1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_helpers.h> 29 #include <linux/swap.h> 30 #include <linux/swapops.h> 31 #include <linux/jhash.h> 32 #include <linux/numa.h> 33 #include <linux/llist.h> 34 #include <linux/cma.h> 35 #include <linux/migrate.h> 36 #include <linux/nospec.h> 37 #include <linux/delayacct.h> 38 #include <linux/memory.h> 39 #include <linux/mm_inline.h> 40 #include <linux/padata.h> 41 42 #include <asm/page.h> 43 #include <asm/pgalloc.h> 44 #include <asm/tlb.h> 45 #include <asm/setup.h> 46 47 #include <linux/io.h> 48 #include <linux/hugetlb.h> 49 #include <linux/hugetlb_cgroup.h> 50 #include <linux/node.h> 51 #include <linux/page_owner.h> 52 #include "internal.h" 53 #include "hugetlb_vmemmap.h" 54 #include "hugetlb_cma.h" 55 #include <linux/page-isolation.h> 56 57 int hugetlb_max_hstate __read_mostly; 58 unsigned int default_hstate_idx; 59 struct hstate hstates[HUGE_MAX_HSTATE]; 60 61 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 62 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 63 64 /* 65 * Due to ordering constraints across the init code for various 66 * architectures, hugetlb hstate cmdline parameters can't simply 67 * be early_param. early_param might call the setup function 68 * before valid hugetlb page sizes are determined, leading to 69 * incorrect rejection of valid hugepagesz= options. 70 * 71 * So, record the parameters early and consume them whenever the 72 * init code is ready for them, by calling hugetlb_parse_params(). 73 */ 74 75 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 76 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 77 struct hugetlb_cmdline { 78 char *val; 79 int (*setup)(char *val); 80 }; 81 82 /* for command line parsing */ 83 static struct hstate * __initdata parsed_hstate; 84 static unsigned long __initdata default_hstate_max_huge_pages; 85 static bool __initdata parsed_valid_hugepagesz = true; 86 static bool __initdata parsed_default_hugepagesz; 87 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 88 static unsigned long hugepage_allocation_threads __initdata; 89 90 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 91 static int hstate_cmdline_index __initdata; 92 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 93 static int hugetlb_param_index __initdata; 94 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 95 static __init void hugetlb_parse_params(void); 96 97 #define hugetlb_early_param(str, func) \ 98 static __init int func##args(char *s) \ 99 { \ 100 return hugetlb_add_param(s, func); \ 101 } \ 102 early_param(str, func##args) 103 104 /* 105 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 106 * free_huge_pages, and surplus_huge_pages. 107 */ 108 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 109 110 /* 111 * Serializes faults on the same logical page. This is used to 112 * prevent spurious OOMs when the hugepage pool is fully utilized. 113 */ 114 static int num_fault_mutexes __ro_after_init; 115 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 116 117 /* Forward declaration */ 118 static int hugetlb_acct_memory(struct hstate *h, long delta); 119 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 120 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 121 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 122 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 123 unsigned long start, unsigned long end); 124 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 125 126 static void hugetlb_free_folio(struct folio *folio) 127 { 128 if (folio_test_hugetlb_cma(folio)) { 129 hugetlb_cma_free_folio(folio); 130 return; 131 } 132 133 folio_put(folio); 134 } 135 136 static inline bool subpool_is_free(struct hugepage_subpool *spool) 137 { 138 if (spool->count) 139 return false; 140 if (spool->max_hpages != -1) 141 return spool->used_hpages == 0; 142 if (spool->min_hpages != -1) 143 return spool->rsv_hpages == spool->min_hpages; 144 145 return true; 146 } 147 148 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 149 unsigned long irq_flags) 150 { 151 spin_unlock_irqrestore(&spool->lock, irq_flags); 152 153 /* If no pages are used, and no other handles to the subpool 154 * remain, give up any reservations based on minimum size and 155 * free the subpool */ 156 if (subpool_is_free(spool)) { 157 if (spool->min_hpages != -1) 158 hugetlb_acct_memory(spool->hstate, 159 -spool->min_hpages); 160 kfree(spool); 161 } 162 } 163 164 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 165 long min_hpages) 166 { 167 struct hugepage_subpool *spool; 168 169 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 170 if (!spool) 171 return NULL; 172 173 spin_lock_init(&spool->lock); 174 spool->count = 1; 175 spool->max_hpages = max_hpages; 176 spool->hstate = h; 177 spool->min_hpages = min_hpages; 178 179 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 180 kfree(spool); 181 return NULL; 182 } 183 spool->rsv_hpages = min_hpages; 184 185 return spool; 186 } 187 188 void hugepage_put_subpool(struct hugepage_subpool *spool) 189 { 190 unsigned long flags; 191 192 spin_lock_irqsave(&spool->lock, flags); 193 BUG_ON(!spool->count); 194 spool->count--; 195 unlock_or_release_subpool(spool, flags); 196 } 197 198 /* 199 * Subpool accounting for allocating and reserving pages. 200 * Return -ENOMEM if there are not enough resources to satisfy the 201 * request. Otherwise, return the number of pages by which the 202 * global pools must be adjusted (upward). The returned value may 203 * only be different than the passed value (delta) in the case where 204 * a subpool minimum size must be maintained. 205 */ 206 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 207 long delta) 208 { 209 long ret = delta; 210 211 if (!spool) 212 return ret; 213 214 spin_lock_irq(&spool->lock); 215 216 if (spool->max_hpages != -1) { /* maximum size accounting */ 217 if ((spool->used_hpages + delta) <= spool->max_hpages) 218 spool->used_hpages += delta; 219 else { 220 ret = -ENOMEM; 221 goto unlock_ret; 222 } 223 } 224 225 /* minimum size accounting */ 226 if (spool->min_hpages != -1 && spool->rsv_hpages) { 227 if (delta > spool->rsv_hpages) { 228 /* 229 * Asking for more reserves than those already taken on 230 * behalf of subpool. Return difference. 231 */ 232 ret = delta - spool->rsv_hpages; 233 spool->rsv_hpages = 0; 234 } else { 235 ret = 0; /* reserves already accounted for */ 236 spool->rsv_hpages -= delta; 237 } 238 } 239 240 unlock_ret: 241 spin_unlock_irq(&spool->lock); 242 return ret; 243 } 244 245 /* 246 * Subpool accounting for freeing and unreserving pages. 247 * Return the number of global page reservations that must be dropped. 248 * The return value may only be different than the passed value (delta) 249 * in the case where a subpool minimum size must be maintained. 250 */ 251 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 252 long delta) 253 { 254 long ret = delta; 255 unsigned long flags; 256 257 if (!spool) 258 return delta; 259 260 spin_lock_irqsave(&spool->lock, flags); 261 262 if (spool->max_hpages != -1) /* maximum size accounting */ 263 spool->used_hpages -= delta; 264 265 /* minimum size accounting */ 266 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 267 if (spool->rsv_hpages + delta <= spool->min_hpages) 268 ret = 0; 269 else 270 ret = spool->rsv_hpages + delta - spool->min_hpages; 271 272 spool->rsv_hpages += delta; 273 if (spool->rsv_hpages > spool->min_hpages) 274 spool->rsv_hpages = spool->min_hpages; 275 } 276 277 /* 278 * If hugetlbfs_put_super couldn't free spool due to an outstanding 279 * quota reference, free it now. 280 */ 281 unlock_or_release_subpool(spool, flags); 282 283 return ret; 284 } 285 286 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 287 { 288 return HUGETLBFS_SB(inode->i_sb)->spool; 289 } 290 291 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 292 { 293 return subpool_inode(file_inode(vma->vm_file)); 294 } 295 296 /* 297 * hugetlb vma_lock helper routines 298 */ 299 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 300 { 301 if (__vma_shareable_lock(vma)) { 302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 303 304 down_read(&vma_lock->rw_sema); 305 } else if (__vma_private_lock(vma)) { 306 struct resv_map *resv_map = vma_resv_map(vma); 307 308 down_read(&resv_map->rw_sema); 309 } 310 } 311 312 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 313 { 314 if (__vma_shareable_lock(vma)) { 315 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 316 317 up_read(&vma_lock->rw_sema); 318 } else if (__vma_private_lock(vma)) { 319 struct resv_map *resv_map = vma_resv_map(vma); 320 321 up_read(&resv_map->rw_sema); 322 } 323 } 324 325 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 326 { 327 if (__vma_shareable_lock(vma)) { 328 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 329 330 down_write(&vma_lock->rw_sema); 331 } else if (__vma_private_lock(vma)) { 332 struct resv_map *resv_map = vma_resv_map(vma); 333 334 down_write(&resv_map->rw_sema); 335 } 336 } 337 338 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 339 { 340 if (__vma_shareable_lock(vma)) { 341 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 342 343 up_write(&vma_lock->rw_sema); 344 } else if (__vma_private_lock(vma)) { 345 struct resv_map *resv_map = vma_resv_map(vma); 346 347 up_write(&resv_map->rw_sema); 348 } 349 } 350 351 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 352 { 353 354 if (__vma_shareable_lock(vma)) { 355 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 356 357 return down_write_trylock(&vma_lock->rw_sema); 358 } else if (__vma_private_lock(vma)) { 359 struct resv_map *resv_map = vma_resv_map(vma); 360 361 return down_write_trylock(&resv_map->rw_sema); 362 } 363 364 return 1; 365 } 366 367 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 368 { 369 if (__vma_shareable_lock(vma)) { 370 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 371 372 lockdep_assert_held(&vma_lock->rw_sema); 373 } else if (__vma_private_lock(vma)) { 374 struct resv_map *resv_map = vma_resv_map(vma); 375 376 lockdep_assert_held(&resv_map->rw_sema); 377 } 378 } 379 380 void hugetlb_vma_lock_release(struct kref *kref) 381 { 382 struct hugetlb_vma_lock *vma_lock = container_of(kref, 383 struct hugetlb_vma_lock, refs); 384 385 kfree(vma_lock); 386 } 387 388 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 389 { 390 struct vm_area_struct *vma = vma_lock->vma; 391 392 /* 393 * vma_lock structure may or not be released as a result of put, 394 * it certainly will no longer be attached to vma so clear pointer. 395 * Semaphore synchronizes access to vma_lock->vma field. 396 */ 397 vma_lock->vma = NULL; 398 vma->vm_private_data = NULL; 399 up_write(&vma_lock->rw_sema); 400 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 401 } 402 403 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 404 { 405 if (__vma_shareable_lock(vma)) { 406 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 407 408 __hugetlb_vma_unlock_write_put(vma_lock); 409 } else if (__vma_private_lock(vma)) { 410 struct resv_map *resv_map = vma_resv_map(vma); 411 412 /* no free for anon vmas, but still need to unlock */ 413 up_write(&resv_map->rw_sema); 414 } 415 } 416 417 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 418 { 419 /* 420 * Only present in sharable vmas. 421 */ 422 if (!vma || !__vma_shareable_lock(vma)) 423 return; 424 425 if (vma->vm_private_data) { 426 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 427 428 down_write(&vma_lock->rw_sema); 429 __hugetlb_vma_unlock_write_put(vma_lock); 430 } 431 } 432 433 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 434 { 435 struct hugetlb_vma_lock *vma_lock; 436 437 /* Only establish in (flags) sharable vmas */ 438 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 439 return; 440 441 /* Should never get here with non-NULL vm_private_data */ 442 if (vma->vm_private_data) 443 return; 444 445 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 446 if (!vma_lock) { 447 /* 448 * If we can not allocate structure, then vma can not 449 * participate in pmd sharing. This is only a possible 450 * performance enhancement and memory saving issue. 451 * However, the lock is also used to synchronize page 452 * faults with truncation. If the lock is not present, 453 * unlikely races could leave pages in a file past i_size 454 * until the file is removed. Warn in the unlikely case of 455 * allocation failure. 456 */ 457 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 458 return; 459 } 460 461 kref_init(&vma_lock->refs); 462 init_rwsem(&vma_lock->rw_sema); 463 vma_lock->vma = vma; 464 vma->vm_private_data = vma_lock; 465 } 466 467 /* Helper that removes a struct file_region from the resv_map cache and returns 468 * it for use. 469 */ 470 static struct file_region * 471 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 472 { 473 struct file_region *nrg; 474 475 VM_BUG_ON(resv->region_cache_count <= 0); 476 477 resv->region_cache_count--; 478 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 479 list_del(&nrg->link); 480 481 nrg->from = from; 482 nrg->to = to; 483 484 return nrg; 485 } 486 487 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 488 struct file_region *rg) 489 { 490 #ifdef CONFIG_CGROUP_HUGETLB 491 nrg->reservation_counter = rg->reservation_counter; 492 nrg->css = rg->css; 493 if (rg->css) 494 css_get(rg->css); 495 #endif 496 } 497 498 /* Helper that records hugetlb_cgroup uncharge info. */ 499 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 500 struct hstate *h, 501 struct resv_map *resv, 502 struct file_region *nrg) 503 { 504 #ifdef CONFIG_CGROUP_HUGETLB 505 if (h_cg) { 506 nrg->reservation_counter = 507 &h_cg->rsvd_hugepage[hstate_index(h)]; 508 nrg->css = &h_cg->css; 509 /* 510 * The caller will hold exactly one h_cg->css reference for the 511 * whole contiguous reservation region. But this area might be 512 * scattered when there are already some file_regions reside in 513 * it. As a result, many file_regions may share only one css 514 * reference. In order to ensure that one file_region must hold 515 * exactly one h_cg->css reference, we should do css_get for 516 * each file_region and leave the reference held by caller 517 * untouched. 518 */ 519 css_get(&h_cg->css); 520 if (!resv->pages_per_hpage) 521 resv->pages_per_hpage = pages_per_huge_page(h); 522 /* pages_per_hpage should be the same for all entries in 523 * a resv_map. 524 */ 525 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 526 } else { 527 nrg->reservation_counter = NULL; 528 nrg->css = NULL; 529 } 530 #endif 531 } 532 533 static void put_uncharge_info(struct file_region *rg) 534 { 535 #ifdef CONFIG_CGROUP_HUGETLB 536 if (rg->css) 537 css_put(rg->css); 538 #endif 539 } 540 541 static bool has_same_uncharge_info(struct file_region *rg, 542 struct file_region *org) 543 { 544 #ifdef CONFIG_CGROUP_HUGETLB 545 return rg->reservation_counter == org->reservation_counter && 546 rg->css == org->css; 547 548 #else 549 return true; 550 #endif 551 } 552 553 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 554 { 555 struct file_region *nrg, *prg; 556 557 prg = list_prev_entry(rg, link); 558 if (&prg->link != &resv->regions && prg->to == rg->from && 559 has_same_uncharge_info(prg, rg)) { 560 prg->to = rg->to; 561 562 list_del(&rg->link); 563 put_uncharge_info(rg); 564 kfree(rg); 565 566 rg = prg; 567 } 568 569 nrg = list_next_entry(rg, link); 570 if (&nrg->link != &resv->regions && nrg->from == rg->to && 571 has_same_uncharge_info(nrg, rg)) { 572 nrg->from = rg->from; 573 574 list_del(&rg->link); 575 put_uncharge_info(rg); 576 kfree(rg); 577 } 578 } 579 580 static inline long 581 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 582 long to, struct hstate *h, struct hugetlb_cgroup *cg, 583 long *regions_needed) 584 { 585 struct file_region *nrg; 586 587 if (!regions_needed) { 588 nrg = get_file_region_entry_from_cache(map, from, to); 589 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 590 list_add(&nrg->link, rg); 591 coalesce_file_region(map, nrg); 592 } else 593 *regions_needed += 1; 594 595 return to - from; 596 } 597 598 /* 599 * Must be called with resv->lock held. 600 * 601 * Calling this with regions_needed != NULL will count the number of pages 602 * to be added but will not modify the linked list. And regions_needed will 603 * indicate the number of file_regions needed in the cache to carry out to add 604 * the regions for this range. 605 */ 606 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 607 struct hugetlb_cgroup *h_cg, 608 struct hstate *h, long *regions_needed) 609 { 610 long add = 0; 611 struct list_head *head = &resv->regions; 612 long last_accounted_offset = f; 613 struct file_region *iter, *trg = NULL; 614 struct list_head *rg = NULL; 615 616 if (regions_needed) 617 *regions_needed = 0; 618 619 /* In this loop, we essentially handle an entry for the range 620 * [last_accounted_offset, iter->from), at every iteration, with some 621 * bounds checking. 622 */ 623 list_for_each_entry_safe(iter, trg, head, link) { 624 /* Skip irrelevant regions that start before our range. */ 625 if (iter->from < f) { 626 /* If this region ends after the last accounted offset, 627 * then we need to update last_accounted_offset. 628 */ 629 if (iter->to > last_accounted_offset) 630 last_accounted_offset = iter->to; 631 continue; 632 } 633 634 /* When we find a region that starts beyond our range, we've 635 * finished. 636 */ 637 if (iter->from >= t) { 638 rg = iter->link.prev; 639 break; 640 } 641 642 /* Add an entry for last_accounted_offset -> iter->from, and 643 * update last_accounted_offset. 644 */ 645 if (iter->from > last_accounted_offset) 646 add += hugetlb_resv_map_add(resv, iter->link.prev, 647 last_accounted_offset, 648 iter->from, h, h_cg, 649 regions_needed); 650 651 last_accounted_offset = iter->to; 652 } 653 654 /* Handle the case where our range extends beyond 655 * last_accounted_offset. 656 */ 657 if (!rg) 658 rg = head->prev; 659 if (last_accounted_offset < t) 660 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 661 t, h, h_cg, regions_needed); 662 663 return add; 664 } 665 666 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 667 */ 668 static int allocate_file_region_entries(struct resv_map *resv, 669 int regions_needed) 670 __must_hold(&resv->lock) 671 { 672 LIST_HEAD(allocated_regions); 673 int to_allocate = 0, i = 0; 674 struct file_region *trg = NULL, *rg = NULL; 675 676 VM_BUG_ON(regions_needed < 0); 677 678 /* 679 * Check for sufficient descriptors in the cache to accommodate 680 * the number of in progress add operations plus regions_needed. 681 * 682 * This is a while loop because when we drop the lock, some other call 683 * to region_add or region_del may have consumed some region_entries, 684 * so we keep looping here until we finally have enough entries for 685 * (adds_in_progress + regions_needed). 686 */ 687 while (resv->region_cache_count < 688 (resv->adds_in_progress + regions_needed)) { 689 to_allocate = resv->adds_in_progress + regions_needed - 690 resv->region_cache_count; 691 692 /* At this point, we should have enough entries in the cache 693 * for all the existing adds_in_progress. We should only be 694 * needing to allocate for regions_needed. 695 */ 696 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 697 698 spin_unlock(&resv->lock); 699 for (i = 0; i < to_allocate; i++) { 700 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 701 if (!trg) 702 goto out_of_memory; 703 list_add(&trg->link, &allocated_regions); 704 } 705 706 spin_lock(&resv->lock); 707 708 list_splice(&allocated_regions, &resv->region_cache); 709 resv->region_cache_count += to_allocate; 710 } 711 712 return 0; 713 714 out_of_memory: 715 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 716 list_del(&rg->link); 717 kfree(rg); 718 } 719 return -ENOMEM; 720 } 721 722 /* 723 * Add the huge page range represented by [f, t) to the reserve 724 * map. Regions will be taken from the cache to fill in this range. 725 * Sufficient regions should exist in the cache due to the previous 726 * call to region_chg with the same range, but in some cases the cache will not 727 * have sufficient entries due to races with other code doing region_add or 728 * region_del. The extra needed entries will be allocated. 729 * 730 * regions_needed is the out value provided by a previous call to region_chg. 731 * 732 * Return the number of new huge pages added to the map. This number is greater 733 * than or equal to zero. If file_region entries needed to be allocated for 734 * this operation and we were not able to allocate, it returns -ENOMEM. 735 * region_add of regions of length 1 never allocate file_regions and cannot 736 * fail; region_chg will always allocate at least 1 entry and a region_add for 737 * 1 page will only require at most 1 entry. 738 */ 739 static long region_add(struct resv_map *resv, long f, long t, 740 long in_regions_needed, struct hstate *h, 741 struct hugetlb_cgroup *h_cg) 742 { 743 long add = 0, actual_regions_needed = 0; 744 745 spin_lock(&resv->lock); 746 retry: 747 748 /* Count how many regions are actually needed to execute this add. */ 749 add_reservation_in_range(resv, f, t, NULL, NULL, 750 &actual_regions_needed); 751 752 /* 753 * Check for sufficient descriptors in the cache to accommodate 754 * this add operation. Note that actual_regions_needed may be greater 755 * than in_regions_needed, as the resv_map may have been modified since 756 * the region_chg call. In this case, we need to make sure that we 757 * allocate extra entries, such that we have enough for all the 758 * existing adds_in_progress, plus the excess needed for this 759 * operation. 760 */ 761 if (actual_regions_needed > in_regions_needed && 762 resv->region_cache_count < 763 resv->adds_in_progress + 764 (actual_regions_needed - in_regions_needed)) { 765 /* region_add operation of range 1 should never need to 766 * allocate file_region entries. 767 */ 768 VM_BUG_ON(t - f <= 1); 769 770 if (allocate_file_region_entries( 771 resv, actual_regions_needed - in_regions_needed)) { 772 return -ENOMEM; 773 } 774 775 goto retry; 776 } 777 778 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 779 780 resv->adds_in_progress -= in_regions_needed; 781 782 spin_unlock(&resv->lock); 783 return add; 784 } 785 786 /* 787 * Examine the existing reserve map and determine how many 788 * huge pages in the specified range [f, t) are NOT currently 789 * represented. This routine is called before a subsequent 790 * call to region_add that will actually modify the reserve 791 * map to add the specified range [f, t). region_chg does 792 * not change the number of huge pages represented by the 793 * map. A number of new file_region structures is added to the cache as a 794 * placeholder, for the subsequent region_add call to use. At least 1 795 * file_region structure is added. 796 * 797 * out_regions_needed is the number of regions added to the 798 * resv->adds_in_progress. This value needs to be provided to a follow up call 799 * to region_add or region_abort for proper accounting. 800 * 801 * Returns the number of huge pages that need to be added to the existing 802 * reservation map for the range [f, t). This number is greater or equal to 803 * zero. -ENOMEM is returned if a new file_region structure or cache entry 804 * is needed and can not be allocated. 805 */ 806 static long region_chg(struct resv_map *resv, long f, long t, 807 long *out_regions_needed) 808 { 809 long chg = 0; 810 811 spin_lock(&resv->lock); 812 813 /* Count how many hugepages in this range are NOT represented. */ 814 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 815 out_regions_needed); 816 817 if (*out_regions_needed == 0) 818 *out_regions_needed = 1; 819 820 if (allocate_file_region_entries(resv, *out_regions_needed)) 821 return -ENOMEM; 822 823 resv->adds_in_progress += *out_regions_needed; 824 825 spin_unlock(&resv->lock); 826 return chg; 827 } 828 829 /* 830 * Abort the in progress add operation. The adds_in_progress field 831 * of the resv_map keeps track of the operations in progress between 832 * calls to region_chg and region_add. Operations are sometimes 833 * aborted after the call to region_chg. In such cases, region_abort 834 * is called to decrement the adds_in_progress counter. regions_needed 835 * is the value returned by the region_chg call, it is used to decrement 836 * the adds_in_progress counter. 837 * 838 * NOTE: The range arguments [f, t) are not needed or used in this 839 * routine. They are kept to make reading the calling code easier as 840 * arguments will match the associated region_chg call. 841 */ 842 static void region_abort(struct resv_map *resv, long f, long t, 843 long regions_needed) 844 { 845 spin_lock(&resv->lock); 846 VM_BUG_ON(!resv->region_cache_count); 847 resv->adds_in_progress -= regions_needed; 848 spin_unlock(&resv->lock); 849 } 850 851 /* 852 * Delete the specified range [f, t) from the reserve map. If the 853 * t parameter is LONG_MAX, this indicates that ALL regions after f 854 * should be deleted. Locate the regions which intersect [f, t) 855 * and either trim, delete or split the existing regions. 856 * 857 * Returns the number of huge pages deleted from the reserve map. 858 * In the normal case, the return value is zero or more. In the 859 * case where a region must be split, a new region descriptor must 860 * be allocated. If the allocation fails, -ENOMEM will be returned. 861 * NOTE: If the parameter t == LONG_MAX, then we will never split 862 * a region and possibly return -ENOMEM. Callers specifying 863 * t == LONG_MAX do not need to check for -ENOMEM error. 864 */ 865 static long region_del(struct resv_map *resv, long f, long t) 866 { 867 struct list_head *head = &resv->regions; 868 struct file_region *rg, *trg; 869 struct file_region *nrg = NULL; 870 long del = 0; 871 872 retry: 873 spin_lock(&resv->lock); 874 list_for_each_entry_safe(rg, trg, head, link) { 875 /* 876 * Skip regions before the range to be deleted. file_region 877 * ranges are normally of the form [from, to). However, there 878 * may be a "placeholder" entry in the map which is of the form 879 * (from, to) with from == to. Check for placeholder entries 880 * at the beginning of the range to be deleted. 881 */ 882 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 883 continue; 884 885 if (rg->from >= t) 886 break; 887 888 if (f > rg->from && t < rg->to) { /* Must split region */ 889 /* 890 * Check for an entry in the cache before dropping 891 * lock and attempting allocation. 892 */ 893 if (!nrg && 894 resv->region_cache_count > resv->adds_in_progress) { 895 nrg = list_first_entry(&resv->region_cache, 896 struct file_region, 897 link); 898 list_del(&nrg->link); 899 resv->region_cache_count--; 900 } 901 902 if (!nrg) { 903 spin_unlock(&resv->lock); 904 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 905 if (!nrg) 906 return -ENOMEM; 907 goto retry; 908 } 909 910 del += t - f; 911 hugetlb_cgroup_uncharge_file_region( 912 resv, rg, t - f, false); 913 914 /* New entry for end of split region */ 915 nrg->from = t; 916 nrg->to = rg->to; 917 918 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 919 920 INIT_LIST_HEAD(&nrg->link); 921 922 /* Original entry is trimmed */ 923 rg->to = f; 924 925 list_add(&nrg->link, &rg->link); 926 nrg = NULL; 927 break; 928 } 929 930 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 931 del += rg->to - rg->from; 932 hugetlb_cgroup_uncharge_file_region(resv, rg, 933 rg->to - rg->from, true); 934 list_del(&rg->link); 935 kfree(rg); 936 continue; 937 } 938 939 if (f <= rg->from) { /* Trim beginning of region */ 940 hugetlb_cgroup_uncharge_file_region(resv, rg, 941 t - rg->from, false); 942 943 del += t - rg->from; 944 rg->from = t; 945 } else { /* Trim end of region */ 946 hugetlb_cgroup_uncharge_file_region(resv, rg, 947 rg->to - f, false); 948 949 del += rg->to - f; 950 rg->to = f; 951 } 952 } 953 954 spin_unlock(&resv->lock); 955 kfree(nrg); 956 return del; 957 } 958 959 /* 960 * A rare out of memory error was encountered which prevented removal of 961 * the reserve map region for a page. The huge page itself was free'ed 962 * and removed from the page cache. This routine will adjust the subpool 963 * usage count, and the global reserve count if needed. By incrementing 964 * these counts, the reserve map entry which could not be deleted will 965 * appear as a "reserved" entry instead of simply dangling with incorrect 966 * counts. 967 */ 968 void hugetlb_fix_reserve_counts(struct inode *inode) 969 { 970 struct hugepage_subpool *spool = subpool_inode(inode); 971 long rsv_adjust; 972 bool reserved = false; 973 974 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 975 if (rsv_adjust > 0) { 976 struct hstate *h = hstate_inode(inode); 977 978 if (!hugetlb_acct_memory(h, 1)) 979 reserved = true; 980 } else if (!rsv_adjust) { 981 reserved = true; 982 } 983 984 if (!reserved) 985 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 986 } 987 988 /* 989 * Count and return the number of huge pages in the reserve map 990 * that intersect with the range [f, t). 991 */ 992 static long region_count(struct resv_map *resv, long f, long t) 993 { 994 struct list_head *head = &resv->regions; 995 struct file_region *rg; 996 long chg = 0; 997 998 spin_lock(&resv->lock); 999 /* Locate each segment we overlap with, and count that overlap. */ 1000 list_for_each_entry(rg, head, link) { 1001 long seg_from; 1002 long seg_to; 1003 1004 if (rg->to <= f) 1005 continue; 1006 if (rg->from >= t) 1007 break; 1008 1009 seg_from = max(rg->from, f); 1010 seg_to = min(rg->to, t); 1011 1012 chg += seg_to - seg_from; 1013 } 1014 spin_unlock(&resv->lock); 1015 1016 return chg; 1017 } 1018 1019 /* 1020 * Convert the address within this vma to the page offset within 1021 * the mapping, huge page units here. 1022 */ 1023 static pgoff_t vma_hugecache_offset(struct hstate *h, 1024 struct vm_area_struct *vma, unsigned long address) 1025 { 1026 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1027 (vma->vm_pgoff >> huge_page_order(h)); 1028 } 1029 1030 /** 1031 * vma_kernel_pagesize - Page size granularity for this VMA. 1032 * @vma: The user mapping. 