xref: /linux/kernel/time/alarmtimer.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:		Lock for syncrhonized access to the base
32  * @timerqueue:		Timerqueue head managing the list of events
33  * @timer: 		hrtimer used to schedule events while running
34  * @gettime:		Function to read the time correlating to the base
35  * @base_clockid:	clockid for the base
36  */
37 static struct alarm_base {
38 	spinlock_t		lock;
39 	struct timerqueue_head	timerqueue;
40 	struct hrtimer		timer;
41 	ktime_t			(*gettime)(void);
42 	clockid_t		base_clockid;
43 } alarm_bases[ALARM_NUMTYPE];
44 
45 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
46 static ktime_t freezer_delta;
47 static DEFINE_SPINLOCK(freezer_delta_lock);
48 
49 #ifdef CONFIG_RTC_CLASS
50 /* rtc timer and device for setting alarm wakeups at suspend */
51 static struct rtc_timer		rtctimer;
52 static struct rtc_device	*rtcdev;
53 static DEFINE_SPINLOCK(rtcdev_lock);
54 
55 /**
56  * alarmtimer_get_rtcdev - Return selected rtcdevice
57  *
58  * This function returns the rtc device to use for wakealarms.
59  * If one has not already been chosen, it checks to see if a
60  * functional rtc device is available.
61  */
62 struct rtc_device *alarmtimer_get_rtcdev(void)
63 {
64 	unsigned long flags;
65 	struct rtc_device *ret;
66 
67 	spin_lock_irqsave(&rtcdev_lock, flags);
68 	ret = rtcdev;
69 	spin_unlock_irqrestore(&rtcdev_lock, flags);
70 
71 	return ret;
72 }
73 
74 
75 static int alarmtimer_rtc_add_device(struct device *dev,
76 				struct class_interface *class_intf)
77 {
78 	unsigned long flags;
79 	struct rtc_device *rtc = to_rtc_device(dev);
80 
81 	if (rtcdev)
82 		return -EBUSY;
83 
84 	if (!rtc->ops->set_alarm)
85 		return -1;
86 	if (!device_may_wakeup(rtc->dev.parent))
87 		return -1;
88 
89 	spin_lock_irqsave(&rtcdev_lock, flags);
90 	if (!rtcdev) {
91 		rtcdev = rtc;
92 		/* hold a reference so it doesn't go away */
93 		get_device(dev);
94 	}
95 	spin_unlock_irqrestore(&rtcdev_lock, flags);
96 	return 0;
97 }
98 
99 static inline void alarmtimer_rtc_timer_init(void)
100 {
101 	rtc_timer_init(&rtctimer, NULL, NULL);
102 }
103 
104 static struct class_interface alarmtimer_rtc_interface = {
105 	.add_dev = &alarmtimer_rtc_add_device,
106 };
107 
108 static int alarmtimer_rtc_interface_setup(void)
109 {
110 	alarmtimer_rtc_interface.class = rtc_class;
111 	return class_interface_register(&alarmtimer_rtc_interface);
112 }
113 static void alarmtimer_rtc_interface_remove(void)
114 {
115 	class_interface_unregister(&alarmtimer_rtc_interface);
116 }
117 #else
118 struct rtc_device *alarmtimer_get_rtcdev(void)
119 {
120 	return NULL;
121 }
122 #define rtcdev (NULL)
123 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124 static inline void alarmtimer_rtc_interface_remove(void) { }
125 static inline void alarmtimer_rtc_timer_init(void) { }
126 #endif
127 
128 /**
129  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130  * @base: pointer to the base where the timer is being run
131  * @alarm: pointer to alarm being enqueued.
132  *
133  * Adds alarm to a alarm_base timerqueue and if necessary sets
134  * an hrtimer to run.
135  *
136  * Must hold base->lock when calling.
137  */
138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139 {
140 	timerqueue_add(&base->timerqueue, &alarm->node);
141 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
142 
143 	if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
144 		hrtimer_try_to_cancel(&base->timer);
145 		hrtimer_start(&base->timer, alarm->node.expires,
146 				HRTIMER_MODE_ABS);
147 	}
148 }
149 
150 /**
151  * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
152  * @base: pointer to the base where the timer is running
153  * @alarm: pointer to alarm being removed
154  *
155  * Removes alarm to a alarm_base timerqueue and if necessary sets
156  * a new timer to run.
