1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Alarmtimer interface 4 * 5 * This interface provides a timer which is similar to hrtimers, 6 * but triggers a RTC alarm if the box is suspend. 7 * 8 * This interface is influenced by the Android RTC Alarm timer 9 * interface. 10 * 11 * Copyright (C) 2010 IBM Corporation 12 * 13 * Author: John Stultz <john.stultz@linaro.org> 14 */ 15 #include <linux/time.h> 16 #include <linux/hrtimer.h> 17 #include <linux/timerqueue.h> 18 #include <linux/rtc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/alarmtimer.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/posix-timers.h> 25 #include <linux/workqueue.h> 26 #include <linux/freezer.h> 27 #include <linux/compat.h> 28 #include <linux/module.h> 29 #include <linux/time_namespace.h> 30 31 #include "posix-timers.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/alarmtimer.h> 35 36 /** 37 * struct alarm_base - Alarm timer bases 38 * @lock: Lock for syncrhonized access to the base 39 * @timerqueue: Timerqueue head managing the list of events 40 * @get_ktime: Function to read the time correlating to the base 41 * @get_timespec: Function to read the namespace time correlating to the base 42 * @base_clockid: clockid for the base 43 */ 44 static struct alarm_base { 45 spinlock_t lock; 46 struct timerqueue_head timerqueue; 47 ktime_t (*get_ktime)(void); 48 void (*get_timespec)(struct timespec64 *tp); 49 clockid_t base_clockid; 50 } alarm_bases[ALARM_NUMTYPE]; 51 52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 53 /* freezer information to handle clock_nanosleep triggered wakeups */ 54 static enum alarmtimer_type freezer_alarmtype; 55 static ktime_t freezer_expires; 56 static ktime_t freezer_delta; 57 static DEFINE_SPINLOCK(freezer_delta_lock); 58 #endif 59 60 #ifdef CONFIG_RTC_CLASS 61 /* rtc timer and device for setting alarm wakeups at suspend */ 62 static struct rtc_timer rtctimer; 63 static struct rtc_device *rtcdev; 64 static DEFINE_SPINLOCK(rtcdev_lock); 65 66 /** 67 * alarmtimer_get_rtcdev - Return selected rtcdevice 68 * 69 * This function returns the rtc device to use for wakealarms. 70 */ 71 struct rtc_device *alarmtimer_get_rtcdev(void) 72 { 73 unsigned long flags; 74 struct rtc_device *ret; 75 76 spin_lock_irqsave(&rtcdev_lock, flags); 77 ret = rtcdev; 78 spin_unlock_irqrestore(&rtcdev_lock, flags); 79 80 return ret; 81 } 82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 83 84 static int alarmtimer_rtc_add_device(struct device *dev, 85 struct class_interface *class_intf) 86 { 87 unsigned long flags; 88 struct rtc_device *rtc = to_rtc_device(dev); 89 struct platform_device *pdev; 90 int ret = 0; 91 92 if (rtcdev) 93 return -EBUSY; 94 95 if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 96 return -1; 97 if (!device_may_wakeup(rtc->dev.parent)) 98 return -1; 99 100 pdev = platform_device_register_data(dev, "alarmtimer", 101 PLATFORM_DEVID_AUTO, NULL, 0); 102 if (!IS_ERR(pdev)) 103 device_init_wakeup(&pdev->dev, true); 104 105 spin_lock_irqsave(&rtcdev_lock, flags); 106 if (!IS_ERR(pdev) && !rtcdev) { 107 if (!try_module_get(rtc->owner)) { 108 ret = -1; 109 goto unlock; 110 } 111 112 rtcdev = rtc; 113 /* hold a reference so it doesn't go away */ 114 get_device(dev); 115 pdev = NULL; 116 } else { 117 ret = -1; 118 } 119 unlock: 120 spin_unlock_irqrestore(&rtcdev_lock, flags); 121 122 platform_device_unregister(pdev); 123 124 return ret; 125 } 126 127 static inline void alarmtimer_rtc_timer_init(void) 128 { 129 rtc_timer_init(&rtctimer, NULL, NULL); 130 } 131 132 static struct class_interface alarmtimer_rtc_interface = { 133 .add_dev = &alarmtimer_rtc_add_device, 134 }; 135 136 static int alarmtimer_rtc_interface_setup(void) 137 { 138 alarmtimer_rtc_interface.class = rtc_class; 139 return class_interface_register(&alarmtimer_rtc_interface); 140 } 141 static void alarmtimer_rtc_interface_remove(void) 142 { 143 class_interface_unregister(&alarmtimer_rtc_interface); 144 } 145 #else 146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 147 static inline void alarmtimer_rtc_interface_remove(void) { } 148 static inline void alarmtimer_rtc_timer_init(void) { } 149 #endif 150 151 /** 152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 153 * @base: pointer to the base where the timer is being run 154 * @alarm: pointer to alarm being enqueued. 155 * 156 * Adds alarm to a alarm_base timerqueue 157 * 158 * Must hold base->lock when calling. 159 */ 160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 161 { 162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 163 timerqueue_del(&base->timerqueue, &alarm->node); 164 165 timerqueue_add(&base->timerqueue, &alarm->node); 166 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 167 } 168 169 /** 170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 171 * @base: pointer to the base where the timer is running 172 * @alarm: pointer to alarm being removed 173 * 174 * Removes alarm to a alarm_base timerqueue 175 * 176 * Must hold base->lock when calling. 177 */ 178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 179 { 180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 181 return; 182 183 timerqueue_del(&base->timerqueue, &alarm->node); 184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 185 } 186 187 188 /** 189 * alarmtimer_fired - Handles alarm hrtimer being fired. 190 * @timer: pointer to hrtimer being run 191 * 192 * When a alarm timer fires, this runs through the timerqueue to 193 * see which alarms expired, and runs those. If there are more alarm 194 * timers queued for the future, we set the hrtimer to fire when 195 * the next future alarm timer expires. 196 */ 197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 198 { 199 struct alarm *alarm = container_of(timer, struct alarm, timer); 200 struct alarm_base *base = &alarm_bases[alarm->type]; 201 unsigned long flags; 202 int ret = HRTIMER_NORESTART; 203 int restart = ALARMTIMER_NORESTART; 204 205 spin_lock_irqsave(&base->lock, flags); 206 alarmtimer_dequeue(base, alarm); 207 spin_unlock_irqrestore(&base->lock, flags); 208 209 if (alarm->function) 210 restart = alarm->function(alarm, base->get_ktime()); 211 212 spin_lock_irqsave(&base->lock, flags); 213 if (restart != ALARMTIMER_NORESTART) { 214 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 215 alarmtimer_enqueue(base, alarm); 216 ret = HRTIMER_RESTART; 217 } 218 spin_unlock_irqrestore(&base->lock, flags); 219 220 trace_alarmtimer_fired(alarm, base->get_ktime()); 221 return ret; 222 223 } 224 225 ktime_t alarm_expires_remaining(const struct alarm *alarm) 226 { 227 struct alarm_base *base = &alarm_bases[alarm->type]; 228 return ktime_sub(alarm->node.expires, base->get_ktime()); 229 } 230 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 231 232 #ifdef CONFIG_RTC_CLASS 233 /** 234 * alarmtimer_suspend - Suspend time callback 235 * @dev: unused 236 * 237 * When we are going into suspend, we look through the bases 238 * to see which is the soonest timer to expire. We then 239 * set an rtc timer to fire that far into the future, which 240 * will wake us from suspend. 