1033 * 1034 * Folios in this VMA will be aligned to, and at least the size of the 1035 * number of bytes returned by this function. 1036 * 1037 * Return: The default size of the folios allocated when backing a VMA. 1038 */ 1039 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1040 { 1041 if (vma->vm_ops && vma->vm_ops->pagesize) 1042 return vma->vm_ops->pagesize(vma); 1043 return PAGE_SIZE; 1044 } 1045 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1046 1047 /* 1048 * Return the page size being used by the MMU to back a VMA. In the majority 1049 * of cases, the page size used by the kernel matches the MMU size. On 1050 * architectures where it differs, an architecture-specific 'strong' 1051 * version of this symbol is required. 1052 */ 1053 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1054 { 1055 return vma_kernel_pagesize(vma); 1056 } 1057 1058 /* 1059 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1060 * bits of the reservation map pointer, which are always clear due to 1061 * alignment. 1062 */ 1063 #define HPAGE_RESV_OWNER (1UL << 0) 1064 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1065 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1066 1067 /* 1068 * These helpers are used to track how many pages are reserved for 1069 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1070 * is guaranteed to have their future faults succeed. 1071 * 1072 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1073 * the reserve counters are updated with the hugetlb_lock held. It is safe 1074 * to reset the VMA at fork() time as it is not in use yet and there is no 1075 * chance of the global counters getting corrupted as a result of the values. 1076 * 1077 * The private mapping reservation is represented in a subtly different 1078 * manner to a shared mapping. A shared mapping has a region map associated 1079 * with the underlying file, this region map represents the backing file 1080 * pages which have ever had a reservation assigned which this persists even 1081 * after the page is instantiated. A private mapping has a region map 1082 * associated with the original mmap which is attached to all VMAs which 1083 * reference it, this region map represents those offsets which have consumed 1084 * reservation ie. where pages have been instantiated. 1085 */ 1086 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1087 { 1088 return (unsigned long)vma->vm_private_data; 1089 } 1090 1091 static void set_vma_private_data(struct vm_area_struct *vma, 1092 unsigned long value) 1093 { 1094 vma->vm_private_data = (void *)value; 1095 } 1096 1097 static void 1098 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1099 struct hugetlb_cgroup *h_cg, 1100 struct hstate *h) 1101 { 1102 #ifdef CONFIG_CGROUP_HUGETLB 1103 if (!h_cg || !h) { 1104 resv_map->reservation_counter = NULL; 1105 resv_map->pages_per_hpage = 0; 1106 resv_map->css = NULL; 1107 } else { 1108 resv_map->reservation_counter = 1109 &h_cg->rsvd_hugepage[hstate_index(h)]; 1110 resv_map->pages_per_hpage = pages_per_huge_page(h); 1111 resv_map->css = &h_cg->css; 1112 } 1113 #endif 1114 } 1115 1116 struct resv_map *resv_map_alloc(void) 1117 { 1118 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1119 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1120 1121 if (!resv_map || !rg) { 1122 kfree(resv_map); 1123 kfree(rg); 1124 return NULL; 1125 } 1126 1127 kref_init(&resv_map->refs); 1128 spin_lock_init(&resv_map->lock); 1129 INIT_LIST_HEAD(&resv_map->regions); 1130 init_rwsem(&resv_map->rw_sema); 1131 1132 resv_map->adds_in_progress = 0; 1133 /* 1134 * Initialize these to 0. On shared mappings, 0's here indicate these 1135 * fields don't do cgroup accounting. On private mappings, these will be 1136 * re-initialized to the proper values, to indicate that hugetlb cgroup 1137 * reservations are to be un-charged from here. 1138 */ 1139 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1140 1141 INIT_LIST_HEAD(&resv_map->region_cache); 1142 list_add(&rg->link, &resv_map->region_cache); 1143 resv_map->region_cache_count = 1; 1144 1145 return resv_map; 1146 } 1147 1148 void resv_map_release(struct kref *ref) 1149 { 1150 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1151 struct list_head *head = &resv_map->region_cache; 1152 struct file_region *rg, *trg; 1153 1154 /* Clear out any active regions before we release the map. */ 1155 region_del(resv_map, 0, LONG_MAX); 1156 1157 /* ... and any entries left in the cache */ 1158 list_for_each_entry_safe(rg, trg, head, link) { 1159 list_del(&rg->link); 1160 kfree(rg); 1161 } 1162 1163 VM_BUG_ON(resv_map->adds_in_progress); 1164 1165 kfree(resv_map); 1166 } 1167 1168 static inline struct resv_map *inode_resv_map(struct inode *inode) 1169 { 1170 /* 1171 * At inode evict time, i_mapping may not point to the original 1172 * address space within the inode. This original address space 1173 * contains the pointer to the resv_map. So, always use the 1174 * address space embedded within the inode. 1175 * The VERY common case is inode->mapping == &inode->i_data but, 1176 * this may not be true for device special inodes. 1177 */ 1178 return (struct resv_map *)(&inode->i_data)->i_private_data; 1179 } 1180 1181 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1182 { 1183 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1184 if (vma->vm_flags & VM_MAYSHARE) { 1185 struct address_space *mapping = vma->vm_file->f_mapping; 1186 struct inode *inode = mapping->host; 1187 1188 return inode_resv_map(inode); 1189 1190 } else { 1191 return (struct resv_map *)(get_vma_private_data(vma) & 1192 ~HPAGE_RESV_MASK); 1193 } 1194 } 1195 1196 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1197 { 1198 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1199 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1200 1201 set_vma_private_data(vma, (unsigned long)map); 1202 } 1203 1204 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1205 { 1206 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1207 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1208 1209 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1210 } 1211 1212 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1213 { 1214 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1215 1216 return (get_vma_private_data(vma) & flag) != 0; 1217 } 1218 1219 bool __vma_private_lock(struct vm_area_struct *vma) 1220 { 1221 return !(vma->vm_flags & VM_MAYSHARE) && 1222 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1223 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1224 } 1225 1226 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1227 { 1228 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1229 /* 1230 * Clear vm_private_data 1231 * - For shared mappings this is a per-vma semaphore that may be 1232 * allocated in a subsequent call to hugetlb_vm_op_open. 1233 * Before clearing, make sure pointer is not associated with vma 1234 * as this will leak the structure. This is the case when called 1235 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1236 * been called to allocate a new structure. 1237 * - For MAP_PRIVATE mappings, this is the reserve map which does 1238 * not apply to children. Faults generated by the children are 1239 * not guaranteed to succeed, even if read-only. 1240 */ 1241 if (vma->vm_flags & VM_MAYSHARE) { 1242 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1243 1244 if (vma_lock && vma_lock->vma != vma) 1245 vma->vm_private_data = NULL; 1246 } else 1247 vma->vm_private_data = NULL; 1248 } 1249 1250 /* 1251 * Reset and decrement one ref on hugepage private reservation. 1252 * Called with mm->mmap_lock writer semaphore held. 1253 * This function should be only used by move_vma() and operate on 1254 * same sized vma. It should never come here with last ref on the 1255 * reservation. 1256 */ 1257 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1258 { 1259 /* 1260 * Clear the old hugetlb private page reservation. 1261 * It has already been transferred to new_vma. 1262 * 1263 * During a mremap() operation of a hugetlb vma we call move_vma() 1264 * which copies vma into new_vma and unmaps vma. After the copy 1265 * operation both new_vma and vma share a reference to the resv_map 1266 * struct, and at that point vma is about to be unmapped. We don't 1267 * want to return the reservation to the pool at unmap of vma because 1268 * the reservation still lives on in new_vma, so simply decrement the 1269 * ref here and remove the resv_map reference from this vma. 1270 */ 1271 struct resv_map *reservations = vma_resv_map(vma); 1272 1273 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1274 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1275 kref_put(&reservations->refs, resv_map_release); 1276 } 1277 1278 hugetlb_dup_vma_private(vma); 1279 } 1280 1281 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1282 { 1283 int nid = folio_nid(folio); 1284 1285 lockdep_assert_held(&hugetlb_lock); 1286 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1287 1288 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1289 h->free_huge_pages++; 1290 h->free_huge_pages_node[nid]++; 1291 folio_set_hugetlb_freed(folio); 1292 } 1293 1294 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1295 int nid) 1296 { 1297 struct folio *folio; 1298 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1299 1300 lockdep_assert_held(&hugetlb_lock); 1301 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1302 if (pin && !folio_is_longterm_pinnable(folio)) 1303 continue; 1304 1305 if (folio_test_hwpoison(folio)) 1306 continue; 1307 1308 if (is_migrate_isolate_page(&folio->page)) 1309 continue; 1310 1311 list_move(&folio->lru, &h->hugepage_activelist); 1312 folio_ref_unfreeze(folio, 1); 1313 folio_clear_hugetlb_freed(folio); 1314 h->free_huge_pages--; 1315 h->free_huge_pages_node[nid]--; 1316 return folio; 1317 } 1318 1319 return NULL; 1320 } 1321 1322 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1323 int nid, nodemask_t *nmask) 1324 { 1325 unsigned int cpuset_mems_cookie; 1326 struct zonelist *zonelist; 1327 struct zone *zone; 1328 struct zoneref *z; 1329 int node = NUMA_NO_NODE; 1330 1331 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1332 if (nid == NUMA_NO_NODE) 1333 nid = numa_node_id(); 1334 1335 zonelist = node_zonelist(nid, gfp_mask); 1336 1337 retry_cpuset: 1338 cpuset_mems_cookie = read_mems_allowed_begin(); 1339 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1340 struct folio *folio; 1341 1342 if (!cpuset_zone_allowed(zone, gfp_mask)) 1343 continue; 1344 /* 1345 * no need to ask again on the same node. Pool is node rather than 1346 * zone aware 1347 */ 1348 if (zone_to_nid(zone) == node) 1349 continue; 1350 node = zone_to_nid(zone); 1351 1352 folio = dequeue_hugetlb_folio_node_exact(h, node); 1353 if (folio) 1354 return folio; 1355 } 1356 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1357 goto retry_cpuset; 1358 1359 return NULL; 1360 } 1361 1362 static unsigned long available_huge_pages(struct hstate *h) 1363 { 1364 return h->free_huge_pages - h->resv_huge_pages; 1365 } 1366 1367 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1368 struct vm_area_struct *vma, 1369 unsigned long address, long gbl_chg) 1370 { 1371 struct folio *folio = NULL; 1372 struct mempolicy *mpol; 1373 gfp_t gfp_mask; 1374 nodemask_t *nodemask; 1375 int nid; 1376 1377 /* 1378 * gbl_chg==1 means the allocation requires a new page that was not 1379 * reserved before. Making sure there's at least one free page. 1380 */ 1381 if (gbl_chg && !available_huge_pages(h)) 1382 goto err; 1383 1384 gfp_mask = htlb_alloc_mask(h); 1385 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1386 1387 if (mpol_is_preferred_many(mpol)) { 1388 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1389 nid, nodemask); 1390 1391 /* Fallback to all nodes if page==NULL */ 1392 nodemask = NULL; 1393 } 1394 1395 if (!folio) 1396 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1397 nid, nodemask); 1398 1399 mpol_cond_put(mpol); 1400 return folio; 1401 1402 err: 1403 return NULL; 1404 } 1405 1406 /* 1407 * common helper functions for hstate_next_node_to_{alloc|free}. 1408 * We may have allocated or freed a huge page based on a different 1409 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1410 * be outside of *nodes_allowed. Ensure that we use an allowed 1411 * node for alloc or free. 1412 */ 1413 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1414 { 1415 nid = next_node_in(nid, *nodes_allowed); 1416 VM_BUG_ON(nid >= MAX_NUMNODES); 1417 1418 return nid; 1419 } 1420 1421 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1422 { 1423 if (!node_isset(nid, *nodes_allowed)) 1424 nid = next_node_allowed(nid, nodes_allowed); 1425 return nid; 1426 } 1427 1428 /* 1429 * returns the previously saved node ["this node"] from which to 1430 * allocate a persistent huge page for the pool and advance the 1431 * next node from which to allocate, handling wrap at end of node 1432 * mask. 1433 */ 1434 static int hstate_next_node_to_alloc(int *next_node, 1435 nodemask_t *nodes_allowed) 1436 { 1437 int nid; 1438 1439 VM_BUG_ON(!nodes_allowed); 1440 1441 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1442 *next_node = next_node_allowed(nid, nodes_allowed); 1443 1444 return nid; 1445 } 1446 1447 /* 1448 * helper for remove_pool_hugetlb_folio() - return the previously saved 1449 * node ["this node"] from which to free a huge page. Advance the 1450 * next node id whether or not we find a free huge page to free so 1451 * that the next attempt to free addresses the next node. 1452 */ 1453 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1454 { 1455 int nid; 1456 1457 VM_BUG_ON(!nodes_allowed); 1458 1459 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1460 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1461 1462 return nid; 1463 } 1464 1465 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1466 for (nr_nodes = nodes_weight(*mask); \ 1467 nr_nodes > 0 && \ 1468 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1469 nr_nodes--) 1470 1471 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1472 for (nr_nodes = nodes_weight(*mask); \ 1473 nr_nodes > 0 && \ 1474 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1475 nr_nodes--) 1476 1477 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1478 #ifdef CONFIG_CONTIG_ALLOC 1479 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1480 int nid, nodemask_t *nodemask) 1481 { 1482 struct folio *folio; 1483 int order = huge_page_order(h); 1484 bool retried = false; 1485 1486 if (nid == NUMA_NO_NODE) 1487 nid = numa_mem_id(); 1488 retry: 1489 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask); 1490 if (!folio) { 1491 if (hugetlb_cma_exclusive_alloc()) 1492 return NULL; 1493 1494 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1495 if (!folio) 1496 return NULL; 1497 } 1498 1499 if (folio_ref_freeze(folio, 1)) 1500 return folio; 1501 1502 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1503 hugetlb_free_folio(folio); 1504 if (!retried) { 1505 retried = true; 1506 goto retry; 1507 } 1508 return NULL; 1509 } 1510 1511 #else /* !CONFIG_CONTIG_ALLOC */ 1512 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1513 int nid, nodemask_t *nodemask) 1514 { 1515 return NULL; 1516 } 1517 #endif /* CONFIG_CONTIG_ALLOC */ 1518 1519 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1520 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1521 int nid, nodemask_t *nodemask) 1522 { 1523 return NULL; 1524 } 1525 #endif 1526 1527 /* 1528 * Remove hugetlb folio from lists. 1529 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1530 * folio appears as just a compound page. Otherwise, wait until after 1531 * allocating vmemmap to clear the flag. 1532 * 1533 * Must be called with hugetlb lock held. 1534 */ 1535 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1536 bool adjust_surplus) 1537 { 1538 int nid = folio_nid(folio); 1539 1540 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1542 1543 lockdep_assert_held(&hugetlb_lock); 1544 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1545 return; 1546 1547 list_del(&folio->lru); 1548 1549 if (folio_test_hugetlb_freed(folio)) { 1550 folio_clear_hugetlb_freed(folio); 1551 h->free_huge_pages--; 1552 h->free_huge_pages_node[nid]--; 1553 } 1554 if (adjust_surplus) { 1555 h->surplus_huge_pages--; 1556 h->surplus_huge_pages_node[nid]--; 1557 } 1558 1559 /* 1560 * We can only clear the hugetlb flag after allocating vmemmap 1561 * pages. Otherwise, someone (memory error handling) may try to write 1562 * to tail struct pages. 1563 */ 1564 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1565 __folio_clear_hugetlb(folio); 1566 1567 h->nr_huge_pages--; 1568 h->nr_huge_pages_node[nid]--; 1569 } 1570 1571 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1572 bool adjust_surplus) 1573 { 1574 int nid = folio_nid(folio); 1575 1576 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1577 1578 lockdep_assert_held(&hugetlb_lock); 1579 1580 INIT_LIST_HEAD(&folio->lru); 1581 h->nr_huge_pages++; 1582 h->nr_huge_pages_node[nid]++; 1583 1584 if (adjust_surplus) { 1585 h->surplus_huge_pages++; 1586 h->surplus_huge_pages_node[nid]++; 1587 } 1588 1589 __folio_set_hugetlb(folio); 1590 folio_change_private(folio, NULL); 1591 /* 1592 * We have to set hugetlb_vmemmap_optimized again as above 1593 * folio_change_private(folio, NULL) cleared it. 1594 */ 1595 folio_set_hugetlb_vmemmap_optimized(folio); 1596 1597 arch_clear_hugetlb_flags(folio); 1598 enqueue_hugetlb_folio(h, folio); 1599 } 1600 1601 static void __update_and_free_hugetlb_folio(struct hstate *h, 1602 struct folio *folio) 1603 { 1604 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1605 1606 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1607 return; 1608 1609 /* 1610 * If we don't know which subpages are hwpoisoned, we can't free 1611 * the hugepage, so it's leaked intentionally. 1612 */ 1613 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1614 return; 1615 1616 /* 1617 * If folio is not vmemmap optimized (!clear_flag), then the folio 1618 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1619 * can only be passed hugetlb pages and will BUG otherwise. 1620 */ 1621 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1622 spin_lock_irq(&hugetlb_lock); 1623 /* 1624 * If we cannot allocate vmemmap pages, just refuse to free the 1625 * page and put the page back on the hugetlb free list and treat 1626 * as a surplus page. 1627 */ 1628 add_hugetlb_folio(h, folio, true); 1629 spin_unlock_irq(&hugetlb_lock); 1630 return; 1631 } 1632 1633 /* 1634 * If vmemmap pages were allocated above, then we need to clear the 1635 * hugetlb flag under the hugetlb lock. 1636 */ 1637 if (folio_test_hugetlb(folio)) { 1638 spin_lock_irq(&hugetlb_lock); 1639 __folio_clear_hugetlb(folio); 1640 spin_unlock_irq(&hugetlb_lock); 1641 } 1642 1643 /* 1644 * Move PageHWPoison flag from head page to the raw error pages, 1645 * which makes any healthy subpages reusable. 1646 */ 1647 if (unlikely(folio_test_hwpoison(folio))) 1648 folio_clear_hugetlb_hwpoison(folio); 1649 1650 folio_ref_unfreeze(folio, 1); 1651 1652 hugetlb_free_folio(folio); 1653 } 1654 1655 /* 1656 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1657 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1658 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1659 * the vmemmap pages. 1660 * 1661 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1662 * freed and frees them one-by-one. As the page->mapping pointer is going 1663 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1664 * structure of a lockless linked list of huge pages to be freed. 1665 */ 1666 static LLIST_HEAD(hpage_freelist); 1667 1668 static void free_hpage_workfn(struct work_struct *work) 1669 { 1670 struct llist_node *node; 1671 1672 node = llist_del_all(&hpage_freelist); 1673 1674 while (node) { 1675 struct folio *folio; 1676 struct hstate *h; 1677 1678 folio = container_of((struct address_space **)node, 1679 struct folio, mapping); 1680 node = node->next; 1681 folio->mapping = NULL; 1682 /* 1683 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1684 * folio_hstate() is going to trigger because a previous call to 1685 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1686 * not use folio_hstate() directly. 1687 */ 1688 h = size_to_hstate(folio_size(folio)); 1689 1690 __update_and_free_hugetlb_folio(h, folio); 1691 1692 cond_resched(); 1693 } 1694 } 1695 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1696 1697 static inline void flush_free_hpage_work(struct hstate *h) 1698 { 1699 if (hugetlb_vmemmap_optimizable(h)) 1700 flush_work(&free_hpage_work); 1701 } 1702 1703 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1704 bool atomic) 1705 { 1706 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1707 __update_and_free_hugetlb_folio(h, folio); 1708 return; 1709 } 1710 1711 /* 1712 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1713 * 1714 * Only call schedule_work() if hpage_freelist is previously 1715 * empty. Otherwise, schedule_work() had been called but the workfn 1716 * hasn't retrieved the list yet. 1717 */ 1718 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1719 schedule_work(&free_hpage_work); 1720 } 1721 1722 static void bulk_vmemmap_restore_error(struct hstate *h, 1723 struct list_head *folio_list, 1724 struct list_head *non_hvo_folios) 1725 { 1726 struct folio *folio, *t_folio; 1727 1728 if (!list_empty(non_hvo_folios)) { 1729 /* 1730 * Free any restored hugetlb pages so that restore of the 1731 * entire list can be retried. 1732 * The idea is that in the common case of ENOMEM errors freeing 1733 * hugetlb pages with vmemmap we will free up memory so that we 1734 * can allocate vmemmap for more hugetlb pages. 1735 */ 1736 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1737 list_del(&folio->lru); 1738 spin_lock_irq(&hugetlb_lock); 1739 __folio_clear_hugetlb(folio); 1740 spin_unlock_irq(&hugetlb_lock); 1741 update_and_free_hugetlb_folio(h, folio, false); 1742 cond_resched(); 1743 } 1744 } else { 1745 /* 1746 * In the case where there are no folios which can be 1747 * immediately freed, we loop through the list trying to restore 1748 * vmemmap individually in the hope that someone elsewhere may 1749 * have done something to cause success (such as freeing some 1750 * memory). If unable to restore a hugetlb page, the hugetlb 1751 * page is made a surplus page and removed from the list. 1752 * If are able to restore vmemmap and free one hugetlb page, we 1753 * quit processing the list to retry the bulk operation. 1754 */ 1755 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1756 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1757 list_del(&folio->lru); 1758 spin_lock_irq(&hugetlb_lock); 1759 add_hugetlb_folio(h, folio, true); 1760 spin_unlock_irq(&hugetlb_lock); 1761 } else { 1762 list_del(&folio->lru); 1763 spin_lock_irq(&hugetlb_lock); 1764 __folio_clear_hugetlb(folio); 1765 spin_unlock_irq(&hugetlb_lock); 1766 update_and_free_hugetlb_folio(h, folio, false); 1767 cond_resched(); 1768 break; 1769 } 1770 } 1771 } 1772 1773 static void update_and_free_pages_bulk(struct hstate *h, 1774 struct list_head *folio_list) 1775 { 1776 long ret; 1777 struct folio *folio, *t_folio; 1778 LIST_HEAD(non_hvo_folios); 1779 1780 /* 1781 * First allocate required vmemmmap (if necessary) for all folios. 1782 * Carefully handle errors and free up any available hugetlb pages 1783 * in an effort to make forward progress. 1784 */ 1785 retry: 1786 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1787 if (ret < 0) { 1788 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1789 goto retry; 1790 } 1791 1792 /* 1793 * At this point, list should be empty, ret should be >= 0 and there 1794 * should only be pages on the non_hvo_folios list. 1795 * Do note that the non_hvo_folios list could be empty. 1796 * Without HVO enabled, ret will be 0 and there is no need to call 1797 * __folio_clear_hugetlb as this was done previously. 1798 */ 1799 VM_WARN_ON(!list_empty(folio_list)); 1800 VM_WARN_ON(ret < 0); 1801 if (!list_empty(&non_hvo_folios) && ret) { 1802 spin_lock_irq(&hugetlb_lock); 1803 list_for_each_entry(folio, &non_hvo_folios, lru) 1804 __folio_clear_hugetlb(folio); 1805 spin_unlock_irq(&hugetlb_lock); 1806 } 1807 1808 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1809 update_and_free_hugetlb_folio(h, folio, false); 1810 cond_resched(); 1811 } 1812 } 1813 1814 struct hstate *size_to_hstate(unsigned long size) 1815 { 1816 struct hstate *h; 1817 1818 for_each_hstate(h) { 1819 if (huge_page_size(h) == size) 1820 return h; 1821 } 1822 return NULL; 1823 } 1824 1825 void free_huge_folio(struct folio *folio) 1826 { 1827 /* 1828 * Can't pass hstate in here because it is called from the 1829 * generic mm code. 1830 */ 1831 struct hstate *h = folio_hstate(folio); 1832 int nid = folio_nid(folio); 1833 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1834 bool restore_reserve; 1835 unsigned long flags; 1836 1837 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1838 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1839 1840 hugetlb_set_folio_subpool(folio, NULL); 1841 if (folio_test_anon(folio)) 1842 __ClearPageAnonExclusive(&folio->page); 1843 folio->mapping = NULL; 1844 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1845 folio_clear_hugetlb_restore_reserve(folio); 1846 1847 /* 1848 * If HPageRestoreReserve was set on page, page allocation consumed a 1849 * reservation. If the page was associated with a subpool, there 1850 * would have been a page reserved in the subpool before allocation 1851 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1852 * reservation, do not call hugepage_subpool_put_pages() as this will 1853 * remove the reserved page from the subpool. 1854 */ 1855 if (!restore_reserve) { 1856 /* 1857 * A return code of zero implies that the subpool will be 1858 * under its minimum size if the reservation is not restored 1859 * after page is free. Therefore, force restore_reserve 1860 * operation. 1861 */ 1862 if (hugepage_subpool_put_pages(spool, 1) == 0) 1863 restore_reserve = true; 1864 } 1865 1866 spin_lock_irqsave(&hugetlb_lock, flags); 1867 folio_clear_hugetlb_migratable(folio); 1868 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1869 pages_per_huge_page(h), folio); 1870 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1871 pages_per_huge_page(h), folio); 1872 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1873 mem_cgroup_uncharge(folio); 1874 if (restore_reserve) 1875 h->resv_huge_pages++; 1876 1877 if (folio_test_hugetlb_temporary(folio)) { 1878 remove_hugetlb_folio(h, folio, false); 1879 spin_unlock_irqrestore(&hugetlb_lock, flags); 1880 update_and_free_hugetlb_folio(h, folio, true); 1881 } else if (h->surplus_huge_pages_node[nid]) { 1882 /* remove the page from active list */ 1883 remove_hugetlb_folio(h, folio, true); 1884 spin_unlock_irqrestore(&hugetlb_lock, flags); 1885 update_and_free_hugetlb_folio(h, folio, true); 1886 } else { 1887 arch_clear_hugetlb_flags(folio); 1888 enqueue_hugetlb_folio(h, folio); 1889 spin_unlock_irqrestore(&hugetlb_lock, flags); 1890 } 1891 } 1892 1893 /* 1894 * Must be called with the hugetlb lock held 1895 */ 1896 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1897 { 1898 lockdep_assert_held(&hugetlb_lock); 1899 h->nr_huge_pages++; 1900 h->nr_huge_pages_node[nid]++; 1901 } 1902 1903 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1904 { 1905 __folio_set_hugetlb(folio); 1906 INIT_LIST_HEAD(&folio->lru); 1907 hugetlb_set_folio_subpool(folio, NULL); 1908 set_hugetlb_cgroup(folio, NULL); 1909 set_hugetlb_cgroup_rsvd(folio, NULL); 1910 } 1911 1912 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1913 { 1914 init_new_hugetlb_folio(h, folio); 1915 hugetlb_vmemmap_optimize_folio(h, folio); 1916 } 1917 1918 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1919 { 1920 __prep_new_hugetlb_folio(h, folio); 1921 spin_lock_irq(&hugetlb_lock); 1922 __prep_account_new_huge_page(h, nid); 1923 spin_unlock_irq(&hugetlb_lock); 1924 } 1925 1926 /* 1927 * Find and lock address space (mapping) in write mode. 1928 * 1929 * Upon entry, the folio is locked which means that folio_mapping() is 1930 * stable. Due to locking order, we can only trylock_write. If we can 1931 * not get the lock, simply return NULL to caller. 1932 */ 1933 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1934 { 1935 struct address_space *mapping = folio_mapping(folio); 1936 1937 if (!mapping) 1938 return mapping; 1939 1940 if (i_mmap_trylock_write(mapping)) 1941 return mapping; 1942 1943 return NULL; 1944 } 1945 1946 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1947 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1948 nodemask_t *node_alloc_noretry) 1949 { 1950 int order = huge_page_order(h); 1951 struct folio *folio; 1952 bool alloc_try_hard = true; 1953 bool retry = true; 1954 1955 /* 1956 * By default we always try hard to allocate the folio with 1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1958 * a loop (to adjust global huge page counts) and previous allocation 1959 * failed, do not continue to try hard on the same node. Use the 1960 * node_alloc_noretry bitmap to manage this state information. 1961 */ 1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1963 alloc_try_hard = false; 1964 if (alloc_try_hard) 1965 gfp_mask |= __GFP_RETRY_MAYFAIL; 1966 if (nid == NUMA_NO_NODE) 1967 nid = numa_mem_id(); 1968 retry: 1969 folio = __folio_alloc(gfp_mask, order, nid, nmask); 1970 /* Ensure hugetlb folio won't have large_rmappable flag set. */ 1971 if (folio) 1972 folio_clear_large_rmappable(folio); 1973 1974 if (folio && !folio_ref_freeze(folio, 1)) { 1975 folio_put(folio); 1976 if (retry) { /* retry once */ 1977 retry = false; 1978 goto retry; 1979 } 1980 /* WOW! twice in a row. */ 1981 pr_warn("HugeTLB unexpected inflated folio ref count\n"); 1982 folio = NULL; 1983 } 1984 1985 /* 1986 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1987 * folio this indicates an overall state change. Clear bit so 1988 * that we resume normal 'try hard' allocations. 