1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Alarmtimer interface 4 * 5 * This interface provides a timer which is similar to hrtimers, 6 * but triggers a RTC alarm if the box is suspend. 7 * 8 * This interface is influenced by the Android RTC Alarm timer 9 * interface. 10 * 11 * Copyright (C) 2010 IBM Corporation 12 * 13 * Author: John Stultz <john.stultz@linaro.org> 14 */ 15 #include <linux/time.h> 16 #include <linux/hrtimer.h> 17 #include <linux/timerqueue.h> 18 #include <linux/rtc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/alarmtimer.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/posix-timers.h> 25 #include <linux/workqueue.h> 26 #include <linux/freezer.h> 27 #include <linux/compat.h> 28 #include <linux/module.h> 29 #include <linux/time_namespace.h> 30 31 #include "posix-timers.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/alarmtimer.h> 35 36 /** 37 * struct alarm_base - Alarm timer bases 38 * @lock: Lock for syncrhonized access to the base 39 * @timerqueue: Timerqueue head managing the list of events 40 * @get_ktime: Function to read the time correlating to the base 41 * @get_timespec: Function to read the namespace time correlating to the base 42 * @base_clockid: clockid for the base 43 */ 44 static struct alarm_base { 45 spinlock_t lock; 46 struct timerqueue_head timerqueue; 47 ktime_t (*get_ktime)(void); 48 void (*get_timespec)(struct timespec64 *tp); 49 clockid_t base_clockid; 50 } alarm_bases[ALARM_NUMTYPE]; 51 52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 53 /* freezer information to handle clock_nanosleep triggered wakeups */ 54 static enum alarmtimer_type freezer_alarmtype; 55 static ktime_t freezer_expires; 56 static ktime_t freezer_delta; 57 static DEFINE_SPINLOCK(freezer_delta_lock); 58 #endif 59 60 #ifdef CONFIG_RTC_CLASS 61 /* rtc timer and device for setting alarm wakeups at suspend */ 62 static struct rtc_timer rtctimer; 63 static struct rtc_device *rtcdev; 64 static DEFINE_SPINLOCK(rtcdev_lock); 65 66 /** 67 * alarmtimer_get_rtcdev - Return selected rtcdevice 68 * 69 * This function returns the rtc device to use for wakealarms. 70 */ 71 struct rtc_device *alarmtimer_get_rtcdev(void) 72 { 73 unsigned long flags; 74 struct rtc_device *ret; 75 76 spin_lock_irqsave(&rtcdev_lock, flags); 77 ret = rtcdev; 78 spin_unlock_irqrestore(&rtcdev_lock, flags); 79 80 return ret; 81 } 82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 83 84 static int alarmtimer_rtc_add_device(struct device *dev) 85 { 86 unsigned long flags; 87 struct rtc_device *rtc = to_rtc_device(dev); 88 struct platform_device *pdev; 89 int ret = 0; 90 91 if (rtcdev) 92 return -EBUSY; 93 94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 95 return -1; 96 if (!device_may_wakeup(rtc->dev.parent)) 97 return -1; 98 99 pdev = platform_device_register_data(dev, "alarmtimer", 100 PLATFORM_DEVID_AUTO, NULL, 0); 101 if (!IS_ERR(pdev)) 102 device_init_wakeup(&pdev->dev, true); 103 104 spin_lock_irqsave(&rtcdev_lock, flags); 105 if (!IS_ERR(pdev) && !rtcdev) { 106 if (!try_module_get(rtc->owner)) { 107 ret = -1; 108 goto unlock; 109 } 110 111 rtcdev = rtc; 112 /* hold a reference so it doesn't go away */ 113 get_device(dev); 114 pdev = NULL; 115 } else { 116 ret = -1; 117 } 118 unlock: 119 spin_unlock_irqrestore(&rtcdev_lock, flags); 120 121 platform_device_unregister(pdev); 122 123 return ret; 124 } 125 126 static inline void alarmtimer_rtc_timer_init(void) 127 { 128 rtc_timer_init(&rtctimer, NULL, NULL); 129 } 130 131 static struct class_interface alarmtimer_rtc_interface = { 132 .add_dev = &alarmtimer_rtc_add_device, 133 }; 134 135 static int