1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpumask.h> 18 #include <linux/cpuset.h> 19 #include <linux/mutex.h> 20 #include <linux/memblock.h> 21 #include <linux/minmax.h> 22 #include <linux/sysfs.h> 23 #include <linux/slab.h> 24 #include <linux/sched/mm.h> 25 #include <linux/mmdebug.h> 26 #include <linux/sched/signal.h> 27 #include <linux/rmap.h> 28 #include <linux/string_helpers.h> 29 #include <linux/swap.h> 30 #include <linux/swapops.h> 31 #include <linux/jhash.h> 32 #include <linux/numa.h> 33 #include <linux/llist.h> 34 #include <linux/cma.h> 35 #include <linux/migrate.h> 36 #include <linux/nospec.h> 37 #include <linux/delayacct.h> 38 #include <linux/memory.h> 39 #include <linux/mm_inline.h> 40 #include <linux/padata.h> 41 42 #include <asm/page.h> 43 #include <asm/pgalloc.h> 44 #include <asm/tlb.h> 45 #include <asm/setup.h> 46 47 #include <linux/io.h> 48 #include <linux/hugetlb.h> 49 #include <linux/hugetlb_cgroup.h> 50 #include <linux/node.h> 51 #include <linux/page_owner.h> 52 #include "internal.h" 53 #include "hugetlb_vmemmap.h" 54 #include "hugetlb_cma.h" 55 #include <linux/page-isolation.h> 56 57 int hugetlb_max_hstate __read_mostly; 58 unsigned int default_hstate_idx; 59 struct hstate hstates[HUGE_MAX_HSTATE]; 60 61 __initdata nodemask_t hugetlb_bootmem_nodes; 62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 63 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 64 65 /* 66 * Due to ordering constraints across the init code for various 67 * architectures, hugetlb hstate cmdline parameters can't simply 68 * be early_param. early_param might call the setup function 69 * before valid hugetlb page sizes are determined, leading to 70 * incorrect rejection of valid hugepagesz= options. 71 * 72 * So, record the parameters early and consume them whenever the 73 * init code is ready for them, by calling hugetlb_parse_params(). 74 */ 75 76 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 77 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 78 struct hugetlb_cmdline { 79 char *val; 80 int (*setup)(char *val); 81 }; 82 83 /* for command line parsing */ 84 static struct hstate * __initdata parsed_hstate; 85 static unsigned long __initdata default_hstate_max_huge_pages; 86 static bool __initdata parsed_valid_hugepagesz = true; 87 static bool __initdata parsed_default_hugepagesz; 88 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 89 static unsigned long hugepage_allocation_threads __initdata; 90 91 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 92 static int hstate_cmdline_index __initdata; 93 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 94 static int hugetlb_param_index __initdata; 95 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 96 static __init void hugetlb_parse_params(void); 97 98 #define hugetlb_early_param(str, func) \ 99 static __init int func##args(char *s) \ 100 { \ 101 return hugetlb_add_param(s, func); \ 102 } \ 103 early_param(str, func##args) 104 105 /* 106 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 107 * free_huge_pages, and surplus_huge_pages. 108 */ 109 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 110 111 /* 112 * Serializes faults on the same logical page. This is used to 113 * prevent spurious OOMs when the hugepage pool is fully utilized. 114 */ 115 static int num_fault_mutexes __ro_after_init; 116 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 117 118 /* Forward declaration */ 119 static int hugetlb_acct_memory(struct hstate *h, long delta); 120 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 121 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 122 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 123 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 124 unsigned long start, unsigned long end, bool take_locks); 125 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 126 127 static void hugetlb_free_folio(struct folio *folio) 128 { 129 if (folio_test_hugetlb_cma(folio)) { 130 hugetlb_cma_free_folio(folio); 131 return; 132 } 133 134 folio_put(folio); 135 } 136 137 static inline bool subpool_is_free(struct hugepage_subpool *spool) 138 { 139 if (spool->count) 140 return false; 141 if (spool->max_hpages != -1) 142 return spool->used_hpages == 0; 143 if (spool->min_hpages != -1) 144 return spool->rsv_hpages == spool->min_hpages; 145 146 return true; 147 } 148 149 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 150 unsigned long irq_flags) 151 { 152 spin_unlock_irqrestore(&spool->lock, irq_flags); 153 154 /* If no pages are used, and no other handles to the subpool 155 * remain, give up any reservations based on minimum size and 156 * free the subpool */ 157 if (subpool_is_free(spool)) { 158 if (spool->min_hpages != -1) 159 hugetlb_acct_memory(spool->hstate, 160 -spool->min_hpages); 161 kfree(spool); 162 } 163 } 164 165 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 166 long min_hpages) 167 { 168 struct hugepage_subpool *spool; 169 170 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 171 if (!spool) 172 return NULL; 173 174 spin_lock_init(&spool->lock); 175 spool->count = 1; 176 spool->max_hpages = max_hpages; 177 spool->hstate = h; 178 spool->min_hpages = min_hpages; 179 180 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 181 kfree(spool); 182 return NULL; 183 } 184 spool->rsv_hpages = min_hpages; 185 186 return spool; 187 } 188 189 void hugepage_put_subpool(struct hugepage_subpool *spool) 190 { 191 unsigned long flags; 192 193 spin_lock_irqsave(&spool->lock, flags); 194 BUG_ON(!spool->count); 195 spool->count--; 196 unlock_or_release_subpool(spool, flags); 197 } 198 199 /* 200 * Subpool accounting for allocating and reserving pages. 201 * Return -ENOMEM if there are not enough resources to satisfy the 202 * request. Otherwise, return the number of pages by which the 203 * global pools must be adjusted (upward). The returned value may 204 * only be different than the passed value (delta) in the case where 205 * a subpool minimum size must be maintained. 206 */ 207 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 208 long delta) 209 { 210 long ret = delta; 211 212 if (!spool) 213 return ret; 214 215 spin_lock_irq(&spool->lock); 216 217 if (spool->max_hpages != -1) { /* maximum size accounting */ 218 if ((spool->used_hpages + delta) <= spool->max_hpages) 219 spool->used_hpages += delta; 220 else { 221 ret = -ENOMEM; 222 goto unlock_ret; 223 } 224 } 225 226 /* minimum size accounting */ 227 if (spool->min_hpages != -1 && spool->rsv_hpages) { 228 if (delta > spool->rsv_hpages) { 229 /* 230 * Asking for more reserves than those already taken on 231 * behalf of subpool. Return difference. 232 */ 233 ret = delta - spool->rsv_hpages; 234 spool->rsv_hpages = 0; 235 } else { 236 ret = 0; /* reserves already accounted for */ 237 spool->rsv_hpages -= delta; 238 } 239 } 240 241 unlock_ret: 242 spin_unlock_irq(&spool->lock); 243 return ret; 244 } 245 246 /* 247 * Subpool accounting for freeing and unreserving pages. 248 * Return the number of global page reservations that must be dropped. 249 * The return value may only be different than the passed value (delta) 250 * in the case where a subpool minimum size must be maintained. 251 */ 252 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 253 long delta) 254 { 255 long ret = delta; 256 unsigned long flags; 257 258 if (!spool) 259 return delta; 260 261 spin_lock_irqsave(&spool->lock, flags); 262 263 if (spool->max_hpages != -1) /* maximum size accounting */ 264 spool->used_hpages -= delta; 265 266 /* minimum size accounting */ 267 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 268 if (spool->rsv_hpages + delta <= spool->min_hpages) 269 ret = 0; 270 else 271 ret = spool->rsv_hpages + delta - spool->min_hpages; 272 273 spool->rsv_hpages += delta; 274 if (spool->rsv_hpages > spool->min_hpages) 275 spool->rsv_hpages = spool->min_hpages; 276 } 277 278 /* 279 * If hugetlbfs_put_super couldn't free spool due to an outstanding 280 * quota reference, free it now. 281 */ 282 unlock_or_release_subpool(spool, flags); 283 284 return ret; 285 } 286 287 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 288 { 289 return HUGETLBFS_SB(inode->i_sb)->spool; 290 } 291 292 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 293 { 294 return subpool_inode(file_inode(vma->vm_file)); 295 } 296 297 /* 298 * hugetlb vma_lock helper routines 299 */ 300 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 301 { 302 if (__vma_shareable_lock(vma)) { 303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 304 305 down_read(&vma_lock->rw_sema); 306 } else if (__vma_private_lock(vma)) { 307 struct resv_map *resv_map = vma_resv_map(vma); 308 309 down_read(&resv_map->rw_sema); 310 } 311 } 312 313 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 314 { 315 if (__vma_shareable_lock(vma)) { 316 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 317 318 up_read(&vma_lock->rw_sema); 319 } else if (__vma_private_lock(vma)) { 320 struct resv_map *resv_map = vma_resv_map(vma); 321 322 up_read(&resv_map->rw_sema); 323 } 324 } 325 326 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 327 { 328 if (__vma_shareable_lock(vma)) { 329 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 330 331 down_write(&vma_lock->rw_sema); 332 } else if (__vma_private_lock(vma)) { 333 struct resv_map *resv_map = vma_resv_map(vma); 334 335 down_write(&resv_map->rw_sema); 336 } 337 } 338 339 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 340 { 341 if (__vma_shareable_lock(vma)) { 342 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 343 344 up_write(&vma_lock->rw_sema); 345 } else if (__vma_private_lock(vma)) { 346 struct resv_map *resv_map = vma_resv_map(vma); 347 348 up_write(&resv_map->rw_sema); 349 } 350 } 351 352 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 353 { 354 355 if (__vma_shareable_lock(vma)) { 356 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 357 358 return down_write_trylock(&vma_lock->rw_sema); 359 } else if (__vma_private_lock(vma)) { 360 struct resv_map *resv_map = vma_resv_map(vma); 361 362 return down_write_trylock(&resv_map->rw_sema); 363 } 364 365 return 1; 366 } 367 368 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 369 { 370 if (__vma_shareable_lock(vma)) { 371 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 372 373 lockdep_assert_held(&vma_lock->rw_sema); 374 } else if (__vma_private_lock(vma)) { 375 struct resv_map *resv_map = vma_resv_map(vma); 376 377 lockdep_assert_held(&resv_map->rw_sema); 378 } 379 } 380 381 void hugetlb_vma_lock_release(struct kref *kref) 382 { 383 struct hugetlb_vma_lock *vma_lock = container_of(kref, 384 struct hugetlb_vma_lock, refs); 385 386 kfree(vma_lock); 387 } 388 389 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 390 { 391 struct vm_area_struct *vma = vma_lock->vma; 392 393 /* 394 * vma_lock structure may or not be released as a result of put, 395 * it certainly will no longer be attached to vma so clear pointer. 396 * Semaphore synchronizes access to vma_lock->vma field. 397 */ 398 vma_lock->vma = NULL; 399 vma->vm_private_data = NULL; 400 up_write(&vma_lock->rw_sema); 401 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 402 } 403 404 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 405 { 406 if (__vma_shareable_lock(vma)) { 407 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 408 409 __hugetlb_vma_unlock_write_put(vma_lock); 410 } else if (__vma_private_lock(vma)) { 411 struct resv_map *resv_map = vma_resv_map(vma); 412 413 /* no free for anon vmas, but still need to unlock */ 414 up_write(&resv_map->rw_sema); 415 } 416 } 417 418 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 419 { 420 /* 421 * Only present in sharable vmas. 422 */ 423 if (!vma || !__vma_shareable_lock(vma)) 424 return; 425 426 if (vma->vm_private_data) { 427 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 428 429 down_write(&vma_lock->rw_sema); 430 __hugetlb_vma_unlock_write_put(vma_lock); 431 } 432 } 433 434 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 435 { 436 struct hugetlb_vma_lock *vma_lock; 437 438 /* Only establish in (flags) sharable vmas */ 439 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 440 return; 441 442 /* Should never get here with non-NULL vm_private_data */ 443 if (vma->vm_private_data) 444 return; 445 446 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 447 if (!vma_lock) { 448 /* 449 * If we can not allocate structure, then vma can not 450 * participate in pmd sharing. This is only a possible 451 * performance enhancement and memory saving issue. 452 * However, the lock is also used to synchronize page 453 * faults with truncation. If the lock is not present, 454 * unlikely races could leave pages in a file past i_size 455 * until the file is removed. Warn in the unlikely case of 456 * allocation failure. 457 */ 458 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 459 return; 460 } 461 462 kref_init(&vma_lock->refs); 463 init_rwsem(&vma_lock->rw_sema); 464 vma_lock->vma = vma; 465 vma->vm_private_data = vma_lock; 466 } 467 468 /* Helper that removes a struct file_region from the resv_map cache and returns 469 * it for use. 470 */ 471 static struct file_region * 472 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 473 { 474 struct file_region *nrg; 475 476 VM_BUG_ON(resv->region_cache_count <= 0); 477 478 resv->region_cache_count--; 479 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 480 list_del(&nrg->link); 481 482 nrg->from = from; 483 nrg->to = to; 484 485 return nrg; 486 } 487 488 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 489 struct file_region *rg) 490 { 491 #ifdef CONFIG_CGROUP_HUGETLB 492 nrg->reservation_counter = rg->reservation_counter; 493 nrg->css = rg->css; 494 if (rg->css) 495 css_get(rg->css); 496 #endif 497 } 498 499 /* Helper that records hugetlb_cgroup uncharge info. */ 500 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 501 struct hstate *h, 502 struct resv_map *resv, 503 struct file_region *nrg) 504 { 505 #ifdef CONFIG_CGROUP_HUGETLB 506 if (h_cg) { 507 nrg->reservation_counter = 508 &h_cg->rsvd_hugepage[hstate_index(h)]; 509 nrg->css = &h_cg->css; 510 /* 511 * The caller will hold exactly one h_cg->css reference for the 512 * whole contiguous reservation region. But this area might be 513 * scattered when there are already some file_regions reside in 514 * it. As a result, many file_regions may share only one css 515 * reference. In order to ensure that one file_region must hold 516 * exactly one h_cg->css reference, we should do css_get for 517 * each file_region and leave the reference held by caller 518 * untouched. 519 */ 520 css_get(&h_cg->css); 521 if (!resv->pages_per_hpage) 522 resv->pages_per_hpage = pages_per_huge_page(h); 523 /* pages_per_hpage should be the same for all entries in 524 * a resv_map. 525 */ 526 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 527 } else { 528 nrg->reservation_counter = NULL; 529 nrg->css = NULL; 530 } 531 #endif 532 } 533 534 static void put_uncharge_info(struct file_region *rg) 535 { 536 #ifdef CONFIG_CGROUP_HUGETLB 537 if (rg->css) 538 css_put(rg->css); 539 #endif 540 } 541 542 static bool has_same_uncharge_info(struct file_region *rg, 543 struct file_region *org) 544 { 545 #ifdef CONFIG_CGROUP_HUGETLB 546 return rg->reservation_counter == org->reservation_counter && 547 rg->css == org->css; 548 549 #else 550 return true; 551 #endif 552 } 553 554 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 555 { 556 struct file_region *nrg, *prg; 557 558 prg = list_prev_entry(rg, link); 559 if (&prg->link != &resv->regions && prg->to == rg->from && 560 has_same_uncharge_info(prg, rg)) { 561 prg->to = rg->to; 562 563 list_del(&rg->link); 564 put_uncharge_info(rg); 565 kfree(rg); 566 567 rg = prg; 568 } 569 570 nrg = list_next_entry(rg, link); 571 if (&nrg->link != &resv->regions && nrg->from == rg->to && 572 has_same_uncharge_info(nrg, rg)) { 573 nrg->from = rg->from; 574 575 list_del(&rg->link); 576 put_uncharge_info(rg); 577 kfree(rg); 578 } 579 } 580 581 static inline long 582 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 583 long to, struct hstate *h, struct hugetlb_cgroup *cg, 584 long *regions_needed) 585 { 586 struct file_region *nrg; 587 588 if (!regions_needed) { 589 nrg = get_file_region_entry_from_cache(map, from, to); 590 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 591 list_add(&nrg->link, rg); 592 coalesce_file_region(map, nrg); 593 } else 594 *regions_needed += 1; 595 596 return to - from; 597 } 598 599 /* 600 * Must be called with resv->lock held. 601 * 602 * Calling this with regions_needed != NULL will count the number of pages 603 * to be added but will not modify the linked list. And regions_needed will 604 * indicate the number of file_regions needed in the cache to carry out to add 605 * the regions for this range. 606 */ 607 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 608 struct hugetlb_cgroup *h_cg, 609 struct hstate *h, long *regions_needed) 610 { 611 long add = 0; 612 struct list_head *head = &resv->regions; 613 long last_accounted_offset = f; 614 struct file_region *iter, *trg = NULL; 615 struct list_head *rg = NULL; 616 617 if (regions_needed) 618 *regions_needed = 0; 619 620 /* In this loop, we essentially handle an entry for the range 621 * [last_accounted_offset, iter->from), at every iteration, with some 622 * bounds checking. 623 */ 624 list_for_each_entry_safe(iter, trg, head, link) { 625 /* Skip irrelevant regions that start before our range. */ 626 if (iter->from < f) { 627 /* If this region ends after the last accounted offset, 628 * then we need to update last_accounted_offset. 629 */ 630 if (iter->to > last_accounted_offset) 631 last_accounted_offset = iter->to; 632 continue; 633 } 634 635 /* When we find a region that starts beyond our range, we've 636 * finished. 637 */ 638 if (iter->from >= t) { 639 rg = iter->link.prev; 640 break; 641 } 642 643 /* Add an entry for last_accounted_offset -> iter->from, and 644 * update last_accounted_offset. 645 */ 646 if (iter->from > last_accounted_offset) 647 add += hugetlb_resv_map_add(resv, iter->link.prev, 648 last_accounted_offset, 649 iter->from, h, h_cg, 650 regions_needed); 651 652 last_accounted_offset = iter->to; 653 } 654 655 /* Handle the case where our range extends beyond 656 * last_accounted_offset. 657 */ 658 if (!rg) 659 rg = head->prev; 660 if (last_accounted_offset < t) 661 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 662 t, h, h_cg, regions_needed); 663 664 return add; 665 } 666 667 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 668 */ 669 static int allocate_file_region_entries(struct resv_map *resv, 670 int regions_needed) 671 __must_hold(&resv->lock) 672 { 673 LIST_HEAD(allocated_regions); 674 int to_allocate = 0, i = 0; 675 struct file_region *trg = NULL, *rg = NULL; 676 677 VM_BUG_ON(regions_needed < 0); 678 679 /* 680 * Check for sufficient descriptors in the cache to accommodate 681 * the number of in progress add operations plus regions_needed. 682 * 683 * This is a while loop because when we drop the lock, some other call 684 * to region_add or region_del may have consumed some region_entries, 685 * so we keep looping here until we finally have enough entries for 686 * (adds_in_progress + regions_needed). 687 */ 688 while (resv->region_cache_count < 689 (resv->adds_in_progress + regions_needed)) { 690 to_allocate = resv->adds_in_progress + regions_needed - 691 resv->region_cache_count; 692 693 /* At this point, we should have enough entries in the cache 694 * for all the existing adds_in_progress. We should only be 695 * needing to allocate for regions_needed. 696 */ 697 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 698 699 spin_unlock(&resv->lock); 700 for (i = 0; i < to_allocate; i++) { 701 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 702 if (!trg) 703 goto out_of_memory; 704 list_add(&trg->link, &allocated_regions); 705 } 706 707 spin_lock(&resv->lock); 708 709 list_splice(&allocated_regions, &resv->region_cache); 710 resv->region_cache_count += to_allocate; 711 } 712 713 return 0; 714 715 out_of_memory: 716 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 717 list_del(&rg->link); 718 kfree(rg); 719 } 720 return -ENOMEM; 721 } 722 723 /* 724 * Add the huge page range represented by [f, t) to the reserve 725 * map. Regions will be taken from the cache to fill in this range. 726 * Sufficient regions should exist in the cache due to the previous 727 * call to region_chg with the same range, but in some cases the cache will not 728 * have sufficient entries due to races with other code doing region_add or 729 * region_del. The extra needed entries will be allocated. 730 * 731 * regions_needed is the out value provided by a previous call to region_chg. 732 * 733 * Return the number of new huge pages added to the map. This number is greater 734 * than or equal to zero. If file_region entries needed to be allocated for 735 * this operation and we were not able to allocate, it returns -ENOMEM. 736 * region_add of regions of length 1 never allocate file_regions and cannot 737 * fail; region_chg will always allocate at least 1 entry and a region_add for 738 * 1 page will only require at most 1 entry. 739 */ 740 static long region_add(struct resv_map *resv, long f, long t, 741 long in_regions_needed, struct hstate *h, 742 struct hugetlb_cgroup *h_cg) 743 { 744 long add = 0, actual_regions_needed = 0; 745 746 spin_lock(&resv->lock); 747 retry: 748 749 /* Count how many regions are actually needed to execute this add. */ 750 add_reservation_in_range(resv, f, t, NULL, NULL, 751 &actual_regions_needed); 752 753 /* 754 * Check for sufficient descriptors in the cache to accommodate 755 * this add operation. Note that actual_regions_needed may be greater 756 * than in_regions_needed, as the resv_map may have been modified since 757 * the region_chg call. In this case, we need to make sure that we 758 * allocate extra entries, such that we have enough for all the 759 * existing adds_in_progress, plus the excess needed for this 760 * operation. 761 */ 762 if (actual_regions_needed > in_regions_needed && 763 resv->region_cache_count < 764 resv->adds_in_progress + 765 (actual_regions_needed - in_regions_needed)) { 766 /* region_add operation of range 1 should never need to 767 * allocate file_region entries. 768 */ 769 VM_BUG_ON(t - f <= 1); 770 771 if (allocate_file_region_entries( 772 resv, actual_regions_needed - in_regions_needed)) { 773 return -ENOMEM; 774 } 775 776 goto retry; 777 } 778 779 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 780 781 resv->adds_in_progress -= in_regions_needed; 782 783 spin_unlock(&resv->lock); 784 return add; 785 } 786 787 /* 788 * Examine the existing reserve map and determine how many 789 * huge pages in the specified range [f, t) are NOT currently 790 * represented. This routine is called before a subsequent 791 * call to region_add that will actually modify the reserve 792 * map to add the specified range [f, t). region_chg does 793 * not change the number of huge pages represented by the 794 * map. A number of new file_region structures is added to the cache as a 795 * placeholder, for the subsequent region_add call to use. At least 1 796 * file_region structure is added. 797 * 798 * out_regions_needed is the number of regions added to the 799 * resv->adds_in_progress. This value needs to be provided to a follow up call 800 * to region_add or region_abort for proper accounting. 801 * 802 * Returns the number of huge pages that need to be added to the existing 803 * reservation map for the range [f, t). This number is greater or equal to 804 * zero. -ENOMEM is returned if a new file_region structure or cache entry 805 * is needed and can not be allocated. 806 */ 807 static long region_chg(struct resv_map *resv, long f, long t, 808 long *out_regions_needed) 809 { 810 long chg = 0; 811 812 spin_lock(&resv->lock); 813 814 /* Count how many hugepages in this range are NOT represented. */ 815 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 816 out_regions_needed); 817 818 if (*out_regions_needed == 0) 819 *out_regions_needed = 1; 820 821 if (allocate_file_region_entries(resv, *out_regions_needed)) 822 return -ENOMEM; 823 824 resv->adds_in_progress += *out_regions_needed; 825 826 spin_unlock(&resv->lock); 827 return chg; 828 } 829 830 /* 831 * Abort the in progress add operation. The adds_in_progress field 832 * of the resv_map keeps track of the operations in progress between 833 * calls to region_chg and region_add. Operations are sometimes 834 * aborted after the call to region_chg. In such cases, region_abort 835 * is called to decrement the adds_in_progress counter. regions_needed 836 * is the value returned by the region_chg call, it is used to decrement 837 * the adds_in_progress counter. 838 * 839 * NOTE: The range arguments [f, t) are not needed or used in this 840 * routine. They are kept to make reading the calling code easier as 841 * arguments will match the associated region_chg call. 842 */ 843 static void region_abort(struct resv_map *resv, long f, long t, 844 long regions_needed) 845 { 846 spin_lock(&resv->lock); 847 VM_BUG_ON(!resv->region_cache_count); 848 resv->adds_in_progress -= regions_needed; 849 spin_unlock(&resv->lock); 850 } 851 852 /* 853 * Delete the specified range [f, t) from the reserve map. If the 854 * t parameter is LONG_MAX, this indicates that ALL regions after f 855 * should be deleted. Locate the regions which intersect [f, t) 856 * and either trim, delete or split the existing regions. 857 * 858 * Returns the number of huge pages deleted from the reserve map. 859 * In the normal case, the return value is zero or more. In the 860 * case where a region must be split, a new region descriptor must 861 * be allocated. If the allocation fails, -ENOMEM will be returned. 862 * NOTE: If the parameter t == LONG_MAX, then we will never split 863 * a region and possibly return -ENOMEM. Callers specifying 864 * t == LONG_MAX do not need to check for -ENOMEM error. 865 */ 866 static long region_del(struct resv_map *resv, long f, long t) 867 { 868 struct list_head *head = &resv->regions; 869 struct file_region *rg, *trg; 870 struct file_region *nrg = NULL; 871 long del = 0; 872 873 retry: 874 spin_lock(&resv->lock); 875 list_for_each_entry_safe(rg, trg, head, link) { 876 /* 877 * Skip regions before the range to be deleted. file_region 878 * ranges are normally of the form [from, to). However, there 879 * may be a "placeholder" entry in the map which is of the form 880 * (from, to) with from == to. Check for placeholder entries 881 * at the beginning of the range to be deleted. 882 */ 883 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 884 continue; 885 886 if (rg->from >= t) 887 break; 888 889 if (f > rg->from && t < rg->to) { /* Must split region */ 890 /* 891 * Check for an entry in the cache before dropping 892 * lock and attempting allocation. 893 */ 894 if (!nrg && 895 resv->region_cache_count > resv->adds_in_progress) { 896 nrg = list_first_entry(&resv->region_cache, 897 struct file_region, 898 link); 899 list_del(&nrg->link); 900 resv->region_cache_count--; 901 } 902 903 if (!nrg) { 904 spin_unlock(&resv->lock); 905 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 906 if (!nrg) 907 return -ENOMEM; 908 goto retry; 909 } 910 911 del += t - f; 912 hugetlb_cgroup_uncharge_file_region( 913 resv, rg, t - f, false); 914 915 /* New entry for end of split region */ 916 nrg->from = t; 917 nrg->to = rg->to; 918 919 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 920 921 INIT_LIST_HEAD(&nrg->link); 922 923 /* Original entry is trimmed */ 924 rg->to = f; 925 926 list_add(&nrg->link, &rg->link); 927 nrg = NULL; 928 break; 929 } 930 931 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 932 del += rg->to - rg->from; 933 hugetlb_cgroup_uncharge_file_region(resv, rg, 934 rg->to - rg->from, true); 935 list_del(&rg->link); 936 kfree(rg); 937 continue; 938 } 939 940 if (f <= rg->from) { /* Trim beginning of region */ 941 hugetlb_cgroup_uncharge_file_region(resv, rg, 942 t - rg->from, false); 943 944 del += t - rg->from; 945 rg->from = t; 946 } else { /* Trim end of region */ 947 hugetlb_cgroup_uncharge_file_region(resv, rg, 948 rg->to - f, false); 949 950 del += rg->to - f; 951 rg->to = f; 952 } 953 } 954 955 spin_unlock(&resv->lock); 956 kfree(nrg); 957 return del; 958 } 959 960 /* 961 * A rare out of memory error was encountered which prevented removal of 962 * the reserve map region for a page. The huge page itself was free'ed 963 * and removed from the page cache. This routine will adjust the subpool 964 * usage count, and the global reserve count if needed. By incrementing 965 * these counts, the reserve map entry which could not be deleted will 966 * appear as a "reserved" entry instead of simply dangling with incorrect 967 * counts. 968 */ 969 void hugetlb_fix_reserve_counts(struct inode *inode) 970 { 971 struct hugepage_subpool *spool = subpool_inode(inode); 972 long rsv_adjust; 973 bool reserved = false; 974 975 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 976 if (rsv_adjust > 0) { 977 struct hstate *h = hstate_inode(inode); 978 979 if (!hugetlb_acct_memory(h, 1)) 980 reserved = true; 981 } else if (!rsv_adjust) { 982 reserved = true; 983 } 984 985 if (!reserved) 986 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 987 } 988 989 /* 990 * Count and return the number of huge pages in the reserve map 991 * that intersect with the range [f, t). 992 */ 993 static long region_count(struct resv_map *resv, long f, long t) 994 { 995 struct list_head *head = &resv->regions; 996 struct file_region *rg; 997 long chg = 0; 998 999 spin_lock(&resv->lock); 1000 /* Locate each segment we overlap with, and count that overlap. */ 1001 list_for_each_entry(rg, head, link) { 1002 long seg_from; 1003 long seg_to; 1004 1005 if (rg->to <= f) 1006 continue; 1007 if (rg->from >= t) 1008 break; 1009 1010 seg_from = max(rg->from, f); 1011 seg_to = min(rg->to, t); 1012 1013 chg += seg_to - seg_from; 1014 } 1015 spin_unlock(&resv->lock); 1016 1017 return chg; 1018 } 1019 1020 /* 1021 * Convert the address within this vma to the page offset within 1022 * the mapping, huge page units here. 1023 */ 1024 static pgoff_t vma_hugecache_offset(struct hstate *h, 1025 struct vm_area_struct *vma, unsigned long address) 1026 { 1027 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1028 (vma->vm_pgoff >> huge_page_order(h)); 1029 } 1030 1031 /** 1032 * vma_kernel_pagesize - Page size granularity for this VMA. 1033 * @vma: The user mapping. 