1989 */ 1990 if (node_alloc_noretry && folio && !alloc_try_hard) 1991 node_clear(nid, *node_alloc_noretry); 1992 1993 /* 1994 * If we tried hard to get a folio but failed, set bit so that 1995 * subsequent attempts will not try as hard until there is an 1996 * overall state change. 1997 */ 1998 if (node_alloc_noretry && !folio && alloc_try_hard) 1999 node_set(nid, *node_alloc_noretry); 2000 2001 if (!folio) { 2002 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2003 return NULL; 2004 } 2005 2006 __count_vm_event(HTLB_BUDDY_PGALLOC); 2007 return folio; 2008 } 2009 2010 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 2011 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2012 nodemask_t *node_alloc_noretry) 2013 { 2014 struct folio *folio; 2015 2016 if (hstate_is_gigantic(h)) 2017 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2018 else 2019 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2020 if (folio) 2021 init_new_hugetlb_folio(h, folio); 2022 return folio; 2023 } 2024 2025 /* 2026 * Common helper to allocate a fresh hugetlb page. All specific allocators 2027 * should use this function to get new hugetlb pages 2028 * 2029 * Note that returned page is 'frozen': ref count of head page and all tail 2030 * pages is zero. 2031 */ 2032 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2033 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2034 { 2035 struct folio *folio; 2036 2037 if (hstate_is_gigantic(h)) 2038 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2039 else 2040 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2041 if (!folio) 2042 return NULL; 2043 2044 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2045 return folio; 2046 } 2047 2048 static void prep_and_add_allocated_folios(struct hstate *h, 2049 struct list_head *folio_list) 2050 { 2051 unsigned long flags; 2052 struct folio *folio, *tmp_f; 2053 2054 /* Send list for bulk vmemmap optimization processing */ 2055 hugetlb_vmemmap_optimize_folios(h, folio_list); 2056 2057 /* Add all new pool pages to free lists in one lock cycle */ 2058 spin_lock_irqsave(&hugetlb_lock, flags); 2059 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2060 __prep_account_new_huge_page(h, folio_nid(folio)); 2061 enqueue_hugetlb_folio(h, folio); 2062 } 2063 spin_unlock_irqrestore(&hugetlb_lock, flags); 2064 } 2065 2066 /* 2067 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2068 * will later be added to the appropriate hugetlb pool. 2069 */ 2070 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2071 nodemask_t *nodes_allowed, 2072 nodemask_t *node_alloc_noretry, 2073 int *next_node) 2074 { 2075 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2076 int nr_nodes, node; 2077 2078 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2079 struct folio *folio; 2080 2081 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2082 nodes_allowed, node_alloc_noretry); 2083 if (folio) 2084 return folio; 2085 } 2086 2087 return NULL; 2088 } 2089 2090 /* 2091 * Remove huge page from pool from next node to free. Attempt to keep 2092 * persistent huge pages more or less balanced over allowed nodes. 2093 * This routine only 'removes' the hugetlb page. The caller must make 2094 * an additional call to free the page to low level allocators. 2095 * Called with hugetlb_lock locked. 2096 */ 2097 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2098 nodemask_t *nodes_allowed, bool acct_surplus) 2099 { 2100 int nr_nodes, node; 2101 struct folio *folio = NULL; 2102 2103 lockdep_assert_held(&hugetlb_lock); 2104 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2105 /* 2106 * If we're returning unused surplus pages, only examine 2107 * nodes with surplus pages. 2108 */ 2109 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2110 !list_empty(&h->hugepage_freelists[node])) { 2111 folio = list_entry(h->hugepage_freelists[node].next, 2112 struct folio, lru); 2113 remove_hugetlb_folio(h, folio, acct_surplus); 2114 break; 2115 } 2116 } 2117 2118 return folio; 2119 } 2120 2121 /* 2122 * Dissolve a given free hugetlb folio into free buddy pages. This function 2123 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2124 * This function returns values like below: 2125 * 2126 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2127 * when the system is under memory pressure and the feature of 2128 * freeing unused vmemmap pages associated with each hugetlb page 2129 * is enabled. 2130 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2131 * (allocated or reserved.) 2132 * 0: successfully dissolved free hugepages or the page is not a 2133 * hugepage (considered as already dissolved) 2134 */ 2135 int dissolve_free_hugetlb_folio(struct folio *folio) 2136 { 2137 int rc = -EBUSY; 2138 2139 retry: 2140 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2141 if (!folio_test_hugetlb(folio)) 2142 return 0; 2143 2144 spin_lock_irq(&hugetlb_lock); 2145 if (!folio_test_hugetlb(folio)) { 2146 rc = 0; 2147 goto out; 2148 } 2149 2150 if (!folio_ref_count(folio)) { 2151 struct hstate *h = folio_hstate(folio); 2152 bool adjust_surplus = false; 2153 2154 if (!available_huge_pages(h)) 2155 goto out; 2156 2157 /* 2158 * We should make sure that the page is already on the free list 2159 * when it is dissolved. 2160 */ 2161 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2162 spin_unlock_irq(&hugetlb_lock); 2163 cond_resched(); 2164 2165 /* 2166 * Theoretically, we should return -EBUSY when we 2167 * encounter this race. In fact, we have a chance 2168 * to successfully dissolve the page if we do a 2169 * retry. Because the race window is quite small. 2170 * If we seize this opportunity, it is an optimization 2171 * for increasing the success rate of dissolving page. 2172 */ 2173 goto retry; 2174 } 2175 2176 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2177 adjust_surplus = true; 2178 remove_hugetlb_folio(h, folio, adjust_surplus); 2179 h->max_huge_pages--; 2180 spin_unlock_irq(&hugetlb_lock); 2181 2182 /* 2183 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2184 * before freeing the page. update_and_free_hugtlb_folio will fail to 2185 * free the page if it can not allocate required vmemmap. We 2186 * need to adjust max_huge_pages if the page is not freed. 2187 * Attempt to allocate vmemmmap here so that we can take 2188 * appropriate action on failure. 2189 * 2190 * The folio_test_hugetlb check here is because 2191 * remove_hugetlb_folio will clear hugetlb folio flag for 2192 * non-vmemmap optimized hugetlb folios. 2193 */ 2194 if (folio_test_hugetlb(folio)) { 2195 rc = hugetlb_vmemmap_restore_folio(h, folio); 2196 if (rc) { 2197 spin_lock_irq(&hugetlb_lock); 2198 add_hugetlb_folio(h, folio, adjust_surplus); 2199 h->max_huge_pages++; 2200 goto out; 2201 } 2202 } else 2203 rc = 0; 2204 2205 update_and_free_hugetlb_folio(h, folio, false); 2206 return rc; 2207 } 2208 out: 2209 spin_unlock_irq(&hugetlb_lock); 2210 return rc; 2211 } 2212 2213 /* 2214 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2215 * make specified memory blocks removable from the system. 2216 * Note that this will dissolve a free gigantic hugepage completely, if any 2217 * part of it lies within the given range. 2218 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2219 * free hugetlb folios that were dissolved before that error are lost. 2220 */ 2221 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2222 { 2223 unsigned long pfn; 2224 struct folio *folio; 2225 int rc = 0; 2226 unsigned int order; 2227 struct hstate *h; 2228 2229 if (!hugepages_supported()) 2230 return rc; 2231 2232 order = huge_page_order(&default_hstate); 2233 for_each_hstate(h) 2234 order = min(order, huge_page_order(h)); 2235 2236 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2237 folio = pfn_folio(pfn); 2238 rc = dissolve_free_hugetlb_folio(folio); 2239 if (rc) 2240 break; 2241 } 2242 2243 return rc; 2244 } 2245 2246 /* 2247 * Allocates a fresh surplus page from the page allocator. 2248 */ 2249 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2250 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2251 { 2252 struct folio *folio = NULL; 2253 2254 if (hstate_is_gigantic(h)) 2255 return NULL; 2256 2257 spin_lock_irq(&hugetlb_lock); 2258 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2259 goto out_unlock; 2260 spin_unlock_irq(&hugetlb_lock); 2261 2262 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2263 if (!folio) 2264 return NULL; 2265 2266 hugetlb_vmemmap_optimize_folio(h, folio); 2267 2268 spin_lock_irq(&hugetlb_lock); 2269 /* 2270 * nr_huge_pages needs to be adjusted within the same lock cycle 2271 * as surplus_pages, otherwise it might confuse 2272 * persistent_huge_pages() momentarily. 2273 */ 2274 __prep_account_new_huge_page(h, nid); 2275 2276 /* 2277 * We could have raced with the pool size change. 2278 * Double check that and simply deallocate the new page 2279 * if we would end up overcommiting the surpluses. Abuse 2280 * temporary page to workaround the nasty free_huge_folio 2281 * codeflow 2282 */ 2283 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2284 folio_set_hugetlb_temporary(folio); 2285 spin_unlock_irq(&hugetlb_lock); 2286 free_huge_folio(folio); 2287 return NULL; 2288 } 2289 2290 h->surplus_huge_pages++; 2291 h->surplus_huge_pages_node[folio_nid(folio)]++; 2292 2293 out_unlock: 2294 spin_unlock_irq(&hugetlb_lock); 2295 2296 return folio; 2297 } 2298 2299 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2300 int nid, nodemask_t *nmask) 2301 { 2302 struct folio *folio; 2303 2304 if (hstate_is_gigantic(h)) 2305 return NULL; 2306 2307 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2308 if (!folio) 2309 return NULL; 2310 2311 /* fresh huge pages are frozen */ 2312 folio_ref_unfreeze(folio, 1); 2313 /* 2314 * We do not account these pages as surplus because they are only 2315 * temporary and will be released properly on the last reference 2316 */ 2317 folio_set_hugetlb_temporary(folio); 2318 2319 return folio; 2320 } 2321 2322 /* 2323 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2324 */ 2325 static 2326 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2327 struct vm_area_struct *vma, unsigned long addr) 2328 { 2329 struct folio *folio = NULL; 2330 struct mempolicy *mpol; 2331 gfp_t gfp_mask = htlb_alloc_mask(h); 2332 int nid; 2333 nodemask_t *nodemask; 2334 2335 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2336 if (mpol_is_preferred_many(mpol)) { 2337 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2338 2339 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2340 2341 /* Fallback to all nodes if page==NULL */ 2342 nodemask = NULL; 2343 } 2344 2345 if (!folio) 2346 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2347 mpol_cond_put(mpol); 2348 return folio; 2349 } 2350 2351 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2352 nodemask_t *nmask, gfp_t gfp_mask) 2353 { 2354 struct folio *folio; 2355 2356 spin_lock_irq(&hugetlb_lock); 2357 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2358 nmask); 2359 if (folio) { 2360 VM_BUG_ON(!h->resv_huge_pages); 2361 h->resv_huge_pages--; 2362 } 2363 2364 spin_unlock_irq(&hugetlb_lock); 2365 return folio; 2366 } 2367 2368 /* folio migration callback function */ 2369 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2370 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2371 { 2372 spin_lock_irq(&hugetlb_lock); 2373 if (available_huge_pages(h)) { 2374 struct folio *folio; 2375 2376 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2377 preferred_nid, nmask); 2378 if (folio) { 2379 spin_unlock_irq(&hugetlb_lock); 2380 return folio; 2381 } 2382 } 2383 spin_unlock_irq(&hugetlb_lock); 2384 2385 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2386 if (!allow_alloc_fallback) 2387 gfp_mask |= __GFP_THISNODE; 2388 2389 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2390 } 2391 2392 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2393 { 2394 #ifdef CONFIG_NUMA 2395 struct mempolicy *mpol = get_task_policy(current); 2396 2397 /* 2398 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2399 * (from policy_nodemask) specifically for hugetlb case 2400 */ 2401 if (mpol->mode == MPOL_BIND && 2402 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2403 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2404 return &mpol->nodes; 2405 #endif 2406 return NULL; 2407 } 2408 2409 /* 2410 * Increase the hugetlb pool such that it can accommodate a reservation 2411 * of size 'delta'. 2412 */ 2413 static int gather_surplus_pages(struct hstate *h, long delta) 2414 __must_hold(&hugetlb_lock) 2415 { 2416 LIST_HEAD(surplus_list); 2417 struct folio *folio, *tmp; 2418 int ret; 2419 long i; 2420 long needed, allocated; 2421 bool alloc_ok = true; 2422 int node; 2423 nodemask_t *mbind_nodemask, alloc_nodemask; 2424 2425 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2426 if (mbind_nodemask) 2427 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2428 else 2429 alloc_nodemask = cpuset_current_mems_allowed; 2430 2431 lockdep_assert_held(&hugetlb_lock); 2432 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2433 if (needed <= 0) { 2434 h->resv_huge_pages += delta; 2435 return 0; 2436 } 2437 2438 allocated = 0; 2439 2440 ret = -ENOMEM; 2441 retry: 2442 spin_unlock_irq(&hugetlb_lock); 2443 for (i = 0; i < needed; i++) { 2444 folio = NULL; 2445 2446 /* Prioritize current node */ 2447 if (node_isset(numa_mem_id(), alloc_nodemask)) 2448 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2449 numa_mem_id(), NULL); 2450 2451 if (!folio) { 2452 for_each_node_mask(node, alloc_nodemask) { 2453 if (node == numa_mem_id()) 2454 continue; 2455 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2456 node, NULL); 2457 if (folio) 2458 break; 2459 } 2460 } 2461 if (!folio) { 2462 alloc_ok = false; 2463 break; 2464 } 2465 list_add(&folio->lru, &surplus_list); 2466 cond_resched(); 2467 } 2468 allocated += i; 2469 2470 /* 2471 * After retaking hugetlb_lock, we need to recalculate 'needed' 2472 * because either resv_huge_pages or free_huge_pages may have changed. 2473 */ 2474 spin_lock_irq(&hugetlb_lock); 2475 needed = (h->resv_huge_pages + delta) - 2476 (h->free_huge_pages + allocated); 2477 if (needed > 0) { 2478 if (alloc_ok) 2479 goto retry; 2480 /* 2481 * We were not able to allocate enough pages to 2482 * satisfy the entire reservation so we free what 2483 * we've allocated so far. 2484 */ 2485 goto free; 2486 } 2487 /* 2488 * The surplus_list now contains _at_least_ the number of extra pages 2489 * needed to accommodate the reservation. Add the appropriate number 2490 * of pages to the hugetlb pool and free the extras back to the buddy 2491 * allocator. Commit the entire reservation here to prevent another 2492 * process from stealing the pages as they are added to the pool but 2493 * before they are reserved. 2494 */ 2495 needed += allocated; 2496 h->resv_huge_pages += delta; 2497 ret = 0; 2498 2499 /* Free the needed pages to the hugetlb pool */ 2500 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2501 if ((--needed) < 0) 2502 break; 2503 /* Add the page to the hugetlb allocator */ 2504 enqueue_hugetlb_folio(h, folio); 2505 } 2506 free: 2507 spin_unlock_irq(&hugetlb_lock); 2508 2509 /* 2510 * Free unnecessary surplus pages to the buddy allocator. 2511 * Pages have no ref count, call free_huge_folio directly. 2512 */ 2513 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2514 free_huge_folio(folio); 2515 spin_lock_irq(&hugetlb_lock); 2516 2517 return ret; 2518 } 2519 2520 /* 2521 * This routine has two main purposes: 2522 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2523 * in unused_resv_pages. This corresponds to the prior adjustments made 2524 * to the associated reservation map. 2525 * 2) Free any unused surplus pages that may have been allocated to satisfy 2526 * the reservation. As many as unused_resv_pages may be freed. 2527 */ 2528 static void return_unused_surplus_pages(struct hstate *h, 2529 unsigned long unused_resv_pages) 2530 { 2531 unsigned long nr_pages; 2532 LIST_HEAD(page_list); 2533 2534 lockdep_assert_held(&hugetlb_lock); 2535 /* Uncommit the reservation */ 2536 h->resv_huge_pages -= unused_resv_pages; 2537 2538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2539 goto out; 2540 2541 /* 2542 * Part (or even all) of the reservation could have been backed 2543 * by pre-allocated pages. Only free surplus pages. 2544 */ 2545 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2546 2547 /* 2548 * We want to release as many surplus pages as possible, spread 2549 * evenly across all nodes with memory. Iterate across these nodes 2550 * until we can no longer free unreserved surplus pages. This occurs 2551 * when the nodes with surplus pages have no free pages. 2552 * remove_pool_hugetlb_folio() will balance the freed pages across the 2553 * on-line nodes with memory and will handle the hstate accounting. 2554 */ 2555 while (nr_pages--) { 2556 struct folio *folio; 2557 2558 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2559 if (!folio) 2560 goto out; 2561 2562 list_add(&folio->lru, &page_list); 2563 } 2564 2565 out: 2566 spin_unlock_irq(&hugetlb_lock); 2567 update_and_free_pages_bulk(h, &page_list); 2568 spin_lock_irq(&hugetlb_lock); 2569 } 2570 2571 2572 /* 2573 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2574 * are used by the huge page allocation routines to manage reservations. 2575 * 2576 * vma_needs_reservation is called to determine if the huge page at addr 2577 * within the vma has an associated reservation. If a reservation is 2578 * needed, the value 1 is returned. The caller is then responsible for 2579 * managing the global reservation and subpool usage counts. After 2580 * the huge page has been allocated, vma_commit_reservation is called 2581 * to add the page to the reservation map. If the page allocation fails, 2582 * the reservation must be ended instead of committed. vma_end_reservation 2583 * is called in such cases. 2584 * 2585 * In the normal case, vma_commit_reservation returns the same value 2586 * as the preceding vma_needs_reservation call. The only time this 2587 * is not the case is if a reserve map was changed between calls. It 2588 * is the responsibility of the caller to notice the difference and 2589 * take appropriate action. 2590 * 2591 * vma_add_reservation is used in error paths where a reservation must 2592 * be restored when a newly allocated huge page must be freed. It is 2593 * to be called after calling vma_needs_reservation to determine if a 2594 * reservation exists. 2595 * 2596 * vma_del_reservation is used in error paths where an entry in the reserve 2597 * map was created during huge page allocation and must be removed. It is to 2598 * be called after calling vma_needs_reservation to determine if a reservation 2599 * exists. 2600 */ 2601 enum vma_resv_mode { 2602 VMA_NEEDS_RESV, 2603 VMA_COMMIT_RESV, 2604 VMA_END_RESV, 2605 VMA_ADD_RESV, 2606 VMA_DEL_RESV, 2607 }; 2608 static long __vma_reservation_common(struct hstate *h, 2609 struct vm_area_struct *vma, unsigned long addr, 2610 enum vma_resv_mode mode) 2611 { 2612 struct resv_map *resv; 2613 pgoff_t idx; 2614 long ret; 2615 long dummy_out_regions_needed; 2616 2617 resv = vma_resv_map(vma); 2618 if (!resv) 2619 return 1; 2620 2621 idx = vma_hugecache_offset(h, vma, addr); 2622 switch (mode) { 2623 case VMA_NEEDS_RESV: 2624 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2625 /* We assume that vma_reservation_* routines always operate on 2626 * 1 page, and that adding to resv map a 1 page entry can only 2627 * ever require 1 region. 2628 */ 2629 VM_BUG_ON(dummy_out_regions_needed != 1); 2630 break; 2631 case VMA_COMMIT_RESV: 2632 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2633 /* region_add calls of range 1 should never fail. */ 2634 VM_BUG_ON(ret < 0); 2635 break; 2636 case VMA_END_RESV: 2637 region_abort(resv, idx, idx + 1, 1); 2638 ret = 0; 2639 break; 2640 case VMA_ADD_RESV: 2641 if (vma->vm_flags & VM_MAYSHARE) { 2642 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2643 /* region_add calls of range 1 should never fail. */ 2644 VM_BUG_ON(ret < 0); 2645 } else { 2646 region_abort(resv, idx, idx + 1, 1); 2647 ret = region_del(resv, idx, idx + 1); 2648 } 2649 break; 2650 case VMA_DEL_RESV: 2651 if (vma->vm_flags & VM_MAYSHARE) { 2652 region_abort(resv, idx, idx + 1, 1); 2653 ret = region_del(resv, idx, idx + 1); 2654 } else { 2655 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2656 /* region_add calls of range 1 should never fail. */ 2657 VM_BUG_ON(ret < 0); 2658 } 2659 break; 2660 default: 2661 BUG(); 2662 } 2663 2664 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2665 return ret; 2666 /* 2667 * We know private mapping must have HPAGE_RESV_OWNER set. 2668 * 2669 * In most cases, reserves always exist for private mappings. 2670 * However, a file associated with mapping could have been 2671 * hole punched or truncated after reserves were consumed. 2672 * As subsequent fault on such a range will not use reserves. 2673 * Subtle - The reserve map for private mappings has the 2674 * opposite meaning than that of shared mappings. If NO 2675 * entry is in the reserve map, it means a reservation exists. 2676 * If an entry exists in the reserve map, it means the 2677 * reservation has already been consumed. As a result, the 2678 * return value of this routine is the opposite of the 2679 * value returned from reserve map manipulation routines above. 2680 */ 2681 if (ret > 0) 2682 return 0; 2683 if (ret == 0) 2684 return 1; 2685 return ret; 2686 } 2687 2688 static long vma_needs_reservation(struct hstate *h, 2689 struct vm_area_struct *vma, unsigned long addr) 2690 { 2691 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2692 } 2693 2694 static long vma_commit_reservation(struct hstate *h, 2695 struct vm_area_struct *vma, unsigned long addr) 2696 { 2697 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2698 } 2699 2700 static void vma_end_reservation(struct hstate *h, 2701 struct vm_area_struct *vma, unsigned long addr) 2702 { 2703 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2704 } 2705 2706 static long vma_add_reservation(struct hstate *h, 2707 struct vm_area_struct *vma, unsigned long addr) 2708 { 2709 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2710 } 2711 2712 static long vma_del_reservation(struct hstate *h, 2713 struct vm_area_struct *vma, unsigned long addr) 2714 { 2715 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2716 } 2717 2718 /* 2719 * This routine is called to restore reservation information on error paths. 2720 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2721 * and the hugetlb mutex should remain held when calling this routine. 2722 * 2723 * It handles two specific cases: 2724 * 1) A reservation was in place and the folio consumed the reservation. 2725 * hugetlb_restore_reserve is set in the folio. 2726 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2727 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2728 * 2729 * In case 1, free_huge_folio later in the error path will increment the 2730 * global reserve count. But, free_huge_folio does not have enough context 2731 * to adjust the reservation map. This case deals primarily with private 2732 * mappings. Adjust the reserve map here to be consistent with global 2733 * reserve count adjustments to be made by free_huge_folio. Make sure the 2734 * reserve map indicates there is a reservation present. 2735 * 2736 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2737 */ 2738 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2739 unsigned long address, struct folio *folio) 2740 { 2741 long rc = vma_needs_reservation(h, vma, address); 2742 2743 if (folio_test_hugetlb_restore_reserve(folio)) { 2744 if (unlikely(rc < 0)) 2745 /* 2746 * Rare out of memory condition in reserve map 2747 * manipulation. Clear hugetlb_restore_reserve so 2748 * that global reserve count will not be incremented 2749 * by free_huge_folio. This will make it appear 2750 * as though the reservation for this folio was 2751 * consumed. This may prevent the task from 2752 * faulting in the folio at a later time. This 2753 * is better than inconsistent global huge page 2754 * accounting of reserve counts. 2755 */ 2756 folio_clear_hugetlb_restore_reserve(folio); 2757 else if (rc) 2758 (void)vma_add_reservation(h, vma, address); 2759 else 2760 vma_end_reservation(h, vma, address); 2761 } else { 2762 if (!rc) { 2763 /* 2764 * This indicates there is an entry in the reserve map 2765 * not added by alloc_hugetlb_folio. We know it was added 2766 * before the alloc_hugetlb_folio call, otherwise 2767 * hugetlb_restore_reserve would be set on the folio. 2768 * Remove the entry so that a subsequent allocation 2769 * does not consume a reservation. 2770 */ 2771 rc = vma_del_reservation(h, vma, address); 2772 if (rc < 0) 2773 /* 2774 * VERY rare out of memory condition. Since 2775 * we can not delete the entry, set 2776 * hugetlb_restore_reserve so that the reserve 2777 * count will be incremented when the folio 2778 * is freed. This reserve will be consumed 2779 * on a subsequent allocation. 2780 */ 2781 folio_set_hugetlb_restore_reserve(folio); 2782 } else if (rc < 0) { 2783 /* 2784 * Rare out of memory condition from 2785 * vma_needs_reservation call. Memory allocation is 2786 * only attempted if a new entry is needed. Therefore, 2787 * this implies there is not an entry in the 2788 * reserve map. 2789 * 2790 * For shared mappings, no entry in the map indicates 2791 * no reservation. We are done. 2792 */ 2793 if (!(vma->vm_flags & VM_MAYSHARE)) 2794 /* 2795 * For private mappings, no entry indicates 2796 * a reservation is present. Since we can 2797 * not add an entry, set hugetlb_restore_reserve 2798 * on the folio so reserve count will be 2799 * incremented when freed. This reserve will 2800 * be consumed on a subsequent allocation. 2801 */ 2802 folio_set_hugetlb_restore_reserve(folio); 2803 } else 2804 /* 2805 * No reservation present, do nothing 2806 */ 2807 vma_end_reservation(h, vma, address); 2808 } 2809 } 2810 2811 /* 2812 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2813 * the old one 2814 * @h: struct hstate old page belongs to 2815 * @old_folio: Old folio to dissolve 2816 * @list: List to isolate the page in case we need to 2817 * Returns 0 on success, otherwise negated error. 2818 */ 2819 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2820 struct folio *old_folio, struct list_head *list) 2821 { 2822 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2823 int nid = folio_nid(old_folio); 2824 struct folio *new_folio = NULL; 2825 int ret = 0; 2826 2827 retry: 2828 spin_lock_irq(&hugetlb_lock); 2829 if (!folio_test_hugetlb(old_folio)) { 2830 /* 2831 * Freed from under us. Drop new_folio too. 2832 */ 2833 goto free_new; 2834 } else if (folio_ref_count(old_folio)) { 2835 bool isolated; 2836 2837 /* 2838 * Someone has grabbed the folio, try to isolate it here. 2839 * Fail with -EBUSY if not possible. 2840 */ 2841 spin_unlock_irq(&hugetlb_lock); 2842 isolated = folio_isolate_hugetlb(old_folio, list); 2843 ret = isolated ? 0 : -EBUSY; 2844 spin_lock_irq(&hugetlb_lock); 2845 goto free_new; 2846 } else if (!folio_test_hugetlb_freed(old_folio)) { 2847 /* 2848 * Folio's refcount is 0 but it has not been enqueued in the 2849 * freelist yet. Race window is small, so we can succeed here if 2850 * we retry. 2851 */ 2852 spin_unlock_irq(&hugetlb_lock); 2853 cond_resched(); 2854 goto retry; 2855 } else { 2856 if (!new_folio) { 2857 spin_unlock_irq(&hugetlb_lock); 2858 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2859 NULL, NULL); 2860 if (!new_folio) 2861 return -ENOMEM; 2862 __prep_new_hugetlb_folio(h, new_folio); 2863 goto retry; 2864 } 2865 2866 /* 2867 * Ok, old_folio is still a genuine free hugepage. Remove it from 2868 * the freelist and decrease the counters. These will be 2869 * incremented again when calling __prep_account_new_huge_page() 2870 * and enqueue_hugetlb_folio() for new_folio. The counters will 2871 * remain stable since this happens under the lock. 2872 */ 2873 remove_hugetlb_folio(h, old_folio, false); 2874 2875 /* 2876 * Ref count on new_folio is already zero as it was dropped 2877 * earlier. It can be directly added to the pool free list. 2878 */ 2879 __prep_account_new_huge_page(h, nid); 2880 enqueue_hugetlb_folio(h, new_folio); 2881 2882 /* 2883 * Folio has been replaced, we can safely free the old one. 2884 */ 2885 spin_unlock_irq(&hugetlb_lock); 2886 update_and_free_hugetlb_folio(h, old_folio, false); 2887 } 2888 2889 return ret; 2890 2891 free_new: 2892 spin_unlock_irq(&hugetlb_lock); 2893 if (new_folio) 2894 update_and_free_hugetlb_folio(h, new_folio, false); 2895 2896 return ret; 2897 } 2898 2899 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2900 { 2901 struct hstate *h; 2902 struct folio *folio = page_folio(page); 2903 int ret = -EBUSY; 2904 2905 /* 2906 * The page might have been dissolved from under our feet, so make sure 2907 * to carefully check the state under the lock. 2908 * Return success when racing as if we dissolved the page ourselves. 2909 */ 2910 spin_lock_irq(&hugetlb_lock); 2911 if (folio_test_hugetlb(folio)) { 2912 h = folio_hstate(folio); 2913 } else { 2914 spin_unlock_irq(&hugetlb_lock); 2915 return 0; 2916 } 2917 spin_unlock_irq(&hugetlb_lock); 2918 2919 /* 2920 * Fence off gigantic pages as there is a cyclic dependency between 2921 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2922 * of bailing out right away without further retrying. 2923 */ 2924 if (hstate_is_gigantic(h)) 2925 return -ENOMEM; 2926 2927 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2928 ret = 0; 2929 else if (!folio_ref_count(folio)) 2930 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 2931 2932 return ret; 2933 } 2934 2935 /* 2936 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2937 * range with new folios. 