xref: /linux/kernel/time/clockevents.c (revision dc0d1c4519095a6c6bbd9ec4a808674aba502741)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30 
31 struct ce_unbind {
32 	struct clock_event_device *ce;
33 	int res;
34 };
35 
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 			bool ismax)
38 {
39 	u64 clc = (u64) latch << evt->shift;
40 	u64 rnd;
41 
42 	if (unlikely(!evt->mult)) {
43 		evt->mult = 1;
44 		WARN_ON(1);
45 	}
46 	rnd = (u64) evt->mult - 1;
47 
48 	/*
49 	 * Upper bound sanity check. If the backwards conversion is
50 	 * not equal latch, we know that the above shift overflowed.
51 	 */
52 	if ((clc >> evt->shift) != (u64)latch)
53 		clc = ~0ULL;
54 
55 	/*
56 	 * Scaled math oddities:
57 	 *
58 	 * For mult <= (1 << shift) we can safely add mult - 1 to
59 	 * prevent integer rounding loss. So the backwards conversion
60 	 * from nsec to device ticks will be correct.
61 	 *
62 	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 	 * need to be careful. Adding mult - 1 will result in a value
64 	 * which when converted back to device ticks can be larger
65 	 * than latch by up to (mult - 1) >> shift. For the min_delta
66 	 * calculation we still want to apply this in order to stay
67 	 * above the minimum device ticks limit. For the upper limit
68 	 * we would end up with a latch value larger than the upper
69 	 * limit of the device, so we omit the add to stay below the
70 	 * device upper boundary.
71 	 *
72 	 * Also omit the add if it would overflow the u64 boundary.
73 	 */
74 	if ((~0ULL - clc > rnd) &&
75 	    (!ismax || evt->mult <= (1ULL << evt->shift)))
76 		clc += rnd;
77 
78 	do_div(clc, evt->mult);
79 
80 	/* Deltas less than 1usec are pointless noise */
81 	return clc > 1000 ? clc : 1000;
82 }
83 
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:	value to convert
87  * @evt:	pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 	return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96 
97 static int __clockevents_switch_state(struct clock_event_device *dev,
98 				      enum clock_event_state state)
99 {
100 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
101 		return 0;
102 
103 	/* Transition with new state-specific callbacks */
104 	switch (state) {
105 	case CLOCK_EVT_STATE_DETACHED:
106 		/* The clockevent device is getting replaced. Shut it down. */
107 
108 	case CLOCK_EVT_STATE_SHUTDOWN:
109 		if (dev->set_state_shutdown)
110 			return dev->set_state_shutdown(dev);
111 		return 0;
112 
113 	case CLOCK_EVT_STATE_PERIODIC:
114 		/* Core internal bug */
115 		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
116 			return -ENOSYS;
117 		if (dev->set_state_periodic)
118 			return dev->set_state_periodic(dev);
119 		return 0;
120 
121 	case CLOCK_EVT_STATE_ONESHOT:
122 		/* Core internal bug */
123 		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
124 			return -ENOSYS;
125 		if (dev->set_state_oneshot)
126 			return dev->set_state_oneshot(dev);
127 		return 0;
128 
129 	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
130 		/* Core internal bug */
131 		if (WARN_ONCE(!clockevent_state_oneshot(dev),
132 			      "Current state: %d\n",
133 			      clockevent_get_state(dev)))
134 			return -EINVAL;
135 
136 		if (dev->set_state_oneshot_stopped)
137 			return dev->set_state_oneshot_stopped(dev);
138 		else
139 			return -ENOSYS;
140 
141 	default:
142 		return -ENOSYS;
143 	}
144 }
145 
146 /**
147  * clockevents_switch_state - set the operating state of a clock event device
148  * @dev:	device to modify
149  * @state:	new state
150  *
151  * Must be called with interrupts disabled !
