1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/alarmtimer.h> 25 #include <linux/mutex.h> 26 #include <linux/platform_device.h> 27 #include <linux/posix-timers.h> 28 #include <linux/workqueue.h> 29 #include <linux/freezer.h> 30 #include <linux/compat.h> 31 #include <linux/module.h> 32 33 #include "posix-timers.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/alarmtimer.h> 37 38 /** 39 * struct alarm_base - Alarm timer bases 40 * @lock: Lock for syncrhonized access to the base 41 * @timerqueue: Timerqueue head managing the list of events 42 * @gettime: Function to read the time correlating to the base 43 * @base_clockid: clockid for the base 44 */ 45 static struct alarm_base { 46 spinlock_t lock; 47 struct timerqueue_head timerqueue; 48 ktime_t (*gettime)(void); 49 clockid_t base_clockid; 50 } alarm_bases[ALARM_NUMTYPE]; 51 52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 53 /* freezer information to handle clock_nanosleep triggered wakeups */ 54 static enum alarmtimer_type freezer_alarmtype; 55 static ktime_t freezer_expires; 56 static ktime_t freezer_delta; 57 static DEFINE_SPINLOCK(freezer_delta_lock); 58 #endif 59 60 #ifdef CONFIG_RTC_CLASS 61 static struct wakeup_source *ws; 62 63 /* rtc timer and device for setting alarm wakeups at suspend */ 64 static struct rtc_timer rtctimer; 65 static struct rtc_device *rtcdev; 66 static DEFINE_SPINLOCK(rtcdev_lock); 67 68 /** 69 * alarmtimer_get_rtcdev - Return selected rtcdevice 70 * 71 * This function returns the rtc device to use for wakealarms. 72 * If one has not already been chosen, it checks to see if a 73 * functional rtc device is available. 74 */ 75 struct rtc_device *alarmtimer_get_rtcdev(void) 76 { 77 unsigned long flags; 78 struct rtc_device *ret; 79 80 spin_lock_irqsave(&rtcdev_lock, flags); 81 ret = rtcdev; 82 spin_unlock_irqrestore(&rtcdev_lock, flags); 83 84 return ret; 85 } 86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 87 88 static int alarmtimer_rtc_add_device(struct device *dev, 89 struct class_interface *class_intf) 90 { 91 unsigned long flags; 92 struct rtc_device *rtc = to_rtc_device(dev); 93 struct wakeup_source *__ws; 94 95 if (rtcdev) 96 return -EBUSY; 97 98 if (!rtc->ops->set_alarm) 99 return -1; 100 if (!device_may_wakeup(rtc->dev.parent)) 101 return -1; 102 103 __ws = wakeup_source_register("alarmtimer"); 104 105 spin_lock_irqsave(&rtcdev_lock, flags); 106 if (!rtcdev) { 107 if (!try_module_get(rtc->owner)) { 108 spin_unlock_irqrestore(&rtcdev_lock, flags); 109 return -1; 110 } 111 112 rtcdev = rtc; 113 /* hold a reference so it doesn't go away */ 114 get_device(dev); 115 ws = __ws; 116 __ws = NULL; 117 } 118 spin_unlock_irqrestore(&rtcdev_lock, flags); 119 120 wakeup_source_unregister(__ws); 121 122 return 0; 123 } 124 125 static inline void alarmtimer_rtc_timer_init(void) 126 { 127 rtc_timer_init(&rtctimer, NULL, NULL); 128 } 129 130 static struct class_interface alarmtimer_rtc_interface = { 131 .add_dev = &alarmtimer_rtc_add_device, 132 }; 133 134 static int alarmtimer_rtc_interface_setup(void) 135 { 136 alarmtimer_rtc_interface.class = rtc_class; 137 return class_interface_register(&alarmtimer_rtc_interface); 138 } 139 static void alarmtimer_rtc_interface_remove(void) 140 { 141 class_interface_unregister(&alarmtimer_rtc_interface); 142 } 143 #else 144 struct rtc_device *alarmtimer_get_rtcdev(void) 145 { 146 return NULL; 147 } 148 #define rtcdev (NULL) 149 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 150 static inline void alarmtimer_rtc_interface_remove(void) { } 151 static inline void alarmtimer_rtc_timer_init(void) { } 152 #endif 153 154 /** 155 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 156 * @base: pointer to the base where the timer is being run 157 * @alarm: pointer to alarm being enqueued. 158 * 159 * Adds alarm to a alarm_base timerqueue 160 * 161 * Must hold base->lock when calling. 