xref: /linux/kernel/time/clockevents.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30 
31 struct ce_unbind {
32 	struct clock_event_device *ce;
33 	int res;
34 };
35 
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 			bool ismax)
38 {
39 	u64 clc = (u64) latch << evt->shift;
40 	u64 rnd;
41 
42 	if (unlikely(!evt->mult)) {
43 		evt->mult = 1;
44 		WARN_ON(1);
45 	}
46 	rnd = (u64) evt->mult - 1;
47 
48 	/*
49 	 * Upper bound sanity check. If the backwards conversion is
50 	 * not equal latch, we know that the above shift overflowed.
51 	 */
52 	if ((clc >> evt->shift) != (u64)latch)
53 		clc = ~0ULL;
54 
55 	/*
56 	 * Scaled math oddities:
57 	 *
58 	 * For mult <= (1 << shift) we can safely add mult - 1 to
59 	 * prevent integer rounding loss. So the backwards conversion
60 	 * from nsec to device ticks will be correct.
61 	 *
62 	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 	 * need to be careful. Adding mult - 1 will result in a value
64 	 * which when converted back to device ticks can be larger
65 	 * than latch by up to (mult - 1) >> shift. For the min_delta
66 	 * calculation we still want to apply this in order to stay
67 	 * above the minimum device ticks limit. For the upper limit
68 	 * we would end up with a latch value larger than the upper
69 	 * limit of the device, so we omit the add to stay below the
70 	 * device upper boundary.
71 	 *
72 	 * Also omit the add if it would overflow the u64 boundary.
73 	 */
74 	if ((~0ULL - clc > rnd) &&
75 	    (!ismax || evt->mult <= (1ULL << evt->shift)))
76 		clc += rnd;
77 
78 	do_div(clc, evt->mult);
79 
80 	/* Deltas less than 1usec are pointless noise */
81 	return clc > 1000 ? clc : 1000;
82 }
83 
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:	value to convert
87  * @evt:	pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 	return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96 
97 static int __clockevents_switch_state(struct clock_event_device *dev,
98 				      enum clock_event_state state)
99 {
100 	/* Transition with legacy set_mode() callback */
101 	if (dev->set_mode) {
102 		/* Legacy callback doesn't support new modes */
103 		if (state > CLOCK_EVT_STATE_ONESHOT)
104 			return -ENOSYS;
105 		/*
106 		 * 'clock_event_state' and 'clock_event_mode' have 1-to-1
107 		 * mapping until *_ONESHOT, and so a simple cast will work.
108 		 */
109 		dev->set_mode((enum clock_event_mode)state, dev);
110 		dev->mode = (enum clock_event_mode)state;
111 		return 0;
112 	}
113 
114 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
115 		return 0;
116 
117 	/* Transition with new state-specific callbacks */
118 	switch (state) {
119 	case CLOCK_EVT_STATE_DETACHED:
120 		/* The clockevent device is getting replaced. Shut it down. */
121 
122 	case CLOCK_EVT_STATE_SHUTDOWN:
123 		if (dev->set_state_shutdown)
124 			return dev->set_state_shutdown(dev);
125 		return 0;
126 
127 	case CLOCK_EVT_STATE_PERIODIC:
128 		/* Core internal bug */
129 		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
130 			return -ENOSYS;
131 		if (dev->set_state_periodic)
132 			return dev->set_state_periodic(dev);
133 		return 0;
134 
135 	case CLOCK_EVT_STATE_ONESHOT:
136 		/* Core internal bug */
137 		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
138 			return -ENOSYS;
139 		if (dev->set_state_oneshot)
140 			return dev->set_state_oneshot(dev);
141 		return 0;
142 
143 	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
144 		/* Core internal bug */
145 		if (WARN_ONCE(!clockevent_state_oneshot(dev),
146 			      "Current state: %d\n",
147 			      clockevent_get_state(dev)))
148 			return -EINVAL;
149 
150 		if (dev->set_state_oneshot_stopped)
151 			return dev->set_state_oneshot_stopped(dev);
152 		else
153 			return -ENOSYS;
154 
155 	default:
156 		return -ENOSYS;
157 	}
158 }
159 
160 /**
161  * clockevents_switch_state - set the operating state of a clock event device
162  * @dev:	device to modify
163  * @state:	new state
164  *
165  * Must be called with interrupts disabled !