152  */
153 void clockevents_switch_state(struct clock_event_device *dev,
154 			      enum clock_event_state state)
155 {
156 	if (clockevent_get_state(dev) != state) {
157 		if (__clockevents_switch_state(dev, state))
158 			return;
159 
160 		clockevent_set_state(dev, state);
161 
162 		/*
163 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164 		 * on it, so fix it up and emit a warning:
165 		 */
166 		if (clockevent_state_oneshot(dev)) {
167 			if (unlikely(!dev->mult)) {
168 				dev->mult = 1;
169 				WARN_ON(1);
170 			}
171 		}
172 	}
173 }
174 
175 /**
176  * clockevents_shutdown - shutdown the device and clear next_event
177  * @dev:	device to shutdown
178  */
179 void clockevents_shutdown(struct clock_event_device *dev)
180 {
181 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182 	dev->next_event = KTIME_MAX;
183 }
184 
185 /**
186  * clockevents_tick_resume -	Resume the tick device before using it again
187  * @dev:			device to resume
188  */
189 int clockevents_tick_resume(struct clock_event_device *dev)
190 {
191 	int ret = 0;
192 
193 	if (dev->tick_resume)
194 		ret = dev->tick_resume(dev);
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200 
201 /* Limit min_delta to a jiffie */
202 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
203 
204 /**
205  * clockevents_increase_min_delta - raise minimum delta of a clock event device
206  * @dev:       device to increase the minimum delta
207  *
208  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209  */
210 static int clockevents_increase_min_delta(struct clock_event_device *dev)
211 {
212 	/* Nothing to do if we already reached the limit */
213 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214 		printk_deferred(KERN_WARNING
215 				"CE: Reprogramming failure. Giving up\n");
216 		dev->next_event = KTIME_MAX;
217 		return -ETIME;
218 	}
219 
220 	if (dev->min_delta_ns < 5000)
221 		dev->min_delta_ns = 5000;
222 	else
223 		dev->min_delta_ns += dev->min_delta_ns >> 1;
224 
225 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226 		dev->min_delta_ns = MIN_DELTA_LIMIT;
227 
228 	printk_deferred(KERN_WARNING
229 			"CE: %s increased min_delta_ns to %llu nsec\n",
230 			dev->name ? dev->name : "?",
231 			(unsigned long long) dev->min_delta_ns);
232 	return 0;
233 }
234 
235 /**
236  * clockevents_program_min_delta - Set clock event device to the minimum delay.
237  * @dev:	device to program
238  *
239  * Returns 0 on success, -ETIME when the retry loop failed.
240  */
241 static int clockevents_program_min_delta(struct clock_event_device *dev)
242 {
243 	unsigned long long clc;
244 	int64_t delta;
245 	int i;
246 
247 	for (i = 0;;) {
248 		delta = dev->min_delta_ns;
249 		dev->next_event = ktime_add_ns(ktime_get(), delta);
250 
251 		if (clockevent_state_shutdown(dev))
252 			return 0;
253 
254 		dev->retries++;
255 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
257 			return 0;
258 
259 		if (++i > 2) {
260 			/*
261 			 * We tried 3 times to program the device with the
262 			 * given min_delta_ns. Try to increase the minimum
263 			 * delta, if that fails as well get out of here.
264 			 */
265 			if (clockevents_increase_min_delta(dev))
266 				return -ETIME;
267 			i = 0;
268 		}
269 	}
270 }
271 
272 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273 
274 /**
275  * clockevents_program_min_delta - Set clock event device to the minimum delay.
276  * @dev:	device to program
277  *
278  * Returns 0 on success, -ETIME when the retry loop failed.
279  */
280 static int clockevents_program_min_delta(struct clock_event_device *dev)
281 {
282 	unsigned long long clc;
283 	int64_t delta = 0;
284 	int i;
285 
286 	for (i = 0; i < 10; i++) {
287 		delta += dev->min_delta_ns;
288 		dev->next_event = ktime_add_ns(ktime_get(), delta);
289 
290 		if (clockevent_state_shutdown(dev))
291 			return 0;
292 
293 		dev->retries++;
294 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
295 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
296 			return 0;
297 	}
298 	return -ETIME;
299 }
300 
301 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
302 
303 /**
304  * clockevents_program_event - Reprogram the clock event device.
305  * @dev:	device to program
306  * @expires:	absolute expiry time (monotonic clock)
307  * @force:	program minimum delay if expires can not be set
308  *
309  * Returns 0 on success, -ETIME when the event is in the past.