2938 * @start_pfn: start pfn of the given pfn range 2939 * @end_pfn: end pfn of the given pfn range 2940 * Returns 0 on success, otherwise negated error. 2941 */ 2942 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2943 { 2944 struct hstate *h; 2945 struct folio *folio; 2946 int ret = 0; 2947 2948 LIST_HEAD(isolate_list); 2949 2950 while (start_pfn < end_pfn) { 2951 folio = pfn_folio(start_pfn); 2952 if (folio_test_hugetlb(folio)) { 2953 h = folio_hstate(folio); 2954 } else { 2955 start_pfn++; 2956 continue; 2957 } 2958 2959 if (!folio_ref_count(folio)) { 2960 ret = alloc_and_dissolve_hugetlb_folio(h, folio, 2961 &isolate_list); 2962 if (ret) 2963 break; 2964 2965 putback_movable_pages(&isolate_list); 2966 } 2967 start_pfn++; 2968 } 2969 2970 return ret; 2971 } 2972 2973 void wait_for_freed_hugetlb_folios(void) 2974 { 2975 if (llist_empty(&hpage_freelist)) 2976 return; 2977 2978 flush_work(&free_hpage_work); 2979 } 2980 2981 typedef enum { 2982 /* 2983 * For either 0/1: we checked the per-vma resv map, and one resv 2984 * count either can be reused (0), or an extra needed (1). 2985 */ 2986 MAP_CHG_REUSE = 0, 2987 MAP_CHG_NEEDED = 1, 2988 /* 2989 * Cannot use per-vma resv count can be used, hence a new resv 2990 * count is enforced. 2991 * 2992 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2993 * that currently vma_needs_reservation() has an unwanted side 2994 * effect to either use end() or commit() to complete the 2995 * transaction. Hence it needs to differenciate from NEEDED. 2996 */ 2997 MAP_CHG_ENFORCED = 2, 2998 } map_chg_state; 2999 3000 /* 3001 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 3002 * faults of hugetlb private mappings on top of a non-page-cache folio (in 3003 * which case even if there's a private vma resv map it won't cover such 3004 * allocation). New call sites should (probably) never set it to true!! 3005 * When it's set, the allocation will bypass all vma level reservations. 3006 */ 3007 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3008 unsigned long addr, bool cow_from_owner) 3009 { 3010 struct hugepage_subpool *spool = subpool_vma(vma); 3011 struct hstate *h = hstate_vma(vma); 3012 struct folio *folio; 3013 long retval, gbl_chg; 3014 map_chg_state map_chg; 3015 int ret, idx; 3016 struct hugetlb_cgroup *h_cg = NULL; 3017 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 3018 3019 idx = hstate_index(h); 3020 3021 /* Whether we need a separate per-vma reservation? */ 3022 if (cow_from_owner) { 3023 /* 3024 * Special case! Since it's a CoW on top of a reserved 3025 * page, the private resv map doesn't count. So it cannot 3026 * consume the per-vma resv map even if it's reserved. 3027 */ 3028 map_chg = MAP_CHG_ENFORCED; 3029 } else { 3030 /* 3031 * Examine the region/reserve map to determine if the process 3032 * has a reservation for the page to be allocated. A return 3033 * code of zero indicates a reservation exists (no change). 3034 */ 3035 retval = vma_needs_reservation(h, vma, addr); 3036 if (retval < 0) 3037 return ERR_PTR(-ENOMEM); 3038 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3039 } 3040 3041 /* 3042 * Whether we need a separate global reservation? 3043 * 3044 * Processes that did not create the mapping will have no 3045 * reserves as indicated by the region/reserve map. Check 3046 * that the allocation will not exceed the subpool limit. 3047 * Or if it can get one from the pool reservation directly. 3048 */ 3049 if (map_chg) { 3050 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3051 if (gbl_chg < 0) 3052 goto out_end_reservation; 3053 } else { 3054 /* 3055 * If we have the vma reservation ready, no need for extra 3056 * global reservation. 3057 */ 3058 gbl_chg = 0; 3059 } 3060 3061 /* 3062 * If this allocation is not consuming a per-vma reservation, 3063 * charge the hugetlb cgroup now. 3064 */ 3065 if (map_chg) { 3066 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3067 idx, pages_per_huge_page(h), &h_cg); 3068 if (ret) 3069 goto out_subpool_put; 3070 } 3071 3072 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3073 if (ret) 3074 goto out_uncharge_cgroup_reservation; 3075 3076 spin_lock_irq(&hugetlb_lock); 3077 /* 3078 * glb_chg is passed to indicate whether or not a page must be taken 3079 * from the global free pool (global change). gbl_chg == 0 indicates 3080 * a reservation exists for the allocation. 3081 */ 3082 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3083 if (!folio) { 3084 spin_unlock_irq(&hugetlb_lock); 3085 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3086 if (!folio) 3087 goto out_uncharge_cgroup; 3088 spin_lock_irq(&hugetlb_lock); 3089 list_add(&folio->lru, &h->hugepage_activelist); 3090 folio_ref_unfreeze(folio, 1); 3091 /* Fall through */ 3092 } 3093 3094 /* 3095 * Either dequeued or buddy-allocated folio needs to add special 3096 * mark to the folio when it consumes a global reservation. 3097 */ 3098 if (!gbl_chg) { 3099 folio_set_hugetlb_restore_reserve(folio); 3100 h->resv_huge_pages--; 3101 } 3102 3103 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3104 /* If allocation is not consuming a reservation, also store the 3105 * hugetlb_cgroup pointer on the page. 3106 */ 3107 if (map_chg) { 3108 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3109 h_cg, folio); 3110 } 3111 3112 spin_unlock_irq(&hugetlb_lock); 3113 3114 hugetlb_set_folio_subpool(folio, spool); 3115 3116 if (map_chg != MAP_CHG_ENFORCED) { 3117 /* commit() is only needed if the map_chg is not enforced */ 3118 retval = vma_commit_reservation(h, vma, addr); 3119 /* 3120 * Check for possible race conditions. When it happens.. 3121 * The page was added to the reservation map between 3122 * vma_needs_reservation and vma_commit_reservation. 3123 * This indicates a race with hugetlb_reserve_pages. 3124 * Adjust for the subpool count incremented above AND 3125 * in hugetlb_reserve_pages for the same page. Also, 3126 * the reservation count added in hugetlb_reserve_pages 3127 * no longer applies. 3128 */ 3129 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3130 long rsv_adjust; 3131 3132 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3133 hugetlb_acct_memory(h, -rsv_adjust); 3134 if (map_chg) { 3135 spin_lock_irq(&hugetlb_lock); 3136 hugetlb_cgroup_uncharge_folio_rsvd( 3137 hstate_index(h), pages_per_huge_page(h), 3138 folio); 3139 spin_unlock_irq(&hugetlb_lock); 3140 } 3141 } 3142 } 3143 3144 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3145 /* 3146 * Unconditionally increment NR_HUGETLB here. If it turns out that 3147 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3148 * decrement NR_HUGETLB. 3149 */ 3150 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3151 3152 if (ret == -ENOMEM) { 3153 free_huge_folio(folio); 3154 return ERR_PTR(-ENOMEM); 3155 } 3156 3157 return folio; 3158 3159 out_uncharge_cgroup: 3160 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3161 out_uncharge_cgroup_reservation: 3162 if (map_chg) 3163 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3164 h_cg); 3165 out_subpool_put: 3166 if (map_chg) 3167 hugepage_subpool_put_pages(spool, 1); 3168 out_end_reservation: 3169 if (map_chg != MAP_CHG_ENFORCED) 3170 vma_end_reservation(h, vma, addr); 3171 return ERR_PTR(-ENOSPC); 3172 } 3173 3174 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3175 { 3176 struct huge_bootmem_page *m; 3177 int listnode = nid; 3178 3179 if (hugetlb_early_cma(h)) 3180 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3181 else { 3182 if (node_exact) 3183 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3184 huge_page_size(h), 0, 3185 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3186 else { 3187 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3188 huge_page_size(h), 0, 3189 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3190 /* 3191 * For pre-HVO to work correctly, pages need to be on 3192 * the list for the node they were actually allocated 3193 * from. That node may be different in the case of 3194 * fallback by memblock_alloc_try_nid_raw. So, 3195 * extract the actual node first. 3196 */ 3197 if (m) 3198 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3199 } 3200 3201 if (m) { 3202 m->flags = 0; 3203 m->cma = NULL; 3204 } 3205 } 3206 3207 if (m) { 3208 /* 3209 * Use the beginning of the huge page to store the 3210 * huge_bootmem_page struct (until gather_bootmem 3211 * puts them into the mem_map). 3212 * 3213 * Put them into a private list first because mem_map 3214 * is not up yet. 3215 */ 3216 INIT_LIST_HEAD(&m->list); 3217 list_add(&m->list, &huge_boot_pages[listnode]); 3218 m->hstate = h; 3219 } 3220 3221 return m; 3222 } 3223 3224 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3225 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3226 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3227 { 3228 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3229 int nr_nodes, node = nid; 3230 3231 /* do node specific alloc */ 3232 if (nid != NUMA_NO_NODE) { 3233 m = alloc_bootmem(h, node, true); 3234 if (!m) 3235 return 0; 3236 goto found; 3237 } 3238 3239 /* allocate from next node when distributing huge pages */ 3240 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) { 3241 m = alloc_bootmem(h, node, false); 3242 if (!m) 3243 return 0; 3244 goto found; 3245 } 3246 3247 found: 3248 3249 /* 3250 * Only initialize the head struct page in memmap_init_reserved_pages, 3251 * rest of the struct pages will be initialized by the HugeTLB 3252 * subsystem itself. 3253 * The head struct page is used to get folio information by the HugeTLB 3254 * subsystem like zone id and node id. 3255 */ 3256 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3257 huge_page_size(h) - PAGE_SIZE); 3258 3259 return 1; 3260 } 3261 3262 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3263 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3264 unsigned long start_page_number, 3265 unsigned long end_page_number) 3266 { 3267 enum zone_type zone = zone_idx(folio_zone(folio)); 3268 int nid = folio_nid(folio); 3269 unsigned long head_pfn = folio_pfn(folio); 3270 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3271 int ret; 3272 3273 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3274 struct page *page = pfn_to_page(pfn); 3275 3276 __init_single_page(page, pfn, zone, nid); 3277 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3278 ret = page_ref_freeze(page, 1); 3279 VM_BUG_ON(!ret); 3280 } 3281 } 3282 3283 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3284 struct hstate *h, 3285 unsigned long nr_pages) 3286 { 3287 int ret; 3288 3289 /* Prepare folio head */ 3290 __folio_clear_reserved(folio); 3291 __folio_set_head(folio); 3292 ret = folio_ref_freeze(folio, 1); 3293 VM_BUG_ON(!ret); 3294 /* Initialize the necessary tail struct pages */ 3295 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3296 prep_compound_head((struct page *)folio, huge_page_order(h)); 3297 } 3298 3299 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3300 { 3301 return m->flags & HUGE_BOOTMEM_HVO; 3302 } 3303 3304 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3305 { 3306 return m->flags & HUGE_BOOTMEM_CMA; 3307 } 3308 3309 /* 3310 * memblock-allocated pageblocks might not have the migrate type set 3311 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3312 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3313 * reservation. 3314 * 3315 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3316 * read-only, but that's ok - for sparse vmemmap this does not write to 3317 * the page structure. 3318 */ 3319 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3320 struct hstate *h) 3321 { 3322 unsigned long nr_pages = pages_per_huge_page(h), i; 3323 3324 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3325 3326 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3327 if (folio_test_hugetlb_cma(folio)) 3328 init_cma_pageblock(folio_page(folio, i)); 3329 else 3330 set_pageblock_migratetype(folio_page(folio, i), 3331 MIGRATE_MOVABLE); 3332 } 3333 } 3334 3335 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3336 struct list_head *folio_list) 3337 { 3338 unsigned long flags; 3339 struct folio *folio, *tmp_f; 3340 3341 /* Send list for bulk vmemmap optimization processing */ 3342 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3343 3344 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3345 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3346 /* 3347 * If HVO fails, initialize all tail struct pages 3348 * We do not worry about potential long lock hold 3349 * time as this is early in boot and there should 3350 * be no contention. 3351 */ 3352 hugetlb_folio_init_tail_vmemmap(folio, 3353 HUGETLB_VMEMMAP_RESERVE_PAGES, 3354 pages_per_huge_page(h)); 3355 } 3356 hugetlb_bootmem_init_migratetype(folio, h); 3357 /* Subdivide locks to achieve better parallel performance */ 3358 spin_lock_irqsave(&hugetlb_lock, flags); 3359 __prep_account_new_huge_page(h, folio_nid(folio)); 3360 enqueue_hugetlb_folio(h, folio); 3361 spin_unlock_irqrestore(&hugetlb_lock, flags); 3362 } 3363 } 3364 3365 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3366 struct huge_bootmem_page *m) 3367 { 3368 unsigned long start_pfn; 3369 bool valid; 3370 3371 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3372 /* 3373 * Already validated, skip check. 3374 */ 3375 return true; 3376 } 3377 3378 if (hugetlb_bootmem_page_earlycma(m)) { 3379 valid = cma_validate_zones(m->cma); 3380 goto out; 3381 } 3382 3383 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3384 3385 valid = !pfn_range_intersects_zones(nid, start_pfn, 3386 pages_per_huge_page(m->hstate)); 3387 out: 3388 if (!valid) 3389 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3390 3391 return valid; 3392 } 3393 3394 /* 3395 * Free a bootmem page that was found to be invalid (intersecting with 3396 * multiple zones). 3397 * 3398 * Since it intersects with multiple zones, we can't just do a free 3399 * operation on all pages at once, but instead have to walk all 3400 * pages, freeing them one by one. 3401 */ 3402 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3403 struct hstate *h) 3404 { 3405 unsigned long npages = pages_per_huge_page(h); 3406 unsigned long pfn; 3407 3408 while (npages--) { 3409 pfn = page_to_pfn(page); 3410 __init_page_from_nid(pfn, nid); 3411 free_reserved_page(page); 3412 page++; 3413 } 3414 } 3415 3416 /* 3417 * Put bootmem huge pages into the standard lists after mem_map is up. 3418 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3419 */ 3420 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3421 { 3422 LIST_HEAD(folio_list); 3423 struct huge_bootmem_page *m, *tm; 3424 struct hstate *h = NULL, *prev_h = NULL; 3425 3426 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3427 struct page *page = virt_to_page(m); 3428 struct folio *folio = (void *)page; 3429 3430 h = m->hstate; 3431 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3432 /* 3433 * Can't use this page. Initialize the 3434 * page structures if that hasn't already 3435 * been done, and give them to the page 3436 * allocator. 3437 */ 3438 hugetlb_bootmem_free_invalid_page(nid, page, h); 3439 continue; 3440 } 3441 3442 /* 3443 * It is possible to have multiple huge page sizes (hstates) 3444 * in this list. If so, process each size separately. 3445 */ 3446 if (h != prev_h && prev_h != NULL) 3447 prep_and_add_bootmem_folios(prev_h, &folio_list); 3448 prev_h = h; 3449 3450 VM_BUG_ON(!hstate_is_gigantic(h)); 3451 WARN_ON(folio_ref_count(folio) != 1); 3452 3453 hugetlb_folio_init_vmemmap(folio, h, 3454 HUGETLB_VMEMMAP_RESERVE_PAGES); 3455 init_new_hugetlb_folio(h, folio); 3456 3457 if (hugetlb_bootmem_page_prehvo(m)) 3458 /* 3459 * If pre-HVO was done, just set the 3460 * flag, the HVO code will then skip 3461 * this folio. 3462 */ 3463 folio_set_hugetlb_vmemmap_optimized(folio); 3464 3465 if (hugetlb_bootmem_page_earlycma(m)) 3466 folio_set_hugetlb_cma(folio); 3467 3468 list_add(&folio->lru, &folio_list); 3469 3470 /* 3471 * We need to restore the 'stolen' pages to totalram_pages 3472 * in order to fix confusing memory reports from free(1) and 3473 * other side-effects, like CommitLimit going negative. 3474 * 3475 * For CMA pages, this is done in init_cma_pageblock 3476 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3477 */ 3478 if (!folio_test_hugetlb_cma(folio)) 3479 adjust_managed_page_count(page, pages_per_huge_page(h)); 3480 cond_resched(); 3481 } 3482 3483 prep_and_add_bootmem_folios(h, &folio_list); 3484 } 3485 3486 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3487 unsigned long end, void *arg) 3488 { 3489 int nid; 3490 3491 for (nid = start; nid < end; nid++) 3492 gather_bootmem_prealloc_node(nid); 3493 } 3494 3495 static void __init gather_bootmem_prealloc(void) 3496 { 3497 struct padata_mt_job job = { 3498 .thread_fn = gather_bootmem_prealloc_parallel, 3499 .fn_arg = NULL, 3500 .start = 0, 3501 .size = nr_node_ids, 3502 .align = 1, 3503 .min_chunk = 1, 3504 .max_threads = num_node_state(N_MEMORY), 3505 .numa_aware = true, 3506 }; 3507 3508 padata_do_multithreaded(&job); 3509 } 3510 3511 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3512 { 3513 unsigned long i; 3514 char buf[32]; 3515 LIST_HEAD(folio_list); 3516 3517 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3518 if (hstate_is_gigantic(h)) { 3519 if (!alloc_bootmem_huge_page(h, nid)) 3520 break; 3521 } else { 3522 struct folio *folio; 3523 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3524 3525 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3526 &node_states[N_MEMORY], NULL); 3527 if (!folio) 3528 break; 3529 list_add(&folio->lru, &folio_list); 3530 } 3531 cond_resched(); 3532 } 3533 3534 if (!list_empty(&folio_list)) 3535 prep_and_add_allocated_folios(h, &folio_list); 3536 3537 if (i == h->max_huge_pages_node[nid]) 3538 return; 3539 3540 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3541 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3542 h->max_huge_pages_node[nid], buf, nid, i); 3543 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3544 h->max_huge_pages_node[nid] = i; 3545 } 3546 3547 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3548 { 3549 int i; 3550 bool node_specific_alloc = false; 3551 3552 for_each_online_node(i) { 3553 if (h->max_huge_pages_node[i] > 0) { 3554 hugetlb_hstate_alloc_pages_onenode(h, i); 3555 node_specific_alloc = true; 3556 } 3557 } 3558 3559 return node_specific_alloc; 3560 } 3561 3562 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3563 { 3564 if (allocated < h->max_huge_pages) { 3565 char buf[32]; 3566 3567 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3568 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3569 h->max_huge_pages, buf, allocated); 3570 h->max_huge_pages = allocated; 3571 } 3572 } 3573 3574 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3575 { 3576 struct hstate *h = (struct hstate *)arg; 3577 int i, num = end - start; 3578 nodemask_t node_alloc_noretry; 3579 LIST_HEAD(folio_list); 3580 int next_node = first_online_node; 3581 3582 /* Bit mask controlling how hard we retry per-node allocations.*/ 3583 nodes_clear(node_alloc_noretry); 3584 3585 for (i = 0; i < num; ++i) { 3586 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3587 &node_alloc_noretry, &next_node); 3588 if (!folio) 3589 break; 3590 3591 list_move(&folio->lru, &folio_list); 3592 cond_resched(); 3593 } 3594 3595 prep_and_add_allocated_folios(h, &folio_list); 3596 } 3597 3598 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3599 { 3600 unsigned long i; 3601 3602 for (i = 0; i < h->max_huge_pages; ++i) { 3603 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3604 break; 3605 cond_resched(); 3606 } 3607 3608 return i; 3609 } 3610 3611 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3612 { 3613 struct padata_mt_job job = { 3614 .fn_arg = h, 3615 .align = 1, 3616 .numa_aware = true 3617 }; 3618 3619 unsigned long jiffies_start; 3620 unsigned long jiffies_end; 3621 3622 job.thread_fn = hugetlb_pages_alloc_boot_node; 3623 job.start = 0; 3624 job.size = h->max_huge_pages; 3625 3626 /* 3627 * job.max_threads is 25% of the available cpu threads by default. 3628 * 3629 * On large servers with terabytes of memory, huge page allocation 3630 * can consume a considerably amount of time. 3631 * 3632 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3633 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3634 * 3635 * +-----------------------+-------+-------+-------+-------+-------+ 3636 * | threads | 8 | 16 | 32 | 64 | 128 | 3637 * +-----------------------+-------+-------+-------+-------+-------+ 3638 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3639 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3640 * +-----------------------+-------+-------+-------+-------+-------+ 3641 */ 3642 if (hugepage_allocation_threads == 0) { 3643 hugepage_allocation_threads = num_online_cpus() / 4; 3644 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3645 } 3646 3647 job.max_threads = hugepage_allocation_threads; 3648 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads; 3649 3650 jiffies_start = jiffies; 3651 padata_do_multithreaded(&job); 3652 jiffies_end = jiffies; 3653 3654 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3655 jiffies_to_msecs(jiffies_end - jiffies_start), 3656 hugepage_allocation_threads); 3657 3658 return h->nr_huge_pages; 3659 } 3660 3661 /* 3662 * NOTE: this routine is called in different contexts for gigantic and 3663 * non-gigantic pages. 3664 * - For gigantic pages, this is called early in the boot process and 3665 * pages are allocated from memblock allocated or something similar. 3666 * Gigantic pages are actually added to pools later with the routine 3667 * gather_bootmem_prealloc. 3668 * - For non-gigantic pages, this is called later in the boot process after 3669 * all of mm is up and functional. Pages are allocated from buddy and 3670 * then added to hugetlb pools. 3671 */ 3672 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3673 { 3674 unsigned long allocated; 3675 3676 /* 3677 * Skip gigantic hugepages allocation if early CMA 3678 * reservations are not available. 3679 */ 3680 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3681 !hugetlb_early_cma(h)) { 3682 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3683 return; 3684 } 3685 3686 /* do node specific alloc */ 3687 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3688 return; 3689 3690 /* below will do all node balanced alloc */ 3691 if (hstate_is_gigantic(h)) 3692 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3693 else 3694 allocated = hugetlb_pages_alloc_boot(h); 3695 3696 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3697 } 3698 3699 static void __init hugetlb_init_hstates(void) 3700 { 3701 struct hstate *h, *h2; 3702 3703 for_each_hstate(h) { 3704 /* oversize hugepages were init'ed in early boot */ 3705 if (!hstate_is_gigantic(h)) 3706 hugetlb_hstate_alloc_pages(h); 3707 3708 /* 3709 * Set demote order for each hstate. Note that 3710 * h->demote_order is initially 0. 3711 * - We can not demote gigantic pages if runtime freeing 3712 * is not supported, so skip this. 3713 * - If CMA allocation is possible, we can not demote 3714 * HUGETLB_PAGE_ORDER or smaller size pages. 3715 */ 3716 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3717 continue; 3718 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3719 continue; 3720 for_each_hstate(h2) { 3721 if (h2 == h) 3722 continue; 3723 if (h2->order < h->order && 3724 h2->order > h->demote_order) 3725 h->demote_order = h2->order; 3726 } 3727 } 3728 } 3729 3730 static void __init report_hugepages(void) 3731 { 3732 struct hstate *h; 3733 unsigned long nrinvalid; 3734 3735 for_each_hstate(h) { 3736 char buf[32]; 3737 3738 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3739 h->max_huge_pages -= nrinvalid; 3740 3741 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3742 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3743 buf, h->free_huge_pages); 3744 if (nrinvalid) 3745 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3746 buf, nrinvalid, nrinvalid > 1 ? "s" : ""); 3747 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3748 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3749 } 3750 } 3751 3752 #ifdef CONFIG_HIGHMEM 3753 static void try_to_free_low(struct hstate *h, unsigned long count, 3754 nodemask_t *nodes_allowed) 3755 { 3756 int i; 3757 LIST_HEAD(page_list); 3758 3759 lockdep_assert_held(&hugetlb_lock); 3760 if (hstate_is_gigantic(h)) 3761 return; 3762 3763 /* 3764 * Collect pages to be freed on a list, and free after dropping lock 3765 */ 3766 for_each_node_mask(i, *nodes_allowed) { 3767 struct folio *folio, *next; 3768 struct list_head *freel = &h->hugepage_freelists[i]; 3769 list_for_each_entry_safe(folio, next, freel, lru) { 3770 if (count >= h->nr_huge_pages) 3771 goto out; 3772 if (folio_test_highmem(folio)) 3773 continue; 3774 remove_hugetlb_folio(h, folio, false); 3775 list_add(&folio->lru, &page_list); 3776 } 3777 } 3778 3779 out: 3780 spin_unlock_irq(&hugetlb_lock); 3781 update_and_free_pages_bulk(h, &page_list); 3782 spin_lock_irq(&hugetlb_lock); 3783 } 3784 #else 3785 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3786 nodemask_t *nodes_allowed) 3787 { 3788 } 3789 #endif 3790 3791 /* 3792 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3793 * balanced by operating on them in a round-robin fashion. 3794 * Returns 1 if an adjustment was made. 3795 */ 3796 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3797 int delta) 3798 { 3799 int nr_nodes, node; 3800 3801 lockdep_assert_held(&hugetlb_lock); 3802 VM_BUG_ON(delta != -1 && delta != 1); 3803 3804 if (delta < 0) { 3805 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3806 if (h->surplus_huge_pages_node[node]) 3807 goto found; 3808 } 3809 } else { 3810 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3811 if (h->surplus_huge_pages_node[node] < 3812 h->nr_huge_pages_node[node]) 3813 goto found; 3814 } 3815 } 3816 return 0; 3817 3818 found: 3819 h->surplus_huge_pages += delta; 3820 h->surplus_huge_pages_node[node] += delta; 3821 return 1; 3822 } 3823 3824 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3825 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3826 nodemask_t *nodes_allowed) 3827 { 3828 unsigned long min_count; 3829 unsigned long allocated; 3830 struct folio *folio; 3831 LIST_HEAD(page_list); 3832 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3833 3834 /* 3835 * Bit mask controlling how hard we retry per-node allocations. 3836 * If we can not allocate the bit mask, do not attempt to allocate 3837 * the requested huge pages. 3838 */ 3839 if (node_alloc_noretry) 3840 nodes_clear(*node_alloc_noretry); 3841 else 3842 return -ENOMEM; 3843 3844 /* 3845 * resize_lock mutex prevents concurrent adjustments to number of 3846 * pages in hstate via the proc/sysfs interfaces. 3847 */ 3848 mutex_lock(&h->resize_lock); 3849 flush_free_hpage_work(h); 3850 spin_lock_irq(&hugetlb_lock); 3851 3852 /* 3853 * Check for a node specific request. 3854 * Changing node specific huge page count may require a corresponding 3855 * change to the global count. In any case, the passed node mask 3856 * (nodes_allowed) will restrict alloc/free to the specified node. 3857 */ 3858 if (nid != NUMA_NO_NODE) { 3859 unsigned long old_count = count; 3860 3861 count += persistent_huge_pages(h) - 3862 (h->nr_huge_pages_node[nid] - 3863 h->surplus_huge_pages_node[nid]); 3864 /* 3865 * User may have specified a large count value which caused the 3866 * above calculation to overflow. In this case, they wanted 3867 * to allocate as many huge pages as possible. Set count to 3868 * largest possible value to align with their intention. 3869 */ 3870 if (count < old_count) 3871 count = ULONG_MAX; 3872 } 3873 3874 /* 3875 * Gigantic pages runtime allocation depend on the capability for large 3876 * page range allocation. 3877 * If the system does not provide this feature, return an error when 3878 * the user tries to allocate gigantic pages but let the user free the 3879 * boottime allocated gigantic pages. 3880 */ 3881 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3882 if (count > persistent_huge_pages(h)) { 3883 spin_unlock_irq(&hugetlb_lock); 3884 mutex_unlock(&h->resize_lock); 3885 NODEMASK_FREE(node_alloc_noretry); 3886 return -EINVAL; 3887 } 3888 /* Fall through to decrease pool */ 3889 } 3890 3891 /* 3892 * Increase the pool size 3893 * First take pages out of surplus state. Then make up the 3894 * remaining difference by allocating fresh huge pages. 3895 * 3896 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3897 * to convert a surplus huge page to a normal huge page. That is 3898 * not critical, though, it just means the overall size of the 3899 * pool might be one hugepage larger than it needs to be, but 3900 * within all the constraints specified by the sysctls. 3901 */ 3902 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3903 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3904 break; 3905 } 3906 3907 allocated = 0; 3908 while (count > (persistent_huge_pages(h) + allocated)) { 3909 /* 3910 * If this allocation races such that we no longer need the 3911 * page, free_huge_folio will handle it by freeing the page 3912 * and reducing the surplus. 