alarmtimer_rtc_interface_setup(void) 136 { 137 alarmtimer_rtc_interface.class = &rtc_class; 138 return class_interface_register(&alarmtimer_rtc_interface); 139 } 140 static void alarmtimer_rtc_interface_remove(void) 141 { 142 class_interface_unregister(&alarmtimer_rtc_interface); 143 } 144 #else 145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 146 static inline void alarmtimer_rtc_interface_remove(void) { } 147 static inline void alarmtimer_rtc_timer_init(void) { } 148 #endif 149 150 /** 151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 152 * @base: pointer to the base where the timer is being run 153 * @alarm: pointer to alarm being enqueued. 154 * 155 * Adds alarm to a alarm_base timerqueue 156 * 157 * Must hold base->lock when calling. 158 */ 159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 160 { 161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 162 timerqueue_del(&base->timerqueue, &alarm->node); 163 164 timerqueue_add(&base->timerqueue, &alarm->node); 165 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 166 } 167 168 /** 169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 170 * @base: pointer to the base where the timer is running 171 * @alarm: pointer to alarm being removed 172 * 173 * Removes alarm to a alarm_base timerqueue 174 * 175 * Must hold base->lock when calling. 176 */ 177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 178 { 179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 180 return; 181 182 timerqueue_del(&base->timerqueue, &alarm->node); 183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 184 } 185 186 187 /** 188 * alarmtimer_fired - Handles alarm hrtimer being fired. 189 * @timer: pointer to hrtimer being run 190 * 191 * When a alarm timer fires, this runs through the timerqueue to 192 * see which alarms expired, and runs those. If there are more alarm 193 * timers queued for the future, we set the hrtimer to fire when 194 * the next future alarm timer expires. 195 */ 196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 197 { 198 struct alarm *alarm = container_of(timer, struct alarm, timer); 199 struct alarm_base *base = &alarm_bases[alarm->type]; 200 201 scoped_guard (spinlock_irqsave, &base->lock) 202 alarmtimer_dequeue(base, alarm); 203 204 if (alarm->function) 205 alarm->function(alarm, base->get_ktime()); 206 207 trace_alarmtimer_fired(alarm, base->get_ktime()); 208 return HRTIMER_NORESTART; 209 } 210 211 ktime_t alarm_expires_remaining(const struct alarm *alarm) 212 { 213 struct alarm_base *base = &alarm_bases[alarm->type]; 214 return ktime_sub(alarm->node.expires, base->get_ktime()); 215 } 216 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 217 218 #ifdef CONFIG_RTC_CLASS 219 /** 220 * alarmtimer_suspend - Suspend time callback 221 * @dev: unused 222 * 223 * When we are going into suspend, we look through the bases 224 * to see which is the soonest timer to expire. We then 225 * set an rtc timer to fire that far into the future, which 226 * will wake us from suspend. 227 */ 228 static int alarmtimer_suspend(struct device *dev) 229 { 230 ktime_t min, now, expires; 231 int i, ret, type; 232 struct rtc_device *rtc; 233 unsigned long flags; 234 struct rtc_time tm; 235 236 spin_lock_irqsave(&freezer_delta_lock, flags); 237 min = freezer_delta; 238 expires = freezer_expires; 239 type = freezer_alarmtype; 240 freezer_delta = 0; 241 spin_unlock_irqrestore(&freezer_delta_lock, flags); 242 243 rtc = alarmtimer_get_rtcdev(); 244 /* If we have no rtcdev, just return */ 245 if (!rtc) 246 return 0; 247 248 /* Find the soonest timer to expire*/ 249 for (i = 0; i < ALARM_NUMTYPE; i++) { 