1 /* 2 * linux/kernel/time/clockevents.c 3 * 4 * This file contains functions which manage clock event devices. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 * 10 * This code is licenced under the GPL version 2. For details see 11 * kernel-base/COPYING. 12 */ 13 14 #include <linux/clockchips.h> 15 #include <linux/hrtimer.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/smp.h> 19 #include <linux/device.h> 20 21 #include "tick-internal.h" 22 23 /* The registered clock event devices */ 24 static LIST_HEAD(clockevent_devices); 25 static LIST_HEAD(clockevents_released); 26 /* Protection for the above */ 27 static DEFINE_RAW_SPINLOCK(clockevents_lock); 28 /* Protection for unbind operations */ 29 static DEFINE_MUTEX(clockevents_mutex); 30 31 struct ce_unbind { 32 struct clock_event_device *ce; 33 int res; 34 }; 35 36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt, 37 bool ismax) 38 { 39 u64 clc = (u64) latch << evt->shift; 40 u64 rnd; 41 42 if (unlikely(!evt->mult)) { 43 evt->mult = 1; 44 WARN_ON(1); 45 } 46 rnd = (u64) evt->mult - 1; 47 48 /* 49 * Upper bound sanity check. If the backwards conversion is 50 * not equal latch, we know that the above shift overflowed. 51 */ 52 if ((clc >> evt->shift) != (u64)latch) 53 clc = ~0ULL; 54 55 /* 56 * Scaled math oddities: 57 * 58 * For mult <= (1 << shift) we can safely add mult - 1 to 59 * prevent integer rounding loss. So the backwards conversion 60 * from nsec to device ticks will be correct. 61 * 62 * For mult > (1 << shift), i.e. device frequency is > 1GHz we 63 * need to be careful. Adding mult - 1 will result in a value 64 * which when converted back to device ticks can be larger 65 * than latch by up to (mult - 1) >> shift. For the min_delta 66 * calculation we still want to apply this in order to stay 67 * above the minimum device ticks limit. For the upper limit 68 * we would end up with a latch value larger than the upper 69 * limit of the device, so we omit the add to stay below the 70 * device upper boundary. 71 * 72 * Also omit the add if it would overflow the u64 boundary. 73 */ 74 if ((~0ULL - clc > rnd) && 75 (!ismax || evt->mult <= (1U << evt->shift))) 76 clc += rnd; 77 78 do_div(clc, evt->mult); 79 80 /* Deltas less than 1usec are pointless noise */ 81 return clc > 1000 ? clc : 1000; 82 } 83 84 /** 85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds 86 * @latch: value to convert 87 * @evt: pointer to clock event device descriptor 88 * 89 * Math helper, returns latch value converted to nanoseconds (bound checked) 90 */ 91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt) 92 { 93 return cev_delta2ns(latch, evt, false); 94 } 95 EXPORT_SYMBOL_GPL(clockevent_delta2ns); 96 97 /** 98 * clockevents_set_mode - set the operating mode of a clock event device 99 * @dev: device to modify 100 * @mode: new mode 101 * 102 * Must be called with interrupts disabled ! 103 */ 104 void clockevents_set_mode(struct clock_event_device *dev, 105 enum clock_event_mode mode) 106 { 107 if (dev->mode != mode) { 108 dev->set_mode(mode, dev); 109 dev->mode = mode; 110 111 /* 112 * A nsec2cyc multiplicator of 0 is invalid and we'd crash 113 * on it, so fix it up and emit a warning: 114 */ 115 if (mode == CLOCK_EVT_MODE_ONESHOT) { 116 if (unlikely(!dev->mult)) { 117 dev->mult = 1; 118 WARN_ON(1); 119 } 120 } 121 } 122 } 123 124 /** 125 * clockevents_shutdown - shutdown the device and clear next_event 126 * @dev: device to shutdown 127 */ 128 void clockevents_shutdown(struct clock_event_device *dev) 129 { 130 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); 131 dev->next_event.tv64 = KTIME_MAX; 132 } 133 134 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST 135 136 /* Limit min_delta to a jiffie */ 137 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ) 138 139 /** 140 * clockevents_increase_min_delta - raise minimum delta of a clock event device 141 * @dev: device to increase the minimum delta 142 * 143 * Returns 0 on success, -ETIME when the minimum delta reached the limit. 