1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similar to hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corporation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37 * struct alarm_base - Alarm timer bases
38 * @lock: Lock for syncrhonized access to the base
39 * @timerqueue: Timerqueue head managing the list of events
40 * @get_ktime: Function to read the time correlating to the base
41 * @get_timespec: Function to read the namespace time correlating to the base
42 * @base_clockid: clockid for the base
43 */
44 static struct alarm_base {
45 spinlock_t lock;
46 struct timerqueue_head timerqueue;
47 ktime_t (*get_ktime)(void);
48 void (*get_timespec)(struct timespec64 *tp);
49 clockid_t base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer rtctimer;
63 static struct rtc_device *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67 * alarmtimer_get_rtcdev - Return selected rtcdevice
68 *
69 * This function returns the rtc device to use for wakealarms.
70 */
alarmtimer_get_rtcdev(void)71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73 unsigned long flags;
74 struct rtc_device *ret;
75
76 spin_lock_irqsave(&rtcdev_lock, flags);
77 ret = rtcdev;
78 spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80 return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
alarmtimer_rtc_add_device(struct device * dev)84 static int alarmtimer_rtc_add_device(struct device *dev)
85 {
86 unsigned long flags;
87 struct rtc_device *rtc = to_rtc_device(dev);
88 struct platform_device *pdev;
89 int ret = 0;
90
91 if (rtcdev)
92 return -EBUSY;
93
94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
95 return -1;
96 if (!device_may_wakeup(rtc->dev.parent))
97 return -1;
98
99 pdev = platform_device_register_data(dev, "alarmtimer",
100 PLATFORM_DEVID_AUTO, NULL, 0);
101 if (!IS_ERR(pdev))
102 device_init_wakeup(&pdev->dev, true);
103
104 spin_lock_irqsave(&rtcdev_lock, flags);
105 if (!IS_ERR(pdev) && !rtcdev) {
106 if (!try_module_get(rtc->owner)) {
107 ret = -1;
108 goto unlock;
109 }
110
111 rtcdev = rtc;
112 /* hold a reference so it doesn't go away */
113 get_device(dev);
114 pdev = NULL;
115 } else {
116 ret = -1;
117 }
118 unlock:
119 spin_unlock_irqrestore(&rtcdev_lock, flags);
120
121 platform_device_unregister(pdev);
122
123 return ret;
124 }
125
alarmtimer_rtc_timer_init(void)126 static inline void alarmtimer_rtc_timer_init(void)
127 {
128 rtc_timer_init(&rtctimer, NULL, NULL);
129 }
130
131 static struct class_interface alarmtimer_rtc_interface = {
132 .add_dev = &alarmtimer_rtc_add_device,
133 };
134
alarmtimer_rtc_interface_setup(void)135 static int alarmtimer_rtc_interface_setup(void)
136 {
137 alarmtimer_rtc_interface.class = &rtc_class;
138 return class_interface_register(&alarmtimer_rtc_interface);
139 }
alarmtimer_rtc_interface_remove(void)140 static void alarmtimer_rtc_interface_remove(void)
141 {
142 class_interface_unregister(&alarmtimer_rtc_interface);
143 }
144 #else
alarmtimer_rtc_interface_setup(void)145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)146 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)147 static inline void alarmtimer_rtc_timer_init(void) { }
148 #endif
149
150 /**
151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
152 * @base: pointer to the base where the timer is being run
153 * @alarm: pointer to alarm being enqueued.
154 *
155 * Adds alarm to a alarm_base timerqueue
156 *
157 * Must hold base->lock when calling.
158 */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
160 {
161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
162 timerqueue_del(&base->timerqueue, &alarm->node);
163
164 timerqueue_add(&base->timerqueue, &alarm->node);
165 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
166 }
167
168 /**
169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
170 * @base: pointer to the base where the timer is running
171 * @alarm: pointer to alarm being removed
172 *
173 * Removes alarm to a alarm_base timerqueue
174 *
175 * Must hold base->lock when calling.
176 */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
178 {
179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
180 return;
181
182 timerqueue_del(&base->timerqueue, &alarm->node);
183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
184 }
185
186
187 /**
188 * alarmtimer_fired - Handles alarm hrtimer being fired.