162 */ 163 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 164 { 165 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 166 timerqueue_del(&base->timerqueue, &alarm->node); 167 168 timerqueue_add(&base->timerqueue, &alarm->node); 169 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 170 } 171 172 /** 173 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 174 * @base: pointer to the base where the timer is running 175 * @alarm: pointer to alarm being removed 176 * 177 * Removes alarm to a alarm_base timerqueue 178 * 179 * Must hold base->lock when calling. 180 */ 181 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 182 { 183 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 184 return; 185 186 timerqueue_del(&base->timerqueue, &alarm->node); 187 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 188 } 189 190 191 /** 192 * alarmtimer_fired - Handles alarm hrtimer being fired. 193 * @timer: pointer to hrtimer being run 194 * 195 * When a alarm timer fires, this runs through the timerqueue to 196 * see which alarms expired, and runs those. If there are more alarm 197 * timers queued for the future, we set the hrtimer to fire when 198 * when the next future alarm timer expires. 199 */ 200 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 201 { 202 struct alarm *alarm = container_of(timer, struct alarm, timer); 203 struct alarm_base *base = &alarm_bases[alarm->type]; 204 unsigned long flags; 205 int ret = HRTIMER_NORESTART; 206 int restart = ALARMTIMER_NORESTART; 207 208 spin_lock_irqsave(&base->lock, flags); 209 alarmtimer_dequeue(base, alarm); 210 spin_unlock_irqrestore(&base->lock, flags); 211 212 if (alarm->function) 213 restart = alarm->function(alarm, base->gettime()); 214 215 spin_lock_irqsave(&base->lock, flags); 216 if (restart != ALARMTIMER_NORESTART) { 217 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 218 alarmtimer_enqueue(base, alarm); 219 ret = HRTIMER_RESTART; 220 } 221 spin_unlock_irqrestore(&base->lock, flags); 222 223 trace_alarmtimer_fired(alarm, base->gettime()); 224 return ret; 225 226 } 227 228 ktime_t alarm_expires_remaining(const struct alarm *alarm) 229 { 230 struct alarm_base *base = &alarm_bases[alarm->type]; 231 return ktime_sub(alarm->node.expires, base->gettime()); 232 } 233 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 234 235 #ifdef CONFIG_RTC_CLASS 236 /** 237 * alarmtimer_suspend - Suspend time callback 238 * @dev: unused 239 * @state: unused 240 * 241 * When we are going into suspend, we look through the bases 242 * to see which is the soonest timer to expire. We then 243 * set an rtc timer to fire that far into the future, which 244 * will wake us from suspend. 245 */ 246 static int alarmtimer_suspend(struct device *dev) 247 { 248 ktime_t min, now, expires; 249 int i, ret, type; 250 struct rtc_device *rtc; 251 unsigned long flags; 252 struct rtc_time tm; 253 254 spin_lock_irqsave(&freezer_delta_lock, flags); 255 min = freezer_delta; 256 expires = freezer_expires; 257 type = freezer_alarmtype; 258 freezer_delta = 0; 259 spin_unlock_irqrestore(&freezer_delta_lock, flags); 260 261 rtc = alarmtimer_get_rtcdev(); 262 /* If we have no rtcdev, just return */ 263 if (!rtc) 264 return 0; 265 266 /* Find the soonest timer to expire*/ 267 for (i = 0; i < ALARM_NUMTYPE; i++) { 268 struct alarm_base *base = &alarm_bases[i]; 269 struct timerqueue_node *next; 270 ktime_t delta; 271 272 spin_lock_irqsave(&base->lock, flags); 273 next = timerqueue_getnext(&base->timerqueue); 274 spin_unlock_irqrestore(&base->lock, flags); 275 if (!next) 276 continue; 277 delta = ktime_sub(next->expires, base->gettime()); 278 if (!min || (delta < min)) { 279 expires = next->expires; 280 min = delta; 281 type = i; 282 } 283 } 284 if (min == 0) 285 return 0; 286 287 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 288 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 289 return -EBUSY; 290 } 291 292 trace_alarmtimer_suspend(expires, type); 293 294 /* Setup an rtc timer to fire that far in the future */ 295 rtc_timer_cancel(rtc, &rtctimer); 296 rtc_read_time(rtc, &tm); 297 now = rtc_tm_to_ktime(tm); 298 now = ktime_add(now, min); 299 300 /* Set alarm, if in the past reject suspend briefly to handle */ 301 