1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains functions which manage clock event devices.
4 *
5 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
7 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
8 */
9
10 #include <linux/clockchips.h>
11 #include <linux/hrtimer.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/smp.h>
15 #include <linux/device.h>
16
17 #include "tick-internal.h"
18
19 /* The registered clock event devices */
20 static LIST_HEAD(clockevent_devices);
21 static LIST_HEAD(clockevents_released);
22 /* Protection for the above */
23 static DEFINE_RAW_SPINLOCK(clockevents_lock);
24 /* Protection for unbind operations */
25 static DEFINE_MUTEX(clockevents_mutex);
26
27 struct ce_unbind {
28 struct clock_event_device *ce;
29 int res;
30 };
31
cev_delta2ns(unsigned long latch,struct clock_event_device * evt,bool ismax)32 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
33 bool ismax)
34 {
35 u64 clc = (u64) latch << evt->shift;
36 u64 rnd;
37
38 if (WARN_ON(!evt->mult))
39 evt->mult = 1;
40 rnd = (u64) evt->mult - 1;
41
42 /*
43 * Upper bound sanity check. If the backwards conversion is
44 * not equal latch, we know that the above shift overflowed.
45 */
46 if ((clc >> evt->shift) != (u64)latch)
47 clc = ~0ULL;
48
49 /*
50 * Scaled math oddities:
51 *
52 * For mult <= (1 << shift) we can safely add mult - 1 to
53 * prevent integer rounding loss. So the backwards conversion
54 * from nsec to device ticks will be correct.
55 *
56 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
57 * need to be careful. Adding mult - 1 will result in a value
58 * which when converted back to device ticks can be larger
59 * than latch by up to (mult - 1) >> shift. For the min_delta
60 * calculation we still want to apply this in order to stay
61 * above the minimum device ticks limit. For the upper limit
62 * we would end up with a latch value larger than the upper
63 * limit of the device, so we omit the add to stay below the
64 * device upper boundary.
65 *
66 * Also omit the add if it would overflow the u64 boundary.
67 */
68 if ((~0ULL - clc > rnd) &&
69 (!ismax || evt->mult <= (1ULL << evt->shift)))
70 clc += rnd;
71
72 do_div(clc, evt->mult);
73
74 /* Deltas less than 1usec are pointless noise */
75 return clc > 1000 ? clc : 1000;
76 }
77
78 /**
79 * clockevent_delta2ns - Convert a latch value (device ticks) to nanoseconds
80 * @latch: value to convert
81 * @evt: pointer to clock event device descriptor
82 *
83 * Math helper, returns latch value converted to nanoseconds (bound checked)
84 */
clockevent_delta2ns(unsigned long latch,struct clock_event_device * evt)85 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
86 {
87 return cev_delta2ns(latch, evt, false);
88 }
89 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
90
__clockevents_switch_state(struct clock_event_device * dev,enum clock_event_state state)91 static int __clockevents_switch_state(struct clock_event_device *dev,
92 enum clock_event_state state)
93 {
94 if (dev->features & CLOCK_EVT_FEAT_DUMMY)
95 return 0;
96
97 /* Transition with new state-specific callbacks */
98 switch (state) {
99 case CLOCK_EVT_STATE_DETACHED:
100 /* The clockevent device is getting replaced. Shut it down. */
101
102 case CLOCK_EVT_STATE_SHUTDOWN:
103 if (dev->set_state_shutdown)
104 return dev->set_state_shutdown(dev);
105 return 0;
106
107 case CLOCK_EVT_STATE_PERIODIC:
108 /* Core internal bug */
109 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
110 return -ENOSYS;
111 if (dev->set_state_periodic)
112 return dev->set_state_periodic(dev);
113 return 0;
114
115 case CLOCK_EVT_STATE_ONESHOT:
116 /* Core internal bug */
117 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
118 return -ENOSYS;
119 if (dev->set_state_oneshot)
120 return dev->set_state_oneshot(dev);
121 return 0;
122
123 case CLOCK_EVT_STATE_ONESHOT_STOPPED:
124 /* Core internal bug */
125 if (WARN_ONCE(!clockevent_state_oneshot(dev),
126 "Current state: %d\n",
127 clockevent_get_state(dev)))
128 return -EINVAL;
129
130 if (dev->set_state_oneshot_stopped)
131 return dev->set_state_oneshot_stopped(dev);
132 else
133 return -ENOSYS;
134
135 default:
136 return -ENOSYS;
137 }
138 }
139
140 /**
141 * clockevents_switch_state - set the operating state of a clock event device
142 * @dev: device to modify
143 * @state: new state
144 *
145 * Must be called with interrupts disabled !