310  */
311 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
312 			      bool force)
313 {
314 	unsigned long long clc;
315 	int64_t delta;
316 	int rc;
317 
318 	if (unlikely(expires < 0)) {
319 		WARN_ON_ONCE(1);
320 		return -ETIME;
321 	}
322 
323 	dev->next_event = expires;
324 
325 	if (clockevent_state_shutdown(dev))
326 		return 0;
327 
328 	/* We must be in ONESHOT state here */
329 	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
330 		  clockevent_get_state(dev));
331 
332 	/* Shortcut for clockevent devices that can deal with ktime. */
333 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
334 		return dev->set_next_ktime(expires, dev);
335 
336 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
337 	if (delta <= 0)
338 		return force ? clockevents_program_min_delta(dev) : -ETIME;
339 
340 	delta = min(delta, (int64_t) dev->max_delta_ns);
341 	delta = max(delta, (int64_t) dev->min_delta_ns);
342 
343 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
344 	rc = dev->set_next_event((unsigned long) clc, dev);
345 
346 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
347 }
348 
349 /*
350  * Called after a notify add to make devices available which were
351  * released from the notifier call.
352  */
353 static void clockevents_notify_released(void)
354 {
355 	struct clock_event_device *dev;
356 
357 	while (!list_empty(&clockevents_released)) {
358 		dev = list_entry(clockevents_released.next,
359 				 struct clock_event_device, list);
360 		list_del(&dev->list);
361 		list_add(&dev->list, &clockevent_devices);
362 		tick_check_new_device(dev);
363 	}
364 }
365 
366 /*
367  * Try to install a replacement clock event device
368  */
369 static int clockevents_replace(struct clock_event_device *ced)
370 {
371 	struct clock_event_device *dev, *newdev = NULL;
372 
373 	list_for_each_entry(dev, &clockevent_devices, list) {
374 		if (dev == ced || !clockevent_state_detached(dev))
375 			continue;
376 
377 		if (!tick_check_replacement(newdev, dev))
378 			continue;
379 
380 		if (!try_module_get(dev->owner))
381 			continue;
382 
383 		if (newdev)
384 			module_put(newdev->owner);
385 		newdev = dev;
386 	}
387 	if (newdev) {
388 		tick_install_replacement(newdev);
389 		list_del_init(&ced->list);
390 	}
391 	return newdev ? 0 : -EBUSY;
392 }
393 
394 /*
395  * Called with clockevents_mutex and clockevents_lock held
396  */
397 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
398 {
399 	/* Fast track. Device is unused */
400 	if (clockevent_state_detached(ced)) {
401 		list_del_init(&ced->list);
402 		return 0;
403 	}
404 
405 	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
406 }
407 
408 /*
409  * SMP function call to unbind a device
410  */
411 static void __clockevents_unbind(void *arg)
412 {
413 	struct ce_unbind *cu = arg;
414 	int res;
415 
416 	raw_spin_lock(&clockevents_lock);
417 	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
418 	if (res == -EAGAIN)
419 		res = clockevents_replace(cu->ce);
420 	cu->res = res;
421 	raw_spin_unlock(&clockevents_lock);
422 }
423 
424 /*
425  * Issues smp function call to unbind a per cpu device. Called with
426  * clockevents_mutex held.
427  */
428 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
429 {
430 	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
431 
432 	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
433 	return cu.res;
434 }
435 
436 /*
437  * Unbind a clockevents device.
438  */
439 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
440 {
441 	int ret;
442 
443 	mutex_lock(&clockevents_mutex);
444 	ret = clockevents_unbind(ced, cpu);
445 	mutex_unlock(&clockevents_mutex);
446 	return ret;
447 }
448 EXPORT_SYMBOL_GPL(clockevents_unbind_device);
449 
450 /**
451  * clockevents_register_device - register a clock event device
452  * @dev:	device to register
453  */
454 void clockevents_register_device(struct clock_event_device *dev)
455 {
456 	unsigned long flags;
457 
458 	/* Initialize state to DETACHED */
459 	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
460 
461 	if (!dev->cpumask) {
462 		WARN_ON(num_possible_cpus() > 1);
463 		dev->cpumask = cpumask_of(smp_processor_id());
464 	}
465 
466 	if (dev->cpumask == cpu_all_mask) {
467 		WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n",
468 		     dev->name);
469 		dev->cpumask = cpu_possible_mask;
470 	}
471 
472 	raw_spin_lock_irqsave(&clockevents_lock, flags);
473 
474 	list_add(&dev->list, &clockevent_devices);
475 	tick_check_new_device(dev);
476 	clockevents_notify_released();
477 
478 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
479 }
480 EXPORT_SYMBOL_GPL(clockevents_register_device);
481 
482 static void clockevents_config(struct clock_event_device *dev, u32 freq)
483 {
484 	u64 sec;
485 
486 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
487 		return;
488 
489 	/*
490 	 * Calculate the maximum number of seconds we can sleep. Limit
491 	 * to 10 minutes for hardware which can program more than
492 	 * 32bit ticks so we still get reasonable conversion values.