166  */
167 void clockevents_switch_state(struct clock_event_device *dev,
168 			      enum clock_event_state state)
169 {
170 	if (clockevent_get_state(dev) != state) {
171 		if (__clockevents_switch_state(dev, state))
172 			return;
173 
174 		clockevent_set_state(dev, state);
175 
176 		/*
177 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
178 		 * on it, so fix it up and emit a warning:
179 		 */
180 		if (clockevent_state_oneshot(dev)) {
181 			if (unlikely(!dev->mult)) {
182 				dev->mult = 1;
183 				WARN_ON(1);
184 			}
185 		}
186 	}
187 }
188 
189 /**
190  * clockevents_shutdown - shutdown the device and clear next_event
191  * @dev:	device to shutdown
192  */
193 void clockevents_shutdown(struct clock_event_device *dev)
194 {
195 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
196 	dev->next_event.tv64 = KTIME_MAX;
197 }
198 
199 /**
200  * clockevents_tick_resume -	Resume the tick device before using it again
201  * @dev:			device to resume
202  */
203 int clockevents_tick_resume(struct clock_event_device *dev)
204 {
205 	int ret = 0;
206 
207 	if (dev->set_mode) {
208 		dev->set_mode(CLOCK_EVT_MODE_RESUME, dev);
209 		dev->mode = CLOCK_EVT_MODE_RESUME;
210 	} else if (dev->tick_resume) {
211 		ret = dev->tick_resume(dev);
212 	}
213 
214 	return ret;
215 }
216 
217 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
218 
219 /* Limit min_delta to a jiffie */
220 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
221 
222 /**
223  * clockevents_increase_min_delta - raise minimum delta of a clock event device
224  * @dev:       device to increase the minimum delta
225  *
226  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
227  */
228 static int clockevents_increase_min_delta(struct clock_event_device *dev)
229 {
230 	/* Nothing to do if we already reached the limit */
231 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
232 		printk_deferred(KERN_WARNING
233 				"CE: Reprogramming failure. Giving up\n");
234 		dev->next_event.tv64 = KTIME_MAX;
235 		return -ETIME;
236 	}
237 
238 	if (dev->min_delta_ns < 5000)
239 		dev->min_delta_ns = 5000;
240 	else
241 		dev->min_delta_ns += dev->min_delta_ns >> 1;
242 
243 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
244 		dev->min_delta_ns = MIN_DELTA_LIMIT;
245 
246 	printk_deferred(KERN_WARNING
247 			"CE: %s increased min_delta_ns to %llu nsec\n",
248 			dev->name ? dev->name : "?",
249 			(unsigned long long) dev->min_delta_ns);
250 	return 0;
251 }
252 
253 /**
254  * clockevents_program_min_delta - Set clock event device to the minimum delay.
255  * @dev:	device to program
256  *
257  * Returns 0 on success, -ETIME when the retry loop failed.
258  */
259 static int clockevents_program_min_delta(struct clock_event_device *dev)
260 {
261 	unsigned long long clc;
262 	int64_t delta;
263 	int i;
264 
265 	for (i = 0;;) {
266 		delta = dev->min_delta_ns;
267 		dev->next_event = ktime_add_ns(ktime_get(), delta);
268 
269 		if (clockevent_state_shutdown(dev))
270 			return 0;
271 
272 		dev->retries++;
273 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
274 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
275 			return 0;
276 
277 		if (++i > 2) {
278 			/*
279 			 * We tried 3 times to program the device with the
280 			 * given min_delta_ns. Try to increase the minimum
281 			 * delta, if that fails as well get out of here.