1034 * 1035 * Folios in this VMA will be aligned to, and at least the size of the 1036 * number of bytes returned by this function. 1037 * 1038 * Return: The default size of the folios allocated when backing a VMA. 1039 */ 1040 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1041 { 1042 if (vma->vm_ops && vma->vm_ops->pagesize) 1043 return vma->vm_ops->pagesize(vma); 1044 return PAGE_SIZE; 1045 } 1046 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1047 1048 /* 1049 * Return the page size being used by the MMU to back a VMA. In the majority 1050 * of cases, the page size used by the kernel matches the MMU size. On 1051 * architectures where it differs, an architecture-specific 'strong' 1052 * version of this symbol is required. 1053 */ 1054 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1055 { 1056 return vma_kernel_pagesize(vma); 1057 } 1058 1059 /* 1060 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1061 * bits of the reservation map pointer, which are always clear due to 1062 * alignment. 1063 */ 1064 #define HPAGE_RESV_OWNER (1UL << 0) 1065 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1066 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1067 1068 /* 1069 * These helpers are used to track how many pages are reserved for 1070 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1071 * is guaranteed to have their future faults succeed. 1072 * 1073 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1074 * the reserve counters are updated with the hugetlb_lock held. It is safe 1075 * to reset the VMA at fork() time as it is not in use yet and there is no 1076 * chance of the global counters getting corrupted as a result of the values. 1077 * 1078 * The private mapping reservation is represented in a subtly different 1079 * manner to a shared mapping. A shared mapping has a region map associated 1080 * with the underlying file, this region map represents the backing file 1081 * pages which have ever had a reservation assigned which this persists even 1082 * after the page is instantiated. A private mapping has a region map 1083 * associated with the original mmap which is attached to all VMAs which 1084 * reference it, this region map represents those offsets which have consumed 1085 * reservation ie. where pages have been instantiated. 1086 */ 1087 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1088 { 1089 return (unsigned long)vma->vm_private_data; 1090 } 1091 1092 static void set_vma_private_data(struct vm_area_struct *vma, 1093 unsigned long value) 1094 { 1095 vma->vm_private_data = (void *)value; 1096 } 1097 1098 static void 1099 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1100 struct hugetlb_cgroup *h_cg, 1101 struct hstate *h) 1102 { 1103 #ifdef CONFIG_CGROUP_HUGETLB 1104 if (!h_cg || !h) { 1105 resv_map->reservation_counter = NULL; 1106 resv_map->pages_per_hpage = 0; 1107 resv_map->css = NULL; 1108 } else { 1109 resv_map->reservation_counter = 1110 &h_cg->rsvd_hugepage[hstate_index(h)]; 1111 resv_map->pages_per_hpage = pages_per_huge_page(h); 1112 resv_map->css = &h_cg->css; 1113 } 1114 #endif 1115 } 1116 1117 struct resv_map *resv_map_alloc(void) 1118 { 1119 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1120 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1121 1122 if (!resv_map || !rg) { 1123 kfree(resv_map); 1124 kfree(rg); 1125 return NULL; 1126 } 1127 1128 kref_init(&resv_map->refs); 1129 spin_lock_init(&resv_map->lock); 1130 INIT_LIST_HEAD(&resv_map->regions); 1131 init_rwsem(&resv_map->rw_sema); 1132 1133 resv_map->adds_in_progress = 0; 1134 /* 1135 * Initialize these to 0. On shared mappings, 0's here indicate these 1136 * fields don't do cgroup accounting. On private mappings, these will be 1137 * re-initialized to the proper values, to indicate that hugetlb cgroup 1138 * reservations are to be un-charged from here. 1139 */ 1140 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1141 1142 INIT_LIST_HEAD(&resv_map->region_cache); 1143 list_add(&rg->link, &resv_map->region_cache); 1144 resv_map->region_cache_count = 1; 1145 1146 return resv_map; 1147 } 1148 1149 void resv_map_release(struct kref *ref) 1150 { 1151 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1152 struct list_head *head = &resv_map->region_cache; 1153 struct file_region *rg, *trg; 1154 1155 /* Clear out any active regions before we release the map. */ 1156 region_del(resv_map, 0, LONG_MAX); 1157 1158 /* ... and any entries left in the cache */ 1159 list_for_each_entry_safe(rg, trg, head, link) { 1160 list_del(&rg->link); 1161 kfree(rg); 1162 } 1163 1164 VM_BUG_ON(resv_map->adds_in_progress); 1165 1166 kfree(resv_map); 1167 } 1168 1169 static inline struct resv_map *inode_resv_map(struct inode *inode) 1170 { 1171 /* 1172 * At inode evict time, i_mapping may not point to the original 1173 * address space within the inode. This original address space 1174 * contains the pointer to the resv_map. So, always use the 1175 * address space embedded within the inode. 1176 * The VERY common case is inode->mapping == &inode->i_data but, 1177 * this may not be true for device special inodes. 1178 */ 1179 return (struct resv_map *)(&inode->i_data)->i_private_data; 1180 } 1181 1182 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1183 { 1184 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1185 if (vma->vm_flags & VM_MAYSHARE) { 1186 struct address_space *mapping = vma->vm_file->f_mapping; 1187 struct inode *inode = mapping->host; 1188 1189 return inode_resv_map(inode); 1190 1191 } else { 1192 return (struct resv_map *)(get_vma_private_data(vma) & 1193 ~HPAGE_RESV_MASK); 1194 } 1195 } 1196 1197 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1198 { 1199 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1200 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1201 1202 set_vma_private_data(vma, (unsigned long)map); 1203 } 1204 1205 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1206 { 1207 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1208 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1209 1210 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1211 } 1212 1213 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1214 { 1215 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1216 1217 return (get_vma_private_data(vma) & flag) != 0; 1218 } 1219 1220 bool __vma_private_lock(struct vm_area_struct *vma) 1221 { 1222 return !(vma->vm_flags & VM_MAYSHARE) && 1223 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1224 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1225 } 1226 1227 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1228 { 1229 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1230 /* 1231 * Clear vm_private_data 1232 * - For shared mappings this is a per-vma semaphore that may be 1233 * allocated in a subsequent call to hugetlb_vm_op_open. 1234 * Before clearing, make sure pointer is not associated with vma 1235 * as this will leak the structure. This is the case when called 1236 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1237 * been called to allocate a new structure. 1238 * - For MAP_PRIVATE mappings, this is the reserve map which does 1239 * not apply to children. Faults generated by the children are 1240 * not guaranteed to succeed, even if read-only. 1241 */ 1242 if (vma->vm_flags & VM_MAYSHARE) { 1243 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1244 1245 if (vma_lock && vma_lock->vma != vma) 1246 vma->vm_private_data = NULL; 1247 } else 1248 vma->vm_private_data = NULL; 1249 } 1250 1251 /* 1252 * Reset and decrement one ref on hugepage private reservation. 1253 * Called with mm->mmap_lock writer semaphore held. 1254 * This function should be only used by mremap and operate on 1255 * same sized vma. It should never come here with last ref on the 1256 * reservation. 1257 */ 1258 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1259 { 1260 /* 1261 * Clear the old hugetlb private page reservation. 1262 * It has already been transferred to new_vma. 1263 * 1264 * During a mremap() operation of a hugetlb vma we call move_vma() 1265 * which copies vma into new_vma and unmaps vma. After the copy 1266 * operation both new_vma and vma share a reference to the resv_map 1267 * struct, and at that point vma is about to be unmapped. We don't 1268 * want to return the reservation to the pool at unmap of vma because 1269 * the reservation still lives on in new_vma, so simply decrement the 1270 * ref here and remove the resv_map reference from this vma. 1271 */ 1272 struct resv_map *reservations = vma_resv_map(vma); 1273 1274 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1275 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1276 kref_put(&reservations->refs, resv_map_release); 1277 } 1278 1279 hugetlb_dup_vma_private(vma); 1280 } 1281 1282 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1283 { 1284 int nid = folio_nid(folio); 1285 1286 lockdep_assert_held(&hugetlb_lock); 1287 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1288 1289 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1290 h->free_huge_pages++; 1291 h->free_huge_pages_node[nid]++; 1292 folio_set_hugetlb_freed(folio); 1293 } 1294 1295 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1296 int nid) 1297 { 1298 struct folio *folio; 1299 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1300 1301 lockdep_assert_held(&hugetlb_lock); 1302 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1303 if (pin && !folio_is_longterm_pinnable(folio)) 1304 continue; 1305 1306 if (folio_test_hwpoison(folio)) 1307 continue; 1308 1309 if (is_migrate_isolate_page(&folio->page)) 1310 continue; 1311 1312 list_move(&folio->lru, &h->hugepage_activelist); 1313 folio_ref_unfreeze(folio, 1); 1314 folio_clear_hugetlb_freed(folio); 1315 h->free_huge_pages--; 1316 h->free_huge_pages_node[nid]--; 1317 return folio; 1318 } 1319 1320 return NULL; 1321 } 1322 1323 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1324 int nid, nodemask_t *nmask) 1325 { 1326 unsigned int cpuset_mems_cookie; 1327 struct zonelist *zonelist; 1328 struct zone *zone; 1329 struct zoneref *z; 1330 int node = NUMA_NO_NODE; 1331 1332 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1333 if (nid == NUMA_NO_NODE) 1334 nid = numa_node_id(); 1335 1336 zonelist = node_zonelist(nid, gfp_mask); 1337 1338 retry_cpuset: 1339 cpuset_mems_cookie = read_mems_allowed_begin(); 1340 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1341 struct folio *folio; 1342 1343 if (!cpuset_zone_allowed(zone, gfp_mask)) 1344 continue; 1345 /* 1346 * no need to ask again on the same node. Pool is node rather than 1347 * zone aware 1348 */ 1349 if (zone_to_nid(zone) == node) 1350 continue; 1351 node = zone_to_nid(zone); 1352 1353 folio = dequeue_hugetlb_folio_node_exact(h, node); 1354 if (folio) 1355 return folio; 1356 } 1357 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1358 goto retry_cpuset; 1359 1360 return NULL; 1361 } 1362 1363 static unsigned long available_huge_pages(struct hstate *h) 1364 { 1365 return h->free_huge_pages - h->resv_huge_pages; 1366 } 1367 1368 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1369 struct vm_area_struct *vma, 1370 unsigned long address, long gbl_chg) 1371 { 1372 struct folio *folio = NULL; 1373 struct mempolicy *mpol; 1374 gfp_t gfp_mask; 1375 nodemask_t *nodemask; 1376 int nid; 1377 1378 /* 1379 * gbl_chg==1 means the allocation requires a new page that was not 1380 * reserved before. Making sure there's at least one free page. 1381 */ 1382 if (gbl_chg && !available_huge_pages(h)) 1383 goto err; 1384 1385 gfp_mask = htlb_alloc_mask(h); 1386 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1387 1388 if (mpol_is_preferred_many(mpol)) { 1389 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1390 nid, nodemask); 1391 1392 /* Fallback to all nodes if page==NULL */ 1393 nodemask = NULL; 1394 } 1395 1396 if (!folio) 1397 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1398 nid, nodemask); 1399 1400 mpol_cond_put(mpol); 1401 return folio; 1402 1403 err: 1404 return NULL; 1405 } 1406 1407 /* 1408 * common helper functions for hstate_next_node_to_{alloc|free}. 1409 * We may have allocated or freed a huge page based on a different 1410 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1411 * be outside of *nodes_allowed. Ensure that we use an allowed 1412 * node for alloc or free. 1413 */ 1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1415 { 1416 nid = next_node_in(nid, *nodes_allowed); 1417 VM_BUG_ON(nid >= MAX_NUMNODES); 1418 1419 return nid; 1420 } 1421 1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1423 { 1424 if (!node_isset(nid, *nodes_allowed)) 1425 nid = next_node_allowed(nid, nodes_allowed); 1426 return nid; 1427 } 1428 1429 /* 1430 * returns the previously saved node ["this node"] from which to 1431 * allocate a persistent huge page for the pool and advance the 1432 * next node from which to allocate, handling wrap at end of node 1433 * mask. 1434 */ 1435 static int hstate_next_node_to_alloc(int *next_node, 1436 nodemask_t *nodes_allowed) 1437 { 1438 int nid; 1439 1440 VM_BUG_ON(!nodes_allowed); 1441 1442 nid = get_valid_node_allowed(*next_node, nodes_allowed); 1443 *next_node = next_node_allowed(nid, nodes_allowed); 1444 1445 return nid; 1446 } 1447 1448 /* 1449 * helper for remove_pool_hugetlb_folio() - return the previously saved 1450 * node ["this node"] from which to free a huge page. Advance the 1451 * next node id whether or not we find a free huge page to free so 1452 * that the next attempt to free addresses the next node. 1453 */ 1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1455 { 1456 int nid; 1457 1458 VM_BUG_ON(!nodes_allowed); 1459 1460 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1461 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1462 1463 return nid; 1464 } 1465 1466 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \ 1467 for (nr_nodes = nodes_weight(*mask); \ 1468 nr_nodes > 0 && \ 1469 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \ 1470 nr_nodes--) 1471 1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1473 for (nr_nodes = nodes_weight(*mask); \ 1474 nr_nodes > 0 && \ 1475 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1476 nr_nodes--) 1477 1478 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1479 #ifdef CONFIG_CONTIG_ALLOC 1480 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1481 int nid, nodemask_t *nodemask) 1482 { 1483 struct folio *folio; 1484 int order = huge_page_order(h); 1485 bool retried = false; 1486 1487 if (nid == NUMA_NO_NODE) 1488 nid = numa_mem_id(); 1489 retry: 1490 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask); 1491 if (!folio) { 1492 if (hugetlb_cma_exclusive_alloc()) 1493 return NULL; 1494 1495 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); 1496 if (!folio) 1497 return NULL; 1498 } 1499 1500 if (folio_ref_freeze(folio, 1)) 1501 return folio; 1502 1503 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); 1504 hugetlb_free_folio(folio); 1505 if (!retried) { 1506 retried = true; 1507 goto retry; 1508 } 1509 return NULL; 1510 } 1511 1512 #else /* !CONFIG_CONTIG_ALLOC */ 1513 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1514 int nid, nodemask_t *nodemask) 1515 { 1516 return NULL; 1517 } 1518 #endif /* CONFIG_CONTIG_ALLOC */ 1519 1520 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1521 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1522 int nid, nodemask_t *nodemask) 1523 { 1524 return NULL; 1525 } 1526 #endif 1527 1528 /* 1529 * Remove hugetlb folio from lists. 1530 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1531 * folio appears as just a compound page. Otherwise, wait until after 1532 * allocating vmemmap to clear the flag. 1533 * 1534 * Must be called with hugetlb lock held. 1535 */ 1536 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1537 bool adjust_surplus) 1538 { 1539 int nid = folio_nid(folio); 1540 1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1542 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1543 1544 lockdep_assert_held(&hugetlb_lock); 1545 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1546 return; 1547 1548 list_del(&folio->lru); 1549 1550 if (folio_test_hugetlb_freed(folio)) { 1551 folio_clear_hugetlb_freed(folio); 1552 h->free_huge_pages--; 1553 h->free_huge_pages_node[nid]--; 1554 } 1555 if (adjust_surplus) { 1556 h->surplus_huge_pages--; 1557 h->surplus_huge_pages_node[nid]--; 1558 } 1559 1560 /* 1561 * We can only clear the hugetlb flag after allocating vmemmap 1562 * pages. Otherwise, someone (memory error handling) may try to write 1563 * to tail struct pages. 1564 */ 1565 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1566 __folio_clear_hugetlb(folio); 1567 1568 h->nr_huge_pages--; 1569 h->nr_huge_pages_node[nid]--; 1570 } 1571 1572 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1573 bool adjust_surplus) 1574 { 1575 int nid = folio_nid(folio); 1576 1577 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1578 1579 lockdep_assert_held(&hugetlb_lock); 1580 1581 INIT_LIST_HEAD(&folio->lru); 1582 h->nr_huge_pages++; 1583 h->nr_huge_pages_node[nid]++; 1584 1585 if (adjust_surplus) { 1586 h->surplus_huge_pages++; 1587 h->surplus_huge_pages_node[nid]++; 1588 } 1589 1590 __folio_set_hugetlb(folio); 1591 folio_change_private(folio, NULL); 1592 /* 1593 * We have to set hugetlb_vmemmap_optimized again as above 1594 * folio_change_private(folio, NULL) cleared it. 1595 */ 1596 folio_set_hugetlb_vmemmap_optimized(folio); 1597 1598 arch_clear_hugetlb_flags(folio); 1599 enqueue_hugetlb_folio(h, folio); 1600 } 1601 1602 static void __update_and_free_hugetlb_folio(struct hstate *h, 1603 struct folio *folio) 1604 { 1605 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1606 1607 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1608 return; 1609 1610 /* 1611 * If we don't know which subpages are hwpoisoned, we can't free 1612 * the hugepage, so it's leaked intentionally. 1613 */ 1614 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1615 return; 1616 1617 /* 1618 * If folio is not vmemmap optimized (!clear_flag), then the folio 1619 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1620 * can only be passed hugetlb pages and will BUG otherwise. 1621 */ 1622 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1623 spin_lock_irq(&hugetlb_lock); 1624 /* 1625 * If we cannot allocate vmemmap pages, just refuse to free the 1626 * page and put the page back on the hugetlb free list and treat 1627 * as a surplus page. 1628 */ 1629 add_hugetlb_folio(h, folio, true); 1630 spin_unlock_irq(&hugetlb_lock); 1631 return; 1632 } 1633 1634 /* 1635 * If vmemmap pages were allocated above, then we need to clear the 1636 * hugetlb flag under the hugetlb lock. 1637 */ 1638 if (folio_test_hugetlb(folio)) { 1639 spin_lock_irq(&hugetlb_lock); 1640 __folio_clear_hugetlb(folio); 1641 spin_unlock_irq(&hugetlb_lock); 1642 } 1643 1644 /* 1645 * Move PageHWPoison flag from head page to the raw error pages, 1646 * which makes any healthy subpages reusable. 1647 */ 1648 if (unlikely(folio_test_hwpoison(folio))) 1649 folio_clear_hugetlb_hwpoison(folio); 1650 1651 folio_ref_unfreeze(folio, 1); 1652 1653 hugetlb_free_folio(folio); 1654 } 1655 1656 /* 1657 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1658 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1659 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1660 * the vmemmap pages. 1661 * 1662 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1663 * freed and frees them one-by-one. As the page->mapping pointer is going 1664 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1665 * structure of a lockless linked list of huge pages to be freed. 1666 */ 1667 static LLIST_HEAD(hpage_freelist); 1668 1669 static void free_hpage_workfn(struct work_struct *work) 1670 { 1671 struct llist_node *node; 1672 1673 node = llist_del_all(&hpage_freelist); 1674 1675 while (node) { 1676 struct folio *folio; 1677 struct hstate *h; 1678 1679 folio = container_of((struct address_space **)node, 1680 struct folio, mapping); 1681 node = node->next; 1682 folio->mapping = NULL; 1683 /* 1684 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1685 * folio_hstate() is going to trigger because a previous call to 1686 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1687 * not use folio_hstate() directly. 1688 */ 1689 h = size_to_hstate(folio_size(folio)); 1690 1691 __update_and_free_hugetlb_folio(h, folio); 1692 1693 cond_resched(); 1694 } 1695 } 1696 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1697 1698 static inline void flush_free_hpage_work(struct hstate *h) 1699 { 1700 if (hugetlb_vmemmap_optimizable(h)) 1701 flush_work(&free_hpage_work); 1702 } 1703 1704 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1705 bool atomic) 1706 { 1707 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1708 __update_and_free_hugetlb_folio(h, folio); 1709 return; 1710 } 1711 1712 /* 1713 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1714 * 1715 * Only call schedule_work() if hpage_freelist is previously 1716 * empty. Otherwise, schedule_work() had been called but the workfn 1717 * hasn't retrieved the list yet. 1718 */ 1719 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1720 schedule_work(&free_hpage_work); 1721 } 1722 1723 static void bulk_vmemmap_restore_error(struct hstate *h, 1724 struct list_head *folio_list, 1725 struct list_head *non_hvo_folios) 1726 { 1727 struct folio *folio, *t_folio; 1728 1729 if (!list_empty(non_hvo_folios)) { 1730 /* 1731 * Free any restored hugetlb pages so that restore of the 1732 * entire list can be retried. 1733 * The idea is that in the common case of ENOMEM errors freeing 1734 * hugetlb pages with vmemmap we will free up memory so that we 1735 * can allocate vmemmap for more hugetlb pages. 1736 */ 1737 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1738 list_del(&folio->lru); 1739 spin_lock_irq(&hugetlb_lock); 1740 __folio_clear_hugetlb(folio); 1741 spin_unlock_irq(&hugetlb_lock); 1742 update_and_free_hugetlb_folio(h, folio, false); 1743 cond_resched(); 1744 } 1745 } else { 1746 /* 1747 * In the case where there are no folios which can be 1748 * immediately freed, we loop through the list trying to restore 1749 * vmemmap individually in the hope that someone elsewhere may 1750 * have done something to cause success (such as freeing some 1751 * memory). If unable to restore a hugetlb page, the hugetlb 1752 * page is made a surplus page and removed from the list. 1753 * If are able to restore vmemmap and free one hugetlb page, we 1754 * quit processing the list to retry the bulk operation. 1755 */ 1756 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1757 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1758 list_del(&folio->lru); 1759 spin_lock_irq(&hugetlb_lock); 1760 add_hugetlb_folio(h, folio, true); 1761 spin_unlock_irq(&hugetlb_lock); 1762 } else { 1763 list_del(&folio->lru); 1764 spin_lock_irq(&hugetlb_lock); 1765 __folio_clear_hugetlb(folio); 1766 spin_unlock_irq(&hugetlb_lock); 1767 update_and_free_hugetlb_folio(h, folio, false); 1768 cond_resched(); 1769 break; 1770 } 1771 } 1772 } 1773 1774 static void update_and_free_pages_bulk(struct hstate *h, 1775 struct list_head *folio_list) 1776 { 1777 long ret; 1778 struct folio *folio, *t_folio; 1779 LIST_HEAD(non_hvo_folios); 1780 1781 /* 1782 * First allocate required vmemmmap (if necessary) for all folios. 1783 * Carefully handle errors and free up any available hugetlb pages 1784 * in an effort to make forward progress. 1785 */ 1786 retry: 1787 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1788 if (ret < 0) { 1789 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1790 goto retry; 1791 } 1792 1793 /* 1794 * At this point, list should be empty, ret should be >= 0 and there 1795 * should only be pages on the non_hvo_folios list. 1796 * Do note that the non_hvo_folios list could be empty. 1797 * Without HVO enabled, ret will be 0 and there is no need to call 1798 * __folio_clear_hugetlb as this was done previously. 1799 */ 1800 VM_WARN_ON(!list_empty(folio_list)); 1801 VM_WARN_ON(ret < 0); 1802 if (!list_empty(&non_hvo_folios) && ret) { 1803 spin_lock_irq(&hugetlb_lock); 1804 list_for_each_entry(folio, &non_hvo_folios, lru) 1805 __folio_clear_hugetlb(folio); 1806 spin_unlock_irq(&hugetlb_lock); 1807 } 1808 1809 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1810 update_and_free_hugetlb_folio(h, folio, false); 1811 cond_resched(); 1812 } 1813 } 1814 1815 struct hstate *size_to_hstate(unsigned long size) 1816 { 1817 struct hstate *h; 1818 1819 for_each_hstate(h) { 1820 if (huge_page_size(h) == size) 1821 return h; 1822 } 1823 return NULL; 1824 } 1825 1826 void free_huge_folio(struct folio *folio) 1827 { 1828 /* 1829 * Can't pass hstate in here because it is called from the 1830 * generic mm code. 1831 */ 1832 struct hstate *h = folio_hstate(folio); 1833 int nid = folio_nid(folio); 1834 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1835 bool restore_reserve; 1836 unsigned long flags; 1837 1838 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1839 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1840 1841 hugetlb_set_folio_subpool(folio, NULL); 1842 if (folio_test_anon(folio)) 1843 __ClearPageAnonExclusive(&folio->page); 1844 folio->mapping = NULL; 1845 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1846 folio_clear_hugetlb_restore_reserve(folio); 1847 1848 /* 1849 * If HPageRestoreReserve was set on page, page allocation consumed a 1850 * reservation. If the page was associated with a subpool, there 1851 * would have been a page reserved in the subpool before allocation 1852 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1853 * reservation, do not call hugepage_subpool_put_pages() as this will 1854 * remove the reserved page from the subpool. 1855 */ 1856 if (!restore_reserve) { 1857 /* 1858 * A return code of zero implies that the subpool will be 1859 * under its minimum size if the reservation is not restored 1860 * after page is free. Therefore, force restore_reserve 1861 * operation. 1862 */ 1863 if (hugepage_subpool_put_pages(spool, 1) == 0) 1864 restore_reserve = true; 1865 } 1866 1867 spin_lock_irqsave(&hugetlb_lock, flags); 1868 folio_clear_hugetlb_migratable(folio); 1869 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1870 pages_per_huge_page(h), folio); 1871 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1872 pages_per_huge_page(h), folio); 1873 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1874 mem_cgroup_uncharge(folio); 1875 if (restore_reserve) 1876 h->resv_huge_pages++; 1877 1878 if (folio_test_hugetlb_temporary(folio)) { 1879 remove_hugetlb_folio(h, folio, false); 1880 spin_unlock_irqrestore(&hugetlb_lock, flags); 1881 update_and_free_hugetlb_folio(h, folio, true); 1882 } else if (h->surplus_huge_pages_node[nid]) { 1883 /* remove the page from active list */ 1884 remove_hugetlb_folio(h, folio, true); 1885 spin_unlock_irqrestore(&hugetlb_lock, flags); 1886 update_and_free_hugetlb_folio(h, folio, true); 1887 } else { 1888 arch_clear_hugetlb_flags(folio); 1889 enqueue_hugetlb_folio(h, folio); 1890 spin_unlock_irqrestore(&hugetlb_lock, flags); 1891 } 1892 } 1893 1894 /* 1895 * Must be called with the hugetlb lock held 1896 */ 1897 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1898 { 1899 lockdep_assert_held(&hugetlb_lock); 1900 h->nr_huge_pages++; 1901 h->nr_huge_pages_node[nid]++; 1902 } 1903 1904 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1905 { 1906 __folio_set_hugetlb(folio); 1907 INIT_LIST_HEAD(&folio->lru); 1908 hugetlb_set_folio_subpool(folio, NULL); 1909 set_hugetlb_cgroup(folio, NULL); 1910 set_hugetlb_cgroup_rsvd(folio, NULL); 1911 } 1912 1913 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1914 { 1915 init_new_hugetlb_folio(h, folio); 1916 hugetlb_vmemmap_optimize_folio(h, folio); 1917 } 1918 1919 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1920 { 1921 __prep_new_hugetlb_folio(h, folio); 1922 spin_lock_irq(&hugetlb_lock); 1923 __prep_account_new_huge_page(h, nid); 1924 spin_unlock_irq(&hugetlb_lock); 1925 } 1926 1927 /* 1928 * Find and lock address space (mapping) in write mode. 1929 * 1930 * Upon entry, the folio is locked which means that folio_mapping() is 1931 * stable. Due to locking order, we can only trylock_write. If we can 1932 * not get the lock, simply return NULL to caller. 1933 */ 1934 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1935 { 1936 struct address_space *mapping = folio_mapping(folio); 1937 1938 if (!mapping) 1939 return mapping; 1940 1941 if (i_mmap_trylock_write(mapping)) 1942 return mapping; 1943 1944 return NULL; 1945 } 1946 1947 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1948 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1949 nodemask_t *node_alloc_noretry) 1950 { 1951 int order = huge_page_order(h); 1952 struct folio *folio; 1953 bool alloc_try_hard = true; 1954 1955 /* 1956 * By default we always try hard to allocate the folio with 1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1958 * a loop (to adjust global huge page counts) and previous allocation 1959 * failed, do not continue to try hard on the same node. Use the 1960 * node_alloc_noretry bitmap to manage this state information. 1961 */ 1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1963 alloc_try_hard = false; 1964 if (alloc_try_hard) 1965 gfp_mask |= __GFP_RETRY_MAYFAIL; 1966 if (nid == NUMA_NO_NODE) 1967 nid = numa_mem_id(); 1968 1969 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); 1970 1971 /* 1972 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1973 * folio this indicates an overall state change. Clear bit so 1974 * that we resume normal 'try hard' allocations. 1975 */ 1976 if (node_alloc_noretry && folio && !alloc_try_hard) 1977 node_clear(nid, *node_alloc_noretry); 1978 1979 /* 1980 * If we tried hard to get a folio but failed, set bit so that 1981 * subsequent attempts will not try as hard until there is an 1982 * overall state change. 