xref: /linux/kernel/time/alarmtimer.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32 
33 #include "posix-timers.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37 
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:		Lock for syncrhonized access to the base
41  * @timerqueue:		Timerqueue head managing the list of events
42  * @gettime:		Function to read the time correlating to the base
43  * @base_clockid:	clockid for the base
44  */
45 static struct alarm_base {
46 	spinlock_t		lock;
47 	struct timerqueue_head	timerqueue;
48 	ktime_t			(*gettime)(void);
49 	clockid_t		base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51 
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59 
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62 
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer		rtctimer;
65 static struct rtc_device	*rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67 
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  * If one has not already been chosen, it checks to see if a
73  * functional rtc device is available.
74  */
75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77 	unsigned long flags;
78 	struct rtc_device *ret;
79 
80 	spin_lock_irqsave(&rtcdev_lock, flags);
81 	ret = rtcdev;
82 	spin_unlock_irqrestore(&rtcdev_lock, flags);
83 
84 	return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87 
88 static int alarmtimer_rtc_add_device(struct device *dev,
89 				struct class_interface *class_intf)
90 {
91 	unsigned long flags;
92 	struct rtc_device *rtc = to_rtc_device(dev);
93 	struct wakeup_source *__ws;
94 
95 	if (rtcdev)
96 		return -EBUSY;
97 
98 	if (!rtc->ops->set_alarm)
99 		return -1;
100 	if (!device_may_wakeup(rtc->dev.parent))
101 		return -1;
102 
103 	__ws = wakeup_source_register("alarmtimer");
104 
105 	spin_lock_irqsave(&rtcdev_lock, flags);
106 	if (!rtcdev) {
107 		if (!try_module_get(rtc->owner)) {
108 			spin_unlock_irqrestore(&rtcdev_lock, flags);
109 			return -1;
110 		}
111 
112 		rtcdev = rtc;
113 		/* hold a reference so it doesn't go away */
114 		get_device(dev);
115 		ws = __ws;
116 		__ws = NULL;
117 	}
118 	spin_unlock_irqrestore(&rtcdev_lock, flags);
119 
120 	wakeup_source_unregister(__ws);
121 
122 	return 0;
123 }
124 
125 static inline void alarmtimer_rtc_timer_init(void)
126 {
127 	rtc_timer_init(&rtctimer, NULL, NULL);
128 }
129 
130 static struct class_interface alarmtimer_rtc_interface = {
131 	.add_dev = &alarmtimer_rtc_add_device,
132 };
133 
134 static int alarmtimer_rtc_interface_setup(void)
135 {
136 	alarmtimer_rtc_interface.class = rtc_class;
137 	return class_interface_register(&alarmtimer_rtc_interface);
138 }
139 static void alarmtimer_rtc_interface_remove(void)
140 {
141 	class_interface_unregister(&alarmtimer_rtc_interface);
142 }
143 #else
144 struct rtc_device *alarmtimer_get_rtcdev(void)
145 {
146 	return NULL;
147 }
148 #define rtcdev (NULL)
149 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150 static inline void alarmtimer_rtc_interface_remove(void) { }
151 static inline void alarmtimer_rtc_timer_init(void) { }
152 #endif
153 
154 /**
155  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156  * @base: pointer to the base where the timer is being run
157  * @alarm: pointer to alarm being enqueued.
158  *
159  * Adds alarm to a alarm_base timerqueue
160  *
161  * Must hold base->lock when calling.
162  */
163 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164 {
165 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166 		timerqueue_del(&base->timerqueue, &alarm->node);
167 
168 	timerqueue_add(&base->timerqueue, &alarm->node);
169 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170 }
171 
172 /**
173  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174  * @base: pointer to the base where the timer is running
175  * @alarm: pointer to alarm being removed
176  *
177  * Removes alarm to a alarm_base timerqueue
178  *
179  * Must hold base->lock when calling.
180  */
181 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182 {
183 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184 		return;
185 
186 	timerqueue_del(&base->timerqueue, &alarm->node);
187 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188 }
189 
190 
191 /**
192  * alarmtimer_fired - Handles alarm hrtimer being fired.