3913 */ 3914 spin_unlock_irq(&hugetlb_lock); 3915 3916 /* yield cpu to avoid soft lockup */ 3917 cond_resched(); 3918 3919 folio = alloc_pool_huge_folio(h, nodes_allowed, 3920 node_alloc_noretry, 3921 &h->next_nid_to_alloc); 3922 if (!folio) { 3923 prep_and_add_allocated_folios(h, &page_list); 3924 spin_lock_irq(&hugetlb_lock); 3925 goto out; 3926 } 3927 3928 list_add(&folio->lru, &page_list); 3929 allocated++; 3930 3931 /* Bail for signals. Probably ctrl-c from user */ 3932 if (signal_pending(current)) { 3933 prep_and_add_allocated_folios(h, &page_list); 3934 spin_lock_irq(&hugetlb_lock); 3935 goto out; 3936 } 3937 3938 spin_lock_irq(&hugetlb_lock); 3939 } 3940 3941 /* Add allocated pages to the pool */ 3942 if (!list_empty(&page_list)) { 3943 spin_unlock_irq(&hugetlb_lock); 3944 prep_and_add_allocated_folios(h, &page_list); 3945 spin_lock_irq(&hugetlb_lock); 3946 } 3947 3948 /* 3949 * Decrease the pool size 3950 * First return free pages to the buddy allocator (being careful 3951 * to keep enough around to satisfy reservations). Then place 3952 * pages into surplus state as needed so the pool will shrink 3953 * to the desired size as pages become free. 3954 * 3955 * By placing pages into the surplus state independent of the 3956 * overcommit value, we are allowing the surplus pool size to 3957 * exceed overcommit. There are few sane options here. Since 3958 * alloc_surplus_hugetlb_folio() is checking the global counter, 3959 * though, we'll note that we're not allowed to exceed surplus 3960 * and won't grow the pool anywhere else. Not until one of the 3961 * sysctls are changed, or the surplus pages go out of use. 3962 */ 3963 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3964 min_count = max(count, min_count); 3965 try_to_free_low(h, min_count, nodes_allowed); 3966 3967 /* 3968 * Collect pages to be removed on list without dropping lock 3969 */ 3970 while (min_count < persistent_huge_pages(h)) { 3971 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3972 if (!folio) 3973 break; 3974 3975 list_add(&folio->lru, &page_list); 3976 } 3977 /* free the pages after dropping lock */ 3978 spin_unlock_irq(&hugetlb_lock); 3979 update_and_free_pages_bulk(h, &page_list); 3980 flush_free_hpage_work(h); 3981 spin_lock_irq(&hugetlb_lock); 3982 3983 while (count < persistent_huge_pages(h)) { 3984 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3985 break; 3986 } 3987 out: 3988 h->max_huge_pages = persistent_huge_pages(h); 3989 spin_unlock_irq(&hugetlb_lock); 3990 mutex_unlock(&h->resize_lock); 3991 3992 NODEMASK_FREE(node_alloc_noretry); 3993 3994 return 0; 3995 } 3996 3997 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3998 struct list_head *src_list) 3999 { 4000 long rc; 4001 struct folio *folio, *next; 4002 LIST_HEAD(dst_list); 4003 LIST_HEAD(ret_list); 4004 4005 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4006 list_splice_init(&ret_list, src_list); 4007 4008 /* 4009 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4010 * Without the mutex, pages added to target hstate could be marked 4011 * as surplus. 4012 * 4013 * Note that we already hold src->resize_lock. To prevent deadlock, 4014 * use the convention of always taking larger size hstate mutex first. 4015 */ 4016 mutex_lock(&dst->resize_lock); 4017 4018 list_for_each_entry_safe(folio, next, src_list, lru) { 4019 int i; 4020 4021 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4022 continue; 4023 4024 list_del(&folio->lru); 4025 4026 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4027 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4028 4029 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4030 struct page *page = folio_page(folio, i); 4031 /* Careful: see __split_huge_page_tail() */ 4032 struct folio *new_folio = (struct folio *)page; 4033 4034 clear_compound_head(page); 4035 prep_compound_page(page, dst->order); 4036 4037 new_folio->mapping = NULL; 4038 init_new_hugetlb_folio(dst, new_folio); 4039 list_add(&new_folio->lru, &dst_list); 4040 } 4041 } 4042 4043 prep_and_add_allocated_folios(dst, &dst_list); 4044 4045 mutex_unlock(&dst->resize_lock); 4046 4047 return rc; 4048 } 4049 4050 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4051 unsigned long nr_to_demote) 4052 __must_hold(&hugetlb_lock) 4053 { 4054 int nr_nodes, node; 4055 struct hstate *dst; 4056 long rc = 0; 4057 long nr_demoted = 0; 4058 4059 lockdep_assert_held(&hugetlb_lock); 4060 4061 /* We should never get here if no demote order */ 4062 if (!src->demote_order) { 4063 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4064 return -EINVAL; /* internal error */ 4065 } 4066 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4067 4068 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4069 LIST_HEAD(list); 4070 struct folio *folio, *next; 4071 4072 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4073 if (folio_test_hwpoison(folio)) 4074 continue; 4075 4076 remove_hugetlb_folio(src, folio, false); 4077 list_add(&folio->lru, &list); 4078 4079 if (++nr_demoted == nr_to_demote) 4080 break; 4081 } 4082 4083 spin_unlock_irq(&hugetlb_lock); 4084 4085 rc = demote_free_hugetlb_folios(src, dst, &list); 4086 4087 spin_lock_irq(&hugetlb_lock); 4088 4089 list_for_each_entry_safe(folio, next, &list, lru) { 4090 list_del(&folio->lru); 4091 add_hugetlb_folio(src, folio, false); 4092 4093 nr_demoted--; 4094 } 4095 4096 if (rc < 0 || nr_demoted == nr_to_demote) 4097 break; 4098 } 4099 4100 /* 4101 * Not absolutely necessary, but for consistency update max_huge_pages 4102 * based on pool changes for the demoted page. 4103 */ 4104 src->max_huge_pages -= nr_demoted; 4105 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4106 4107 if (rc < 0) 4108 return rc; 4109 4110 if (nr_demoted) 4111 return nr_demoted; 4112 /* 4113 * Only way to get here is if all pages on free lists are poisoned. 4114 * Return -EBUSY so that caller will not retry. 4115 */ 4116 return -EBUSY; 4117 } 4118 4119 #define HSTATE_ATTR_RO(_name) \ 4120 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4121 4122 #define HSTATE_ATTR_WO(_name) \ 4123 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4124 4125 #define HSTATE_ATTR(_name) \ 4126 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4127 4128 static struct kobject *hugepages_kobj; 4129 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4130 4131 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4132 4133 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4134 { 4135 int i; 4136 4137 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4138 if (hstate_kobjs[i] == kobj) { 4139 if (nidp) 4140 *nidp = NUMA_NO_NODE; 4141 return &hstates[i]; 4142 } 4143 4144 return kobj_to_node_hstate(kobj, nidp); 4145 } 4146 4147 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4148 struct kobj_attribute *attr, char *buf) 4149 { 4150 struct hstate *h; 4151 unsigned long nr_huge_pages; 4152 int nid; 4153 4154 h = kobj_to_hstate(kobj, &nid); 4155 if (nid == NUMA_NO_NODE) 4156 nr_huge_pages = h->nr_huge_pages; 4157 else 4158 nr_huge_pages = h->nr_huge_pages_node[nid]; 4159 4160 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4161 } 4162 4163 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4164 struct hstate *h, int nid, 4165 unsigned long count, size_t len) 4166 { 4167 int err; 4168 nodemask_t nodes_allowed, *n_mask; 4169 4170 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4171 return -EINVAL; 4172 4173 if (nid == NUMA_NO_NODE) { 4174 /* 4175 * global hstate attribute 4176 */ 4177 if (!(obey_mempolicy && 4178 init_nodemask_of_mempolicy(&nodes_allowed))) 4179 n_mask = &node_states[N_MEMORY]; 4180 else 4181 n_mask = &nodes_allowed; 4182 } else { 4183 /* 4184 * Node specific request. count adjustment happens in 4185 * set_max_huge_pages() after acquiring hugetlb_lock. 4186 */ 4187 init_nodemask_of_node(&nodes_allowed, nid); 4188 n_mask = &nodes_allowed; 4189 } 4190 4191 err = set_max_huge_pages(h, count, nid, n_mask); 4192 4193 return err ? err : len; 4194 } 4195 4196 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4197 struct kobject *kobj, const char *buf, 4198 size_t len) 4199 { 4200 struct hstate *h; 4201 unsigned long count; 4202 int nid; 4203 int err; 4204 4205 err = kstrtoul(buf, 10, &count); 4206 if (err) 4207 return err; 4208 4209 h = kobj_to_hstate(kobj, &nid); 4210 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4211 } 4212 4213 static ssize_t nr_hugepages_show(struct kobject *kobj, 4214 struct kobj_attribute *attr, char *buf) 4215 { 4216 return nr_hugepages_show_common(kobj, attr, buf); 4217 } 4218 4219 static ssize_t nr_hugepages_store(struct kobject *kobj, 4220 struct kobj_attribute *attr, const char *buf, size_t len) 4221 { 4222 return nr_hugepages_store_common(false, kobj, buf, len); 4223 } 4224 HSTATE_ATTR(nr_hugepages); 4225 4226 #ifdef CONFIG_NUMA 4227 4228 /* 4229 * hstate attribute for optionally mempolicy-based constraint on persistent 4230 * huge page alloc/free. 4231 */ 4232 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4233 struct kobj_attribute *attr, 4234 char *buf) 4235 { 4236 return nr_hugepages_show_common(kobj, attr, buf); 4237 } 4238 4239 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4240 struct kobj_attribute *attr, const char *buf, size_t len) 4241 { 4242 return nr_hugepages_store_common(true, kobj, buf, len); 4243 } 4244 HSTATE_ATTR(nr_hugepages_mempolicy); 4245 #endif 4246 4247 4248 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4249 struct kobj_attribute *attr, char *buf) 4250 { 4251 struct hstate *h = kobj_to_hstate(kobj, NULL); 4252 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4253 } 4254 4255 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4256 struct kobj_attribute *attr, const char *buf, size_t count) 4257 { 4258 int err; 4259 unsigned long input; 4260 struct hstate *h = kobj_to_hstate(kobj, NULL); 4261 4262 if (hstate_is_gigantic(h)) 4263 return -EINVAL; 4264 4265 err = kstrtoul(buf, 10, &input); 4266 if (err) 4267 return err; 4268 4269 spin_lock_irq(&hugetlb_lock); 4270 h->nr_overcommit_huge_pages = input; 4271 spin_unlock_irq(&hugetlb_lock); 4272 4273 return count; 4274 } 4275 HSTATE_ATTR(nr_overcommit_hugepages); 4276 4277 static ssize_t free_hugepages_show(struct kobject *kobj, 4278 struct kobj_attribute *attr, char *buf) 4279 { 4280 struct hstate *h; 4281 unsigned long free_huge_pages; 4282 int nid; 4283 4284 h = kobj_to_hstate(kobj, &nid); 4285 if (nid == NUMA_NO_NODE) 4286 free_huge_pages = h->free_huge_pages; 4287 else 4288 free_huge_pages = h->free_huge_pages_node[nid]; 4289 4290 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4291 } 4292 HSTATE_ATTR_RO(free_hugepages); 4293 4294 static ssize_t resv_hugepages_show(struct kobject *kobj, 4295 struct kobj_attribute *attr, char *buf) 4296 { 4297 struct hstate *h = kobj_to_hstate(kobj, NULL); 4298 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4299 } 4300 HSTATE_ATTR_RO(resv_hugepages); 4301 4302 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4303 struct kobj_attribute *attr, char *buf) 4304 { 4305 struct hstate *h; 4306 unsigned long surplus_huge_pages; 4307 int nid; 4308 4309 h = kobj_to_hstate(kobj, &nid); 4310 if (nid == NUMA_NO_NODE) 4311 surplus_huge_pages = h->surplus_huge_pages; 4312 else 4313 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4314 4315 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4316 } 4317 HSTATE_ATTR_RO(surplus_hugepages); 4318 4319 static ssize_t demote_store(struct kobject *kobj, 4320 struct kobj_attribute *attr, const char *buf, size_t len) 4321 { 4322 unsigned long nr_demote; 4323 unsigned long nr_available; 4324 nodemask_t nodes_allowed, *n_mask; 4325 struct hstate *h; 4326 int err; 4327 int nid; 4328 4329 err = kstrtoul(buf, 10, &nr_demote); 4330 if (err) 4331 return err; 4332 h = kobj_to_hstate(kobj, &nid); 4333 4334 if (nid != NUMA_NO_NODE) { 4335 init_nodemask_of_node(&nodes_allowed, nid); 4336 n_mask = &nodes_allowed; 4337 } else { 4338 n_mask = &node_states[N_MEMORY]; 4339 } 4340 4341 /* Synchronize with other sysfs operations modifying huge pages */ 4342 mutex_lock(&h->resize_lock); 4343 spin_lock_irq(&hugetlb_lock); 4344 4345 while (nr_demote) { 4346 long rc; 4347 4348 /* 4349 * Check for available pages to demote each time thorough the 4350 * loop as demote_pool_huge_page will drop hugetlb_lock. 4351 */ 4352 if (nid != NUMA_NO_NODE) 4353 nr_available = h->free_huge_pages_node[nid]; 4354 else 4355 nr_available = h->free_huge_pages; 4356 nr_available -= h->resv_huge_pages; 4357 if (!nr_available) 4358 break; 4359 4360 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4361 if (rc < 0) { 4362 err = rc; 4363 break; 4364 } 4365 4366 nr_demote -= rc; 4367 } 4368 4369 spin_unlock_irq(&hugetlb_lock); 4370 mutex_unlock(&h->resize_lock); 4371 4372 if (err) 4373 return err; 4374 return len; 4375 } 4376 HSTATE_ATTR_WO(demote); 4377 4378 static ssize_t demote_size_show(struct kobject *kobj, 4379 struct kobj_attribute *attr, char *buf) 4380 { 4381 struct hstate *h = kobj_to_hstate(kobj, NULL); 4382 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4383 4384 return sysfs_emit(buf, "%lukB\n", demote_size); 4385 } 4386 4387 static ssize_t demote_size_store(struct kobject *kobj, 4388 struct kobj_attribute *attr, 4389 const char *buf, size_t count) 4390 { 4391 struct hstate *h, *demote_hstate; 4392 unsigned long demote_size; 4393 unsigned int demote_order; 4394 4395 demote_size = (unsigned long)memparse(buf, NULL); 4396 4397 demote_hstate = size_to_hstate(demote_size); 4398 if (!demote_hstate) 4399 return -EINVAL; 4400 demote_order = demote_hstate->order; 4401 if (demote_order < HUGETLB_PAGE_ORDER) 4402 return -EINVAL; 4403 4404 /* demote order must be smaller than hstate order */ 4405 h = kobj_to_hstate(kobj, NULL); 4406 if (demote_order >= h->order) 4407 return -EINVAL; 4408 4409 /* resize_lock synchronizes access to demote size and writes */ 4410 mutex_lock(&h->resize_lock); 4411 h->demote_order = demote_order; 4412 mutex_unlock(&h->resize_lock); 4413 4414 return count; 4415 } 4416 HSTATE_ATTR(demote_size); 4417 4418 static struct attribute *hstate_attrs[] = { 4419 &nr_hugepages_attr.attr, 4420 &nr_overcommit_hugepages_attr.attr, 4421 &free_hugepages_attr.attr, 4422 &resv_hugepages_attr.attr, 4423 &surplus_hugepages_attr.attr, 4424 #ifdef CONFIG_NUMA 4425 &nr_hugepages_mempolicy_attr.attr, 4426 #endif 4427 NULL, 4428 }; 4429 4430 static const struct attribute_group hstate_attr_group = { 4431 .attrs = hstate_attrs, 4432 }; 4433 4434 static struct attribute *hstate_demote_attrs[] = { 4435 &demote_size_attr.attr, 4436 &demote_attr.attr, 4437 NULL, 4438 }; 4439 4440 static const struct attribute_group hstate_demote_attr_group = { 4441 .attrs = hstate_demote_attrs, 4442 }; 4443 4444 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4445 struct kobject **hstate_kobjs, 4446 const struct attribute_group *hstate_attr_group) 4447 { 4448 int retval; 4449 int hi = hstate_index(h); 4450 4451 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4452 if (!hstate_kobjs[hi]) 4453 return -ENOMEM; 4454 4455 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4456 if (retval) { 4457 kobject_put(hstate_kobjs[hi]); 4458 hstate_kobjs[hi] = NULL; 4459 return retval; 4460 } 4461 4462 if (h->demote_order) { 4463 retval = sysfs_create_group(hstate_kobjs[hi], 4464 &hstate_demote_attr_group); 4465 if (retval) { 4466 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4467 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4468 kobject_put(hstate_kobjs[hi]); 4469 hstate_kobjs[hi] = NULL; 4470 return retval; 4471 } 4472 } 4473 4474 return 0; 4475 } 4476 4477 #ifdef CONFIG_NUMA 4478 static bool hugetlb_sysfs_initialized __ro_after_init; 4479 4480 /* 4481 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4482 * with node devices in node_devices[] using a parallel array. The array 4483 * index of a node device or _hstate == node id. 4484 * This is here to avoid any static dependency of the node device driver, in 4485 * the base kernel, on the hugetlb module. 4486 */ 4487 struct node_hstate { 4488 struct kobject *hugepages_kobj; 4489 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4490 }; 4491 static struct node_hstate node_hstates[MAX_NUMNODES]; 4492 4493 /* 4494 * A subset of global hstate attributes for node devices 4495 */ 4496 static struct attribute *per_node_hstate_attrs[] = { 4497 &nr_hugepages_attr.attr, 4498 &free_hugepages_attr.attr, 4499 &surplus_hugepages_attr.attr, 4500 NULL, 4501 }; 4502 4503 static const struct attribute_group per_node_hstate_attr_group = { 4504 .attrs = per_node_hstate_attrs, 4505 }; 4506 4507 /* 4508 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4509 * Returns node id via non-NULL nidp. 4510 */ 4511 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4512 { 4513 int nid; 4514 4515 for (nid = 0; nid < nr_node_ids; nid++) { 4516 struct node_hstate *nhs = &node_hstates[nid]; 4517 int i; 4518 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4519 if (nhs->hstate_kobjs[i] == kobj) { 4520 if (nidp) 4521 *nidp = nid; 4522 return &hstates[i]; 4523 } 4524 } 4525 4526 BUG(); 4527 return NULL; 4528 } 4529 4530 /* 4531 * Unregister hstate attributes from a single node device. 4532 * No-op if no hstate attributes attached. 4533 */ 4534 void hugetlb_unregister_node(struct node *node) 4535 { 4536 struct hstate *h; 4537 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4538 4539 if (!nhs->hugepages_kobj) 4540 return; /* no hstate attributes */ 4541 4542 for_each_hstate(h) { 4543 int idx = hstate_index(h); 4544 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4545 4546 if (!hstate_kobj) 4547 continue; 4548 if (h->demote_order) 4549 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4550 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4551 kobject_put(hstate_kobj); 4552 nhs->hstate_kobjs[idx] = NULL; 4553 } 4554 4555 kobject_put(nhs->hugepages_kobj); 4556 nhs->hugepages_kobj = NULL; 4557 } 4558 4559 4560 /* 4561 * Register hstate attributes for a single node device. 4562 * No-op if attributes already registered. 4563 */ 4564 void hugetlb_register_node(struct node *node) 4565 { 4566 struct hstate *h; 4567 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4568 int err; 4569 4570 if (!hugetlb_sysfs_initialized) 4571 return; 4572 4573 if (nhs->hugepages_kobj) 4574 return; /* already allocated */ 4575 4576 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4577 &node->dev.kobj); 4578 if (!nhs->hugepages_kobj) 4579 return; 4580 4581 for_each_hstate(h) { 4582 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4583 nhs->hstate_kobjs, 4584 &per_node_hstate_attr_group); 4585 if (err) { 4586 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4587 h->name, node->dev.id); 4588 hugetlb_unregister_node(node); 4589 break; 4590 } 4591 } 4592 } 4593 4594 /* 4595 * hugetlb init time: register hstate attributes for all registered node 4596 * devices of nodes that have memory. All on-line nodes should have 4597 * registered their associated device by this time. 4598 */ 4599 static void __init hugetlb_register_all_nodes(void) 4600 { 4601 int nid; 4602 4603 for_each_online_node(nid) 4604 hugetlb_register_node(node_devices[nid]); 4605 } 4606 #else /* !CONFIG_NUMA */ 4607 4608 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4609 { 4610 BUG(); 4611 if (nidp) 4612 *nidp = -1; 4613 return NULL; 4614 } 4615 4616 static void hugetlb_register_all_nodes(void) { } 4617 4618 #endif 4619 4620 static void __init hugetlb_sysfs_init(void) 4621 { 4622 struct hstate *h; 4623 int err; 4624 4625 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4626 if (!hugepages_kobj) 4627 return; 4628 4629 for_each_hstate(h) { 4630 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4631 hstate_kobjs, &hstate_attr_group); 4632 if (err) 4633 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4634 } 4635 4636 #ifdef CONFIG_NUMA 4637 hugetlb_sysfs_initialized = true; 4638 #endif 4639 hugetlb_register_all_nodes(); 4640 } 4641 4642 #ifdef CONFIG_SYSCTL 4643 static void hugetlb_sysctl_init(void); 4644 #else 4645 static inline void hugetlb_sysctl_init(void) { } 4646 #endif 4647 4648 static int __init hugetlb_init(void) 4649 { 4650 int i; 4651 4652 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4653 __NR_HPAGEFLAGS); 4654 4655 if (!hugepages_supported()) { 4656 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4657 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4658 return 0; 4659 } 4660 4661 /* 4662 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4663 * architectures depend on setup being done here. 4664 */ 4665 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4666 if (!parsed_default_hugepagesz) { 4667 /* 4668 * If we did not parse a default huge page size, set 4669 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4670 * number of huge pages for this default size was implicitly 4671 * specified, set that here as well. 4672 * Note that the implicit setting will overwrite an explicit 4673 * setting. A warning will be printed in this case. 4674 */ 4675 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4676 if (default_hstate_max_huge_pages) { 4677 if (default_hstate.max_huge_pages) { 4678 char buf[32]; 4679 4680 string_get_size(huge_page_size(&default_hstate), 4681 1, STRING_UNITS_2, buf, 32); 4682 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4683 default_hstate.max_huge_pages, buf); 4684 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4685 default_hstate_max_huge_pages); 4686 } 4687 default_hstate.max_huge_pages = 4688 default_hstate_max_huge_pages; 4689 4690 for_each_online_node(i) 4691 default_hstate.max_huge_pages_node[i] = 4692 default_hugepages_in_node[i]; 4693 } 4694 } 4695 4696 hugetlb_cma_check(); 4697 hugetlb_init_hstates(); 4698 gather_bootmem_prealloc(); 4699 report_hugepages(); 4700 4701 hugetlb_sysfs_init(); 4702 hugetlb_cgroup_file_init(); 4703 hugetlb_sysctl_init(); 4704 4705 #ifdef CONFIG_SMP 4706 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4707 #else 4708 num_fault_mutexes = 1; 4709 #endif 4710 hugetlb_fault_mutex_table = 4711 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4712 GFP_KERNEL); 4713 BUG_ON(!hugetlb_fault_mutex_table); 4714 4715 for (i = 0; i < num_fault_mutexes; i++) 4716 mutex_init(&hugetlb_fault_mutex_table[i]); 4717 return 0; 4718 } 4719 subsys_initcall(hugetlb_init); 4720 4721 /* Overwritten by architectures with more huge page sizes */ 4722 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4723 { 4724 return size == HPAGE_SIZE; 4725 } 4726 4727 void __init hugetlb_add_hstate(unsigned int order) 4728 { 4729 struct hstate *h; 4730 unsigned long i; 4731 4732 if (size_to_hstate(PAGE_SIZE << order)) { 4733 return; 4734 } 4735 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4736 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4737 h = &hstates[hugetlb_max_hstate++]; 4738 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4739 h->order = order; 4740 h->mask = ~(huge_page_size(h) - 1); 4741 for (i = 0; i < MAX_NUMNODES; ++i) 4742 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4743 INIT_LIST_HEAD(&h->hugepage_activelist); 4744 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4745 huge_page_size(h)/SZ_1K); 4746 4747 parsed_hstate = h; 4748 } 4749 4750 bool __init __weak hugetlb_node_alloc_supported(void) 4751 { 4752 return true; 4753 } 4754 4755 static void __init hugepages_clear_pages_in_node(void) 4756 { 4757 if (!hugetlb_max_hstate) { 4758 default_hstate_max_huge_pages = 0; 4759 memset(default_hugepages_in_node, 0, 4760 sizeof(default_hugepages_in_node)); 4761 } else { 4762 parsed_hstate->max_huge_pages = 0; 4763 memset(parsed_hstate->max_huge_pages_node, 0, 4764 sizeof(parsed_hstate->max_huge_pages_node)); 4765 } 4766 } 4767 4768 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4769 { 4770 size_t len; 4771 char *p; 4772 4773 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4774 return -EINVAL; 4775 4776 len = strlen(s) + 1; 4777 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4778 return -EINVAL; 4779 4780 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4781 memcpy(p, s, len); 4782 hstate_cmdline_index += len; 4783 4784 hugetlb_params[hugetlb_param_index].val = p; 4785 hugetlb_params[hugetlb_param_index].setup = setup; 4786 4787 hugetlb_param_index++; 4788 4789 return 0; 4790 } 4791 4792 static __init void hugetlb_parse_params(void) 4793 { 4794 int i; 4795 struct hugetlb_cmdline *hcp; 4796 4797 for (i = 0; i < hugetlb_param_index; i++) { 4798 hcp = &hugetlb_params[i]; 4799 4800 hcp->setup(hcp->val); 4801 } 4802 4803 hugetlb_cma_validate_params(); 4804 } 4805 4806 /* 4807 * hugepages command line processing 4808 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4809 * specification. If not, ignore the hugepages value. hugepages can also 4810 * be the first huge page command line option in which case it implicitly 4811 * specifies the number of huge pages for the default size. 4812 */ 4813 static int __init hugepages_setup(char *s) 4814 { 4815 unsigned long *mhp; 4816 static unsigned long *last_mhp; 4817 int node = NUMA_NO_NODE; 4818 int count; 4819 unsigned long tmp; 4820 char *p = s; 4821 4822 if (!parsed_valid_hugepagesz) { 4823 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4824 parsed_valid_hugepagesz = true; 4825 return -EINVAL; 4826 } 4827 4828 /* 4829 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4830 * yet, so this hugepages= parameter goes to the "default hstate". 4831 * Otherwise, it goes with the previously parsed hugepagesz or 4832 * default_hugepagesz. 4833 */ 4834 else if (!hugetlb_max_hstate) 4835 mhp = &default_hstate_max_huge_pages; 4836 else 4837 mhp = &parsed_hstate->max_huge_pages; 4838 4839 if (mhp == last_mhp) { 4840 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4841 return 1; 4842 } 4843 4844 while (*p) { 4845 count = 0; 4846 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4847 goto invalid; 4848 /* Parameter is node format */ 4849 if (p[count] == ':') { 4850 if (!hugetlb_node_alloc_supported()) { 4851 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4852 return 1; 4853 } 4854 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4855 goto invalid; 4856 node = array_index_nospec(tmp, MAX_NUMNODES); 4857 p += count + 1; 4858 /* Parse hugepages */ 4859 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4860 goto invalid; 4861 if (!hugetlb_max_hstate) 4862 default_hugepages_in_node[node] = tmp; 4863 else 4864 parsed_hstate->max_huge_pages_node[node] = tmp; 4865 *mhp += tmp; 4866 /* Go to parse next node*/ 4867 if (p[count] == ',') 4868 p += count + 1; 4869 else 4870 break; 4871 } else { 4872 if (p != s) 4873 goto invalid; 4874 *mhp = tmp; 4875 break; 4876 } 4877 } 4878 4879 last_mhp = mhp; 4880 4881 return 0; 4882 4883 invalid: 4884 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4885 hugepages_clear_pages_in_node(); 4886 return -EINVAL; 4887 } 4888 hugetlb_early_param("hugepages", hugepages_setup); 4889 4890 /* 4891 * hugepagesz command line processing 4892 * A specific huge page size can only be specified once with hugepagesz. 4893 * hugepagesz is followed by hugepages on the command line. The global 4894 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4895 * hugepagesz argument was valid. 4896 */ 4897 static int __init hugepagesz_setup(char *s) 4898 { 4899 unsigned long size; 4900 struct hstate *h; 4901 4902 parsed_valid_hugepagesz = false; 4903 size = (unsigned long)memparse(s, NULL); 4904 4905 if (!arch_hugetlb_valid_size(size)) { 4906 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4907 return -EINVAL; 4908 } 4909 4910 h = size_to_hstate(size); 4911 if (h) { 4912 /* 4913 * hstate for this size already exists. This is normally 4914 * an error, but is allowed if the existing hstate is the 4915 * default hstate. More specifically, it is only allowed if 4916 * the number of huge pages for the default hstate was not 4917 * previously specified. 4918 */ 4919 if (!parsed_default_hugepagesz || h != &default_hstate || 4920 default_hstate.max_huge_pages) { 4921 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4922 return -EINVAL; 4923 } 4924 4925 /* 4926 * No need to call hugetlb_add_hstate() as hstate already 4927 * exists. But, do set parsed_hstate so that a following 4928 * hugepages= parameter will be applied to this hstate. 4929 */ 4930 parsed_hstate = h; 4931 parsed_valid_hugepagesz = true; 4932 return 0; 4933 } 4934 4935 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4936 parsed_valid_hugepagesz = true; 4937 return 0; 4938 } 4939 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4940 4941 /* 4942 * default_hugepagesz command line input 4943 * Only one instance of default_hugepagesz allowed on command line. 4944 */ 4945 static int __init default_hugepagesz_setup(char *s) 4946 { 4947 unsigned long size; 4948 int i; 4949 4950 parsed_valid_hugepagesz = false; 4951 if (parsed_default_hugepagesz) { 4952 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4953 return -EINVAL; 4954 } 4955 4956 size = (unsigned long)memparse(s, NULL); 4957 4958 if (!arch_hugetlb_valid_size(size)) { 4959 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4960 return -EINVAL; 4961 } 4962 4963 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4964 parsed_valid_hugepagesz = true; 4965 parsed_default_hugepagesz = true; 4966 default_hstate_idx = hstate_index(size_to_hstate(size)); 4967 4968 /* 4969 * The number of default huge pages (for this size) could have been 4970 * specified as the first hugetlb parameter: hugepages=X. If so, 4971 * then default_hstate_max_huge_pages is set. If the default huge 4972 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4973 * allocated here from bootmem allocator. 4974 */ 4975 if (default_hstate_max_huge_pages) { 4976 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4977 /* 4978 * Since this is an early parameter, we can't check 4979 * NUMA node state yet, so loop through MAX_NUMNODES. 4980 */ 4981 for (i = 0; i < MAX_NUMNODES; i++) { 4982 if (default_hugepages_in_node[i] != 0) 4983 default_hstate.max_huge_pages_node[i] = 4984 default_hugepages_in_node[i]; 4985 } 4986 default_hstate_max_huge_pages = 0; 4987 } 4988 4989 return 0; 4990 } 4991 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 4992 4993 static bool __hugetlb_bootmem_allocated __initdata; 4994 4995 bool __init hugetlb_bootmem_allocated(void) 4996 { 4997 return __hugetlb_bootmem_allocated; 4998 } 4999 5000 void __init hugetlb_bootmem_alloc(void) 5001 { 5002 struct hstate *h; 5003 int i; 5004 5005 if (__hugetlb_bootmem_allocated) 5006 return; 5007 5008 for (i = 0; i < MAX_NUMNODES; i++) 5009 INIT_LIST_HEAD(&huge_boot_pages[i]); 5010 5011 hugetlb_parse_params(); 5012 5013 for_each_hstate(h) { 5014 h->next_nid_to_alloc = first_online_node; 5015 h->next_nid_to_free = first_online_node; 5016 5017 if (hstate_is_gigantic(h)) 5018 hugetlb_hstate_alloc_pages(h); 5019 } 5020 5021 __hugetlb_bootmem_allocated = true; 5022 } 5023 5024 /* 5025 * hugepage_alloc_threads command line parsing. 