157  *
158  * Must hold base->lock when calling.
159  */
160 static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
161 {
162 	struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
163 
164 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
165 		return;
166 
167 	timerqueue_del(&base->timerqueue, &alarm->node);
168 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
169 
170 	if (next == &alarm->node) {
171 		hrtimer_try_to_cancel(&base->timer);
172 		next = timerqueue_getnext(&base->timerqueue);
173 		if (!next)
174 			return;
175 		hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
176 	}
177 }
178 
179 
180 /**
181  * alarmtimer_fired - Handles alarm hrtimer being fired.
182  * @timer: pointer to hrtimer being run
183  *
184  * When a alarm timer fires, this runs through the timerqueue to
185  * see which alarms expired, and runs those. If there are more alarm
186  * timers queued for the future, we set the hrtimer to fire when
187  * when the next future alarm timer expires.
188  */
189 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
190 {
191 	struct alarm_base *base = container_of(timer, struct alarm_base, timer);
192 	struct timerqueue_node *next;
193 	unsigned long flags;
194 	ktime_t now;
195 	int ret = HRTIMER_NORESTART;
196 	int restart = ALARMTIMER_NORESTART;
197 
198 	spin_lock_irqsave(&base->lock, flags);
199 	now = base->gettime();
200 	while ((next = timerqueue_getnext(&base->timerqueue))) {
201 		struct alarm *alarm;
202 		ktime_t expired = next->expires;
203 
204 		if (expired.tv64 > now.tv64)
205 			break;
206 
207 		alarm = container_of(next, struct alarm, node);
208 
209 		timerqueue_del(&base->timerqueue, &alarm->node);
210 		alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
211 
212 		alarm->state |= ALARMTIMER_STATE_CALLBACK;
213 		spin_unlock_irqrestore(&base->lock, flags);
214 		if (alarm->function)
215 			restart = alarm->function(alarm, now);
216 		spin_lock_irqsave(&base->lock, flags);
217 		alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
218 
219 		if (restart != ALARMTIMER_NORESTART) {
220 			timerqueue_add(&base->timerqueue, &alarm->node);
221 			alarm->state |= ALARMTIMER_STATE_ENQUEUED;
222 		}
223 	}
224 
225 	if (next) {
226 		hrtimer_set_expires(&base->timer, next->expires);
227 		ret = HRTIMER_RESTART;
228 	}
229 	spin_unlock_irqrestore(&base->lock, flags);
230 
231 	return ret;
232 
233 }
234 
235 #ifdef CONFIG_RTC_CLASS
236 /**
237  * alarmtimer_suspend - Suspend time callback
238  * @dev: unused
239  * @state: unused
240  *
241  * When we are going into suspend, we look through the bases
242  * to see which is the soonest timer to expire. We then
243  * set an rtc timer to fire that far into the future, which
244  * will wake us from suspend.