193  * @timer: pointer to hrtimer being run
194  *
195  * When a alarm timer fires, this runs through the timerqueue to
196  * see which alarms expired, and runs those. If there are more alarm
197  * timers queued for the future, we set the hrtimer to fire when
198  * when the next future alarm timer expires.
199  */
200 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201 {
202 	struct alarm *alarm = container_of(timer, struct alarm, timer);
203 	struct alarm_base *base = &alarm_bases[alarm->type];
204 	unsigned long flags;
205 	int ret = HRTIMER_NORESTART;
206 	int restart = ALARMTIMER_NORESTART;
207 
208 	spin_lock_irqsave(&base->lock, flags);
209 	alarmtimer_dequeue(base, alarm);
210 	spin_unlock_irqrestore(&base->lock, flags);
211 
212 	if (alarm->function)
213 		restart = alarm->function(alarm, base->gettime());
214 
215 	spin_lock_irqsave(&base->lock, flags);
216 	if (restart != ALARMTIMER_NORESTART) {
217 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218 		alarmtimer_enqueue(base, alarm);
219 		ret = HRTIMER_RESTART;
220 	}
221 	spin_unlock_irqrestore(&base->lock, flags);
222 
223 	trace_alarmtimer_fired(alarm, base->gettime());
224 	return ret;
225 
226 }
227 
228 ktime_t alarm_expires_remaining(const struct alarm *alarm)
229 {
230 	struct alarm_base *base = &alarm_bases[alarm->type];
231 	return ktime_sub(alarm->node.expires, base->gettime());
232 }
233 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234 
235 #ifdef CONFIG_RTC_CLASS
236 /**
237  * alarmtimer_suspend - Suspend time callback
238  * @dev: unused
239  * @state: unused
240  *
241  * When we are going into suspend, we look through the bases
242  * to see which is the soonest timer to expire. We then
243  * set an rtc timer to fire that far into the future, which
244  * will wake us from suspend.
245  */
246 static int alarmtimer_suspend(struct device *dev)
247 {
248 	ktime_t min, now, expires;
249 	int i, ret, type;
250 	struct rtc_device *rtc;
251 	unsigned long flags;
252 	struct rtc_time tm;
253 
254 	spin_lock_irqsave(&freezer_delta_lock, flags);
255 	min = freezer_delta;
256 	expires = freezer_expires;
257 	type = freezer_alarmtype;
258 	freezer_delta = 0;
259 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
260 
261 	rtc = alarmtimer_get_rtcdev();
262 	/* If we have no rtcdev, just return */
263 	if (!rtc)
264 		return 0;
265 
266 	/* Find the soonest timer to expire*/
267 	for (i = 0; i < ALARM_NUMTYPE; i++) {
268 		struct alarm_base *base = &alarm_bases[i];
269 		struct timerqueue_node *next;
270 		ktime_t delta;
271 
272 		spin_lock_irqsave(&base->lock, flags);
273 		next = timerqueue_getnext(&base->timerqueue);
274 		spin_unlock_irqrestore(&base->lock, flags);
275 		if (!next)
276 			continue;
277 		delta = ktime_sub(next->expires, base->gettime());
278 		if (!min || (delta < min)) {
279 			expires = next->expires;
280 			min = delta;
281 			type = i;
282 		}
283 	}
284 	if (min == 0)
285 		return 0;
286 
287 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289 		return -EBUSY;
290 	}
291 
292 	trace_alarmtimer_suspend(expires, type);
293 
294 	/* Setup an rtc timer to fire that far in the future */
295 	rtc_timer_cancel(rtc, &rtctimer);
296 	rtc_read_time(rtc, &tm);
297 	now = rtc_tm_to_ktime(tm);
298 	now = ktime_add(now, min);
299 
300 	/* Set alarm, if in the past reject suspend briefly to handle */
301 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302 	if (ret < 0)
303 		__pm_wakeup_event(ws, MSEC_PER_SEC);
