1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/alarmtimer.h> 23 #include <linux/mutex.h> 24 #include <linux/platform_device.h> 25 #include <linux/posix-timers.h> 26 #include <linux/workqueue.h> 27 #include <linux/freezer.h> 28 29 /** 30 * struct alarm_base - Alarm timer bases 31 * @lock: Lock for syncrhonized access to the base 32 * @timerqueue: Timerqueue head managing the list of events 33 * @timer: hrtimer used to schedule events while running 34 * @gettime: Function to read the time correlating to the base 35 * @base_clockid: clockid for the base 36 */ 37 static struct alarm_base { 38 spinlock_t lock; 39 struct timerqueue_head timerqueue; 40 ktime_t (*gettime)(void); 41 clockid_t base_clockid; 42 } alarm_bases[ALARM_NUMTYPE]; 43 44 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */ 45 static ktime_t freezer_delta; 46 static DEFINE_SPINLOCK(freezer_delta_lock); 47 48 static struct wakeup_source *ws; 49 50 #ifdef CONFIG_RTC_CLASS 51 /* rtc timer and device for setting alarm wakeups at suspend */ 52 static struct rtc_timer rtctimer; 53 static struct rtc_device *rtcdev; 54 static DEFINE_SPINLOCK(rtcdev_lock); 55 56 /** 57 * alarmtimer_get_rtcdev - Return selected rtcdevice 58 * 59 * This function returns the rtc device to use for wakealarms. 60 * If one has not already been chosen, it checks to see if a 61 * functional rtc device is available. 62 */ 63 struct rtc_device *alarmtimer_get_rtcdev(void) 64 { 65 unsigned long flags; 66 struct rtc_device *ret; 67 68 spin_lock_irqsave(&rtcdev_lock, flags); 69 ret = rtcdev; 70 spin_unlock_irqrestore(&rtcdev_lock, flags); 71 72 return ret; 73 } 74 75 76 static int alarmtimer_rtc_add_device(struct device *dev, 77 struct class_interface *class_intf) 78 { 79 unsigned long flags; 80 struct rtc_device *rtc = to_rtc_device(dev); 81 82 if (rtcdev) 83 return -EBUSY; 84 85 if (!rtc->ops->set_alarm) 86 return -1; 87 if (!device_may_wakeup(rtc->dev.parent)) 88 return -1; 89 90 spin_lock_irqsave(&rtcdev_lock, flags); 91 if (!rtcdev) { 92 rtcdev = rtc; 93 /* hold a reference so it doesn't go away */ 94 get_device(dev); 95 } 96 spin_unlock_irqrestore(&rtcdev_lock, flags); 97 return 0; 98 } 99 100 static inline void alarmtimer_rtc_timer_init(void) 101 { 102 rtc_timer_init(&rtctimer, NULL, NULL); 103 } 104 105 static struct class_interface alarmtimer_rtc_interface = { 106 .add_dev = &alarmtimer_rtc_add_device, 107 }; 108 109 static int alarmtimer_rtc_interface_setup(void) 110 { 111 alarmtimer_rtc_interface.class = rtc_class; 112 return class_interface_register(&alarmtimer_rtc_interface); 113 } 114 static void alarmtimer_rtc_interface_remove(void) 115 { 116 class_interface_unregister(&alarmtimer_rtc_interface); 117 } 118 #else 119 struct rtc_device *alarmtimer_get_rtcdev(void) 120 { 121 return NULL; 122 } 123 #define rtcdev (NULL) 124 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 125 static inline void alarmtimer_rtc_interface_remove(void) { } 126 static inline void alarmtimer_rtc_timer_init(void) { } 127 #endif 128 129 /** 130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 131 * @base: pointer to the base where the timer is being run 132 * @alarm: pointer to alarm being enqueued. 133 * 134 * Adds alarm to a alarm_base timerqueue 135 * 136 * Must hold base->lock when calling. 137 */ 138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 139 { 140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 141 timerqueue_del(&base->timerqueue, &alarm->node); 142 143 timerqueue_add(&base->timerqueue, &alarm->node); 144 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 145 } 146 147 /** 148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 149 * @base: pointer to the base where the timer is running 150 * @alarm: pointer to alarm being removed 151 * 152 * Removes alarm to a alarm_base timerqueue 153 * 154 * Must hold base->lock when calling. 155 */ 156 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 157 { 158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 159 return; 160 161 timerqueue_del(&base->timerqueue, &alarm->node); 162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 163 } 164 165 166 /** 167 * alarmtimer_fired - Handles alarm hrtimer being fired. 