5026 * 5027 * When set, use this specific number of threads for the boot 5028 * allocation of hugepages. 5029 */ 5030 static int __init hugepage_alloc_threads_setup(char *s) 5031 { 5032 unsigned long allocation_threads; 5033 5034 if (kstrtoul(s, 0, &allocation_threads) != 0) 5035 return 1; 5036 5037 if (allocation_threads == 0) 5038 return 1; 5039 5040 hugepage_allocation_threads = allocation_threads; 5041 5042 return 1; 5043 } 5044 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5045 5046 static unsigned int allowed_mems_nr(struct hstate *h) 5047 { 5048 int node; 5049 unsigned int nr = 0; 5050 nodemask_t *mbind_nodemask; 5051 unsigned int *array = h->free_huge_pages_node; 5052 gfp_t gfp_mask = htlb_alloc_mask(h); 5053 5054 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5055 for_each_node_mask(node, cpuset_current_mems_allowed) { 5056 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5057 nr += array[node]; 5058 } 5059 5060 return nr; 5061 } 5062 5063 #ifdef CONFIG_SYSCTL 5064 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5065 void *buffer, size_t *length, 5066 loff_t *ppos, unsigned long *out) 5067 { 5068 struct ctl_table dup_table; 5069 5070 /* 5071 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5072 * can duplicate the @table and alter the duplicate of it. 5073 */ 5074 dup_table = *table; 5075 dup_table.data = out; 5076 5077 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5078 } 5079 5080 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5081 const struct ctl_table *table, int write, 5082 void *buffer, size_t *length, loff_t *ppos) 5083 { 5084 struct hstate *h = &default_hstate; 5085 unsigned long tmp = h->max_huge_pages; 5086 int ret; 5087 5088 if (!hugepages_supported()) 5089 return -EOPNOTSUPP; 5090 5091 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5092 &tmp); 5093 if (ret) 5094 goto out; 5095 5096 if (write) 5097 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5098 NUMA_NO_NODE, tmp, *length); 5099 out: 5100 return ret; 5101 } 5102 5103 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5104 void *buffer, size_t *length, loff_t *ppos) 5105 { 5106 5107 return hugetlb_sysctl_handler_common(false, table, write, 5108 buffer, length, ppos); 5109 } 5110 5111 #ifdef CONFIG_NUMA 5112 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5113 void *buffer, size_t *length, loff_t *ppos) 5114 { 5115 return hugetlb_sysctl_handler_common(true, table, write, 5116 buffer, length, ppos); 5117 } 5118 #endif /* CONFIG_NUMA */ 5119 5120 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5121 void *buffer, size_t *length, loff_t *ppos) 5122 { 5123 struct hstate *h = &default_hstate; 5124 unsigned long tmp; 5125 int ret; 5126 5127 if (!hugepages_supported()) 5128 return -EOPNOTSUPP; 5129 5130 tmp = h->nr_overcommit_huge_pages; 5131 5132 if (write && hstate_is_gigantic(h)) 5133 return -EINVAL; 5134 5135 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5136 &tmp); 5137 if (ret) 5138 goto out; 5139 5140 if (write) { 5141 spin_lock_irq(&hugetlb_lock); 5142 h->nr_overcommit_huge_pages = tmp; 5143 spin_unlock_irq(&hugetlb_lock); 5144 } 5145 out: 5146 return ret; 5147 } 5148 5149 static const struct ctl_table hugetlb_table[] = { 5150 { 5151 .procname = "nr_hugepages", 5152 .data = NULL, 5153 .maxlen = sizeof(unsigned long), 5154 .mode = 0644, 5155 .proc_handler = hugetlb_sysctl_handler, 5156 }, 5157 #ifdef CONFIG_NUMA 5158 { 5159 .procname = "nr_hugepages_mempolicy", 5160 .data = NULL, 5161 .maxlen = sizeof(unsigned long), 5162 .mode = 0644, 5163 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5164 }, 5165 #endif 5166 { 5167 .procname = "hugetlb_shm_group", 5168 .data = &sysctl_hugetlb_shm_group, 5169 .maxlen = sizeof(gid_t), 5170 .mode = 0644, 5171 .proc_handler = proc_dointvec, 5172 }, 5173 { 5174 .procname = "nr_overcommit_hugepages", 5175 .data = NULL, 5176 .maxlen = sizeof(unsigned long), 5177 .mode = 0644, 5178 .proc_handler = hugetlb_overcommit_handler, 5179 }, 5180 }; 5181 5182 static void __init hugetlb_sysctl_init(void) 5183 { 5184 register_sysctl_init("vm", hugetlb_table); 5185 } 5186 #endif /* CONFIG_SYSCTL */ 5187 5188 void hugetlb_report_meminfo(struct seq_file *m) 5189 { 5190 struct hstate *h; 5191 unsigned long total = 0; 5192 5193 if (!hugepages_supported()) 5194 return; 5195 5196 for_each_hstate(h) { 5197 unsigned long count = h->nr_huge_pages; 5198 5199 total += huge_page_size(h) * count; 5200 5201 if (h == &default_hstate) 5202 seq_printf(m, 5203 "HugePages_Total: %5lu\n" 5204 "HugePages_Free: %5lu\n" 5205 "HugePages_Rsvd: %5lu\n" 5206 "HugePages_Surp: %5lu\n" 5207 "Hugepagesize: %8lu kB\n", 5208 count, 5209 h->free_huge_pages, 5210 h->resv_huge_pages, 5211 h->surplus_huge_pages, 5212 huge_page_size(h) / SZ_1K); 5213 } 5214 5215 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5216 } 5217 5218 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5219 { 5220 struct hstate *h = &default_hstate; 5221 5222 if (!hugepages_supported()) 5223 return 0; 5224 5225 return sysfs_emit_at(buf, len, 5226 "Node %d HugePages_Total: %5u\n" 5227 "Node %d HugePages_Free: %5u\n" 5228 "Node %d HugePages_Surp: %5u\n", 5229 nid, h->nr_huge_pages_node[nid], 5230 nid, h->free_huge_pages_node[nid], 5231 nid, h->surplus_huge_pages_node[nid]); 5232 } 5233 5234 void hugetlb_show_meminfo_node(int nid) 5235 { 5236 struct hstate *h; 5237 5238 if (!hugepages_supported()) 5239 return; 5240 5241 for_each_hstate(h) 5242 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5243 nid, 5244 h->nr_huge_pages_node[nid], 5245 h->free_huge_pages_node[nid], 5246 h->surplus_huge_pages_node[nid], 5247 huge_page_size(h) / SZ_1K); 5248 } 5249 5250 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5251 { 5252 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5253 K(atomic_long_read(&mm->hugetlb_usage))); 5254 } 5255 5256 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5257 unsigned long hugetlb_total_pages(void) 5258 { 5259 struct hstate *h; 5260 unsigned long nr_total_pages = 0; 5261 5262 for_each_hstate(h) 5263 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5264 return nr_total_pages; 5265 } 5266 5267 static int hugetlb_acct_memory(struct hstate *h, long delta) 5268 { 5269 int ret = -ENOMEM; 5270 5271 if (!delta) 5272 return 0; 5273 5274 spin_lock_irq(&hugetlb_lock); 5275 /* 5276 * When cpuset is configured, it breaks the strict hugetlb page 5277 * reservation as the accounting is done on a global variable. Such 5278 * reservation is completely rubbish in the presence of cpuset because 5279 * the reservation is not checked against page availability for the 5280 * current cpuset. Application can still potentially OOM'ed by kernel 5281 * with lack of free htlb page in cpuset that the task is in. 5282 * Attempt to enforce strict accounting with cpuset is almost 5283 * impossible (or too ugly) because cpuset is too fluid that 5284 * task or memory node can be dynamically moved between cpusets. 5285 * 5286 * The change of semantics for shared hugetlb mapping with cpuset is 5287 * undesirable. However, in order to preserve some of the semantics, 5288 * we fall back to check against current free page availability as 5289 * a best attempt and hopefully to minimize the impact of changing 5290 * semantics that cpuset has. 5291 * 5292 * Apart from cpuset, we also have memory policy mechanism that 5293 * also determines from which node the kernel will allocate memory 5294 * in a NUMA system. So similar to cpuset, we also should consider 5295 * the memory policy of the current task. Similar to the description 5296 * above. 5297 */ 5298 if (delta > 0) { 5299 if (gather_surplus_pages(h, delta) < 0) 5300 goto out; 5301 5302 if (delta > allowed_mems_nr(h)) { 5303 return_unused_surplus_pages(h, delta); 5304 goto out; 5305 } 5306 } 5307 5308 ret = 0; 5309 if (delta < 0) 5310 return_unused_surplus_pages(h, (unsigned long) -delta); 5311 5312 out: 5313 spin_unlock_irq(&hugetlb_lock); 5314 return ret; 5315 } 5316 5317 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5318 { 5319 struct resv_map *resv = vma_resv_map(vma); 5320 5321 /* 5322 * HPAGE_RESV_OWNER indicates a private mapping. 5323 * This new VMA should share its siblings reservation map if present. 5324 * The VMA will only ever have a valid reservation map pointer where 5325 * it is being copied for another still existing VMA. As that VMA 5326 * has a reference to the reservation map it cannot disappear until 5327 * after this open call completes. It is therefore safe to take a 5328 * new reference here without additional locking. 5329 */ 5330 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5331 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5332 kref_get(&resv->refs); 5333 } 5334 5335 /* 5336 * vma_lock structure for sharable mappings is vma specific. 5337 * Clear old pointer (if copied via vm_area_dup) and allocate 5338 * new structure. Before clearing, make sure vma_lock is not 5339 * for this vma. 5340 */ 5341 if (vma->vm_flags & VM_MAYSHARE) { 5342 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5343 5344 if (vma_lock) { 5345 if (vma_lock->vma != vma) { 5346 vma->vm_private_data = NULL; 5347 hugetlb_vma_lock_alloc(vma); 5348 } else 5349 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5350 } else 5351 hugetlb_vma_lock_alloc(vma); 5352 } 5353 } 5354 5355 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5356 { 5357 struct hstate *h = hstate_vma(vma); 5358 struct resv_map *resv; 5359 struct hugepage_subpool *spool = subpool_vma(vma); 5360 unsigned long reserve, start, end; 5361 long gbl_reserve; 5362 5363 hugetlb_vma_lock_free(vma); 5364 5365 resv = vma_resv_map(vma); 5366 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5367 return; 5368 5369 start = vma_hugecache_offset(h, vma, vma->vm_start); 5370 end = vma_hugecache_offset(h, vma, vma->vm_end); 5371 5372 reserve = (end - start) - region_count(resv, start, end); 5373 hugetlb_cgroup_uncharge_counter(resv, start, end); 5374 if (reserve) { 5375 /* 5376 * Decrement reserve counts. The global reserve count may be 5377 * adjusted if the subpool has a minimum size. 5378 */ 5379 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5380 hugetlb_acct_memory(h, -gbl_reserve); 5381 } 5382 5383 kref_put(&resv->refs, resv_map_release); 5384 } 5385 5386 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5387 { 5388 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5389 return -EINVAL; 5390 5391 /* 5392 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5393 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5394 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5395 */ 5396 if (addr & ~PUD_MASK) { 5397 /* 5398 * hugetlb_vm_op_split is called right before we attempt to 5399 * split the VMA. We will need to unshare PMDs in the old and 5400 * new VMAs, so let's unshare before we split. 5401 */ 5402 unsigned long floor = addr & PUD_MASK; 5403 unsigned long ceil = floor + PUD_SIZE; 5404 5405 if (floor >= vma->vm_start && ceil <= vma->vm_end) 5406 hugetlb_unshare_pmds(vma, floor, ceil); 5407 } 5408 5409 return 0; 5410 } 5411 5412 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5413 { 5414 return huge_page_size(hstate_vma(vma)); 5415 } 5416 5417 /* 5418 * We cannot handle pagefaults against hugetlb pages at all. They cause 5419 * handle_mm_fault() to try to instantiate regular-sized pages in the 5420 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5421 * this far. 5422 */ 5423 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5424 { 5425 BUG(); 5426 return 0; 5427 } 5428 5429 /* 5430 * When a new function is introduced to vm_operations_struct and added 5431 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5432 * This is because under System V memory model, mappings created via 5433 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5434 * their original vm_ops are overwritten with shm_vm_ops. 5435 */ 5436 const struct vm_operations_struct hugetlb_vm_ops = { 5437 .fault = hugetlb_vm_op_fault, 5438 .open = hugetlb_vm_op_open, 5439 .close = hugetlb_vm_op_close, 5440 .may_split = hugetlb_vm_op_split, 5441 .pagesize = hugetlb_vm_op_pagesize, 5442 }; 5443 5444 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 5445 bool try_mkwrite) 5446 { 5447 pte_t entry; 5448 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5449 5450 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5451 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 5452 vma->vm_page_prot))); 5453 } else { 5454 entry = huge_pte_wrprotect(mk_huge_pte(page, 5455 vma->vm_page_prot)); 5456 } 5457 entry = pte_mkyoung(entry); 5458 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5459 5460 return entry; 5461 } 5462 5463 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5464 unsigned long address, pte_t *ptep) 5465 { 5466 pte_t entry; 5467 5468 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5469 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5470 update_mmu_cache(vma, address, ptep); 5471 } 5472 5473 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5474 unsigned long address, pte_t *ptep) 5475 { 5476 if (vma->vm_flags & VM_WRITE) 5477 set_huge_ptep_writable(vma, address, ptep); 5478 } 5479 5480 bool is_hugetlb_entry_migration(pte_t pte) 5481 { 5482 swp_entry_t swp; 5483 5484 if (huge_pte_none(pte) || pte_present(pte)) 5485 return false; 5486 swp = pte_to_swp_entry(pte); 5487 if (is_migration_entry(swp)) 5488 return true; 5489 else 5490 return false; 5491 } 5492 5493 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5494 { 5495 swp_entry_t swp; 5496 5497 if (huge_pte_none(pte) || pte_present(pte)) 5498 return false; 5499 swp = pte_to_swp_entry(pte); 5500 if (is_hwpoison_entry(swp)) 5501 return true; 5502 else 5503 return false; 5504 } 5505 5506 static void 5507 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5508 struct folio *new_folio, pte_t old, unsigned long sz) 5509 { 5510 pte_t newpte = make_huge_pte(vma, &new_folio->page, true); 5511 5512 __folio_mark_uptodate(new_folio); 5513 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5514 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5515 newpte = huge_pte_mkuffd_wp(newpte); 5516 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5517 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5518 folio_set_hugetlb_migratable(new_folio); 5519 } 5520 5521 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5522 struct vm_area_struct *dst_vma, 5523 struct vm_area_struct *src_vma) 5524 { 5525 pte_t *src_pte, *dst_pte, entry; 5526 struct folio *pte_folio; 5527 unsigned long addr; 5528 bool cow = is_cow_mapping(src_vma->vm_flags); 5529 struct hstate *h = hstate_vma(src_vma); 5530 unsigned long sz = huge_page_size(h); 5531 unsigned long npages = pages_per_huge_page(h); 5532 struct mmu_notifier_range range; 5533 unsigned long last_addr_mask; 5534 int ret = 0; 5535 5536 if (cow) { 5537 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5538 src_vma->vm_start, 5539 src_vma->vm_end); 5540 mmu_notifier_invalidate_range_start(&range); 5541 vma_assert_write_locked(src_vma); 5542 raw_write_seqcount_begin(&src->write_protect_seq); 5543 } else { 5544 /* 5545 * For shared mappings the vma lock must be held before 5546 * calling hugetlb_walk() in the src vma. Otherwise, the 5547 * returned ptep could go away if part of a shared pmd and 5548 * another thread calls huge_pmd_unshare. 5549 */ 5550 hugetlb_vma_lock_read(src_vma); 5551 } 5552 5553 last_addr_mask = hugetlb_mask_last_page(h); 5554 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5555 spinlock_t *src_ptl, *dst_ptl; 5556 src_pte = hugetlb_walk(src_vma, addr, sz); 5557 if (!src_pte) { 5558 addr |= last_addr_mask; 5559 continue; 5560 } 5561 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5562 if (!dst_pte) { 5563 ret = -ENOMEM; 5564 break; 5565 } 5566 5567 /* 5568 * If the pagetables are shared don't copy or take references. 5569 * 5570 * dst_pte == src_pte is the common case of src/dest sharing. 5571 * However, src could have 'unshared' and dst shares with 5572 * another vma. So page_count of ptep page is checked instead 5573 * to reliably determine whether pte is shared. 5574 */ 5575 if (page_count(virt_to_page(dst_pte)) > 1) { 5576 addr |= last_addr_mask; 5577 continue; 5578 } 5579 5580 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5581 src_ptl = huge_pte_lockptr(h, src, src_pte); 5582 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5583 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5584 again: 5585 if (huge_pte_none(entry)) { 5586 /* 5587 * Skip if src entry none. 5588 */ 5589 ; 5590 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5591 if (!userfaultfd_wp(dst_vma)) 5592 entry = huge_pte_clear_uffd_wp(entry); 5593 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5594 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5595 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5596 bool uffd_wp = pte_swp_uffd_wp(entry); 5597 5598 if (!is_readable_migration_entry(swp_entry) && cow) { 5599 /* 5600 * COW mappings require pages in both 5601 * parent and child to be set to read. 5602 */ 5603 swp_entry = make_readable_migration_entry( 5604 swp_offset(swp_entry)); 5605 entry = swp_entry_to_pte(swp_entry); 5606 if (userfaultfd_wp(src_vma) && uffd_wp) 5607 entry = pte_swp_mkuffd_wp(entry); 5608 set_huge_pte_at(src, addr, src_pte, entry, sz); 5609 } 5610 if (!userfaultfd_wp(dst_vma)) 5611 entry = huge_pte_clear_uffd_wp(entry); 5612 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5613 } else if (unlikely(is_pte_marker(entry))) { 5614 pte_marker marker = copy_pte_marker( 5615 pte_to_swp_entry(entry), dst_vma); 5616 5617 if (marker) 5618 set_huge_pte_at(dst, addr, dst_pte, 5619 make_pte_marker(marker), sz); 5620 } else { 5621 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5622 pte_folio = page_folio(pte_page(entry)); 5623 folio_get(pte_folio); 5624 5625 /* 5626 * Failing to duplicate the anon rmap is a rare case 5627 * where we see pinned hugetlb pages while they're 5628 * prone to COW. We need to do the COW earlier during 5629 * fork. 5630 * 5631 * When pre-allocating the page or copying data, we 5632 * need to be without the pgtable locks since we could 5633 * sleep during the process. 5634 */ 5635 if (!folio_test_anon(pte_folio)) { 5636 hugetlb_add_file_rmap(pte_folio); 5637 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5638 pte_t src_pte_old = entry; 5639 struct folio *new_folio; 5640 5641 spin_unlock(src_ptl); 5642 spin_unlock(dst_ptl); 5643 /* Do not use reserve as it's private owned */ 5644 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5645 if (IS_ERR(new_folio)) { 5646 folio_put(pte_folio); 5647 ret = PTR_ERR(new_folio); 5648 break; 5649 } 5650 ret = copy_user_large_folio(new_folio, pte_folio, 5651 addr, dst_vma); 5652 folio_put(pte_folio); 5653 if (ret) { 5654 folio_put(new_folio); 5655 break; 5656 } 5657 5658 /* Install the new hugetlb folio if src pte stable */ 5659 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5660 src_ptl = huge_pte_lockptr(h, src, src_pte); 5661 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5662 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5663 if (!pte_same(src_pte_old, entry)) { 5664 restore_reserve_on_error(h, dst_vma, addr, 5665 new_folio); 5666 folio_put(new_folio); 5667 /* huge_ptep of dst_pte won't change as in child */ 5668 goto again; 5669 } 5670 hugetlb_install_folio(dst_vma, dst_pte, addr, 5671 new_folio, src_pte_old, sz); 5672 spin_unlock(src_ptl); 5673 spin_unlock(dst_ptl); 5674 continue; 5675 } 5676 5677 if (cow) { 5678 /* 5679 * No need to notify as we are downgrading page 5680 * table protection not changing it to point 5681 * to a new page. 5682 * 5683 * See Documentation/mm/mmu_notifier.rst 5684 */ 5685 huge_ptep_set_wrprotect(src, addr, src_pte); 5686 entry = huge_pte_wrprotect(entry); 5687 } 5688 5689 if (!userfaultfd_wp(dst_vma)) 5690 entry = huge_pte_clear_uffd_wp(entry); 5691 5692 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5693 hugetlb_count_add(npages, dst); 5694 } 5695 spin_unlock(src_ptl); 5696 spin_unlock(dst_ptl); 5697 } 5698 5699 if (cow) { 5700 raw_write_seqcount_end(&src->write_protect_seq); 5701 mmu_notifier_invalidate_range_end(&range); 5702 } else { 5703 hugetlb_vma_unlock_read(src_vma); 5704 } 5705 5706 return ret; 5707 } 5708 5709 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5710 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5711 unsigned long sz) 5712 { 5713 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5714 struct hstate *h = hstate_vma(vma); 5715 struct mm_struct *mm = vma->vm_mm; 5716 spinlock_t *src_ptl, *dst_ptl; 5717 pte_t pte; 5718 5719 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5720 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5721 5722 /* 5723 * We don't have to worry about the ordering of src and dst ptlocks 5724 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5725 */ 5726 if (src_ptl != dst_ptl) 5727 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5728 5729 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5730 5731 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5732 huge_pte_clear(mm, new_addr, dst_pte, sz); 5733 else { 5734 if (need_clear_uffd_wp) { 5735 if (pte_present(pte)) 5736 pte = huge_pte_clear_uffd_wp(pte); 5737 else if (is_swap_pte(pte)) 5738 pte = pte_swp_clear_uffd_wp(pte); 5739 } 5740 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5741 } 5742 5743 if (src_ptl != dst_ptl) 5744 spin_unlock(src_ptl); 5745 spin_unlock(dst_ptl); 5746 } 5747 5748 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5749 struct vm_area_struct *new_vma, 5750 unsigned long old_addr, unsigned long new_addr, 5751 unsigned long len) 5752 { 5753 struct hstate *h = hstate_vma(vma); 5754 struct address_space *mapping = vma->vm_file->f_mapping; 5755 unsigned long sz = huge_page_size(h); 5756 struct mm_struct *mm = vma->vm_mm; 5757 unsigned long old_end = old_addr + len; 5758 unsigned long last_addr_mask; 5759 pte_t *src_pte, *dst_pte; 5760 struct mmu_notifier_range range; 5761 bool shared_pmd = false; 5762 5763 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5764 old_end); 5765 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5766 /* 5767 * In case of shared PMDs, we should cover the maximum possible 5768 * range. 5769 */ 5770 flush_cache_range(vma, range.start, range.end); 5771 5772 mmu_notifier_invalidate_range_start(&range); 5773 last_addr_mask = hugetlb_mask_last_page(h); 5774 /* Prevent race with file truncation */ 5775 hugetlb_vma_lock_write(vma); 5776 i_mmap_lock_write(mapping); 5777 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5778 src_pte = hugetlb_walk(vma, old_addr, sz); 5779 if (!src_pte) { 5780 old_addr |= last_addr_mask; 5781 new_addr |= last_addr_mask; 5782 continue; 5783 } 5784 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5785 continue; 5786 5787 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5788 shared_pmd = true; 5789 old_addr |= last_addr_mask; 5790 new_addr |= last_addr_mask; 5791 continue; 5792 } 5793 5794 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5795 if (!dst_pte) 5796 break; 5797 5798 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5799 } 5800 5801 if (shared_pmd) 5802 flush_hugetlb_tlb_range(vma, range.start, range.end); 5803 else 5804 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5805 mmu_notifier_invalidate_range_end(&range); 5806 i_mmap_unlock_write(mapping); 5807 hugetlb_vma_unlock_write(vma); 5808 5809 return len + old_addr - old_end; 5810 } 5811 5812 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5813 unsigned long start, unsigned long end, 5814 struct page *ref_page, zap_flags_t zap_flags) 5815 { 5816 struct mm_struct *mm = vma->vm_mm; 5817 unsigned long address; 5818 pte_t *ptep; 5819 pte_t pte; 5820 spinlock_t *ptl; 5821 struct page *page; 5822 struct hstate *h = hstate_vma(vma); 5823 unsigned long sz = huge_page_size(h); 5824 bool adjust_reservation = false; 5825 unsigned long last_addr_mask; 5826 bool force_flush = false; 5827 5828 WARN_ON(!is_vm_hugetlb_page(vma)); 5829 BUG_ON(start & ~huge_page_mask(h)); 5830 BUG_ON(end & ~huge_page_mask(h)); 5831 5832 /* 5833 * This is a hugetlb vma, all the pte entries should point 5834 * to huge page. 5835 */ 5836 tlb_change_page_size(tlb, sz); 5837 tlb_start_vma(tlb, vma); 5838 5839 last_addr_mask = hugetlb_mask_last_page(h); 5840 address = start; 5841 for (; address < end; address += sz) { 5842 ptep = hugetlb_walk(vma, address, sz); 5843 if (!ptep) { 5844 address |= last_addr_mask; 5845 continue; 5846 } 5847 5848 ptl = huge_pte_lock(h, mm, ptep); 5849 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5850 spin_unlock(ptl); 5851 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5852 force_flush = true; 5853 address |= last_addr_mask; 5854 continue; 5855 } 5856 5857 pte = huge_ptep_get(mm, address, ptep); 5858 if (huge_pte_none(pte)) { 5859 spin_unlock(ptl); 5860 continue; 5861 } 5862 5863 /* 5864 * Migrating hugepage or HWPoisoned hugepage is already 5865 * unmapped and its refcount is dropped, so just clear pte here. 5866 */ 5867 if (unlikely(!pte_present(pte))) { 5868 /* 5869 * If the pte was wr-protected by uffd-wp in any of the 5870 * swap forms, meanwhile the caller does not want to 5871 * drop the uffd-wp bit in this zap, then replace the 5872 * pte with a marker. 5873 */ 5874 if (pte_swp_uffd_wp_any(pte) && 5875 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5876 set_huge_pte_at(mm, address, ptep, 5877 make_pte_marker(PTE_MARKER_UFFD_WP), 5878 sz); 5879 else 5880 huge_pte_clear(mm, address, ptep, sz); 5881 spin_unlock(ptl); 5882 continue; 5883 } 5884 5885 page = pte_page(pte); 5886 /* 5887 * If a reference page is supplied, it is because a specific 5888 * page is being unmapped, not a range. Ensure the page we 5889 * are about to unmap is the actual page of interest. 5890 */ 5891 if (ref_page) { 5892 if (page != ref_page) { 5893 spin_unlock(ptl); 5894 continue; 5895 } 5896 /* 5897 * Mark the VMA as having unmapped its page so that 5898 * future faults in this VMA will fail rather than 5899 * looking like data was lost 5900 */ 5901 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5902 } 5903 5904 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5905 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5906 if (huge_pte_dirty(pte)) 5907 set_page_dirty(page); 5908 /* Leave a uffd-wp pte marker if needed */ 5909 if (huge_pte_uffd_wp(pte) && 5910 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5911 set_huge_pte_at(mm, address, ptep, 5912 make_pte_marker(PTE_MARKER_UFFD_WP), 5913 sz); 5914 hugetlb_count_sub(pages_per_huge_page(h), mm); 5915 hugetlb_remove_rmap(page_folio(page)); 5916 5917 /* 5918 * Restore the reservation for anonymous page, otherwise the 5919 * backing page could be stolen by someone. 5920 * If there we are freeing a surplus, do not set the restore 5921 * reservation bit. 5922 */ 5923 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5924 folio_test_anon(page_folio(page))) { 5925 folio_set_hugetlb_restore_reserve(page_folio(page)); 5926 /* Reservation to be adjusted after the spin lock */ 5927 adjust_reservation = true; 5928 } 5929 5930 spin_unlock(ptl); 5931 5932 /* 5933 * Adjust the reservation for the region that will have the 5934 * reserve restored. Keep in mind that vma_needs_reservation() changes 5935 * resv->adds_in_progress if it succeeds. If this is not done, 5936 * do_exit() will not see it, and will keep the reservation 5937 * forever. 5938 */ 5939 if (adjust_reservation) { 5940 int rc = vma_needs_reservation(h, vma, address); 5941 5942 if (rc < 0) 5943 /* Pressumably allocate_file_region_entries failed 5944 * to allocate a file_region struct. Clear 5945 * hugetlb_restore_reserve so that global reserve 5946 * count will not be incremented by free_huge_folio. 5947 * Act as if we consumed the reservation. 5948 */ 5949 folio_clear_hugetlb_restore_reserve(page_folio(page)); 5950 else if (rc) 5951 vma_add_reservation(h, vma, address); 5952 } 5953 5954 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5955 /* 5956 * Bail out after unmapping reference page if supplied 5957 */ 5958 if (ref_page) 5959 break; 5960 } 5961 tlb_end_vma(tlb, vma); 5962 5963 /* 5964 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5965 * could defer the flush until now, since by holding i_mmap_rwsem we 5966 * guaranteed that the last refernece would not be dropped. But we must 5967 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5968 * dropped and the last reference to the shared PMDs page might be 5969 * dropped as well. 5970 * 5971 * In theory we could defer the freeing of the PMD pages as well, but 5972 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5973 * detect sharing, so we cannot defer the release of the page either. 