1983 */ 1984 if (node_alloc_noretry && !folio && alloc_try_hard) 1985 node_set(nid, *node_alloc_noretry); 1986 1987 if (!folio) { 1988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1989 return NULL; 1990 } 1991 1992 __count_vm_event(HTLB_BUDDY_PGALLOC); 1993 return folio; 1994 } 1995 1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1997 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1998 nodemask_t *node_alloc_noretry) 1999 { 2000 struct folio *folio; 2001 2002 if (hstate_is_gigantic(h)) 2003 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2004 else 2005 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); 2006 if (folio) 2007 init_new_hugetlb_folio(h, folio); 2008 return folio; 2009 } 2010 2011 /* 2012 * Common helper to allocate a fresh hugetlb page. All specific allocators 2013 * should use this function to get new hugetlb pages 2014 * 2015 * Note that returned page is 'frozen': ref count of head page and all tail 2016 * pages is zero. 2017 */ 2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2019 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2020 { 2021 struct folio *folio; 2022 2023 if (hstate_is_gigantic(h)) 2024 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2025 else 2026 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2027 if (!folio) 2028 return NULL; 2029 2030 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2031 return folio; 2032 } 2033 2034 static void prep_and_add_allocated_folios(struct hstate *h, 2035 struct list_head *folio_list) 2036 { 2037 unsigned long flags; 2038 struct folio *folio, *tmp_f; 2039 2040 /* Send list for bulk vmemmap optimization processing */ 2041 hugetlb_vmemmap_optimize_folios(h, folio_list); 2042 2043 /* Add all new pool pages to free lists in one lock cycle */ 2044 spin_lock_irqsave(&hugetlb_lock, flags); 2045 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 2046 __prep_account_new_huge_page(h, folio_nid(folio)); 2047 enqueue_hugetlb_folio(h, folio); 2048 } 2049 spin_unlock_irqrestore(&hugetlb_lock, flags); 2050 } 2051 2052 /* 2053 * Allocates a fresh hugetlb page in a node interleaved manner. The page 2054 * will later be added to the appropriate hugetlb pool. 2055 */ 2056 static struct folio *alloc_pool_huge_folio(struct hstate *h, 2057 nodemask_t *nodes_allowed, 2058 nodemask_t *node_alloc_noretry, 2059 int *next_node) 2060 { 2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2062 int nr_nodes, node; 2063 2064 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 2065 struct folio *folio; 2066 2067 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2068 nodes_allowed, node_alloc_noretry); 2069 if (folio) 2070 return folio; 2071 } 2072 2073 return NULL; 2074 } 2075 2076 /* 2077 * Remove huge page from pool from next node to free. Attempt to keep 2078 * persistent huge pages more or less balanced over allowed nodes. 2079 * This routine only 'removes' the hugetlb page. The caller must make 2080 * an additional call to free the page to low level allocators. 2081 * Called with hugetlb_lock locked. 2082 */ 2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 2084 nodemask_t *nodes_allowed, bool acct_surplus) 2085 { 2086 int nr_nodes, node; 2087 struct folio *folio = NULL; 2088 2089 lockdep_assert_held(&hugetlb_lock); 2090 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2091 /* 2092 * If we're returning unused surplus pages, only examine 2093 * nodes with surplus pages. 2094 */ 2095 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2096 !list_empty(&h->hugepage_freelists[node])) { 2097 folio = list_entry(h->hugepage_freelists[node].next, 2098 struct folio, lru); 2099 remove_hugetlb_folio(h, folio, acct_surplus); 2100 break; 2101 } 2102 } 2103 2104 return folio; 2105 } 2106 2107 /* 2108 * Dissolve a given free hugetlb folio into free buddy pages. This function 2109 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2110 * This function returns values like below: 2111 * 2112 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2113 * when the system is under memory pressure and the feature of 2114 * freeing unused vmemmap pages associated with each hugetlb page 2115 * is enabled. 2116 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2117 * (allocated or reserved.) 2118 * 0: successfully dissolved free hugepages or the page is not a 2119 * hugepage (considered as already dissolved) 2120 */ 2121 int dissolve_free_hugetlb_folio(struct folio *folio) 2122 { 2123 int rc = -EBUSY; 2124 2125 retry: 2126 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2127 if (!folio_test_hugetlb(folio)) 2128 return 0; 2129 2130 spin_lock_irq(&hugetlb_lock); 2131 if (!folio_test_hugetlb(folio)) { 2132 rc = 0; 2133 goto out; 2134 } 2135 2136 if (!folio_ref_count(folio)) { 2137 struct hstate *h = folio_hstate(folio); 2138 bool adjust_surplus = false; 2139 2140 if (!available_huge_pages(h)) 2141 goto out; 2142 2143 /* 2144 * We should make sure that the page is already on the free list 2145 * when it is dissolved. 2146 */ 2147 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2148 spin_unlock_irq(&hugetlb_lock); 2149 cond_resched(); 2150 2151 /* 2152 * Theoretically, we should return -EBUSY when we 2153 * encounter this race. In fact, we have a chance 2154 * to successfully dissolve the page if we do a 2155 * retry. Because the race window is quite small. 2156 * If we seize this opportunity, it is an optimization 2157 * for increasing the success rate of dissolving page. 2158 */ 2159 goto retry; 2160 } 2161 2162 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2163 adjust_surplus = true; 2164 remove_hugetlb_folio(h, folio, adjust_surplus); 2165 h->max_huge_pages--; 2166 spin_unlock_irq(&hugetlb_lock); 2167 2168 /* 2169 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2170 * before freeing the page. update_and_free_hugtlb_folio will fail to 2171 * free the page if it can not allocate required vmemmap. We 2172 * need to adjust max_huge_pages if the page is not freed. 2173 * Attempt to allocate vmemmmap here so that we can take 2174 * appropriate action on failure. 2175 * 2176 * The folio_test_hugetlb check here is because 2177 * remove_hugetlb_folio will clear hugetlb folio flag for 2178 * non-vmemmap optimized hugetlb folios. 2179 */ 2180 if (folio_test_hugetlb(folio)) { 2181 rc = hugetlb_vmemmap_restore_folio(h, folio); 2182 if (rc) { 2183 spin_lock_irq(&hugetlb_lock); 2184 add_hugetlb_folio(h, folio, adjust_surplus); 2185 h->max_huge_pages++; 2186 goto out; 2187 } 2188 } else 2189 rc = 0; 2190 2191 update_and_free_hugetlb_folio(h, folio, false); 2192 return rc; 2193 } 2194 out: 2195 spin_unlock_irq(&hugetlb_lock); 2196 return rc; 2197 } 2198 2199 /* 2200 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2201 * make specified memory blocks removable from the system. 2202 * Note that this will dissolve a free gigantic hugepage completely, if any 2203 * part of it lies within the given range. 2204 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2205 * free hugetlb folios that were dissolved before that error are lost. 2206 */ 2207 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2208 { 2209 unsigned long pfn; 2210 struct folio *folio; 2211 int rc = 0; 2212 unsigned int order; 2213 struct hstate *h; 2214 2215 if (!hugepages_supported()) 2216 return rc; 2217 2218 order = huge_page_order(&default_hstate); 2219 for_each_hstate(h) 2220 order = min(order, huge_page_order(h)); 2221 2222 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2223 folio = pfn_folio(pfn); 2224 rc = dissolve_free_hugetlb_folio(folio); 2225 if (rc) 2226 break; 2227 } 2228 2229 return rc; 2230 } 2231 2232 /* 2233 * Allocates a fresh surplus page from the page allocator. 2234 */ 2235 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2236 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2237 { 2238 struct folio *folio = NULL; 2239 2240 if (hstate_is_gigantic(h)) 2241 return NULL; 2242 2243 spin_lock_irq(&hugetlb_lock); 2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2245 goto out_unlock; 2246 spin_unlock_irq(&hugetlb_lock); 2247 2248 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2249 if (!folio) 2250 return NULL; 2251 2252 hugetlb_vmemmap_optimize_folio(h, folio); 2253 2254 spin_lock_irq(&hugetlb_lock); 2255 /* 2256 * nr_huge_pages needs to be adjusted within the same lock cycle 2257 * as surplus_pages, otherwise it might confuse 2258 * persistent_huge_pages() momentarily. 2259 */ 2260 __prep_account_new_huge_page(h, folio_nid(folio)); 2261 2262 /* 2263 * We could have raced with the pool size change. 2264 * Double check that and simply deallocate the new page 2265 * if we would end up overcommiting the surpluses. Abuse 2266 * temporary page to workaround the nasty free_huge_folio 2267 * codeflow 2268 */ 2269 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2270 folio_set_hugetlb_temporary(folio); 2271 spin_unlock_irq(&hugetlb_lock); 2272 free_huge_folio(folio); 2273 return NULL; 2274 } 2275 2276 h->surplus_huge_pages++; 2277 h->surplus_huge_pages_node[folio_nid(folio)]++; 2278 2279 out_unlock: 2280 spin_unlock_irq(&hugetlb_lock); 2281 2282 return folio; 2283 } 2284 2285 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2286 int nid, nodemask_t *nmask) 2287 { 2288 struct folio *folio; 2289 2290 if (hstate_is_gigantic(h)) 2291 return NULL; 2292 2293 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2294 if (!folio) 2295 return NULL; 2296 2297 /* fresh huge pages are frozen */ 2298 folio_ref_unfreeze(folio, 1); 2299 /* 2300 * We do not account these pages as surplus because they are only 2301 * temporary and will be released properly on the last reference 2302 */ 2303 folio_set_hugetlb_temporary(folio); 2304 2305 return folio; 2306 } 2307 2308 /* 2309 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2310 */ 2311 static 2312 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2313 struct vm_area_struct *vma, unsigned long addr) 2314 { 2315 struct folio *folio = NULL; 2316 struct mempolicy *mpol; 2317 gfp_t gfp_mask = htlb_alloc_mask(h); 2318 int nid; 2319 nodemask_t *nodemask; 2320 2321 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2322 if (mpol_is_preferred_many(mpol)) { 2323 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2324 2325 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2326 2327 /* Fallback to all nodes if page==NULL */ 2328 nodemask = NULL; 2329 } 2330 2331 if (!folio) 2332 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2333 mpol_cond_put(mpol); 2334 return folio; 2335 } 2336 2337 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2338 nodemask_t *nmask, gfp_t gfp_mask) 2339 { 2340 struct folio *folio; 2341 2342 spin_lock_irq(&hugetlb_lock); 2343 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2344 nmask); 2345 if (folio) { 2346 VM_BUG_ON(!h->resv_huge_pages); 2347 h->resv_huge_pages--; 2348 } 2349 2350 spin_unlock_irq(&hugetlb_lock); 2351 return folio; 2352 } 2353 2354 /* folio migration callback function */ 2355 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2356 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2357 { 2358 spin_lock_irq(&hugetlb_lock); 2359 if (available_huge_pages(h)) { 2360 struct folio *folio; 2361 2362 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2363 preferred_nid, nmask); 2364 if (folio) { 2365 spin_unlock_irq(&hugetlb_lock); 2366 return folio; 2367 } 2368 } 2369 spin_unlock_irq(&hugetlb_lock); 2370 2371 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2372 if (!allow_alloc_fallback) 2373 gfp_mask |= __GFP_THISNODE; 2374 2375 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2376 } 2377 2378 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2379 { 2380 #ifdef CONFIG_NUMA 2381 struct mempolicy *mpol = get_task_policy(current); 2382 2383 /* 2384 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2385 * (from policy_nodemask) specifically for hugetlb case 2386 */ 2387 if (mpol->mode == MPOL_BIND && 2388 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2389 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2390 return &mpol->nodes; 2391 #endif 2392 return NULL; 2393 } 2394 2395 /* 2396 * Increase the hugetlb pool such that it can accommodate a reservation 2397 * of size 'delta'. 2398 */ 2399 static int gather_surplus_pages(struct hstate *h, long delta) 2400 __must_hold(&hugetlb_lock) 2401 { 2402 LIST_HEAD(surplus_list); 2403 struct folio *folio, *tmp; 2404 int ret; 2405 long i; 2406 long needed, allocated; 2407 bool alloc_ok = true; 2408 nodemask_t *mbind_nodemask, alloc_nodemask; 2409 2410 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2411 if (mbind_nodemask) 2412 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2413 else 2414 alloc_nodemask = cpuset_current_mems_allowed; 2415 2416 lockdep_assert_held(&hugetlb_lock); 2417 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2418 if (needed <= 0) { 2419 h->resv_huge_pages += delta; 2420 return 0; 2421 } 2422 2423 allocated = 0; 2424 2425 ret = -ENOMEM; 2426 retry: 2427 spin_unlock_irq(&hugetlb_lock); 2428 for (i = 0; i < needed; i++) { 2429 folio = NULL; 2430 2431 /* 2432 * It is okay to use NUMA_NO_NODE because we use numa_mem_id() 2433 * down the road to pick the current node if that is the case. 2434 */ 2435 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2436 NUMA_NO_NODE, &alloc_nodemask); 2437 if (!folio) { 2438 alloc_ok = false; 2439 break; 2440 } 2441 list_add(&folio->lru, &surplus_list); 2442 cond_resched(); 2443 } 2444 allocated += i; 2445 2446 /* 2447 * After retaking hugetlb_lock, we need to recalculate 'needed' 2448 * because either resv_huge_pages or free_huge_pages may have changed. 2449 */ 2450 spin_lock_irq(&hugetlb_lock); 2451 needed = (h->resv_huge_pages + delta) - 2452 (h->free_huge_pages + allocated); 2453 if (needed > 0) { 2454 if (alloc_ok) 2455 goto retry; 2456 /* 2457 * We were not able to allocate enough pages to 2458 * satisfy the entire reservation so we free what 2459 * we've allocated so far. 2460 */ 2461 goto free; 2462 } 2463 /* 2464 * The surplus_list now contains _at_least_ the number of extra pages 2465 * needed to accommodate the reservation. Add the appropriate number 2466 * of pages to the hugetlb pool and free the extras back to the buddy 2467 * allocator. Commit the entire reservation here to prevent another 2468 * process from stealing the pages as they are added to the pool but 2469 * before they are reserved. 2470 */ 2471 needed += allocated; 2472 h->resv_huge_pages += delta; 2473 ret = 0; 2474 2475 /* Free the needed pages to the hugetlb pool */ 2476 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2477 if ((--needed) < 0) 2478 break; 2479 /* Add the page to the hugetlb allocator */ 2480 enqueue_hugetlb_folio(h, folio); 2481 } 2482 free: 2483 spin_unlock_irq(&hugetlb_lock); 2484 2485 /* 2486 * Free unnecessary surplus pages to the buddy allocator. 2487 * Pages have no ref count, call free_huge_folio directly. 2488 */ 2489 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2490 free_huge_folio(folio); 2491 spin_lock_irq(&hugetlb_lock); 2492 2493 return ret; 2494 } 2495 2496 /* 2497 * This routine has two main purposes: 2498 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2499 * in unused_resv_pages. This corresponds to the prior adjustments made 2500 * to the associated reservation map. 2501 * 2) Free any unused surplus pages that may have been allocated to satisfy 2502 * the reservation. As many as unused_resv_pages may be freed. 2503 */ 2504 static void return_unused_surplus_pages(struct hstate *h, 2505 unsigned long unused_resv_pages) 2506 { 2507 unsigned long nr_pages; 2508 LIST_HEAD(page_list); 2509 2510 lockdep_assert_held(&hugetlb_lock); 2511 /* Uncommit the reservation */ 2512 h->resv_huge_pages -= unused_resv_pages; 2513 2514 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2515 goto out; 2516 2517 /* 2518 * Part (or even all) of the reservation could have been backed 2519 * by pre-allocated pages. Only free surplus pages. 2520 */ 2521 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2522 2523 /* 2524 * We want to release as many surplus pages as possible, spread 2525 * evenly across all nodes with memory. Iterate across these nodes 2526 * until we can no longer free unreserved surplus pages. This occurs 2527 * when the nodes with surplus pages have no free pages. 2528 * remove_pool_hugetlb_folio() will balance the freed pages across the 2529 * on-line nodes with memory and will handle the hstate accounting. 2530 */ 2531 while (nr_pages--) { 2532 struct folio *folio; 2533 2534 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2535 if (!folio) 2536 goto out; 2537 2538 list_add(&folio->lru, &page_list); 2539 } 2540 2541 out: 2542 spin_unlock_irq(&hugetlb_lock); 2543 update_and_free_pages_bulk(h, &page_list); 2544 spin_lock_irq(&hugetlb_lock); 2545 } 2546 2547 2548 /* 2549 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2550 * are used by the huge page allocation routines to manage reservations. 2551 * 2552 * vma_needs_reservation is called to determine if the huge page at addr 2553 * within the vma has an associated reservation. If a reservation is 2554 * needed, the value 1 is returned. The caller is then responsible for 2555 * managing the global reservation and subpool usage counts. After 2556 * the huge page has been allocated, vma_commit_reservation is called 2557 * to add the page to the reservation map. If the page allocation fails, 2558 * the reservation must be ended instead of committed. vma_end_reservation 2559 * is called in such cases. 2560 * 2561 * In the normal case, vma_commit_reservation returns the same value 2562 * as the preceding vma_needs_reservation call. The only time this 2563 * is not the case is if a reserve map was changed between calls. It 2564 * is the responsibility of the caller to notice the difference and 2565 * take appropriate action. 2566 * 2567 * vma_add_reservation is used in error paths where a reservation must 2568 * be restored when a newly allocated huge page must be freed. It is 2569 * to be called after calling vma_needs_reservation to determine if a 2570 * reservation exists. 2571 * 2572 * vma_del_reservation is used in error paths where an entry in the reserve 2573 * map was created during huge page allocation and must be removed. It is to 2574 * be called after calling vma_needs_reservation to determine if a reservation 2575 * exists. 2576 */ 2577 enum vma_resv_mode { 2578 VMA_NEEDS_RESV, 2579 VMA_COMMIT_RESV, 2580 VMA_END_RESV, 2581 VMA_ADD_RESV, 2582 VMA_DEL_RESV, 2583 }; 2584 static long __vma_reservation_common(struct hstate *h, 2585 struct vm_area_struct *vma, unsigned long addr, 2586 enum vma_resv_mode mode) 2587 { 2588 struct resv_map *resv; 2589 pgoff_t idx; 2590 long ret; 2591 long dummy_out_regions_needed; 2592 2593 resv = vma_resv_map(vma); 2594 if (!resv) 2595 return 1; 2596 2597 idx = vma_hugecache_offset(h, vma, addr); 2598 switch (mode) { 2599 case VMA_NEEDS_RESV: 2600 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2601 /* We assume that vma_reservation_* routines always operate on 2602 * 1 page, and that adding to resv map a 1 page entry can only 2603 * ever require 1 region. 2604 */ 2605 VM_BUG_ON(dummy_out_regions_needed != 1); 2606 break; 2607 case VMA_COMMIT_RESV: 2608 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2609 /* region_add calls of range 1 should never fail. */ 2610 VM_BUG_ON(ret < 0); 2611 break; 2612 case VMA_END_RESV: 2613 region_abort(resv, idx, idx + 1, 1); 2614 ret = 0; 2615 break; 2616 case VMA_ADD_RESV: 2617 if (vma->vm_flags & VM_MAYSHARE) { 2618 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2619 /* region_add calls of range 1 should never fail. */ 2620 VM_BUG_ON(ret < 0); 2621 } else { 2622 region_abort(resv, idx, idx + 1, 1); 2623 ret = region_del(resv, idx, idx + 1); 2624 } 2625 break; 2626 case VMA_DEL_RESV: 2627 if (vma->vm_flags & VM_MAYSHARE) { 2628 region_abort(resv, idx, idx + 1, 1); 2629 ret = region_del(resv, idx, idx + 1); 2630 } else { 2631 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2632 /* region_add calls of range 1 should never fail. */ 2633 VM_BUG_ON(ret < 0); 2634 } 2635 break; 2636 default: 2637 BUG(); 2638 } 2639 2640 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2641 return ret; 2642 /* 2643 * We know private mapping must have HPAGE_RESV_OWNER set. 2644 * 2645 * In most cases, reserves always exist for private mappings. 2646 * However, a file associated with mapping could have been 2647 * hole punched or truncated after reserves were consumed. 2648 * As subsequent fault on such a range will not use reserves. 2649 * Subtle - The reserve map for private mappings has the 2650 * opposite meaning than that of shared mappings. If NO 2651 * entry is in the reserve map, it means a reservation exists. 2652 * If an entry exists in the reserve map, it means the 2653 * reservation has already been consumed. As a result, the 2654 * return value of this routine is the opposite of the 2655 * value returned from reserve map manipulation routines above. 2656 */ 2657 if (ret > 0) 2658 return 0; 2659 if (ret == 0) 2660 return 1; 2661 return ret; 2662 } 2663 2664 static long vma_needs_reservation(struct hstate *h, 2665 struct vm_area_struct *vma, unsigned long addr) 2666 { 2667 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2668 } 2669 2670 static long vma_commit_reservation(struct hstate *h, 2671 struct vm_area_struct *vma, unsigned long addr) 2672 { 2673 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2674 } 2675 2676 static void vma_end_reservation(struct hstate *h, 2677 struct vm_area_struct *vma, unsigned long addr) 2678 { 2679 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2680 } 2681 2682 static long vma_add_reservation(struct hstate *h, 2683 struct vm_area_struct *vma, unsigned long addr) 2684 { 2685 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2686 } 2687 2688 static long vma_del_reservation(struct hstate *h, 2689 struct vm_area_struct *vma, unsigned long addr) 2690 { 2691 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2692 } 2693 2694 /* 2695 * This routine is called to restore reservation information on error paths. 2696 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2697 * and the hugetlb mutex should remain held when calling this routine. 2698 * 2699 * It handles two specific cases: 2700 * 1) A reservation was in place and the folio consumed the reservation. 2701 * hugetlb_restore_reserve is set in the folio. 2702 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2703 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2704 * 2705 * In case 1, free_huge_folio later in the error path will increment the 2706 * global reserve count. But, free_huge_folio does not have enough context 2707 * to adjust the reservation map. This case deals primarily with private 2708 * mappings. Adjust the reserve map here to be consistent with global 2709 * reserve count adjustments to be made by free_huge_folio. Make sure the 2710 * reserve map indicates there is a reservation present. 2711 * 2712 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2713 */ 2714 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2715 unsigned long address, struct folio *folio) 2716 { 2717 long rc = vma_needs_reservation(h, vma, address); 2718 2719 if (folio_test_hugetlb_restore_reserve(folio)) { 2720 if (unlikely(rc < 0)) 2721 /* 2722 * Rare out of memory condition in reserve map 2723 * manipulation. Clear hugetlb_restore_reserve so 2724 * that global reserve count will not be incremented 2725 * by free_huge_folio. This will make it appear 2726 * as though the reservation for this folio was 2727 * consumed. This may prevent the task from 2728 * faulting in the folio at a later time. This 2729 * is better than inconsistent global huge page 2730 * accounting of reserve counts. 2731 */ 2732 folio_clear_hugetlb_restore_reserve(folio); 2733 else if (rc) 2734 (void)vma_add_reservation(h, vma, address); 2735 else 2736 vma_end_reservation(h, vma, address); 2737 } else { 2738 if (!rc) { 2739 /* 2740 * This indicates there is an entry in the reserve map 2741 * not added by alloc_hugetlb_folio. We know it was added 2742 * before the alloc_hugetlb_folio call, otherwise 2743 * hugetlb_restore_reserve would be set on the folio. 2744 * Remove the entry so that a subsequent allocation 2745 * does not consume a reservation. 2746 */ 2747 rc = vma_del_reservation(h, vma, address); 2748 if (rc < 0) 2749 /* 2750 * VERY rare out of memory condition. Since 2751 * we can not delete the entry, set 2752 * hugetlb_restore_reserve so that the reserve 2753 * count will be incremented when the folio 2754 * is freed. This reserve will be consumed 2755 * on a subsequent allocation. 2756 */ 2757 folio_set_hugetlb_restore_reserve(folio); 2758 } else if (rc < 0) { 2759 /* 2760 * Rare out of memory condition from 2761 * vma_needs_reservation call. Memory allocation is 2762 * only attempted if a new entry is needed. Therefore, 2763 * this implies there is not an entry in the 2764 * reserve map. 2765 * 2766 * For shared mappings, no entry in the map indicates 2767 * no reservation. We are done. 2768 */ 2769 if (!(vma->vm_flags & VM_MAYSHARE)) 2770 /* 2771 * For private mappings, no entry indicates 2772 * a reservation is present. Since we can 2773 * not add an entry, set hugetlb_restore_reserve 2774 * on the folio so reserve count will be 2775 * incremented when freed. This reserve will 2776 * be consumed on a subsequent allocation. 2777 */ 2778 folio_set_hugetlb_restore_reserve(folio); 2779 } else 2780 /* 2781 * No reservation present, do nothing 2782 */ 2783 vma_end_reservation(h, vma, address); 2784 } 2785 } 2786 2787 /* 2788 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2789 * the old one 2790 * @old_folio: Old folio to dissolve 2791 * @list: List to isolate the page in case we need to 2792 * Returns 0 on success, otherwise negated error. 2793 */ 2794 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, 2795 struct list_head *list) 2796 { 2797 gfp_t gfp_mask; 2798 struct hstate *h; 2799 int nid = folio_nid(old_folio); 2800 struct folio *new_folio = NULL; 2801 int ret = 0; 2802 2803 retry: 2804 /* 2805 * The old_folio might have been dissolved from under our feet, so make sure 2806 * to carefully check the state under the lock. 2807 */ 2808 spin_lock_irq(&hugetlb_lock); 2809 if (!folio_test_hugetlb(old_folio)) { 2810 /* 2811 * Freed from under us. Drop new_folio too. 2812 */ 2813 goto free_new; 2814 } else if (folio_ref_count(old_folio)) { 2815 bool isolated; 2816 2817 /* 2818 * Someone has grabbed the folio, try to isolate it here. 2819 * Fail with -EBUSY if not possible. 2820 */ 2821 spin_unlock_irq(&hugetlb_lock); 2822 isolated = folio_isolate_hugetlb(old_folio, list); 2823 ret = isolated ? 0 : -EBUSY; 2824 spin_lock_irq(&hugetlb_lock); 2825 goto free_new; 2826 } else if (!folio_test_hugetlb_freed(old_folio)) { 2827 /* 2828 * Folio's refcount is 0 but it has not been enqueued in the 2829 * freelist yet. Race window is small, so we can succeed here if 2830 * we retry. 2831 */ 2832 spin_unlock_irq(&hugetlb_lock); 2833 cond_resched(); 2834 goto retry; 2835 } else { 2836 h = folio_hstate(old_folio); 2837 if (!new_folio) { 2838 spin_unlock_irq(&hugetlb_lock); 2839 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2840 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, 2841 NULL, NULL); 2842 if (!new_folio) 2843 return -ENOMEM; 2844 __prep_new_hugetlb_folio(h, new_folio); 2845 goto retry; 2846 } 2847 2848 /* 2849 * Ok, old_folio is still a genuine free hugepage. Remove it from 2850 * the freelist and decrease the counters. These will be 2851 * incremented again when calling __prep_account_new_huge_page() 2852 * and enqueue_hugetlb_folio() for new_folio. The counters will 2853 * remain stable since this happens under the lock. 2854 */ 2855 remove_hugetlb_folio(h, old_folio, false); 2856 2857 /* 2858 * Ref count on new_folio is already zero as it was dropped 2859 * earlier. It can be directly added to the pool free list. 2860 */ 2861 __prep_account_new_huge_page(h, nid); 2862 enqueue_hugetlb_folio(h, new_folio); 2863 2864 /* 2865 * Folio has been replaced, we can safely free the old one. 2866 */ 2867 spin_unlock_irq(&hugetlb_lock); 2868 update_and_free_hugetlb_folio(h, old_folio, false); 2869 } 2870 2871 return ret; 2872 2873 free_new: 2874 spin_unlock_irq(&hugetlb_lock); 2875 if (new_folio) 2876 update_and_free_hugetlb_folio(h, new_folio, false); 2877 2878 return ret; 2879 } 2880 2881 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) 2882 { 2883 int ret = -EBUSY; 2884 2885 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2886 if (!folio_test_hugetlb(folio)) 2887 return 0; 2888 2889 /* 2890 * Fence off gigantic pages as there is a cyclic dependency between 2891 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2892 * of bailing out right away without further retrying. 2893 */ 2894 if (folio_order(folio) > MAX_PAGE_ORDER) 2895 return -ENOMEM; 2896 2897 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2898 ret = 0; 2899 else if (!folio_ref_count(folio)) 2900 ret = alloc_and_dissolve_hugetlb_folio(folio, list); 2901 2902 return ret; 2903 } 2904 2905 /* 2906 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2907 * range with new folios. 2908 * @start_pfn: start pfn of the given pfn range 2909 * @end_pfn: end pfn of the given pfn range 2910 * Returns 0 on success, otherwise negated error. 2911 */ 2912 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2913 { 2914 struct folio *folio; 2915 int ret = 0; 2916 2917 LIST_HEAD(isolate_list); 2918 2919 while (start_pfn < end_pfn) { 2920 folio = pfn_folio(start_pfn); 2921 2922 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2923 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { 2924 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); 2925 if (ret) 2926 break; 2927 2928 putback_movable_pages(&isolate_list); 2929 } 2930 start_pfn++; 2931 } 2932 2933 return ret; 2934 } 2935 2936 void wait_for_freed_hugetlb_folios(void) 2937 { 2938 if (llist_empty(&hpage_freelist)) 2939 return; 2940 2941 flush_work(&free_hpage_work); 2942 } 2943 2944 typedef enum { 2945 /* 2946 * For either 0/1: we checked the per-vma resv map, and one resv 2947 * count either can be reused (0), or an extra needed (1). 2948 */ 2949 MAP_CHG_REUSE = 0, 2950 MAP_CHG_NEEDED = 1, 2951 /* 2952 * Cannot use per-vma resv count can be used, hence a new resv 2953 * count is enforced. 2954 * 2955 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2956 * that currently vma_needs_reservation() has an unwanted side 2957 * effect to either use end() or commit() to complete the 2958 * transaction. Hence it needs to differenciate from NEEDED. 