1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains functions which manage clock event devices. 4 * 5 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 6 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 7 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 8 */ 9 10 #include <linux/clockchips.h> 11 #include <linux/hrtimer.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/smp.h> 15 #include <linux/device.h> 16 17 #include "tick-internal.h" 18 19 /* The registered clock event devices */ 20 static LIST_HEAD(clockevent_devices); 21 static LIST_HEAD(clockevents_released); 22 /* Protection for the above */ 23 static DEFINE_RAW_SPINLOCK(clockevents_lock); 24 /* Protection for unbind operations */ 25 static DEFINE_MUTEX(clockevents_mutex); 26 27 struct ce_unbind { 28 struct clock_event_device *ce; 29 int res; 30 }; 31 32 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt, 33 bool ismax) 34 { 35 u64 clc = (u64) latch << evt->shift; 36 u64 rnd; 37 38 if (WARN_ON(!evt->mult)) 39 evt->mult = 1; 40 rnd = (u64) evt->mult - 1; 41 42 /* 43 * Upper bound sanity check. If the backwards conversion is 44 * not equal latch, we know that the above shift overflowed. 45 */ 46 if ((clc >> evt->shift) != (u64)latch) 47 clc = ~0ULL; 48 49 /* 50 * Scaled math oddities: 51 * 52 * For mult <= (1 << shift) we can safely add mult - 1 to 53 * prevent integer rounding loss. So the backwards conversion 54 * from nsec to device ticks will be correct. 55 * 56 * For mult > (1 << shift), i.e. device frequency is > 1GHz we 57 * need to be careful. Adding mult - 1 will result in a value 58 * which when converted back to device ticks can be larger 59 * than latch by up to (mult - 1) >> shift. For the min_delta 60 * calculation we still want to apply this in order to stay 61 * above the minimum device ticks limit. For the upper limit 62 * we would end up with a latch value larger than the upper 63 * limit of the device, so we omit the add to stay below the 64 * device upper boundary. 65 * 66 * Also omit the add if it would overflow the u64 boundary. 67 */ 68 if ((~0ULL - clc > rnd) && 69 (!ismax || evt->mult <= (1ULL << evt->shift))) 70 clc += rnd; 71 72 do_div(clc, evt->mult); 73 74 /* Deltas less than 1usec are pointless noise */ 75 return clc > 1000 ? clc : 1000; 76 } 77 78 /** 79 * clockevent_delta2ns - Convert a latch value (device ticks) to nanoseconds 80 * @latch: value to convert 81 * @evt: pointer to clock event device descriptor 82 * 83 * Math helper, returns latch value converted to nanoseconds (bound checked) 84 */ 85 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt) 86 { 87 return cev_delta2ns(latch, evt, false); 88 } 89 EXPORT_SYMBOL_GPL(clockevent_delta2ns); 90 91 static int __clockevents_switch_state(struct clock_event_device *dev, 92 enum clock_event_state state) 93 { 94 if (dev->features & CLOCK_EVT_FEAT_DUMMY) 95 return 0; 96 97 /* Transition with new state-specific callbacks */ 98 switch (state) { 99 case CLOCK_EVT_STATE_DETACHED: 100 /* The clockevent device is getting replaced. Shut it down. */ 101 102 case CLOCK_EVT_STATE_SHUTDOWN: 103 if (dev->set_state_shutdown) 104 return dev->set_state_shutdown(dev); 105 return 0; 106 107 case CLOCK_EVT_STATE_PERIODIC: 108 /* Core internal bug */ 109 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC)) 110 return -ENOSYS; 111 if (dev->set_state_periodic) 112 return dev->set_state_periodic(dev); 113 return 0; 114 115 case CLOCK_EVT_STATE_ONESHOT: 116 /* Core internal bug */ 117 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 118 return -ENOSYS; 119 if (dev->set_state_oneshot) 120 return dev->set_state_oneshot(dev); 