282 			 */
283 			if (clockevents_increase_min_delta(dev))
284 				return -ETIME;
285 			i = 0;
286 		}
287 	}
288 }
289 
290 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
291 
292 /**
293  * clockevents_program_min_delta - Set clock event device to the minimum delay.
294  * @dev:	device to program
295  *
296  * Returns 0 on success, -ETIME when the retry loop failed.
297  */
298 static int clockevents_program_min_delta(struct clock_event_device *dev)
299 {
300 	unsigned long long clc;
301 	int64_t delta;
302 
303 	delta = dev->min_delta_ns;
304 	dev->next_event = ktime_add_ns(ktime_get(), delta);
305 
306 	if (clockevent_state_shutdown(dev))
307 		return 0;
308 
309 	dev->retries++;
310 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
311 	return dev->set_next_event((unsigned long) clc, dev);
312 }
313 
314 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
315 
316 /**
317  * clockevents_program_event - Reprogram the clock event device.
318  * @dev:	device to program
319  * @expires:	absolute expiry time (monotonic clock)
320  * @force:	program minimum delay if expires can not be set
321  *
322  * Returns 0 on success, -ETIME when the event is in the past.
323  */
324 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
325 			      bool force)
326 {
327 	unsigned long long clc;
328 	int64_t delta;
329 	int rc;
330 
331 	if (unlikely(expires.tv64 < 0)) {
332 		WARN_ON_ONCE(1);
333 		return -ETIME;
334 	}
335 
336 	dev->next_event = expires;
337 
338 	if (clockevent_state_shutdown(dev))
339 		return 0;
340 
341 	/* We must be in ONESHOT state here */
342 	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
343 		  clockevent_get_state(dev));
344 
345 	/* Shortcut for clockevent devices that can deal with ktime. */
346 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
347 		return dev->set_next_ktime(expires, dev);
348 
349 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
350 	if (delta <= 0)
351 		return force ? clockevents_program_min_delta(dev) : -ETIME;
352 
353 	delta = min(delta, (int64_t) dev->max_delta_ns);
354 	delta = max(delta, (int64_t) dev->min_delta_ns);
355 
356 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
357 	rc = dev->set_next_event((unsigned long) clc, dev);
358 
359 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
360 }
361 
362 /*
363  * Called after a notify add to make devices available which were
364  * released from the notifier call.
365  */
366 static void clockevents_notify_released(void)
367 {
368 	struct clock_event_device *dev;
369 
370 	while (!list_empty(&clockevents_released)) {
371 		dev = list_entry(clockevents_released.next,
372 				 struct clock_event_device, list);
373 		list_del(&dev->list);
374 		list_add(&dev->list, &clockevent_devices);
375 		tick_check_new_device(dev);
376 	}
377 }
378 
379 /*
380  * Try to install a replacement clock event device
381  */
382 static int clockevents_replace(struct clock_event_device *ced)
383 {
384 	struct clock_event_device *dev, *newdev = NULL;
385 
386 	list_for_each_entry(dev, &clockevent_devices, list) {
387 		if (dev == ced || !clockevent_state_detached(dev))
388 			continue;
389 
390 		if (!tick_check_replacement(newdev, dev))
391 			continue;
392 
393 		if (!try_module_get(dev->owner))
394 			continue;
395 
396 		if (newdev)
397 			module_put(newdev->owner);
398 		newdev = dev;
399 	}
400 	if (newdev) {
401 		tick_install_replacement(newdev);
402 		list_del_init(&ced->list);
403 	}
404 	return newdev ? 0 : -EBUSY;
405 }
406 
407 /*
408  * Called with clockevents_mutex and clockevents_lock held
409  */
410 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
411 {
412 	/* Fast track. Device is unused */
413 	if (clockevent_state_detached(ced)) {
414 		list_del_init(&ced->list);
415 		return 0;
416 	}
417 
418 	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
419 }
420 
421 /*
422  * SMP function call to unbind a device
423  */
424 static void __clockevents_unbind(void *arg)
425 {
426 	struct ce_unbind *cu = arg;
427 	int res;
428 
429 	raw_spin_lock(&clockevents_lock);
430 	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
431 	if (res == -EAGAIN)
432 		res = clockevents_replace(cu->ce);
433 	cu->res = res;
434 	raw_spin_unlock(&clockevents_lock);
435 }
436 
437 /*
438  * Issues smp function call to unbind a per cpu device. Called with
439  * clockevents_mutex held.