250 struct alarm_base *base = &alarm_bases[i]; 251 struct timerqueue_node *next; 252 ktime_t delta; 253 254 spin_lock_irqsave(&base->lock, flags); 255 next = timerqueue_getnext(&base->timerqueue); 256 spin_unlock_irqrestore(&base->lock, flags); 257 if (!next) 258 continue; 259 delta = ktime_sub(next->expires, base->get_ktime()); 260 if (!min || (delta < min)) { 261 expires = next->expires; 262 min = delta; 263 type = i; 264 } 265 } 266 if (min == 0) 267 return 0; 268 269 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 270 pm_wakeup_event(dev, 2 * MSEC_PER_SEC); 271 return -EBUSY; 272 } 273 274 trace_alarmtimer_suspend(expires, type); 275 276 /* Setup an rtc timer to fire that far in the future */ 277 rtc_timer_cancel(rtc, &rtctimer); 278 rtc_read_time(rtc, &tm); 279 now = rtc_tm_to_ktime(tm); 280 281 /* 282 * If the RTC alarm timer only supports a limited time offset, set the 283 * alarm time to the maximum supported value. 284 * The system may wake up earlier (possibly much earlier) than expected 285 * when the alarmtimer runs. This is the best the kernel can do if 286 * the alarmtimer exceeds the time that the rtc device can be programmed 287 * for. 288 */ 289 min = rtc_bound_alarmtime(rtc, min); 290 291 now = ktime_add(now, min); 292 293 /* Set alarm, if in the past reject suspend briefly to handle */ 294 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 295 if (ret < 0) 296 pm_wakeup_event(dev, MSEC_PER_SEC); 297 return ret; 298 } 299 300 static int alarmtimer_resume(struct device *dev) 301 { 302 struct rtc_device *rtc; 303 304 rtc = alarmtimer_get_rtcdev(); 305 if (rtc) 306 rtc_timer_cancel(rtc, &rtctimer); 307 return 0; 308 } 309 310 #else 311 static int alarmtimer_suspend(struct device *dev) 312 { 313 return 0; 314 } 315 316 static int alarmtimer_resume(struct device *dev) 317 { 318 return 0; 319 } 320 #endif 321 322 static void 323 __alarm_init(struct alarm *alarm, enum alarmtimer_type type, 324 void (*function)(struct alarm *, ktime_t)) 325 { 326 timerqueue_init(&alarm->node); 327 alarm->function = function; 328 alarm->type = type; 329 alarm->state = ALARMTIMER_STATE_INACTIVE; 330 } 331 332 /** 333 * alarm_init - Initialize an alarm structure 334 * @alarm: ptr to alarm to be initialized 335 * @type: the type of the alarm 336 * @function: callback that is run when the alarm fires 337 */ 338 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 339 void (*function)(struct alarm *, ktime_t)) 340 { 341 hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid, 342 HRTIMER_MODE_ABS); 343 __alarm_init(alarm, type, function); 344 } 345 EXPORT_SYMBOL_GPL(alarm_init); 346 347 /** 348 * alarm_start - Sets an absolute alarm to fire 349 * @alarm: ptr to alarm to set 350 * @start: time to run the alarm 351 */ 352 void alarm_start(struct alarm *alarm, ktime_t start) 353 { 354 struct alarm_base *base = &alarm_bases[alarm->type]; 355 unsigned long flags; 356 357 spin_lock_irqsave(&base->lock, flags); 358 alarm->node.expires = start; 359 alarmtimer_enqueue(base, alarm); 360 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 361 spin_unlock_irqrestore(&base->lock, flags); 362 363 trace_alarmtimer_start(alarm, base->get_ktime()); 364 } 365 EXPORT_SYMBOL_GPL(alarm_start); 366 367 /** 368 * alarm_start_relative - Sets a relative alarm to fire 369 * @alarm: ptr to alarm to set 370 * @start: time relative to now to run the alarm 371 */ 372 void alarm_start_relative(struct alarm *alarm, ktime_t start) 373 { 374 struct alarm_base *base = &alarm_bases[alarm->type]; 375 376 start = ktime_add_safe(start, base->get_ktime()); 377 alarm_start(alarm, start); 378 } 379 