121 return 0; 122 123 case CLOCK_EVT_STATE_ONESHOT_STOPPED: 124 /* Core internal bug */ 125 if (WARN_ONCE(!clockevent_state_oneshot(dev), 126 "Current state: %d\n", 127 clockevent_get_state(dev))) 128 return -EINVAL; 129 130 if (dev->set_state_oneshot_stopped) 131 return dev->set_state_oneshot_stopped(dev); 132 else 133 return -ENOSYS; 134 135 default: 136 return -ENOSYS; 137 } 138 } 139 140 /** 141 * clockevents_switch_state - set the operating state of a clock event device 142 * @dev: device to modify 143 * @state: new state 144 * 145 * Must be called with interrupts disabled ! 146 */ 147 void clockevents_switch_state(struct clock_event_device *dev, 148 enum clock_event_state state) 149 { 150 if (clockevent_get_state(dev) != state) { 151 if (__clockevents_switch_state(dev, state)) 152 return; 153 154 clockevent_set_state(dev, state); 155 156 /* 157 * A nsec2cyc multiplicator of 0 is invalid and we'd crash 158 * on it, so fix it up and emit a warning: 159 */ 160 if (clockevent_state_oneshot(dev)) { 161 if (WARN_ON(!dev->mult)) 162 dev->mult = 1; 163 } 164 } 165 } 166 167 /** 168 * clockevents_shutdown - shutdown the device and clear next_event 169 * @dev: device to shutdown 170 */ 171 void clockevents_shutdown(struct clock_event_device *dev) 172 { 173 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 174 dev->next_event = KTIME_MAX; 175 } 176 177 /** 178 * clockevents_tick_resume - Resume the tick device before using it again 179 * @dev: device to resume 180 */ 181 int clockevents_tick_resume(struct clock_event_device *dev) 182 { 183 int ret = 0; 184 185 if (dev->tick_resume) 186 ret = dev->tick_resume(dev); 187 188 return ret; 189 } 190 191 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST 192 193 /* Limit min_delta to a jiffy */ 194 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ) 195 196 /** 197 * clockevents_increase_min_delta - raise minimum delta of a clock event device 198 * @dev: device to increase the minimum delta 199 * 200 * Returns 0 on success, -ETIME when the minimum delta reached the limit. 201 */ 202 static int clockevents_increase_min_delta(struct clock_event_device *dev) 203 { 204 /* Nothing to do if we already reached the limit */ 205 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) { 206 printk_deferred(KERN_WARNING 207 "CE: Reprogramming failure. Giving up\n"); 208 dev->next_event = KTIME_MAX; 209 return -ETIME; 210 } 211 212 if (dev->min_delta_ns < 5000) 213 dev->min_delta_ns = 5000; 214 else 215 dev->min_delta_ns += dev->min_delta_ns >> 1; 216 217 if (dev->min_delta_ns > MIN_DELTA_LIMIT) 218 dev->min_delta_ns = MIN_DELTA_LIMIT; 219 220 printk_deferred(KERN_WARNING 221 "CE: %s increased min_delta_ns to %llu nsec\n", 222 dev->name ? dev->name : "?", 223 (unsigned long long) dev->min_delta_ns); 224 return 0; 225 } 226 227 /** 228 * clockevents_program_min_delta - Set clock event device to the minimum delay. 229 * @dev: device to program 230 * 231 * Returns 0 on success, -ETIME when the retry loop failed. 232 */ 233 static int clockevents_program_min_delta(struct clock_event_device *dev) 234 { 235 unsigned long long clc; 236 int64_t delta; 237 int i; 238 239 for (i = 0;;) { 240 delta = dev->min_delta_ns; 241 dev->next_event = ktime_add_ns(ktime_get(), delta); 242 243 if (clockevent_state_shutdown(dev)) 244 return 0; 245 246 dev->retries++; 247 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 248 if (dev->set_next_event((unsigned long) clc, dev) == 0) 249 return 0; 250 251 if (++i > 2) { 252 /* 253 * We tried 3 times to program the device with the 254 * given min_delta_ns. Try to increase the minimum 255 * delta, if that fails as well get out of here. 256 */ 257 if (clockevents_increase_min_delta(dev)) 258 return -ETIME; 259 i = 0; 260 } 261 } 262 } 263 264 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 265 266 /** 267 * clockevents_program_min_delta - Set clock event device to the minimum delay. 