146 */
clockevents_switch_state(struct clock_event_device * dev,enum clock_event_state state)147 void clockevents_switch_state(struct clock_event_device *dev,
148 enum clock_event_state state)
149 {
150 if (clockevent_get_state(dev) != state) {
151 if (__clockevents_switch_state(dev, state))
152 return;
153
154 clockevent_set_state(dev, state);
155
156 /*
157 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
158 * on it, so fix it up and emit a warning:
159 */
160 if (clockevent_state_oneshot(dev)) {
161 if (WARN_ON(!dev->mult))
162 dev->mult = 1;
163 }
164 }
165 }
166
167 /**
168 * clockevents_shutdown - shutdown the device and clear next_event
169 * @dev: device to shutdown
170 */
clockevents_shutdown(struct clock_event_device * dev)171 void clockevents_shutdown(struct clock_event_device *dev)
172 {
173 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
174 dev->next_event = KTIME_MAX;
175 }
176
177 /**
178 * clockevents_tick_resume - Resume the tick device before using it again
179 * @dev: device to resume
180 */
clockevents_tick_resume(struct clock_event_device * dev)181 int clockevents_tick_resume(struct clock_event_device *dev)
182 {
183 int ret = 0;
184
185 if (dev->tick_resume)
186 ret = dev->tick_resume(dev);
187
188 return ret;
189 }
190
191 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
192
193 /* Limit min_delta to a jiffy */
194 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
195
196 /**
197 * clockevents_increase_min_delta - raise minimum delta of a clock event device
198 * @dev: device to increase the minimum delta
199 *
200 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
201 */
clockevents_increase_min_delta(struct clock_event_device * dev)202 static int clockevents_increase_min_delta(struct clock_event_device *dev)
203 {
204 /* Nothing to do if we already reached the limit */
205 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
206 printk_deferred(KERN_WARNING
207 "CE: Reprogramming failure. Giving up\n");
208 dev->next_event = KTIME_MAX;
209 return -ETIME;
210 }
211
212 if (dev->min_delta_ns < 5000)
213 dev->min_delta_ns = 5000;
214 else
215 dev->min_delta_ns += dev->min_delta_ns >> 1;
216
217 if (dev->min_delta_ns > MIN_DELTA_LIMIT)
218 dev->min_delta_ns = MIN_DELTA_LIMIT;
219
220 printk_deferred(KERN_WARNING
221 "CE: %s increased min_delta_ns to %llu nsec\n",
222 dev->name ? dev->name : "?",
223 (unsigned long long) dev->min_delta_ns);
224 return 0;
225 }
226
227 /**
228 * clockevents_program_min_delta - Set clock event device to the minimum delay.
229 * @dev: device to program
230 *
231 * Returns 0 on success, -ETIME when the retry loop failed.
232 */
clockevents_program_min_delta(struct clock_event_device * dev)233 static int clockevents_program_min_delta(struct clock_event_device *dev)
234 {
235 unsigned long long clc;
236 int64_t delta;
237 int i;
238
239 for (i = 0;;) {
240 delta = dev->min_delta_ns;
241 dev->next_event = ktime_add_ns(ktime_get(), delta);
242
243 if (clockevent_state_shutdown(dev))
244 return 0;
245
246 dev->retries++;
247 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
248 if (dev->set_next_event((unsigned long) clc, dev) == 0)
249 return 0;
250
251 if (++i > 2) {
252 /*
253 * We tried 3 times to program the device with the
254 * given min_delta_ns. Try to increase the minimum
255 * delta, if that fails as well get out of here.
