1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/alarmtimer.h> 23 #include <linux/mutex.h> 24 #include <linux/platform_device.h> 25 #include <linux/posix-timers.h> 26 #include <linux/workqueue.h> 27 #include <linux/freezer.h> 28 29 /** 30 * struct alarm_base - Alarm timer bases 31 * @lock: Lock for syncrhonized access to the base 32 * @timerqueue: Timerqueue head managing the list of events 33 * @timer: hrtimer used to schedule events while running 34 * @gettime: Function to read the time correlating to the base 35 * @base_clockid: clockid for the base 36 */ 37 static struct alarm_base { 38 spinlock_t lock; 39 struct timerqueue_head timerqueue; 40 struct hrtimer timer; 41 ktime_t (*gettime)(void); 42 clockid_t base_clockid; 43 } alarm_bases[ALARM_NUMTYPE]; 44 45 #ifdef CONFIG_RTC_CLASS 46 /* rtc timer and device for setting alarm wakeups at suspend */ 47 static struct rtc_timer rtctimer; 48 static struct rtc_device *rtcdev; 49 #endif 50 51 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */ 52 static ktime_t freezer_delta; 53 static DEFINE_SPINLOCK(freezer_delta_lock); 54 55 56 /** 57 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 58 * @base: pointer to the base where the timer is being run 59 * @alarm: pointer to alarm being enqueued. 60 * 61 * Adds alarm to a alarm_base timerqueue and if necessary sets 62 * an hrtimer to run. 63 * 64 * Must hold base->lock when calling. 65 */ 66 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 67 { 68 timerqueue_add(&base->timerqueue, &alarm->node); 69 if (&alarm->node == timerqueue_getnext(&base->timerqueue)) { 70 hrtimer_try_to_cancel(&base->timer); 71 hrtimer_start(&base->timer, alarm->node.expires, 72 HRTIMER_MODE_ABS); 73 } 74 } 75 76 /** 77 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue 78 * @base: pointer to the base where the timer is running 79 * @alarm: pointer to alarm being removed 80 * 81 * Removes alarm to a alarm_base timerqueue and if necessary sets 82 * a new timer to run. 83 * 84 * Must hold base->lock when calling. 85 */ 86 static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm) 87 { 88 struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue); 89 90 timerqueue_del(&base->timerqueue, &alarm->node); 91 if (next == &alarm->node) { 92 hrtimer_try_to_cancel(&base->timer); 93 next = timerqueue_getnext(&base->timerqueue); 94 if (!next) 95 return; 96 hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS); 97 } 98 } 99 100 101 /** 102 * alarmtimer_fired - Handles alarm hrtimer being fired. 103 * @timer: pointer to hrtimer being run 104 * 105 * When a alarm timer fires, this runs through the timerqueue to 106 * see which alarms expired, and runs those. If there are more alarm 107 * timers queued for the future, we set the hrtimer to fire when 108 * when the next future alarm timer expires. 109 */ 110 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 111 { 112 struct alarm_base *base = container_of(timer, struct alarm_base, timer); 113 struct timerqueue_node *next; 114 unsigned long flags; 115 ktime_t now; 116 int ret = HRTIMER_NORESTART; 117 118 spin_lock_irqsave(&base->lock, flags); 119 now = base->gettime(); 120 while ((next = timerqueue_getnext(&base->timerqueue))) { 121 struct alarm *alarm; 122 ktime_t expired = next->expires; 123 124 if (expired.tv64 >= now.tv64) 125 break; 126 127 alarm = container_of(next, struct alarm, node); 128 129 timerqueue_del(&base->timerqueue, &alarm->node); 130 alarm->enabled = 0; 131 /* Re-add periodic timers */ 132 if (alarm->period.tv64) { 133 alarm->node.expires = ktime_add(expired, alarm->period); 134 timerqueue_add(&base->timerqueue, &alarm->node); 135 alarm->enabled = 1; 136 } 137 spin_unlock_irqrestore(&base->lock, flags); 138 if (alarm->function) 139 alarm->function(alarm); 140 