268 * @dev: device to program 269 * 270 * Returns 0 on success, -ETIME when the retry loop failed. 271 */ 272 static int clockevents_program_min_delta(struct clock_event_device *dev) 273 { 274 unsigned long long clc; 275 int64_t delta = 0; 276 int i; 277 278 for (i = 0; i < 10; i++) { 279 delta += dev->min_delta_ns; 280 dev->next_event = ktime_add_ns(ktime_get(), delta); 281 282 if (clockevent_state_shutdown(dev)) 283 return 0; 284 285 dev->retries++; 286 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 287 if (dev->set_next_event((unsigned long) clc, dev) == 0) 288 return 0; 289 } 290 return -ETIME; 291 } 292 293 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 294 295 /** 296 * clockevents_program_event - Reprogram the clock event device. 297 * @dev: device to program 298 * @expires: absolute expiry time (monotonic clock) 299 * @force: program minimum delay if expires can not be set 300 * 301 * Returns 0 on success, -ETIME when the event is in the past. 302 */ 303 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires, 304 bool force) 305 { 306 unsigned long long clc; 307 int64_t delta; 308 int rc; 309 310 if (WARN_ON_ONCE(expires < 0)) 311 return -ETIME; 312 313 dev->next_event = expires; 314 315 if (clockevent_state_shutdown(dev)) 316 return 0; 317 318 /* We must be in ONESHOT state here */ 319 WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n", 320 clockevent_get_state(dev)); 321 322 /* Shortcut for clockevent devices that can deal with ktime. */ 323 if (dev->features & CLOCK_EVT_FEAT_KTIME) 324 return dev->set_next_ktime(expires, dev); 325 326 delta = ktime_to_ns(ktime_sub(expires, ktime_get())); 327 if (delta <= 0) 328 return force ? clockevents_program_min_delta(dev) : -ETIME; 329 330 delta = min(delta, (int64_t) dev->max_delta_ns); 331 delta = max(delta, (int64_t) dev->min_delta_ns); 332 333 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 334 rc = dev->set_next_event((unsigned long) clc, dev); 335 336 return (rc && force) ? clockevents_program_min_delta(dev) : rc; 337 } 338 339 /* 340 * Called after a notify add to make devices available which were 341 * released from the notifier call. 342 */ 343 static void clockevents_notify_released(void) 344 { 345 struct clock_event_device *dev; 346 347 while (!list_empty(&clockevents_released)) { 348 dev = list_entry(clockevents_released.next, 349 struct clock_event_device, list); 350 list_move(&dev->list, &clockevent_devices); 351 tick_check_new_device(dev); 352 } 353 } 354 355 /* 356 * Try to install a replacement clock event device 357 */ 358 static int clockevents_replace(struct clock_event_device *ced) 359 { 360 struct clock_event_device *dev, *newdev = NULL; 361 362 list_for_each_entry(dev, &clockevent_devices, list) { 363 if (dev == ced || !clockevent_state_detached(dev)) 364 continue; 365 366 if (!tick_check_replacement(newdev, dev)) 367 continue; 368 369 if (!try_module_get(dev->owner)) 370 continue; 371 372 if (newdev) 373 module_put(newdev->owner); 374 newdev = dev; 375 } 376 if (newdev) { 377 tick_install_replacement(newdev); 378 list_del_init(&ced->list); 379 } 380 return newdev ? 