256 */
257 if (clockevents_increase_min_delta(dev))
258 return -ETIME;
259 i = 0;
260 }
261 }
262 }
263
264 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
265
266 /**
267 * clockevents_program_min_delta - Set clock event device to the minimum delay.
268 * @dev: device to program
269 *
270 * Returns 0 on success, -ETIME when the retry loop failed.
271 */
clockevents_program_min_delta(struct clock_event_device * dev)272 static int clockevents_program_min_delta(struct clock_event_device *dev)
273 {
274 unsigned long long clc;
275 int64_t delta = 0;
276 int i;
277
278 for (i = 0; i < 10; i++) {
279 delta += dev->min_delta_ns;
280 dev->next_event = ktime_add_ns(ktime_get(), delta);
281
282 if (clockevent_state_shutdown(dev))
283 return 0;
284
285 dev->retries++;
286 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
287 if (dev->set_next_event((unsigned long) clc, dev) == 0)
288 return 0;
289 }
290 return -ETIME;
291 }
292
293 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
294
295 /**
296 * clockevents_program_event - Reprogram the clock event device.
297 * @dev: device to program
298 * @expires: absolute expiry time (monotonic clock)
299 * @force: program minimum delay if expires can not be set
300 *
301 * Returns 0 on success, -ETIME when the event is in the past.
302 */
clockevents_program_event(struct clock_event_device * dev,ktime_t expires,bool force)303 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
304 bool force)
305 {
306 unsigned long long clc;
307 int64_t delta;
308 int rc;
309
310 if (WARN_ON_ONCE(expires < 0))
311 return -ETIME;
312
313 dev->next_event = expires;
314
315 if (clockevent_state_shutdown(dev))
316 return 0;
317
318 /* We must be in ONESHOT state here */
319 WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
320 clockevent_get_state(dev));
321
322 /* Shortcut for clockevent devices that can deal with ktime. */
323 if (dev->features & CLOCK_EVT_FEAT_KTIME)
324 return dev->set_next_ktime(expires, dev);
325
326 delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
327 if (delta <= 0)
328 return force ? clockevents_program_min_delta(dev) : -ETIME;
329
330 delta = min(delta, (int64_t) dev->max_delta_ns);
331 delta = max(delta, (int64_t) dev->min_delta_ns);
332
333 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
334 rc = dev->set_next_event((unsigned long) clc, dev);
335
336 return (rc && force) ? clockevents_program_min_delta(dev) : rc;
337 }
338
339 /*
340 * Called after a notify add to make devices available which were
341 * released from the notifier call.
342 */
clockevents_notify_released(void)343 static void clockevents_notify_released(void)
344 {
345 struct clock_event_device *dev;
346
347 while (!list_empty(&clockevents_released)) {
348 dev = list_entry(clockevents_released.next,
349 struct clock_event_device, list);
350 list_move(&dev->list, &clockevent_devices);
351 tick_check_new_device(dev);
352 }
353 }
354
355 /*
356 * Try to install a replacement clock event device
357 */
clockevents_replace(struct clock_event_device * ced)358 static int clockevents_replace(struct clock_event_device *ced)
359 {
360 struct clock_event_device *dev, *newdev = NULL;
361
362 list_for_each_entry(dev, &clockevent_devices, list) {
363 if (dev == ced || !clockevent_state_detached(dev))
364 continue;
365
366 if (!tick_check_replacement(newdev, dev))
367 continue;
368
369 if (!try_module_get(dev->owner))
370 continue;
371
372 if (newdev)
373 module_put(newdev->owner);
374 newdev = dev;
375 }
376 if (newdev) {
377 tick_install_replacement(newdev);
378 list_del_init(&ced->list);
379 }
380 return newdev ? 0 : -EBUSY;
381 }
382
383 /*
384 * Called with clockevents_mutex and clockevents_lock held
385 */
__clockevents_try_unbind(struct clock_event_device * ced,int cpu)386 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
387 {
388 /* Fast track. Device is unused */
389 if (clockevent_state_detached(ced)) {
390 list_del_init(&ced->list);
391 return 0;
392 }
393
394 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
395 }
396
397 /*
398 * SMP function call to unbind a device
399 */
__clockevents_unbind(void * arg)400 static void __clockevents_unbind(void *arg)
401 {
402 struct ce_unbind *cu = arg;
403 int res;
404
405 raw_spin_lock(&clockevents_lock);
406 res = __clockevents_try_unbind(cu->ce, smp_processor_id());
407 if (res == -EAGAIN)
408 res = clockevents_replace(cu->ce);
409 cu->res = res;
410 raw_spin_unlock(&clockevents_lock);
411 }
412
413 /*
414 * Issues smp function call to unbind a per cpu device. Called with
415 * clockevents_mutex held.