189 * @timer: pointer to hrtimer being run
190 *
191 * When a alarm timer fires, this runs through the timerqueue to
192 * see which alarms expired, and runs those. If there are more alarm
193 * timers queued for the future, we set the hrtimer to fire when
194 * the next future alarm timer expires.
195 */
alarmtimer_fired(struct hrtimer * timer)196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
197 {
198 struct alarm *alarm = container_of(timer, struct alarm, timer);
199 struct alarm_base *base = &alarm_bases[alarm->type];
200 unsigned long flags;
201 int ret = HRTIMER_NORESTART;
202 int restart = ALARMTIMER_NORESTART;
203
204 spin_lock_irqsave(&base->lock, flags);
205 alarmtimer_dequeue(base, alarm);
206 spin_unlock_irqrestore(&base->lock, flags);
207
208 if (alarm->function)
209 restart = alarm->function(alarm, base->get_ktime());
210
211 spin_lock_irqsave(&base->lock, flags);
212 if (restart != ALARMTIMER_NORESTART) {
213 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
214 alarmtimer_enqueue(base, alarm);
215 ret = HRTIMER_RESTART;
216 }
217 spin_unlock_irqrestore(&base->lock, flags);
218
219 trace_alarmtimer_fired(alarm, base->get_ktime());
220 return ret;
221
222 }
223
alarm_expires_remaining(const struct alarm * alarm)224 ktime_t alarm_expires_remaining(const struct alarm *alarm)
225 {
226 struct alarm_base *base = &alarm_bases[alarm->type];
227 return ktime_sub(alarm->node.expires, base->get_ktime());
228 }
229 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
230
231 #ifdef CONFIG_RTC_CLASS
232 /**
233 * alarmtimer_suspend - Suspend time callback
234 * @dev: unused
235 *
236 * When we are going into suspend, we look through the bases
237 * to see which is the soonest timer to expire. We then
238 * set an rtc timer to fire that far into the future, which
239 * will wake us from suspend.
240 */
alarmtimer_suspend(struct device * dev)241 static int alarmtimer_suspend(struct device *dev)
242 {
243 ktime_t min, now, expires;
244 int i, ret, type;
245 struct rtc_device *rtc;
246 unsigned long flags;
247 struct rtc_time tm;
248
249 spin_lock_irqsave(&freezer_delta_lock, flags);
250 min = freezer_delta;
251 expires = freezer_expires;
252 type = freezer_alarmtype;
253 freezer_delta = 0;
254 spin_unlock_irqrestore(&freezer_delta_lock, flags);
255
256 rtc = alarmtimer_get_rtcdev();
257 /* If we have no rtcdev, just return */
258 if (!rtc)
259 return 0;
260
261 /* Find the soonest timer to expire*/
262 for (i = 0; i < ALARM_NUMTYPE; i++) {
263 struct alarm_base *base = &alarm_bases[i];
264 struct timerqueue_node *next;
265 ktime_t delta;
266
267 spin_lock_irqsave(&base->lock, flags);
268 next = timerqueue_getnext(&base->timerqueue);
269 spin_unlock_irqrestore(&base->lock, flags);
270 if (!next)
271 continue;
272 delta = ktime_sub(next->expires, base->get_ktime());
273 if (!min || (delta < min)) {
274 expires = next->expires;
275 min = delta;
276 type = i;
277 }
278 }
279 if (min == 0)
280 return 0;
281
282 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
283 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
284 return -EBUSY;
285 }
286
287 trace_alarmtimer_suspend(expires, type);
288
289 /* Setup an rtc timer to fire that far in the future */
290 rtc_timer_cancel(rtc, &rtctimer);
291 rtc_read_time(rtc, &tm);
292 now = rtc_tm_to_ktime(tm);
293
294 /*
295 * If the RTC alarm timer only supports a limited time offset, set the
296 * alarm time to the maximum supported value.
297 * The system may wake up earlier (possibly much earlier) than expected
298 * when the alarmtimer runs. This is the best the kernel can do if
299 * the alarmtimer exceeds the time that the rtc device can be programmed
300 * for.