168 * @timer: pointer to hrtimer being run 169 * 170 * When a alarm timer fires, this runs through the timerqueue to 171 * see which alarms expired, and runs those. If there are more alarm 172 * timers queued for the future, we set the hrtimer to fire when 173 * when the next future alarm timer expires. 174 */ 175 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 176 { 177 struct alarm *alarm = container_of(timer, struct alarm, timer); 178 struct alarm_base *base = &alarm_bases[alarm->type]; 179 unsigned long flags; 180 int ret = HRTIMER_NORESTART; 181 int restart = ALARMTIMER_NORESTART; 182 183 spin_lock_irqsave(&base->lock, flags); 184 alarmtimer_dequeue(base, alarm); 185 spin_unlock_irqrestore(&base->lock, flags); 186 187 if (alarm->function) 188 restart = alarm->function(alarm, base->gettime()); 189 190 spin_lock_irqsave(&base->lock, flags); 191 if (restart != ALARMTIMER_NORESTART) { 192 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 193 alarmtimer_enqueue(base, alarm); 194 ret = HRTIMER_RESTART; 195 } 196 spin_unlock_irqrestore(&base->lock, flags); 197 198 return ret; 199 200 } 201 202 #ifdef CONFIG_RTC_CLASS 203 /** 204 * alarmtimer_suspend - Suspend time callback 205 * @dev: unused 206 * @state: unused 207 * 208 * When we are going into suspend, we look through the bases 209 * to see which is the soonest timer to expire. We then 210 * set an rtc timer to fire that far into the future, which 211 * will wake us from suspend. 212 */ 213 static int alarmtimer_suspend(struct device *dev) 214 { 215 struct rtc_time tm; 216 ktime_t min, now; 217 unsigned long flags; 218 struct rtc_device *rtc; 219 int i; 220 int ret; 221 222 spin_lock_irqsave(&freezer_delta_lock, flags); 223 min = freezer_delta; 224 freezer_delta = ktime_set(0, 0); 225 spin_unlock_irqrestore(&freezer_delta_lock, flags); 226 227 rtc = alarmtimer_get_rtcdev(); 228 /* If we have no rtcdev, just return */ 229 if (!rtc) 230 return 0; 231 232 /* Find the soonest timer to expire*/ 233 for (i = 0; i < ALARM_NUMTYPE; i++) { 234 struct alarm_base *base = &alarm_bases[i]; 235 struct timerqueue_node *next; 236 ktime_t delta; 237 238 spin_lock_irqsave(&base->lock, flags); 239 next = timerqueue_getnext(&base->timerqueue); 240 spin_unlock_irqrestore(&base->lock, flags); 241 if (!next) 242 continue; 243 delta = ktime_sub(next->expires, base->gettime()); 244 if (!min.tv64 || (delta.tv64 < min.tv64)) 245 min = delta; 246 } 247 if (min.tv64 == 0) 248 return 0; 249 250 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 251 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 252 return -EBUSY; 253 } 254 255 /* Setup an rtc timer to fire that far in the future */ 256 rtc_timer_cancel(rtc, &rtctimer); 257 rtc_read_time(rtc, &tm); 258 now = rtc_tm_to_ktime(tm); 259 now = ktime_add(now, min); 260 261 /* Set alarm, if in the past reject suspend briefly to handle */ 262 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0)); 263 if (ret < 0) 264 __pm_wakeup_event(ws, MSEC_PER_SEC); 265 return ret; 266 } 267 #else 268 static int alarmtimer_suspend(struct device *dev) 269 { 270 return 0; 271 } 272 #endif 273 274 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 275 { 276 ktime_t delta; 277 unsigned long flags; 278 struct alarm_base *base = &alarm_bases[type]; 279 280 delta = ktime_sub(absexp, base->gettime()); 281 282 spin_lock_irqsave(&freezer_delta_lock, flags); 283 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64)) 284 freezer_delta = delta; 285 spin_unlock_irqrestore(&freezer_delta_lock, flags); 286 } 287 288 289 /** 290 * alarm_init - Initialize an alarm structure 291 * @alarm: ptr to alarm to be initialized 292 * @type: the type of the alarm 293 * @function: callback that is run when the alarm fires 294 */ 295 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 296 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 297 { 298 timerqueue_init(&alarm->node); 299 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 300 HRTIMER_MODE_ABS); 301 alarm->timer.function = alarmtimer_fired; 302 alarm->function = function; 303 alarm->type = type; 304 alarm->state = ALARMTIMER_STATE_INACTIVE; 305 } 306 