304 	return ret;
305 }
306 
307 static int alarmtimer_resume(struct device *dev)
308 {
309 	struct rtc_device *rtc;
310 
311 	rtc = alarmtimer_get_rtcdev();
312 	if (rtc)
313 		rtc_timer_cancel(rtc, &rtctimer);
314 	return 0;
315 }
316 
317 #else
318 static int alarmtimer_suspend(struct device *dev)
319 {
320 	return 0;
321 }
322 
323 static int alarmtimer_resume(struct device *dev)
324 {
325 	return 0;
326 }
327 #endif
328 
329 /**
330  * alarm_init - Initialize an alarm structure
331  * @alarm: ptr to alarm to be initialized
332  * @type: the type of the alarm
333  * @function: callback that is run when the alarm fires
334  */
335 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
336 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
337 {
338 	timerqueue_init(&alarm->node);
339 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
340 			HRTIMER_MODE_ABS);
341 	alarm->timer.function = alarmtimer_fired;
342 	alarm->function = function;
343 	alarm->type = type;
344 	alarm->state = ALARMTIMER_STATE_INACTIVE;
345 }
346 EXPORT_SYMBOL_GPL(alarm_init);
347 
348 /**
349  * alarm_start - Sets an absolute alarm to fire
350  * @alarm: ptr to alarm to set
351  * @start: time to run the alarm
352  */
353 void alarm_start(struct alarm *alarm, ktime_t start)
354 {
355 	struct alarm_base *base = &alarm_bases[alarm->type];
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&base->lock, flags);
359 	alarm->node.expires = start;
360 	alarmtimer_enqueue(base, alarm);
361 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
362 	spin_unlock_irqrestore(&base->lock, flags);
363 
364 	trace_alarmtimer_start(alarm, base->gettime());
365 }
366 EXPORT_SYMBOL_GPL(alarm_start);
367 
368 /**
369  * alarm_start_relative - Sets a relative alarm to fire
370  * @alarm: ptr to alarm to set
371  * @start: time relative to now to run the alarm
372  */
373 void alarm_start_relative(struct alarm *alarm, ktime_t start)
374 {
375 	struct alarm_base *base = &alarm_bases[alarm->type];
376 
377 	start = ktime_add_safe(start, base->gettime());
378 	alarm_start(alarm, start);
379 }
380 EXPORT_SYMBOL_GPL(alarm_start_relative);
381 
382 void alarm_restart(struct alarm *alarm)
383 {
384 	struct alarm_base *base = &alarm_bases[alarm->type];
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(&base->lock, flags);
388 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
389 	hrtimer_restart(&alarm->timer);
390 	alarmtimer_enqueue(base, alarm);
391 	spin_unlock_irqrestore(&base->lock, flags);
392 }
393 EXPORT_SYMBOL_GPL(alarm_restart);
394 
395 /**
396  * alarm_try_to_cancel - Tries to cancel an alarm timer
397  * @alarm: ptr to alarm to be canceled
398  *
399  * Returns 1 if the timer was canceled, 0 if it was not running,
400  * and -1 if the callback was running
401  */
402 int alarm_try_to_cancel(struct alarm *alarm)
403 {
404 	struct alarm_base *base = &alarm_bases[alarm->type];
405 	unsigned long flags;
406 	int ret;
407 
408 	spin_lock_irqsave(&base->lock, flags);
409 	ret = hrtimer_try_to_cancel(&alarm->timer);
410 	if (ret >= 0)
411 		alarmtimer_dequeue(base, alarm);
412 	spin_unlock_irqrestore(&base->lock, flags);
413 
414 	trace_alarmtimer_cancel(alarm, base->gettime());
415 	return ret;
416 }
417 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
418 
419 
420 /**
421  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
422  * @alarm: ptr to alarm to be canceled
423  *
424  * Returns 1 if the timer was canceled, 0 if it was not active.