301 */
302 min = rtc_bound_alarmtime(rtc, min);
303
304 now = ktime_add(now, min);
305
306 /* Set alarm, if in the past reject suspend briefly to handle */
307 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
308 if (ret < 0)
309 pm_wakeup_event(dev, MSEC_PER_SEC);
310 return ret;
311 }
312
alarmtimer_resume(struct device * dev)313 static int alarmtimer_resume(struct device *dev)
314 {
315 struct rtc_device *rtc;
316
317 rtc = alarmtimer_get_rtcdev();
318 if (rtc)
319 rtc_timer_cancel(rtc, &rtctimer);
320 return 0;
321 }
322
323 #else
alarmtimer_suspend(struct device * dev)324 static int alarmtimer_suspend(struct device *dev)
325 {
326 return 0;
327 }
328
alarmtimer_resume(struct device * dev)329 static int alarmtimer_resume(struct device *dev)
330 {
331 return 0;
332 }
333 #endif
334
335 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))336 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
337 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
338 {
339 timerqueue_init(&alarm->node);
340 alarm->timer.function = alarmtimer_fired;
341 alarm->function = function;
342 alarm->type = type;
343 alarm->state = ALARMTIMER_STATE_INACTIVE;
344 }
345
346 /**
347 * alarm_init - Initialize an alarm structure
348 * @alarm: ptr to alarm to be initialized
349 * @type: the type of the alarm
350 * @function: callback that is run when the alarm fires
351 */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))352 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
353 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
354 {
355 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
356 HRTIMER_MODE_ABS);
357 __alarm_init(alarm, type, function);
358 }
359 EXPORT_SYMBOL_GPL(alarm_init);
360
361 /**
362 * alarm_start - Sets an absolute alarm to fire
363 * @alarm: ptr to alarm to set
364 * @start: time to run the alarm
365 */
alarm_start(struct alarm * alarm,ktime_t start)366 void alarm_start(struct alarm *alarm, ktime_t start)
367 {
368 struct alarm_base *base = &alarm_bases[alarm->type];
369 unsigned long flags;
370
371 spin_lock_irqsave(&base->lock, flags);
372 alarm->node.expires = start;
373 alarmtimer_enqueue(base, alarm);
374 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
375 spin_unlock_irqrestore(&base->lock, flags);
376
377 trace_alarmtimer_start(alarm, base->get_ktime());
378 }
379 EXPORT_SYMBOL_GPL(alarm_start);
380
381 /**
382 * alarm_start_relative - Sets a relative alarm to fire
383 * @alarm: ptr to alarm to set
384 * @start: time relative to now to run the alarm
385 */
alarm_start_relative(struct alarm * alarm,ktime_t start)386 void alarm_start_relative(struct alarm *alarm, ktime_t start)
387 {
388 struct alarm_base *base = &alarm_bases[alarm->type];
389
390 start = ktime_add_safe(start, base->get_ktime());
391 alarm_start(alarm, start);
392 }
393 EXPORT_SYMBOL_GPL(alarm_start_relative);
394
alarm_restart(struct alarm * alarm)395 void alarm_restart(struct alarm *alarm)
396 {
397 struct alarm_base *base = &alarm_bases[alarm->type];
398 unsigned long flags;
399
400 spin_lock_irqsave(&base->lock, flags);
401 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
402 hrtimer_restart(&alarm->timer);
403 alarmtimer_enqueue(base, alarm);
404 spin_unlock_irqrestore(&base->lock, flags);
405 }
406 EXPORT_SYMBOL_GPL(alarm_restart);
407
408 /**
409 * alarm_try_to_cancel - Tries to cancel an alarm timer
410 * @alarm: ptr to alarm to be canceled
411 *
412 * Returns 1 if the timer was canceled, 0 if it was not running,
413 * and -1 if the callback was running
414 */
alarm_try_to_cancel(struct alarm * alarm)415 int alarm_try_to_cancel(struct alarm *alarm)
416 {
417 struct alarm_base *base = &alarm_bases[alarm->type];
418 unsigned long flags;
419 int ret;
420
421 spin_lock_irqsave(&base->lock, flags);
422 ret = hrtimer_try_to_cancel(&alarm->timer);
423 if (ret >= 0)
424 alarmtimer_dequeue(base, alarm);
425 spin_unlock_irqrestore(&base->lock, flags);
426
427 trace_alarmtimer_cancel(alarm, base->get_ktime());
428 return ret;
429 }
430 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
431
432
433 /**
434 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
435 * @alarm: ptr to alarm to be canceled
436 *
437 * Returns 1 if the timer was canceled, 0 if it was not active.