241 */ 242 static int alarmtimer_suspend(struct device *dev) 243 { 244 ktime_t min, now, expires; 245 int i, ret, type; 246 struct rtc_device *rtc; 247 unsigned long flags; 248 struct rtc_time tm; 249 250 spin_lock_irqsave(&freezer_delta_lock, flags); 251 min = freezer_delta; 252 expires = freezer_expires; 253 type = freezer_alarmtype; 254 freezer_delta = 0; 255 spin_unlock_irqrestore(&freezer_delta_lock, flags); 256 257 rtc = alarmtimer_get_rtcdev(); 258 /* If we have no rtcdev, just return */ 259 if (!rtc) 260 return 0; 261 262 /* Find the soonest timer to expire*/ 263 for (i = 0; i < ALARM_NUMTYPE; i++) { 264 struct alarm_base *base = &alarm_bases[i]; 265 struct timerqueue_node *next; 266 ktime_t delta; 267 268 spin_lock_irqsave(&base->lock, flags); 269 next = timerqueue_getnext(&base->timerqueue); 270 spin_unlock_irqrestore(&base->lock, flags); 271 if (!next) 272 continue; 273 delta = ktime_sub(next->expires, base->get_ktime()); 274 if (!min || (delta < min)) { 275 expires = next->expires; 276 min = delta; 277 type = i; 278 } 279 } 280 if (min == 0) 281 return 0; 282 283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 284 pm_wakeup_event(dev, 2 * MSEC_PER_SEC); 285 return -EBUSY; 286 } 287 288 trace_alarmtimer_suspend(expires, type); 289 290 /* Setup an rtc timer to fire that far in the future */ 291 rtc_timer_cancel(rtc, &rtctimer); 292 rtc_read_time(rtc, &tm); 293 now = rtc_tm_to_ktime(tm); 294 now = ktime_add(now, min); 295 296 /* Set alarm, if in the past reject suspend briefly to handle */ 297 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 298 if (ret < 0) 299 pm_wakeup_event(dev, MSEC_PER_SEC); 300 return ret; 301 } 302 303 static int alarmtimer_resume(struct device *dev) 304 { 305 struct rtc_device *rtc; 306 307 rtc = alarmtimer_get_rtcdev(); 308 if (rtc) 309 rtc_timer_cancel(rtc, &rtctimer); 310 return 0; 311 } 312 313 #else 314 static int alarmtimer_suspend(struct device *dev) 315 { 316 return 0; 317 } 318 319 static int alarmtimer_resume(struct device *dev) 320 { 321 return 0; 322 } 323 #endif 324 325 static void 326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type, 327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 328 { 329 timerqueue_init(&alarm->node); 330 alarm->timer.function = alarmtimer_fired; 331 alarm->function = function; 332 alarm->type = type; 333 alarm->state = ALARMTIMER_STATE_INACTIVE; 334 } 335 336 /** 337 * alarm_init - Initialize an alarm structure 338 * @alarm: ptr to alarm to be initialized 339 * @type: the type of the alarm 340 * @function: callback that is run when the alarm fires 341 */ 342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 344 { 345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 346 HRTIMER_MODE_ABS); 347 __alarm_init(alarm, type, function); 348 } 349 EXPORT_SYMBOL_GPL(alarm_init); 350 351 /** 352 * alarm_start - Sets an absolute alarm to fire 353 * @alarm: ptr to alarm to set 354 * @start: time to run the alarm 355 */ 356 void alarm_start(struct alarm *alarm, ktime_t start) 357 { 358 struct alarm_base *base = &alarm_bases[alarm->type]; 359 unsigned long flags; 360 361 spin_lock_irqsave(&base->lock, flags); 362 alarm->node.expires = start; 363 alarmtimer_enqueue(base, alarm); 364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 365 spin_unlock_irqrestore(&base->lock, flags); 366 367 trace_alarmtimer_start(alarm, base->get_ktime()); 368 } 369 EXPORT_SYMBOL_GPL(alarm_start); 370 371 /** 372 * alarm_start_relative - Sets a relative alarm to fire 373 * @alarm: ptr to alarm to set 374 * @start: time relative to now to run the alarm 375 */ 376 void alarm_start_relative(struct alarm *alarm, ktime_t start) 377 { 378 struct alarm_base *base = &alarm_bases[alarm->type]; 379 380 start = ktime_add_safe(start, base->get_ktime()); 381 alarm_start(alarm, start); 382 } 383 EXPORT_SYMBOL_GPL(alarm_start_relative); 384 385 void alarm_restart(struct alarm *alarm) 386 { 387 struct alarm_base *base = &alarm_bases[alarm->type]; 388 unsigned long flags; 389 390 spin_lock_irqsave(&base->lock, flags); 391 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 392 hrtimer_restart(&alarm->timer); 