EXPORT_SYMBOL_GPL(alarm_start_relative); 380 381 void alarm_restart(struct alarm *alarm) 382 { 383 struct alarm_base *base = &alarm_bases[alarm->type]; 384 unsigned long flags; 385 386 spin_lock_irqsave(&base->lock, flags); 387 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 388 hrtimer_restart(&alarm->timer); 389 alarmtimer_enqueue(base, alarm); 390 spin_unlock_irqrestore(&base->lock, flags); 391 } 392 EXPORT_SYMBOL_GPL(alarm_restart); 393 394 /** 395 * alarm_try_to_cancel - Tries to cancel an alarm timer 396 * @alarm: ptr to alarm to be canceled 397 * 398 * Returns 1 if the timer was canceled, 0 if it was not running, 399 * and -1 if the callback was running 400 */ 401 int alarm_try_to_cancel(struct alarm *alarm) 402 { 403 struct alarm_base *base = &alarm_bases[alarm->type]; 404 unsigned long flags; 405 int ret; 406 407 spin_lock_irqsave(&base->lock, flags); 408 ret = hrtimer_try_to_cancel(&alarm->timer); 409 if (ret >= 0) 410 alarmtimer_dequeue(base, alarm); 411 spin_unlock_irqrestore(&base->lock, flags); 412 413 trace_alarmtimer_cancel(alarm, base->get_ktime()); 414 return ret; 415 } 416 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 417 418 419 /** 420 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 421 * @alarm: ptr to alarm to be canceled 422 * 423 * Returns 1 if the timer was canceled, 0 if it was not active. 424 */ 425 int alarm_cancel(struct alarm *alarm) 426 { 427 for (;;) { 428 int ret = alarm_try_to_cancel(alarm); 429 if (ret >= 0) 430 return ret; 431 hrtimer_cancel_wait_running(&alarm->timer); 432 } 433 } 434 EXPORT_SYMBOL_GPL(alarm_cancel); 435 436 437 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 438 { 439 u64 overrun = 1; 440 ktime_t delta; 441 442 delta = ktime_sub(now, alarm->node.expires); 443 444 if (delta < 0) 445 return 0; 446 447 if (unlikely(delta >= interval)) { 448 s64 incr = ktime_to_ns(interval); 449 450 overrun = ktime_divns(delta, incr); 451 452 alarm->node.expires = ktime_add_ns(alarm->node.expires, 453 incr*overrun); 454 455 if (alarm->node.expires > now) 456 return overrun; 457 /* 458 * This (and the ktime_add() below) is the 459 * correction for exact: 460 */ 461 overrun++; 462 } 463 464 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 465 return overrun; 466 } 467 EXPORT_SYMBOL_GPL(alarm_forward); 468 469 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 470 { 471 struct alarm_base *base = &alarm_bases[alarm->type]; 472 473 return alarm_forward(alarm, base->get_ktime(), interval); 474 } 475 EXPORT_SYMBOL_GPL(alarm_forward_now); 476 477 #ifdef CONFIG_POSIX_TIMERS 478 479 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 480 { 481 struct alarm_base *base; 482 unsigned long flags; 483 ktime_t delta; 484 485 switch(type) { 486 case ALARM_REALTIME: 487 base = &alarm_bases[ALARM_REALTIME]; 488 type = ALARM_REALTIME_FREEZER; 489 break; 490 case ALARM_BOOTTIME: 491 base = &alarm_bases[ALARM_BOOTTIME]; 492 type = ALARM_BOOTTIME_FREEZER; 493 break; 494 default: 495 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 496 return; 497 } 498 499 delta = ktime_sub(absexp, base->get_ktime()); 500 501 spin_lock_irqsave(&freezer_delta_lock, flags); 502 if (!freezer_delta || (delta < freezer_delta)) { 503 freezer_delta = delta; 504 freezer_expires = absexp; 505 freezer_alarmtype = type; 506 } 507 spin_unlock_irqrestore(&freezer_delta_lock, flags); 508 } 509 510 /** 511 * clock2alarm - helper that converts from clockid to alarmtypes 512 * @clockid: clockid. 