438 */
alarm_cancel(struct alarm * alarm)439 int alarm_cancel(struct alarm *alarm)
440 {
441 for (;;) {
442 int ret = alarm_try_to_cancel(alarm);
443 if (ret >= 0)
444 return ret;
445 hrtimer_cancel_wait_running(&alarm->timer);
446 }
447 }
448 EXPORT_SYMBOL_GPL(alarm_cancel);
449
450
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)451 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
452 {
453 u64 overrun = 1;
454 ktime_t delta;
455
456 delta = ktime_sub(now, alarm->node.expires);
457
458 if (delta < 0)
459 return 0;
460
461 if (unlikely(delta >= interval)) {
462 s64 incr = ktime_to_ns(interval);
463
464 overrun = ktime_divns(delta, incr);
465
466 alarm->node.expires = ktime_add_ns(alarm->node.expires,
467 incr*overrun);
468
469 if (alarm->node.expires > now)
470 return overrun;
471 /*
472 * This (and the ktime_add() below) is the
473 * correction for exact:
474 */
475 overrun++;
476 }
477
478 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
479 return overrun;
480 }
481 EXPORT_SYMBOL_GPL(alarm_forward);
482
__alarm_forward_now(struct alarm * alarm,ktime_t interval,bool throttle)483 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
484 {
485 struct alarm_base *base = &alarm_bases[alarm->type];
486 ktime_t now = base->get_ktime();
487
488 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
489 /*
490 * Same issue as with posix_timer_fn(). Timers which are
491 * periodic but the signal is ignored can starve the system
492 * with a very small interval. The real fix which was
493 * promised in the context of posix_timer_fn() never
494 * materialized, but someone should really work on it.
495 *
496 * To prevent DOS fake @now to be 1 jiffy out which keeps
497 * the overrun accounting correct but creates an
498 * inconsistency vs. timer_gettime(2).
499 */
500 ktime_t kj = NSEC_PER_SEC / HZ;
501
502 if (interval < kj)
503 now = ktime_add(now, kj);
504 }
505
506 return alarm_forward(alarm, now, interval);
507 }
508
alarm_forward_now(struct alarm * alarm,ktime_t interval)509 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
510 {
511 return __alarm_forward_now(alarm, interval, false);
512 }
513 EXPORT_SYMBOL_GPL(alarm_forward_now);
514
515 #ifdef CONFIG_POSIX_TIMERS
516
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)517 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
518 {
519 struct alarm_base *base;
520 unsigned long flags;
521 ktime_t delta;
522
523 switch(type) {
524 case ALARM_REALTIME:
525 base = &alarm_bases[ALARM_REALTIME];
526 type = ALARM_REALTIME_FREEZER;
527 break;
528 case ALARM_BOOTTIME:
529 base = &alarm_bases[ALARM_BOOTTIME];
530 type = ALARM_BOOTTIME_FREEZER;
531 break;
532 default:
533 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
534 return;
535 }
536
537 delta = ktime_sub(absexp, base->get_ktime());
538
539 spin_lock_irqsave(&freezer_delta_lock, flags);
540 if (!freezer_delta || (delta < freezer_delta)) {
541 freezer_delta = delta;
542 freezer_expires = absexp;
543 freezer_alarmtype = type;
544 }
545 spin_unlock_irqrestore(&freezer_delta_lock, flags);
546 }
547
548 /**
549 * clock2alarm - helper that converts from clockid to alarmtypes
550 * @clockid: clockid.