2959 */ 2960 MAP_CHG_ENFORCED = 2, 2961 } map_chg_state; 2962 2963 /* 2964 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2965 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2966 * which case even if there's a private vma resv map it won't cover such 2967 * allocation). New call sites should (probably) never set it to true!! 2968 * When it's set, the allocation will bypass all vma level reservations. 2969 */ 2970 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2971 unsigned long addr, bool cow_from_owner) 2972 { 2973 struct hugepage_subpool *spool = subpool_vma(vma); 2974 struct hstate *h = hstate_vma(vma); 2975 struct folio *folio; 2976 long retval, gbl_chg, gbl_reserve; 2977 map_chg_state map_chg; 2978 int ret, idx; 2979 struct hugetlb_cgroup *h_cg = NULL; 2980 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2981 2982 idx = hstate_index(h); 2983 2984 /* Whether we need a separate per-vma reservation? */ 2985 if (cow_from_owner) { 2986 /* 2987 * Special case! Since it's a CoW on top of a reserved 2988 * page, the private resv map doesn't count. So it cannot 2989 * consume the per-vma resv map even if it's reserved. 2990 */ 2991 map_chg = MAP_CHG_ENFORCED; 2992 } else { 2993 /* 2994 * Examine the region/reserve map to determine if the process 2995 * has a reservation for the page to be allocated. A return 2996 * code of zero indicates a reservation exists (no change). 2997 */ 2998 retval = vma_needs_reservation(h, vma, addr); 2999 if (retval < 0) 3000 return ERR_PTR(-ENOMEM); 3001 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 3002 } 3003 3004 /* 3005 * Whether we need a separate global reservation? 3006 * 3007 * Processes that did not create the mapping will have no 3008 * reserves as indicated by the region/reserve map. Check 3009 * that the allocation will not exceed the subpool limit. 3010 * Or if it can get one from the pool reservation directly. 3011 */ 3012 if (map_chg) { 3013 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3014 if (gbl_chg < 0) 3015 goto out_end_reservation; 3016 } else { 3017 /* 3018 * If we have the vma reservation ready, no need for extra 3019 * global reservation. 3020 */ 3021 gbl_chg = 0; 3022 } 3023 3024 /* 3025 * If this allocation is not consuming a per-vma reservation, 3026 * charge the hugetlb cgroup now. 3027 */ 3028 if (map_chg) { 3029 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3030 idx, pages_per_huge_page(h), &h_cg); 3031 if (ret) 3032 goto out_subpool_put; 3033 } 3034 3035 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3036 if (ret) 3037 goto out_uncharge_cgroup_reservation; 3038 3039 spin_lock_irq(&hugetlb_lock); 3040 /* 3041 * glb_chg is passed to indicate whether or not a page must be taken 3042 * from the global free pool (global change). gbl_chg == 0 indicates 3043 * a reservation exists for the allocation. 3044 */ 3045 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 3046 if (!folio) { 3047 spin_unlock_irq(&hugetlb_lock); 3048 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3049 if (!folio) 3050 goto out_uncharge_cgroup; 3051 spin_lock_irq(&hugetlb_lock); 3052 list_add(&folio->lru, &h->hugepage_activelist); 3053 folio_ref_unfreeze(folio, 1); 3054 /* Fall through */ 3055 } 3056 3057 /* 3058 * Either dequeued or buddy-allocated folio needs to add special 3059 * mark to the folio when it consumes a global reservation. 3060 */ 3061 if (!gbl_chg) { 3062 folio_set_hugetlb_restore_reserve(folio); 3063 h->resv_huge_pages--; 3064 } 3065 3066 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3067 /* If allocation is not consuming a reservation, also store the 3068 * hugetlb_cgroup pointer on the page. 3069 */ 3070 if (map_chg) { 3071 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3072 h_cg, folio); 3073 } 3074 3075 spin_unlock_irq(&hugetlb_lock); 3076 3077 hugetlb_set_folio_subpool(folio, spool); 3078 3079 if (map_chg != MAP_CHG_ENFORCED) { 3080 /* commit() is only needed if the map_chg is not enforced */ 3081 retval = vma_commit_reservation(h, vma, addr); 3082 /* 3083 * Check for possible race conditions. When it happens.. 3084 * The page was added to the reservation map between 3085 * vma_needs_reservation and vma_commit_reservation. 3086 * This indicates a race with hugetlb_reserve_pages. 3087 * Adjust for the subpool count incremented above AND 3088 * in hugetlb_reserve_pages for the same page. Also, 3089 * the reservation count added in hugetlb_reserve_pages 3090 * no longer applies. 3091 */ 3092 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3093 long rsv_adjust; 3094 3095 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3096 hugetlb_acct_memory(h, -rsv_adjust); 3097 if (map_chg) { 3098 spin_lock_irq(&hugetlb_lock); 3099 hugetlb_cgroup_uncharge_folio_rsvd( 3100 hstate_index(h), pages_per_huge_page(h), 3101 folio); 3102 spin_unlock_irq(&hugetlb_lock); 3103 } 3104 } 3105 } 3106 3107 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3108 /* 3109 * Unconditionally increment NR_HUGETLB here. If it turns out that 3110 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3111 * decrement NR_HUGETLB. 3112 */ 3113 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3114 3115 if (ret == -ENOMEM) { 3116 free_huge_folio(folio); 3117 return ERR_PTR(-ENOMEM); 3118 } 3119 3120 return folio; 3121 3122 out_uncharge_cgroup: 3123 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3124 out_uncharge_cgroup_reservation: 3125 if (map_chg) 3126 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3127 h_cg); 3128 out_subpool_put: 3129 /* 3130 * put page to subpool iff the quota of subpool's rsv_hpages is used 3131 * during hugepage_subpool_get_pages. 3132 */ 3133 if (map_chg && !gbl_chg) { 3134 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3135 hugetlb_acct_memory(h, -gbl_reserve); 3136 } 3137 3138 3139 out_end_reservation: 3140 if (map_chg != MAP_CHG_ENFORCED) 3141 vma_end_reservation(h, vma, addr); 3142 return ERR_PTR(-ENOSPC); 3143 } 3144 3145 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3146 { 3147 struct huge_bootmem_page *m; 3148 int listnode = nid; 3149 3150 if (hugetlb_early_cma(h)) 3151 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3152 else { 3153 if (node_exact) 3154 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3155 huge_page_size(h), 0, 3156 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3157 else { 3158 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3159 huge_page_size(h), 0, 3160 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3161 /* 3162 * For pre-HVO to work correctly, pages need to be on 3163 * the list for the node they were actually allocated 3164 * from. That node may be different in the case of 3165 * fallback by memblock_alloc_try_nid_raw. So, 3166 * extract the actual node first. 3167 */ 3168 if (m) 3169 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3170 } 3171 3172 if (m) { 3173 m->flags = 0; 3174 m->cma = NULL; 3175 } 3176 } 3177 3178 if (m) { 3179 /* 3180 * Use the beginning of the huge page to store the 3181 * huge_bootmem_page struct (until gather_bootmem 3182 * puts them into the mem_map). 3183 * 3184 * Put them into a private list first because mem_map 3185 * is not up yet. 3186 */ 3187 INIT_LIST_HEAD(&m->list); 3188 list_add(&m->list, &huge_boot_pages[listnode]); 3189 m->hstate = h; 3190 } 3191 3192 return m; 3193 } 3194 3195 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3196 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3197 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3198 { 3199 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3200 int nr_nodes, node = nid; 3201 3202 /* do node specific alloc */ 3203 if (nid != NUMA_NO_NODE) { 3204 m = alloc_bootmem(h, node, true); 3205 if (!m) 3206 return 0; 3207 goto found; 3208 } 3209 3210 /* allocate from next node when distributing huge pages */ 3211 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, 3212 &hugetlb_bootmem_nodes) { 3213 m = alloc_bootmem(h, node, false); 3214 if (!m) 3215 return 0; 3216 goto found; 3217 } 3218 3219 found: 3220 3221 /* 3222 * Only initialize the head struct page in memmap_init_reserved_pages, 3223 * rest of the struct pages will be initialized by the HugeTLB 3224 * subsystem itself. 3225 * The head struct page is used to get folio information by the HugeTLB 3226 * subsystem like zone id and node id. 3227 */ 3228 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3229 huge_page_size(h) - PAGE_SIZE); 3230 3231 return 1; 3232 } 3233 3234 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3235 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3236 unsigned long start_page_number, 3237 unsigned long end_page_number) 3238 { 3239 enum zone_type zone = zone_idx(folio_zone(folio)); 3240 int nid = folio_nid(folio); 3241 unsigned long head_pfn = folio_pfn(folio); 3242 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3243 int ret; 3244 3245 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) { 3246 struct page *page = pfn_to_page(pfn); 3247 3248 __init_single_page(page, pfn, zone, nid); 3249 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3250 ret = page_ref_freeze(page, 1); 3251 VM_BUG_ON(!ret); 3252 } 3253 } 3254 3255 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3256 struct hstate *h, 3257 unsigned long nr_pages) 3258 { 3259 int ret; 3260 3261 /* Prepare folio head */ 3262 __folio_clear_reserved(folio); 3263 __folio_set_head(folio); 3264 ret = folio_ref_freeze(folio, 1); 3265 VM_BUG_ON(!ret); 3266 /* Initialize the necessary tail struct pages */ 3267 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3268 prep_compound_head((struct page *)folio, huge_page_order(h)); 3269 } 3270 3271 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3272 { 3273 return m->flags & HUGE_BOOTMEM_HVO; 3274 } 3275 3276 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3277 { 3278 return m->flags & HUGE_BOOTMEM_CMA; 3279 } 3280 3281 /* 3282 * memblock-allocated pageblocks might not have the migrate type set 3283 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3284 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3285 * reservation. 3286 * 3287 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3288 * read-only, but that's ok - for sparse vmemmap this does not write to 3289 * the page structure. 3290 */ 3291 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3292 struct hstate *h) 3293 { 3294 unsigned long nr_pages = pages_per_huge_page(h), i; 3295 3296 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3297 3298 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3299 if (folio_test_hugetlb_cma(folio)) 3300 init_cma_pageblock(folio_page(folio, i)); 3301 else 3302 set_pageblock_migratetype(folio_page(folio, i), 3303 MIGRATE_MOVABLE); 3304 } 3305 } 3306 3307 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3308 struct list_head *folio_list) 3309 { 3310 unsigned long flags; 3311 struct folio *folio, *tmp_f; 3312 3313 /* Send list for bulk vmemmap optimization processing */ 3314 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3315 3316 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3317 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3318 /* 3319 * If HVO fails, initialize all tail struct pages 3320 * We do not worry about potential long lock hold 3321 * time as this is early in boot and there should 3322 * be no contention. 3323 */ 3324 hugetlb_folio_init_tail_vmemmap(folio, 3325 HUGETLB_VMEMMAP_RESERVE_PAGES, 3326 pages_per_huge_page(h)); 3327 } 3328 hugetlb_bootmem_init_migratetype(folio, h); 3329 /* Subdivide locks to achieve better parallel performance */ 3330 spin_lock_irqsave(&hugetlb_lock, flags); 3331 __prep_account_new_huge_page(h, folio_nid(folio)); 3332 enqueue_hugetlb_folio(h, folio); 3333 spin_unlock_irqrestore(&hugetlb_lock, flags); 3334 } 3335 } 3336 3337 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3338 struct huge_bootmem_page *m) 3339 { 3340 unsigned long start_pfn; 3341 bool valid; 3342 3343 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3344 /* 3345 * Already validated, skip check. 3346 */ 3347 return true; 3348 } 3349 3350 if (hugetlb_bootmem_page_earlycma(m)) { 3351 valid = cma_validate_zones(m->cma); 3352 goto out; 3353 } 3354 3355 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3356 3357 valid = !pfn_range_intersects_zones(nid, start_pfn, 3358 pages_per_huge_page(m->hstate)); 3359 out: 3360 if (!valid) 3361 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3362 3363 return valid; 3364 } 3365 3366 /* 3367 * Free a bootmem page that was found to be invalid (intersecting with 3368 * multiple zones). 3369 * 3370 * Since it intersects with multiple zones, we can't just do a free 3371 * operation on all pages at once, but instead have to walk all 3372 * pages, freeing them one by one. 3373 */ 3374 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3375 struct hstate *h) 3376 { 3377 unsigned long npages = pages_per_huge_page(h); 3378 unsigned long pfn; 3379 3380 while (npages--) { 3381 pfn = page_to_pfn(page); 3382 __init_page_from_nid(pfn, nid); 3383 free_reserved_page(page); 3384 page++; 3385 } 3386 } 3387 3388 /* 3389 * Put bootmem huge pages into the standard lists after mem_map is up. 3390 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3391 */ 3392 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3393 { 3394 LIST_HEAD(folio_list); 3395 struct huge_bootmem_page *m, *tm; 3396 struct hstate *h = NULL, *prev_h = NULL; 3397 3398 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3399 struct page *page = virt_to_page(m); 3400 struct folio *folio = (void *)page; 3401 3402 h = m->hstate; 3403 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3404 /* 3405 * Can't use this page. Initialize the 3406 * page structures if that hasn't already 3407 * been done, and give them to the page 3408 * allocator. 3409 */ 3410 hugetlb_bootmem_free_invalid_page(nid, page, h); 3411 continue; 3412 } 3413 3414 /* 3415 * It is possible to have multiple huge page sizes (hstates) 3416 * in this list. If so, process each size separately. 3417 */ 3418 if (h != prev_h && prev_h != NULL) 3419 prep_and_add_bootmem_folios(prev_h, &folio_list); 3420 prev_h = h; 3421 3422 VM_BUG_ON(!hstate_is_gigantic(h)); 3423 WARN_ON(folio_ref_count(folio) != 1); 3424 3425 hugetlb_folio_init_vmemmap(folio, h, 3426 HUGETLB_VMEMMAP_RESERVE_PAGES); 3427 init_new_hugetlb_folio(h, folio); 3428 3429 if (hugetlb_bootmem_page_prehvo(m)) 3430 /* 3431 * If pre-HVO was done, just set the 3432 * flag, the HVO code will then skip 3433 * this folio. 3434 */ 3435 folio_set_hugetlb_vmemmap_optimized(folio); 3436 3437 if (hugetlb_bootmem_page_earlycma(m)) 3438 folio_set_hugetlb_cma(folio); 3439 3440 list_add(&folio->lru, &folio_list); 3441 3442 /* 3443 * We need to restore the 'stolen' pages to totalram_pages 3444 * in order to fix confusing memory reports from free(1) and 3445 * other side-effects, like CommitLimit going negative. 3446 * 3447 * For CMA pages, this is done in init_cma_pageblock 3448 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3449 */ 3450 if (!folio_test_hugetlb_cma(folio)) 3451 adjust_managed_page_count(page, pages_per_huge_page(h)); 3452 cond_resched(); 3453 } 3454 3455 prep_and_add_bootmem_folios(h, &folio_list); 3456 } 3457 3458 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3459 unsigned long end, void *arg) 3460 { 3461 int nid; 3462 3463 for (nid = start; nid < end; nid++) 3464 gather_bootmem_prealloc_node(nid); 3465 } 3466 3467 static void __init gather_bootmem_prealloc(void) 3468 { 3469 struct padata_mt_job job = { 3470 .thread_fn = gather_bootmem_prealloc_parallel, 3471 .fn_arg = NULL, 3472 .start = 0, 3473 .size = nr_node_ids, 3474 .align = 1, 3475 .min_chunk = 1, 3476 .max_threads = num_node_state(N_MEMORY), 3477 .numa_aware = true, 3478 }; 3479 3480 padata_do_multithreaded(&job); 3481 } 3482 3483 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3484 { 3485 unsigned long i; 3486 char buf[32]; 3487 LIST_HEAD(folio_list); 3488 3489 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3490 if (hstate_is_gigantic(h)) { 3491 if (!alloc_bootmem_huge_page(h, nid)) 3492 break; 3493 } else { 3494 struct folio *folio; 3495 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3496 3497 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3498 &node_states[N_MEMORY], NULL); 3499 if (!folio) 3500 break; 3501 list_add(&folio->lru, &folio_list); 3502 } 3503 cond_resched(); 3504 } 3505 3506 if (!list_empty(&folio_list)) 3507 prep_and_add_allocated_folios(h, &folio_list); 3508 3509 if (i == h->max_huge_pages_node[nid]) 3510 return; 3511 3512 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3513 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3514 h->max_huge_pages_node[nid], buf, nid, i); 3515 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3516 h->max_huge_pages_node[nid] = i; 3517 } 3518 3519 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3520 { 3521 int i; 3522 bool node_specific_alloc = false; 3523 3524 for_each_online_node(i) { 3525 if (h->max_huge_pages_node[i] > 0) { 3526 hugetlb_hstate_alloc_pages_onenode(h, i); 3527 node_specific_alloc = true; 3528 } 3529 } 3530 3531 return node_specific_alloc; 3532 } 3533 3534 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3535 { 3536 if (allocated < h->max_huge_pages) { 3537 char buf[32]; 3538 3539 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3540 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3541 h->max_huge_pages, buf, allocated); 3542 h->max_huge_pages = allocated; 3543 } 3544 } 3545 3546 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3547 { 3548 struct hstate *h = (struct hstate *)arg; 3549 int i, num = end - start; 3550 nodemask_t node_alloc_noretry; 3551 LIST_HEAD(folio_list); 3552 int next_node = first_online_node; 3553 3554 /* Bit mask controlling how hard we retry per-node allocations.*/ 3555 nodes_clear(node_alloc_noretry); 3556 3557 for (i = 0; i < num; ++i) { 3558 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3559 &node_alloc_noretry, &next_node); 3560 if (!folio) 3561 break; 3562 3563 list_move(&folio->lru, &folio_list); 3564 cond_resched(); 3565 } 3566 3567 prep_and_add_allocated_folios(h, &folio_list); 3568 } 3569 3570 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3571 { 3572 unsigned long i; 3573 3574 for (i = 0; i < h->max_huge_pages; ++i) { 3575 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3576 break; 3577 cond_resched(); 3578 } 3579 3580 return i; 3581 } 3582 3583 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3584 { 3585 struct padata_mt_job job = { 3586 .fn_arg = h, 3587 .align = 1, 3588 .numa_aware = true 3589 }; 3590 3591 unsigned long jiffies_start; 3592 unsigned long jiffies_end; 3593 3594 job.thread_fn = hugetlb_pages_alloc_boot_node; 3595 job.start = 0; 3596 job.size = h->max_huge_pages; 3597 3598 /* 3599 * job.max_threads is 25% of the available cpu threads by default. 3600 * 3601 * On large servers with terabytes of memory, huge page allocation 3602 * can consume a considerably amount of time. 3603 * 3604 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3605 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3606 * 3607 * +-----------------------+-------+-------+-------+-------+-------+ 3608 * | threads | 8 | 16 | 32 | 64 | 128 | 3609 * +-----------------------+-------+-------+-------+-------+-------+ 3610 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3611 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3612 * +-----------------------+-------+-------+-------+-------+-------+ 3613 */ 3614 if (hugepage_allocation_threads == 0) { 3615 hugepage_allocation_threads = num_online_cpus() / 4; 3616 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3617 } 3618 3619 job.max_threads = hugepage_allocation_threads; 3620 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads; 3621 3622 jiffies_start = jiffies; 3623 padata_do_multithreaded(&job); 3624 jiffies_end = jiffies; 3625 3626 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3627 jiffies_to_msecs(jiffies_end - jiffies_start), 3628 hugepage_allocation_threads); 3629 3630 return h->nr_huge_pages; 3631 } 3632 3633 /* 3634 * NOTE: this routine is called in different contexts for gigantic and 3635 * non-gigantic pages. 3636 * - For gigantic pages, this is called early in the boot process and 3637 * pages are allocated from memblock allocated or something similar. 3638 * Gigantic pages are actually added to pools later with the routine 3639 * gather_bootmem_prealloc. 3640 * - For non-gigantic pages, this is called later in the boot process after 3641 * all of mm is up and functional. Pages are allocated from buddy and 3642 * then added to hugetlb pools. 3643 */ 3644 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3645 { 3646 unsigned long allocated; 3647 3648 /* 3649 * Skip gigantic hugepages allocation if early CMA 3650 * reservations are not available. 3651 */ 3652 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3653 !hugetlb_early_cma(h)) { 3654 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3655 return; 3656 } 3657 3658 /* do node specific alloc */ 3659 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3660 return; 3661 3662 /* below will do all node balanced alloc */ 3663 if (hstate_is_gigantic(h)) 3664 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3665 else 3666 allocated = hugetlb_pages_alloc_boot(h); 3667 3668 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3669 } 3670 3671 static void __init hugetlb_init_hstates(void) 3672 { 3673 struct hstate *h, *h2; 3674 3675 for_each_hstate(h) { 3676 /* 3677 * Always reset to first_memory_node here, even if 3678 * next_nid_to_alloc was set before - we can't 3679 * reference hugetlb_bootmem_nodes after init, and 3680 * first_memory_node is right for all further allocations. 3681 */ 3682 h->next_nid_to_alloc = first_memory_node; 3683 h->next_nid_to_free = first_memory_node; 3684 3685 /* oversize hugepages were init'ed in early boot */ 3686 if (!hstate_is_gigantic(h)) 3687 hugetlb_hstate_alloc_pages(h); 3688 3689 /* 3690 * Set demote order for each hstate. Note that 3691 * h->demote_order is initially 0. 3692 * - We can not demote gigantic pages if runtime freeing 3693 * is not supported, so skip this. 3694 * - If CMA allocation is possible, we can not demote 3695 * HUGETLB_PAGE_ORDER or smaller size pages. 3696 */ 3697 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3698 continue; 3699 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3700 continue; 3701 for_each_hstate(h2) { 3702 if (h2 == h) 3703 continue; 3704 if (h2->order < h->order && 3705 h2->order > h->demote_order) 3706 h->demote_order = h2->order; 3707 } 3708 } 3709 } 3710 3711 static void __init report_hugepages(void) 3712 { 3713 struct hstate *h; 3714 unsigned long nrinvalid; 3715 3716 for_each_hstate(h) { 3717 char buf[32]; 3718 3719 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3720 h->max_huge_pages -= nrinvalid; 3721 3722 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3723 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3724 buf, h->nr_huge_pages); 3725 if (nrinvalid) 3726 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3727 buf, nrinvalid, nrinvalid > 1 ? "s" : ""); 3728 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3729 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3730 } 3731 } 3732 3733 #ifdef CONFIG_HIGHMEM 3734 static void try_to_free_low(struct hstate *h, unsigned long count, 3735 nodemask_t *nodes_allowed) 3736 { 3737 int i; 3738 LIST_HEAD(page_list); 3739 3740 lockdep_assert_held(&hugetlb_lock); 3741 if (hstate_is_gigantic(h)) 3742 return; 3743 3744 /* 3745 * Collect pages to be freed on a list, and free after dropping lock 3746 */ 3747 for_each_node_mask(i, *nodes_allowed) { 3748 struct folio *folio, *next; 3749 struct list_head *freel = &h->hugepage_freelists[i]; 3750 list_for_each_entry_safe(folio, next, freel, lru) { 3751 if (count >= h->nr_huge_pages) 3752 goto out; 3753 if (folio_test_highmem(folio)) 3754 continue; 3755 remove_hugetlb_folio(h, folio, false); 3756 list_add(&folio->lru, &page_list); 3757 } 3758 } 3759 3760 out: 3761 spin_unlock_irq(&hugetlb_lock); 3762 update_and_free_pages_bulk(h, &page_list); 3763 spin_lock_irq(&hugetlb_lock); 3764 } 3765 #else 3766 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3767 nodemask_t *nodes_allowed) 3768 { 3769 } 3770 #endif 3771 3772 /* 3773 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3774 * balanced by operating on them in a round-robin fashion. 3775 * Returns 1 if an adjustment was made. 3776 */ 3777 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3778 int delta) 3779 { 3780 int nr_nodes, node; 3781 3782 lockdep_assert_held(&hugetlb_lock); 3783 VM_BUG_ON(delta != -1 && delta != 1); 3784 3785 if (delta < 0) { 3786 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3787 if (h->surplus_huge_pages_node[node]) 3788 goto found; 3789 } 3790 } else { 3791 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3792 if (h->surplus_huge_pages_node[node] < 3793 h->nr_huge_pages_node[node]) 3794 goto found; 3795 } 3796 } 3797 return 0; 3798 3799 found: 3800 h->surplus_huge_pages += delta; 3801 h->surplus_huge_pages_node[node] += delta; 3802 return 1; 3803 } 3804 3805 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3806 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3807 nodemask_t *nodes_allowed) 3808 { 3809 unsigned long persistent_free_count; 3810 unsigned long min_count; 3811 unsigned long allocated; 3812 struct folio *folio; 3813 LIST_HEAD(page_list); 3814 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3815 3816 /* 3817 * Bit mask controlling how hard we retry per-node allocations. 3818 * If we can not allocate the bit mask, do not attempt to allocate 3819 * the requested huge pages. 3820 */ 3821 if (node_alloc_noretry) 3822 nodes_clear(*node_alloc_noretry); 3823 else 3824 return -ENOMEM; 3825 3826 /* 3827 * resize_lock mutex prevents concurrent adjustments to number of 3828 * pages in hstate via the proc/sysfs interfaces. 3829 */ 3830 mutex_lock(&h->resize_lock); 3831 flush_free_hpage_work(h); 3832 spin_lock_irq(&hugetlb_lock); 3833 3834 /* 3835 * Check for a node specific request. 3836 * Changing node specific huge page count may require a corresponding 3837 * change to the global count. In any case, the passed node mask 3838 * (nodes_allowed) will restrict alloc/free to the specified node. 3839 */ 3840 if (nid != NUMA_NO_NODE) { 3841 unsigned long old_count = count; 3842 3843 count += persistent_huge_pages(h) - 3844 (h->nr_huge_pages_node[nid] - 3845 h->surplus_huge_pages_node[nid]); 3846 /* 3847 * User may have specified a large count value which caused the 3848 * above calculation to overflow. In this case, they wanted 3849 * to allocate as many huge pages as possible. Set count to 3850 * largest possible value to align with their intention. 3851 */ 3852 if (count < old_count) 3853 count = ULONG_MAX; 3854 } 3855 3856 /* 3857 * Gigantic pages runtime allocation depend on the capability for large 3858 * page range allocation. 3859 * If the system does not provide this feature, return an error when 3860 * the user tries to allocate gigantic pages but let the user free the 3861 * boottime allocated gigantic pages. 3862 */ 3863 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3864 if (count > persistent_huge_pages(h)) { 3865 spin_unlock_irq(&hugetlb_lock); 3866 mutex_unlock(&h->resize_lock); 3867 NODEMASK_FREE(node_alloc_noretry); 3868 return -EINVAL; 3869 } 3870 /* Fall through to decrease pool */ 3871 } 3872 3873 /* 3874 * Increase the pool size 3875 * First take pages out of surplus state. Then make up the 3876 * remaining difference by allocating fresh huge pages. 3877 * 3878 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3879 * to convert a surplus huge page to a normal huge page. That is 3880 * not critical, though, it just means the overall size of the 3881 * pool might be one hugepage larger than it needs to be, but 3882 * within all the constraints specified by the sysctls. 3883 */ 3884 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3885 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3886 break; 3887 } 3888 3889 allocated = 0; 3890 while (count > (persistent_huge_pages(h) + allocated)) { 3891 /* 3892 * If this allocation races such that we no longer need the 3893 * page, free_huge_folio will handle it by freeing the page 3894 * and reducing the surplus. 3895 */ 3896 spin_unlock_irq(&hugetlb_lock); 3897 3898 /* yield cpu to avoid soft lockup */ 3899 cond_resched(); 3900 3901 folio = alloc_pool_huge_folio(h, nodes_allowed, 3902 node_alloc_noretry, 3903 &h->next_nid_to_alloc); 3904 if (!folio) { 3905 prep_and_add_allocated_folios(h, &page_list); 3906 spin_lock_irq(&hugetlb_lock); 3907 goto out; 3908 } 3909 3910 list_add(&folio->lru, &page_list); 3911 allocated++; 3912 3913 /* Bail for signals. Probably ctrl-c from user */ 3914 if (signal_pending(current)) { 3915 prep_and_add_allocated_folios(h, &page_list); 3916 spin_lock_irq(&hugetlb_lock); 3917 goto out; 3918 } 3919 3920 spin_lock_irq(&hugetlb_lock); 3921 } 3922 3923 /* Add allocated pages to the pool */ 3924 if (!list_empty(&page_list)) { 3925 spin_unlock_irq(&hugetlb_lock); 3926 prep_and_add_allocated_folios(h, &page_list); 3927 spin_lock_irq(&hugetlb_lock); 3928 } 3929 3930 /* 3931 * Decrease the pool size 3932 * First return free pages to the buddy allocator (being careful 3933 * to keep enough around to satisfy reservations). Then place 3934 * pages into surplus state as needed so the pool will shrink 3935 * to the desired size as pages become free. 3936 * 3937 * By placing pages into the surplus state independent of the 3938 * overcommit value, we are allowing the surplus pool size to 3939 * exceed overcommit. There are few sane options here. Since 3940 * alloc_surplus_hugetlb_folio() is checking the global counter, 3941 * though, we'll note that we're not allowed to exceed surplus 3942 * and won't grow the pool anywhere else. Not until one of the 3943 * sysctls are changed, or the surplus pages go out of use. 3944 * 3945 * min_count is the expected number of persistent pages, we 3946 * shouldn't calculate min_count by using 3947 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3948 * because there may exist free surplus huge pages, and this will 3949 * lead to subtracting twice. Free surplus huge pages come from HVO 3950 * failing to restore vmemmap, see comments in the callers of 3951 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3952 * persistent free count first. 