440  */
441 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
442 {
443 	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
444 
445 	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
446 	return cu.res;
447 }
448 
449 /*
450  * Unbind a clockevents device.
451  */
452 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
453 {
454 	int ret;
455 
456 	mutex_lock(&clockevents_mutex);
457 	ret = clockevents_unbind(ced, cpu);
458 	mutex_unlock(&clockevents_mutex);
459 	return ret;
460 }
461 EXPORT_SYMBOL_GPL(clockevents_unbind_device);
462 
463 /* Sanity check of state transition callbacks */
464 static int clockevents_sanity_check(struct clock_event_device *dev)
465 {
466 	/* Legacy set_mode() callback */
467 	if (dev->set_mode) {
468 		/* We shouldn't be supporting new modes now */
469 		WARN_ON(dev->set_state_periodic || dev->set_state_oneshot ||
470 			dev->set_state_shutdown || dev->tick_resume ||
471 			dev->set_state_oneshot_stopped);
472 
473 		BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
474 		return 0;
475 	}
476 
477 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
478 		return 0;
479 
480 	return 0;
481 }
482 
483 /**
484  * clockevents_register_device - register a clock event device
485  * @dev:	device to register
486  */
487 void clockevents_register_device(struct clock_event_device *dev)
488 {
489 	unsigned long flags;
490 
491 	BUG_ON(clockevents_sanity_check(dev));
492 
493 	/* Initialize state to DETACHED */
494 	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
495 
496 	if (!dev->cpumask) {
497 		WARN_ON(num_possible_cpus() > 1);
498 		dev->cpumask = cpumask_of(smp_processor_id());
499 	}
500 
501 	raw_spin_lock_irqsave(&clockevents_lock, flags);
502 
503 	list_add(&dev->list, &clockevent_devices);
504 	tick_check_new_device(dev);
505 	clockevents_notify_released();
506 
507 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
508 }
509 EXPORT_SYMBOL_GPL(clockevents_register_device);
510 
511 void clockevents_config(struct clock_event_device *dev, u32 freq)
512 {
513 	u64 sec;
514 
515 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
516 		return;
517 
518 	/*
519 	 * Calculate the maximum number of seconds we can sleep. Limit
520 	 * to 10 minutes for hardware which can program more than
521 	 * 32bit ticks so we still get reasonable conversion values.
522 	 */
523 	sec = dev->max_delta_ticks;
524 	do_div(sec, freq);
525 	if (!sec)
526 		sec = 1;
527 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
528 		sec = 600;
529 
530 	clockevents_calc_mult_shift(dev, freq, sec);
531 	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
532 	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
533 }
534 
535 /**
536  * clockevents_config_and_register - Configure and register a clock event device
537  * @dev:	device to register
538  * @freq:	The clock frequency
539  * @min_delta:	The minimum clock ticks to program in oneshot mode
540  * @max_delta:	The maximum clock ticks to program in oneshot mode
541  *
542  * min/max_delta can be 0 for devices which do not support oneshot mode.