0 : -EBUSY; 381 } 382 383 /* 384 * Called with clockevents_mutex and clockevents_lock held 385 */ 386 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu) 387 { 388 /* Fast track. Device is unused */ 389 if (clockevent_state_detached(ced)) { 390 list_del_init(&ced->list); 391 return 0; 392 } 393 394 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY; 395 } 396 397 /* 398 * SMP function call to unbind a device 399 */ 400 static void __clockevents_unbind(void *arg) 401 { 402 struct ce_unbind *cu = arg; 403 int res; 404 405 raw_spin_lock(&clockevents_lock); 406 res = __clockevents_try_unbind(cu->ce, smp_processor_id()); 407 if (res == -EAGAIN) 408 res = clockevents_replace(cu->ce); 409 cu->res = res; 410 raw_spin_unlock(&clockevents_lock); 411 } 412 413 /* 414 * Issues smp function call to unbind a per cpu device. Called with 415 * clockevents_mutex held. 416 */ 417 static int clockevents_unbind(struct clock_event_device *ced, int cpu) 418 { 419 struct ce_unbind cu = { .ce = ced, .res = -ENODEV }; 420 421 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1); 422 return cu.res; 423 } 424 425 /* 426 * Unbind a clockevents device. 427 */ 428 int clockevents_unbind_device(struct clock_event_device *ced, int cpu) 429 { 430 int ret; 431 432 mutex_lock(&clockevents_mutex); 433 ret = clockevents_unbind(ced, cpu); 434 mutex_unlock(&clockevents_mutex); 435 return ret; 436 } 437 EXPORT_SYMBOL_GPL(clockevents_unbind_device); 438 439 /** 440 * clockevents_register_device - register a clock event device 441 * @dev: device to register 442 */ 443 void clockevents_register_device(struct clock_event_device *dev) 444 { 445 unsigned long flags; 446 447 /* Initialize state to DETACHED */ 448 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 449 450 if (!dev->cpumask) { 451 WARN_ON(num_possible_cpus() > 1); 452 dev->cpumask = cpumask_of(smp_processor_id()); 453 } 454 455 if (dev->cpumask == cpu_all_mask) { 456 WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n", 457 dev->name); 458 dev->cpumask = cpu_possible_mask; 459 } 460 461 raw_spin_lock_irqsave(&clockevents_lock, flags); 462 463 list_add(&dev->list, &clockevent_devices); 464 tick_check_new_device(dev); 465 clockevents_notify_released(); 466 467 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 468 } 469 EXPORT_SYMBOL_GPL(clockevents_register_device); 470 471 static void clockevents_config(struct clock_event_device *dev, u32 freq) 472 { 473 u64 sec; 474 475 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 476 return; 477 478 /* 479 * Calculate the maximum number of seconds we can sleep. Limit 480 * to 10 minutes for hardware which can program more than 481 * 32bit ticks so we still get reasonable conversion values. 482 */ 483 sec = dev->max_delta_ticks; 484 do_div(sec, freq); 485 if (!sec) 486 sec = 1; 487 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX) 488 sec = 600; 489 490 clockevents_calc_mult_shift(dev, freq, sec); 491 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false); 492 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true); 493 } 494 495 /** 496 * clockevents_config_and_register - Configure and register a clock event device 497 * @dev: device to register 498 * @freq: The clock frequency 499 * @min_delta: The minimum clock ticks to program in oneshot mode 500 * @max_delta: The maximum clock ticks to program in oneshot mode 501 * 502 * min/max_delta can be 0 for devices which do not support oneshot mode. 503 */ 504 void clockevents_config_and_register(struct clock_event_device *dev, 505 u32 freq, unsigned long min_delta, 506 unsigned long max_delta) 507 { 508 dev->min_delta_ticks = min_delta; 509 dev->max_delta_ticks = max_delta; 510 clockevents_config(dev, freq); 511 clockevents_register_device(dev); 512 } 513 EXPORT_SYMBOL_GPL(clockevents_config_and_register); 514 515 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq) 516 { 517 clockevents_config(dev, freq); 518 519 if (clockevent_state_oneshot(dev)) 520 return clockevents_program_event(dev, dev->next_event, false); 521 522 if (clockevent_state_periodic(dev)) 523 return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 524 525 return 0; 526 } 527 528 /** 529 * clockevents_update_freq - Update frequency and reprogram a clock event device. 