493 	 */
494 	sec = dev->max_delta_ticks;
495 	do_div(sec, freq);
496 	if (!sec)
497 		sec = 1;
498 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
499 		sec = 600;
500 
501 	clockevents_calc_mult_shift(dev, freq, sec);
502 	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
503 	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
504 }
505 
506 /**
507  * clockevents_config_and_register - Configure and register a clock event device
508  * @dev:	device to register
509  * @freq:	The clock frequency
510  * @min_delta:	The minimum clock ticks to program in oneshot mode
511  * @max_delta:	The maximum clock ticks to program in oneshot mode
512  *
513  * min/max_delta can be 0 for devices which do not support oneshot mode.
514  */
515 void clockevents_config_and_register(struct clock_event_device *dev,
516 				     u32 freq, unsigned long min_delta,
517 				     unsigned long max_delta)
518 {
519 	dev->min_delta_ticks = min_delta;
520 	dev->max_delta_ticks = max_delta;
521 	clockevents_config(dev, freq);
522 	clockevents_register_device(dev);
523 }
524 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
525 
526 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
527 {
528 	clockevents_config(dev, freq);
529 
530 	if (clockevent_state_oneshot(dev))
531 		return clockevents_program_event(dev, dev->next_event, false);
532 
533 	if (clockevent_state_periodic(dev))
534 		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
535 
536 	return 0;
537 }
538 
539 /**
540  * clockevents_update_freq - Update frequency and reprogram a clock event device.
541  * @dev:	device to modify
542  * @freq:	new device frequency
543  *
544  * Reconfigure and reprogram a clock event device in oneshot
545  * mode. Must be called on the cpu for which the device delivers per
546  * cpu timer events. If called for the broadcast device the core takes
547  * care of serialization.
548  *
549  * Returns 0 on success, -ETIME when the event is in the past.
550  */
551 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
552 {
553 	unsigned long flags;
554 	int ret;
555 
556 	local_irq_save(flags);
557 	ret = tick_broadcast_update_freq(dev, freq);
558 	if (ret == -ENODEV)
559 		ret = __clockevents_update_freq(dev, freq);
560 	local_irq_restore(flags);
561 	return ret;
562 }
563 
564 /*
565  * Noop handler when we shut down an event device
566  */
567 void clockevents_handle_noop(struct clock_event_device *dev)
568 {
569 }
570 
571 /**
572  * clockevents_exchange_device - release and request clock devices
573  * @old:	device to release (can be NULL)
574  * @new:	device to request (can be NULL)
575  *
576  * Called from various tick functions with clockevents_lock held and
577  * interrupts disabled.
578  */
579 void clockevents_exchange_device(struct clock_event_device *old,
580 				 struct clock_event_device *new)
581 {
582 	/*
583 	 * Caller releases a clock event device. We queue it into the
584 	 * released list and do a notify add later.
585 	 */
586 	if (old) {
587 		module_put(old->owner);
588 		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
589 		list_del(&old->list);
590 		list_add(&old->list, &clockevents_released);
591 	}
592 
593 	if (new) {
594 		BUG_ON(!clockevent_state_detached(new));
595 		clockevents_shutdown(new);
596 	}
597 }
598 
599 /**
600  * clockevents_suspend - suspend clock devices
601  */
602 void clockevents_suspend(void)
603 {
604 	struct clock_event_device *dev;
605 
606 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
607 		if (dev->suspend && !clockevent_state_detached(dev))
608 			dev->suspend(dev);
609 }
610 
611 /**
612  * clockevents_resume - resume clock devices
613  */
614 void clockevents_resume(void)
615 {
616 	struct clock_event_device *dev;
617 
618 	list_for_each_entry(dev, &clockevent_devices, list)
619 		if (dev->resume && !clockevent_state_detached(dev))
620 			dev->resume(dev);
621 }
622 
623 #ifdef CONFIG_HOTPLUG_CPU
624 /**
625  * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
626  */
627 void tick_cleanup_dead_cpu(int cpu)
628 {
629 	struct clock_event_device *dev, *tmp;
630 	unsigned long flags;
631 
632 	raw_spin_lock_irqsave(&clockevents_lock, flags);
633 
634 	tick_shutdown_broadcast_oneshot(cpu);
635 	tick_shutdown_broadcast(cpu);
636 	tick_shutdown(cpu);
637 	/*
638 	 * Unregister the clock event devices which were
639 	 * released from the users in the notify chain.