spin_lock_irqsave(&base->lock, flags); 141 } 142 143 if (next) { 144 hrtimer_set_expires(&base->timer, next->expires); 145 ret = HRTIMER_RESTART; 146 } 147 spin_unlock_irqrestore(&base->lock, flags); 148 149 return ret; 150 151 } 152 153 #ifdef CONFIG_RTC_CLASS 154 /** 155 * alarmtimer_suspend - Suspend time callback 156 * @dev: unused 157 * @state: unused 158 * 159 * When we are going into suspend, we look through the bases 160 * to see which is the soonest timer to expire. We then 161 * set an rtc timer to fire that far into the future, which 162 * will wake us from suspend. 163 */ 164 static int alarmtimer_suspend(struct device *dev) 165 { 166 struct rtc_time tm; 167 ktime_t min, now; 168 unsigned long flags; 169 int i; 170 171 spin_lock_irqsave(&freezer_delta_lock, flags); 172 min = freezer_delta; 173 freezer_delta = ktime_set(0, 0); 174 spin_unlock_irqrestore(&freezer_delta_lock, flags); 175 176 /* If we have no rtcdev, just return */ 177 if (!rtcdev) 178 return 0; 179 180 /* Find the soonest timer to expire*/ 181 for (i = 0; i < ALARM_NUMTYPE; i++) { 182 struct alarm_base *base = &alarm_bases[i]; 183 struct timerqueue_node *next; 184 ktime_t delta; 185 186 spin_lock_irqsave(&base->lock, flags); 187 next = timerqueue_getnext(&base->timerqueue); 188 spin_unlock_irqrestore(&base->lock, flags); 189 if (!next) 190 continue; 191 delta = ktime_sub(next->expires, base->gettime()); 192 if (!min.tv64 || (delta.tv64 < min.tv64)) 193 min = delta; 194 } 195 if (min.tv64 == 0) 196 return 0; 197 198 /* XXX - Should we enforce a minimum sleep time? */ 199 WARN_ON(min.tv64 < NSEC_PER_SEC); 200 201 /* Setup an rtc timer to fire that far in the future */ 202 rtc_timer_cancel(rtcdev, &rtctimer); 203 rtc_read_time(rtcdev, &tm); 204 now = rtc_tm_to_ktime(tm); 205 now = ktime_add(now, min); 206 207 rtc_timer_start(rtcdev, &rtctimer, now, ktime_set(0, 0)); 208 209 return 0; 210 } 211 #else 212 static int alarmtimer_suspend(struct device *dev) 213 { 214 return 0; 215 } 216 #endif 217 218 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 219 { 220 ktime_t delta; 221 unsigned long flags; 222 struct alarm_base *base = &alarm_bases[type]; 223 224 delta = ktime_sub(absexp, base->gettime()); 225 226 spin_lock_irqsave(&freezer_delta_lock, flags); 227 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64)) 228 freezer_delta = delta; 229 spin_unlock_irqrestore(&freezer_delta_lock, flags); 230 } 231 232 233 /** 234 * alarm_init - Initialize an alarm structure 235 * @alarm: ptr to alarm to be initialized 236 * @type: the type of the alarm 237 * @function: callback that is run when the alarm fires 238 */ 239 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 240 void (*function)(struct alarm *)) 241 { 242 timerqueue_init(&alarm->node); 243 alarm->period = ktime_set(0, 0); 244 alarm->function = function; 245 alarm->type = type; 246 alarm->enabled = 0; 247 } 248 249 /** 250 * alarm_start - Sets an alarm to fire 251 * @alarm: ptr to alarm to set 252 * @start: time to run the alarm 253 * @period: period at which the alarm will recur 254 */ 255 void alarm_start(struct alarm *alarm, ktime_t start, ktime_t period) 256 { 257 struct alarm_base *base = &alarm_bases[alarm->type]; 258 unsigned long flags; 259 260 spin_lock_irqsave(&base->lock, flags); 261 if (alarm->enabled) 262 alarmtimer_remove(base, alarm); 263 alarm->node.expires = start; 264 alarm->period = period; 265 alarmtimer_enqueue(base, alarm); 266 alarm->enabled = 1; 267 spin_unlock_irqrestore(&base->lock, flags); 268 } 269 270 /** 271 * alarm_cancel - Tries to cancel an alarm timer 272 * @alarm: ptr to alarm to be canceled 273 */ 274 void alarm_cancel(struct alarm *alarm) 275 { 276 struct alarm_base *base = &alarm_bases[alarm->type]; 277 unsigned long flags; 278 279 spin_lock_irqsave(&base->lock, flags); 280 if (alarm->enabled) 281 alarmtimer_remove(base, alarm); 282 alarm->enabled = 0; 283 spin_unlock_irqrestore(&base->lock, flags); 284 } 285 286 287 /** 288 * clock2alarm - helper that converts from clockid to alarmtypes 289 * @clockid: clockid. 