245  */
246 static int alarmtimer_suspend(struct device *dev)
247 {
248 	struct rtc_time tm;
249 	ktime_t min, now;
250 	unsigned long flags;
251 	struct rtc_device *rtc;
252 	int i;
253 
254 	spin_lock_irqsave(&freezer_delta_lock, flags);
255 	min = freezer_delta;
256 	freezer_delta = ktime_set(0, 0);
257 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
258 
259 	rtc = alarmtimer_get_rtcdev();
260 	/* If we have no rtcdev, just return */
261 	if (!rtc)
262 		return 0;
263 
264 	/* Find the soonest timer to expire*/
265 	for (i = 0; i < ALARM_NUMTYPE; i++) {
266 		struct alarm_base *base = &alarm_bases[i];
267 		struct timerqueue_node *next;
268 		ktime_t delta;
269 
270 		spin_lock_irqsave(&base->lock, flags);
271 		next = timerqueue_getnext(&base->timerqueue);
272 		spin_unlock_irqrestore(&base->lock, flags);
273 		if (!next)
274 			continue;
275 		delta = ktime_sub(next->expires, base->gettime());
276 		if (!min.tv64 || (delta.tv64 < min.tv64))
277 			min = delta;
278 	}
279 	if (min.tv64 == 0)
280 		return 0;
281 
282 	/* XXX - Should we enforce a minimum sleep time? */
283 	WARN_ON(min.tv64 < NSEC_PER_SEC);
284 
285 	/* Setup an rtc timer to fire that far in the future */
286 	rtc_timer_cancel(rtc, &rtctimer);
287 	rtc_read_time(rtc, &tm);
288 	now = rtc_tm_to_ktime(tm);
289 	now = ktime_add(now, min);
290 
291 	rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
292 
293 	return 0;
294 }
295 #else
296 static int alarmtimer_suspend(struct device *dev)
297 {
298 	return 0;
299 }
300 #endif
301 
302 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
303 {
304 	ktime_t delta;
305 	unsigned long flags;
306 	struct alarm_base *base = &alarm_bases[type];
307 
308 	delta = ktime_sub(absexp, base->gettime());
309 
310 	spin_lock_irqsave(&freezer_delta_lock, flags);
311 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
312 		freezer_delta = delta;
313 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
314 }
315 
316 
317 /**
318  * alarm_init - Initialize an alarm structure
319  * @alarm: ptr to alarm to be initialized
320  * @type: the type of the alarm
321  * @function: callback that is run when the alarm fires
322  */
323 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
325 {
326 	timerqueue_init(&alarm->node);
327 	alarm->function = function;
328 	alarm->type = type;
329 	alarm->state = ALARMTIMER_STATE_INACTIVE;
330 }
331 
332 /**
333  * alarm_start - Sets an alarm to fire
334  * @alarm: ptr to alarm to set
335  * @start: time to run the alarm
336  */
337 void alarm_start(struct alarm *alarm, ktime_t start)
338 {
339 	struct alarm_base *base = &alarm_bases[alarm->type];
340 	unsigned long flags;
341 
342 	spin_lock_irqsave(&base->lock, flags);
343 	if (alarmtimer_active(alarm))
344 		alarmtimer_remove(base, alarm);
345 	alarm->node.expires = start;
346 	alarmtimer_enqueue(base, alarm);
347 	spin_unlock_irqrestore(&base->lock, flags);
348 }
349 
350 /**
351  * alarm_try_to_cancel - Tries to cancel an alarm timer
352  * @alarm: ptr to alarm to be canceled
353  *
354  * Returns 1 if the timer was canceled, 0 if it was not running,
355  * and -1 if the callback was running
356  */
357 int alarm_try_to_cancel(struct alarm *alarm)
358 {
359 	struct alarm_base *base = &alarm_bases[alarm->type];
360 	unsigned long flags;
361 	int ret = -1;
362 	spin_lock_irqsave(&base->lock, flags);
363 
364 	if (alarmtimer_callback_running(alarm))
365 		goto out;
366 
367 	if (alarmtimer_is_queued(alarm)) {
368 		alarmtimer_remove(base, alarm);
369 		ret = 1;
370 	} else
371 		ret = 0;
372 out:
373 	spin_unlock_irqrestore(&base->lock, flags);
374 	return ret;
375 }
376 
377 
378 /**
379  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
380  * @alarm: ptr to alarm to be canceled
381  *
382  * Returns 1 if the timer was canceled, 0 if it was not active.
383  */
384 int alarm_cancel(struct alarm *alarm)
385 {
386 	for (;;) {
387 		int ret = alarm_try_to_cancel(alarm);
388 		if (ret >= 0)
389 			return ret;
390 		cpu_relax();
391 	}
392 }
393 
394 
395 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
396 {
397 	u64 overrun = 1;
398 	ktime_t delta;
399 
400 	delta = ktime_sub(now, alarm->node.expires);
401 
402 	if (delta.tv64 < 0)
403 		return 0;
404 
405 	if (unlikely(delta.tv64 >= interval.tv64)) {
406 		s64 incr = ktime_to_ns(interval);
407 
408 		overrun = ktime_divns(delta, incr);
409 
410 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
411 							incr*overrun);
412 
413 		if (alarm->node.expires.tv64 > now.tv64)
414 			return overrun;
415 		/*
416 		 * This (and the ktime_add() below) is the
417 		 * correction for exact:
418 		 */
419 		overrun++;
420 	}
421 
422 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
423 	return overrun;
424 }
425 
426 
427 
428 
429 /**
430  * clock2alarm - helper that converts from clockid to alarmtypes
431  * @clockid: clockid.