416 */
clockevents_unbind(struct clock_event_device * ced,int cpu)417 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
418 {
419 struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
420
421 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
422 return cu.res;
423 }
424
425 /*
426 * Unbind a clockevents device.
427 */
clockevents_unbind_device(struct clock_event_device * ced,int cpu)428 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
429 {
430 int ret;
431
432 mutex_lock(&clockevents_mutex);
433 ret = clockevents_unbind(ced, cpu);
434 mutex_unlock(&clockevents_mutex);
435 return ret;
436 }
437 EXPORT_SYMBOL_GPL(clockevents_unbind_device);
438
439 /**
440 * clockevents_register_device - register a clock event device
441 * @dev: device to register
442 */
clockevents_register_device(struct clock_event_device * dev)443 void clockevents_register_device(struct clock_event_device *dev)
444 {
445 unsigned long flags;
446
447 /* Initialize state to DETACHED */
448 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
449
450 if (!dev->cpumask) {
451 WARN_ON(num_possible_cpus() > 1);
452 dev->cpumask = cpumask_of(smp_processor_id());
453 }
454
455 if (dev->cpumask == cpu_all_mask) {
456 WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n",
457 dev->name);
458 dev->cpumask = cpu_possible_mask;
459 }
460
461 raw_spin_lock_irqsave(&clockevents_lock, flags);
462
463 list_add(&dev->list, &clockevent_devices);
464 tick_check_new_device(dev);
465 clockevents_notify_released();
466
467 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
468 }
469 EXPORT_SYMBOL_GPL(clockevents_register_device);
470
clockevents_config(struct clock_event_device * dev,u32 freq)471 static void clockevents_config(struct clock_event_device *dev, u32 freq)
472 {
473 u64 sec;
474
475 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
476 return;
477
478 /*
479 * Calculate the maximum number of seconds we can sleep. Limit
480 * to 10 minutes for hardware which can program more than
481 * 32bit ticks so we still get reasonable conversion values.
482 */
483 sec = dev->max_delta_ticks;
484 do_div(sec, freq);
485 if (!sec)
486 sec = 1;
487 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
488 sec = 600;
489
490 clockevents_calc_mult_shift(dev, freq, sec);
491 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
492 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
493 }
494
495 /**
496 * clockevents_config_and_register - Configure and register a clock event device
497 * @dev: device to register
498 * @freq: The clock frequency
499 * @min_delta: The minimum clock ticks to program in oneshot mode
500 * @max_delta: The maximum clock ticks to program in oneshot mode
501 *
502 * min/max_delta can be 0 for devices which do not support oneshot mode.
503 */
clockevents_config_and_register(struct clock_event_device * dev,u32 freq,unsigned long min_delta,unsigned long max_delta)504 void clockevents_config_and_register(struct clock_event_device *dev,
505 u32 freq, unsigned long min_delta,
506 unsigned long max_delta)
507 {
508 dev->min_delta_ticks = min_delta;
509 dev->max_delta_ticks = max_delta;
510 clockevents_config(dev, freq);
511 clockevents_register_device(dev);
512 }
513 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
514
__clockevents_update_freq(struct clock_event_device * dev,u32 freq)515 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
516 {
517 clockevents_config(dev, freq);
518
519 if (clockevent_state_oneshot(dev))
520 return clockevents_program_event(dev, dev->next_event, false);
521
522 if (clockevent_state_periodic(dev))
523 return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
524
525 return 0;
526 }
527
528 /**
529 * clockevents_update_freq - Update frequency and reprogram a clock event device.