144 */ 145 static int clockevents_increase_min_delta(struct clock_event_device *dev) 146 { 147 /* Nothing to do if we already reached the limit */ 148 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) { 149 printk_deferred(KERN_WARNING 150 "CE: Reprogramming failure. Giving up\n"); 151 dev->next_event.tv64 = KTIME_MAX; 152 return -ETIME; 153 } 154 155 if (dev->min_delta_ns < 5000) 156 dev->min_delta_ns = 5000; 157 else 158 dev->min_delta_ns += dev->min_delta_ns >> 1; 159 160 if (dev->min_delta_ns > MIN_DELTA_LIMIT) 161 dev->min_delta_ns = MIN_DELTA_LIMIT; 162 163 printk_deferred(KERN_WARNING 164 "CE: %s increased min_delta_ns to %llu nsec\n", 165 dev->name ? dev->name : "?", 166 (unsigned long long) dev->min_delta_ns); 167 return 0; 168 } 169 170 /** 171 * clockevents_program_min_delta - Set clock event device to the minimum delay. 172 * @dev: device to program 173 * 174 * Returns 0 on success, -ETIME when the retry loop failed. 175 */ 176 static int clockevents_program_min_delta(struct clock_event_device *dev) 177 { 178 unsigned long long clc; 179 int64_t delta; 180 int i; 181 182 for (i = 0;;) { 183 delta = dev->min_delta_ns; 184 dev->next_event = ktime_add_ns(ktime_get(), delta); 185 186 if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN) 187 return 0; 188 189 dev->retries++; 190 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 191 if (dev->set_next_event((unsigned long) clc, dev) == 0) 192 return 0; 193 194 if (++i > 2) { 195 /* 196 * We tried 3 times to program the device with the 197 * given min_delta_ns. Try to increase the minimum 198 * delta, if that fails as well get out of here. 199 */ 200 if (clockevents_increase_min_delta(dev)) 201 return -ETIME; 202 i = 0; 203 } 204 } 205 } 206 207 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 208 209 /** 210 * clockevents_program_min_delta - Set clock event device to the minimum delay. 211 * @dev: device to program 212 * 213 * Returns 0 on success, -ETIME when the retry loop failed. 214 */ 215 static int clockevents_program_min_delta(struct clock_event_device *dev) 216 { 217 unsigned long long clc; 218 int64_t delta; 219 220 delta = dev->min_delta_ns; 221 dev->next_event = ktime_add_ns(ktime_get(), delta); 222 223 if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN) 224 return 0; 225 226 dev->retries++; 227 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 228 return dev->set_next_event((unsigned long) clc, dev); 229 } 230 231 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 232 233 /** 234 * clockevents_program_event - Reprogram the clock event device. 235 * @dev: device to program 236 * @expires: absolute expiry time (monotonic clock) 237 * @force: program minimum delay if expires can not be set 238 * 239 * Returns 0 on success, -ETIME when the event is in the past. 240 */ 241 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires, 242 bool force) 243 { 244 unsigned long long clc; 245 int64_t delta; 246 int rc; 247 248 if (unlikely(expires.tv64 < 0)) { 249 WARN_ON_ONCE(1); 250 return -ETIME; 251 } 252 253 dev->next_event = expires; 254 255 if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN) 256 return 0; 257 258 /* Shortcut for clockevent devices that can deal with ktime. */ 259 if (dev->features & CLOCK_EVT_FEAT_KTIME) 260 return dev->set_next_ktime(expires, dev); 261 262 delta = ktime_to_ns(ktime_sub(expires, ktime_get())); 263 if (delta <= 0) 264 return force ? clockevents_program_min_delta(dev) : -ETIME; 265 266 delta = min(delta, (int64_t) dev->max_delta_ns); 267 delta = max(delta, (int64_t) dev->min_delta_ns); 268 269 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 270 rc = dev->set_next_event((unsigned long) clc, dev); 271 272 return (rc && force) ? clockevents_program_min_delta(dev) : rc; 273 } 274 275 /* 276 * Called after a notify add to make devices available which were 277 * released from the notifier call. 278 */ 279 static void clockevents_notify_released(void) 280 { 281 struct clock_event_device *dev; 282 283 while (!list_empty(&clockevents_released)) { 284 dev = list_entry(clockevents_released.next, 285 struct clock_event_device, list); 286 list_del(&dev->list); 287 