5974 * Instead, do flush now. 5975 */ 5976 if (force_flush) 5977 tlb_flush_mmu_tlbonly(tlb); 5978 } 5979 5980 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5981 unsigned long *start, unsigned long *end) 5982 { 5983 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5984 return; 5985 5986 adjust_range_if_pmd_sharing_possible(vma, start, end); 5987 hugetlb_vma_lock_write(vma); 5988 if (vma->vm_file) 5989 i_mmap_lock_write(vma->vm_file->f_mapping); 5990 } 5991 5992 void __hugetlb_zap_end(struct vm_area_struct *vma, 5993 struct zap_details *details) 5994 { 5995 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5996 5997 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5998 return; 5999 6000 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6001 /* 6002 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6003 * When the vma_lock is freed, this makes the vma ineligible 6004 * for pmd sharing. And, i_mmap_rwsem is required to set up 6005 * pmd sharing. This is important as page tables for this 6006 * unmapped range will be asynchrously deleted. If the page 6007 * tables are shared, there will be issues when accessed by 6008 * someone else. 6009 */ 6010 __hugetlb_vma_unlock_write_free(vma); 6011 } else { 6012 hugetlb_vma_unlock_write(vma); 6013 } 6014 6015 if (vma->vm_file) 6016 i_mmap_unlock_write(vma->vm_file->f_mapping); 6017 } 6018 6019 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6020 unsigned long end, struct page *ref_page, 6021 zap_flags_t zap_flags) 6022 { 6023 struct mmu_notifier_range range; 6024 struct mmu_gather tlb; 6025 6026 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6027 start, end); 6028 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6029 mmu_notifier_invalidate_range_start(&range); 6030 tlb_gather_mmu(&tlb, vma->vm_mm); 6031 6032 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 6033 6034 mmu_notifier_invalidate_range_end(&range); 6035 tlb_finish_mmu(&tlb); 6036 } 6037 6038 /* 6039 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6040 * mapping it owns the reserve page for. The intention is to unmap the page 6041 * from other VMAs and let the children be SIGKILLed if they are faulting the 6042 * same region. 6043 */ 6044 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6045 struct page *page, unsigned long address) 6046 { 6047 struct hstate *h = hstate_vma(vma); 6048 struct vm_area_struct *iter_vma; 6049 struct address_space *mapping; 6050 pgoff_t pgoff; 6051 6052 /* 6053 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6054 * from page cache lookup which is in HPAGE_SIZE units. 6055 */ 6056 address = address & huge_page_mask(h); 6057 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6058 vma->vm_pgoff; 6059 mapping = vma->vm_file->f_mapping; 6060 6061 /* 6062 * Take the mapping lock for the duration of the table walk. As 6063 * this mapping should be shared between all the VMAs, 6064 * __unmap_hugepage_range() is called as the lock is already held 6065 */ 6066 i_mmap_lock_write(mapping); 6067 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6068 /* Do not unmap the current VMA */ 6069 if (iter_vma == vma) 6070 continue; 6071 6072 /* 6073 * Shared VMAs have their own reserves and do not affect 6074 * MAP_PRIVATE accounting but it is possible that a shared 6075 * VMA is using the same page so check and skip such VMAs. 6076 */ 6077 if (iter_vma->vm_flags & VM_MAYSHARE) 6078 continue; 6079 6080 /* 6081 * Unmap the page from other VMAs without their own reserves. 6082 * They get marked to be SIGKILLed if they fault in these 6083 * areas. This is because a future no-page fault on this VMA 6084 * could insert a zeroed page instead of the data existing 6085 * from the time of fork. This would look like data corruption 6086 */ 6087 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6088 unmap_hugepage_range(iter_vma, address, 6089 address + huge_page_size(h), page, 0); 6090 } 6091 i_mmap_unlock_write(mapping); 6092 } 6093 6094 /* 6095 * hugetlb_wp() should be called with page lock of the original hugepage held. 6096 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6097 * cannot race with other handlers or page migration. 6098 * Keep the pte_same checks anyway to make transition from the mutex easier. 6099 */ 6100 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 6101 struct vm_fault *vmf) 6102 { 6103 struct vm_area_struct *vma = vmf->vma; 6104 struct mm_struct *mm = vma->vm_mm; 6105 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6106 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6107 struct hstate *h = hstate_vma(vma); 6108 struct folio *old_folio; 6109 struct folio *new_folio; 6110 bool cow_from_owner = 0; 6111 vm_fault_t ret = 0; 6112 struct mmu_notifier_range range; 6113 6114 /* 6115 * Never handle CoW for uffd-wp protected pages. It should be only 6116 * handled when the uffd-wp protection is removed. 6117 * 6118 * Note that only the CoW optimization path (in hugetlb_no_page()) 6119 * can trigger this, because hugetlb_fault() will always resolve 6120 * uffd-wp bit first. 6121 */ 6122 if (!unshare && huge_pte_uffd_wp(pte)) 6123 return 0; 6124 6125 /* Let's take out MAP_SHARED mappings first. */ 6126 if (vma->vm_flags & VM_MAYSHARE) { 6127 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6128 return 0; 6129 } 6130 6131 old_folio = page_folio(pte_page(pte)); 6132 6133 delayacct_wpcopy_start(); 6134 6135 retry_avoidcopy: 6136 /* 6137 * If no-one else is actually using this page, we're the exclusive 6138 * owner and can reuse this page. 6139 * 6140 * Note that we don't rely on the (safer) folio refcount here, because 6141 * copying the hugetlb folio when there are unexpected (temporary) 6142 * folio references could harm simple fork()+exit() users when 6143 * we run out of free hugetlb folios: we would have to kill processes 6144 * in scenarios that used to work. As a side effect, there can still 6145 * be leaks between processes, for example, with FOLL_GET users. 6146 */ 6147 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6148 if (!PageAnonExclusive(&old_folio->page)) { 6149 folio_move_anon_rmap(old_folio, vma); 6150 SetPageAnonExclusive(&old_folio->page); 6151 } 6152 if (likely(!unshare)) 6153 set_huge_ptep_maybe_writable(vma, vmf->address, 6154 vmf->pte); 6155 6156 delayacct_wpcopy_end(); 6157 return 0; 6158 } 6159 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6160 PageAnonExclusive(&old_folio->page), &old_folio->page); 6161 6162 /* 6163 * If the process that created a MAP_PRIVATE mapping is about to 6164 * perform a COW due to a shared page count, attempt to satisfy 6165 * the allocation without using the existing reserves. The pagecache 6166 * page is used to determine if the reserve at this address was 6167 * consumed or not. If reserves were used, a partial faulted mapping 6168 * at the time of fork() could consume its reserves on COW instead 6169 * of the full address range. 6170 */ 6171 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6172 old_folio != pagecache_folio) 6173 cow_from_owner = true; 6174 6175 folio_get(old_folio); 6176 6177 /* 6178 * Drop page table lock as buddy allocator may be called. It will 6179 * be acquired again before returning to the caller, as expected. 6180 */ 6181 spin_unlock(vmf->ptl); 6182 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6183 6184 if (IS_ERR(new_folio)) { 6185 /* 6186 * If a process owning a MAP_PRIVATE mapping fails to COW, 6187 * it is due to references held by a child and an insufficient 6188 * huge page pool. To guarantee the original mappers 6189 * reliability, unmap the page from child processes. The child 6190 * may get SIGKILLed if it later faults. 6191 */ 6192 if (cow_from_owner) { 6193 struct address_space *mapping = vma->vm_file->f_mapping; 6194 pgoff_t idx; 6195 u32 hash; 6196 6197 folio_put(old_folio); 6198 /* 6199 * Drop hugetlb_fault_mutex and vma_lock before 6200 * unmapping. unmapping needs to hold vma_lock 6201 * in write mode. Dropping vma_lock in read mode 6202 * here is OK as COW mappings do not interact with 6203 * PMD sharing. 6204 * 6205 * Reacquire both after unmap operation. 6206 */ 6207 idx = vma_hugecache_offset(h, vma, vmf->address); 6208 hash = hugetlb_fault_mutex_hash(mapping, idx); 6209 hugetlb_vma_unlock_read(vma); 6210 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6211 6212 unmap_ref_private(mm, vma, &old_folio->page, 6213 vmf->address); 6214 6215 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6216 hugetlb_vma_lock_read(vma); 6217 spin_lock(vmf->ptl); 6218 vmf->pte = hugetlb_walk(vma, vmf->address, 6219 huge_page_size(h)); 6220 if (likely(vmf->pte && 6221 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6222 goto retry_avoidcopy; 6223 /* 6224 * race occurs while re-acquiring page table 6225 * lock, and our job is done. 6226 */ 6227 delayacct_wpcopy_end(); 6228 return 0; 6229 } 6230 6231 ret = vmf_error(PTR_ERR(new_folio)); 6232 goto out_release_old; 6233 } 6234 6235 /* 6236 * When the original hugepage is shared one, it does not have 6237 * anon_vma prepared. 6238 */ 6239 ret = __vmf_anon_prepare(vmf); 6240 if (unlikely(ret)) 6241 goto out_release_all; 6242 6243 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6244 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6245 goto out_release_all; 6246 } 6247 __folio_mark_uptodate(new_folio); 6248 6249 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6250 vmf->address + huge_page_size(h)); 6251 mmu_notifier_invalidate_range_start(&range); 6252 6253 /* 6254 * Retake the page table lock to check for racing updates 6255 * before the page tables are altered 6256 */ 6257 spin_lock(vmf->ptl); 6258 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6259 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6260 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 6261 6262 /* Break COW or unshare */ 6263 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6264 hugetlb_remove_rmap(old_folio); 6265 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6266 if (huge_pte_uffd_wp(pte)) 6267 newpte = huge_pte_mkuffd_wp(newpte); 6268 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6269 huge_page_size(h)); 6270 folio_set_hugetlb_migratable(new_folio); 6271 /* Make the old page be freed below */ 6272 new_folio = old_folio; 6273 } 6274 spin_unlock(vmf->ptl); 6275 mmu_notifier_invalidate_range_end(&range); 6276 out_release_all: 6277 /* 6278 * No restore in case of successful pagetable update (Break COW or 6279 * unshare) 6280 */ 6281 if (new_folio != old_folio) 6282 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6283 folio_put(new_folio); 6284 out_release_old: 6285 folio_put(old_folio); 6286 6287 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6288 6289 delayacct_wpcopy_end(); 6290 return ret; 6291 } 6292 6293 /* 6294 * Return whether there is a pagecache page to back given address within VMA. 6295 */ 6296 bool hugetlbfs_pagecache_present(struct hstate *h, 6297 struct vm_area_struct *vma, unsigned long address) 6298 { 6299 struct address_space *mapping = vma->vm_file->f_mapping; 6300 pgoff_t idx = linear_page_index(vma, address); 6301 struct folio *folio; 6302 6303 folio = filemap_get_folio(mapping, idx); 6304 if (IS_ERR(folio)) 6305 return false; 6306 folio_put(folio); 6307 return true; 6308 } 6309 6310 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6311 pgoff_t idx) 6312 { 6313 struct inode *inode = mapping->host; 6314 struct hstate *h = hstate_inode(inode); 6315 int err; 6316 6317 idx <<= huge_page_order(h); 6318 __folio_set_locked(folio); 6319 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6320 6321 if (unlikely(err)) { 6322 __folio_clear_locked(folio); 6323 return err; 6324 } 6325 folio_clear_hugetlb_restore_reserve(folio); 6326 6327 /* 6328 * mark folio dirty so that it will not be removed from cache/file 6329 * by non-hugetlbfs specific code paths. 6330 */ 6331 folio_mark_dirty(folio); 6332 6333 spin_lock(&inode->i_lock); 6334 inode->i_blocks += blocks_per_huge_page(h); 6335 spin_unlock(&inode->i_lock); 6336 return 0; 6337 } 6338 6339 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6340 struct address_space *mapping, 6341 unsigned long reason) 6342 { 6343 u32 hash; 6344 6345 /* 6346 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6347 * userfault. Also mmap_lock could be dropped due to handling 6348 * userfault, any vma operation should be careful from here. 6349 */ 6350 hugetlb_vma_unlock_read(vmf->vma); 6351 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6352 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6353 return handle_userfault(vmf, reason); 6354 } 6355 6356 /* 6357 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6358 * false if pte changed or is changing. 6359 */ 6360 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6361 pte_t *ptep, pte_t old_pte) 6362 { 6363 spinlock_t *ptl; 6364 bool same; 6365 6366 ptl = huge_pte_lock(h, mm, ptep); 6367 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6368 spin_unlock(ptl); 6369 6370 return same; 6371 } 6372 6373 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6374 struct vm_fault *vmf) 6375 { 6376 struct vm_area_struct *vma = vmf->vma; 6377 struct mm_struct *mm = vma->vm_mm; 6378 struct hstate *h = hstate_vma(vma); 6379 vm_fault_t ret = VM_FAULT_SIGBUS; 6380 int anon_rmap = 0; 6381 unsigned long size; 6382 struct folio *folio; 6383 pte_t new_pte; 6384 bool new_folio, new_pagecache_folio = false; 6385 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6386 6387 /* 6388 * Currently, we are forced to kill the process in the event the 6389 * original mapper has unmapped pages from the child due to a failed 6390 * COW/unsharing. Warn that such a situation has occurred as it may not 6391 * be obvious. 6392 */ 6393 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6394 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6395 current->pid); 6396 goto out; 6397 } 6398 6399 /* 6400 * Use page lock to guard against racing truncation 6401 * before we get page_table_lock. 6402 */ 6403 new_folio = false; 6404 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6405 if (IS_ERR(folio)) { 6406 size = i_size_read(mapping->host) >> huge_page_shift(h); 6407 if (vmf->pgoff >= size) 6408 goto out; 6409 /* Check for page in userfault range */ 6410 if (userfaultfd_missing(vma)) { 6411 /* 6412 * Since hugetlb_no_page() was examining pte 6413 * without pgtable lock, we need to re-test under 6414 * lock because the pte may not be stable and could 6415 * have changed from under us. Try to detect 6416 * either changed or during-changing ptes and retry 6417 * properly when needed. 6418 * 6419 * Note that userfaultfd is actually fine with 6420 * false positives (e.g. caused by pte changed), 6421 * but not wrong logical events (e.g. caused by 6422 * reading a pte during changing). The latter can 6423 * confuse the userspace, so the strictness is very 6424 * much preferred. E.g., MISSING event should 6425 * never happen on the page after UFFDIO_COPY has 6426 * correctly installed the page and returned. 6427 */ 6428 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6429 ret = 0; 6430 goto out; 6431 } 6432 6433 return hugetlb_handle_userfault(vmf, mapping, 6434 VM_UFFD_MISSING); 6435 } 6436 6437 if (!(vma->vm_flags & VM_MAYSHARE)) { 6438 ret = __vmf_anon_prepare(vmf); 6439 if (unlikely(ret)) 6440 goto out; 6441 } 6442 6443 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6444 if (IS_ERR(folio)) { 6445 /* 6446 * Returning error will result in faulting task being 6447 * sent SIGBUS. The hugetlb fault mutex prevents two 6448 * tasks from racing to fault in the same page which 6449 * could result in false unable to allocate errors. 6450 * Page migration does not take the fault mutex, but 6451 * does a clear then write of pte's under page table 6452 * lock. Page fault code could race with migration, 6453 * notice the clear pte and try to allocate a page 6454 * here. Before returning error, get ptl and make 6455 * sure there really is no pte entry. 6456 */ 6457 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6458 ret = vmf_error(PTR_ERR(folio)); 6459 else 6460 ret = 0; 6461 goto out; 6462 } 6463 folio_zero_user(folio, vmf->real_address); 6464 __folio_mark_uptodate(folio); 6465 new_folio = true; 6466 6467 if (vma->vm_flags & VM_MAYSHARE) { 6468 int err = hugetlb_add_to_page_cache(folio, mapping, 6469 vmf->pgoff); 6470 if (err) { 6471 /* 6472 * err can't be -EEXIST which implies someone 6473 * else consumed the reservation since hugetlb 6474 * fault mutex is held when add a hugetlb page 6475 * to the page cache. So it's safe to call 6476 * restore_reserve_on_error() here. 6477 */ 6478 restore_reserve_on_error(h, vma, vmf->address, 6479 folio); 6480 folio_put(folio); 6481 ret = VM_FAULT_SIGBUS; 6482 goto out; 6483 } 6484 new_pagecache_folio = true; 6485 } else { 6486 folio_lock(folio); 6487 anon_rmap = 1; 6488 } 6489 } else { 6490 /* 6491 * If memory error occurs between mmap() and fault, some process 6492 * don't have hwpoisoned swap entry for errored virtual address. 6493 * So we need to block hugepage fault by PG_hwpoison bit check. 6494 */ 6495 if (unlikely(folio_test_hwpoison(folio))) { 6496 ret = VM_FAULT_HWPOISON_LARGE | 6497 VM_FAULT_SET_HINDEX(hstate_index(h)); 6498 goto backout_unlocked; 6499 } 6500 6501 /* Check for page in userfault range. */ 6502 if (userfaultfd_minor(vma)) { 6503 folio_unlock(folio); 6504 folio_put(folio); 6505 /* See comment in userfaultfd_missing() block above */ 6506 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6507 ret = 0; 6508 goto out; 6509 } 6510 return hugetlb_handle_userfault(vmf, mapping, 6511 VM_UFFD_MINOR); 6512 } 6513 } 6514 6515 /* 6516 * If we are going to COW a private mapping later, we examine the 6517 * pending reservations for this page now. This will ensure that 6518 * any allocations necessary to record that reservation occur outside 6519 * the spinlock. 6520 */ 6521 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6522 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6523 ret = VM_FAULT_OOM; 6524 goto backout_unlocked; 6525 } 6526 /* Just decrements count, does not deallocate */ 6527 vma_end_reservation(h, vma, vmf->address); 6528 } 6529 6530 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6531 ret = 0; 6532 /* If pte changed from under us, retry */ 6533 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6534 goto backout; 6535 6536 if (anon_rmap) 6537 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6538 else 6539 hugetlb_add_file_rmap(folio); 6540 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED); 6541 /* 6542 * If this pte was previously wr-protected, keep it wr-protected even 6543 * if populated. 6544 */ 6545 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6546 new_pte = huge_pte_mkuffd_wp(new_pte); 6547 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6548 6549 hugetlb_count_add(pages_per_huge_page(h), mm); 6550 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6551 /* Optimization, do the COW without a second fault */ 6552 ret = hugetlb_wp(folio, vmf); 6553 } 6554 6555 spin_unlock(vmf->ptl); 6556 6557 /* 6558 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6559 * found in the pagecache may not have hugetlb_migratable if they have 6560 * been isolated for migration. 6561 */ 6562 if (new_folio) 6563 folio_set_hugetlb_migratable(folio); 6564 6565 folio_unlock(folio); 6566 out: 6567 hugetlb_vma_unlock_read(vma); 6568 6569 /* 6570 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6571 * the only way ret can be set to VM_FAULT_RETRY. 6572 */ 6573 if (unlikely(ret & VM_FAULT_RETRY)) 6574 vma_end_read(vma); 6575 6576 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6577 return ret; 6578 6579 backout: 6580 spin_unlock(vmf->ptl); 6581 backout_unlocked: 6582 if (new_folio && !new_pagecache_folio) 6583 restore_reserve_on_error(h, vma, vmf->address, folio); 6584 6585 folio_unlock(folio); 6586 folio_put(folio); 6587 goto out; 6588 } 6589 6590 #ifdef CONFIG_SMP 6591 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6592 { 6593 unsigned long key[2]; 6594 u32 hash; 6595 6596 key[0] = (unsigned long) mapping; 6597 key[1] = idx; 6598 6599 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6600 6601 return hash & (num_fault_mutexes - 1); 6602 } 6603 #else 6604 /* 6605 * For uniprocessor systems we always use a single mutex, so just 6606 * return 0 and avoid the hashing overhead. 6607 */ 6608 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6609 { 6610 return 0; 6611 } 6612 #endif 6613 6614 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6615 unsigned long address, unsigned int flags) 6616 { 6617 vm_fault_t ret; 6618 u32 hash; 6619 struct folio *folio = NULL; 6620 struct folio *pagecache_folio = NULL; 6621 struct hstate *h = hstate_vma(vma); 6622 struct address_space *mapping; 6623 int need_wait_lock = 0; 6624 struct vm_fault vmf = { 6625 .vma = vma, 6626 .address = address & huge_page_mask(h), 6627 .real_address = address, 6628 .flags = flags, 6629 .pgoff = vma_hugecache_offset(h, vma, 6630 address & huge_page_mask(h)), 6631 /* TODO: Track hugetlb faults using vm_fault */ 6632 6633 /* 6634 * Some fields may not be initialized, be careful as it may 6635 * be hard to debug if called functions make assumptions 6636 */ 6637 }; 6638 6639 /* 6640 * Serialize hugepage allocation and instantiation, so that we don't 6641 * get spurious allocation failures if two CPUs race to instantiate 6642 * the same page in the page cache. 6643 */ 6644 mapping = vma->vm_file->f_mapping; 6645 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6646 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6647 6648 /* 6649 * Acquire vma lock before calling huge_pte_alloc and hold 6650 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6651 * being called elsewhere and making the vmf.pte no longer valid. 6652 */ 6653 hugetlb_vma_lock_read(vma); 6654 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6655 if (!vmf.pte) { 6656 hugetlb_vma_unlock_read(vma); 6657 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6658 return VM_FAULT_OOM; 6659 } 6660 6661 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6662 if (huge_pte_none_mostly(vmf.orig_pte)) { 6663 if (is_pte_marker(vmf.orig_pte)) { 6664 pte_marker marker = 6665 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6666 6667 if (marker & PTE_MARKER_POISONED) { 6668 ret = VM_FAULT_HWPOISON_LARGE | 6669 VM_FAULT_SET_HINDEX(hstate_index(h)); 6670 goto out_mutex; 6671 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6672 /* This isn't supported in hugetlb. */ 6673 ret = VM_FAULT_SIGSEGV; 6674 goto out_mutex; 6675 } 6676 } 6677 6678 /* 6679 * Other PTE markers should be handled the same way as none PTE. 6680 * 6681 * hugetlb_no_page will drop vma lock and hugetlb fault 6682 * mutex internally, which make us return immediately. 6683 */ 6684 return hugetlb_no_page(mapping, &vmf); 6685 } 6686 6687 ret = 0; 6688 6689 /* 6690 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6691 * point, so this check prevents the kernel from going below assuming 6692 * that we have an active hugepage in pagecache. This goto expects 6693 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6694 * check will properly handle it. 6695 */ 6696 if (!pte_present(vmf.orig_pte)) { 6697 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6698 /* 6699 * Release the hugetlb fault lock now, but retain 6700 * the vma lock, because it is needed to guard the 6701 * huge_pte_lockptr() later in 6702 * migration_entry_wait_huge(). The vma lock will 6703 * be released there. 6704 */ 6705 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6706 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6707 return 0; 6708 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6709 ret = VM_FAULT_HWPOISON_LARGE | 6710 VM_FAULT_SET_HINDEX(hstate_index(h)); 6711 goto out_mutex; 6712 } 6713 6714 /* 6715 * If we are going to COW/unshare the mapping later, we examine the 6716 * pending reservations for this page now. This will ensure that any 6717 * allocations necessary to record that reservation occur outside the 6718 * spinlock. Also lookup the pagecache page now as it is used to 6719 * determine if a reservation has been consumed. 6720 */ 6721 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6722 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6723 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6724 ret = VM_FAULT_OOM; 6725 goto out_mutex; 6726 } 6727 /* Just decrements count, does not deallocate */ 6728 vma_end_reservation(h, vma, vmf.address); 6729 6730 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6731 vmf.pgoff); 6732 if (IS_ERR(pagecache_folio)) 6733 pagecache_folio = NULL; 6734 } 6735 6736 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6737 6738 /* Check for a racing update before calling hugetlb_wp() */ 6739 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6740 goto out_ptl; 6741 6742 /* Handle userfault-wp first, before trying to lock more pages */ 6743 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6744 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6745 if (!userfaultfd_wp_async(vma)) { 6746 spin_unlock(vmf.ptl); 6747 if (pagecache_folio) { 6748 folio_unlock(pagecache_folio); 6749 folio_put(pagecache_folio); 6750 } 6751 hugetlb_vma_unlock_read(vma); 6752 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6753 return handle_userfault(&vmf, VM_UFFD_WP); 6754 } 6755 6756 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6757 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6758 huge_page_size(hstate_vma(vma))); 6759 /* Fallthrough to CoW */ 6760 } 6761 6762 /* 6763 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6764 * pagecache_folio, so here we need take the former one 6765 * when folio != pagecache_folio or !pagecache_folio. 6766 */ 6767 folio = page_folio(pte_page(vmf.orig_pte)); 6768 if (folio != pagecache_folio) 6769 if (!folio_trylock(folio)) { 6770 need_wait_lock = 1; 6771 goto out_ptl; 6772 } 6773 6774 folio_get(folio); 6775 6776 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6777 if (!huge_pte_write(vmf.orig_pte)) { 6778 ret = hugetlb_wp(pagecache_folio, &vmf); 6779 goto out_put_page; 6780 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6781 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6782 } 6783 } 6784 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6785 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6786 flags & FAULT_FLAG_WRITE)) 6787 update_mmu_cache(vma, vmf.address, vmf.pte); 6788 out_put_page: 6789 if (folio != pagecache_folio) 6790 folio_unlock(folio); 6791 folio_put(folio); 6792 out_ptl: 6793 spin_unlock(vmf.ptl); 6794 6795 if (pagecache_folio) { 6796 folio_unlock(pagecache_folio); 6797 folio_put(pagecache_folio); 6798 } 6799 out_mutex: 6800 hugetlb_vma_unlock_read(vma); 6801 6802 /* 6803 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6804 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6805 */ 6806 if (unlikely(ret & VM_FAULT_RETRY)) 6807 vma_end_read(vma); 6808 6809 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6810 /* 6811 * Generally it's safe to hold refcount during waiting page lock. But 6812 * here we just wait to defer the next page fault to avoid busy loop and 6813 * the page is not used after unlocked before returning from the current 6814 * page fault. So we are safe from accessing freed page, even if we wait 6815 * here without taking refcount. 6816 */ 6817 if (need_wait_lock) 6818 folio_wait_locked(folio); 6819 return ret; 6820 } 6821 6822 #ifdef CONFIG_USERFAULTFD 6823 /* 6824 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6825 */ 6826 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6827 struct vm_area_struct *vma, unsigned long address) 6828 { 6829 struct mempolicy *mpol; 6830 nodemask_t *nodemask; 6831 struct folio *folio; 6832 gfp_t gfp_mask; 6833 int node; 6834 6835 gfp_mask = htlb_alloc_mask(h); 6836 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6837 /* 6838 * This is used to allocate a temporary hugetlb to hold the copied 6839 * content, which will then be copied again to the final hugetlb 6840 * consuming a reservation. Set the alloc_fallback to false to indicate 6841 * that breaking the per-node hugetlb pool is not allowed in this case. 6842 */ 6843 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6844 mpol_cond_put(mpol); 6845 6846 return folio; 6847 } 6848 6849 /* 6850 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6851 * with modifications for hugetlb pages. 6852 */ 6853 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6854 struct vm_area_struct *dst_vma, 6855 unsigned long dst_addr, 6856 unsigned long src_addr, 6857 uffd_flags_t flags, 6858 struct folio **foliop) 6859 { 6860 struct mm_struct *dst_mm = dst_vma->vm_mm; 6861 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6862 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6863 struct hstate *h = hstate_vma(dst_vma); 6864 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6865 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6866 unsigned long size = huge_page_size(h); 6867 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6868 pte_t _dst_pte; 6869 spinlock_t *ptl; 6870 int ret = -ENOMEM; 6871 struct folio *folio; 6872 bool folio_in_pagecache = false; 6873 6874 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6875 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6876 6877 /* Don't overwrite any existing PTEs (even markers) */ 6878 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6879 spin_unlock(ptl); 6880 return -EEXIST; 6881 } 6882 6883 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6884 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6885 6886 /* No need to invalidate - it was non-present before */ 6887 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6888 6889 spin_unlock(ptl); 6890 return 0; 6891 } 6892 6893 if (is_continue) { 6894 ret = -EFAULT; 6895 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6896 if (IS_ERR(folio)) 6897 goto out; 6898 folio_in_pagecache = true; 6899 } else if (!*foliop) { 6900 /* If a folio already exists, then it's UFFDIO_COPY for 6901 * a non-missing case. Return -EEXIST. 6902 */ 6903 if (vm_shared && 6904 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6905 ret = -EEXIST; 6906 goto out; 6907 } 6908 6909 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6910 if (IS_ERR(folio)) { 6911 ret = -ENOMEM; 6912 goto out; 6913 } 6914 6915 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6916 false); 6917 6918 /* fallback to copy_from_user outside mmap_lock */ 6919 if (unlikely(ret)) { 6920 ret = -ENOENT; 6921 /* Free the allocated folio which may have 6922 * consumed a reservation. 6923 */ 6924 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6925 folio_put(folio); 6926 6927 /* Allocate a temporary folio to hold the copied 6928 * contents. 