530 * @dev: device to modify
531 * @freq: new device frequency
532 *
533 * Reconfigure and reprogram a clock event device in oneshot
534 * mode. Must be called on the cpu for which the device delivers per
535 * cpu timer events. If called for the broadcast device the core takes
536 * care of serialization.
537 *
538 * Returns 0 on success, -ETIME when the event is in the past.
539 */
clockevents_update_freq(struct clock_event_device * dev,u32 freq)540 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
541 {
542 unsigned long flags;
543 int ret;
544
545 local_irq_save(flags);
546 ret = tick_broadcast_update_freq(dev, freq);
547 if (ret == -ENODEV)
548 ret = __clockevents_update_freq(dev, freq);
549 local_irq_restore(flags);
550 return ret;
551 }
552
553 /*
554 * Noop handler when we shut down an event device
555 */
clockevents_handle_noop(struct clock_event_device * dev)556 void clockevents_handle_noop(struct clock_event_device *dev)
557 {
558 }
559
560 /**
561 * clockevents_exchange_device - release and request clock devices
562 * @old: device to release (can be NULL)
563 * @new: device to request (can be NULL)
564 *
565 * Called from various tick functions with clockevents_lock held and
566 * interrupts disabled.
567 */
clockevents_exchange_device(struct clock_event_device * old,struct clock_event_device * new)568 void clockevents_exchange_device(struct clock_event_device *old,
569 struct clock_event_device *new)
570 {
571 /*
572 * Caller releases a clock event device. We queue it into the
573 * released list and do a notify add later.
574 */
575 if (old) {
576 module_put(old->owner);
577 clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
578 list_move(&old->list, &clockevents_released);
579 }
580
581 if (new) {
582 BUG_ON(!clockevent_state_detached(new));
583 clockevents_shutdown(new);
584 }
585 }
586
587 /**
588 * clockevents_suspend - suspend clock devices
589 */
clockevents_suspend(void)590 void clockevents_suspend(void)
591 {
592 struct clock_event_device *dev;
593
594 list_for_each_entry_reverse(dev, &clockevent_devices, list)
595 if (dev->suspend && !clockevent_state_detached(dev))
596 dev->suspend(dev);
597 }
598
599 /**
600 * clockevents_resume - resume clock devices
601 */
clockevents_resume(void)602 void clockevents_resume(void)
603 {
604 struct clock_event_device *dev;
605
606 list_for_each_entry(dev, &clockevent_devices, list)
607 if (dev->resume && !clockevent_state_detached(dev))
608 dev->resume(dev);
609 }
610
611 #ifdef CONFIG_HOTPLUG_CPU
612
613 # ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
614 /**
615 * tick_offline_cpu - Take CPU out of the broadcast mechanism
616 * @cpu: The outgoing CPU
617 *
618 * Called on the outgoing CPU after it took itself offline.
619 */
tick_offline_cpu(unsigned int cpu)620 void tick_offline_cpu(unsigned int cpu)
621 {
622 raw_spin_lock(&clockevents_lock);
623 tick_broadcast_offline(cpu);
624 raw_spin_unlock(&clockevents_lock);
625 }
626 # endif
627
628 /**
629 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
630 * @cpu: The dead CPU
631 */
tick_cleanup_dead_cpu(int cpu)632 void tick_cleanup_dead_cpu(int cpu)
633 {
634 struct clock_event_device *dev, *tmp;
635 unsigned long flags;
636
637 raw_spin_lock_irqsave(&clockevents_lock, flags);
638
639 tick_shutdown(cpu);
640 /*
641 * Unregister the clock event devices which were
642 * released from the users in the notify chain.