425  */
426 int alarm_cancel(struct alarm *alarm)
427 {
428 	for (;;) {
429 		int ret = alarm_try_to_cancel(alarm);
430 		if (ret >= 0)
431 			return ret;
432 		cpu_relax();
433 	}
434 }
435 EXPORT_SYMBOL_GPL(alarm_cancel);
436 
437 
438 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
439 {
440 	u64 overrun = 1;
441 	ktime_t delta;
442 
443 	delta = ktime_sub(now, alarm->node.expires);
444 
445 	if (delta < 0)
446 		return 0;
447 
448 	if (unlikely(delta >= interval)) {
449 		s64 incr = ktime_to_ns(interval);
450 
451 		overrun = ktime_divns(delta, incr);
452 
453 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
454 							incr*overrun);
455 
456 		if (alarm->node.expires > now)
457 			return overrun;
458 		/*
459 		 * This (and the ktime_add() below) is the
460 		 * correction for exact:
461 		 */
462 		overrun++;
463 	}
464 
465 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
466 	return overrun;
467 }
468 EXPORT_SYMBOL_GPL(alarm_forward);
469 
470 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
471 {
472 	struct alarm_base *base = &alarm_bases[alarm->type];
473 
474 	return alarm_forward(alarm, base->gettime(), interval);
475 }
476 EXPORT_SYMBOL_GPL(alarm_forward_now);
477 
478 #ifdef CONFIG_POSIX_TIMERS
479 
480 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
481 {
482 	struct alarm_base *base;
483 	unsigned long flags;
484 	ktime_t delta;
485 
486 	switch(type) {
487 	case ALARM_REALTIME:
488 		base = &alarm_bases[ALARM_REALTIME];
489 		type = ALARM_REALTIME_FREEZER;
490 		break;
491 	case ALARM_BOOTTIME:
492 		base = &alarm_bases[ALARM_BOOTTIME];
493 		type = ALARM_BOOTTIME_FREEZER;
494 		break;
495 	default:
496 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
497 		return;
498 	}
499 
500 	delta = ktime_sub(absexp, base->gettime());
501 
502 	spin_lock_irqsave(&freezer_delta_lock, flags);
503 	if (!freezer_delta || (delta < freezer_delta)) {
504 		freezer_delta = delta;
505 		freezer_expires = absexp;
506 		freezer_alarmtype = type;
507 	}
508 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
509 }
510 
511 /**
512  * clock2alarm - helper that converts from clockid to alarmtypes
513  * @clockid: clockid.
514  */
515 static enum alarmtimer_type clock2alarm(clockid_t clockid)
516 {
517 	if (clockid == CLOCK_REALTIME_ALARM)
518 		return ALARM_REALTIME;
519 	if (clockid == CLOCK_BOOTTIME_ALARM)
520 		return ALARM_BOOTTIME;
521 	return -1;
522 }
523 
524 /**
525  * alarm_handle_timer - Callback for posix timers
526  * @alarm: alarm that fired
527  *
528  * Posix timer callback for expired alarm timers.
529  */
530 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
531 							ktime_t now)
532 {
533 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
534 					    it.alarm.alarmtimer);
535 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
536 	unsigned long flags;
537 	int si_private = 0;
538 
539 	spin_lock_irqsave(&ptr->it_lock, flags);
540 
541 	ptr->it_active = 0;
542 	if (ptr->it_interval)
543 		si_private = ++ptr->it_requeue_pending;
544 
545 	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
546 		/*
547 		 * Handle ignored signals and rearm the timer. This will go
548 		 * away once we handle ignored signals proper.
549 		 */
550 		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
551 		++ptr->it_requeue_pending;
552 		ptr->it_active = 1;
553 		result = ALARMTIMER_RESTART;
554 	}
555 	spin_unlock_irqrestore(&ptr->it_lock, flags);
556 
557 	return result;
558 }
559 
560 /**
561  * alarm_timer_rearm - Posix timer callback for rearming timer
562  * @timr:	Pointer to the posixtimer data struct
563  */
564 static void alarm_timer_rearm(struct k_itimer *timr)
565 {
566 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
567 
568 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
569 	alarm_start(alarm, alarm->node.expires);
570 }
571 
572 /**
573  * alarm_timer_forward - Posix timer callback for forwarding timer
574  * @timr:	Pointer to the posixtimer data struct
575  * @now:	Current time to forward the timer against
576  */
577 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
578 {
579 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
580 
581 	return (int) alarm_forward(alarm, timr->it_interval, now);
582 }
583 
584 /**
585  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
586  * @timr:	Pointer to the posixtimer data struct
587  * @now:	Current time to calculate against
588  */
589 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
590 {
591 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
592 
593 	return ktime_sub(now, alarm->node.expires);
594 }
595 
596 /**
597  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
598  * @timr:	Pointer to the posixtimer data struct
599  */
600 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
601 {
602 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
603 }
604 
605 /**
606  * alarm_timer_arm - Posix timer callback to arm a timer
607  * @timr:	Pointer to the posixtimer data struct
608  * @expires:	The new expiry time
609  * @absolute:	Expiry value is absolute time
610  * @sigev_none:	Posix timer does not deliver signals
611  */
612 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
613 			    bool absolute, bool sigev_none)
614 {
615 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
616 	struct alarm_base *base = &alarm_bases[alarm->type];
617 
618 	if (!absolute)
619 		expires = ktime_add_safe(expires, base->gettime());
620 	if (sigev_none)
621 		alarm->node.expires = expires;
622 	else
623 		alarm_start(&timr->it.alarm.alarmtimer, expires);
624 }
625 
626 /**
627  * alarm_clock_getres - posix getres interface
628  * @which_clock: clockid
629  * @tp: timespec to fill
630  *
631  * Returns the granularity of underlying alarm base clock
632  */
633 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
634 {
635 	if (!alarmtimer_get_rtcdev())
636 		return -EINVAL;
637 
638 	tp->tv_sec = 0;
639 	tp->tv_nsec = hrtimer_resolution;
640 	return 0;
641 }
642 
643 /**
644  * alarm_clock_get - posix clock_get interface
645  * @which_clock: clockid
646  * @tp: timespec to fill.