list_add(&dev->list, &clockevent_devices); 288 tick_check_new_device(dev); 289 } 290 } 291 292 /* 293 * Try to install a replacement clock event device 294 */ 295 static int clockevents_replace(struct clock_event_device *ced) 296 { 297 struct clock_event_device *dev, *newdev = NULL; 298 299 list_for_each_entry(dev, &clockevent_devices, list) { 300 if (dev == ced || dev->mode != CLOCK_EVT_MODE_UNUSED) 301 continue; 302 303 if (!tick_check_replacement(newdev, dev)) 304 continue; 305 306 if (!try_module_get(dev->owner)) 307 continue; 308 309 if (newdev) 310 module_put(newdev->owner); 311 newdev = dev; 312 } 313 if (newdev) { 314 tick_install_replacement(newdev); 315 list_del_init(&ced->list); 316 } 317 return newdev ? 0 : -EBUSY; 318 } 319 320 /* 321 * Called with clockevents_mutex and clockevents_lock held 322 */ 323 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu) 324 { 325 /* Fast track. Device is unused */ 326 if (ced->mode == CLOCK_EVT_MODE_UNUSED) { 327 list_del_init(&ced->list); 328 return 0; 329 } 330 331 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY; 332 } 333 334 /* 335 * SMP function call to unbind a device 336 */ 337 static void __clockevents_unbind(void *arg) 338 { 339 struct ce_unbind *cu = arg; 340 int res; 341 342 raw_spin_lock(&clockevents_lock); 343 res = __clockevents_try_unbind(cu->ce, smp_processor_id()); 344 if (res == -EAGAIN) 345 res = clockevents_replace(cu->ce); 346 cu->res = res; 347 raw_spin_unlock(&clockevents_lock); 348 } 349 350 /* 351 * Issues smp function call to unbind a per cpu device. Called with 352 * clockevents_mutex held. 353 */ 354 static int clockevents_unbind(struct clock_event_device *ced, int cpu) 355 { 356 struct ce_unbind cu = { .ce = ced, .res = -ENODEV }; 357 358 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1); 359 return cu.res; 360 } 361 362 /* 363 * Unbind a clockevents device. 364 */ 365 int clockevents_unbind_device(struct clock_event_device *ced, int cpu) 366 { 367 int ret; 368 369 mutex_lock(&clockevents_mutex); 370 ret = clockevents_unbind(ced, cpu); 371 mutex_unlock(&clockevents_mutex); 372 return ret; 373 } 374 EXPORT_SYMBOL_GPL(clockevents_unbind); 375 376 /** 377 * clockevents_register_device - register a clock event device 378 * @dev: device to register 379 */ 380 void clockevents_register_device(struct clock_event_device *dev) 381 { 382 unsigned long flags; 383 384 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); 385 if (!dev->cpumask) { 386 WARN_ON(num_possible_cpus() > 1); 387 dev->cpumask = cpumask_of(smp_processor_id()); 388 } 389 390 raw_spin_lock_irqsave(&clockevents_lock, flags); 391 392 list_add(&dev->list, &clockevent_devices); 393 tick_check_new_device(dev); 394 clockevents_notify_released(); 395 396 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 397 } 398 EXPORT_SYMBOL_GPL(clockevents_register_device); 399 400 void clockevents_config(struct clock_event_device *dev, u32 freq) 401 { 402 u64 sec; 403 404 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 405 return; 406 407 /* 408 * Calculate the maximum number of seconds we can sleep. Limit 409 * to 10 minutes for hardware which can program more than 410 * 32bit ticks so we still get reasonable conversion values. 411 */ 412 sec = dev->max_delta_ticks; 413 do_div(sec, freq); 414 if (!sec) 415 sec = 1; 416 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX) 417 sec = 600; 418 419 clockevents_calc_mult_shift(dev, freq, sec); 420 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false); 421 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true); 422 } 423 424 /** 425 * clockevents_config_and_register - Configure and register a clock event device 426 * @dev: device to register 427 * @freq: The clock frequency 428 * @min_delta: The minimum clock ticks to program in oneshot mode 429 * @max_delta: The maximum clock ticks to program in oneshot mode 430 * 431 * min/max_delta can be 0 for devices which do not support oneshot mode. 432 */ 433 void clockevents_config_and_register(struct clock_event_device *dev, 434 u32 freq, unsigned long min_delta, 435 unsigned