393 alarmtimer_enqueue(base, alarm); 394 spin_unlock_irqrestore(&base->lock, flags); 395 } 396 EXPORT_SYMBOL_GPL(alarm_restart); 397 398 /** 399 * alarm_try_to_cancel - Tries to cancel an alarm timer 400 * @alarm: ptr to alarm to be canceled 401 * 402 * Returns 1 if the timer was canceled, 0 if it was not running, 403 * and -1 if the callback was running 404 */ 405 int alarm_try_to_cancel(struct alarm *alarm) 406 { 407 struct alarm_base *base = &alarm_bases[alarm->type]; 408 unsigned long flags; 409 int ret; 410 411 spin_lock_irqsave(&base->lock, flags); 412 ret = hrtimer_try_to_cancel(&alarm->timer); 413 if (ret >= 0) 414 alarmtimer_dequeue(base, alarm); 415 spin_unlock_irqrestore(&base->lock, flags); 416 417 trace_alarmtimer_cancel(alarm, base->get_ktime()); 418 return ret; 419 } 420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 421 422 423 /** 424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 425 * @alarm: ptr to alarm to be canceled 426 * 427 * Returns 1 if the timer was canceled, 0 if it was not active. 428 */ 429 int alarm_cancel(struct alarm *alarm) 430 { 431 for (;;) { 432 int ret = alarm_try_to_cancel(alarm); 433 if (ret >= 0) 434 return ret; 435 hrtimer_cancel_wait_running(&alarm->timer); 436 } 437 } 438 EXPORT_SYMBOL_GPL(alarm_cancel); 439 440 441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 442 { 443 u64 overrun = 1; 444 ktime_t delta; 445 446 delta = ktime_sub(now, alarm->node.expires); 447 448 if (delta < 0) 449 return 0; 450 451 if (unlikely(delta >= interval)) { 452 s64 incr = ktime_to_ns(interval); 453 454 overrun = ktime_divns(delta, incr); 455 456 alarm->node.expires = ktime_add_ns(alarm->node.expires, 457 incr*overrun); 458 459 if (alarm->node.expires > now) 460 return overrun; 461 /* 462 * This (and the ktime_add() below) is the 463 * correction for exact: 464 */ 465 overrun++; 466 } 467 468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 469 return overrun; 470 } 471 EXPORT_SYMBOL_GPL(alarm_forward); 472 473 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 474 { 475 struct alarm_base *base = &alarm_bases[alarm->type]; 476 477 return alarm_forward(alarm, base->get_ktime(), interval); 478 } 479 EXPORT_SYMBOL_GPL(alarm_forward_now); 480 481 #ifdef CONFIG_POSIX_TIMERS 482 483 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 484 { 485 struct alarm_base *base; 486 unsigned long flags; 487 ktime_t delta; 488 489 switch(type) { 490 case ALARM_REALTIME: 491 base = &alarm_bases[ALARM_REALTIME]; 492 type = ALARM_REALTIME_FREEZER; 493 break; 494 case ALARM_BOOTTIME: 495 base = &alarm_bases[ALARM_BOOTTIME]; 496 type = ALARM_BOOTTIME_FREEZER; 497 break; 498 default: 499 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 500 return; 501 } 502 503 delta = ktime_sub(absexp, base->get_ktime()); 504 505 spin_lock_irqsave(&freezer_delta_lock, flags); 506 if (!freezer_delta || (delta < freezer_delta)) { 507 freezer_delta = delta; 508 freezer_expires = absexp; 509 freezer_alarmtype = type; 510 } 511 spin_unlock_irqrestore(&freezer_delta_lock, flags); 512 } 513 514 /** 515 * clock2alarm - helper that converts from clockid to alarmtypes 516 * @clockid: clockid. 517 */ 518 static enum alarmtimer_type clock2alarm(clockid_t clockid) 519 { 520 if (clockid == CLOCK_REALTIME_ALARM) 521 return ALARM_REALTIME; 522 if (clockid == CLOCK_BOOTTIME_ALARM) 523 return ALARM_BOOTTIME; 524 return -1; 525 } 526 527 /** 528 * alarm_handle_timer - Callback for posix timers 529 * @alarm: alarm that fired 530 * @now: time at the timer expiration 531 * 532 * Posix timer callback for expired alarm timers. 