551 */
clock2alarm(clockid_t clockid)552 static enum alarmtimer_type clock2alarm(clockid_t clockid)
553 {
554 if (clockid == CLOCK_REALTIME_ALARM)
555 return ALARM_REALTIME;
556 if (clockid == CLOCK_BOOTTIME_ALARM)
557 return ALARM_BOOTTIME;
558 return -1;
559 }
560
561 /**
562 * alarm_handle_timer - Callback for posix timers
563 * @alarm: alarm that fired
564 * @now: time at the timer expiration
565 *
566 * Posix timer callback for expired alarm timers.
567 *
568 * Return: whether the timer is to be restarted
569 */
alarm_handle_timer(struct alarm * alarm,ktime_t now)570 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
571 ktime_t now)
572 {
573 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
574 it.alarm.alarmtimer);
575 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
576 unsigned long flags;
577
578 spin_lock_irqsave(&ptr->it_lock, flags);
579
580 if (posix_timer_queue_signal(ptr) && ptr->it_interval) {
581 /*
582 * Handle ignored signals and rearm the timer. This will go
583 * away once we handle ignored signals proper. Ensure that
584 * small intervals cannot starve the system.
585 */
586 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
587 ++ptr->it_requeue_pending;
588 ptr->it_active = 1;
589 result = ALARMTIMER_RESTART;
590 }
591 spin_unlock_irqrestore(&ptr->it_lock, flags);
592
593 return result;
594 }
595
596 /**
597 * alarm_timer_rearm - Posix timer callback for rearming timer
598 * @timr: Pointer to the posixtimer data struct
599 */
alarm_timer_rearm(struct k_itimer * timr)600 static void alarm_timer_rearm(struct k_itimer *timr)
601 {
602 struct alarm *alarm = &timr->it.alarm.alarmtimer;
603
604 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
605 alarm_start(alarm, alarm->node.expires);
606 }
607
608 /**
609 * alarm_timer_forward - Posix timer callback for forwarding timer
610 * @timr: Pointer to the posixtimer data struct
611 * @now: Current time to forward the timer against
612 */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)613 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
614 {
615 struct alarm *alarm = &timr->it.alarm.alarmtimer;
616
617 return alarm_forward(alarm, timr->it_interval, now);
618 }
619
620 /**
621 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
622 * @timr: Pointer to the posixtimer data struct
623 * @now: Current time to calculate against
624 */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)625 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
626 {
627 struct alarm *alarm = &timr->it.alarm.alarmtimer;
628
629 return ktime_sub(alarm->node.expires, now);
630 }
631
632 /**
633 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
634 * @timr: Pointer to the posixtimer data struct
635 */
alarm_timer_try_to_cancel(struct k_itimer * timr)636 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
637 {
638 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
639 }
640
641 /**
642 * alarm_timer_wait_running - Posix timer callback to wait for a timer
643 * @timr: Pointer to the posixtimer data struct
644 *
645 * Called from the core code when timer cancel detected that the callback
646 * is running. @timr is unlocked and rcu read lock is held to prevent it
647 * from being freed.
648 */
alarm_timer_wait_running(struct k_itimer * timr)649 static void alarm_timer_wait_running(struct k_itimer *timr)
650 {
651 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
652 }
653
654 /**
655 * alarm_timer_arm - Posix timer callback to arm a timer
656 * @timr: Pointer to the posixtimer data struct
657 * @expires: The new expiry time
658 * @absolute: Expiry value is absolute time
659 * @sigev_none: Posix timer does not deliver signals
660 */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)661 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
662 bool absolute, bool sigev_none)
663 {
664 struct alarm *alarm = &timr->it.alarm.alarmtimer;
665 struct alarm_base *base = &alarm_bases[alarm->type];
666
667 if (!absolute)
668 expires = ktime_add_safe(expires, base->get_ktime());
669 if (sigev_none)
670 alarm->node.expires = expires;
671 else
672 alarm_start(&timr->it.alarm.alarmtimer, expires);
673 }
674
675 /**
676 * alarm_clock_getres - posix getres interface
677 * @which_clock: clockid
678 * @tp: timespec to fill
679 *
680 * Returns the granularity of underlying alarm base clock
681 */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)682 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
683 {
684 if (!alarmtimer_get_rtcdev())
685 return -EINVAL;
686
687 tp->tv_sec = 0;
688 tp->tv_nsec = hrtimer_resolution;
689 return 0;
690 }
691
692 /**
693 * alarm_clock_get_timespec - posix clock_get_timespec interface
694 * @which_clock: clockid
695 * @tp: timespec to fill.
