */
7705 	return (pte_t *)pmd;
7706 }
7707 
7708 /*
7709  * Return a mask that can be used to update an address to the last huge
7710  * page in a page table page mapping size.  Used to skip non-present
7711  * page table entries when linearly scanning address ranges.  Architectures
7712  * with unique huge page to page table relationships can define their own
7713  * version of this routine.
7714  */
7715 unsigned long hugetlb_mask_last_page(struct hstate *h)
7716 {
7717 	unsigned long hp_size = huge_page_size(h);
7718 
7719 	if (hp_size == PUD_SIZE)
7720 		return P4D_SIZE - PUD_SIZE;
7721 	else if (hp_size == PMD_SIZE)
7722 		return PUD_SIZE - PMD_SIZE;
7723 	else
7724 		return 0UL;
7725 }
7726 
7727 #else
7728 
7729 /* See description above.  Architectures can provide their own version. */
7730 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7731 {
7732 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7733 	if (huge_page_size(h) == PMD_SIZE)
7734 		return PUD_SIZE - PMD_SIZE;
7735 #endif
7736 	return 0UL;
7737 }
7738 
7739 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7740 
7741 /**
7742  * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7743  * @folio: the folio to isolate
7744  * @list: the list to add the folio to on success
7745  *
7746  * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7747  * isolated/non-migratable, and moving it from the active list to the
7748  * given list.
7749  *
7750  * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7751  * it is already isolated/non-migratable.
7752  *
7753  * On success, an additional folio reference is taken that must be dropped
7754  * using folio_putback_hugetlb() to undo the isolation.
7755  *
7756  * Return: True if isolation worked, otherwise False.
7757  */
7758 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7759 {
7760 	bool ret = true;
7761 
7762 	spin_lock_irq(&hugetlb_lock);
7763 	if (!folio_test_hugetlb(folio) ||
7764 	    !folio_test_hugetlb_migratable(folio) ||
7765 	    !folio_try_get(folio)) {
7766 		ret = false;
7767 		goto unlock;
7768 	}
7769 	folio_clear_hugetlb_migratable(folio);
7770 	list_move_tail(&folio->lru, list);
7771 unlock:
7772 	spin_unlock_irq(&hugetlb_lock);
7773 	return ret;
7774 }
7775 
7776 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7777 {
7778 	int ret = 0;
7779 
7780 	*hugetlb = false;
7781 	spin_lock_irq(&hugetlb_lock);
7782 	if (folio_test_hugetlb(folio)) {
7783 		*hugetlb = true;
7784 		if (folio_test_hugetlb_freed(folio))
7785 			ret = 0;
7786 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7787 			ret = folio_try_get(folio);
7788 		else
7789 			ret = -EBUSY;
7790 	}
7791 	spin_unlock_irq(&hugetlb_lock);
7792 	return ret;
7793 }
7794 
7795 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7796 				bool *migratable_cleared)
7797 {
7798 	int ret;
7799 
7800 	spin_lock_irq(&hugetlb_lock);
7801 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7802 	spin_unlock_irq(&hugetlb_lock);
7803 	return ret;
7804 }
7805 
7806 /**
7807  * folio_putback_hugetlb - unisolate a hugetlb folio
7808  * @folio: the isolated hugetlb folio
7809  *
7810  * Putback/un-isolate the hugetlb folio that was previous isolated using
7811  * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7812  * back onto the active list.
7813  *
7814  * Will drop the additional folio reference obtained through
7815  * folio_isolate_hugetlb().