3953 */ 3954 persistent_free_count = h->free_huge_pages; 3955 if (h->free_huge_pages > persistent_huge_pages(h)) { 3956 if (h->free_huge_pages > h->surplus_huge_pages) 3957 persistent_free_count -= h->surplus_huge_pages; 3958 else 3959 persistent_free_count = 0; 3960 } 3961 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3962 min_count = max(count, min_count); 3963 try_to_free_low(h, min_count, nodes_allowed); 3964 3965 /* 3966 * Collect pages to be removed on list without dropping lock 3967 */ 3968 while (min_count < persistent_huge_pages(h)) { 3969 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3970 if (!folio) 3971 break; 3972 3973 list_add(&folio->lru, &page_list); 3974 } 3975 /* free the pages after dropping lock */ 3976 spin_unlock_irq(&hugetlb_lock); 3977 update_and_free_pages_bulk(h, &page_list); 3978 flush_free_hpage_work(h); 3979 spin_lock_irq(&hugetlb_lock); 3980 3981 while (count < persistent_huge_pages(h)) { 3982 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3983 break; 3984 } 3985 out: 3986 h->max_huge_pages = persistent_huge_pages(h); 3987 spin_unlock_irq(&hugetlb_lock); 3988 mutex_unlock(&h->resize_lock); 3989 3990 NODEMASK_FREE(node_alloc_noretry); 3991 3992 return 0; 3993 } 3994 3995 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3996 struct list_head *src_list) 3997 { 3998 long rc; 3999 struct folio *folio, *next; 4000 LIST_HEAD(dst_list); 4001 LIST_HEAD(ret_list); 4002 4003 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 4004 list_splice_init(&ret_list, src_list); 4005 4006 /* 4007 * Taking target hstate mutex synchronizes with set_max_huge_pages. 4008 * Without the mutex, pages added to target hstate could be marked 4009 * as surplus. 4010 * 4011 * Note that we already hold src->resize_lock. To prevent deadlock, 4012 * use the convention of always taking larger size hstate mutex first. 4013 */ 4014 mutex_lock(&dst->resize_lock); 4015 4016 list_for_each_entry_safe(folio, next, src_list, lru) { 4017 int i; 4018 bool cma; 4019 4020 if (folio_test_hugetlb_vmemmap_optimized(folio)) 4021 continue; 4022 4023 cma = folio_test_hugetlb_cma(folio); 4024 4025 list_del(&folio->lru); 4026 4027 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4028 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4029 4030 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4031 struct page *page = folio_page(folio, i); 4032 /* Careful: see __split_huge_page_tail() */ 4033 struct folio *new_folio = (struct folio *)page; 4034 4035 clear_compound_head(page); 4036 prep_compound_page(page, dst->order); 4037 4038 new_folio->mapping = NULL; 4039 init_new_hugetlb_folio(dst, new_folio); 4040 /* Copy the CMA flag so that it is freed correctly */ 4041 if (cma) 4042 folio_set_hugetlb_cma(new_folio); 4043 list_add(&new_folio->lru, &dst_list); 4044 } 4045 } 4046 4047 prep_and_add_allocated_folios(dst, &dst_list); 4048 4049 mutex_unlock(&dst->resize_lock); 4050 4051 return rc; 4052 } 4053 4054 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4055 unsigned long nr_to_demote) 4056 __must_hold(&hugetlb_lock) 4057 { 4058 int nr_nodes, node; 4059 struct hstate *dst; 4060 long rc = 0; 4061 long nr_demoted = 0; 4062 4063 lockdep_assert_held(&hugetlb_lock); 4064 4065 /* We should never get here if no demote order */ 4066 if (!src->demote_order) { 4067 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4068 return -EINVAL; /* internal error */ 4069 } 4070 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4071 4072 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4073 LIST_HEAD(list); 4074 struct folio *folio, *next; 4075 4076 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4077 if (folio_test_hwpoison(folio)) 4078 continue; 4079 4080 remove_hugetlb_folio(src, folio, false); 4081 list_add(&folio->lru, &list); 4082 4083 if (++nr_demoted == nr_to_demote) 4084 break; 4085 } 4086 4087 spin_unlock_irq(&hugetlb_lock); 4088 4089 rc = demote_free_hugetlb_folios(src, dst, &list); 4090 4091 spin_lock_irq(&hugetlb_lock); 4092 4093 list_for_each_entry_safe(folio, next, &list, lru) { 4094 list_del(&folio->lru); 4095 add_hugetlb_folio(src, folio, false); 4096 4097 nr_demoted--; 4098 } 4099 4100 if (rc < 0 || nr_demoted == nr_to_demote) 4101 break; 4102 } 4103 4104 /* 4105 * Not absolutely necessary, but for consistency update max_huge_pages 4106 * based on pool changes for the demoted page. 4107 */ 4108 src->max_huge_pages -= nr_demoted; 4109 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4110 4111 if (rc < 0) 4112 return rc; 4113 4114 if (nr_demoted) 4115 return nr_demoted; 4116 /* 4117 * Only way to get here is if all pages on free lists are poisoned. 4118 * Return -EBUSY so that caller will not retry. 4119 */ 4120 return -EBUSY; 4121 } 4122 4123 #define HSTATE_ATTR_RO(_name) \ 4124 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 4125 4126 #define HSTATE_ATTR_WO(_name) \ 4127 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 4128 4129 #define HSTATE_ATTR(_name) \ 4130 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 4131 4132 static struct kobject *hugepages_kobj; 4133 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4134 4135 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 4136 4137 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 4138 { 4139 int i; 4140 4141 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4142 if (hstate_kobjs[i] == kobj) { 4143 if (nidp) 4144 *nidp = NUMA_NO_NODE; 4145 return &hstates[i]; 4146 } 4147 4148 return kobj_to_node_hstate(kobj, nidp); 4149 } 4150 4151 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 4152 struct kobj_attribute *attr, char *buf) 4153 { 4154 struct hstate *h; 4155 unsigned long nr_huge_pages; 4156 int nid; 4157 4158 h = kobj_to_hstate(kobj, &nid); 4159 if (nid == NUMA_NO_NODE) 4160 nr_huge_pages = h->nr_huge_pages; 4161 else 4162 nr_huge_pages = h->nr_huge_pages_node[nid]; 4163 4164 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 4165 } 4166 4167 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4168 struct hstate *h, int nid, 4169 unsigned long count, size_t len) 4170 { 4171 int err; 4172 nodemask_t nodes_allowed, *n_mask; 4173 4174 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 4175 return -EINVAL; 4176 4177 if (nid == NUMA_NO_NODE) { 4178 /* 4179 * global hstate attribute 4180 */ 4181 if (!(obey_mempolicy && 4182 init_nodemask_of_mempolicy(&nodes_allowed))) 4183 n_mask = &node_states[N_MEMORY]; 4184 else 4185 n_mask = &nodes_allowed; 4186 } else { 4187 /* 4188 * Node specific request. count adjustment happens in 4189 * set_max_huge_pages() after acquiring hugetlb_lock. 4190 */ 4191 init_nodemask_of_node(&nodes_allowed, nid); 4192 n_mask = &nodes_allowed; 4193 } 4194 4195 err = set_max_huge_pages(h, count, nid, n_mask); 4196 4197 return err ? err : len; 4198 } 4199 4200 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 4201 struct kobject *kobj, const char *buf, 4202 size_t len) 4203 { 4204 struct hstate *h; 4205 unsigned long count; 4206 int nid; 4207 int err; 4208 4209 err = kstrtoul(buf, 10, &count); 4210 if (err) 4211 return err; 4212 4213 h = kobj_to_hstate(kobj, &nid); 4214 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 4215 } 4216 4217 static ssize_t nr_hugepages_show(struct kobject *kobj, 4218 struct kobj_attribute *attr, char *buf) 4219 { 4220 return nr_hugepages_show_common(kobj, attr, buf); 4221 } 4222 4223 static ssize_t nr_hugepages_store(struct kobject *kobj, 4224 struct kobj_attribute *attr, const char *buf, size_t len) 4225 { 4226 return nr_hugepages_store_common(false, kobj, buf, len); 4227 } 4228 HSTATE_ATTR(nr_hugepages); 4229 4230 #ifdef CONFIG_NUMA 4231 4232 /* 4233 * hstate attribute for optionally mempolicy-based constraint on persistent 4234 * huge page alloc/free. 4235 */ 4236 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 4237 struct kobj_attribute *attr, 4238 char *buf) 4239 { 4240 return nr_hugepages_show_common(kobj, attr, buf); 4241 } 4242 4243 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 4244 struct kobj_attribute *attr, const char *buf, size_t len) 4245 { 4246 return nr_hugepages_store_common(true, kobj, buf, len); 4247 } 4248 HSTATE_ATTR(nr_hugepages_mempolicy); 4249 #endif 4250 4251 4252 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 4253 struct kobj_attribute *attr, char *buf) 4254 { 4255 struct hstate *h = kobj_to_hstate(kobj, NULL); 4256 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 4257 } 4258 4259 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 4260 struct kobj_attribute *attr, const char *buf, size_t count) 4261 { 4262 int err; 4263 unsigned long input; 4264 struct hstate *h = kobj_to_hstate(kobj, NULL); 4265 4266 if (hstate_is_gigantic(h)) 4267 return -EINVAL; 4268 4269 err = kstrtoul(buf, 10, &input); 4270 if (err) 4271 return err; 4272 4273 spin_lock_irq(&hugetlb_lock); 4274 h->nr_overcommit_huge_pages = input; 4275 spin_unlock_irq(&hugetlb_lock); 4276 4277 return count; 4278 } 4279 HSTATE_ATTR(nr_overcommit_hugepages); 4280 4281 static ssize_t free_hugepages_show(struct kobject *kobj, 4282 struct kobj_attribute *attr, char *buf) 4283 { 4284 struct hstate *h; 4285 unsigned long free_huge_pages; 4286 int nid; 4287 4288 h = kobj_to_hstate(kobj, &nid); 4289 if (nid == NUMA_NO_NODE) 4290 free_huge_pages = h->free_huge_pages; 4291 else 4292 free_huge_pages = h->free_huge_pages_node[nid]; 4293 4294 return sysfs_emit(buf, "%lu\n", free_huge_pages); 4295 } 4296 HSTATE_ATTR_RO(free_hugepages); 4297 4298 static ssize_t resv_hugepages_show(struct kobject *kobj, 4299 struct kobj_attribute *attr, char *buf) 4300 { 4301 struct hstate *h = kobj_to_hstate(kobj, NULL); 4302 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 4303 } 4304 HSTATE_ATTR_RO(resv_hugepages); 4305 4306 static ssize_t surplus_hugepages_show(struct kobject *kobj, 4307 struct kobj_attribute *attr, char *buf) 4308 { 4309 struct hstate *h; 4310 unsigned long surplus_huge_pages; 4311 int nid; 4312 4313 h = kobj_to_hstate(kobj, &nid); 4314 if (nid == NUMA_NO_NODE) 4315 surplus_huge_pages = h->surplus_huge_pages; 4316 else 4317 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 4318 4319 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 4320 } 4321 HSTATE_ATTR_RO(surplus_hugepages); 4322 4323 static ssize_t demote_store(struct kobject *kobj, 4324 struct kobj_attribute *attr, const char *buf, size_t len) 4325 { 4326 unsigned long nr_demote; 4327 unsigned long nr_available; 4328 nodemask_t nodes_allowed, *n_mask; 4329 struct hstate *h; 4330 int err; 4331 int nid; 4332 4333 err = kstrtoul(buf, 10, &nr_demote); 4334 if (err) 4335 return err; 4336 h = kobj_to_hstate(kobj, &nid); 4337 4338 if (nid != NUMA_NO_NODE) { 4339 init_nodemask_of_node(&nodes_allowed, nid); 4340 n_mask = &nodes_allowed; 4341 } else { 4342 n_mask = &node_states[N_MEMORY]; 4343 } 4344 4345 /* Synchronize with other sysfs operations modifying huge pages */ 4346 mutex_lock(&h->resize_lock); 4347 spin_lock_irq(&hugetlb_lock); 4348 4349 while (nr_demote) { 4350 long rc; 4351 4352 /* 4353 * Check for available pages to demote each time thorough the 4354 * loop as demote_pool_huge_page will drop hugetlb_lock. 4355 */ 4356 if (nid != NUMA_NO_NODE) 4357 nr_available = h->free_huge_pages_node[nid]; 4358 else 4359 nr_available = h->free_huge_pages; 4360 nr_available -= h->resv_huge_pages; 4361 if (!nr_available) 4362 break; 4363 4364 rc = demote_pool_huge_page(h, n_mask, nr_demote); 4365 if (rc < 0) { 4366 err = rc; 4367 break; 4368 } 4369 4370 nr_demote -= rc; 4371 } 4372 4373 spin_unlock_irq(&hugetlb_lock); 4374 mutex_unlock(&h->resize_lock); 4375 4376 if (err) 4377 return err; 4378 return len; 4379 } 4380 HSTATE_ATTR_WO(demote); 4381 4382 static ssize_t demote_size_show(struct kobject *kobj, 4383 struct kobj_attribute *attr, char *buf) 4384 { 4385 struct hstate *h = kobj_to_hstate(kobj, NULL); 4386 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 4387 4388 return sysfs_emit(buf, "%lukB\n", demote_size); 4389 } 4390 4391 static ssize_t demote_size_store(struct kobject *kobj, 4392 struct kobj_attribute *attr, 4393 const char *buf, size_t count) 4394 { 4395 struct hstate *h, *demote_hstate; 4396 unsigned long demote_size; 4397 unsigned int demote_order; 4398 4399 demote_size = (unsigned long)memparse(buf, NULL); 4400 4401 demote_hstate = size_to_hstate(demote_size); 4402 if (!demote_hstate) 4403 return -EINVAL; 4404 demote_order = demote_hstate->order; 4405 if (demote_order < HUGETLB_PAGE_ORDER) 4406 return -EINVAL; 4407 4408 /* demote order must be smaller than hstate order */ 4409 h = kobj_to_hstate(kobj, NULL); 4410 if (demote_order >= h->order) 4411 return -EINVAL; 4412 4413 /* resize_lock synchronizes access to demote size and writes */ 4414 mutex_lock(&h->resize_lock); 4415 h->demote_order = demote_order; 4416 mutex_unlock(&h->resize_lock); 4417 4418 return count; 4419 } 4420 HSTATE_ATTR(demote_size); 4421 4422 static struct attribute *hstate_attrs[] = { 4423 &nr_hugepages_attr.attr, 4424 &nr_overcommit_hugepages_attr.attr, 4425 &free_hugepages_attr.attr, 4426 &resv_hugepages_attr.attr, 4427 &surplus_hugepages_attr.attr, 4428 #ifdef CONFIG_NUMA 4429 &nr_hugepages_mempolicy_attr.attr, 4430 #endif 4431 NULL, 4432 }; 4433 4434 static const struct attribute_group hstate_attr_group = { 4435 .attrs = hstate_attrs, 4436 }; 4437 4438 static struct attribute *hstate_demote_attrs[] = { 4439 &demote_size_attr.attr, 4440 &demote_attr.attr, 4441 NULL, 4442 }; 4443 4444 static const struct attribute_group hstate_demote_attr_group = { 4445 .attrs = hstate_demote_attrs, 4446 }; 4447 4448 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4449 struct kobject **hstate_kobjs, 4450 const struct attribute_group *hstate_attr_group) 4451 { 4452 int retval; 4453 int hi = hstate_index(h); 4454 4455 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4456 if (!hstate_kobjs[hi]) 4457 return -ENOMEM; 4458 4459 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4460 if (retval) { 4461 kobject_put(hstate_kobjs[hi]); 4462 hstate_kobjs[hi] = NULL; 4463 return retval; 4464 } 4465 4466 if (h->demote_order) { 4467 retval = sysfs_create_group(hstate_kobjs[hi], 4468 &hstate_demote_attr_group); 4469 if (retval) { 4470 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4471 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4472 kobject_put(hstate_kobjs[hi]); 4473 hstate_kobjs[hi] = NULL; 4474 return retval; 4475 } 4476 } 4477 4478 return 0; 4479 } 4480 4481 #ifdef CONFIG_NUMA 4482 static bool hugetlb_sysfs_initialized __ro_after_init; 4483 4484 /* 4485 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4486 * with node devices in node_devices[] using a parallel array. The array 4487 * index of a node device or _hstate == node id. 4488 * This is here to avoid any static dependency of the node device driver, in 4489 * the base kernel, on the hugetlb module. 4490 */ 4491 struct node_hstate { 4492 struct kobject *hugepages_kobj; 4493 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4494 }; 4495 static struct node_hstate node_hstates[MAX_NUMNODES]; 4496 4497 /* 4498 * A subset of global hstate attributes for node devices 4499 */ 4500 static struct attribute *per_node_hstate_attrs[] = { 4501 &nr_hugepages_attr.attr, 4502 &free_hugepages_attr.attr, 4503 &surplus_hugepages_attr.attr, 4504 NULL, 4505 }; 4506 4507 static const struct attribute_group per_node_hstate_attr_group = { 4508 .attrs = per_node_hstate_attrs, 4509 }; 4510 4511 /* 4512 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4513 * Returns node id via non-NULL nidp. 4514 */ 4515 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4516 { 4517 int nid; 4518 4519 for (nid = 0; nid < nr_node_ids; nid++) { 4520 struct node_hstate *nhs = &node_hstates[nid]; 4521 int i; 4522 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4523 if (nhs->hstate_kobjs[i] == kobj) { 4524 if (nidp) 4525 *nidp = nid; 4526 return &hstates[i]; 4527 } 4528 } 4529 4530 BUG(); 4531 return NULL; 4532 } 4533 4534 /* 4535 * Unregister hstate attributes from a single node device. 4536 * No-op if no hstate attributes attached. 4537 */ 4538 void hugetlb_unregister_node(struct node *node) 4539 { 4540 struct hstate *h; 4541 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4542 4543 if (!nhs->hugepages_kobj) 4544 return; /* no hstate attributes */ 4545 4546 for_each_hstate(h) { 4547 int idx = hstate_index(h); 4548 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4549 4550 if (!hstate_kobj) 4551 continue; 4552 if (h->demote_order) 4553 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4554 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4555 kobject_put(hstate_kobj); 4556 nhs->hstate_kobjs[idx] = NULL; 4557 } 4558 4559 kobject_put(nhs->hugepages_kobj); 4560 nhs->hugepages_kobj = NULL; 4561 } 4562 4563 4564 /* 4565 * Register hstate attributes for a single node device. 4566 * No-op if attributes already registered. 4567 */ 4568 void hugetlb_register_node(struct node *node) 4569 { 4570 struct hstate *h; 4571 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4572 int err; 4573 4574 if (!hugetlb_sysfs_initialized) 4575 return; 4576 4577 if (nhs->hugepages_kobj) 4578 return; /* already allocated */ 4579 4580 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4581 &node->dev.kobj); 4582 if (!nhs->hugepages_kobj) 4583 return; 4584 4585 for_each_hstate(h) { 4586 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4587 nhs->hstate_kobjs, 4588 &per_node_hstate_attr_group); 4589 if (err) { 4590 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4591 h->name, node->dev.id); 4592 hugetlb_unregister_node(node); 4593 break; 4594 } 4595 } 4596 } 4597 4598 /* 4599 * hugetlb init time: register hstate attributes for all registered node 4600 * devices of nodes that have memory. All on-line nodes should have 4601 * registered their associated device by this time. 4602 */ 4603 static void __init hugetlb_register_all_nodes(void) 4604 { 4605 int nid; 4606 4607 for_each_online_node(nid) 4608 hugetlb_register_node(node_devices[nid]); 4609 } 4610 #else /* !CONFIG_NUMA */ 4611 4612 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4613 { 4614 BUG(); 4615 if (nidp) 4616 *nidp = -1; 4617 return NULL; 4618 } 4619 4620 static void hugetlb_register_all_nodes(void) { } 4621 4622 #endif 4623 4624 static void __init hugetlb_sysfs_init(void) 4625 { 4626 struct hstate *h; 4627 int err; 4628 4629 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4630 if (!hugepages_kobj) 4631 return; 4632 4633 for_each_hstate(h) { 4634 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4635 hstate_kobjs, &hstate_attr_group); 4636 if (err) 4637 pr_err("HugeTLB: Unable to add hstate %s\n", h->name); 4638 } 4639 4640 #ifdef CONFIG_NUMA 4641 hugetlb_sysfs_initialized = true; 4642 #endif 4643 hugetlb_register_all_nodes(); 4644 } 4645 4646 #ifdef CONFIG_SYSCTL 4647 static void hugetlb_sysctl_init(void); 4648 #else 4649 static inline void hugetlb_sysctl_init(void) { } 4650 #endif 4651 4652 static int __init hugetlb_init(void) 4653 { 4654 int i; 4655 4656 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4657 __NR_HPAGEFLAGS); 4658 4659 if (!hugepages_supported()) { 4660 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4661 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4662 return 0; 4663 } 4664 4665 /* 4666 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4667 * architectures depend on setup being done here. 4668 */ 4669 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4670 if (!parsed_default_hugepagesz) { 4671 /* 4672 * If we did not parse a default huge page size, set 4673 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4674 * number of huge pages for this default size was implicitly 4675 * specified, set that here as well. 4676 * Note that the implicit setting will overwrite an explicit 4677 * setting. A warning will be printed in this case. 4678 */ 4679 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4680 if (default_hstate_max_huge_pages) { 4681 if (default_hstate.max_huge_pages) { 4682 char buf[32]; 4683 4684 string_get_size(huge_page_size(&default_hstate), 4685 1, STRING_UNITS_2, buf, 32); 4686 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4687 default_hstate.max_huge_pages, buf); 4688 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4689 default_hstate_max_huge_pages); 4690 } 4691 default_hstate.max_huge_pages = 4692 default_hstate_max_huge_pages; 4693 4694 for_each_online_node(i) 4695 default_hstate.max_huge_pages_node[i] = 4696 default_hugepages_in_node[i]; 4697 } 4698 } 4699 4700 hugetlb_cma_check(); 4701 hugetlb_init_hstates(); 4702 gather_bootmem_prealloc(); 4703 report_hugepages(); 4704 4705 hugetlb_sysfs_init(); 4706 hugetlb_cgroup_file_init(); 4707 hugetlb_sysctl_init(); 4708 4709 #ifdef CONFIG_SMP 4710 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4711 #else 4712 num_fault_mutexes = 1; 4713 #endif 4714 hugetlb_fault_mutex_table = 4715 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4716 GFP_KERNEL); 4717 BUG_ON(!hugetlb_fault_mutex_table); 4718 4719 for (i = 0; i < num_fault_mutexes; i++) 4720 mutex_init(&hugetlb_fault_mutex_table[i]); 4721 return 0; 4722 } 4723 subsys_initcall(hugetlb_init); 4724 4725 /* Overwritten by architectures with more huge page sizes */ 4726 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4727 { 4728 return size == HPAGE_SIZE; 4729 } 4730 4731 void __init hugetlb_add_hstate(unsigned int order) 4732 { 4733 struct hstate *h; 4734 unsigned long i; 4735 4736 if (size_to_hstate(PAGE_SIZE << order)) { 4737 return; 4738 } 4739 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4740 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4741 h = &hstates[hugetlb_max_hstate++]; 4742 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4743 h->order = order; 4744 h->mask = ~(huge_page_size(h) - 1); 4745 for (i = 0; i < MAX_NUMNODES; ++i) 4746 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4747 INIT_LIST_HEAD(&h->hugepage_activelist); 4748 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4749 huge_page_size(h)/SZ_1K); 4750 4751 parsed_hstate = h; 4752 } 4753 4754 bool __init __weak hugetlb_node_alloc_supported(void) 4755 { 4756 return true; 4757 } 4758 4759 static void __init hugepages_clear_pages_in_node(void) 4760 { 4761 if (!hugetlb_max_hstate) { 4762 default_hstate_max_huge_pages = 0; 4763 memset(default_hugepages_in_node, 0, 4764 sizeof(default_hugepages_in_node)); 4765 } else { 4766 parsed_hstate->max_huge_pages = 0; 4767 memset(parsed_hstate->max_huge_pages_node, 0, 4768 sizeof(parsed_hstate->max_huge_pages_node)); 4769 } 4770 } 4771 4772 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4773 { 4774 size_t len; 4775 char *p; 4776 4777 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4778 return -EINVAL; 4779 4780 len = strlen(s) + 1; 4781 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4782 return -EINVAL; 4783 4784 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4785 memcpy(p, s, len); 4786 hstate_cmdline_index += len; 4787 4788 hugetlb_params[hugetlb_param_index].val = p; 4789 hugetlb_params[hugetlb_param_index].setup = setup; 4790 4791 hugetlb_param_index++; 4792 4793 return 0; 4794 } 4795 4796 static __init void hugetlb_parse_params(void) 4797 { 4798 int i; 4799 struct hugetlb_cmdline *hcp; 4800 4801 for (i = 0; i < hugetlb_param_index; i++) { 4802 hcp = &hugetlb_params[i]; 4803 4804 hcp->setup(hcp->val); 4805 } 4806 4807 hugetlb_cma_validate_params(); 4808 } 4809 4810 /* 4811 * hugepages command line processing 4812 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4813 * specification. If not, ignore the hugepages value. hugepages can also 4814 * be the first huge page command line option in which case it implicitly 4815 * specifies the number of huge pages for the default size. 4816 */ 4817 static int __init hugepages_setup(char *s) 4818 { 4819 unsigned long *mhp; 4820 static unsigned long *last_mhp; 4821 int node = NUMA_NO_NODE; 4822 int count; 4823 unsigned long tmp; 4824 char *p = s; 4825 4826 if (!parsed_valid_hugepagesz) { 4827 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4828 parsed_valid_hugepagesz = true; 4829 return -EINVAL; 4830 } 4831 4832 /* 4833 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4834 * yet, so this hugepages= parameter goes to the "default hstate". 4835 * Otherwise, it goes with the previously parsed hugepagesz or 4836 * default_hugepagesz. 4837 */ 4838 else if (!hugetlb_max_hstate) 4839 mhp = &default_hstate_max_huge_pages; 4840 else 4841 mhp = &parsed_hstate->max_huge_pages; 4842 4843 if (mhp == last_mhp) { 4844 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4845 return 1; 4846 } 4847 4848 while (*p) { 4849 count = 0; 4850 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4851 goto invalid; 4852 /* Parameter is node format */ 4853 if (p[count] == ':') { 4854 if (!hugetlb_node_alloc_supported()) { 4855 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4856 return 1; 4857 } 4858 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4859 goto invalid; 4860 node = array_index_nospec(tmp, MAX_NUMNODES); 4861 p += count + 1; 4862 /* Parse hugepages */ 4863 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4864 goto invalid; 4865 if (!hugetlb_max_hstate) 4866 default_hugepages_in_node[node] = tmp; 4867 else 4868 parsed_hstate->max_huge_pages_node[node] = tmp; 4869 *mhp += tmp; 4870 /* Go to parse next node*/ 4871 if (p[count] == ',') 4872 p += count + 1; 4873 else 4874 break; 4875 } else { 4876 if (p != s) 4877 goto invalid; 4878 *mhp = tmp; 4879 break; 4880 } 4881 } 4882 4883 last_mhp = mhp; 4884 4885 return 0; 4886 4887 invalid: 4888 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4889 hugepages_clear_pages_in_node(); 4890 return -EINVAL; 4891 } 4892 hugetlb_early_param("hugepages", hugepages_setup); 4893 4894 /* 4895 * hugepagesz command line processing 4896 * A specific huge page size can only be specified once with hugepagesz. 4897 * hugepagesz is followed by hugepages on the command line. The global 4898 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4899 * hugepagesz argument was valid. 4900 */ 4901 static int __init hugepagesz_setup(char *s) 4902 { 4903 unsigned long size; 4904 struct hstate *h; 4905 4906 parsed_valid_hugepagesz = false; 4907 size = (unsigned long)memparse(s, NULL); 4908 4909 if (!arch_hugetlb_valid_size(size)) { 4910 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4911 return -EINVAL; 4912 } 4913 4914 h = size_to_hstate(size); 4915 if (h) { 4916 /* 4917 * hstate for this size already exists. This is normally 4918 * an error, but is allowed if the existing hstate is the 4919 * default hstate. More specifically, it is only allowed if 4920 * the number of huge pages for the default hstate was not 4921 * previously specified. 4922 */ 4923 if (!parsed_default_hugepagesz || h != &default_hstate || 4924 default_hstate.max_huge_pages) { 4925 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4926 return -EINVAL; 4927 } 4928 4929 /* 4930 * No need to call hugetlb_add_hstate() as hstate already 4931 * exists. But, do set parsed_hstate so that a following 4932 * hugepages= parameter will be applied to this hstate. 4933 */ 4934 parsed_hstate = h; 4935 parsed_valid_hugepagesz = true; 4936 return 0; 4937 } 4938 4939 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4940 parsed_valid_hugepagesz = true; 4941 return 0; 4942 } 4943 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4944 4945 /* 4946 * default_hugepagesz command line input 4947 * Only one instance of default_hugepagesz allowed on command line. 4948 */ 4949 static int __init default_hugepagesz_setup(char *s) 4950 { 4951 unsigned long size; 4952 int i; 4953 4954 parsed_valid_hugepagesz = false; 4955 if (parsed_default_hugepagesz) { 4956 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4957 return -EINVAL; 4958 } 4959 4960 size = (unsigned long)memparse(s, NULL); 4961 4962 if (!arch_hugetlb_valid_size(size)) { 4963 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4964 return -EINVAL; 4965 } 4966 4967 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4968 parsed_valid_hugepagesz = true; 4969 parsed_default_hugepagesz = true; 4970 default_hstate_idx = hstate_index(size_to_hstate(size)); 4971 4972 /* 4973 * The number of default huge pages (for this size) could have been 4974 * specified as the first hugetlb parameter: hugepages=X. If so, 4975 * then default_hstate_max_huge_pages is set. If the default huge 4976 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4977 * allocated here from bootmem allocator. 4978 */ 4979 if (default_hstate_max_huge_pages) { 4980 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4981 /* 4982 * Since this is an early parameter, we can't check 4983 * NUMA node state yet, so loop through MAX_NUMNODES. 4984 */ 4985 for (i = 0; i < MAX_NUMNODES; i++) { 4986 if (default_hugepages_in_node[i] != 0) 4987 default_hstate.max_huge_pages_node[i] = 4988 default_hugepages_in_node[i]; 4989 } 4990 default_hstate_max_huge_pages = 0; 4991 } 4992 4993 return 0; 4994 } 4995 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 4996 4997 void __init hugetlb_bootmem_set_nodes(void) 4998 { 4999 int i, nid; 5000 unsigned long start_pfn, end_pfn; 5001 5002 if (!nodes_empty(hugetlb_bootmem_nodes)) 5003 return; 5004 5005 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5006 if (end_pfn > start_pfn) 5007 node_set(nid, hugetlb_bootmem_nodes); 5008 } 5009 } 5010 5011 static bool __hugetlb_bootmem_allocated __initdata; 5012 5013 bool __init hugetlb_bootmem_allocated(void) 5014 { 5015 return __hugetlb_bootmem_allocated; 5016 } 5017 5018 void __init hugetlb_bootmem_alloc(void) 5019 { 5020 struct hstate *h; 5021 int i; 5022 5023 if (__hugetlb_bootmem_allocated) 5024 return; 5025 5026 hugetlb_bootmem_set_nodes(); 5027 5028 for (i = 0; i < MAX_NUMNODES; i++) 5029 INIT_LIST_HEAD(&huge_boot_pages[i]); 5030 5031 hugetlb_parse_params(); 5032 5033 for_each_hstate(h) { 5034 h->next_nid_to_alloc = first_online_node; 5035 5036 if (hstate_is_gigantic(h)) 5037 hugetlb_hstate_alloc_pages(h); 5038 } 5039 5040 __hugetlb_bootmem_allocated = true; 5041 } 5042 5043 /* 5044 * hugepage_alloc_threads command line parsing. 5045 * 5046 * When set, use this specific number of threads for the boot 5047 * allocation of hugepages. 