533 * 534 * Return: whether the timer is to be restarted 535 */ 536 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 537 ktime_t now) 538 { 539 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 540 it.alarm.alarmtimer); 541 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 542 unsigned long flags; 543 int si_private = 0; 544 545 spin_lock_irqsave(&ptr->it_lock, flags); 546 547 ptr->it_active = 0; 548 if (ptr->it_interval) 549 si_private = ++ptr->it_requeue_pending; 550 551 if (posix_timer_event(ptr, si_private) && ptr->it_interval) { 552 /* 553 * Handle ignored signals and rearm the timer. This will go 554 * away once we handle ignored signals proper. 555 */ 556 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval); 557 ++ptr->it_requeue_pending; 558 ptr->it_active = 1; 559 result = ALARMTIMER_RESTART; 560 } 561 spin_unlock_irqrestore(&ptr->it_lock, flags); 562 563 return result; 564 } 565 566 /** 567 * alarm_timer_rearm - Posix timer callback for rearming timer 568 * @timr: Pointer to the posixtimer data struct 569 */ 570 static void alarm_timer_rearm(struct k_itimer *timr) 571 { 572 struct alarm *alarm = &timr->it.alarm.alarmtimer; 573 574 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 575 alarm_start(alarm, alarm->node.expires); 576 } 577 578 /** 579 * alarm_timer_forward - Posix timer callback for forwarding timer 580 * @timr: Pointer to the posixtimer data struct 581 * @now: Current time to forward the timer against 582 */ 583 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now) 584 { 585 struct alarm *alarm = &timr->it.alarm.alarmtimer; 586 587 return alarm_forward(alarm, timr->it_interval, now); 588 } 589 590 /** 591 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 592 * @timr: Pointer to the posixtimer data struct 593 * @now: Current time to calculate against 594 */ 595 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 596 { 597 struct alarm *alarm = &timr->it.alarm.alarmtimer; 598 599 return ktime_sub(alarm->node.expires, now); 600 } 601 602 /** 603 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 604 * @timr: Pointer to the posixtimer data struct 605 */ 606 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 607 { 608 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 609 } 610 611 /** 612 * alarm_timer_wait_running - Posix timer callback to wait for a timer 613 * @timr: Pointer to the posixtimer data struct 614 * 615 * Called from the core code when timer cancel detected that the callback 616 * is running. @timr is unlocked and rcu read lock is held to prevent it 617 * from being freed. 618 */ 619 static void alarm_timer_wait_running(struct k_itimer *timr) 620 { 621 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer); 622 } 623 624 /** 625 * alarm_timer_arm - Posix timer callback to arm a timer 626 * @timr: Pointer to the posixtimer data struct 627 * @expires: The new expiry time 628 * @absolute: Expiry value is absolute time 629 * @sigev_none: Posix timer does not deliver signals 630 */ 631 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 632 bool absolute, bool sigev_none) 633 { 634 struct alarm *alarm = &timr->it.alarm.alarmtimer; 635 struct alarm_base *base = &alarm_bases[alarm->type]; 636 637 if (!absolute) 638 expires = ktime_add_safe(expires, base->get_ktime()); 639 if (sigev_none) 640 alarm->node.expires = expires; 641 else 642 alarm_start(&timr->it.alarm.alarmtimer, expires); 643 } 644 645 /** 646 * alarm_clock_getres - posix getres interface 647 * @which_clock: clockid 648 * @tp: timespec to fill 649 * 650 * Returns the granularity of underlying alarm base clock 651 */ 652 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 653 { 654 if (!alarmtimer_get_rtcdev()) 655 return -EINVAL; 656 657 tp->tv_sec = 0; 658 tp->tv_nsec = hrtimer_resolution; 659 return 0; 660 } 661 662 /** 663 * alarm_clock_get_timespec - posix clock_get_timespec interface 664 * @which_clock: clockid 665 * @tp: timespec to fill. 666 * 667 * Provides the underlying alarm base time in a tasks time namespace. 