307 /** 308 * alarm_start - Sets an alarm to fire 309 * @alarm: ptr to alarm to set 310 * @start: time to run the alarm 311 */ 312 int alarm_start(struct alarm *alarm, ktime_t start) 313 { 314 struct alarm_base *base = &alarm_bases[alarm->type]; 315 unsigned long flags; 316 int ret; 317 318 spin_lock_irqsave(&base->lock, flags); 319 alarm->node.expires = start; 320 alarmtimer_enqueue(base, alarm); 321 ret = hrtimer_start(&alarm->timer, alarm->node.expires, 322 HRTIMER_MODE_ABS); 323 spin_unlock_irqrestore(&base->lock, flags); 324 return ret; 325 } 326 327 /** 328 * alarm_try_to_cancel - Tries to cancel an alarm timer 329 * @alarm: ptr to alarm to be canceled 330 * 331 * Returns 1 if the timer was canceled, 0 if it was not running, 332 * and -1 if the callback was running 333 */ 334 int alarm_try_to_cancel(struct alarm *alarm) 335 { 336 struct alarm_base *base = &alarm_bases[alarm->type]; 337 unsigned long flags; 338 int ret; 339 340 spin_lock_irqsave(&base->lock, flags); 341 ret = hrtimer_try_to_cancel(&alarm->timer); 342 if (ret >= 0) 343 alarmtimer_dequeue(base, alarm); 344 spin_unlock_irqrestore(&base->lock, flags); 345 return ret; 346 } 347 348 349 /** 350 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 351 * @alarm: ptr to alarm to be canceled 352 * 353 * Returns 1 if the timer was canceled, 0 if it was not active. 354 */ 355 int alarm_cancel(struct alarm *alarm) 356 { 357 for (;;) { 358 int ret = alarm_try_to_cancel(alarm); 359 if (ret >= 0) 360 return ret; 361 cpu_relax(); 362 } 363 } 364 365 366 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 367 { 368 u64 overrun = 1; 369 ktime_t delta; 370 371 delta = ktime_sub(now, alarm->node.expires); 372 373 if (delta.tv64 < 0) 374 return 0; 375 376 if (unlikely(delta.tv64 >= interval.tv64)) { 377 s64 incr = ktime_to_ns(interval); 378 379 overrun = ktime_divns(delta, incr); 380 381 alarm->node.expires = ktime_add_ns(alarm->node.expires, 382 incr*overrun); 383 384 if (alarm->node.expires.tv64 > now.tv64) 385 return overrun; 386 /* 387 * This (and the ktime_add() below) is the 388 * correction for exact: 389 */ 390 overrun++; 391 } 392 393 alarm->node.expires = ktime_add(alarm->node.expires, interval); 394 return overrun; 395 } 396 397 398 399 400 /** 401 * clock2alarm - helper that converts from clockid to alarmtypes 402 * @clockid: clockid. 403 */ 404 static enum alarmtimer_type clock2alarm(clockid_t clockid) 405 { 406 if (clockid == CLOCK_REALTIME_ALARM) 407 return ALARM_REALTIME; 408 if (clockid == CLOCK_BOOTTIME_ALARM) 409 return ALARM_BOOTTIME; 410 return -1; 411 } 412 413 /** 414 * alarm_handle_timer - Callback for posix timers 415 * @alarm: alarm that fired 416 * 417 * Posix timer callback for expired alarm timers. 418 */ 419 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 420 ktime_t now) 421 { 422 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 423 it.alarm.alarmtimer); 424 if (posix_timer_event(ptr, 0) != 0) 425 ptr->it_overrun++; 426 427 /* Re-add periodic timers */ 428 if (ptr->it.alarm.interval.tv64) { 429 ptr->it_overrun += alarm_forward(alarm, now, 430 ptr->it.alarm.interval); 431 return ALARMTIMER_RESTART; 432 } 433 return ALARMTIMER_NORESTART; 434 } 435 436 /** 437 * alarm_clock_getres - posix getres interface 438 * @which_clock: clockid 439 * @tp: timespec to fill 440 * 441 * Returns the granularity of underlying alarm base clock 442 */ 443 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp) 444 { 445 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid; 446 447 if (!alarmtimer_get_rtcdev()) 448 return -ENOTSUPP; 449 450 return hrtimer_get_res(baseid, tp); 451 } 452 453 /** 454 * alarm_clock_get - posix clock_get interface 455 * @which_clock: clockid 456 * @tp: timespec to fill. 457 * 458 * Provides the underlying alarm base time. 459 */ 460 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp) 461 { 462 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 463 464 if (!alarmtimer_get_rtcdev()) 465 return -ENOTSUPP; 466 467 *tp = ktime_to_timespec(base->gettime()); 468 return 0; 469 } 470 471 /** 472 * alarm_timer_create - posix timer_create interface 473 * @new_timer: k_itimer pointer to manage 474 * 475 * Initializes the k_itimer structure. 