513 */ 514 static enum alarmtimer_type clock2alarm(clockid_t clockid) 515 { 516 if (clockid == CLOCK_REALTIME_ALARM) 517 return ALARM_REALTIME; 518 if (clockid == CLOCK_BOOTTIME_ALARM) 519 return ALARM_BOOTTIME; 520 return -1; 521 } 522 523 /** 524 * alarm_handle_timer - Callback for posix timers 525 * @alarm: alarm that fired 526 * @now: time at the timer expiration 527 * 528 * Posix timer callback for expired alarm timers. 529 * 530 * Return: whether the timer is to be restarted 531 */ 532 static void alarm_handle_timer(struct alarm *alarm, ktime_t now) 533 { 534 struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer); 535 536 guard(spinlock_irqsave)(&ptr->it_lock); 537 posix_timer_queue_signal(ptr); 538 } 539 540 /** 541 * alarm_timer_rearm - Posix timer callback for rearming timer 542 * @timr: Pointer to the posixtimer data struct 543 */ 544 static void alarm_timer_rearm(struct k_itimer *timr) 545 { 546 struct alarm *alarm = &timr->it.alarm.alarmtimer; 547 548 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 549 alarm_start(alarm, alarm->node.expires); 550 } 551 552 /** 553 * alarm_timer_forward - Posix timer callback for forwarding timer 554 * @timr: Pointer to the posixtimer data struct 555 * @now: Current time to forward the timer against 556 */ 557 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now) 558 { 559 struct alarm *alarm = &timr->it.alarm.alarmtimer; 560 561 return alarm_forward(alarm, timr->it_interval, now); 562 } 563 564 /** 565 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 566 * @timr: Pointer to the posixtimer data struct 567 * @now: Current time to calculate against 568 */ 569 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 570 { 571 struct alarm *alarm = &timr->it.alarm.alarmtimer; 572 573 return ktime_sub(alarm->node.expires, now); 574 } 575 576 /** 577 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 578 * @timr: Pointer to the posixtimer data struct 579 */ 580 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 581 { 582 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 583 } 584 585 /** 586 * alarm_timer_wait_running - Posix timer callback to wait for a timer 587 * @timr: Pointer to the posixtimer data struct 588 * 589 * Called from the core code when timer cancel detected that the callback 590 * is running. @timr is unlocked and rcu read lock is held to prevent it 591 * from being freed. 592 */ 593 static void alarm_timer_wait_running(struct k_itimer *timr) 594 { 595 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer); 596 } 597 598 /** 599 * alarm_timer_arm - Posix timer callback to arm a timer 600 * @timr: Pointer to the posixtimer data struct 601 * @expires: The new expiry time 602 * @absolute: Expiry value is absolute time 603 * @sigev_none: Posix timer does not deliver signals 604 */ 605 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 606 bool absolute, bool sigev_none) 607 { 608 struct alarm *alarm = &timr->it.alarm.alarmtimer; 609 struct alarm_base *base = &alarm_bases[alarm->type]; 610 611 if (!absolute) 612 expires = ktime_add_safe(expires, base->get_ktime()); 613 if (sigev_none) 614 alarm->node.expires = expires; 615 else 616 alarm_start(&timr->it.alarm.alarmtimer, expires); 617 } 618 619 /** 620 * alarm_clock_getres - posix getres interface 621 * @which_clock: clockid 622 * @tp: timespec to fill 623 * 624 * Returns the granularity of underlying alarm base clock 625 */ 626 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 627 { 628 if (!alarmtimer_get_rtcdev()) 629 return -EINVAL; 630 631 tp->tv_sec = 0; 632 tp->tv_nsec = hrtimer_resolution; 633 return 0; 634 } 635 636 /** 637 * alarm_clock_get_timespec - posix clock_get_timespec interface 638 * @which_clock: clockid 639 * @tp: timespec to fill. 640 * 641 * Provides the underlying alarm base time in a tasks time namespace. 