530 * @dev: device to modify 531 * @freq: new device frequency 532 * 533 * Reconfigure and reprogram a clock event device in oneshot 534 * mode. Must be called on the cpu for which the device delivers per 535 * cpu timer events. If called for the broadcast device the core takes 536 * care of serialization. 537 * 538 * Returns 0 on success, -ETIME when the event is in the past. 539 */ 540 int clockevents_update_freq(struct clock_event_device *dev, u32 freq) 541 { 542 unsigned long flags; 543 int ret; 544 545 local_irq_save(flags); 546 ret = tick_broadcast_update_freq(dev, freq); 547 if (ret == -ENODEV) 548 ret = __clockevents_update_freq(dev, freq); 549 local_irq_restore(flags); 550 return ret; 551 } 552 553 /* 554 * Noop handler when we shut down an event device 555 */ 556 void clockevents_handle_noop(struct clock_event_device *dev) 557 { 558 } 559 560 /** 561 * clockevents_exchange_device - release and request clock devices 562 * @old: device to release (can be NULL) 563 * @new: device to request (can be NULL) 564 * 565 * Called from various tick functions with clockevents_lock held and 566 * interrupts disabled. 567 */ 568 void clockevents_exchange_device(struct clock_event_device *old, 569 struct clock_event_device *new) 570 { 571 /* 572 * Caller releases a clock event device. We queue it into the 573 * released list and do a notify add later. 574 */ 575 if (old) { 576 module_put(old->owner); 577 clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED); 578 list_move(&old->list, &clockevents_released); 579 } 580 581 if (new) { 582 BUG_ON(!clockevent_state_detached(new)); 583 clockevents_shutdown(new); 584 } 585 } 586 587 /** 588 * clockevents_suspend - suspend clock devices 589 */ 590 void clockevents_suspend(void) 591 { 592 struct clock_event_device *dev; 593 594 list_for_each_entry_reverse(dev, &clockevent_devices, list) 595 if (dev->suspend && !clockevent_state_detached(dev)) 596 dev->suspend(dev); 597 } 598 599 /** 600 * clockevents_resume - resume clock devices 601 */ 602 void clockevents_resume(void) 603 { 604 struct clock_event_device *dev; 605 606 list_for_each_entry(dev, &clockevent_devices, list) 607 if (dev->resume && !clockevent_state_detached(dev)) 608 dev->resume(dev); 609 } 610 611 #ifdef CONFIG_HOTPLUG_CPU 612 613 # ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 614 /** 615 * tick_offline_cpu - Take CPU out of the broadcast mechanism 616 * @cpu: The outgoing CPU 617 * 618 * Called on the outgoing CPU after it took itself offline. 619 */ 620 void tick_offline_cpu(unsigned int cpu) 621 { 622 raw_spin_lock(&clockevents_lock); 623 tick_broadcast_offline(cpu); 624 raw_spin_unlock(&clockevents_lock); 625 } 626 # endif 627 628 /** 629 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu 630 * @cpu: The dead CPU 631 */ 632 void tick_cleanup_dead_cpu(int cpu) 633 { 634 struct clock_event_device *dev, *tmp; 635 unsigned long flags; 636 637 raw_spin_lock_irqsave(&clockevents_lock, flags); 638 639 tick_shutdown(cpu); 640 /* 641 * Unregister the clock event devices which were 642 * released from the users in the notify chain. 