432  */
433 static enum alarmtimer_type clock2alarm(clockid_t clockid)
434 {
435 	if (clockid == CLOCK_REALTIME_ALARM)
436 		return ALARM_REALTIME;
437 	if (clockid == CLOCK_BOOTTIME_ALARM)
438 		return ALARM_BOOTTIME;
439 	return -1;
440 }
441 
442 /**
443  * alarm_handle_timer - Callback for posix timers
444  * @alarm: alarm that fired
445  *
446  * Posix timer callback for expired alarm timers.
447  */
448 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
449 							ktime_t now)
450 {
451 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
452 						it.alarm.alarmtimer);
453 	if (posix_timer_event(ptr, 0) != 0)
454 		ptr->it_overrun++;
455 
456 	/* Re-add periodic timers */
457 	if (ptr->it.alarm.interval.tv64) {
458 		ptr->it_overrun += alarm_forward(alarm, now,
459 						ptr->it.alarm.interval);
460 		return ALARMTIMER_RESTART;
461 	}
462 	return ALARMTIMER_NORESTART;
463 }
464 
465 /**
466  * alarm_clock_getres - posix getres interface
467  * @which_clock: clockid
468  * @tp: timespec to fill
469  *
470  * Returns the granularity of underlying alarm base clock
471  */
472 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
473 {
474 	clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
475 
476 	if (!alarmtimer_get_rtcdev())
477 		return -ENOTSUPP;
478 
479 	return hrtimer_get_res(baseid, tp);
480 }
481 
482 /**
483  * alarm_clock_get - posix clock_get interface
484  * @which_clock: clockid
485  * @tp: timespec to fill.
486  *
487  * Provides the underlying alarm base time.
488  */
489 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
490 {
491 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
492 
493 	if (!alarmtimer_get_rtcdev())
494 		return -ENOTSUPP;
495 
496 	*tp = ktime_to_timespec(base->gettime());
497 	return 0;
498 }
499 
500 /**
501  * alarm_timer_create - posix timer_create interface
502  * @new_timer: k_itimer pointer to manage
503  *
504  * Initializes the k_itimer structure.
505  */
506 static int alarm_timer_create(struct k_itimer *new_timer)
507 {
508 	enum  alarmtimer_type type;
509 	struct alarm_base *base;
510 
511 	if (!alarmtimer_get_rtcdev())
512 		return -ENOTSUPP;
513 
514 	if (!capable(CAP_WAKE_ALARM))
515 		return -EPERM;
516 
517 	type = clock2alarm(new_timer->it_clock);
518 	base = &alarm_bases[type];
519 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
520 	return 0;
521 }
522 
523 /**
524  * alarm_timer_get - posix timer_get interface
525  * @new_timer: k_itimer pointer
526  * @cur_setting: itimerspec data to fill
527  *
528  * Copies the itimerspec data out from the k_itimer
529  */
530 static void alarm_timer_get(struct k_itimer *timr,
531 				struct itimerspec *cur_setting)
532 {
533 	memset(cur_setting, 0, sizeof(struct itimerspec));
534 
535 	cur_setting->it_interval =
536 			ktime_to_timespec(timr->it.alarm.interval);
537 	cur_setting->it_value =
538 		ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
539 	return;
540 }
541 
542 /**
543  * alarm_timer_del - posix timer_del interface
544  * @timr: k_itimer pointer to be deleted
545  *
546  * Cancels any programmed alarms for the given timer.