long max_delta) 436 { 437 dev->min_delta_ticks = min_delta; 438 dev->max_delta_ticks = max_delta; 439 clockevents_config(dev, freq); 440 clockevents_register_device(dev); 441 } 442 EXPORT_SYMBOL_GPL(clockevents_config_and_register); 443 444 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq) 445 { 446 clockevents_config(dev, freq); 447 448 if (dev->mode == CLOCK_EVT_MODE_ONESHOT) 449 return clockevents_program_event(dev, dev->next_event, false); 450 451 if (dev->mode == CLOCK_EVT_MODE_PERIODIC) 452 dev->set_mode(CLOCK_EVT_MODE_PERIODIC, dev); 453 454 return 0; 455 } 456 457 /** 458 * clockevents_update_freq - Update frequency and reprogram a clock event device. 459 * @dev: device to modify 460 * @freq: new device frequency 461 * 462 * Reconfigure and reprogram a clock event device in oneshot 463 * mode. Must be called on the cpu for which the device delivers per 464 * cpu timer events. If called for the broadcast device the core takes 465 * care of serialization. 466 * 467 * Returns 0 on success, -ETIME when the event is in the past. 468 */ 469 int clockevents_update_freq(struct clock_event_device *dev, u32 freq) 470 { 471 unsigned long flags; 472 int ret; 473 474 local_irq_save(flags); 475 ret = tick_broadcast_update_freq(dev, freq); 476 if (ret == -ENODEV) 477 ret = __clockevents_update_freq(dev, freq); 478 local_irq_restore(flags); 479 return ret; 480 } 481 482 /* 483 * Noop handler when we shut down an event device 484 */ 485 void clockevents_handle_noop(struct clock_event_device *dev) 486 { 487 } 488 489 /** 490 * clockevents_exchange_device - release and request clock devices 491 * @old: device to release (can be NULL) 492 * @new: device to request (can be NULL) 493 * 494 * Called from the notifier chain. clockevents_lock is held already 495 */ 496 void clockevents_exchange_device(struct clock_event_device *old, 497 struct clock_event_device *new) 498 { 499 unsigned long flags; 500 501 local_irq_save(flags); 502 /* 503 * Caller releases a clock event device. We queue it into the 504 * released list and do a notify add later. 505 */ 506 if (old) { 507 module_put(old->owner); 508 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED); 509 list_del(&old->list); 510 list_add(&old->list, &clockevents_released); 511 } 512 513 if (new) { 514 BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED); 515 clockevents_shutdown(new); 516 } 517 local_irq_restore(flags); 518 } 519 520 /** 521 * clockevents_suspend - suspend clock devices 522 */ 523 void clockevents_suspend(void) 524 { 525 struct clock_event_device *dev; 526 527 list_for_each_entry_reverse(dev, &clockevent_devices, list) 528 if (dev->suspend) 529 dev->suspend(dev); 530 } 531 532 /** 533 * clockevents_resume - resume clock devices 534 */ 535 void clockevents_resume(void) 536 { 537 struct clock_event_device *dev; 538 539 list_for_each_entry(dev, &clockevent_devices, list) 540 if (dev->resume) 541 dev->resume(dev); 542 } 543 544 #ifdef CONFIG_GENERIC_CLOCKEVENTS 545 /** 546 * clockevents_notify - notification about relevant events 547 * Returns 0 on success, any other value on error 548 */ 549 int clockevents_notify(unsigned long reason, void *arg) 550 { 551 struct clock_event_device *dev, *tmp; 552 unsigned long flags; 553 int cpu, ret = 0; 554 555 raw_spin_lock_irqsave(&clockevents_lock, flags); 556 557 switch (reason) { 558 case CLOCK_EVT_NOTIFY_BROADCAST_ON: 559 case CLOCK_EVT_NOTIFY_BROADCAST_OFF: 560 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: 561 tick_broadcast_on_off(reason, arg); 562 break; 563 564 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER: 565 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT: 566 ret = tick_broadcast_oneshot_control(reason); 567 break; 568 569 case CLOCK_EVT_NOTIFY_CPU_DYING: 570 tick_handover_do_timer(arg); 571 break; 572 573 case CLOCK_EVT_NOTIFY_SUSPEND: 574 tick_suspend(); 575 tick_suspend_broadcast(); 576 break; 577 578 case CLOCK_EVT_NOTIFY_RESUME: 579 tick_resume(); 580 break; 581 582 case CLOCK_EVT_NOTIFY_CPU_DEAD: 583 tick_shutdown_broadcast_oneshot(arg); 584 tick_shutdown_broadcast(arg); 585 tick_shutdown(arg); 586 /* 587 * Unregister the clock event devices which were 588 * released from the users in the notify chain. 