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 302 if (ret < 0) 303 __pm_wakeup_event(ws, MSEC_PER_SEC); 304 return ret; 305 } 306 307 static int alarmtimer_resume(struct device *dev) 308 { 309 struct rtc_device *rtc; 310 311 rtc = alarmtimer_get_rtcdev(); 312 if (rtc) 313 rtc_timer_cancel(rtc, &rtctimer); 314 return 0; 315 } 316 317 #else 318 static int alarmtimer_suspend(struct device *dev) 319 { 320 return 0; 321 } 322 323 static int alarmtimer_resume(struct device *dev) 324 { 325 return 0; 326 } 327 #endif 328 329 static void 330 __alarm_init(struct alarm *alarm, enum alarmtimer_type type, 331 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 332 { 333 timerqueue_init(&alarm->node); 334 alarm->timer.function = alarmtimer_fired; 335 alarm->function = function; 336 alarm->type = type; 337 alarm->state = ALARMTIMER_STATE_INACTIVE; 338 } 339 340 /** 341 * alarm_init - Initialize an alarm structure 342 * @alarm: ptr to alarm to be initialized 343 * @type: the type of the alarm 344 * @function: callback that is run when the alarm fires 345 */ 346 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 347 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 348 { 349 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 350 HRTIMER_MODE_ABS); 351 __alarm_init(alarm, type, function); 352 } 353 EXPORT_SYMBOL_GPL(alarm_init); 354 355 /** 356 * alarm_start - Sets an absolute alarm to fire 357 * @alarm: ptr to alarm to set 358 * @start: time to run the alarm 359 */ 360 void alarm_start(struct alarm *alarm, ktime_t start) 361 { 362 struct alarm_base *base = &alarm_bases[alarm->type]; 363 unsigned long flags; 364 365 spin_lock_irqsave(&base->lock, flags); 366 alarm->node.expires = start; 367 alarmtimer_enqueue(base, alarm); 368 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 369 spin_unlock_irqrestore(&base->lock, flags); 370 371 trace_alarmtimer_start(alarm, base->gettime()); 372 } 373 EXPORT_SYMBOL_GPL(alarm_start); 374 375 /** 376 * alarm_start_relative - Sets a relative alarm to fire 377 * @alarm: ptr to alarm to set 378 * @start: time relative to now to run the alarm 379 */ 380 void alarm_start_relative(struct alarm *alarm, ktime_t start) 381 { 382 struct alarm_base *base = &alarm_bases[alarm->type]; 383 384 start = ktime_add_safe(start, base->gettime()); 385 alarm_start(alarm, start); 386 } 387 EXPORT_SYMBOL_GPL(alarm_start_relative); 388 389 void alarm_restart(struct alarm *alarm) 390 { 391 struct alarm_base *base = &alarm_bases[alarm->type]; 392 unsigned long flags; 393 394 spin_lock_irqsave(&base->lock, flags); 395 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 396 hrtimer_restart(&alarm->timer); 397 alarmtimer_enqueue(base, alarm); 398 spin_unlock_irqrestore(&base->lock, flags); 399 } 400 EXPORT_SYMBOL_GPL(alarm_restart); 401 402 /** 403 * alarm_try_to_cancel - Tries to cancel an alarm timer 404 * @alarm: ptr to alarm to be canceled 405 * 406 * Returns 1 if the timer was canceled, 0 if it was not running, 407 * and -1 if the callback was running 408 */ 409 int alarm_try_to_cancel(struct alarm *alarm) 410 { 411 struct alarm_base *base = &alarm_bases[alarm->type]; 412 unsigned long flags; 413 int ret; 414 415 spin_lock_irqsave(&base->lock, flags); 416 ret = hrtimer_try_to_cancel(&alarm->timer); 417 if (ret >= 0) 418 alarmtimer_dequeue(base, alarm); 419 spin_unlock_irqrestore(&base->lock, flags); 420 421 trace_alarmtimer_cancel(alarm, base->gettime()); 422 return ret; 423 } 424 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 425 426 427 /** 428 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 429 * @alarm: ptr to alarm to be canceled 430 * 431 * Returns 1 if the timer was canceled, 0 if it was not active. 