640 	 */
641 	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
642 		list_del(&dev->list);
643 	/*
644 	 * Now check whether the CPU has left unused per cpu devices
645 	 */
646 	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
647 		if (cpumask_test_cpu(cpu, dev->cpumask) &&
648 		    cpumask_weight(dev->cpumask) == 1 &&
649 		    !tick_is_broadcast_device(dev)) {
650 			BUG_ON(!clockevent_state_detached(dev));
651 			list_del(&dev->list);
652 		}
653 	}
654 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
655 }
656 #endif
657 
658 #ifdef CONFIG_SYSFS
659 static struct bus_type clockevents_subsys = {
660 	.name		= "clockevents",
661 	.dev_name       = "clockevent",
662 };
663 
664 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
665 static struct tick_device *tick_get_tick_dev(struct device *dev);
666 
667 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
668 					   struct device_attribute *attr,
669 					   char *buf)
670 {
671 	struct tick_device *td;
672 	ssize_t count = 0;
673 
674 	raw_spin_lock_irq(&clockevents_lock);
675 	td = tick_get_tick_dev(dev);
676 	if (td && td->evtdev)
677 		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
678 	raw_spin_unlock_irq(&clockevents_lock);
679 	return count;
680 }
681 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
682 
683 /* We don't support the abomination of removable broadcast devices */
684 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
685 				     struct device_attribute *attr,
686 				     const char *buf, size_t count)
687 {
688 	char name[CS_NAME_LEN];
689 	ssize_t ret = sysfs_get_uname(buf, name, count);
690 	struct clock_event_device *ce;
691 
692 	if (ret < 0)
693 		return ret;
694 
695 	ret = -ENODEV;
696 	mutex_lock(&clockevents_mutex);
697 	raw_spin_lock_irq(&clockevents_lock);
698 	list_for_each_entry(ce, &clockevent_devices, list) {
699 		if (!strcmp(ce->name, name)) {
700 			ret = __clockevents_try_unbind(ce, dev->id);
701 			break;
702 		}
703 	}
704 	raw_spin_unlock_irq(&clockevents_lock);
705 	/*
706 	 * We hold clockevents_mutex, so ce can't go away
707 	 */
708 	if (ret == -EAGAIN)
709 		ret = clockevents_unbind(ce, dev->id);
710 	mutex_unlock(&clockevents_mutex);
711 	return ret ? ret : count;
712 }
713 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
714 
715 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
716 static struct device tick_bc_dev = {
717 	.init_name	= "broadcast",
718 	.id		= 0,
719 	.bus		= &clockevents_subsys,
720 };
721 
722 static struct tick_device *tick_get_tick_dev(struct device *dev)
723 {
724 	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
725 		&per_cpu(tick_cpu_device, dev->id);
726 }
727 
728 static __init int tick_broadcast_init_sysfs(void)
729 {
730 	int err = device_register(&tick_bc_dev);
731 
732 	if (!err)
733 		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
734 	return err;
735 }
736 #else
737 static struct tick_device *tick_get_tick_dev(struct device *dev)
738 {
739 	return &per_cpu(tick_cpu_device, dev->id);
740 }
741 static inline int tick_broadcast_init_sysfs(void) { return 0; }
742 #endif
743 
744 static int __init tick_init_sysfs(void)
745 {
746 	int cpu;
747 
748 	for_each_possible_cpu(cpu) {
749 		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
750 		int err;
751 
752 		dev->id = cpu;
753 		dev->bus = &clockevents_subsys;
754 		err = device_register(dev);
755 		if (!err)
756 			err = device_create_file(dev, &dev_attr_current_device);
757 		if (!err)
758 			err = device_create_file(dev, &dev_attr_unbind_device);
759 		if (err)
760 			return err;
761 	}
762 	return tick_broadcast_init_sysfs();
763 }
764 
765 static int __init clockevents_init_sysfs(void)
766 {
767 	int err = subsys_system_register(&clockevents_subsys, NULL);
768 
769 	if (!err)
770 		err = tick_init_sysfs();
771 	return err;
772 }
773 device_initcall(clockevents_init_sysfs);
774 #endif /* SYSFS */
775