647  *
648  * Provides the underlying alarm base time.
649  */
650 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
651 {
652 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
653 
654 	if (!alarmtimer_get_rtcdev())
655 		return -EINVAL;
656 
657 	*tp = ktime_to_timespec64(base->gettime());
658 	return 0;
659 }
660 
661 /**
662  * alarm_timer_create - posix timer_create interface
663  * @new_timer: k_itimer pointer to manage
664  *
665  * Initializes the k_itimer structure.
666  */
667 static int alarm_timer_create(struct k_itimer *new_timer)
668 {
669 	enum  alarmtimer_type type;
670 
671 	if (!alarmtimer_get_rtcdev())
672 		return -ENOTSUPP;
673 
674 	if (!capable(CAP_WAKE_ALARM))
675 		return -EPERM;
676 
677 	type = clock2alarm(new_timer->it_clock);
678 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
679 	return 0;
680 }
681 
682 /**
683  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
684  * @alarm: ptr to alarm that fired
685  *
686  * Wakes up the task that set the alarmtimer
687  */
688 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
689 								ktime_t now)
690 {
691 	struct task_struct *task = (struct task_struct *)alarm->data;
692 
693 	alarm->data = NULL;
694 	if (task)
695 		wake_up_process(task);
696 	return ALARMTIMER_NORESTART;
697 }
698 
699 /**
700  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
701  * @alarm: ptr to alarmtimer
702  * @absexp: absolute expiration time
703  *
704  * Sets the alarm timer and sleeps until it is fired or interrupted.
705  */
706 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
707 				enum alarmtimer_type type)
708 {
709 	struct restart_block *restart;
710 	alarm->data = (void *)current;
711 	do {
712 		set_current_state(TASK_INTERRUPTIBLE);
713 		alarm_start(alarm, absexp);
714 		if (likely(alarm->data))
715 			schedule();
716 
717 		alarm_cancel(alarm);
718 	} while (alarm->data && !signal_pending(current));
719 
720 	__set_current_state(TASK_RUNNING);
721 
722 	if (!alarm->data)
723 		return 0;
724 
725 	if (freezing(current))
726 		alarmtimer_freezerset(absexp, type);
727 	restart = &current->restart_block;
728 	if (restart->nanosleep.type != TT_NONE) {
729 		struct timespec64 rmt;
730 		ktime_t rem;
731 
732 		rem = ktime_sub(absexp, alarm_bases[type].gettime());
733 
734 		if (rem <= 0)
735 			return 0;
736 		rmt = ktime_to_timespec64(rem);
737 
738 		return nanosleep_copyout(restart, &rmt);
739 	}
740 	return -ERESTART_RESTARTBLOCK;
741 }
742 
743 /**
744  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
745  * @restart: ptr to restart block
746  *
747  * Handles restarted clock_nanosleep calls
748  */
749 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
750 {
751 	enum  alarmtimer_type type = restart->nanosleep.clockid;
752 	ktime_t exp = restart->nanosleep.expires;
753 	struct alarm alarm;
754 
755 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
756 
757 	return alarmtimer_do_nsleep(&alarm, exp, type);
758 }
759 
760 /**
761  * alarm_timer_nsleep - alarmtimer nanosleep
762  * @which_clock: clockid
763  * @flags: determins abstime or relative
764  * @tsreq: requested sleep time (abs or rel)
765  * @rmtp: remaining sleep time saved
766  *
767  * Handles clock_nanosleep calls against _ALARM clockids
768  */
769 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