696 *
697 * Provides the underlying alarm base time in a tasks time namespace.
698 */
alarm_clock_get_timespec(clockid_t which_clock,struct timespec64 * tp)699 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
700 {
701 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
702
703 if (!alarmtimer_get_rtcdev())
704 return -EINVAL;
705
706 base->get_timespec(tp);
707
708 return 0;
709 }
710
711 /**
712 * alarm_clock_get_ktime - posix clock_get_ktime interface
713 * @which_clock: clockid
714 *
715 * Provides the underlying alarm base time in the root namespace.
716 */
alarm_clock_get_ktime(clockid_t which_clock)717 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
718 {
719 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
720
721 if (!alarmtimer_get_rtcdev())
722 return -EINVAL;
723
724 return base->get_ktime();
725 }
726
727 /**
728 * alarm_timer_create - posix timer_create interface
729 * @new_timer: k_itimer pointer to manage
730 *
731 * Initializes the k_itimer structure.
732 */
alarm_timer_create(struct k_itimer * new_timer)733 static int alarm_timer_create(struct k_itimer *new_timer)
734 {
735 enum alarmtimer_type type;
736
737 if (!alarmtimer_get_rtcdev())
738 return -EOPNOTSUPP;
739
740 if (!capable(CAP_WAKE_ALARM))
741 return -EPERM;
742
743 type = clock2alarm(new_timer->it_clock);
744 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
745 return 0;
746 }
747
748 /**
749 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
750 * @alarm: ptr to alarm that fired
751 * @now: time at the timer expiration
752 *
753 * Wakes up the task that set the alarmtimer
754 *
755 * Return: ALARMTIMER_NORESTART
756 */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)757 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
758 ktime_t now)
759 {
760 struct task_struct *task = alarm->data;
761
762 alarm->data = NULL;
763 if (task)
764 wake_up_process(task);
765 return ALARMTIMER_NORESTART;
766 }
767
768 /**
769 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
770 * @alarm: ptr to alarmtimer
771 * @absexp: absolute expiration time
772 * @type: alarm type (BOOTTIME/REALTIME).
773 *
774 * Sets the alarm timer and sleeps until it is fired or interrupted.
775 */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)776 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
777 enum alarmtimer_type type)
778 {
779 struct restart_block *restart;
780 alarm->data = (void *)current;
781 do {
782 set_current_state(TASK_INTERRUPTIBLE);
783 alarm_start(alarm, absexp);
784 if (likely(alarm->data))
785 schedule();
786
787 alarm_cancel(alarm);
788 } while (alarm->data && !signal_pending(current));
789
790 __set_current_state(TASK_RUNNING);
791
792 destroy_hrtimer_on_stack(&alarm->timer);
793
794 if (!alarm->data)
795 return 0;
796
797 if (freezing(current))
798 alarmtimer_freezerset(absexp, type);
799 restart = ¤t->restart_block;
800 if (restart->nanosleep.type != TT_NONE) {
801 struct timespec64 rmt;
802 ktime_t rem;
803
804 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
805
806 if (rem <= 0)
807 return 0;
808 rmt = ktime_to_timespec64(rem);
809
810 return nanosleep_copyout(restart, &rmt);
811 }
812 return -ERESTART_RESTARTBLOCK;
813 }
814
815 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))816 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
817 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
818 {
819 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
820 HRTIMER_MODE_ABS);
821 __alarm_init(alarm, type, function);
822 }
823
824 /**
825 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
826 * @restart: ptr to restart block
827 *
828 * Handles restarted clock_nanosleep calls
829 */
alarm_timer_nsleep_restart(struct restart_block * restart)830 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
831 {
832 enum alarmtimer_type type = restart->nanosleep.clockid;
833 ktime_t exp = restart->nanosleep.expires;
834 struct alarm alarm;