432 */ 433 int alarm_cancel(struct alarm *alarm) 434 { 435 for (;;) { 436 int ret = alarm_try_to_cancel(alarm); 437 if (ret >= 0) 438 return ret; 439 cpu_relax(); 440 } 441 } 442 EXPORT_SYMBOL_GPL(alarm_cancel); 443 444 445 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 446 { 447 u64 overrun = 1; 448 ktime_t delta; 449 450 delta = ktime_sub(now, alarm->node.expires); 451 452 if (delta < 0) 453 return 0; 454 455 if (unlikely(delta >= interval)) { 456 s64 incr = ktime_to_ns(interval); 457 458 overrun = ktime_divns(delta, incr); 459 460 alarm->node.expires = ktime_add_ns(alarm->node.expires, 461 incr*overrun); 462 463 if (alarm->node.expires > now) 464 return overrun; 465 /* 466 * This (and the ktime_add() below) is the 467 * correction for exact: 468 */ 469 overrun++; 470 } 471 472 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 473 return overrun; 474 } 475 EXPORT_SYMBOL_GPL(alarm_forward); 476 477 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 478 { 479 struct alarm_base *base = &alarm_bases[alarm->type]; 480 481 return alarm_forward(alarm, base->gettime(), interval); 482 } 483 EXPORT_SYMBOL_GPL(alarm_forward_now); 484 485 #ifdef CONFIG_POSIX_TIMERS 486 487 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 488 { 489 struct alarm_base *base; 490 unsigned long flags; 491 ktime_t delta; 492 493 switch(type) { 494 case ALARM_REALTIME: 495 base = &alarm_bases[ALARM_REALTIME]; 496 type = ALARM_REALTIME_FREEZER; 497 break; 498 case ALARM_BOOTTIME: 499 base = &alarm_bases[ALARM_BOOTTIME]; 500 type = ALARM_BOOTTIME_FREEZER; 501 break; 502 default: 503 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 504 return; 505 } 506 507 delta = ktime_sub(absexp, base->gettime()); 508 509 spin_lock_irqsave(&freezer_delta_lock, flags); 510 if (!freezer_delta || (delta < freezer_delta)) { 511 freezer_delta = delta; 512 freezer_expires = absexp; 513 freezer_alarmtype = type; 514 } 515 spin_unlock_irqrestore(&freezer_delta_lock, flags); 516 } 517 518 /** 519 * clock2alarm - helper that converts from clockid to alarmtypes 520 * @clockid: clockid. 521 */ 522 static enum alarmtimer_type clock2alarm(clockid_t clockid) 523 { 524 if (clockid == CLOCK_REALTIME_ALARM) 525 return ALARM_REALTIME; 526 if (clockid == CLOCK_BOOTTIME_ALARM) 527 return ALARM_BOOTTIME; 528 return -1; 529 } 530 531 /** 532 * alarm_handle_timer - Callback for posix timers 533 * @alarm: alarm that fired 534 * 535 * Posix timer callback for expired alarm timers. 536 */ 537 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 538 ktime_t now) 539 { 540 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 541 it.alarm.alarmtimer); 542 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 543 unsigned long flags; 544 int si_private = 0; 545 546 spin_lock_irqsave(&ptr->it_lock, flags); 547 548 ptr->it_active = 0; 549 if (ptr->it_interval) 550 si_private = ++ptr->it_requeue_pending; 551 552 if (posix_timer_event(ptr, si_private) && ptr->it_interval) { 553 /* 554 * Handle ignored signals and rearm the timer. This will go 555 * away once we handle ignored signals proper. 556 */ 557 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval); 558 ++ptr->it_requeue_pending; 559 ptr->it_active = 1; 560 result = ALARMTIMER_RESTART; 561 } 562 spin_unlock_irqrestore(&ptr->it_lock, flags); 563 564 return result; 565 } 566 567 /** 568 * alarm_timer_rearm - Posix timer callback for rearming timer 569 * @timr: Pointer to the posixtimer data struct 570 */ 571 static void alarm_timer_rearm(struct k_itimer *timr) 572 { 573 struct alarm *alarm = &timr->it.alarm.alarmtimer; 574 575 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 576 alarm_start(alarm, alarm->node.expires); 577 } 578 579 /** 580 * alarm_timer_forward - Posix timer callback for forwarding timer 581 * @timr: Pointer to the posixtimer data struct 582 * @now: Current time to forward the timer against 583 */ 584 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now) 585 { 586 struct alarm *alarm = &timr->it.alarm.alarmtimer; 587 588 return (int) alarm_forward(alarm, timr->it_interval, now); 589 } 590 591 /** 592 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 593 * @timr: Pointer to the posixtimer data struct 594 * @now: Current time to calculate against 595 */ 596 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 597 { 598 struct alarm *alarm = &timr->it.alarm.alarmtimer; 599 600 return ktime_sub(now, alarm->node.expires); 601 } 602 603 /** 604 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 605 * @timr: Pointer to the posixtimer data struct 606 */ 607 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 608 { 609 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 610 } 611 612 /** 613 * alarm_timer_arm - Posix timer callback to arm a timer 614 * @timr: Pointer to the posixtimer data struct 615 * @expires: The new expiry time 616 * @absolute: Expiry value is absolute time 617 * @sigev_none: Posix timer does not deliver signals 618 */ 619 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 620 bool absolute, bool sigev_none) 621 { 622 struct alarm *alarm = &timr->it.alarm.alarmtimer; 623 struct alarm_base *base = &alarm_bases[alarm->type]; 624 625 if (!absolute) 626 expires = ktime_add_safe(expires, base->gettime()); 627 if (sigev_none) 628 alarm->node.expires = expires; 629 else 630 alarm_start(&timr->it.alarm.alarmtimer, expires); 631 } 632 633 /** 634 * alarm_clock_getres - posix getres interface 635 * @which_clock: clockid 636 * @tp: timespec to fill 637 * 638 * Returns the granularity of underlying alarm base clock 639 */ 640 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 641 { 642 if (!alarmtimer_get_rtcdev()) 643 return -EINVAL; 644 645 tp->tv_sec = 0; 646 tp->tv_nsec = hrtimer_resolution; 647 return 0; 648 } 649 650 /** 651 * alarm_clock_get - posix clock_get interface 652 * @which_clock: clockid 653 * @tp: timespec to fill. 654 * 655 * Provides the underlying alarm base time. 656 */ 657 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp) 658 { 659 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 660 661 if (!alarmtimer_get_rtcdev()) 662 return -EINVAL; 663 664 *tp = ktime_to_timespec64(base->gettime()); 665 return 0; 666 } 667 668 /** 669 * alarm_timer_create - posix timer_create interface 670 * @new_timer: k_itimer pointer to manage 671 * 672 * Initializes the k_itimer structure. 673 */ 674 static int alarm_timer_create(struct k_itimer *new_timer) 675 { 676 enum alarmtimer_type type; 677 678 if (!alarmtimer_get_rtcdev()) 679 return -ENOTSUPP; 680 681 if (!capable(CAP_WAKE_ALARM)) 682 return -EPERM; 683 684 type = clock2alarm(new_timer->it_clock); 685 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 686 return 0; 687 } 688 689 /** 690 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 691 * @alarm: ptr to alarm that fired 692 * 693 * Wakes up the task that set the alarmtimer 694 */ 695 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 696 ktime_t now) 697 { 698 struct task_struct *task = (struct task_struct *)alarm->data; 699 700 alarm->data = NULL; 701 if (task) 702 wake_up_process(task); 703 return ALARMTIMER_NORESTART; 704 } 705 706 /** 707 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 708 * @alarm: ptr to alarmtimer 709 * @absexp: absolute expiration time 710 * 711 * Sets the alarm timer and sleeps until it is fired or interrupted. 712 */ 713 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, 714 enum alarmtimer_type type) 715 { 716 struct restart_block *restart; 717 alarm->data = (void *)current; 718 do { 719 set_current_state(TASK_INTERRUPTIBLE); 720 alarm_start(alarm, absexp); 721 if (likely(alarm->data)) 722 schedule(); 723 724 alarm_cancel(alarm); 725 } while (alarm->data && !signal_pending(current)); 726 727 __set_current_state(TASK_RUNNING); 728 729 destroy_hrtimer_on_stack(&alarm->timer); 730 731 if (!alarm->data) 732 return 0; 733 734 if (freezing(current)) 735 alarmtimer_freezerset(absexp, type); 736 restart = ¤t->restart_block; 737 if (restart->nanosleep.type != TT_NONE) { 738 struct timespec64 rmt; 739 ktime_t rem; 740 741 rem = ktime_sub(absexp, alarm_bases[type].gettime()); 742 743 if (rem <= 0) 744 return 0; 745 rmt = ktime_to_timespec64(rem); 746 747 return nanosleep_copyout(restart, &rmt); 748 } 749 return -ERESTART_RESTARTBLOCK; 750 } 751 752 static void 753 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, 754 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 755 { 756 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid, 