7816  */
7817 void folio_putback_hugetlb(struct folio *folio)
7818 {
7819 	spin_lock_irq(&hugetlb_lock);
7820 	folio_set_hugetlb_migratable(folio);
7821 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7822 	spin_unlock_irq(&hugetlb_lock);
7823 	folio_put(folio);
7824 }
7825 
7826 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7827 {
7828 	struct hstate *h = folio_hstate(old_folio);
7829 
7830 	hugetlb_cgroup_migrate(old_folio, new_folio);
7831 	set_page_owner_migrate_reason(&new_folio->page, reason);
7832 
7833 	/*
7834 	 * transfer temporary state of the new hugetlb folio. This is
7835 	 * reverse to other transitions because the newpage is going to
7836 	 * be final while the old one will be freed so it takes over
7837 	 * the temporary status.
7838 	 *
7839 	 * Also note that we have to transfer the per-node surplus state
7840 	 * here as well otherwise the global surplus count will not match
7841 	 * the per-node's.
7842 	 */
7843 	if (folio_test_hugetlb_temporary(new_folio)) {
7844 		int old_nid = folio_nid(old_folio);
7845 		int new_nid = folio_nid(new_folio);
7846 
7847 		folio_set_hugetlb_temporary(old_folio);
7848 		folio_clear_hugetlb_temporary(new_folio);
7849 
7850 
7851 		/*
7852 		 * There is no need to transfer the per-node surplus state
7853 		 * when we do not cross the node.
7854 		 */
7855 		if (new_nid == old_nid)
7856 			return;
7857 		spin_lock_irq(&hugetlb_lock);
7858 		if (h->surplus_huge_pages_node[old_nid]) {
7859 			h->surplus_huge_pages_node[old_nid]--;
7860 			h->surplus_huge_pages_node[new_nid]++;
7861 		}
7862 		spin_unlock_irq(&hugetlb_lock);
7863 	}
7864 
7865 	/*
7866 	 * Our old folio is isolated and has "migratable" cleared until it
7867 	 * is putback. As migration succeeded, set the new folio "migratable"
7868 	 * and add it to the active list.
7869 	 */
7870 	spin_lock_irq(&hugetlb_lock);
7871 	folio_set_hugetlb_migratable(new_folio);
7872 	list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7873 	spin_unlock_irq(&hugetlb_lock);
7874 }
7875 
7876 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7877 				   unsigned long start,
7878 				   unsigned long end)
7879 {
7880 	struct hstate *h = hstate_vma(vma);
7881 	unsigned long sz = huge_page_size(h);
7882 	struct mm_struct *mm = vma->vm_mm;
7883 	struct mmu_notifier_range range;
7884 	unsigned long address;
7885 	spinlock_t *ptl;
7886 	pte_t *ptep;
7887 
7888 	if (!(vma->vm_flags & VM_MAYSHARE))
7889 		return;
7890 
7891 	if (start >= end)
7892 		return;
7893 
7894 	flush_cache_range(vma, start, end);
7895 	/*
7896 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7897 	 * we have already done the PUD_SIZE alignment.
7898 	 */
7899 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7900 				start, end);
7901 	mmu_notifier_invalidate_range_start(&range);
7902 	hugetlb_vma_lock_write(vma);
7903 	i_mmap_lock_write(vma->vm_file->f_mapping);
7904 	for (address = start; address < end; address += PUD_SIZE) {
7905 		ptep = hugetlb_walk(vma, address, sz);
7906 		if (!ptep)
7907 			continue;
7908 		ptl = huge_pte_lock(h, mm, ptep);
7909 		huge_pmd_unshare(mm, vma, address, ptep);
7910 		spin_unlock(ptl);
7911 	}
7912 	flush_hugetlb_tlb_range(vma, start, end);
7913 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7914 	hugetlb_vma_unlock_write(vma);
7915 	/*
7916 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7917 	 * Documentation/mm/mmu_notifier.rst.
7918 	 */
7919 	mmu_notifier_invalidate_range_end(&range);
7920 }
7921 
7922 /*
7923  * This function will unconditionally remove all the shared pmd pgtable entries
7924  * within the specific vma for a hugetlbfs memory range.
7925  */
7926 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7927 {
7928 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7929 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7930 }
7931