589 */ 590 list_for_each_entry_safe(dev, tmp, &clockevents_released, list) 591 list_del(&dev->list); 592 /* 593 * Now check whether the CPU has left unused per cpu devices 594 */ 595 cpu = *((int *)arg); 596 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) { 597 if (cpumask_test_cpu(cpu, dev->cpumask) && 598 cpumask_weight(dev->cpumask) == 1 && 599 !tick_is_broadcast_device(dev)) { 600 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED); 601 list_del(&dev->list); 602 } 603 } 604 break; 605 default: 606 break; 607 } 608 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 609 return ret; 610 } 611 EXPORT_SYMBOL_GPL(clockevents_notify); 612 613 #ifdef CONFIG_SYSFS 614 struct bus_type clockevents_subsys = { 615 .name = "clockevents", 616 .dev_name = "clockevent", 617 }; 618 619 static DEFINE_PER_CPU(struct device, tick_percpu_dev); 620 static struct tick_device *tick_get_tick_dev(struct device *dev); 621 622 static ssize_t sysfs_show_current_tick_dev(struct device *dev, 623 struct device_attribute *attr, 624 char *buf) 625 { 626 struct tick_device *td; 627 ssize_t count = 0; 628 629 raw_spin_lock_irq(&clockevents_lock); 630 td = tick_get_tick_dev(dev); 631 if (td && td->evtdev) 632 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name); 633 raw_spin_unlock_irq(&clockevents_lock); 634 return count; 635 } 636 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL); 637 638 /* We don't support the abomination of removable broadcast devices */ 639 static ssize_t sysfs_unbind_tick_dev(struct device *dev, 640 struct device_attribute *attr, 641 const char *buf, size_t count) 642 { 643 char name[CS_NAME_LEN]; 644 ssize_t ret = sysfs_get_uname(buf, name, count); 645 struct clock_event_device *ce; 646 647 if (ret < 0) 648 return ret; 649 650 ret = -ENODEV; 651 mutex_lock(&clockevents_mutex); 652 raw_spin_lock_irq(&clockevents_lock); 653 list_for_each_entry(ce, &clockevent_devices, list) { 654 if (!strcmp(ce->name, name)) { 655 ret = __clockevents_try_unbind(ce, dev->id); 656 break; 657 } 658 } 659 raw_spin_unlock_irq(&clockevents_lock); 660 /* 661 * We hold clockevents_mutex, so ce can't go away 662 */ 663 if (ret == -EAGAIN) 664 ret = clockevents_unbind(ce, dev->id); 665 mutex_unlock(&clockevents_mutex); 666 return ret ? ret : count; 667 } 668 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev); 669 670 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 671 static struct device tick_bc_dev = { 672 .init_name = "broadcast", 673 .id = 0, 674 .bus = &clockevents_subsys, 675 }; 676 677 static struct tick_device *tick_get_tick_dev(struct device *dev) 678 { 679 return dev == &tick_bc_dev ? tick_get_broadcast_device() : 680 &per_cpu(tick_cpu_device, dev->id); 681 } 682 683 static __init int tick_broadcast_init_sysfs(void) 684 { 685 int err = device_register(&tick_bc_dev); 686 687 if (!err) 688 err = device_create_file(&tick_bc_dev, &dev_attr_current_device); 689 return err; 690 } 691 #else 692 static struct tick_device *tick_get_tick_dev(struct device *dev) 693 { 694 return &per_cpu(tick_cpu_device, dev->id); 695 } 696 static inline int tick_broadcast_init_sysfs(void) { return 0; } 697 #endif 698 699 static int __init tick_init_sysfs(void) 700 { 701 int cpu; 702 703 for_each_possible_cpu(cpu) { 704 struct device *dev = &per_cpu(tick_percpu_dev, cpu); 705 int err; 706 707 dev->id = cpu; 708 dev->bus = &clockevents_subsys; 709 err = device_register(dev); 710 if (!err) 711 err = device_create_file(dev, &dev_attr_current_device); 712 if (!err) 713 err = device_create_file(dev, &dev_attr_unbind_device); 714 if (err) 715 return err; 716 } 717 return tick_broadcast_init_sysfs(); 718 } 719 720 static int __init clockevents_init_sysfs(void) 721 { 722 int err = subsys_system_register(&clockevents_subsys, NULL); 723 724 if (!err) 725 err = tick_init_sysfs(); 726 return err; 727 } 728 device_initcall(clockevents_init_sysfs); 729 #endif /* SYSFS */ 730 731 #endif /* GENERIC_CLOCK_EVENTS */ 732