642 */ 643 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp) 644 { 645 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 646 647 if (!alarmtimer_get_rtcdev()) 648 return -EINVAL; 649 650 base->get_timespec(tp); 651 652 return 0; 653 } 654 655 /** 656 * alarm_clock_get_ktime - posix clock_get_ktime interface 657 * @which_clock: clockid 658 * 659 * Provides the underlying alarm base time in the root namespace. 660 */ 661 static ktime_t alarm_clock_get_ktime(clockid_t which_clock) 662 { 663 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 664 665 if (!alarmtimer_get_rtcdev()) 666 return -EINVAL; 667 668 return base->get_ktime(); 669 } 670 671 /** 672 * alarm_timer_create - posix timer_create interface 673 * @new_timer: k_itimer pointer to manage 674 * 675 * Initializes the k_itimer structure. 676 */ 677 static int alarm_timer_create(struct k_itimer *new_timer) 678 { 679 enum alarmtimer_type type; 680 681 if (!alarmtimer_get_rtcdev()) 682 return -EOPNOTSUPP; 683 684 if (!capable(CAP_WAKE_ALARM)) 685 return -EPERM; 686 687 type = clock2alarm(new_timer->it_clock); 688 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 689 return 0; 690 } 691 692 /** 693 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 694 * @alarm: ptr to alarm that fired 695 * @now: time at the timer expiration 696 * 697 * Wakes up the task that set the alarmtimer 698 */ 699 static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now) 700 { 701 struct task_struct *task = alarm->data; 702 703 alarm->data = NULL; 704 if (task) 705 wake_up_process(task); 706 } 707 708 /** 709 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 710 * @alarm: ptr to alarmtimer 711 * @absexp: absolute expiration time 712 * @type: alarm type (BOOTTIME/REALTIME). 713 * 714 * Sets the alarm timer and sleeps until it is fired or interrupted. 715 */ 716 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, 717 enum alarmtimer_type type) 718 { 719 struct restart_block *restart; 720 alarm->data = (void *)current; 721 do { 722 set_current_state(TASK_INTERRUPTIBLE); 723 alarm_start(alarm, absexp); 724 if (likely(alarm->data)) 725 schedule(); 726 727 alarm_cancel(alarm); 728 } while (alarm->data && !signal_pending(current)); 729 730 __set_current_state(TASK_RUNNING); 731 732 destroy_hrtimer_on_stack(&alarm->timer); 733 734 if (!alarm->data) 735 return 0; 736 737 if (freezing(current)) 738 alarmtimer_freezerset(absexp, type); 739 restart = ¤t->restart_block; 740 if (restart->nanosleep.type != TT_NONE) { 741 struct timespec64 rmt; 742 ktime_t rem; 743 744 rem = ktime_sub(absexp, alarm_bases[type].get_ktime()); 745 746 if (rem <= 0) 747 return 0; 748 rmt = ktime_to_timespec64(rem); 749 750 return nanosleep_copyout(restart, &rmt); 751 } 752 return -ERESTART_RESTARTBLOCK; 753 } 754 755 static void 756 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, 757 void (*function)(struct alarm *, ktime_t)) 758 { 759 hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid, 760 HRTIMER_MODE_ABS); 761 __alarm_init(alarm, type, function); 762 } 763 764 /** 765 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 766 * @restart: ptr to restart block 767 * 768 * Handles restarted clock_nanosleep calls 769 */ 770 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 771 { 772 enum alarmtimer_type type = restart->nanosleep.clockid; 773 ktime_t exp = restart->nanosleep.expires; 774 struct alarm alarm; 775 776 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 777 778 return alarmtimer_do_nsleep(&alarm, exp, type); 779 } 780 781 /** 782 * alarm_timer_nsleep - alarmtimer nanosleep 783 * @which_clock: clockid 784 * @flags: determines abstime or relative 785 * @tsreq: requested sleep time (abs or rel) 786 * 787 * Handles clock_nanosleep calls against _ALARM clockids 788 */ 789 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 790 const struct timespec64 *tsreq) 791 { 792 enum alarmtimer_type type = clock2alarm(which_clock); 793 struct restart_block *restart = ¤t->restart_block; 794 struct alarm alarm; 795 ktime_t exp; 796 int ret; 797 798 if (!alarmtimer_get_rtcdev()) 799 return -EOPNOTSUPP; 800 801 if (flags & ~TIMER_ABSTIME) 802 return -EINVAL; 803 804 if (!capable(CAP_WAKE_ALARM)) 805 return -EPERM; 806 807 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 808 809 exp = timespec64_to_ktime(*tsreq); 810 /* Convert (if necessary) to absolute time */ 811 if (flags != TIMER_ABSTIME) { 812 ktime_t now = alarm_bases[type].get_ktime(); 813 814 exp = ktime_add_safe(now, exp); 815 } else { 816 exp = timens_ktime_to_host(which_clock, exp); 817 } 818 819 ret = alarmtimer_do_nsleep(&alarm, exp, type); 820 if (ret != -ERESTART_RESTARTBLOCK) 821 return ret; 822 823 /* abs timers don't set remaining time or restart */ 824 if (flags == TIMER_ABSTIME) 825 return -ERESTARTNOHAND; 826 827 restart->nanosleep.clockid = type; 828 restart->nanosleep.expires = exp; 829 set_restart_fn(restart, alarm_timer_nsleep_restart); 830 return ret; 831 } 832 833 const struct k_clock alarm_clock = { 834 .clock_getres = alarm_clock_getres, 835 .clock_get_ktime = alarm_clock_get_ktime, 836 .clock_get_timespec = alarm_clock_get_timespec, 837 .timer_create = alarm_timer_create, 838 .timer_set = common_timer_set, 839 .timer_del = common_timer_del, 840 .timer_get = common_timer_get, 841 .timer_arm = alarm_timer_arm, 842 .timer_rearm = alarm_timer_rearm, 843 .timer_forward = alarm_timer_forward, 844 .timer_remaining = alarm_timer_remaining, 845 .timer_try_to_cancel = alarm_timer_try_to_cancel, 846 .timer_wait_running = alarm_timer_wait_running, 847 .nsleep = alarm_timer_nsleep, 848 }; 849 #endif /* CONFIG_POSIX_TIMERS */ 850 851 852 /* Suspend hook structures */ 853 static const struct dev_pm_ops alarmtimer_pm_ops = { 854 .suspend = alarmtimer_suspend, 855 .resume = alarmtimer_resume, 856 }; 857 858 static struct platform_driver alarmtimer_driver = { 859 .driver = { 860 .name = "alarmtimer", 861 .pm = &alarmtimer_pm_ops, 862 } 863 }; 864 865 static void get_boottime_timespec(struct timespec64 *tp) 866 { 867 ktime_get_boottime_ts64(tp); 868 timens_add_boottime(tp); 869 } 870 871 /** 872 * alarmtimer_init - Initialize alarm timer code 873 * 874 * This function initializes the alarm bases and registers 875 * the posix clock ids. 876 */ 877 static int __init alarmtimer_init(void) 878 { 879 int error; 880 int i; 881 882 alarmtimer_rtc_timer_init(); 883 884 /* Initialize alarm bases */ 885 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 886 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real; 887 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64; 888 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 889 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime; 890 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec; 891 for (i = 0; i < ALARM_NUMTYPE; i++) { 892 timerqueue_init_head(&alarm_bases[i].timerqueue); 893 spin_lock_init(&alarm_bases[i].lock); 894 } 895 896 error = alarmtimer_rtc_interface_setup(); 897 if (error) 898 return error; 899 900 error = platform_driver_register(&alarmtimer_driver); 901 if (error) 902 goto out_if; 903 904 return 0; 905 out_if: 906 alarmtimer_rtc_interface_remove(); 907 return error; 908 } 909 device_initcall(alarmtimer_init); 910