5048 */ 5049 static int __init hugepage_alloc_threads_setup(char *s) 5050 { 5051 unsigned long allocation_threads; 5052 5053 if (kstrtoul(s, 0, &allocation_threads) != 0) 5054 return 1; 5055 5056 if (allocation_threads == 0) 5057 return 1; 5058 5059 hugepage_allocation_threads = allocation_threads; 5060 5061 return 1; 5062 } 5063 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 5064 5065 static unsigned int allowed_mems_nr(struct hstate *h) 5066 { 5067 int node; 5068 unsigned int nr = 0; 5069 nodemask_t *mbind_nodemask; 5070 unsigned int *array = h->free_huge_pages_node; 5071 gfp_t gfp_mask = htlb_alloc_mask(h); 5072 5073 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 5074 for_each_node_mask(node, cpuset_current_mems_allowed) { 5075 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 5076 nr += array[node]; 5077 } 5078 5079 return nr; 5080 } 5081 5082 #ifdef CONFIG_SYSCTL 5083 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write, 5084 void *buffer, size_t *length, 5085 loff_t *ppos, unsigned long *out) 5086 { 5087 struct ctl_table dup_table; 5088 5089 /* 5090 * In order to avoid races with __do_proc_doulongvec_minmax(), we 5091 * can duplicate the @table and alter the duplicate of it. 5092 */ 5093 dup_table = *table; 5094 dup_table.data = out; 5095 5096 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 5097 } 5098 5099 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 5100 const struct ctl_table *table, int write, 5101 void *buffer, size_t *length, loff_t *ppos) 5102 { 5103 struct hstate *h = &default_hstate; 5104 unsigned long tmp = h->max_huge_pages; 5105 int ret; 5106 5107 if (!hugepages_supported()) 5108 return -EOPNOTSUPP; 5109 5110 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5111 &tmp); 5112 if (ret) 5113 goto out; 5114 5115 if (write) 5116 ret = __nr_hugepages_store_common(obey_mempolicy, h, 5117 NUMA_NO_NODE, tmp, *length); 5118 out: 5119 return ret; 5120 } 5121 5122 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write, 5123 void *buffer, size_t *length, loff_t *ppos) 5124 { 5125 5126 return hugetlb_sysctl_handler_common(false, table, write, 5127 buffer, length, ppos); 5128 } 5129 5130 #ifdef CONFIG_NUMA 5131 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write, 5132 void *buffer, size_t *length, loff_t *ppos) 5133 { 5134 return hugetlb_sysctl_handler_common(true, table, write, 5135 buffer, length, ppos); 5136 } 5137 #endif /* CONFIG_NUMA */ 5138 5139 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write, 5140 void *buffer, size_t *length, loff_t *ppos) 5141 { 5142 struct hstate *h = &default_hstate; 5143 unsigned long tmp; 5144 int ret; 5145 5146 if (!hugepages_supported()) 5147 return -EOPNOTSUPP; 5148 5149 tmp = h->nr_overcommit_huge_pages; 5150 5151 if (write && hstate_is_gigantic(h)) 5152 return -EINVAL; 5153 5154 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 5155 &tmp); 5156 if (ret) 5157 goto out; 5158 5159 if (write) { 5160 spin_lock_irq(&hugetlb_lock); 5161 h->nr_overcommit_huge_pages = tmp; 5162 spin_unlock_irq(&hugetlb_lock); 5163 } 5164 out: 5165 return ret; 5166 } 5167 5168 static const struct ctl_table hugetlb_table[] = { 5169 { 5170 .procname = "nr_hugepages", 5171 .data = NULL, 5172 .maxlen = sizeof(unsigned long), 5173 .mode = 0644, 5174 .proc_handler = hugetlb_sysctl_handler, 5175 }, 5176 #ifdef CONFIG_NUMA 5177 { 5178 .procname = "nr_hugepages_mempolicy", 5179 .data = NULL, 5180 .maxlen = sizeof(unsigned long), 5181 .mode = 0644, 5182 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 5183 }, 5184 #endif 5185 { 5186 .procname = "hugetlb_shm_group", 5187 .data = &sysctl_hugetlb_shm_group, 5188 .maxlen = sizeof(gid_t), 5189 .mode = 0644, 5190 .proc_handler = proc_dointvec, 5191 }, 5192 { 5193 .procname = "nr_overcommit_hugepages", 5194 .data = NULL, 5195 .maxlen = sizeof(unsigned long), 5196 .mode = 0644, 5197 .proc_handler = hugetlb_overcommit_handler, 5198 }, 5199 }; 5200 5201 static void __init hugetlb_sysctl_init(void) 5202 { 5203 register_sysctl_init("vm", hugetlb_table); 5204 } 5205 #endif /* CONFIG_SYSCTL */ 5206 5207 void hugetlb_report_meminfo(struct seq_file *m) 5208 { 5209 struct hstate *h; 5210 unsigned long total = 0; 5211 5212 if (!hugepages_supported()) 5213 return; 5214 5215 for_each_hstate(h) { 5216 unsigned long count = h->nr_huge_pages; 5217 5218 total += huge_page_size(h) * count; 5219 5220 if (h == &default_hstate) 5221 seq_printf(m, 5222 "HugePages_Total: %5lu\n" 5223 "HugePages_Free: %5lu\n" 5224 "HugePages_Rsvd: %5lu\n" 5225 "HugePages_Surp: %5lu\n" 5226 "Hugepagesize: %8lu kB\n", 5227 count, 5228 h->free_huge_pages, 5229 h->resv_huge_pages, 5230 h->surplus_huge_pages, 5231 huge_page_size(h) / SZ_1K); 5232 } 5233 5234 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 5235 } 5236 5237 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 5238 { 5239 struct hstate *h = &default_hstate; 5240 5241 if (!hugepages_supported()) 5242 return 0; 5243 5244 return sysfs_emit_at(buf, len, 5245 "Node %d HugePages_Total: %5u\n" 5246 "Node %d HugePages_Free: %5u\n" 5247 "Node %d HugePages_Surp: %5u\n", 5248 nid, h->nr_huge_pages_node[nid], 5249 nid, h->free_huge_pages_node[nid], 5250 nid, h->surplus_huge_pages_node[nid]); 5251 } 5252 5253 void hugetlb_show_meminfo_node(int nid) 5254 { 5255 struct hstate *h; 5256 5257 if (!hugepages_supported()) 5258 return; 5259 5260 for_each_hstate(h) 5261 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 5262 nid, 5263 h->nr_huge_pages_node[nid], 5264 h->free_huge_pages_node[nid], 5265 h->surplus_huge_pages_node[nid], 5266 huge_page_size(h) / SZ_1K); 5267 } 5268 5269 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 5270 { 5271 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 5272 K(atomic_long_read(&mm->hugetlb_usage))); 5273 } 5274 5275 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 5276 unsigned long hugetlb_total_pages(void) 5277 { 5278 struct hstate *h; 5279 unsigned long nr_total_pages = 0; 5280 5281 for_each_hstate(h) 5282 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 5283 return nr_total_pages; 5284 } 5285 5286 static int hugetlb_acct_memory(struct hstate *h, long delta) 5287 { 5288 int ret = -ENOMEM; 5289 5290 if (!delta) 5291 return 0; 5292 5293 spin_lock_irq(&hugetlb_lock); 5294 /* 5295 * When cpuset is configured, it breaks the strict hugetlb page 5296 * reservation as the accounting is done on a global variable. Such 5297 * reservation is completely rubbish in the presence of cpuset because 5298 * the reservation is not checked against page availability for the 5299 * current cpuset. Application can still potentially OOM'ed by kernel 5300 * with lack of free htlb page in cpuset that the task is in. 5301 * Attempt to enforce strict accounting with cpuset is almost 5302 * impossible (or too ugly) because cpuset is too fluid that 5303 * task or memory node can be dynamically moved between cpusets. 5304 * 5305 * The change of semantics for shared hugetlb mapping with cpuset is 5306 * undesirable. However, in order to preserve some of the semantics, 5307 * we fall back to check against current free page availability as 5308 * a best attempt and hopefully to minimize the impact of changing 5309 * semantics that cpuset has. 5310 * 5311 * Apart from cpuset, we also have memory policy mechanism that 5312 * also determines from which node the kernel will allocate memory 5313 * in a NUMA system. So similar to cpuset, we also should consider 5314 * the memory policy of the current task. Similar to the description 5315 * above. 5316 */ 5317 if (delta > 0) { 5318 if (gather_surplus_pages(h, delta) < 0) 5319 goto out; 5320 5321 if (delta > allowed_mems_nr(h)) { 5322 return_unused_surplus_pages(h, delta); 5323 goto out; 5324 } 5325 } 5326 5327 ret = 0; 5328 if (delta < 0) 5329 return_unused_surplus_pages(h, (unsigned long) -delta); 5330 5331 out: 5332 spin_unlock_irq(&hugetlb_lock); 5333 return ret; 5334 } 5335 5336 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 5337 { 5338 struct resv_map *resv = vma_resv_map(vma); 5339 5340 /* 5341 * HPAGE_RESV_OWNER indicates a private mapping. 5342 * This new VMA should share its siblings reservation map if present. 5343 * The VMA will only ever have a valid reservation map pointer where 5344 * it is being copied for another still existing VMA. As that VMA 5345 * has a reference to the reservation map it cannot disappear until 5346 * after this open call completes. It is therefore safe to take a 5347 * new reference here without additional locking. 5348 */ 5349 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 5350 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 5351 kref_get(&resv->refs); 5352 } 5353 5354 /* 5355 * vma_lock structure for sharable mappings is vma specific. 5356 * Clear old pointer (if copied via vm_area_dup) and allocate 5357 * new structure. Before clearing, make sure vma_lock is not 5358 * for this vma. 5359 */ 5360 if (vma->vm_flags & VM_MAYSHARE) { 5361 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 5362 5363 if (vma_lock) { 5364 if (vma_lock->vma != vma) { 5365 vma->vm_private_data = NULL; 5366 hugetlb_vma_lock_alloc(vma); 5367 } else 5368 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 5369 } else 5370 hugetlb_vma_lock_alloc(vma); 5371 } 5372 } 5373 5374 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 5375 { 5376 struct hstate *h = hstate_vma(vma); 5377 struct resv_map *resv; 5378 struct hugepage_subpool *spool = subpool_vma(vma); 5379 unsigned long reserve, start, end; 5380 long gbl_reserve; 5381 5382 hugetlb_vma_lock_free(vma); 5383 5384 resv = vma_resv_map(vma); 5385 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5386 return; 5387 5388 start = vma_hugecache_offset(h, vma, vma->vm_start); 5389 end = vma_hugecache_offset(h, vma, vma->vm_end); 5390 5391 reserve = (end - start) - region_count(resv, start, end); 5392 hugetlb_cgroup_uncharge_counter(resv, start, end); 5393 if (reserve) { 5394 /* 5395 * Decrement reserve counts. The global reserve count may be 5396 * adjusted if the subpool has a minimum size. 5397 */ 5398 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 5399 hugetlb_acct_memory(h, -gbl_reserve); 5400 } 5401 5402 kref_put(&resv->refs, resv_map_release); 5403 } 5404 5405 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 5406 { 5407 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 5408 return -EINVAL; 5409 return 0; 5410 } 5411 5412 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) 5413 { 5414 /* 5415 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 5416 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 5417 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 5418 * This function is called in the middle of a VMA split operation, with 5419 * MM, VMA and rmap all write-locked to prevent concurrent page table 5420 * walks (except hardware and gup_fast()). 5421 */ 5422 vma_assert_write_locked(vma); 5423 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5424 5425 if (addr & ~PUD_MASK) { 5426 unsigned long floor = addr & PUD_MASK; 5427 unsigned long ceil = floor + PUD_SIZE; 5428 5429 if (floor >= vma->vm_start && ceil <= vma->vm_end) { 5430 /* 5431 * Locking: 5432 * Use take_locks=false here. 5433 * The file rmap lock is already held. 5434 * The hugetlb VMA lock can't be taken when we already 5435 * hold the file rmap lock, and we don't need it because 5436 * its purpose is to synchronize against concurrent page 5437 * table walks, which are not possible thanks to the 5438 * locks held by our caller. 5439 */ 5440 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); 5441 } 5442 } 5443 } 5444 5445 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 5446 { 5447 return huge_page_size(hstate_vma(vma)); 5448 } 5449 5450 /* 5451 * We cannot handle pagefaults against hugetlb pages at all. They cause 5452 * handle_mm_fault() to try to instantiate regular-sized pages in the 5453 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 5454 * this far. 5455 */ 5456 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 5457 { 5458 BUG(); 5459 return 0; 5460 } 5461 5462 /* 5463 * When a new function is introduced to vm_operations_struct and added 5464 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 5465 * This is because under System V memory model, mappings created via 5466 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 5467 * their original vm_ops are overwritten with shm_vm_ops. 5468 */ 5469 const struct vm_operations_struct hugetlb_vm_ops = { 5470 .fault = hugetlb_vm_op_fault, 5471 .open = hugetlb_vm_op_open, 5472 .close = hugetlb_vm_op_close, 5473 .may_split = hugetlb_vm_op_split, 5474 .pagesize = hugetlb_vm_op_pagesize, 5475 }; 5476 5477 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, 5478 bool try_mkwrite) 5479 { 5480 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); 5481 unsigned int shift = huge_page_shift(hstate_vma(vma)); 5482 5483 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 5484 entry = pte_mkwrite_novma(pte_mkdirty(entry)); 5485 } else { 5486 entry = pte_wrprotect(entry); 5487 } 5488 entry = pte_mkyoung(entry); 5489 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 5490 5491 return entry; 5492 } 5493 5494 static void set_huge_ptep_writable(struct vm_area_struct *vma, 5495 unsigned long address, pte_t *ptep) 5496 { 5497 pte_t entry; 5498 5499 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 5500 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 5501 update_mmu_cache(vma, address, ptep); 5502 } 5503 5504 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 5505 unsigned long address, pte_t *ptep) 5506 { 5507 if (vma->vm_flags & VM_WRITE) 5508 set_huge_ptep_writable(vma, address, ptep); 5509 } 5510 5511 bool is_hugetlb_entry_migration(pte_t pte) 5512 { 5513 swp_entry_t swp; 5514 5515 if (huge_pte_none(pte) || pte_present(pte)) 5516 return false; 5517 swp = pte_to_swp_entry(pte); 5518 if (is_migration_entry(swp)) 5519 return true; 5520 else 5521 return false; 5522 } 5523 5524 bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5525 { 5526 swp_entry_t swp; 5527 5528 if (huge_pte_none(pte) || pte_present(pte)) 5529 return false; 5530 swp = pte_to_swp_entry(pte); 5531 if (is_hwpoison_entry(swp)) 5532 return true; 5533 else 5534 return false; 5535 } 5536 5537 static void 5538 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5539 struct folio *new_folio, pte_t old, unsigned long sz) 5540 { 5541 pte_t newpte = make_huge_pte(vma, new_folio, true); 5542 5543 __folio_mark_uptodate(new_folio); 5544 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 5545 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5546 newpte = huge_pte_mkuffd_wp(newpte); 5547 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5548 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5549 folio_set_hugetlb_migratable(new_folio); 5550 } 5551 5552 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5553 struct vm_area_struct *dst_vma, 5554 struct vm_area_struct *src_vma) 5555 { 5556 pte_t *src_pte, *dst_pte, entry; 5557 struct folio *pte_folio; 5558 unsigned long addr; 5559 bool cow = is_cow_mapping(src_vma->vm_flags); 5560 struct hstate *h = hstate_vma(src_vma); 5561 unsigned long sz = huge_page_size(h); 5562 unsigned long npages = pages_per_huge_page(h); 5563 struct mmu_notifier_range range; 5564 unsigned long last_addr_mask; 5565 int ret = 0; 5566 5567 if (cow) { 5568 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5569 src_vma->vm_start, 5570 src_vma->vm_end); 5571 mmu_notifier_invalidate_range_start(&range); 5572 vma_assert_write_locked(src_vma); 5573 raw_write_seqcount_begin(&src->write_protect_seq); 5574 } else { 5575 /* 5576 * For shared mappings the vma lock must be held before 5577 * calling hugetlb_walk() in the src vma. Otherwise, the 5578 * returned ptep could go away if part of a shared pmd and 5579 * another thread calls huge_pmd_unshare. 5580 */ 5581 hugetlb_vma_lock_read(src_vma); 5582 } 5583 5584 last_addr_mask = hugetlb_mask_last_page(h); 5585 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5586 spinlock_t *src_ptl, *dst_ptl; 5587 src_pte = hugetlb_walk(src_vma, addr, sz); 5588 if (!src_pte) { 5589 addr |= last_addr_mask; 5590 continue; 5591 } 5592 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5593 if (!dst_pte) { 5594 ret = -ENOMEM; 5595 break; 5596 } 5597 5598 /* 5599 * If the pagetables are shared don't copy or take references. 5600 * 5601 * dst_pte == src_pte is the common case of src/dest sharing. 5602 * However, src could have 'unshared' and dst shares with 5603 * another vma. So page_count of ptep page is checked instead 5604 * to reliably determine whether pte is shared. 5605 */ 5606 if (page_count(virt_to_page(dst_pte)) > 1) { 5607 addr |= last_addr_mask; 5608 continue; 5609 } 5610 5611 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5612 src_ptl = huge_pte_lockptr(h, src, src_pte); 5613 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5614 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5615 again: 5616 if (huge_pte_none(entry)) { 5617 /* 5618 * Skip if src entry none. 5619 */ 5620 ; 5621 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5622 if (!userfaultfd_wp(dst_vma)) 5623 entry = huge_pte_clear_uffd_wp(entry); 5624 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5625 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5626 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5627 bool uffd_wp = pte_swp_uffd_wp(entry); 5628 5629 if (!is_readable_migration_entry(swp_entry) && cow) { 5630 /* 5631 * COW mappings require pages in both 5632 * parent and child to be set to read. 5633 */ 5634 swp_entry = make_readable_migration_entry( 5635 swp_offset(swp_entry)); 5636 entry = swp_entry_to_pte(swp_entry); 5637 if (userfaultfd_wp(src_vma) && uffd_wp) 5638 entry = pte_swp_mkuffd_wp(entry); 5639 set_huge_pte_at(src, addr, src_pte, entry, sz); 5640 } 5641 if (!userfaultfd_wp(dst_vma)) 5642 entry = huge_pte_clear_uffd_wp(entry); 5643 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5644 } else if (unlikely(is_pte_marker(entry))) { 5645 pte_marker marker = copy_pte_marker( 5646 pte_to_swp_entry(entry), dst_vma); 5647 5648 if (marker) 5649 set_huge_pte_at(dst, addr, dst_pte, 5650 make_pte_marker(marker), sz); 5651 } else { 5652 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5653 pte_folio = page_folio(pte_page(entry)); 5654 folio_get(pte_folio); 5655 5656 /* 5657 * Failing to duplicate the anon rmap is a rare case 5658 * where we see pinned hugetlb pages while they're 5659 * prone to COW. We need to do the COW earlier during 5660 * fork. 5661 * 5662 * When pre-allocating the page or copying data, we 5663 * need to be without the pgtable locks since we could 5664 * sleep during the process. 5665 */ 5666 if (!folio_test_anon(pte_folio)) { 5667 hugetlb_add_file_rmap(pte_folio); 5668 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 5669 pte_t src_pte_old = entry; 5670 struct folio *new_folio; 5671 5672 spin_unlock(src_ptl); 5673 spin_unlock(dst_ptl); 5674 /* Do not use reserve as it's private owned */ 5675 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5676 if (IS_ERR(new_folio)) { 5677 folio_put(pte_folio); 5678 ret = PTR_ERR(new_folio); 5679 break; 5680 } 5681 ret = copy_user_large_folio(new_folio, pte_folio, 5682 addr, dst_vma); 5683 folio_put(pte_folio); 5684 if (ret) { 5685 folio_put(new_folio); 5686 break; 5687 } 5688 5689 /* Install the new hugetlb folio if src pte stable */ 5690 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5691 src_ptl = huge_pte_lockptr(h, src, src_pte); 5692 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5693 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5694 if (!pte_same(src_pte_old, entry)) { 5695 restore_reserve_on_error(h, dst_vma, addr, 5696 new_folio); 5697 folio_put(new_folio); 5698 /* huge_ptep of dst_pte won't change as in child */ 5699 goto again; 5700 } 5701 hugetlb_install_folio(dst_vma, dst_pte, addr, 5702 new_folio, src_pte_old, sz); 5703 spin_unlock(src_ptl); 5704 spin_unlock(dst_ptl); 5705 continue; 5706 } 5707 5708 if (cow) { 5709 /* 5710 * No need to notify as we are downgrading page 5711 * table protection not changing it to point 5712 * to a new page. 5713 * 5714 * See Documentation/mm/mmu_notifier.rst 5715 */ 5716 huge_ptep_set_wrprotect(src, addr, src_pte); 5717 entry = huge_pte_wrprotect(entry); 5718 } 5719 5720 if (!userfaultfd_wp(dst_vma)) 5721 entry = huge_pte_clear_uffd_wp(entry); 5722 5723 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5724 hugetlb_count_add(npages, dst); 5725 } 5726 spin_unlock(src_ptl); 5727 spin_unlock(dst_ptl); 5728 } 5729 5730 if (cow) { 5731 raw_write_seqcount_end(&src->write_protect_seq); 5732 mmu_notifier_invalidate_range_end(&range); 5733 } else { 5734 hugetlb_vma_unlock_read(src_vma); 5735 } 5736 5737 return ret; 5738 } 5739 5740 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5741 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5742 unsigned long sz) 5743 { 5744 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5745 struct hstate *h = hstate_vma(vma); 5746 struct mm_struct *mm = vma->vm_mm; 5747 spinlock_t *src_ptl, *dst_ptl; 5748 pte_t pte; 5749 5750 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5751 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5752 5753 /* 5754 * We don't have to worry about the ordering of src and dst ptlocks 5755 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5756 */ 5757 if (src_ptl != dst_ptl) 5758 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5759 5760 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5761 5762 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) 5763 huge_pte_clear(mm, new_addr, dst_pte, sz); 5764 else { 5765 if (need_clear_uffd_wp) { 5766 if (pte_present(pte)) 5767 pte = huge_pte_clear_uffd_wp(pte); 5768 else if (is_swap_pte(pte)) 5769 pte = pte_swp_clear_uffd_wp(pte); 5770 } 5771 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5772 } 5773 5774 if (src_ptl != dst_ptl) 5775 spin_unlock(src_ptl); 5776 spin_unlock(dst_ptl); 5777 } 5778 5779 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5780 struct vm_area_struct *new_vma, 5781 unsigned long old_addr, unsigned long new_addr, 5782 unsigned long len) 5783 { 5784 struct hstate *h = hstate_vma(vma); 5785 struct address_space *mapping = vma->vm_file->f_mapping; 5786 unsigned long sz = huge_page_size(h); 5787 struct mm_struct *mm = vma->vm_mm; 5788 unsigned long old_end = old_addr + len; 5789 unsigned long last_addr_mask; 5790 pte_t *src_pte, *dst_pte; 5791 struct mmu_notifier_range range; 5792 bool shared_pmd = false; 5793 5794 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5795 old_end); 5796 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5797 /* 5798 * In case of shared PMDs, we should cover the maximum possible 5799 * range. 5800 */ 5801 flush_cache_range(vma, range.start, range.end); 5802 5803 mmu_notifier_invalidate_range_start(&range); 5804 last_addr_mask = hugetlb_mask_last_page(h); 5805 /* Prevent race with file truncation */ 5806 hugetlb_vma_lock_write(vma); 5807 i_mmap_lock_write(mapping); 5808 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5809 src_pte = hugetlb_walk(vma, old_addr, sz); 5810 if (!src_pte) { 5811 old_addr |= last_addr_mask; 5812 new_addr |= last_addr_mask; 5813 continue; 5814 } 5815 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5816 continue; 5817 5818 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5819 shared_pmd = true; 5820 old_addr |= last_addr_mask; 5821 new_addr |= last_addr_mask; 5822 continue; 5823 } 5824 5825 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5826 if (!dst_pte) 5827 break; 5828 5829 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5830 } 5831 5832 if (shared_pmd) 5833 flush_hugetlb_tlb_range(vma, range.start, range.end); 5834 else 5835 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5836 mmu_notifier_invalidate_range_end(&range); 5837 i_mmap_unlock_write(mapping); 5838 hugetlb_vma_unlock_write(vma); 5839 5840 return len + old_addr - old_end; 5841 } 5842 5843 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5844 unsigned long start, unsigned long end, 5845 struct folio *folio, zap_flags_t zap_flags) 5846 { 5847 struct mm_struct *mm = vma->vm_mm; 5848 const bool folio_provided = !!folio; 5849 unsigned long address; 5850 pte_t *ptep; 5851 pte_t pte; 5852 spinlock_t *ptl; 5853 struct hstate *h = hstate_vma(vma); 5854 unsigned long sz = huge_page_size(h); 5855 bool adjust_reservation = false; 5856 unsigned long last_addr_mask; 5857 bool force_flush = false; 5858 5859 WARN_ON(!is_vm_hugetlb_page(vma)); 5860 BUG_ON(start & ~huge_page_mask(h)); 5861 BUG_ON(end & ~huge_page_mask(h)); 5862 5863 /* 5864 * This is a hugetlb vma, all the pte entries should point 5865 * to huge page. 5866 */ 5867 tlb_change_page_size(tlb, sz); 5868 tlb_start_vma(tlb, vma); 5869 5870 last_addr_mask = hugetlb_mask_last_page(h); 5871 address = start; 5872 for (; address < end; address += sz) { 5873 ptep = hugetlb_walk(vma, address, sz); 5874 if (!ptep) { 5875 address |= last_addr_mask; 5876 continue; 5877 } 5878 5879 ptl = huge_pte_lock(h, mm, ptep); 5880 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5881 spin_unlock(ptl); 5882 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5883 force_flush = true; 5884 address |= last_addr_mask; 5885 continue; 5886 } 5887 5888 pte = huge_ptep_get(mm, address, ptep); 5889 if (huge_pte_none(pte)) { 5890 spin_unlock(ptl); 5891 continue; 5892 } 5893 5894 /* 5895 * Migrating hugepage or HWPoisoned hugepage is already 5896 * unmapped and its refcount is dropped, so just clear pte here. 5897 */ 5898 if (unlikely(!pte_present(pte))) { 5899 /* 5900 * If the pte was wr-protected by uffd-wp in any of the 5901 * swap forms, meanwhile the caller does not want to 5902 * drop the uffd-wp bit in this zap, then replace the 5903 * pte with a marker. 5904 */ 5905 if (pte_swp_uffd_wp_any(pte) && 5906 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5907 set_huge_pte_at(mm, address, ptep, 5908 make_pte_marker(PTE_MARKER_UFFD_WP), 5909 sz); 5910 else 5911 huge_pte_clear(mm, address, ptep, sz); 5912 spin_unlock(ptl); 5913 continue; 5914 } 5915 5916 /* 5917 * If a folio is supplied, it is because a specific 5918 * folio is being unmapped, not a range. Ensure the folio we 5919 * are about to unmap is the actual folio of interest. 5920 */ 5921 if (folio_provided) { 5922 if (folio != page_folio(pte_page(pte))) { 5923 spin_unlock(ptl); 5924 continue; 5925 } 5926 /* 5927 * Mark the VMA as having unmapped its page so that 5928 * future faults in this VMA will fail rather than 5929 * looking like data was lost 5930 */ 5931 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5932 } else { 5933 folio = page_folio(pte_page(pte)); 5934 } 5935 5936 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5937 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5938 if (huge_pte_dirty(pte)) 5939 folio_mark_dirty(folio); 5940 /* Leave a uffd-wp pte marker if needed */ 5941 if (huge_pte_uffd_wp(pte) && 5942 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5943 set_huge_pte_at(mm, address, ptep, 5944 make_pte_marker(PTE_MARKER_UFFD_WP), 5945 sz); 5946 hugetlb_count_sub(pages_per_huge_page(h), mm); 5947 hugetlb_remove_rmap(folio); 5948 5949 /* 5950 * Restore the reservation for anonymous page, otherwise the 5951 * backing page could be stolen by someone. 5952 * If there we are freeing a surplus, do not set the restore 5953 * reservation bit. 5954 */ 5955 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5956 folio_test_anon(folio)) { 5957 folio_set_hugetlb_restore_reserve(folio); 5958 /* Reservation to be adjusted after the spin lock */ 5959 adjust_reservation = true; 5960 } 5961 5962 spin_unlock(ptl); 5963 5964 /* 5965 * Adjust the reservation for the region that will have the 5966 * reserve restored. Keep in mind that vma_needs_reservation() changes 5967 * resv->adds_in_progress if it succeeds. If this is not done, 5968 * do_exit() will not see it, and will keep the reservation 5969 * forever. 5970 */ 5971 if (adjust_reservation) { 5972 int rc = vma_needs_reservation(h, vma, address); 5973 5974 if (rc < 0) 5975 /* Pressumably allocate_file_region_entries failed 5976 * to allocate a file_region struct. Clear 5977 * hugetlb_restore_reserve so that global reserve 5978 * count will not be incremented by free_huge_folio. 5979 * Act as if we consumed the reservation. 5980 */ 5981 folio_clear_hugetlb_restore_reserve(folio); 5982 else if (rc) 5983 vma_add_reservation(h, vma, address); 5984 } 5985 5986 tlb_remove_page_size(tlb, folio_page(folio, 0), 5987 folio_size(folio)); 5988 /* 5989 * If we were instructed to unmap a specific folio, we're done. 5990 */ 5991 if (folio_provided) 5992 break; 5993 } 5994 tlb_end_vma(tlb, vma); 5995 5996 /* 5997 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5998 * could defer the flush until now, since by holding i_mmap_rwsem we 5999 * guaranteed that the last refernece would not be dropped. But we must 6000 * do the flushing before we return, as otherwise i_mmap_rwsem will be 6001 * dropped and the last reference to the shared PMDs page might be 6002 * dropped as well. 6003 * 6004 * In theory we could defer the freeing of the PMD pages as well, but 6005 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 6006 * detect sharing, so we cannot defer the release of the page either. 6007 * Instead, do flush now. 6008 */ 6009 if (force_flush) 6010 tlb_flush_mmu_tlbonly(tlb); 6011 } 6012 6013 void __hugetlb_zap_begin(struct vm_area_struct *vma, 6014 unsigned long *start, unsigned long *end) 6015 { 6016 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6017 return; 6018 6019 adjust_range_if_pmd_sharing_possible(vma, start, end); 6020 hugetlb_vma_lock_write(vma); 6021 if (vma->vm_file) 6022 i_mmap_lock_write(vma->vm_file->f_mapping); 6023 } 6024 6025 void __hugetlb_zap_end(struct vm_area_struct *vma, 6026 struct zap_details *details) 6027 { 6028 zap_flags_t zap_flags = details ? details->zap_flags : 0; 6029 6030 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 6031 return; 6032 6033 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 6034 /* 6035 * Unlock and free the vma lock before releasing i_mmap_rwsem. 6036 * When the vma_lock is freed, this makes the vma ineligible 6037 * for pmd sharing. And, i_mmap_rwsem is required to set up 6038 * pmd sharing. This is important as page tables for this 6039 * unmapped range will be asynchrously deleted. If the page 6040 * tables are shared, there will be issues when accessed by 6041 * someone else. 6042 */ 6043 __hugetlb_vma_unlock_write_free(vma); 6044 } else { 6045 hugetlb_vma_unlock_write(vma); 6046 } 6047 6048 if (vma->vm_file) 6049 i_mmap_unlock_write(vma->vm_file->f_mapping); 6050 } 6051 6052 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 6053 unsigned long end, struct folio *folio, 6054 zap_flags_t zap_flags) 6055 { 6056 struct mmu_notifier_range range; 6057 struct mmu_gather tlb; 6058 6059 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 6060 start, end); 6061 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6062 mmu_notifier_invalidate_range_start(&range); 6063 tlb_gather_mmu(&tlb, vma->vm_mm); 6064 6065 __unmap_hugepage_range(&tlb, vma, start, end, 6066 folio, zap_flags); 6067 6068 mmu_notifier_invalidate_range_end(&range); 6069 tlb_finish_mmu(&tlb); 6070 } 6071 6072 /* 6073 * This is called when the original mapper is failing to COW a MAP_PRIVATE 6074 * mapping it owns the reserve page for. The intention is to unmap the page 6075 * from other VMAs and let the children be SIGKILLed if they are faulting the 6076 * same region. 