290 */ 291 static enum alarmtimer_type clock2alarm(clockid_t clockid) 292 { 293 if (clockid == CLOCK_REALTIME_ALARM) 294 return ALARM_REALTIME; 295 if (clockid == CLOCK_BOOTTIME_ALARM) 296 return ALARM_BOOTTIME; 297 return -1; 298 } 299 300 /** 301 * alarm_handle_timer - Callback for posix timers 302 * @alarm: alarm that fired 303 * 304 * Posix timer callback for expired alarm timers. 305 */ 306 static void alarm_handle_timer(struct alarm *alarm) 307 { 308 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 309 it.alarmtimer); 310 if (posix_timer_event(ptr, 0) != 0) 311 ptr->it_overrun++; 312 } 313 314 /** 315 * alarm_clock_getres - posix getres interface 316 * @which_clock: clockid 317 * @tp: timespec to fill 318 * 319 * Returns the granularity of underlying alarm base clock 320 */ 321 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp) 322 { 323 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid; 324 325 return hrtimer_get_res(baseid, tp); 326 } 327 328 /** 329 * alarm_clock_get - posix clock_get interface 330 * @which_clock: clockid 331 * @tp: timespec to fill. 332 * 333 * Provides the underlying alarm base time. 334 */ 335 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp) 336 { 337 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 338 339 *tp = ktime_to_timespec(base->gettime()); 340 return 0; 341 } 342 343 /** 344 * alarm_timer_create - posix timer_create interface 345 * @new_timer: k_itimer pointer to manage 346 * 347 * Initializes the k_itimer structure. 348 */ 349 static int alarm_timer_create(struct k_itimer *new_timer) 350 { 351 enum alarmtimer_type type; 352 struct alarm_base *base; 353 354 if (!capable(CAP_WAKE_ALARM)) 355 return -EPERM; 356 357 type = clock2alarm(new_timer->it_clock); 358 base = &alarm_bases[type]; 359 alarm_init(&new_timer->it.alarmtimer, type, alarm_handle_timer); 360 return 0; 361 } 362 363 /** 364 * alarm_timer_get - posix timer_get interface 365 * @new_timer: k_itimer pointer 366 * @cur_setting: itimerspec data to fill 367 * 368 * Copies the itimerspec data out from the k_itimer 369 */ 370 static void alarm_timer_get(struct k_itimer *timr, 371 struct itimerspec *cur_setting) 372 { 373 cur_setting->it_interval = 374 ktime_to_timespec(timr->it.alarmtimer.period); 375 cur_setting->it_value = 376 ktime_to_timespec(timr->it.alarmtimer.node.expires); 377 return; 378 } 379 380 /** 381 * alarm_timer_del - posix timer_del interface 382 * @timr: k_itimer pointer to be deleted 383 * 384 * Cancels any programmed alarms for the given timer. 385 */ 386 static int alarm_timer_del(struct k_itimer *timr) 387 { 388 alarm_cancel(&timr->it.alarmtimer); 389 return 0; 390 } 391 392 /** 393 * alarm_timer_set - posix timer_set interface 394 * @timr: k_itimer pointer to be deleted 395 * @flags: timer flags 396 * @new_setting: itimerspec to be used 397 * @old_setting: itimerspec being replaced 398 * 399 * Sets the timer to new_setting, and starts the timer. 400 */ 401 static int alarm_timer_set(struct k_itimer *timr, int flags, 402 struct itimerspec *new_setting, 403 struct itimerspec *old_setting) 404 { 405 /* Save old values */ 406 old_setting->it_interval = 407 ktime_to_timespec(timr->it.alarmtimer.period); 408 old_setting->it_value = 409 ktime_to_timespec(timr->it.alarmtimer.node.expires); 410 411 /* If the timer was already set, cancel it */ 412 alarm_cancel(&timr->it.alarmtimer); 413 414 /* start the timer */ 415 alarm_start(&timr->it.alarmtimer, 416 timespec_to_ktime(new_setting->it_value), 417 timespec_to_ktime(new_setting->it_interval)); 