643 */
644 list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
645 list_del(&dev->list);
646 /*
647 * Now check whether the CPU has left unused per cpu devices
648 */
649 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
650 if (cpumask_test_cpu(cpu, dev->cpumask) &&
651 cpumask_weight(dev->cpumask) == 1 &&
652 !tick_is_broadcast_device(dev)) {
653 BUG_ON(!clockevent_state_detached(dev));
654 list_del(&dev->list);
655 }
656 }
657 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
658 }
659 #endif
660
661 #ifdef CONFIG_SYSFS
662 static const struct bus_type clockevents_subsys = {
663 .name = "clockevents",
664 .dev_name = "clockevent",
665 };
666
667 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
668 static struct tick_device *tick_get_tick_dev(struct device *dev);
669
current_device_show(struct device * dev,struct device_attribute * attr,char * buf)670 static ssize_t current_device_show(struct device *dev,
671 struct device_attribute *attr,
672 char *buf)
673 {
674 struct tick_device *td;
675 ssize_t count = 0;
676
677 raw_spin_lock_irq(&clockevents_lock);
678 td = tick_get_tick_dev(dev);
679 if (td && td->evtdev)
680 count = sysfs_emit(buf, "%s\n", td->evtdev->name);
681 raw_spin_unlock_irq(&clockevents_lock);
682 return count;
683 }
684 static DEVICE_ATTR_RO(current_device);
685
686 /* We don't support the abomination of removable broadcast devices */
unbind_device_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)687 static ssize_t unbind_device_store(struct device *dev,
688 struct device_attribute *attr,
689 const char *buf, size_t count)
690 {
691 char name[CS_NAME_LEN];
692 ssize_t ret = sysfs_get_uname(buf, name, count);
693 struct clock_event_device *ce = NULL, *iter;
694
695 if (ret < 0)
696 return ret;
697
698 ret = -ENODEV;
699 mutex_lock(&clockevents_mutex);
700 raw_spin_lock_irq(&clockevents_lock);
701 list_for_each_entry(iter, &clockevent_devices, list) {
702 if (!strcmp(iter->name, name)) {
703 ret = __clockevents_try_unbind(iter, dev->id);
704 ce = iter;
705 break;
706 }
707 }
708 raw_spin_unlock_irq(&clockevents_lock);
709 /*
710 * We hold clockevents_mutex, so ce can't go away
711 */
712 if (ret == -EAGAIN)
713 ret = clockevents_unbind(ce, dev->id);
714 mutex_unlock(&clockevents_mutex);
715 return ret ? ret : count;
716 }
717 static DEVICE_ATTR_WO(unbind_device);
718
719 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
720 static struct device tick_bc_dev = {
721 .init_name = "broadcast",
722 .id = 0,
723 .bus = &clockevents_subsys,
724 };
725
tick_get_tick_dev(struct device * dev)726 static struct tick_device *tick_get_tick_dev(struct device *dev)
727 {
728 return dev == &tick_bc_dev ? tick_get_broadcast_device() :
729 &per_cpu(tick_cpu_device, dev->id);
730 }
731
tick_broadcast_init_sysfs(void)732 static __init int tick_broadcast_init_sysfs(void)
733 {
734 int err = device_register(&tick_bc_dev);
735
736 if (!err)
737 err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
738 return err;
739 }
740 #else
tick_get_tick_dev(struct device * dev)741 static struct tick_device *tick_get_tick_dev(struct device *dev)
742 {
743 return &per_cpu(tick_cpu_device, dev->id);
744 }
tick_broadcast_init_sysfs(void)745 static inline int tick_broadcast_init_sysfs(void) { return 0; }
746 #endif
747
tick_init_sysfs(void)748 static int __init tick_init_sysfs(void)
749 {
750 int cpu;
751
752 for_each_possible_cpu(cpu) {
753 struct device *dev = &per_cpu(tick_percpu_dev, cpu);
754 int err;
755
756 dev->id = cpu;
757 dev->bus = &clockevents_subsys;
758 err = device_register(dev);
759 if (!err)
760 err = device_create_file(dev, &dev_attr_current_device);
761 if (!err)
762 err = device_create_file(dev, &dev_attr_unbind_device);
763 if (err)
764 return err;
765 }
766 return tick_broadcast_init_sysfs();
767 }
768
clockevents_init_sysfs(void)769 static int __init clockevents_init_sysfs(void)
770 {
771 int err = subsys_system_register(&clockevents_subsys, NULL);
772
773 if (!err)
774 err = tick_init_sysfs();
775 return err;
776 }
777 device_initcall(clockevents_init_sysfs);
778 #endif /* SYSFS */
779