6077 */ 6078 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 6079 struct folio *folio, unsigned long address) 6080 { 6081 struct hstate *h = hstate_vma(vma); 6082 struct vm_area_struct *iter_vma; 6083 struct address_space *mapping; 6084 pgoff_t pgoff; 6085 6086 /* 6087 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 6088 * from page cache lookup which is in HPAGE_SIZE units. 6089 */ 6090 address = address & huge_page_mask(h); 6091 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 6092 vma->vm_pgoff; 6093 mapping = vma->vm_file->f_mapping; 6094 6095 /* 6096 * Take the mapping lock for the duration of the table walk. As 6097 * this mapping should be shared between all the VMAs, 6098 * __unmap_hugepage_range() is called as the lock is already held 6099 */ 6100 i_mmap_lock_write(mapping); 6101 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 6102 /* Do not unmap the current VMA */ 6103 if (iter_vma == vma) 6104 continue; 6105 6106 /* 6107 * Shared VMAs have their own reserves and do not affect 6108 * MAP_PRIVATE accounting but it is possible that a shared 6109 * VMA is using the same page so check and skip such VMAs. 6110 */ 6111 if (iter_vma->vm_flags & VM_MAYSHARE) 6112 continue; 6113 6114 /* 6115 * Unmap the page from other VMAs without their own reserves. 6116 * They get marked to be SIGKILLed if they fault in these 6117 * areas. This is because a future no-page fault on this VMA 6118 * could insert a zeroed page instead of the data existing 6119 * from the time of fork. This would look like data corruption 6120 */ 6121 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 6122 unmap_hugepage_range(iter_vma, address, 6123 address + huge_page_size(h), 6124 folio, 0); 6125 } 6126 i_mmap_unlock_write(mapping); 6127 } 6128 6129 /* 6130 * hugetlb_wp() should be called with page lock of the original hugepage held. 6131 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 6132 * cannot race with other handlers or page migration. 6133 * Keep the pte_same checks anyway to make transition from the mutex easier. 6134 */ 6135 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio, 6136 struct vm_fault *vmf) 6137 { 6138 struct vm_area_struct *vma = vmf->vma; 6139 struct mm_struct *mm = vma->vm_mm; 6140 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 6141 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 6142 struct hstate *h = hstate_vma(vma); 6143 struct folio *old_folio; 6144 struct folio *new_folio; 6145 bool cow_from_owner = 0; 6146 vm_fault_t ret = 0; 6147 struct mmu_notifier_range range; 6148 6149 /* 6150 * Never handle CoW for uffd-wp protected pages. It should be only 6151 * handled when the uffd-wp protection is removed. 6152 * 6153 * Note that only the CoW optimization path (in hugetlb_no_page()) 6154 * can trigger this, because hugetlb_fault() will always resolve 6155 * uffd-wp bit first. 6156 */ 6157 if (!unshare && huge_pte_uffd_wp(pte)) 6158 return 0; 6159 6160 /* Let's take out MAP_SHARED mappings first. */ 6161 if (vma->vm_flags & VM_MAYSHARE) { 6162 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 6163 return 0; 6164 } 6165 6166 old_folio = page_folio(pte_page(pte)); 6167 6168 delayacct_wpcopy_start(); 6169 6170 retry_avoidcopy: 6171 /* 6172 * If no-one else is actually using this page, we're the exclusive 6173 * owner and can reuse this page. 6174 * 6175 * Note that we don't rely on the (safer) folio refcount here, because 6176 * copying the hugetlb folio when there are unexpected (temporary) 6177 * folio references could harm simple fork()+exit() users when 6178 * we run out of free hugetlb folios: we would have to kill processes 6179 * in scenarios that used to work. As a side effect, there can still 6180 * be leaks between processes, for example, with FOLL_GET users. 6181 */ 6182 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 6183 if (!PageAnonExclusive(&old_folio->page)) { 6184 folio_move_anon_rmap(old_folio, vma); 6185 SetPageAnonExclusive(&old_folio->page); 6186 } 6187 if (likely(!unshare)) 6188 set_huge_ptep_maybe_writable(vma, vmf->address, 6189 vmf->pte); 6190 6191 delayacct_wpcopy_end(); 6192 return 0; 6193 } 6194 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 6195 PageAnonExclusive(&old_folio->page), &old_folio->page); 6196 6197 /* 6198 * If the process that created a MAP_PRIVATE mapping is about to 6199 * perform a COW due to a shared page count, attempt to satisfy 6200 * the allocation without using the existing reserves. The pagecache 6201 * page is used to determine if the reserve at this address was 6202 * consumed or not. If reserves were used, a partial faulted mapping 6203 * at the time of fork() could consume its reserves on COW instead 6204 * of the full address range. 6205 */ 6206 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 6207 old_folio != pagecache_folio) 6208 cow_from_owner = true; 6209 6210 folio_get(old_folio); 6211 6212 /* 6213 * Drop page table lock as buddy allocator may be called. It will 6214 * be acquired again before returning to the caller, as expected. 6215 */ 6216 spin_unlock(vmf->ptl); 6217 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 6218 6219 if (IS_ERR(new_folio)) { 6220 /* 6221 * If a process owning a MAP_PRIVATE mapping fails to COW, 6222 * it is due to references held by a child and an insufficient 6223 * huge page pool. To guarantee the original mappers 6224 * reliability, unmap the page from child processes. The child 6225 * may get SIGKILLed if it later faults. 6226 */ 6227 if (cow_from_owner) { 6228 struct address_space *mapping = vma->vm_file->f_mapping; 6229 pgoff_t idx; 6230 u32 hash; 6231 6232 folio_put(old_folio); 6233 /* 6234 * Drop hugetlb_fault_mutex and vma_lock before 6235 * unmapping. unmapping needs to hold vma_lock 6236 * in write mode. Dropping vma_lock in read mode 6237 * here is OK as COW mappings do not interact with 6238 * PMD sharing. 6239 * 6240 * Reacquire both after unmap operation. 6241 */ 6242 idx = vma_hugecache_offset(h, vma, vmf->address); 6243 hash = hugetlb_fault_mutex_hash(mapping, idx); 6244 hugetlb_vma_unlock_read(vma); 6245 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6246 6247 unmap_ref_private(mm, vma, old_folio, vmf->address); 6248 6249 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6250 hugetlb_vma_lock_read(vma); 6251 spin_lock(vmf->ptl); 6252 vmf->pte = hugetlb_walk(vma, vmf->address, 6253 huge_page_size(h)); 6254 if (likely(vmf->pte && 6255 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 6256 goto retry_avoidcopy; 6257 /* 6258 * race occurs while re-acquiring page table 6259 * lock, and our job is done. 6260 */ 6261 delayacct_wpcopy_end(); 6262 return 0; 6263 } 6264 6265 ret = vmf_error(PTR_ERR(new_folio)); 6266 goto out_release_old; 6267 } 6268 6269 /* 6270 * When the original hugepage is shared one, it does not have 6271 * anon_vma prepared. 6272 */ 6273 ret = __vmf_anon_prepare(vmf); 6274 if (unlikely(ret)) 6275 goto out_release_all; 6276 6277 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 6278 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 6279 goto out_release_all; 6280 } 6281 __folio_mark_uptodate(new_folio); 6282 6283 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 6284 vmf->address + huge_page_size(h)); 6285 mmu_notifier_invalidate_range_start(&range); 6286 6287 /* 6288 * Retake the page table lock to check for racing updates 6289 * before the page tables are altered 6290 */ 6291 spin_lock(vmf->ptl); 6292 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 6293 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 6294 pte_t newpte = make_huge_pte(vma, new_folio, !unshare); 6295 6296 /* Break COW or unshare */ 6297 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 6298 hugetlb_remove_rmap(old_folio); 6299 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 6300 if (huge_pte_uffd_wp(pte)) 6301 newpte = huge_pte_mkuffd_wp(newpte); 6302 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 6303 huge_page_size(h)); 6304 folio_set_hugetlb_migratable(new_folio); 6305 /* Make the old page be freed below */ 6306 new_folio = old_folio; 6307 } 6308 spin_unlock(vmf->ptl); 6309 mmu_notifier_invalidate_range_end(&range); 6310 out_release_all: 6311 /* 6312 * No restore in case of successful pagetable update (Break COW or 6313 * unshare) 6314 */ 6315 if (new_folio != old_folio) 6316 restore_reserve_on_error(h, vma, vmf->address, new_folio); 6317 folio_put(new_folio); 6318 out_release_old: 6319 folio_put(old_folio); 6320 6321 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 6322 6323 delayacct_wpcopy_end(); 6324 return ret; 6325 } 6326 6327 /* 6328 * Return whether there is a pagecache page to back given address within VMA. 6329 */ 6330 bool hugetlbfs_pagecache_present(struct hstate *h, 6331 struct vm_area_struct *vma, unsigned long address) 6332 { 6333 struct address_space *mapping = vma->vm_file->f_mapping; 6334 pgoff_t idx = linear_page_index(vma, address); 6335 struct folio *folio; 6336 6337 folio = filemap_get_folio(mapping, idx); 6338 if (IS_ERR(folio)) 6339 return false; 6340 folio_put(folio); 6341 return true; 6342 } 6343 6344 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 6345 pgoff_t idx) 6346 { 6347 struct inode *inode = mapping->host; 6348 struct hstate *h = hstate_inode(inode); 6349 int err; 6350 6351 idx <<= huge_page_order(h); 6352 __folio_set_locked(folio); 6353 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 6354 6355 if (unlikely(err)) { 6356 __folio_clear_locked(folio); 6357 return err; 6358 } 6359 folio_clear_hugetlb_restore_reserve(folio); 6360 6361 /* 6362 * mark folio dirty so that it will not be removed from cache/file 6363 * by non-hugetlbfs specific code paths. 6364 */ 6365 folio_mark_dirty(folio); 6366 6367 spin_lock(&inode->i_lock); 6368 inode->i_blocks += blocks_per_huge_page(h); 6369 spin_unlock(&inode->i_lock); 6370 return 0; 6371 } 6372 6373 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 6374 struct address_space *mapping, 6375 unsigned long reason) 6376 { 6377 u32 hash; 6378 6379 /* 6380 * vma_lock and hugetlb_fault_mutex must be dropped before handling 6381 * userfault. Also mmap_lock could be dropped due to handling 6382 * userfault, any vma operation should be careful from here. 6383 */ 6384 hugetlb_vma_unlock_read(vmf->vma); 6385 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6386 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6387 return handle_userfault(vmf, reason); 6388 } 6389 6390 /* 6391 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 6392 * false if pte changed or is changing. 6393 */ 6394 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 6395 pte_t *ptep, pte_t old_pte) 6396 { 6397 spinlock_t *ptl; 6398 bool same; 6399 6400 ptl = huge_pte_lock(h, mm, ptep); 6401 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 6402 spin_unlock(ptl); 6403 6404 return same; 6405 } 6406 6407 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 6408 struct vm_fault *vmf) 6409 { 6410 struct vm_area_struct *vma = vmf->vma; 6411 struct mm_struct *mm = vma->vm_mm; 6412 struct hstate *h = hstate_vma(vma); 6413 vm_fault_t ret = VM_FAULT_SIGBUS; 6414 int anon_rmap = 0; 6415 unsigned long size; 6416 struct folio *folio; 6417 pte_t new_pte; 6418 bool new_folio, new_pagecache_folio = false; 6419 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 6420 6421 /* 6422 * Currently, we are forced to kill the process in the event the 6423 * original mapper has unmapped pages from the child due to a failed 6424 * COW/unsharing. Warn that such a situation has occurred as it may not 6425 * be obvious. 6426 */ 6427 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 6428 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 6429 current->pid); 6430 goto out; 6431 } 6432 6433 /* 6434 * Use page lock to guard against racing truncation 6435 * before we get page_table_lock. 6436 */ 6437 new_folio = false; 6438 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 6439 if (IS_ERR(folio)) { 6440 size = i_size_read(mapping->host) >> huge_page_shift(h); 6441 if (vmf->pgoff >= size) 6442 goto out; 6443 /* Check for page in userfault range */ 6444 if (userfaultfd_missing(vma)) { 6445 /* 6446 * Since hugetlb_no_page() was examining pte 6447 * without pgtable lock, we need to re-test under 6448 * lock because the pte may not be stable and could 6449 * have changed from under us. Try to detect 6450 * either changed or during-changing ptes and retry 6451 * properly when needed. 6452 * 6453 * Note that userfaultfd is actually fine with 6454 * false positives (e.g. caused by pte changed), 6455 * but not wrong logical events (e.g. caused by 6456 * reading a pte during changing). The latter can 6457 * confuse the userspace, so the strictness is very 6458 * much preferred. E.g., MISSING event should 6459 * never happen on the page after UFFDIO_COPY has 6460 * correctly installed the page and returned. 6461 */ 6462 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6463 ret = 0; 6464 goto out; 6465 } 6466 6467 return hugetlb_handle_userfault(vmf, mapping, 6468 VM_UFFD_MISSING); 6469 } 6470 6471 if (!(vma->vm_flags & VM_MAYSHARE)) { 6472 ret = __vmf_anon_prepare(vmf); 6473 if (unlikely(ret)) 6474 goto out; 6475 } 6476 6477 folio = alloc_hugetlb_folio(vma, vmf->address, false); 6478 if (IS_ERR(folio)) { 6479 /* 6480 * Returning error will result in faulting task being 6481 * sent SIGBUS. The hugetlb fault mutex prevents two 6482 * tasks from racing to fault in the same page which 6483 * could result in false unable to allocate errors. 6484 * Page migration does not take the fault mutex, but 6485 * does a clear then write of pte's under page table 6486 * lock. Page fault code could race with migration, 6487 * notice the clear pte and try to allocate a page 6488 * here. Before returning error, get ptl and make 6489 * sure there really is no pte entry. 6490 */ 6491 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 6492 ret = vmf_error(PTR_ERR(folio)); 6493 else 6494 ret = 0; 6495 goto out; 6496 } 6497 folio_zero_user(folio, vmf->real_address); 6498 __folio_mark_uptodate(folio); 6499 new_folio = true; 6500 6501 if (vma->vm_flags & VM_MAYSHARE) { 6502 int err = hugetlb_add_to_page_cache(folio, mapping, 6503 vmf->pgoff); 6504 if (err) { 6505 /* 6506 * err can't be -EEXIST which implies someone 6507 * else consumed the reservation since hugetlb 6508 * fault mutex is held when add a hugetlb page 6509 * to the page cache. So it's safe to call 6510 * restore_reserve_on_error() here. 6511 */ 6512 restore_reserve_on_error(h, vma, vmf->address, 6513 folio); 6514 folio_put(folio); 6515 ret = VM_FAULT_SIGBUS; 6516 goto out; 6517 } 6518 new_pagecache_folio = true; 6519 } else { 6520 folio_lock(folio); 6521 anon_rmap = 1; 6522 } 6523 } else { 6524 /* 6525 * If memory error occurs between mmap() and fault, some process 6526 * don't have hwpoisoned swap entry for errored virtual address. 6527 * So we need to block hugepage fault by PG_hwpoison bit check. 6528 */ 6529 if (unlikely(folio_test_hwpoison(folio))) { 6530 ret = VM_FAULT_HWPOISON_LARGE | 6531 VM_FAULT_SET_HINDEX(hstate_index(h)); 6532 goto backout_unlocked; 6533 } 6534 6535 /* Check for page in userfault range. */ 6536 if (userfaultfd_minor(vma)) { 6537 folio_unlock(folio); 6538 folio_put(folio); 6539 /* See comment in userfaultfd_missing() block above */ 6540 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 6541 ret = 0; 6542 goto out; 6543 } 6544 return hugetlb_handle_userfault(vmf, mapping, 6545 VM_UFFD_MINOR); 6546 } 6547 } 6548 6549 /* 6550 * If we are going to COW a private mapping later, we examine the 6551 * pending reservations for this page now. This will ensure that 6552 * any allocations necessary to record that reservation occur outside 6553 * the spinlock. 6554 */ 6555 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6556 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 6557 ret = VM_FAULT_OOM; 6558 goto backout_unlocked; 6559 } 6560 /* Just decrements count, does not deallocate */ 6561 vma_end_reservation(h, vma, vmf->address); 6562 } 6563 6564 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 6565 ret = 0; 6566 /* If pte changed from under us, retry */ 6567 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 6568 goto backout; 6569 6570 if (anon_rmap) 6571 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 6572 else 6573 hugetlb_add_file_rmap(folio); 6574 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); 6575 /* 6576 * If this pte was previously wr-protected, keep it wr-protected even 6577 * if populated. 6578 */ 6579 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte))) 6580 new_pte = huge_pte_mkuffd_wp(new_pte); 6581 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 6582 6583 hugetlb_count_add(pages_per_huge_page(h), mm); 6584 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6585 /* Optimization, do the COW without a second fault */ 6586 ret = hugetlb_wp(folio, vmf); 6587 } 6588 6589 spin_unlock(vmf->ptl); 6590 6591 /* 6592 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6593 * found in the pagecache may not have hugetlb_migratable if they have 6594 * been isolated for migration. 6595 */ 6596 if (new_folio) 6597 folio_set_hugetlb_migratable(folio); 6598 6599 folio_unlock(folio); 6600 out: 6601 hugetlb_vma_unlock_read(vma); 6602 6603 /* 6604 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 6605 * the only way ret can be set to VM_FAULT_RETRY. 6606 */ 6607 if (unlikely(ret & VM_FAULT_RETRY)) 6608 vma_end_read(vma); 6609 6610 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6611 return ret; 6612 6613 backout: 6614 spin_unlock(vmf->ptl); 6615 backout_unlocked: 6616 if (new_folio && !new_pagecache_folio) 6617 restore_reserve_on_error(h, vma, vmf->address, folio); 6618 6619 folio_unlock(folio); 6620 folio_put(folio); 6621 goto out; 6622 } 6623 6624 #ifdef CONFIG_SMP 6625 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6626 { 6627 unsigned long key[2]; 6628 u32 hash; 6629 6630 key[0] = (unsigned long) mapping; 6631 key[1] = idx; 6632 6633 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6634 6635 return hash & (num_fault_mutexes - 1); 6636 } 6637 #else 6638 /* 6639 * For uniprocessor systems we always use a single mutex, so just 6640 * return 0 and avoid the hashing overhead. 6641 */ 6642 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6643 { 6644 return 0; 6645 } 6646 #endif 6647 6648 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6649 unsigned long address, unsigned int flags) 6650 { 6651 vm_fault_t ret; 6652 u32 hash; 6653 struct folio *folio = NULL; 6654 struct folio *pagecache_folio = NULL; 6655 struct hstate *h = hstate_vma(vma); 6656 struct address_space *mapping; 6657 int need_wait_lock = 0; 6658 struct vm_fault vmf = { 6659 .vma = vma, 6660 .address = address & huge_page_mask(h), 6661 .real_address = address, 6662 .flags = flags, 6663 .pgoff = vma_hugecache_offset(h, vma, 6664 address & huge_page_mask(h)), 6665 /* TODO: Track hugetlb faults using vm_fault */ 6666 6667 /* 6668 * Some fields may not be initialized, be careful as it may 6669 * be hard to debug if called functions make assumptions 6670 */ 6671 }; 6672 6673 /* 6674 * Serialize hugepage allocation and instantiation, so that we don't 6675 * get spurious allocation failures if two CPUs race to instantiate 6676 * the same page in the page cache. 6677 */ 6678 mapping = vma->vm_file->f_mapping; 6679 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6680 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6681 6682 /* 6683 * Acquire vma lock before calling huge_pte_alloc and hold 6684 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6685 * being called elsewhere and making the vmf.pte no longer valid. 6686 */ 6687 hugetlb_vma_lock_read(vma); 6688 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6689 if (!vmf.pte) { 6690 hugetlb_vma_unlock_read(vma); 6691 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6692 return VM_FAULT_OOM; 6693 } 6694 6695 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6696 if (huge_pte_none_mostly(vmf.orig_pte)) { 6697 if (is_pte_marker(vmf.orig_pte)) { 6698 pte_marker marker = 6699 pte_marker_get(pte_to_swp_entry(vmf.orig_pte)); 6700 6701 if (marker & PTE_MARKER_POISONED) { 6702 ret = VM_FAULT_HWPOISON_LARGE | 6703 VM_FAULT_SET_HINDEX(hstate_index(h)); 6704 goto out_mutex; 6705 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6706 /* This isn't supported in hugetlb. */ 6707 ret = VM_FAULT_SIGSEGV; 6708 goto out_mutex; 6709 } 6710 } 6711 6712 /* 6713 * Other PTE markers should be handled the same way as none PTE. 6714 * 6715 * hugetlb_no_page will drop vma lock and hugetlb fault 6716 * mutex internally, which make us return immediately. 6717 */ 6718 return hugetlb_no_page(mapping, &vmf); 6719 } 6720 6721 ret = 0; 6722 6723 /* 6724 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this 6725 * point, so this check prevents the kernel from going below assuming 6726 * that we have an active hugepage in pagecache. This goto expects 6727 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned) 6728 * check will properly handle it. 6729 */ 6730 if (!pte_present(vmf.orig_pte)) { 6731 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) { 6732 /* 6733 * Release the hugetlb fault lock now, but retain 6734 * the vma lock, because it is needed to guard the 6735 * huge_pte_lockptr() later in 6736 * migration_entry_wait_huge(). The vma lock will 6737 * be released there. 6738 */ 6739 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6740 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6741 return 0; 6742 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte))) 6743 ret = VM_FAULT_HWPOISON_LARGE | 6744 VM_FAULT_SET_HINDEX(hstate_index(h)); 6745 goto out_mutex; 6746 } 6747 6748 /* 6749 * If we are going to COW/unshare the mapping later, we examine the 6750 * pending reservations for this page now. This will ensure that any 6751 * allocations necessary to record that reservation occur outside the 6752 * spinlock. Also lookup the pagecache page now as it is used to 6753 * determine if a reservation has been consumed. 6754 */ 6755 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6756 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6757 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6758 ret = VM_FAULT_OOM; 6759 goto out_mutex; 6760 } 6761 /* Just decrements count, does not deallocate */ 6762 vma_end_reservation(h, vma, vmf.address); 6763 6764 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, 6765 vmf.pgoff); 6766 if (IS_ERR(pagecache_folio)) 6767 pagecache_folio = NULL; 6768 } 6769 6770 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6771 6772 /* Check for a racing update before calling hugetlb_wp() */ 6773 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6774 goto out_ptl; 6775 6776 /* Handle userfault-wp first, before trying to lock more pages */ 6777 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6778 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6779 if (!userfaultfd_wp_async(vma)) { 6780 spin_unlock(vmf.ptl); 6781 if (pagecache_folio) { 6782 folio_unlock(pagecache_folio); 6783 folio_put(pagecache_folio); 6784 } 6785 hugetlb_vma_unlock_read(vma); 6786 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6787 return handle_userfault(&vmf, VM_UFFD_WP); 6788 } 6789 6790 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6791 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6792 huge_page_size(hstate_vma(vma))); 6793 /* Fallthrough to CoW */ 6794 } 6795 6796 /* 6797 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and 6798 * pagecache_folio, so here we need take the former one 6799 * when folio != pagecache_folio or !pagecache_folio. 6800 */ 6801 folio = page_folio(pte_page(vmf.orig_pte)); 6802 if (folio != pagecache_folio) 6803 if (!folio_trylock(folio)) { 6804 need_wait_lock = 1; 6805 goto out_ptl; 6806 } 6807 6808 folio_get(folio); 6809 6810 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6811 if (!huge_pte_write(vmf.orig_pte)) { 6812 ret = hugetlb_wp(pagecache_folio, &vmf); 6813 goto out_put_page; 6814 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6815 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6816 } 6817 } 6818 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6819 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6820 flags & FAULT_FLAG_WRITE)) 6821 update_mmu_cache(vma, vmf.address, vmf.pte); 6822 out_put_page: 6823 if (folio != pagecache_folio) 6824 folio_unlock(folio); 6825 folio_put(folio); 6826 out_ptl: 6827 spin_unlock(vmf.ptl); 6828 6829 if (pagecache_folio) { 6830 folio_unlock(pagecache_folio); 6831 folio_put(pagecache_folio); 6832 } 6833 out_mutex: 6834 hugetlb_vma_unlock_read(vma); 6835 6836 /* 6837 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6838 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6839 */ 6840 if (unlikely(ret & VM_FAULT_RETRY)) 6841 vma_end_read(vma); 6842 6843 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6844 /* 6845 * Generally it's safe to hold refcount during waiting page lock. But 6846 * here we just wait to defer the next page fault to avoid busy loop and 6847 * the page is not used after unlocked before returning from the current 6848 * page fault. So we are safe from accessing freed page, even if we wait 6849 * here without taking refcount. 6850 */ 6851 if (need_wait_lock) 6852 folio_wait_locked(folio); 6853 return ret; 6854 } 6855 6856 #ifdef CONFIG_USERFAULTFD 6857 /* 6858 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6859 */ 6860 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6861 struct vm_area_struct *vma, unsigned long address) 6862 { 6863 struct mempolicy *mpol; 6864 nodemask_t *nodemask; 6865 struct folio *folio; 6866 gfp_t gfp_mask; 6867 int node; 6868 6869 gfp_mask = htlb_alloc_mask(h); 6870 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6871 /* 6872 * This is used to allocate a temporary hugetlb to hold the copied 6873 * content, which will then be copied again to the final hugetlb 6874 * consuming a reservation. Set the alloc_fallback to false to indicate 6875 * that breaking the per-node hugetlb pool is not allowed in this case. 6876 */ 6877 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6878 mpol_cond_put(mpol); 6879 6880 return folio; 6881 } 6882 6883 /* 6884 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6885 * with modifications for hugetlb pages. 6886 */ 6887 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6888 struct vm_area_struct *dst_vma, 6889 unsigned long dst_addr, 6890 unsigned long src_addr, 6891 uffd_flags_t flags, 6892 struct folio **foliop) 6893 { 6894 struct mm_struct *dst_mm = dst_vma->vm_mm; 6895 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6896 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6897 struct hstate *h = hstate_vma(dst_vma); 6898 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6899 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6900 unsigned long size = huge_page_size(h); 6901 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6902 pte_t _dst_pte; 6903 spinlock_t *ptl; 6904 int ret = -ENOMEM; 6905 struct folio *folio; 6906 bool folio_in_pagecache = false; 6907 6908 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6909 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6910 6911 /* Don't overwrite any existing PTEs (even markers) */ 6912 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6913 spin_unlock(ptl); 6914 return -EEXIST; 6915 } 6916 6917 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6918 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6919 6920 /* No need to invalidate - it was non-present before */ 6921 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6922 6923 spin_unlock(ptl); 6924 return 0; 6925 } 6926 6927 if (is_continue) { 6928 ret = -EFAULT; 6929 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6930 if (IS_ERR(folio)) 6931 goto out; 6932 folio_in_pagecache = true; 6933 } else if (!*foliop) { 6934 /* If a folio already exists, then it's UFFDIO_COPY for 6935 * a non-missing case. Return -EEXIST. 6936 */ 6937 if (vm_shared && 6938 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6939 ret = -EEXIST; 6940 goto out; 6941 } 6942 6943 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6944 if (IS_ERR(folio)) { 6945 ret = -ENOMEM; 6946 goto out; 6947 } 6948 6949 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6950 false); 6951 6952 /* fallback to copy_from_user outside mmap_lock */ 6953 if (unlikely(ret)) { 6954 ret = -ENOENT; 6955 /* Free the allocated folio which may have 6956 * consumed a reservation. 6957 */ 6958 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6959 folio_put(folio); 6960 6961 /* Allocate a temporary folio to hold the copied 6962 * contents. 6963 */ 6964 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6965 if (!folio) { 6966 ret = -ENOMEM; 6967 goto out; 6968 } 6969 *foliop = folio; 6970 /* Set the outparam foliop and return to the caller to 6971 * copy the contents outside the lock. Don't free the 6972 * folio. 6973 */ 6974 goto out; 6975 } 6976 } else { 6977 if (vm_shared && 6978 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6979 folio_put(*foliop); 6980 ret = -EEXIST; 6981 *foliop = NULL; 6982 goto out; 6983 } 6984 6985 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6986 if (IS_ERR(folio)) { 6987 folio_put(*foliop); 6988 ret = -ENOMEM; 6989 *foliop = NULL; 6990 goto out; 6991 } 6992 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6993 folio_put(*foliop); 6994 *foliop = NULL; 6995 if (ret) { 6996 folio_put(folio); 6997 goto out; 6998 } 6999 } 7000 7001 /* 7002 * If we just allocated a new page, we need a memory barrier to ensure 7003 * that preceding stores to the page become visible before the 7004 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 7005 * is what we need. 7006 * 7007 * In the case where we have not allocated a new page (is_continue), 7008 * the page must already be uptodate. UFFDIO_CONTINUE already includes 7009 * an earlier smp_wmb() to ensure that prior stores will be visible 7010 * before the set_pte_at() write. 