668 */ 669 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp) 670 { 671 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 672 673 if (!alarmtimer_get_rtcdev()) 674 return -EINVAL; 675 676 base->get_timespec(tp); 677 678 return 0; 679 } 680 681 /** 682 * alarm_clock_get_ktime - posix clock_get_ktime interface 683 * @which_clock: clockid 684 * 685 * Provides the underlying alarm base time in the root namespace. 686 */ 687 static ktime_t alarm_clock_get_ktime(clockid_t which_clock) 688 { 689 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 690 691 if (!alarmtimer_get_rtcdev()) 692 return -EINVAL; 693 694 return base->get_ktime(); 695 } 696 697 /** 698 * alarm_timer_create - posix timer_create interface 699 * @new_timer: k_itimer pointer to manage 700 * 701 * Initializes the k_itimer structure. 702 */ 703 static int alarm_timer_create(struct k_itimer *new_timer) 704 { 705 enum alarmtimer_type type; 706 707 if (!alarmtimer_get_rtcdev()) 708 return -EOPNOTSUPP; 709 710 if (!capable(CAP_WAKE_ALARM)) 711 return -EPERM; 712 713 type = clock2alarm(new_timer->it_clock); 714 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 715 return 0; 716 } 717 718 /** 719 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 720 * @alarm: ptr to alarm that fired 721 * @now: time at the timer expiration 722 * 723 * Wakes up the task that set the alarmtimer 724 * 725 * Return: ALARMTIMER_NORESTART 726 */ 727 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 728 ktime_t now) 729 { 730 struct task_struct *task = (struct task_struct *)alarm->data; 731 732 alarm->data = NULL; 733 if (task) 734 wake_up_process(task); 735 return ALARMTIMER_NORESTART; 736 } 737 738 /** 739 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 740 * @alarm: ptr to alarmtimer 741 * @absexp: absolute expiration time 742 * @type: alarm type (BOOTTIME/REALTIME). 743 * 744 * Sets the alarm timer and sleeps until it is fired or interrupted. 745 */ 746 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, 747 enum alarmtimer_type type) 748 { 749 struct restart_block *restart; 750 alarm->data = (void *)current; 751 do { 752 set_current_state(TASK_INTERRUPTIBLE); 753 alarm_start(alarm, absexp); 754 if (likely(alarm->data)) 755 schedule(); 756 757 alarm_cancel(alarm); 758 } while (alarm->data && !signal_pending(current)); 759 760 __set_current_state(TASK_RUNNING); 761 762 destroy_hrtimer_on_stack(&alarm->timer); 763 764 if (!alarm->data) 765 return 0; 766 767 if (freezing(current)) 768 alarmtimer_freezerset(absexp, type); 769 restart = ¤t->restart_block; 770 if (restart->nanosleep.type != TT_NONE) { 771 struct timespec64 rmt; 772 ktime_t rem; 773 774 rem = ktime_sub(absexp, alarm_bases[type].get_ktime()); 775 776 if (rem <= 0) 777 return 0; 778 rmt = ktime_to_timespec64(rem); 779 780 return nanosleep_copyout(restart, &rmt); 781 } 782 return -ERESTART_RESTARTBLOCK; 783 } 784 785 static void 786 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, 787 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 788 { 789 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid, 790 HRTIMER_MODE_ABS); 791 __alarm_init(alarm, type, function); 792 } 793 794 /** 795 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 796 * @restart: ptr to restart block 797 * 798 * Handles restarted clock_nanosleep calls 799 */ 800 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 801 { 802 enum alarmtimer_type type = restart->nanosleep.clockid; 803 ktime_t exp = restart->nanosleep.expires; 804 struct alarm alarm; 805 806 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 807 808 return