757 HRTIMER_MODE_ABS); 758 __alarm_init(alarm, type, function); 759 } 760 761 /** 762 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 763 * @restart: ptr to restart block 764 * 765 * Handles restarted clock_nanosleep calls 766 */ 767 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 768 { 769 enum alarmtimer_type type = restart->nanosleep.clockid; 770 ktime_t exp = restart->nanosleep.expires; 771 struct alarm alarm; 772 773 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 774 775 return alarmtimer_do_nsleep(&alarm, exp, type); 776 } 777 778 /** 779 * alarm_timer_nsleep - alarmtimer nanosleep 780 * @which_clock: clockid 781 * @flags: determins abstime or relative 782 * @tsreq: requested sleep time (abs or rel) 783 * @rmtp: remaining sleep time saved 784 * 785 * Handles clock_nanosleep calls against _ALARM clockids 786 */ 787 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 788 const struct timespec64 *tsreq) 789 { 790 enum alarmtimer_type type = clock2alarm(which_clock); 791 struct restart_block *restart = ¤t->restart_block; 792 struct alarm alarm; 793 ktime_t exp; 794 int ret = 0; 795 796 if (!alarmtimer_get_rtcdev()) 797 return -ENOTSUPP; 798 799 if (flags & ~TIMER_ABSTIME) 800 return -EINVAL; 801 802 if (!capable(CAP_WAKE_ALARM)) 803 return -EPERM; 804 805 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 806 807 exp = timespec64_to_ktime(*tsreq); 808 /* Convert (if necessary) to absolute time */ 809 if (flags != TIMER_ABSTIME) { 810 ktime_t now = alarm_bases[type].gettime(); 811 exp = ktime_add(now, exp); 812 } 813 814 ret = alarmtimer_do_nsleep(&alarm, exp, type); 815 if (ret != -ERESTART_RESTARTBLOCK) 816 return ret; 817 818 /* abs timers don't set remaining time or restart */ 819 if (flags == TIMER_ABSTIME) 820 return -ERESTARTNOHAND; 821 822 restart->fn = alarm_timer_nsleep_restart; 823 restart->nanosleep.clockid = type; 824 restart->nanosleep.expires = exp; 825 return ret; 826 } 827 828 const struct k_clock alarm_clock = { 829 .clock_getres = alarm_clock_getres, 830 .clock_get = alarm_clock_get, 831 .timer_create = alarm_timer_create, 832 .timer_set = common_timer_set, 833 .timer_del = common_timer_del, 834 .timer_get = common_timer_get, 835 .timer_arm = alarm_timer_arm, 836 .timer_rearm = alarm_timer_rearm, 837 .timer_forward = alarm_timer_forward, 838 .timer_remaining = alarm_timer_remaining, 839 .timer_try_to_cancel = alarm_timer_try_to_cancel, 840 .nsleep = alarm_timer_nsleep, 841 }; 842 #endif /* CONFIG_POSIX_TIMERS */ 843 844 845 /* Suspend hook structures */ 846 static const struct dev_pm_ops alarmtimer_pm_ops = { 847 .suspend = alarmtimer_suspend, 848 .resume = alarmtimer_resume, 849 }; 850 851 static struct platform_driver alarmtimer_driver = { 852 .driver = { 853 .name = "alarmtimer", 854 .pm = &alarmtimer_pm_ops, 855 } 856 }; 857 858 /** 859 * alarmtimer_init - Initialize alarm timer code 860 * 861 * This function initializes the alarm bases and registers 862 * the posix clock ids. 863 */ 864 static int __init alarmtimer_init(void) 865 { 866 struct platform_device *pdev; 867 int error = 0; 868 int i; 869 870 alarmtimer_rtc_timer_init(); 871 872 /* Initialize alarm bases */ 873 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 874 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 875 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 876 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 877 for (i = 0; i < ALARM_NUMTYPE; i++) { 878 timerqueue_init_head(&alarm_bases[i].timerqueue); 879 spin_lock_init(&alarm_bases[i].lock); 880 } 881 882 error = alarmtimer_rtc_interface_setup(); 883 if (error) 884 return error; 885 886 error = platform_driver_register(&alarmtimer_driver); 887 if (error) 888 goto out_if; 889 890 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 891 if (IS_ERR(pdev)) { 892 error = PTR_ERR(pdev); 893 goto out_drv; 894 } 895 return 0; 896 897 out_drv: 898 platform_driver_unregister(&alarmtimer_driver); 899 out_if: 900 alarmtimer_rtc_interface_remove(); 901 return error; 902 } 903 device_initcall(alarmtimer_init); 904