418 return 0; 419 } 420 421 /** 422 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 423 * @alarm: ptr to alarm that fired 424 * 425 * Wakes up the task that set the alarmtimer 426 */ 427 static void alarmtimer_nsleep_wakeup(struct alarm *alarm) 428 { 429 struct task_struct *task = (struct task_struct *)alarm->data; 430 431 alarm->data = NULL; 432 if (task) 433 wake_up_process(task); 434 } 435 436 /** 437 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 438 * @alarm: ptr to alarmtimer 439 * @absexp: absolute expiration time 440 * 441 * Sets the alarm timer and sleeps until it is fired or interrupted. 442 */ 443 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 444 { 445 alarm->data = (void *)current; 446 do { 447 set_current_state(TASK_INTERRUPTIBLE); 448 alarm_start(alarm, absexp, ktime_set(0, 0)); 449 if (likely(alarm->data)) 450 schedule(); 451 452 alarm_cancel(alarm); 453 } while (alarm->data && !signal_pending(current)); 454 455 __set_current_state(TASK_RUNNING); 456 457 return (alarm->data == NULL); 458 } 459 460 461 /** 462 * update_rmtp - Update remaining timespec value 463 * @exp: expiration time 464 * @type: timer type 465 * @rmtp: user pointer to remaining timepsec value 466 * 467 * Helper function that fills in rmtp value with time between 468 * now and the exp value 469 */ 470 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 471 struct timespec __user *rmtp) 472 { 473 struct timespec rmt; 474 ktime_t rem; 475 476 rem = ktime_sub(exp, alarm_bases[type].gettime()); 477 478 if (rem.tv64 <= 0) 479 return 0; 480 rmt = ktime_to_timespec(rem); 481 482 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 483 return -EFAULT; 484 485 return 1; 486 487 } 488 489 /** 490 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 491 * @restart: ptr to restart block 492 * 493 * Handles restarted clock_nanosleep calls 494 */ 495 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 496 { 497 enum alarmtimer_type type = restart->nanosleep.clockid; 498 ktime_t exp; 499 struct timespec __user *rmtp; 500 struct alarm alarm; 501 int ret = 0; 502 503 exp.tv64 = restart->nanosleep.expires; 504 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 505 506 if (alarmtimer_do_nsleep(&alarm, exp)) 507 goto out; 508 509 if (freezing(current)) 510 alarmtimer_freezerset(exp, type); 511 512 rmtp = restart->nanosleep.rmtp; 513 if (rmtp) { 514 ret = update_rmtp(exp, type, rmtp); 515 if (ret <= 0) 516 goto out; 517 } 518 519 520 /* The other values in restart are already filled in */ 521 ret = -ERESTART_RESTARTBLOCK; 522 out: 523 return ret; 524 } 525 526 /** 527 * alarm_timer_nsleep - alarmtimer nanosleep 528 * @which_clock: clockid 529 * @flags: determins abstime or relative 530 * @tsreq: requested sleep time (abs or rel) 531 * @rmtp: remaining sleep time saved 532 * 533 * Handles clock_nanosleep calls against _ALARM clockids 534 */ 535 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 536 struct timespec *tsreq, struct timespec __user *rmtp) 537 { 538 enum alarmtimer_type type = clock2alarm(which_clock); 539 struct alarm alarm; 540 ktime_t exp; 541 int ret = 0; 542 struct restart_block *restart; 543 544 if (!capable(CAP_WAKE_ALARM)) 545 return -EPERM; 546 547 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 548 549 exp = timespec_to_ktime(*tsreq); 550 /* Convert (if necessary) to absolute time */ 551 if (flags != TIMER_ABSTIME) { 552 ktime_t now = alarm_bases[type].gettime(); 553 exp = ktime_add(now, exp); 554 } 555 556 if (alarmtimer_do_nsleep(&alarm, exp)) 557 goto out; 558 559 if (freezing(current)) 560 alarmtimer_freezerset(exp, type); 561 562 /* abs timers don't set remaining time or restart */ 563 if (flags == TIMER_ABSTIME) { 564 ret = -ERESTARTNOHAND; 565 goto out; 566 } 567 568 if (rmtp) { 