835
836 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
837
838 return alarmtimer_do_nsleep(&alarm, exp, type);
839 }
840
841 /**
842 * alarm_timer_nsleep - alarmtimer nanosleep
843 * @which_clock: clockid
844 * @flags: determines abstime or relative
845 * @tsreq: requested sleep time (abs or rel)
846 *
847 * Handles clock_nanosleep calls against _ALARM clockids
848 */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)849 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
850 const struct timespec64 *tsreq)
851 {
852 enum alarmtimer_type type = clock2alarm(which_clock);
853 struct restart_block *restart = ¤t->restart_block;
854 struct alarm alarm;
855 ktime_t exp;
856 int ret;
857
858 if (!alarmtimer_get_rtcdev())
859 return -EOPNOTSUPP;
860
861 if (flags & ~TIMER_ABSTIME)
862 return -EINVAL;
863
864 if (!capable(CAP_WAKE_ALARM))
865 return -EPERM;
866
867 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
868
869 exp = timespec64_to_ktime(*tsreq);
870 /* Convert (if necessary) to absolute time */
871 if (flags != TIMER_ABSTIME) {
872 ktime_t now = alarm_bases[type].get_ktime();
873
874 exp = ktime_add_safe(now, exp);
875 } else {
876 exp = timens_ktime_to_host(which_clock, exp);
877 }
878
879 ret = alarmtimer_do_nsleep(&alarm, exp, type);
880 if (ret != -ERESTART_RESTARTBLOCK)
881 return ret;
882
883 /* abs timers don't set remaining time or restart */
884 if (flags == TIMER_ABSTIME)
885 return -ERESTARTNOHAND;
886
887 restart->nanosleep.clockid = type;
888 restart->nanosleep.expires = exp;
889 set_restart_fn(restart, alarm_timer_nsleep_restart);
890 return ret;
891 }
892
893 const struct k_clock alarm_clock = {
894 .clock_getres = alarm_clock_getres,
895 .clock_get_ktime = alarm_clock_get_ktime,
896 .clock_get_timespec = alarm_clock_get_timespec,
897 .timer_create = alarm_timer_create,
898 .timer_set = common_timer_set,
899 .timer_del = common_timer_del,
900 .timer_get = common_timer_get,
901 .timer_arm = alarm_timer_arm,
902 .timer_rearm = alarm_timer_rearm,
903 .timer_forward = alarm_timer_forward,
904 .timer_remaining = alarm_timer_remaining,
905 .timer_try_to_cancel = alarm_timer_try_to_cancel,
906 .timer_wait_running = alarm_timer_wait_running,
907 .nsleep = alarm_timer_nsleep,
908 };
909 #endif /* CONFIG_POSIX_TIMERS */
910
911
912 /* Suspend hook structures */
913 static const struct dev_pm_ops alarmtimer_pm_ops = {
914 .suspend = alarmtimer_suspend,
915 .resume = alarmtimer_resume,
916 };
917
918 static struct platform_driver alarmtimer_driver = {
919 .driver = {
920 .name = "alarmtimer",
921 .pm = &alarmtimer_pm_ops,
922 }
923 };
924
get_boottime_timespec(struct timespec64 * tp)925 static void get_boottime_timespec(struct timespec64 *tp)
926 {
927 ktime_get_boottime_ts64(tp);
928 timens_add_boottime(tp);
929 }
930
931 /**
932 * alarmtimer_init - Initialize alarm timer code
933 *
934 * This function initializes the alarm bases and registers
935 * the posix clock ids.
936 */
alarmtimer_init(void)937 static int __init alarmtimer_init(void)
938 {
939 int error;
940 int i;
941
942 alarmtimer_rtc_timer_init();
943
944 /* Initialize alarm bases */
945 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
946 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
947 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
948 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
949 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
950 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
951 for (i = 0; i < ALARM_NUMTYPE; i++) {
952 timerqueue_init_head(&alarm_bases[i].timerqueue);
953 spin_lock_init(&alarm_bases[i].lock);
954 }
955
956 error = alarmtimer_rtc_interface_setup();
957 if (error)
958 return error;
959
960 error = platform_driver_register(&alarmtimer_driver);
961 if (error)
962 goto out_if;
963
964 return 0;
965 out_if:
966 alarmtimer_rtc_interface_remove();
967 return error;
968 }
969 device_initcall(alarmtimer_init);
970