alarmtimer_do_nsleep(&alarm, exp, type); 809 } 810 811 /** 812 * alarm_timer_nsleep - alarmtimer nanosleep 813 * @which_clock: clockid 814 * @flags: determines abstime or relative 815 * @tsreq: requested sleep time (abs or rel) 816 * 817 * Handles clock_nanosleep calls against _ALARM clockids 818 */ 819 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 820 const struct timespec64 *tsreq) 821 { 822 enum alarmtimer_type type = clock2alarm(which_clock); 823 struct restart_block *restart = ¤t->restart_block; 824 struct alarm alarm; 825 ktime_t exp; 826 int ret = 0; 827 828 if (!alarmtimer_get_rtcdev()) 829 return -EOPNOTSUPP; 830 831 if (flags & ~TIMER_ABSTIME) 832 return -EINVAL; 833 834 if (!capable(CAP_WAKE_ALARM)) 835 return -EPERM; 836 837 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 838 839 exp = timespec64_to_ktime(*tsreq); 840 /* Convert (if necessary) to absolute time */ 841 if (flags != TIMER_ABSTIME) { 842 ktime_t now = alarm_bases[type].get_ktime(); 843 844 exp = ktime_add_safe(now, exp); 845 } else { 846 exp = timens_ktime_to_host(which_clock, exp); 847 } 848 849 ret = alarmtimer_do_nsleep(&alarm, exp, type); 850 if (ret != -ERESTART_RESTARTBLOCK) 851 return ret; 852 853 /* abs timers don't set remaining time or restart */ 854 if (flags == TIMER_ABSTIME) 855 return -ERESTARTNOHAND; 856 857 restart->nanosleep.clockid = type; 858 restart->nanosleep.expires = exp; 859 set_restart_fn(restart, alarm_timer_nsleep_restart); 860 return ret; 861 } 862 863 const struct k_clock alarm_clock = { 864 .clock_getres = alarm_clock_getres, 865 .clock_get_ktime = alarm_clock_get_ktime, 866 .clock_get_timespec = alarm_clock_get_timespec, 867 .timer_create = alarm_timer_create, 868 .timer_set = common_timer_set, 869 .timer_del = common_timer_del, 870 .timer_get = common_timer_get, 871 .timer_arm = alarm_timer_arm, 872 .timer_rearm = alarm_timer_rearm, 873 .timer_forward = alarm_timer_forward, 874 .timer_remaining = alarm_timer_remaining, 875 .timer_try_to_cancel = alarm_timer_try_to_cancel, 876 .timer_wait_running = alarm_timer_wait_running, 877 .nsleep = alarm_timer_nsleep, 878 }; 879 #endif /* CONFIG_POSIX_TIMERS */ 880 881 882 /* Suspend hook structures */ 883 static const struct dev_pm_ops alarmtimer_pm_ops = { 884 .suspend = alarmtimer_suspend, 885 .resume = alarmtimer_resume, 886 }; 887 888 static struct platform_driver alarmtimer_driver = { 889 .driver = { 890 .name = "alarmtimer", 891 .pm = &alarmtimer_pm_ops, 892 } 893 }; 894 895 static void get_boottime_timespec(struct timespec64 *tp) 896 { 897 ktime_get_boottime_ts64(tp); 898 timens_add_boottime(tp); 899 } 900 901 /** 902 * alarmtimer_init - Initialize alarm timer code 903 * 904 * This function initializes the alarm bases and registers 905 * the posix clock ids. 906 */ 907 static int __init alarmtimer_init(void) 908 { 909 int error; 910 int i; 911 912 alarmtimer_rtc_timer_init(); 913 914 /* Initialize alarm bases */ 915 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 916 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real; 917 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64; 918 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 919 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime; 920 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec; 921 for (i = 0; i < ALARM_NUMTYPE; i++) { 922 timerqueue_init_head(&alarm_bases[i].timerqueue); 923 spin_lock_init(&alarm_bases[i].lock); 924 } 925 926 error = alarmtimer_rtc_interface_setup(); 927 if (error) 928 return error; 929 930 error = platform_driver_register(&alarmtimer_driver); 931 if (error) 932 goto out_if; 933 934 return 0; 935 out_if: 936 alarmtimer_rtc_interface_remove(); 937 return error; 938 } 939 device_initcall(alarmtimer_init); 940