7011 */ 7012 if (!is_continue) 7013 __folio_mark_uptodate(folio); 7014 else 7015 WARN_ON_ONCE(!folio_test_uptodate(folio)); 7016 7017 /* Add shared, newly allocated pages to the page cache. */ 7018 if (vm_shared && !is_continue) { 7019 ret = -EFAULT; 7020 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 7021 goto out_release_nounlock; 7022 7023 /* 7024 * Serialization between remove_inode_hugepages() and 7025 * hugetlb_add_to_page_cache() below happens through the 7026 * hugetlb_fault_mutex_table that here must be hold by 7027 * the caller. 7028 */ 7029 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 7030 if (ret) 7031 goto out_release_nounlock; 7032 folio_in_pagecache = true; 7033 } 7034 7035 ptl = huge_pte_lock(h, dst_mm, dst_pte); 7036 7037 ret = -EIO; 7038 if (folio_test_hwpoison(folio)) 7039 goto out_release_unlock; 7040 7041 /* 7042 * We allow to overwrite a pte marker: consider when both MISSING|WP 7043 * registered, we firstly wr-protect a none pte which has no page cache 7044 * page backing it, then access the page. 7045 */ 7046 ret = -EEXIST; 7047 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) 7048 goto out_release_unlock; 7049 7050 if (folio_in_pagecache) 7051 hugetlb_add_file_rmap(folio); 7052 else 7053 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 7054 7055 /* 7056 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 7057 * with wp flag set, don't set pte write bit. 7058 */ 7059 _dst_pte = make_huge_pte(dst_vma, folio, 7060 !wp_enabled && !(is_continue && !vm_shared)); 7061 /* 7062 * Always mark UFFDIO_COPY page dirty; note that this may not be 7063 * extremely important for hugetlbfs for now since swapping is not 7064 * supported, but we should still be clear in that this page cannot be 7065 * thrown away at will, even if write bit not set. 7066 */ 7067 _dst_pte = huge_pte_mkdirty(_dst_pte); 7068 _dst_pte = pte_mkyoung(_dst_pte); 7069 7070 if (wp_enabled) 7071 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 7072 7073 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 7074 7075 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 7076 7077 /* No need to invalidate - it was non-present before */ 7078 update_mmu_cache(dst_vma, dst_addr, dst_pte); 7079 7080 spin_unlock(ptl); 7081 if (!is_continue) 7082 folio_set_hugetlb_migratable(folio); 7083 if (vm_shared || is_continue) 7084 folio_unlock(folio); 7085 ret = 0; 7086 out: 7087 return ret; 7088 out_release_unlock: 7089 spin_unlock(ptl); 7090 if (vm_shared || is_continue) 7091 folio_unlock(folio); 7092 out_release_nounlock: 7093 if (!folio_in_pagecache) 7094 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 7095 folio_put(folio); 7096 goto out; 7097 } 7098 #endif /* CONFIG_USERFAULTFD */ 7099 7100 long hugetlb_change_protection(struct vm_area_struct *vma, 7101 unsigned long address, unsigned long end, 7102 pgprot_t newprot, unsigned long cp_flags) 7103 { 7104 struct mm_struct *mm = vma->vm_mm; 7105 unsigned long start = address; 7106 pte_t *ptep; 7107 pte_t pte; 7108 struct hstate *h = hstate_vma(vma); 7109 long pages = 0, psize = huge_page_size(h); 7110 bool shared_pmd = false; 7111 struct mmu_notifier_range range; 7112 unsigned long last_addr_mask; 7113 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 7114 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 7115 7116 /* 7117 * In the case of shared PMDs, the area to flush could be beyond 7118 * start/end. Set range.start/range.end to cover the maximum possible 7119 * range if PMD sharing is possible. 7120 */ 7121 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 7122 0, mm, start, end); 7123 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 7124 7125 BUG_ON(address >= end); 7126 flush_cache_range(vma, range.start, range.end); 7127 7128 mmu_notifier_invalidate_range_start(&range); 7129 hugetlb_vma_lock_write(vma); 7130 i_mmap_lock_write(vma->vm_file->f_mapping); 7131 last_addr_mask = hugetlb_mask_last_page(h); 7132 for (; address < end; address += psize) { 7133 spinlock_t *ptl; 7134 ptep = hugetlb_walk(vma, address, psize); 7135 if (!ptep) { 7136 if (!uffd_wp) { 7137 address |= last_addr_mask; 7138 continue; 7139 } 7140 /* 7141 * Userfaultfd wr-protect requires pgtable 7142 * pre-allocations to install pte markers. 7143 */ 7144 ptep = huge_pte_alloc(mm, vma, address, psize); 7145 if (!ptep) { 7146 pages = -ENOMEM; 7147 break; 7148 } 7149 } 7150 ptl = huge_pte_lock(h, mm, ptep); 7151 if (huge_pmd_unshare(mm, vma, address, ptep)) { 7152 /* 7153 * When uffd-wp is enabled on the vma, unshare 7154 * shouldn't happen at all. Warn about it if it 7155 * happened due to some reason. 7156 */ 7157 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 7158 pages++; 7159 spin_unlock(ptl); 7160 shared_pmd = true; 7161 address |= last_addr_mask; 7162 continue; 7163 } 7164 pte = huge_ptep_get(mm, address, ptep); 7165 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 7166 /* Nothing to do. */ 7167 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 7168 swp_entry_t entry = pte_to_swp_entry(pte); 7169 struct page *page = pfn_swap_entry_to_page(entry); 7170 pte_t newpte = pte; 7171 7172 if (is_writable_migration_entry(entry)) { 7173 if (PageAnon(page)) 7174 entry = make_readable_exclusive_migration_entry( 7175 swp_offset(entry)); 7176 else 7177 entry = make_readable_migration_entry( 7178 swp_offset(entry)); 7179 newpte = swp_entry_to_pte(entry); 7180 pages++; 7181 } 7182 7183 if (uffd_wp) 7184 newpte = pte_swp_mkuffd_wp(newpte); 7185 else if (uffd_wp_resolve) 7186 newpte = pte_swp_clear_uffd_wp(newpte); 7187 if (!pte_same(pte, newpte)) 7188 set_huge_pte_at(mm, address, ptep, newpte, psize); 7189 } else if (unlikely(is_pte_marker(pte))) { 7190 /* 7191 * Do nothing on a poison marker; page is 7192 * corrupted, permissons do not apply. Here 7193 * pte_marker_uffd_wp()==true implies !poison 7194 * because they're mutual exclusive. 7195 */ 7196 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 7197 /* Safe to modify directly (non-present->none). */ 7198 huge_pte_clear(mm, address, ptep, psize); 7199 } else if (!huge_pte_none(pte)) { 7200 pte_t old_pte; 7201 unsigned int shift = huge_page_shift(hstate_vma(vma)); 7202 7203 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 7204 pte = huge_pte_modify(old_pte, newprot); 7205 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 7206 if (uffd_wp) 7207 pte = huge_pte_mkuffd_wp(pte); 7208 else if (uffd_wp_resolve) 7209 pte = huge_pte_clear_uffd_wp(pte); 7210 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 7211 pages++; 7212 } else { 7213 /* None pte */ 7214 if (unlikely(uffd_wp)) 7215 /* Safe to modify directly (none->non-present). */ 7216 set_huge_pte_at(mm, address, ptep, 7217 make_pte_marker(PTE_MARKER_UFFD_WP), 7218 psize); 7219 } 7220 spin_unlock(ptl); 7221 } 7222 /* 7223 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 7224 * may have cleared our pud entry and done put_page on the page table: 7225 * once we release i_mmap_rwsem, another task can do the final put_page 7226 * and that page table be reused and filled with junk. If we actually 7227 * did unshare a page of pmds, flush the range corresponding to the pud. 7228 */ 7229 if (shared_pmd) 7230 flush_hugetlb_tlb_range(vma, range.start, range.end); 7231 else 7232 flush_hugetlb_tlb_range(vma, start, end); 7233 /* 7234 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 7235 * downgrading page table protection not changing it to point to a new 7236 * page. 7237 * 7238 * See Documentation/mm/mmu_notifier.rst 7239 */ 7240 i_mmap_unlock_write(vma->vm_file->f_mapping); 7241 hugetlb_vma_unlock_write(vma); 7242 mmu_notifier_invalidate_range_end(&range); 7243 7244 return pages > 0 ? (pages << h->order) : pages; 7245 } 7246 7247 /* Return true if reservation was successful, false otherwise. */ 7248 bool hugetlb_reserve_pages(struct inode *inode, 7249 long from, long to, 7250 struct vm_area_struct *vma, 7251 vm_flags_t vm_flags) 7252 { 7253 long chg = -1, add = -1, spool_resv, gbl_resv; 7254 struct hstate *h = hstate_inode(inode); 7255 struct hugepage_subpool *spool = subpool_inode(inode); 7256 struct resv_map *resv_map; 7257 struct hugetlb_cgroup *h_cg = NULL; 7258 long gbl_reserve, regions_needed = 0; 7259 7260 /* This should never happen */ 7261 if (from > to) { 7262 VM_WARN(1, "%s called with a negative range\n", __func__); 7263 return false; 7264 } 7265 7266 /* 7267 * vma specific semaphore used for pmd sharing and fault/truncation 7268 * synchronization 7269 */ 7270 hugetlb_vma_lock_alloc(vma); 7271 7272 /* 7273 * Only apply hugepage reservation if asked. At fault time, an 7274 * attempt will be made for VM_NORESERVE to allocate a page 7275 * without using reserves 7276 */ 7277 if (vm_flags & VM_NORESERVE) 7278 return true; 7279 7280 /* 7281 * Shared mappings base their reservation on the number of pages that 7282 * are already allocated on behalf of the file. Private mappings need 7283 * to reserve the full area even if read-only as mprotect() may be 7284 * called to make the mapping read-write. Assume !vma is a shm mapping 7285 */ 7286 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7287 /* 7288 * resv_map can not be NULL as hugetlb_reserve_pages is only 7289 * called for inodes for which resv_maps were created (see 7290 * hugetlbfs_get_inode). 7291 */ 7292 resv_map = inode_resv_map(inode); 7293 7294 chg = region_chg(resv_map, from, to, ®ions_needed); 7295 } else { 7296 /* Private mapping. */ 7297 resv_map = resv_map_alloc(); 7298 if (!resv_map) 7299 goto out_err; 7300 7301 chg = to - from; 7302 7303 set_vma_resv_map(vma, resv_map); 7304 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 7305 } 7306 7307 if (chg < 0) 7308 goto out_err; 7309 7310 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 7311 chg * pages_per_huge_page(h), &h_cg) < 0) 7312 goto out_err; 7313 7314 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 7315 /* For private mappings, the hugetlb_cgroup uncharge info hangs 7316 * of the resv_map. 7317 */ 7318 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 7319 } 7320 7321 /* 7322 * There must be enough pages in the subpool for the mapping. If 7323 * the subpool has a minimum size, there may be some global 7324 * reservations already in place (gbl_reserve). 7325 */ 7326 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 7327 if (gbl_reserve < 0) 7328 goto out_uncharge_cgroup; 7329 7330 /* 7331 * Check enough hugepages are available for the reservation. 7332 * Hand the pages back to the subpool if there are not 7333 */ 7334 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 7335 goto out_put_pages; 7336 7337 /* 7338 * Account for the reservations made. Shared mappings record regions 7339 * that have reservations as they are shared by multiple VMAs. 7340 * When the last VMA disappears, the region map says how much 7341 * the reservation was and the page cache tells how much of 7342 * the reservation was consumed. Private mappings are per-VMA and 7343 * only the consumed reservations are tracked. When the VMA 7344 * disappears, the original reservation is the VMA size and the 7345 * consumed reservations are stored in the map. Hence, nothing 7346 * else has to be done for private mappings here 7347 */ 7348 if (!vma || vma->vm_flags & VM_MAYSHARE) { 7349 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 7350 7351 if (unlikely(add < 0)) { 7352 hugetlb_acct_memory(h, -gbl_reserve); 7353 goto out_put_pages; 7354 } else if (unlikely(chg > add)) { 7355 /* 7356 * pages in this range were added to the reserve 7357 * map between region_chg and region_add. This 7358 * indicates a race with alloc_hugetlb_folio. Adjust 7359 * the subpool and reserve counts modified above 7360 * based on the difference. 7361 */ 7362 long rsv_adjust; 7363 7364 /* 7365 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 7366 * reference to h_cg->css. See comment below for detail. 7367 */ 7368 hugetlb_cgroup_uncharge_cgroup_rsvd( 7369 hstate_index(h), 7370 (chg - add) * pages_per_huge_page(h), h_cg); 7371 7372 rsv_adjust = hugepage_subpool_put_pages(spool, 7373 chg - add); 7374 hugetlb_acct_memory(h, -rsv_adjust); 7375 } else if (h_cg) { 7376 /* 7377 * The file_regions will hold their own reference to 7378 * h_cg->css. So we should release the reference held 7379 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 7380 * done. 7381 */ 7382 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 7383 } 7384 } 7385 return true; 7386 7387 out_put_pages: 7388 spool_resv = chg - gbl_reserve; 7389 if (spool_resv) { 7390 /* put sub pool's reservation back, chg - gbl_reserve */ 7391 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 7392 /* 7393 * subpool's reserved pages can not be put back due to race, 7394 * return to hstate. 7395 */ 7396 hugetlb_acct_memory(h, -gbl_resv); 7397 } 7398 out_uncharge_cgroup: 7399 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 7400 chg * pages_per_huge_page(h), h_cg); 7401 out_err: 7402 hugetlb_vma_lock_free(vma); 7403 if (!vma || vma->vm_flags & VM_MAYSHARE) 7404 /* Only call region_abort if the region_chg succeeded but the 7405 * region_add failed or didn't run. 7406 */ 7407 if (chg >= 0 && add < 0) 7408 region_abort(resv_map, from, to, regions_needed); 7409 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 7410 kref_put(&resv_map->refs, resv_map_release); 7411 set_vma_resv_map(vma, NULL); 7412 } 7413 return false; 7414 } 7415 7416 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 7417 long freed) 7418 { 7419 struct hstate *h = hstate_inode(inode); 7420 struct resv_map *resv_map = inode_resv_map(inode); 7421 long chg = 0; 7422 struct hugepage_subpool *spool = subpool_inode(inode); 7423 long gbl_reserve; 7424 7425 /* 7426 * Since this routine can be called in the evict inode path for all 7427 * hugetlbfs inodes, resv_map could be NULL. 7428 */ 7429 if (resv_map) { 7430 chg = region_del(resv_map, start, end); 7431 /* 7432 * region_del() can fail in the rare case where a region 7433 * must be split and another region descriptor can not be 7434 * allocated. If end == LONG_MAX, it will not fail. 7435 */ 7436 if (chg < 0) 7437 return chg; 7438 } 7439 7440 spin_lock(&inode->i_lock); 7441 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 7442 spin_unlock(&inode->i_lock); 7443 7444 /* 7445 * If the subpool has a minimum size, the number of global 7446 * reservations to be released may be adjusted. 7447 * 7448 * Note that !resv_map implies freed == 0. So (chg - freed) 7449 * won't go negative. 7450 */ 7451 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 7452 hugetlb_acct_memory(h, -gbl_reserve); 7453 7454 return 0; 7455 } 7456 7457 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7458 static unsigned long page_table_shareable(struct vm_area_struct *svma, 7459 struct vm_area_struct *vma, 7460 unsigned long addr, pgoff_t idx) 7461 { 7462 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 7463 svma->vm_start; 7464 unsigned long sbase = saddr & PUD_MASK; 7465 unsigned long s_end = sbase + PUD_SIZE; 7466 7467 /* Allow segments to share if only one is marked locked */ 7468 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 7469 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 7470 7471 /* 7472 * match the virtual addresses, permission and the alignment of the 7473 * page table page. 7474 * 7475 * Also, vma_lock (vm_private_data) is required for sharing. 7476 */ 7477 if (pmd_index(addr) != pmd_index(saddr) || 7478 vm_flags != svm_flags || 7479 !range_in_vma(svma, sbase, s_end) || 7480 !svma->vm_private_data) 7481 return 0; 7482 7483 return saddr; 7484 } 7485 7486 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7487 { 7488 unsigned long start = addr & PUD_MASK; 7489 unsigned long end = start + PUD_SIZE; 7490 7491 #ifdef CONFIG_USERFAULTFD 7492 if (uffd_disable_huge_pmd_share(vma)) 7493 return false; 7494 #endif 7495 /* 7496 * check on proper vm_flags and page table alignment 7497 */ 7498 if (!(vma->vm_flags & VM_MAYSHARE)) 7499 return false; 7500 if (!vma->vm_private_data) /* vma lock required for sharing */ 7501 return false; 7502 if (!range_in_vma(vma, start, end)) 7503 return false; 7504 return true; 7505 } 7506 7507 /* 7508 * Determine if start,end range within vma could be mapped by shared pmd. 7509 * If yes, adjust start and end to cover range associated with possible 7510 * shared pmd mappings. 7511 */ 7512 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7513 unsigned long *start, unsigned long *end) 7514 { 7515 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7516 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7517 7518 /* 7519 * vma needs to span at least one aligned PUD size, and the range 7520 * must be at least partially within in. 7521 */ 7522 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7523 (*end <= v_start) || (*start >= v_end)) 7524 return; 7525 7526 /* Extend the range to be PUD aligned for a worst case scenario */ 7527 if (*start > v_start) 7528 *start = ALIGN_DOWN(*start, PUD_SIZE); 7529 7530 if (*end < v_end) 7531 *end = ALIGN(*end, PUD_SIZE); 7532 } 7533 7534 /* 7535 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7536 * and returns the corresponding pte. While this is not necessary for the 7537 * !shared pmd case because we can allocate the pmd later as well, it makes the 7538 * code much cleaner. pmd allocation is essential for the shared case because 7539 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7540 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7541 * bad pmd for sharing. 7542 */ 7543 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7544 unsigned long addr, pud_t *pud) 7545 { 7546 struct address_space *mapping = vma->vm_file->f_mapping; 7547 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7548 vma->vm_pgoff; 7549 struct vm_area_struct *svma; 7550 unsigned long saddr; 7551 pte_t *spte = NULL; 7552 pte_t *pte; 7553 7554 i_mmap_lock_read(mapping); 7555 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7556 if (svma == vma) 7557 continue; 7558 7559 saddr = page_table_shareable(svma, vma, addr, idx); 7560 if (saddr) { 7561 spte = hugetlb_walk(svma, saddr, 7562 vma_mmu_pagesize(svma)); 7563 if (spte) { 7564 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 7565 break; 7566 } 7567 } 7568 } 7569 7570 if (!spte) 7571 goto out; 7572 7573 spin_lock(&mm->page_table_lock); 7574 if (pud_none(*pud)) { 7575 pud_populate(mm, pud, 7576 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7577 mm_inc_nr_pmds(mm); 7578 } else { 7579 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 7580 } 7581 spin_unlock(&mm->page_table_lock); 7582 out: 7583 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7584 i_mmap_unlock_read(mapping); 7585 return pte; 7586 } 7587 7588 /* 7589 * unmap huge page backed by shared pte. 7590 * 7591 * Called with page table lock held. 7592 * 7593 * returns: 1 successfully unmapped a shared pte page 7594 * 0 the underlying pte page is not shared, or it is the last user 7595 */ 7596 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7597 unsigned long addr, pte_t *ptep) 7598 { 7599 unsigned long sz = huge_page_size(hstate_vma(vma)); 7600 pgd_t *pgd = pgd_offset(mm, addr); 7601 p4d_t *p4d = p4d_offset(pgd, addr); 7602 pud_t *pud = pud_offset(p4d, addr); 7603 7604 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7605 hugetlb_vma_assert_locked(vma); 7606 if (sz != PMD_SIZE) 7607 return 0; 7608 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep))) 7609 return 0; 7610 7611 pud_clear(pud); 7612 /* 7613 * Once our caller drops the rmap lock, some other process might be 7614 * using this page table as a normal, non-hugetlb page table. 7615 * Wait for pending gup_fast() in other threads to finish before letting 7616 * that happen. 7617 */ 7618 tlb_remove_table_sync_one(); 7619 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); 7620 mm_dec_nr_pmds(mm); 7621 return 1; 7622 } 7623 7624 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7625 7626 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7627 unsigned long addr, pud_t *pud) 7628 { 7629 return NULL; 7630 } 7631 7632 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7633 unsigned long addr, pte_t *ptep) 7634 { 7635 return 0; 7636 } 7637 7638 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7639 unsigned long *start, unsigned long *end) 7640 { 7641 } 7642 7643 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7644 { 7645 return false; 7646 } 7647 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7648 7649 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7650 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7651 unsigned long addr, unsigned long sz) 7652 { 7653 pgd_t *pgd; 7654 p4d_t *p4d; 7655 pud_t *pud; 7656 pte_t *pte = NULL; 7657 7658 pgd = pgd_offset(mm, addr); 7659 p4d = p4d_alloc(mm, pgd, addr); 7660 if (!p4d) 7661 return NULL; 7662 pud = pud_alloc(mm, p4d, addr); 7663 if (pud) { 7664 if (sz == PUD_SIZE) { 7665 pte = (pte_t *)pud; 7666 } else { 7667 BUG_ON(sz != PMD_SIZE); 7668 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7669 pte = huge_pmd_share(mm, vma, addr, pud); 7670 else 7671 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7672 } 7673 } 7674 7675 if (pte) { 7676 pte_t pteval = ptep_get_lockless(pte); 7677 7678 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7679 } 7680 7681 return pte; 7682 } 7683 7684 /* 7685 * huge_pte_offset() - Walk the page table to resolve the hugepage 7686 * entry at address @addr 7687 * 7688 * Return: Pointer to page table entry (PUD or PMD) for 7689 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7690 * size @sz doesn't match the hugepage size at this level of the page 7691 * table. 7692 */ 7693 pte_t *huge_pte_offset(struct mm_struct *mm, 7694 unsigned long addr, unsigned long sz) 7695 { 7696 pgd_t *pgd; 7697 p4d_t *p4d; 7698 pud_t *pud; 7699 pmd_t *pmd; 7700 7701 pgd = pgd_offset(mm, addr); 7702 if (!pgd_present(*pgd)) 7703 return NULL; 7704 p4d = p4d_offset(pgd, addr); 7705 if (!p4d_present(*p4d)) 7706 return NULL; 7707 7708 pud = pud_offset(p4d, addr); 7709 if (sz == PUD_SIZE) 7710 /* must be pud huge, non-present or none */ 7711 return (pte_t *)pud; 7712 if (!pud_present(*pud)) 7713 return NULL; 7714 /* must have a valid entry and size to go further */ 7715 7716 pmd = pmd_offset(pud, addr); 7717 /* must be pmd huge, non-present or none */ 7718 return (pte_t *)pmd; 7719 } 7720 7721 /* 7722 * Return a mask that can be used to update an address to the last huge 7723 * page in a page table page mapping size. Used to skip non-present 7724 * page table entries when linearly scanning address ranges. Architectures 7725 * with unique huge page to page table relationships can define their own 7726 * version of this routine. 7727 */ 7728 unsigned long hugetlb_mask_last_page(struct hstate *h) 7729 { 7730 unsigned long hp_size = huge_page_size(h); 7731 7732 if (hp_size == PUD_SIZE) 7733 return P4D_SIZE - PUD_SIZE; 7734 else if (hp_size == PMD_SIZE) 7735 return PUD_SIZE - PMD_SIZE; 7736 else 7737 return 0UL; 7738 } 7739 7740 #else 7741 7742 /* See description above. Architectures can provide their own version. */ 7743 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7744 { 7745 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7746 if (huge_page_size(h) == PMD_SIZE) 7747 return PUD_SIZE - PMD_SIZE; 7748 #endif 7749 return 0UL; 7750 } 7751 7752 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7753 7754 /** 7755 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7756 * @folio: the folio to isolate 7757 * @list: the list to add the folio to on success 7758 * 7759 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7760 * isolated/non-migratable, and moving it from the active list to the 7761 * given list. 7762 * 7763 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7764 * it is already isolated/non-migratable. 7765 * 7766 * On success, an additional folio reference is taken that must be dropped 7767 * using folio_putback_hugetlb() to undo the isolation. 7768 * 7769 * Return: True if isolation worked, otherwise False. 7770 */ 7771 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7772 { 7773 bool ret = true; 7774 7775 spin_lock_irq(&hugetlb_lock); 7776 if (!folio_test_hugetlb(folio) || 7777 !folio_test_hugetlb_migratable(folio) || 7778 !folio_try_get(folio)) { 7779 ret = false; 7780 goto unlock; 7781 } 7782 folio_clear_hugetlb_migratable(folio); 7783 list_move_tail(&folio->lru, list); 7784 unlock: 7785 spin_unlock_irq(&hugetlb_lock); 7786 return ret; 7787 } 7788 7789 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7790 { 7791 int ret = 0; 7792 7793 *hugetlb = false; 7794 spin_lock_irq(&hugetlb_lock); 7795 if (folio_test_hugetlb(folio)) { 7796 *hugetlb = true; 7797 if (folio_test_hugetlb_freed(folio)) 7798 ret = 0; 7799 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7800 ret = folio_try_get(folio); 7801 else 7802 ret = -EBUSY; 7803 } 7804 spin_unlock_irq(&hugetlb_lock); 7805 return ret; 7806 } 7807 7808 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7809 bool *migratable_cleared) 7810 { 7811 int ret; 7812 7813 spin_lock_irq(&hugetlb_lock); 7814 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7815 spin_unlock_irq(&hugetlb_lock); 7816 return ret; 7817 } 7818 7819 /** 7820 * folio_putback_hugetlb - unisolate a hugetlb folio 7821 * @folio: the isolated hugetlb folio 7822 * 7823 * Putback/un-isolate the hugetlb folio that was previous isolated using 7824 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7825 * back onto the active list. 7826 * 7827 * Will drop the additional folio reference obtained through 7828 * folio_isolate_hugetlb(). 7829 */ 7830 void folio_putback_hugetlb(struct folio *folio) 7831 { 7832 spin_lock_irq(&hugetlb_lock); 7833 folio_set_hugetlb_migratable(folio); 7834 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7835 spin_unlock_irq(&hugetlb_lock); 7836 folio_put(folio); 7837 } 7838 7839 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7840 { 7841 struct hstate *h = folio_hstate(old_folio); 7842 7843 hugetlb_cgroup_migrate(old_folio, new_folio); 7844 set_page_owner_migrate_reason(&new_folio->page, reason); 7845 7846 /* 7847 * transfer temporary state of the new hugetlb folio. This is 7848 * reverse to other transitions because the newpage is going to 7849 * be final while the old one will be freed so it takes over 7850 * the temporary status. 7851 * 7852 * Also note that we have to transfer the per-node surplus state 7853 * here as well otherwise the global surplus count will not match 7854 * the per-node's. 7855 */ 7856 if (folio_test_hugetlb_temporary(new_folio)) { 7857 int old_nid = folio_nid(old_folio); 7858 int new_nid = folio_nid(new_folio); 7859 7860 folio_set_hugetlb_temporary(old_folio); 7861 folio_clear_hugetlb_temporary(new_folio); 7862 7863 7864 /* 7865 * There is no need to transfer the per-node surplus state 7866 * when we do not cross the node. 7867 */ 7868 if (new_nid == old_nid) 7869 return; 7870 spin_lock_irq(&hugetlb_lock); 7871 if (h->surplus_huge_pages_node[old_nid]) { 7872 h->surplus_huge_pages_node[old_nid]--; 7873 h->surplus_huge_pages_node[new_nid]++; 7874 } 7875 spin_unlock_irq(&hugetlb_lock); 7876 } 7877 7878 /* 7879 * Our old folio is isolated and has "migratable" cleared until it 7880 * is putback. As migration succeeded, set the new folio "migratable" 7881 * and add it to the active list. 7882 */ 7883 spin_lock_irq(&hugetlb_lock); 7884 folio_set_hugetlb_migratable(new_folio); 7885 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7886 spin_unlock_irq(&hugetlb_lock); 7887 } 7888 7889 /* 7890 * If @take_locks is false, the caller must ensure that no concurrent page table 7891 * access can happen (except for gup_fast() and hardware page walks). 7892 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like 7893 * concurrent page fault handling) and the file rmap lock. 7894 */ 7895 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7896 unsigned long start, 7897 unsigned long end, 7898 bool take_locks) 7899 { 7900 struct hstate *h = hstate_vma(vma); 7901 unsigned long sz = huge_page_size(h); 7902 struct mm_struct *mm = vma->vm_mm; 7903 struct mmu_notifier_range range; 7904 unsigned long address; 7905 spinlock_t *ptl; 7906 pte_t *ptep; 7907 7908 if (!(vma->vm_flags & VM_MAYSHARE)) 7909 return; 7910 7911 if (start >= end) 7912 return; 7913 7914 flush_cache_range(vma, start, end); 7915 /* 7916 * No need to call adjust_range_if_pmd_sharing_possible(), because 7917 * we have already done the PUD_SIZE alignment. 7918 */ 7919 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7920 start, end); 7921 mmu_notifier_invalidate_range_start(&range); 7922 if (take_locks) { 7923 hugetlb_vma_lock_write(vma); 7924 i_mmap_lock_write(vma->vm_file->f_mapping); 7925 } else { 7926 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7927 } 7928 for (address = start; address < end; address += PUD_SIZE) { 7929 ptep = hugetlb_walk(vma, address, sz); 7930 if (!ptep) 7931 continue; 7932 ptl = huge_pte_lock(h, mm, ptep); 7933 huge_pmd_unshare(mm, vma, address, ptep); 7934 spin_unlock(ptl); 7935 } 7936 flush_hugetlb_tlb_range(vma, start, end); 7937 if (take_locks) { 7938 i_mmap_unlock_write(vma->vm_file->f_mapping); 7939 hugetlb_vma_unlock_write(vma); 7940 } 7941 /* 7942 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7943 * Documentation/mm/mmu_notifier.rst. 7944 */ 7945 mmu_notifier_invalidate_range_end(&range); 7946 } 7947 7948 /* 7949 * This function will unconditionally remove all the shared pmd pgtable entries 7950 * within the specific vma for a hugetlbfs memory range. 7951 */ 7952 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7953 { 7954 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7955 ALIGN_DOWN(vma->vm_end, PUD_SIZE), 7956 /* take_locks = */ true); 7957 } 7958 7959 /* 7960 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7961 * performed, we permit both the old and new VMAs to reference the same 7962 * reservation. 7963 * 7964 * We fix this up after the operation succeeds, or if a newly allocated VMA 7965 * is closed as a result of a failure to allocate memory. 7966 */ 7967 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7968 { 7969 if (is_vm_hugetlb_page(vma)) 7970 clear_vma_resv_huge_pages(vma); 7971 } 7972