770 			      const struct timespec64 *tsreq)
771 {
772 	enum  alarmtimer_type type = clock2alarm(which_clock);
773 	struct restart_block *restart = &current->restart_block;
774 	struct alarm alarm;
775 	ktime_t exp;
776 	int ret = 0;
777 
778 	if (!alarmtimer_get_rtcdev())
779 		return -ENOTSUPP;
780 
781 	if (flags & ~TIMER_ABSTIME)
782 		return -EINVAL;
783 
784 	if (!capable(CAP_WAKE_ALARM))
785 		return -EPERM;
786 
787 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
788 
789 	exp = timespec64_to_ktime(*tsreq);
790 	/* Convert (if necessary) to absolute time */
791 	if (flags != TIMER_ABSTIME) {
792 		ktime_t now = alarm_bases[type].gettime();
793 		exp = ktime_add(now, exp);
794 	}
795 
796 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
797 	if (ret != -ERESTART_RESTARTBLOCK)
798 		return ret;
799 
800 	/* abs timers don't set remaining time or restart */
801 	if (flags == TIMER_ABSTIME)
802 		return -ERESTARTNOHAND;
803 
804 	restart->fn = alarm_timer_nsleep_restart;
805 	restart->nanosleep.clockid = type;
806 	restart->nanosleep.expires = exp;
807 	return ret;
808 }
809 
810 const struct k_clock alarm_clock = {
811 	.clock_getres		= alarm_clock_getres,
812 	.clock_get		= alarm_clock_get,
813 	.timer_create		= alarm_timer_create,
814 	.timer_set		= common_timer_set,
815 	.timer_del		= common_timer_del,
816 	.timer_get		= common_timer_get,
817 	.timer_arm		= alarm_timer_arm,
818 	.timer_rearm		= alarm_timer_rearm,
819 	.timer_forward		= alarm_timer_forward,
820 	.timer_remaining	= alarm_timer_remaining,
821 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
822 	.nsleep			= alarm_timer_nsleep,
823 };
824 #endif /* CONFIG_POSIX_TIMERS */
825 
826 
827 /* Suspend hook structures */
828 static const struct dev_pm_ops alarmtimer_pm_ops = {
829 	.suspend = alarmtimer_suspend,
830 	.resume = alarmtimer_resume,
831 };
832 
833 static struct platform_driver alarmtimer_driver = {
834 	.driver = {
835 		.name = "alarmtimer",
836 		.pm = &alarmtimer_pm_ops,
837 	}
838 };
839 
840 /**
841  * alarmtimer_init - Initialize alarm timer code
842  *
843  * This function initializes the alarm bases and registers
844  * the posix clock ids.
845  */
846 static int __init alarmtimer_init(void)
847 {
848 	struct platform_device *pdev;
849 	int error = 0;
850 	int i;
851 
852 	alarmtimer_rtc_timer_init();
853 
854 	/* Initialize alarm bases */
855 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
856 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
857 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
858 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
859 	for (i = 0; i < ALARM_NUMTYPE; i++) {
860 		timerqueue_init_head(&alarm_bases[i].timerqueue);
861 		spin_lock_init(&alarm_bases[i].lock);
862 	}
863 
864 	error = alarmtimer_rtc_interface_setup();
865 	if (error)
866 		return error;
867 
868 	error = platform_driver_register(&alarmtimer_driver);
869 	if (error)
870 		goto out_if;
871 
872 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
873 	if (IS_ERR(pdev)) {
874 		error = PTR_ERR(pdev);
875 		goto out_drv;
876 	}
877 	return 0;
878 
879 out_drv:
880 	platform_driver_unregister(&alarmtimer_driver);
881 out_if:
882 	alarmtimer_rtc_interface_remove();
883 	return error;
884 }
885 device_initcall(alarmtimer_init);
886