547  */
548 static int alarm_timer_del(struct k_itimer *timr)
549 {
550 	if (!rtcdev)
551 		return -ENOTSUPP;
552 
553 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
554 		return TIMER_RETRY;
555 
556 	return 0;
557 }
558 
559 /**
560  * alarm_timer_set - posix timer_set interface
561  * @timr: k_itimer pointer to be deleted
562  * @flags: timer flags
563  * @new_setting: itimerspec to be used
564  * @old_setting: itimerspec being replaced
565  *
566  * Sets the timer to new_setting, and starts the timer.
567  */
568 static int alarm_timer_set(struct k_itimer *timr, int flags,
569 				struct itimerspec *new_setting,
570 				struct itimerspec *old_setting)
571 {
572 	if (!rtcdev)
573 		return -ENOTSUPP;
574 
575 	if (old_setting)
576 		alarm_timer_get(timr, old_setting);
577 
578 	/* If the timer was already set, cancel it */
579 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
580 		return TIMER_RETRY;
581 
582 	/* start the timer */
583 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
584 	alarm_start(&timr->it.alarm.alarmtimer,
585 			timespec_to_ktime(new_setting->it_value));
586 	return 0;
587 }
588 
589 /**
590  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
591  * @alarm: ptr to alarm that fired
592  *
593  * Wakes up the task that set the alarmtimer
594  */
595 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
596 								ktime_t now)
597 {
598 	struct task_struct *task = (struct task_struct *)alarm->data;
599 
600 	alarm->data = NULL;
601 	if (task)
602 		wake_up_process(task);
603 	return ALARMTIMER_NORESTART;
604 }
605 
606 /**
607  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
608  * @alarm: ptr to alarmtimer
609  * @absexp: absolute expiration time
610  *
611  * Sets the alarm timer and sleeps until it is fired or interrupted.
612  */
613 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
614 {
615 	alarm->data = (void *)current;
616 	do {
617 		set_current_state(TASK_INTERRUPTIBLE);
618 		alarm_start(alarm, absexp);
619 		if (likely(alarm->data))
620 			schedule();
621 
622 		alarm_cancel(alarm);
623 	} while (alarm->data && !signal_pending(current));
624 
625 	__set_current_state(TASK_RUNNING);
626 
627 	return (alarm->data == NULL);
628 }
629 
630 
631 /**
632  * update_rmtp - Update remaining timespec value
633  * @exp: expiration time
634  * @type: timer type
635  * @rmtp: user pointer to remaining timepsec value
636  *
637  * Helper function that fills in rmtp value with time between
638  * now and the exp value
639  */
640 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
641 			struct timespec __user *rmtp)
642 {
643 	struct timespec rmt;
644 	ktime_t rem;
645 
646 	rem = ktime_sub(exp, alarm_bases[type].gettime());
647 
648 	if (rem.tv64 <= 0)
649 		return 0;
650 	rmt = ktime_to_timespec(rem);
651 
652 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
653 		return -EFAULT;
654 
655 	return 1;
656 
657 }
658 
659 /**
660  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
661  * @restart: ptr to restart block
662  *
663  * Handles restarted clock_nanosleep calls
664  */
665 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
666 {
667 	enum  alarmtimer_type type = restart->nanosleep.clockid;
668 	ktime_t exp;
669 	struct timespec __user  *rmtp;
670 	struct alarm alarm;
671 	int ret = 0;
672 
673 	exp.tv64 = restart->nanosleep.expires;
674 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
675 
676 	if (alarmtimer_do_nsleep(&alarm, exp))
677 		goto out;
678 
679 	if (freezing(current))
680 		alarmtimer_freezerset(exp, type);
681 
682 	rmtp = restart->nanosleep.rmtp;
683 	if (rmtp) {
684 		ret = update_rmtp(exp, type, rmtp);
685 		if (ret <= 0)
686 			goto out;
687 	}
688 
689 
690 	/* The other values in restart are already filled in */
691 	ret = -ERESTART_RESTARTBLOCK;
692 out:
693 	return ret;
694 }
695 