569 ret = update_rmtp(exp, type, rmtp); 570 if (ret <= 0) 571 goto out; 572 } 573 574 restart = ¤t_thread_info()->restart_block; 575 restart->fn = alarm_timer_nsleep_restart; 576 restart->nanosleep.clockid = type; 577 restart->nanosleep.expires = exp.tv64; 578 restart->nanosleep.rmtp = rmtp; 579 ret = -ERESTART_RESTARTBLOCK; 580 581 out: 582 return ret; 583 } 584 585 586 /* Suspend hook structures */ 587 static const struct dev_pm_ops alarmtimer_pm_ops = { 588 .suspend = alarmtimer_suspend, 589 }; 590 591 static struct platform_driver alarmtimer_driver = { 592 .driver = { 593 .name = "alarmtimer", 594 .pm = &alarmtimer_pm_ops, 595 } 596 }; 597 598 /** 599 * alarmtimer_init - Initialize alarm timer code 600 * 601 * This function initializes the alarm bases and registers 602 * the posix clock ids. 603 */ 604 static int __init alarmtimer_init(void) 605 { 606 int error = 0; 607 int i; 608 struct k_clock alarm_clock = { 609 .clock_getres = alarm_clock_getres, 610 .clock_get = alarm_clock_get, 611 .timer_create = alarm_timer_create, 612 .timer_set = alarm_timer_set, 613 .timer_del = alarm_timer_del, 614 .timer_get = alarm_timer_get, 615 .nsleep = alarm_timer_nsleep, 616 }; 617 618 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock); 619 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock); 620 621 /* Initialize alarm bases */ 622 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 623 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 624 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 625 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 626 for (i = 0; i < ALARM_NUMTYPE; i++) { 627 timerqueue_init_head(&alarm_bases[i].timerqueue); 628 spin_lock_init(&alarm_bases[i].lock); 629 hrtimer_init(&alarm_bases[i].timer, 630 alarm_bases[i].base_clockid, 631 HRTIMER_MODE_ABS); 632 alarm_bases[i].timer.function = alarmtimer_fired; 633 } 634 error = platform_driver_register(&alarmtimer_driver); 635 platform_device_register_simple("alarmtimer", -1, NULL, 0); 636 637 return error; 638 } 639 device_initcall(alarmtimer_init); 640 641 #ifdef CONFIG_RTC_CLASS 642 /** 643 * has_wakealarm - check rtc device has wakealarm ability 644 * @dev: current device 645 * @name_ptr: name to be returned 646 * 647 * This helper function checks to see if the rtc device can wake 648 * from suspend. 649 */ 650 static int __init has_wakealarm(struct device *dev, void *name_ptr) 651 { 652 struct rtc_device *candidate = to_rtc_device(dev); 653 654 if (!candidate->ops->set_alarm) 655 return 0; 656 if (!device_may_wakeup(candidate->dev.parent)) 657 return 0; 658 659 *(const char **)name_ptr = dev_name(dev); 660 return 1; 661 } 662 663 /** 664 * alarmtimer_init_late - Late initializing of alarmtimer code 665 * 666 * This function locates a rtc device to use for wakealarms. 667 * Run as late_initcall to make sure rtc devices have been 668 * registered. 669 */ 670 static int __init alarmtimer_init_late(void) 671 { 672 struct device *dev; 673 char *str; 674 675 /* Find an rtc device and init the rtc_timer */ 676 dev = class_find_device(rtc_class, NULL, &str, has_wakealarm); 677 /* If we have a device then str is valid. See has_wakealarm() */ 678 if (dev) { 679 rtcdev = rtc_class_open(str); 680 /* 681 * Drop the reference we got in class_find_device, 682 * rtc_open takes its own. 683 */ 684 put_device(dev); 685 } 686 if (!rtcdev) { 687 printk(KERN_WARNING "No RTC device found, ALARM timers will" 688 " not wake from suspend"); 689 } 690 rtc_timer_init(&rtctimer, NULL, NULL); 691 692 return 0; 693 } 694 #else 695 static int __init alarmtimer_init_late(void) 696 { 697 printk(KERN_WARNING "Kernel not built with RTC support, ALARM timers" 698 " will not wake from suspend"); 699 return 0; 700 } 701 #endif 702 late_initcall(alarmtimer_init_late); 703