476 */ 477 static int alarm_timer_create(struct k_itimer *new_timer) 478 { 479 enum alarmtimer_type type; 480 struct alarm_base *base; 481 482 if (!alarmtimer_get_rtcdev()) 483 return -ENOTSUPP; 484 485 if (!capable(CAP_WAKE_ALARM)) 486 return -EPERM; 487 488 type = clock2alarm(new_timer->it_clock); 489 base = &alarm_bases[type]; 490 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 491 return 0; 492 } 493 494 /** 495 * alarm_timer_get - posix timer_get interface 496 * @new_timer: k_itimer pointer 497 * @cur_setting: itimerspec data to fill 498 * 499 * Copies the itimerspec data out from the k_itimer 500 */ 501 static void alarm_timer_get(struct k_itimer *timr, 502 struct itimerspec *cur_setting) 503 { 504 memset(cur_setting, 0, sizeof(struct itimerspec)); 505 506 cur_setting->it_interval = 507 ktime_to_timespec(timr->it.alarm.interval); 508 cur_setting->it_value = 509 ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires); 510 return; 511 } 512 513 /** 514 * alarm_timer_del - posix timer_del interface 515 * @timr: k_itimer pointer to be deleted 516 * 517 * Cancels any programmed alarms for the given timer. 518 */ 519 static int alarm_timer_del(struct k_itimer *timr) 520 { 521 if (!rtcdev) 522 return -ENOTSUPP; 523 524 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 525 return TIMER_RETRY; 526 527 return 0; 528 } 529 530 /** 531 * alarm_timer_set - posix timer_set interface 532 * @timr: k_itimer pointer to be deleted 533 * @flags: timer flags 534 * @new_setting: itimerspec to be used 535 * @old_setting: itimerspec being replaced 536 * 537 * Sets the timer to new_setting, and starts the timer. 538 */ 539 static int alarm_timer_set(struct k_itimer *timr, int flags, 540 struct itimerspec *new_setting, 541 struct itimerspec *old_setting) 542 { 543 if (!rtcdev) 544 return -ENOTSUPP; 545 546 if (old_setting) 547 alarm_timer_get(timr, old_setting); 548 549 /* If the timer was already set, cancel it */ 550 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 551 return TIMER_RETRY; 552 553 /* start the timer */ 554 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval); 555 alarm_start(&timr->it.alarm.alarmtimer, 556 timespec_to_ktime(new_setting->it_value)); 557 return 0; 558 } 559 560 /** 561 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 562 * @alarm: ptr to alarm that fired 563 * 564 * Wakes up the task that set the alarmtimer 565 */ 566 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 567 ktime_t now) 568 { 569 struct task_struct *task = (struct task_struct *)alarm->data; 570 571 alarm->data = NULL; 572 if (task) 573 wake_up_process(task); 574 return ALARMTIMER_NORESTART; 575 } 576 577 /** 578 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 579 * @alarm: ptr to alarmtimer 580 * @absexp: absolute expiration time 581 * 582 * Sets the alarm timer and sleeps until it is fired or interrupted. 583 */ 584 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 585 { 586 alarm->data = (void *)current; 587 do { 588 set_current_state(TASK_INTERRUPTIBLE); 589 alarm_start(alarm, absexp); 590 if (likely(alarm->data)) 591 schedule(); 592 593 alarm_cancel(alarm); 594 } while (alarm->data && !signal_pending(current)); 595 596 __set_current_state(TASK_RUNNING); 597 598 return (alarm->data == NULL); 599 } 600 601 602 /** 603 * update_rmtp - Update remaining timespec value 604 * @exp: expiration time 605 * @type: timer type 606 * @rmtp: user pointer to remaining timepsec value 607 * 608 * Helper function that fills in rmtp value with time between 609 * now and the exp value 610 */ 611 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 612 struct timespec __user *rmtp) 613 { 614 struct timespec rmt; 615 ktime_t rem; 616 617 rem = ktime_sub(exp, alarm_bases[type].gettime()); 618 619 if (rem.tv64 <= 0) 620 return 0; 621 rmt = ktime_to_timespec(rem); 622 623 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 624 return -EFAULT; 625 626 return 1; 627 628 } 629 630 /** 631 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 632 * @restart: ptr to restart block 633 * 634 * Handles restarted clock_nanosleep calls 635 */ 636 