543  */
544 void clockevents_config_and_register(struct clock_event_device *dev,
545 				     u32 freq, unsigned long min_delta,
546 				     unsigned long max_delta)
547 {
548 	dev->min_delta_ticks = min_delta;
549 	dev->max_delta_ticks = max_delta;
550 	clockevents_config(dev, freq);
551 	clockevents_register_device(dev);
552 }
553 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
554 
555 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
556 {
557 	clockevents_config(dev, freq);
558 
559 	if (clockevent_state_oneshot(dev))
560 		return clockevents_program_event(dev, dev->next_event, false);
561 
562 	if (clockevent_state_periodic(dev))
563 		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
564 
565 	return 0;
566 }
567 
568 /**
569  * clockevents_update_freq - Update frequency and reprogram a clock event device.
570  * @dev:	device to modify
571  * @freq:	new device frequency
572  *
573  * Reconfigure and reprogram a clock event device in oneshot
574  * mode. Must be called on the cpu for which the device delivers per
575  * cpu timer events. If called for the broadcast device the core takes
576  * care of serialization.
577  *
578  * Returns 0 on success, -ETIME when the event is in the past.
579  */
580 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
581 {
582 	unsigned long flags;
583 	int ret;
584 
585 	local_irq_save(flags);
586 	ret = tick_broadcast_update_freq(dev, freq);
587 	if (ret == -ENODEV)
588 		ret = __clockevents_update_freq(dev, freq);
589 	local_irq_restore(flags);
590 	return ret;
591 }
592 
593 /*
594  * Noop handler when we shut down an event device
595  */
596 void clockevents_handle_noop(struct clock_event_device *dev)
597 {
598 }
599 
600 /**
601  * clockevents_exchange_device - release and request clock devices
602  * @old:	device to release (can be NULL)
603  * @new:	device to request (can be NULL)
604  *
605  * Called from various tick functions with clockevents_lock held and
606  * interrupts disabled.
607  */
608 void clockevents_exchange_device(struct clock_event_device *old,
609 				 struct clock_event_device *new)
610 {
611 	/*
612 	 * Caller releases a clock event device. We queue it into the
613 	 * released list and do a notify add later.
614 	 */
615 	if (old) {
616 		module_put(old->owner);
617 		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
618 		list_del(&old->list);
619 		list_add(&old->list, &clockevents_released);
620 	}
621 
622 	if (new) {
623 		BUG_ON(!clockevent_state_detached(new));
624 		clockevents_shutdown(new);
625 	}
626 }
627 
628 /**
629  * clockevents_suspend - suspend clock devices
630  */
631 void clockevents_suspend(void)
632 {
633 	struct clock_event_device *dev;
634 
635 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
636 		if (dev->suspend && !clockevent_state_detached(dev))
637 			dev->suspend(dev);
638 }
639 
640 /**
641  * clockevents_resume - resume clock devices
642  */
643 void clockevents_resume(void)
644 {
645 	struct clock_event_device *dev;
646 
647 	list_for_each_entry(dev, &clockevent_devices, list)
648 		if (dev->resume && !clockevent_state_detached(dev))
649 			dev->resume(dev);
650 }
651 
652 #ifdef CONFIG_HOTPLUG_CPU
653 /**
654  * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
655  */
656 void tick_cleanup_dead_cpu(int cpu)
657 {
658 	struct clock_event_device *dev, *tmp;
659 	unsigned long flags;
660 
661 	raw_spin_lock_irqsave(&clockevents_lock, flags);
662 
663 	tick_shutdown_broadcast_oneshot(cpu);
664 	tick_shutdown_broadcast(cpu);
665 	tick_shutdown(cpu);
666 	/*
667 	 * Unregister the clock event devices which were
668 	 * released from the users in the notify chain.