696 /**
697  * alarm_timer_nsleep - alarmtimer nanosleep
698  * @which_clock: clockid
699  * @flags: determins abstime or relative
700  * @tsreq: requested sleep time (abs or rel)
701  * @rmtp: remaining sleep time saved
702  *
703  * Handles clock_nanosleep calls against _ALARM clockids
704  */
705 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
706 		     struct timespec *tsreq, struct timespec __user *rmtp)
707 {
708 	enum  alarmtimer_type type = clock2alarm(which_clock);
709 	struct alarm alarm;
710 	ktime_t exp;
711 	int ret = 0;
712 	struct restart_block *restart;
713 
714 	if (!alarmtimer_get_rtcdev())
715 		return -ENOTSUPP;
716 
717 	if (!capable(CAP_WAKE_ALARM))
718 		return -EPERM;
719 
720 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
721 
722 	exp = timespec_to_ktime(*tsreq);
723 	/* Convert (if necessary) to absolute time */
724 	if (flags != TIMER_ABSTIME) {
725 		ktime_t now = alarm_bases[type].gettime();
726 		exp = ktime_add(now, exp);
727 	}
728 
729 	if (alarmtimer_do_nsleep(&alarm, exp))
730 		goto out;
731 
732 	if (freezing(current))
733 		alarmtimer_freezerset(exp, type);
734 
735 	/* abs timers don't set remaining time or restart */
736 	if (flags == TIMER_ABSTIME) {
737 		ret = -ERESTARTNOHAND;
738 		goto out;
739 	}
740 
741 	if (rmtp) {
742 		ret = update_rmtp(exp, type, rmtp);
743 		if (ret <= 0)
744 			goto out;
745 	}
746 
747 	restart = &current_thread_info()->restart_block;
748 	restart->fn = alarm_timer_nsleep_restart;
749 	restart->nanosleep.clockid = type;
750 	restart->nanosleep.expires = exp.tv64;
751 	restart->nanosleep.rmtp = rmtp;
752 	ret = -ERESTART_RESTARTBLOCK;
753 
754 out:
755 	return ret;
756 }
757 
758 
759 /* Suspend hook structures */
760 static const struct dev_pm_ops alarmtimer_pm_ops = {
761 	.suspend = alarmtimer_suspend,
762 };
763 
764 static struct platform_driver alarmtimer_driver = {
765 	.driver = {
766 		.name = "alarmtimer",
767 		.pm = &alarmtimer_pm_ops,
768 	}
769 };
770 
771 /**
772  * alarmtimer_init - Initialize alarm timer code
773  *
774  * This function initializes the alarm bases and registers
775  * the posix clock ids.
776  */
777 static int __init alarmtimer_init(void)
778 {
779 	struct platform_device *pdev;
780 	int error = 0;
781 	int i;
782 	struct k_clock alarm_clock = {
783 		.clock_getres	= alarm_clock_getres,
784 		.clock_get	= alarm_clock_get,
785 		.timer_create	= alarm_timer_create,
786 		.timer_set	= alarm_timer_set,
787 		.timer_del	= alarm_timer_del,
788 		.timer_get	= alarm_timer_get,
789 		.nsleep		= alarm_timer_nsleep,
790 	};
791 
792 	alarmtimer_rtc_timer_init();
793 
794 	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
795 	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
796 
797 	/* Initialize alarm bases */
798 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
799 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
800 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
801 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
802 	for (i = 0; i < ALARM_NUMTYPE; i++) {
803 		timerqueue_init_head(&alarm_bases[i].timerqueue);
804 		spin_lock_init(&alarm_bases[i].lock);
805 		hrtimer_init(&alarm_bases[i].timer,
806 				alarm_bases[i].base_clockid,
807 				HRTIMER_MODE_ABS);
808 		alarm_bases[i].timer.function = alarmtimer_fired;
809 	}
810 
811 	error = alarmtimer_rtc_interface_setup();
812 	if (error)
813 		return error;
814 
815 	error = platform_driver_register(&alarmtimer_driver);
816 	if (error)
817 		goto out_if;
818 
819 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
820 	if (IS_ERR(pdev)) {
821 		error = PTR_ERR(pdev);
822 		goto out_drv;
823 	}
824 	return 0;
825 
826 out_drv:
827 	platform_driver_unregister(&alarmtimer_driver);
828 out_if:
829 	alarmtimer_rtc_interface_remove();
830 	return error;
831 }
832 device_initcall(alarmtimer_init);
833