6929 */ 6930 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6931 if (!folio) { 6932 ret = -ENOMEM; 6933 goto out; 6934 } 6935 *foliop = folio; 6936 /* Set the outparam foliop and return to the caller to 6937 * copy the contents outside the lock. Don't free the 6938 * folio. 6939 */ 6940 goto out; 6941 } 6942 } else { 6943 if (vm_shared && 6944 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6945 folio_put(*foliop); 6946 ret = -EEXIST; 6947 *foliop = NULL; 6948 goto out; 6949 } 6950 6951 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6952 if (IS_ERR(folio)) { 6953 folio_put(*foliop); 6954 ret = -ENOMEM; 6955 *foliop = NULL; 6956 goto out; 6957 } 6958 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6959 folio_put(*foliop); 6960 *foliop = NULL; 6961 if (ret) { 6962 folio_put(folio); 6963 goto out; 6964 } 6965 } 6966 6967 /* 6968 * If we just allocated a new page, we need a memory barrier to ensure 6969 * that preceding stores to the page become visible before the 6970 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6971 * is what we need. 6972 * 6973 * In the case where we have not allocated a new page (is_continue), 6974 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6975 * an earlier smp_wmb() to ensure that prior stores will be visible 6976 * before the set_pte_at() write. 6977 */ 6978 if (!is_continue) 6979 __folio_mark_uptodate(folio); 6980 else 6981 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6982 6983 /* Add shared, newly allocated pages to the page cache. */ 6984 if (vm_shared && !is_continue) { 6985 ret = -EFAULT; 6986 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6987 goto out_release_nounlock; 6988 6989 /* 6990 * Serialization between remove_inode_hugepages() and 6991 * hugetlb_add_to_page_cache() below happens through the 6992 * hugetlb_fault_mutex_table that here must be hold by 6993 * the caller. 6994 */ 6995 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6996 if (ret) 6997 goto out_release_nounlock; 6998 folio_in_pagecache = true; 6999 } 7000 7001 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7002 7003 ret = -EIO; 7004 if (folio_test_hwpoison(folio)) 7005 goto out_release_unlock; 7006 7007 /* 7008 * We allow to overwrite a pte marker: consider when both MISSING|WP 7009 * registered, we firstly wr-protect a none pte which has no page cache 7010 * page backing it, then access the page. 7011 */ 7012 ret = -EEXIST; 7013 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7014 goto out_release_unlock; 7015 7016 if (folio_in_pagecache) 7017 hugetlb_add_file_rmap(folio); 7018 else 7019 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7020 7021 /* 7022 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7023 * with wp flag set, don't set pte write bit. 7024 */ 7025 _dst_pte = make_huge_pte(dst_vma, &folio->page, 7026 !wp_enabled && !(is_continue && !vm_shared)); 7027 /* 7028 * Always mark UFFDIO_COPY page dirty; note that this may not be 7029 * extremely important for hugetlbfs for now since swapping is not 7030 * supported, but we should still be clear in that this page cannot be 7031 * thrown away at will, even if write bit not set. 7032 */ 7033 _dst_pte = huge_pte_mkdirty(_dst_pte); 7034 _dst_pte = pte_mkyoung(_dst_pte); 7035 7036 if (wp_enabled) 7037 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7038 7039 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7040 7041 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7042 7043 /* No need to invalidate - it was non-present before */ 7044 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7045 7046 spin_unlock(ptl); 7047 if (!is_continue) 7048 folio_set_hugetlb_migratable(folio); 7049 if (vm_shared || is_continue) 7050 folio_unlock(folio); 7051 ret = 0; 7052 out: 7053 return ret; 7054 out_release_unlock: 7055 spin_unlock(ptl); 7056 if (vm_shared || is_continue) 7057 folio_unlock(folio); 7058 out_release_nounlock: 7059 if (!folio_in_pagecache) 7060 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7061 folio_put(folio); 7062 goto out; 7063 } 7064 #endif /* CONFIG_USERFAULTFD */ 7065 7066 long hugetlb_change_protection(struct vm_area_struct *vma, 7067 unsigned long address, unsigned long end, 7068 pgprot_t newprot, unsigned long cp_flags) 7069 { 7070 struct mm_struct *mm = vma->vm_mm; 7071 unsigned long start = address; 7072 pte_t *ptep; 7073 pte_t pte; 7074 struct hstate *h = hstate_vma(vma); 7075 long pages = 0, psize = huge_page_size(h); 7076 bool shared_pmd = false; 7077 struct mmu_notifier_range range; 7078 unsigned long last_addr_mask; 7079 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7080 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7081 7082 /* 7083 * In the case of shared PMDs, the area to flush could be beyond 7084 * start/end. Set range.start/range.end to cover the maximum possible 7085 * range if PMD sharing is possible. 7086 */ 7087 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7088 0, mm, start, end); 7089 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7090 7091 BUG_ON(address >= end); 7092 flush_cache_range(vma, range.start, range.end); 7093 7094 mmu_notifier_invalidate_range_start(&range); 7095 hugetlb_vma_lock_write(vma); 7096 i_mmap_lock_write(vma->vm_file->f_mapping); 7097 last_addr_mask = hugetlb_mask_last_page(h); 7098 for (; address < end; address += psize) { 7099 spinlock_t *ptl; 7100 ptep = hugetlb_walk(vma, address, psize); 7101 if (!ptep) { 7102 if (!uffd_wp) { 7103 address |= last_addr_mask; 7104 continue; 7105 } 7106 /* 7107 * Userfaultfd wr-protect requires pgtable 7108 * pre-allocations to install pte markers. 7109 */ 7110 ptep = huge_pte_alloc(mm, vma, address, psize); 7111 if (!ptep) { 7112 pages = -ENOMEM; 7113 break; 7114 } 7115 } 7116 ptl = huge_pte_lock(h, mm, ptep); 7117 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7118 /* 7119 * When uffd-wp is enabled on the vma, unshare 7120 * shouldn't happen at all. Warn about it if it 7121 * happened due to some reason. 7122 */ 7123 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7124 pages++; 7125 spin_unlock(ptl); 7126 shared_pmd = true; 7127 address |= last_addr_mask; 7128 continue; 7129 } 7130 pte = huge_ptep_get(mm, address, ptep); 7131 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7132 /* Nothing to do. */ 7133 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7134 swp_entry_t entry = pte_to_swp_entry(pte); 7135 struct page *page = pfn_swap_entry_to_page(entry); 7136 pte_t newpte = pte; 7137 7138 if (is_writable_migration_entry(entry)) { 7139 if (PageAnon(page)) 7140 entry = make_readable_exclusive_migration_entry( 7141 swp_offset(entry)); 7142 else 7143 entry = make_readable_migration_entry( 7144 swp_offset(entry)); 7145 newpte = swp_entry_to_pte(entry); 7146 pages++; 7147 } 7148 7149 if (uffd_wp) 7150 newpte = pte_swp_mkuffd_wp(newpte); 7151 else if (uffd_wp_resolve) 7152 newpte = pte_swp_clear_uffd_wp(newpte); 7153 if (!pte_same(pte, newpte)) 7154 set_huge_pte_at(mm, address, ptep, newpte, psize); 7155 } else if (unlikely(is_pte_marker(pte))) { 7156 /* 7157 * Do nothing on a poison marker; page is 7158 * corrupted, permissons do not apply. Here 7159 * pte_marker_uffd_wp()==true implies !poison 7160 * because they're mutual exclusive. 7161 */ 7162 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7163 /* Safe to modify directly (non-present->none). */ 7164 huge_pte_clear(mm, address, ptep, psize); 7165 } else if (!huge_pte_none(pte)) { 7166 pte_t old_pte; 7167 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7168 7169 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7170 pte = huge_pte_modify(old_pte, newprot); 7171 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7172 if (uffd_wp) 7173 pte = huge_pte_mkuffd_wp(pte); 7174 else if (uffd_wp_resolve) 7175 pte = huge_pte_clear_uffd_wp(pte); 7176 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7177 pages++; 7178 } else { 7179 /* None pte */ 7180 if (unlikely(uffd_wp)) 7181 /* Safe to modify directly (none->non-present). */ 7182 set_huge_pte_at(mm, address, ptep, 7183 make_pte_marker(PTE_MARKER_UFFD_WP), 7184 psize); 7185 } 7186 spin_unlock(ptl); 7187 } 7188 /* 7189 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7190 * may have cleared our pud entry and done put_page on the page table: 7191 * once we release i_mmap_rwsem, another task can do the final put_page 7192 * and that page table be reused and filled with junk. If we actually 7193 * did unshare a page of pmds, flush the range corresponding to the pud. 7194 */ 7195 if (shared_pmd) 7196 flush_hugetlb_tlb_range(vma, range.start, range.end); 7197 else 7198 flush_hugetlb_tlb_range(vma, start, end); 7199 /* 7200 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7201 * downgrading page table protection not changing it to point to a new 7202 * page. 7203 * 7204 * See Documentation/mm/mmu_notifier.rst 7205 */ 7206 i_mmap_unlock_write(vma->vm_file->f_mapping); 7207 hugetlb_vma_unlock_write(vma); 7208 mmu_notifier_invalidate_range_end(&range); 7209 7210 return pages > 0 ? (pages << h->order) : pages; 7211 } 7212 7213 /* Return true if reservation was successful, false otherwise. */ 7214 bool hugetlb_reserve_pages(struct inode *inode, 7215 long from, long to, 7216 struct vm_area_struct *vma, 7217 vm_flags_t vm_flags) 7218 { 7219 long chg = -1, add = -1; 7220 struct hstate *h = hstate_inode(inode); 7221 struct hugepage_subpool *spool = subpool_inode(inode); 7222 struct resv_map *resv_map; 7223 struct hugetlb_cgroup *h_cg = NULL; 7224 long gbl_reserve, regions_needed = 0; 7225 7226 /* This should never happen */ 7227 if (from > to) { 7228 VM_WARN(1, "%s called with a negative range\n", __func__); 7229 return false; 7230 } 7231 7232 /* 7233 * vma specific semaphore used for pmd sharing and fault/truncation 7234 * synchronization 7235 */ 7236 hugetlb_vma_lock_alloc(vma); 7237 7238 /* 7239 * Only apply hugepage reservation if asked. At fault time, an 7240 * attempt will be made for VM_NORESERVE to allocate a page 7241 * without using reserves 7242 */ 7243 if (vm_flags & VM_NORESERVE) 7244 return true; 7245 7246 /* 7247 * Shared mappings base their reservation on the number of pages that 7248 * are already allocated on behalf of the file. Private mappings need 7249 * to reserve the full area even if read-only as mprotect() may be 7250 * called to make the mapping read-write. Assume !vma is a shm mapping 7251 */ 7252 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7253 /* 7254 * resv_map can not be NULL as hugetlb_reserve_pages is only 7255 * called for inodes for which resv_maps were created (see 7256 * hugetlbfs_get_inode). 7257 */ 7258 resv_map = inode_resv_map(inode); 7259 7260 chg = region_chg(resv_map, from, to, ®ions_needed); 7261 } else { 7262 /* Private mapping. */ 7263 resv_map = resv_map_alloc(); 7264 if (!resv_map) 7265 goto out_err; 7266 7267 chg = to - from; 7268 7269 set_vma_resv_map(vma, resv_map); 7270 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7271 } 7272 7273 if (chg < 0) 7274 goto out_err; 7275 7276 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7277 chg * pages_per_huge_page(h), &h_cg) < 0) 7278 goto out_err; 7279 7280 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7281 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7282 * of the resv_map. 7283 */ 7284 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7285 } 7286 7287 /* 7288 * There must be enough pages in the subpool for the mapping. If 7289 * the subpool has a minimum size, there may be some global 7290 * reservations already in place (gbl_reserve). 7291 */ 7292 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7293 if (gbl_reserve < 0) 7294 goto out_uncharge_cgroup; 7295 7296 /* 7297 * Check enough hugepages are available for the reservation. 7298 * Hand the pages back to the subpool if there are not 7299 */ 7300 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7301 goto out_put_pages; 7302 7303 /* 7304 * Account for the reservations made. Shared mappings record regions 7305 * that have reservations as they are shared by multiple VMAs. 7306 * When the last VMA disappears, the region map says how much 7307 * the reservation was and the page cache tells how much of 7308 * the reservation was consumed. Private mappings are per-VMA and 7309 * only the consumed reservations are tracked. When the VMA 7310 * disappears, the original reservation is the VMA size and the 7311 * consumed reservations are stored in the map. Hence, nothing 7312 * else has to be done for private mappings here 7313 */ 7314 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7315 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7316 7317 if (unlikely(add < 0)) { 7318 hugetlb_acct_memory(h, -gbl_reserve); 7319 goto out_put_pages; 7320 } else if (unlikely(chg > add)) { 7321 /* 7322 * pages in this range were added to the reserve 7323 * map between region_chg and region_add. This 7324 * indicates a race with alloc_hugetlb_folio. Adjust 7325 * the subpool and reserve counts modified above 7326 * based on the difference. 7327 */ 7328 long rsv_adjust; 7329 7330 /* 7331 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7332 * reference to h_cg->css. See comment below for detail. 7333 */ 7334 hugetlb_cgroup_uncharge_cgroup_rsvd( 7335 hstate_index(h), 7336 (chg - add) * pages_per_huge_page(h), h_cg); 7337 7338 rsv_adjust = hugepage_subpool_put_pages(spool, 7339 chg - add); 7340 hugetlb_acct_memory(h, -rsv_adjust); 7341 } else if (h_cg) { 7342 /* 7343 * The file_regions will hold their own reference to 7344 * h_cg->css. So we should release the reference held 7345 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7346 * done. 7347 */ 7348 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7349 } 7350 } 7351 return true; 7352 7353 out_put_pages: 7354 /* put back original number of pages, chg */ 7355 (void)hugepage_subpool_put_pages(spool, chg); 7356 out_uncharge_cgroup: 7357 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7358 chg * pages_per_huge_page(h), h_cg); 7359 out_err: 7360 hugetlb_vma_lock_free(vma); 7361 if (!vma || vma->vm_flags & VM_MAYSHARE) 7362 /* Only call region_abort if the region_chg succeeded but the 7363 * region_add failed or didn't run. 7364 */ 7365 if (chg >= 0 && add < 0) 7366 region_abort(resv_map, from, to, regions_needed); 7367 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7368 kref_put(&resv_map->refs, resv_map_release); 7369 set_vma_resv_map(vma, NULL); 7370 } 7371 return false; 7372 } 7373 7374 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7375 long freed) 7376 { 7377 struct hstate *h = hstate_inode(inode); 7378 struct resv_map *resv_map = inode_resv_map(inode); 7379 long chg = 0; 7380 struct hugepage_subpool *spool = subpool_inode(inode); 7381 long gbl_reserve; 7382 7383 /* 7384 * Since this routine can be called in the evict inode path for all 7385 * hugetlbfs inodes, resv_map could be NULL. 7386 */ 7387 if (resv_map) { 7388 chg = region_del(resv_map, start, end); 7389 /* 7390 * region_del() can fail in the rare case where a region 7391 * must be split and another region descriptor can not be 7392 * allocated. If end == LONG_MAX, it will not fail. 7393 */ 7394 if (chg < 0) 7395 return chg; 7396 } 7397 7398 spin_lock(&inode->i_lock); 7399 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7400 spin_unlock(&inode->i_lock); 7401 7402 /* 7403 * If the subpool has a minimum size, the number of global 7404 * reservations to be released may be adjusted. 7405 * 7406 * Note that !resv_map implies freed == 0. So (chg - freed) 7407 * won't go negative. 7408 */ 7409 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7410 hugetlb_acct_memory(h, -gbl_reserve); 7411 7412 return 0; 7413 } 7414 7415 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7416 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7417 struct vm_area_struct *vma, 7418 unsigned long addr, pgoff_t idx) 7419 { 7420 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7421 svma->vm_start; 7422 unsigned long sbase = saddr & PUD_MASK; 7423 unsigned long s_end = sbase + PUD_SIZE; 7424 7425 /* Allow segments to share if only one is marked locked */ 7426 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7427 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7428 7429 /* 7430 * match the virtual addresses, permission and the alignment of the 7431 * page table page. 7432 * 7433 * Also, vma_lock (vm_private_data) is required for sharing. 7434 */ 7435 if (pmd_index(addr) != pmd_index(saddr) || 7436 vm_flags != svm_flags || 7437 !range_in_vma(svma, sbase, s_end) || 7438 !svma->vm_private_data) 7439 return 0; 7440 7441 return saddr; 7442 } 7443 7444 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7445 { 7446 unsigned long start = addr & PUD_MASK; 7447 unsigned long end = start + PUD_SIZE; 7448 7449 #ifdef CONFIG_USERFAULTFD 7450 if (uffd_disable_huge_pmd_share(vma)) 7451 return false; 7452 #endif 7453 /* 7454 * check on proper vm_flags and page table alignment 7455 */ 7456 if (!(vma->vm_flags & VM_MAYSHARE)) 7457 return false; 7458 if (!vma->vm_private_data) /* vma lock required for sharing */ 7459 return false; 7460 if (!range_in_vma(vma, start, end)) 7461 return false; 7462 return true; 7463 } 7464 7465 /* 7466 * Determine if start,end range within vma could be mapped by shared pmd. 7467 * If yes, adjust start and end to cover range associated with possible 7468 * shared pmd mappings. 7469 */ 7470 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7471 unsigned long *start, unsigned long *end) 7472 { 7473 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7474 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7475 7476 /* 7477 * vma needs to span at least one aligned PUD size, and the range 7478 * must be at least partially within in. 7479 */ 7480 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7481 (*end <= v_start) || (*start >= v_end)) 7482 return; 7483 7484 /* Extend the range to be PUD aligned for a worst case scenario */ 7485 if (*start > v_start) 7486 *start = ALIGN_DOWN(*start, PUD_SIZE); 7487 7488 if (*end < v_end) 7489 *end = ALIGN(*end, PUD_SIZE); 7490 } 7491 7492 /* 7493 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7494 * and returns the corresponding pte. While this is not necessary for the 7495 * !shared pmd case because we can allocate the pmd later as well, it makes the 7496 * code much cleaner. pmd allocation is essential for the shared case because 7497 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7498 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7499 * bad pmd for sharing. 7500 */ 7501 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7502 unsigned long addr, pud_t *pud) 7503 { 7504 struct address_space *mapping = vma->vm_file->f_mapping; 7505 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7506 vma->vm_pgoff; 7507 struct vm_area_struct *svma; 7508 unsigned long saddr; 7509 pte_t *spte = NULL; 7510 pte_t *pte; 7511 7512 i_mmap_lock_read(mapping); 7513 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7514 if (svma == vma) 7515 continue; 7516 7517 saddr = page_table_shareable(svma, vma, addr, idx); 7518 if (saddr) { 7519 spte = hugetlb_walk(svma, saddr, 7520 vma_mmu_pagesize(svma)); 7521 if (spte) { 7522 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7523 break; 7524 } 7525 } 7526 } 7527 7528 if (!spte) 7529 goto out; 7530 7531 spin_lock(&mm->page_table_lock); 7532 if (pud_none(*pud)) { 7533 pud_populate(mm, pud, 7534 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7535 mm_inc_nr_pmds(mm); 7536 } else { 7537 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7538 } 7539 spin_unlock(&mm->page_table_lock); 7540 out: 7541 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7542 i_mmap_unlock_read(mapping); 7543 return pte; 7544 } 7545 7546 /* 7547 * unmap huge page backed by shared pte. 7548 * 7549 * Called with page table lock held. 7550 * 7551 * returns: 1 successfully unmapped a shared pte page 7552 * 0 the underlying pte page is not shared, or it is the last user 7553 */ 7554 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7555 unsigned long addr, pte_t *ptep) 7556 { 7557 unsigned long sz = huge_page_size(hstate_vma(vma)); 7558 pgd_t *pgd = pgd_offset(mm, addr); 7559 p4d_t *p4d = p4d_offset(pgd, addr); 7560 pud_t *pud = pud_offset(p4d, addr); 7561 7562 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7563 hugetlb_vma_assert_locked(vma); 7564 if (sz != PMD_SIZE) 7565 return 0; 7566 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7567 return 0; 7568 7569 pud_clear(pud); 7570 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7571 mm_dec_nr_pmds(mm); 7572 return 1; 7573 } 7574 7575 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7576 7577 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7578 unsigned long addr, pud_t *pud) 7579 { 7580 return NULL; 7581 } 7582 7583 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7584 unsigned long addr, pte_t *ptep) 7585 { 7586 return 0; 7587 } 7588 7589 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7590 unsigned long *start, unsigned long *end) 7591 { 7592 } 7593 7594 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7595 { 7596 return false; 7597 } 7598 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7599 7600 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7601 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7602 unsigned long addr, unsigned long sz) 7603 { 7604 pgd_t *pgd; 7605 p4d_t *p4d; 7606 pud_t *pud; 7607 pte_t *pte = NULL; 7608 7609 pgd = pgd_offset(mm, addr); 7610 p4d = p4d_alloc(mm, pgd, addr); 7611 if (!p4d) 7612 return NULL; 7613 pud = pud_alloc(mm, p4d, addr); 7614 if (pud) { 7615 if (sz == PUD_SIZE) { 7616 pte = (pte_t *)pud; 7617 } else { 7618 BUG_ON(sz != PMD_SIZE); 7619 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7620 pte = huge_pmd_share(mm, vma, addr, pud); 7621 else 7622 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7623 } 7624 } 7625 7626 if (pte) { 7627 pte_t pteval = ptep_get_lockless(pte); 7628 7629 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7630 } 7631 7632 return pte; 7633 } 7634 7635 /* 7636 * huge_pte_offset() - Walk the page table to resolve the hugepage 7637 * entry at address @addr 7638 * 7639 * Return: Pointer to page table entry (PUD or PMD) for 7640 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7641 * size @sz doesn't match the hugepage size at this level of the page 7642 * table. 7643 */ 7644 pte_t *huge_pte_offset(struct mm_struct *mm, 7645 unsigned long addr, unsigned long sz) 7646 { 7647 pgd_t *pgd; 7648 p4d_t *p4d; 7649 pud_t *pud; 7650 pmd_t *pmd; 7651 7652 pgd = pgd_offset(mm, addr); 7653 if (!pgd_present(*pgd)) 7654 return NULL; 7655 p4d = p4d_offset(pgd, addr); 7656 if (!p4d_present(*p4d)) 7657 return NULL; 7658 7659 pud = pud_offset(p4d, addr); 7660 if (sz == PUD_SIZE) 7661 /* must be pud huge, non-present or none */ 7662 return (pte_t *)pud; 7663 if (!pud_present(*pud)) 7664 return NULL; 7665 /* must have a valid entry and size to go further */ 7666 7667 pmd = pmd_offset(pud, addr); 7668 /* must be pmd huge, non-present or none */ 7669 return (pte_t *)pmd; 7670 } 7671 7672 /* 7673 * Return a mask that can be used to update an address to the last huge 7674 * page in a page table page mapping size. Used to skip non-present 7675 * page table entries when linearly scanning address ranges. Architectures 7676 * with unique huge page to page table relationships can define their own 7677 * version of this routine. 7678 */ 7679 unsigned long hugetlb_mask_last_page(struct hstate *h) 7680 { 7681 unsigned long hp_size = huge_page_size(h); 7682 7683 if (hp_size == PUD_SIZE) 7684 return P4D_SIZE - PUD_SIZE; 7685 else if (hp_size == PMD_SIZE) 7686 return PUD_SIZE - PMD_SIZE; 7687 else 7688 return 0UL; 7689 } 7690 7691 #else 7692 7693 /* See description above. Architectures can provide their own version. */ 7694 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7695 { 7696 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7697 if (huge_page_size(h) == PMD_SIZE) 7698 return PUD_SIZE - PMD_SIZE; 7699 #endif 7700 return 0UL; 7701 } 7702 7703 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7704 7705 /** 7706 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7707 * @folio: the folio to isolate 7708 * @list: the list to add the folio to on success 7709 * 7710 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7711 * isolated/non-migratable, and moving it from the active list to the 7712 * given list. 7713 * 7714 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7715 * it is already isolated/non-migratable. 7716 * 7717 * On success, an additional folio reference is taken that must be dropped 7718 * using folio_putback_hugetlb() to undo the isolation. 7719 * 7720 * Return: True if isolation worked, otherwise False. 7721 */ 7722 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7723 { 7724 bool ret = true; 7725 7726 spin_lock_irq(&hugetlb_lock); 7727 if (!folio_test_hugetlb(folio) || 7728 !folio_test_hugetlb_migratable(folio) || 7729 !folio_try_get(folio)) { 7730 ret = false; 7731 goto unlock; 7732 } 7733 folio_clear_hugetlb_migratable(folio); 7734 list_move_tail(&folio->lru, list); 7735 unlock: 7736 spin_unlock_irq(&hugetlb_lock); 7737 return ret; 7738 } 7739 7740 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7741 { 7742 int ret = 0; 7743 7744 *hugetlb = false; 7745 spin_lock_irq(&hugetlb_lock); 7746 if (folio_test_hugetlb(folio)) { 7747 *hugetlb = true; 7748 if (folio_test_hugetlb_freed(folio)) 7749 ret = 0; 7750 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7751 ret = folio_try_get(folio); 7752 else 7753 ret = -EBUSY; 7754 } 7755 spin_unlock_irq(&hugetlb_lock); 7756 return ret; 7757 } 7758 7759 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7760 bool *migratable_cleared) 7761 { 7762 int ret; 7763 7764 spin_lock_irq(&hugetlb_lock); 7765 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7766 spin_unlock_irq(&hugetlb_lock); 7767 return ret; 7768 } 7769 7770 /** 7771 * folio_putback_hugetlb - unisolate a hugetlb folio 7772 * @folio: the isolated hugetlb folio 7773 * 7774 * Putback/un-isolate the hugetlb folio that was previous isolated using 7775 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7776 * back onto the active list. 7777 * 7778 * Will drop the additional folio reference obtained through 7779 * folio_isolate_hugetlb(). 7780 */ 7781 void folio_putback_hugetlb(struct folio *folio) 7782 { 7783 spin_lock_irq(&hugetlb_lock); 7784 folio_set_hugetlb_migratable(folio); 7785 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7786 spin_unlock_irq(&hugetlb_lock); 7787 folio_put(folio); 7788 } 7789 7790 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7791 { 7792 struct hstate *h = folio_hstate(old_folio); 7793 7794 hugetlb_cgroup_migrate(old_folio, new_folio); 7795 set_page_owner_migrate_reason(&new_folio->page, reason); 7796 7797 /* 7798 * transfer temporary state of the new hugetlb folio. This is 7799 * reverse to other transitions because the newpage is going to 7800 * be final while the old one will be freed so it takes over 7801 * the temporary status. 7802 * 7803 * Also note that we have to transfer the per-node surplus state 7804 * here as well otherwise the global surplus count will not match 7805 * the per-node's. 7806 */ 7807 if (folio_test_hugetlb_temporary(new_folio)) { 7808 int old_nid = folio_nid(old_folio); 7809 int new_nid = folio_nid(new_folio); 7810 7811 folio_set_hugetlb_temporary(old_folio); 7812 folio_clear_hugetlb_temporary(new_folio); 7813 7814 7815 /* 7816 * There is no need to transfer the per-node surplus state 7817 * when we do not cross the node. 7818 */ 7819 if (new_nid == old_nid) 7820 return; 7821 spin_lock_irq(&hugetlb_lock); 7822 if (h->surplus_huge_pages_node[old_nid]) { 7823 h->surplus_huge_pages_node[old_nid]--; 7824 h->surplus_huge_pages_node[new_nid]++; 7825 } 7826 spin_unlock_irq(&hugetlb_lock); 7827 } 7828 7829 /* 7830 * Our old folio is isolated and has "migratable" cleared until it 7831 * is putback. As migration succeeded, set the new folio "migratable" 7832 * and add it to the active list. 7833 */ 7834 spin_lock_irq(&hugetlb_lock); 7835 folio_set_hugetlb_migratable(new_folio); 7836 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7837 spin_unlock_irq(&hugetlb_lock); 7838 } 7839 7840 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7841 unsigned long start, 7842 unsigned long end) 7843 { 7844 struct hstate *h = hstate_vma(vma); 7845 unsigned long sz = huge_page_size(h); 7846 struct mm_struct *mm = vma->vm_mm; 7847 struct mmu_notifier_range range; 7848 unsigned long address; 7849 spinlock_t *ptl; 7850 pte_t *ptep; 7851 7852 if (!(vma->vm_flags & VM_MAYSHARE)) 7853 return; 7854 7855 if (start >= end) 7856 return; 7857 7858 flush_cache_range(vma, start, end); 7859 /* 7860 * No need to call adjust_range_if_pmd_sharing_possible(), because 7861 * we have already done the PUD_SIZE alignment. 7862 */ 7863 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7864 start, end); 7865 mmu_notifier_invalidate_range_start(&range); 7866 hugetlb_vma_lock_write(vma); 7867 i_mmap_lock_write(vma->vm_file->f_mapping); 7868 for (address = start; address < end; address += PUD_SIZE) { 7869 ptep = hugetlb_walk(vma, address, sz); 7870 if (!ptep) 7871 continue; 7872 ptl = huge_pte_lock(h, mm, ptep); 7873 huge_pmd_unshare(mm, vma, address, ptep); 7874 spin_unlock(ptl); 7875 } 7876 flush_hugetlb_tlb_range(vma, start, end); 7877 i_mmap_unlock_write(vma->vm_file->f_mapping); 7878 hugetlb_vma_unlock_write(vma); 7879 /* 7880 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7881 * Documentation/mm/mmu_notifier.rst. 7882 */ 7883 mmu_notifier_invalidate_range_end(&range); 7884 } 7885 7886 /* 7887 * This function will unconditionally remove all the shared pmd pgtable entries 7888 * within the specific vma for a hugetlbfs memory range. 7889 */ 7890 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7891 { 7892 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7893 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7894 } 7895