669 	 */
670 	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
671 		list_del(&dev->list);
672 	/*
673 	 * Now check whether the CPU has left unused per cpu devices
674 	 */
675 	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
676 		if (cpumask_test_cpu(cpu, dev->cpumask) &&
677 		    cpumask_weight(dev->cpumask) == 1 &&
678 		    !tick_is_broadcast_device(dev)) {
679 			BUG_ON(!clockevent_state_detached(dev));
680 			list_del(&dev->list);
681 		}
682 	}
683 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
684 }
685 #endif
686 
687 #ifdef CONFIG_SYSFS
688 struct bus_type clockevents_subsys = {
689 	.name		= "clockevents",
690 	.dev_name       = "clockevent",
691 };
692 
693 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
694 static struct tick_device *tick_get_tick_dev(struct device *dev);
695 
696 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
697 					   struct device_attribute *attr,
698 					   char *buf)
699 {
700 	struct tick_device *td;
701 	ssize_t count = 0;
702 
703 	raw_spin_lock_irq(&clockevents_lock);
704 	td = tick_get_tick_dev(dev);
705 	if (td && td->evtdev)
706 		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
707 	raw_spin_unlock_irq(&clockevents_lock);
708 	return count;
709 }
710 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
711 
712 /* We don't support the abomination of removable broadcast devices */
713 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
714 				     struct device_attribute *attr,
715 				     const char *buf, size_t count)
716 {
717 	char name[CS_NAME_LEN];
718 	ssize_t ret = sysfs_get_uname(buf, name, count);
719 	struct clock_event_device *ce;
720 
721 	if (ret < 0)
722 		return ret;
723 
724 	ret = -ENODEV;
725 	mutex_lock(&clockevents_mutex);
726 	raw_spin_lock_irq(&clockevents_lock);
727 	list_for_each_entry(ce, &clockevent_devices, list) {
728 		if (!strcmp(ce->name, name)) {
729 			ret = __clockevents_try_unbind(ce, dev->id);
730 			break;
731 		}
732 	}
733 	raw_spin_unlock_irq(&clockevents_lock);
734 	/*
735 	 * We hold clockevents_mutex, so ce can't go away
736 	 */
737 	if (ret == -EAGAIN)
738 		ret = clockevents_unbind(ce, dev->id);
739 	mutex_unlock(&clockevents_mutex);
740 	return ret ? ret : count;
741 }
742 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
743 
744 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
745 static struct device tick_bc_dev = {
746 	.init_name	= "broadcast",
747 	.id		= 0,
748 	.bus		= &clockevents_subsys,
749 };
750 
751 static struct tick_device *tick_get_tick_dev(struct device *dev)
752 {
753 	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
754 		&per_cpu(tick_cpu_device, dev->id);
755 }
756 
757 static __init int tick_broadcast_init_sysfs(void)
758 {
759 	int err = device_register(&tick_bc_dev);
760 
761 	if (!err)
762 		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
763 	return err;
764 }
765 #else
766 static struct tick_device *tick_get_tick_dev(struct device *dev)
767 {
768 	return &per_cpu(tick_cpu_device, dev->id);
769 }
770 static inline int tick_broadcast_init_sysfs(void) { return 0; }
771 #endif
772 
773 static int __init tick_init_sysfs(void)
774 {
775 	int cpu;
776 
777 	for_each_possible_cpu(cpu) {
778 		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
779 		int err;
780 
781 		dev->id = cpu;
782 		dev->bus = &clockevents_subsys;
783 		err = device_register(dev);
784 		if (!err)
785 			err = device_create_file(dev, &dev_attr_current_device);
786 		if (!err)
787 			err = device_create_file(dev, &dev_attr_unbind_device);
788 		if (err)
789 			return err;
790 	}
791 	return tick_broadcast_init_sysfs();
792 }
793 
794 static int __init clockevents_init_sysfs(void)
795 {
796 	int err = subsys_system_register(&clockevents_subsys, NULL);
797 
798 	if (!err)
799 		err = tick_init_sysfs();
800 	return err;
801 }
802 device_initcall(clockevents_init_sysfs);
803 #endif /* SYSFS */
804