643 */ 644 list_for_each_entry_safe(dev, tmp, &clockevents_released, list) 645 list_del(&dev->list); 646 /* 647 * Now check whether the CPU has left unused per cpu devices 648 */ 649 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) { 650 if (cpumask_test_cpu(cpu, dev->cpumask) && 651 cpumask_weight(dev->cpumask) == 1 && 652 !tick_is_broadcast_device(dev)) { 653 BUG_ON(!clockevent_state_detached(dev)); 654 list_del(&dev->list); 655 } 656 } 657 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 658 } 659 #endif 660 661 #ifdef CONFIG_SYSFS 662 static const struct bus_type clockevents_subsys = { 663 .name = "clockevents", 664 .dev_name = "clockevent", 665 }; 666 667 static DEFINE_PER_CPU(struct device, tick_percpu_dev); 668 static struct tick_device *tick_get_tick_dev(struct device *dev); 669 670 static ssize_t current_device_show(struct device *dev, 671 struct device_attribute *attr, 672 char *buf) 673 { 674 struct tick_device *td; 675 ssize_t count = 0; 676 677 raw_spin_lock_irq(&clockevents_lock); 678 td = tick_get_tick_dev(dev); 679 if (td && td->evtdev) 680 count = sysfs_emit(buf, "%s\n", td->evtdev->name); 681 raw_spin_unlock_irq(&clockevents_lock); 682 return count; 683 } 684 static DEVICE_ATTR_RO(current_device); 685 686 /* We don't support the abomination of removable broadcast devices */ 687 static ssize_t unbind_device_store(struct device *dev, 688 struct device_attribute *attr, 689 const char *buf, size_t count) 690 { 691 char name[CS_NAME_LEN]; 692 ssize_t ret = sysfs_get_uname(buf, name, count); 693 struct clock_event_device *ce = NULL, *iter; 694 695 if (ret < 0) 696 return ret; 697 698 ret = -ENODEV; 699 mutex_lock(&clockevents_mutex); 700 raw_spin_lock_irq(&clockevents_lock); 701 list_for_each_entry(iter, &clockevent_devices, list) { 702 if (!strcmp(iter->name, name)) { 703 ret = __clockevents_try_unbind(iter, dev->id); 704 ce = iter; 705 break; 706 } 707 } 708 raw_spin_unlock_irq(&clockevents_lock); 709 /* 710 * We hold clockevents_mutex, so ce can't go away 711 */ 712 if (ret == -EAGAIN) 713 ret = clockevents_unbind(ce, dev->id); 714 mutex_unlock(&clockevents_mutex); 715 return ret ? ret : count; 716 } 717 static DEVICE_ATTR_WO(unbind_device); 718 719 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 720 static struct device tick_bc_dev = { 721 .init_name = "broadcast", 722 .id = 0, 723 .bus = &clockevents_subsys, 724 }; 725 726 static struct tick_device *tick_get_tick_dev(struct device *dev) 727 { 728 return dev == &tick_bc_dev ? tick_get_broadcast_device() : 729 &per_cpu(tick_cpu_device, dev->id); 730 } 731 732 static __init int tick_broadcast_init_sysfs(void) 733 { 734 int err = device_register(&tick_bc_dev); 735 736 if (!err) 737 err = device_create_file(&tick_bc_dev, &dev_attr_current_device); 738 return err; 739 } 740 #else 741 static struct tick_device *tick_get_tick_dev(struct device *dev) 742 { 743 return &per_cpu(tick_cpu_device, dev->id); 744 } 745 static inline int tick_broadcast_init_sysfs(void) { return 0; } 746 #endif 747 748 static int __init tick_init_sysfs(void) 749 { 750 int cpu; 751 752 for_each_possible_cpu(cpu) { 753 struct device *dev = &per_cpu(tick_percpu_dev, cpu); 754 int err; 755 756 dev->id = cpu; 757 dev->bus = &clockevents_subsys; 758 err = device_register(dev); 759 if (!err) 760 err = device_create_file(dev, &dev_attr_current_device); 761 if (!err) 762 err = device_create_file(dev, &dev_attr_unbind_device); 763 if (err) 764 return err; 765 } 766 return tick_broadcast_init_sysfs(); 767 } 768 769 static int __init clockevents_init_sysfs(void) 770 { 771 int err = subsys_system_register(&clockevents_subsys, NULL); 772 773 if (!err) 774 err = tick_init_sysfs(); 775 return err; 776 } 777 device_initcall(clockevents_init_sysfs); 778 #endif /* SYSFS */ 779