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 637 { 638 enum alarmtimer_type type = restart->nanosleep.clockid; 639 ktime_t exp; 640 struct timespec __user *rmtp; 641 struct alarm alarm; 642 int ret = 0; 643 644 exp.tv64 = restart->nanosleep.expires; 645 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 646 647 if (alarmtimer_do_nsleep(&alarm, exp)) 648 goto out; 649 650 if (freezing(current)) 651 alarmtimer_freezerset(exp, type); 652 653 rmtp = restart->nanosleep.rmtp; 654 if (rmtp) { 655 ret = update_rmtp(exp, type, rmtp); 656 if (ret <= 0) 657 goto out; 658 } 659 660 661 /* The other values in restart are already filled in */ 662 ret = -ERESTART_RESTARTBLOCK; 663 out: 664 return ret; 665 } 666 667 /** 668 * alarm_timer_nsleep - alarmtimer nanosleep 669 * @which_clock: clockid 670 * @flags: determins abstime or relative 671 * @tsreq: requested sleep time (abs or rel) 672 * @rmtp: remaining sleep time saved 673 * 674 * Handles clock_nanosleep calls against _ALARM clockids 675 */ 676 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 677 struct timespec *tsreq, struct timespec __user *rmtp) 678 { 679 enum alarmtimer_type type = clock2alarm(which_clock); 680 struct alarm alarm; 681 ktime_t exp; 682 int ret = 0; 683 struct restart_block *restart; 684 685 if (!alarmtimer_get_rtcdev()) 686 return -ENOTSUPP; 687 688 if (!capable(CAP_WAKE_ALARM)) 689 return -EPERM; 690 691 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 692 693 exp = timespec_to_ktime(*tsreq); 694 /* Convert (if necessary) to absolute time */ 695 if (flags != TIMER_ABSTIME) { 696 ktime_t now = alarm_bases[type].gettime(); 697 exp = ktime_add(now, exp); 698 } 699 700 if (alarmtimer_do_nsleep(&alarm, exp)) 701 goto out; 702 703 if (freezing(current)) 704 alarmtimer_freezerset(exp, type); 705 706 /* abs timers don't set remaining time or restart */ 707 if (flags == TIMER_ABSTIME) { 708 ret = -ERESTARTNOHAND; 709 goto out; 710 } 711 712 if (rmtp) { 713 ret = update_rmtp(exp, type, rmtp); 714 if (ret <= 0) 715 goto out; 716 } 717 718 restart = ¤t_thread_info()->restart_block; 719 restart->fn = alarm_timer_nsleep_restart; 720 restart->nanosleep.clockid = type; 721 restart->nanosleep.expires = exp.tv64; 722 restart->nanosleep.rmtp = rmtp; 723 ret = -ERESTART_RESTARTBLOCK; 724 725 out: 726 return ret; 727 } 728 729 730 /* Suspend hook structures */ 731 static const struct dev_pm_ops alarmtimer_pm_ops = { 732 .suspend = alarmtimer_suspend, 733 }; 734 735 static struct platform_driver alarmtimer_driver = { 736 .driver = { 737 .name = "alarmtimer", 738 .pm = &alarmtimer_pm_ops, 739 } 740 }; 741 742 /** 743 * alarmtimer_init - Initialize alarm timer code 744 * 745 * This function initializes the alarm bases and registers 746 * the posix clock ids. 747 */ 748 static int __init alarmtimer_init(void) 749 { 750 struct platform_device *pdev; 751 int error = 0; 752 int i; 753 struct k_clock alarm_clock = { 754 .clock_getres = alarm_clock_getres, 755 .clock_get = alarm_clock_get, 756 .timer_create = alarm_timer_create, 757 .timer_set = alarm_timer_set, 758 .timer_del = alarm_timer_del, 759 .timer_get = alarm_timer_get, 760 .nsleep = alarm_timer_nsleep, 761 }; 762 763 alarmtimer_rtc_timer_init(); 764 765 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock); 766 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock); 767 768 /* Initialize alarm bases */ 769 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 770 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 771 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 772 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 773 for (i = 0; i < ALARM_NUMTYPE; i++) { 774 timerqueue_init_head(&alarm_bases[i].timerqueue); 775 spin_lock_init(&alarm_bases[i].lock); 776 } 777 778 error = alarmtimer_rtc_interface_setup(); 779 if (error) 780 return error; 781 782 error = platform_driver_register(&alarmtimer_driver); 783 if (error) 784 goto out_if; 785 786 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 787 if (IS_ERR(pdev)) { 788 error = PTR_ERR(pdev); 789 goto out_drv; 790 } 791 ws = wakeup_source_register("alarmtimer"); 792 return 0; 793 794 out_drv: 795 platform_driver_unregister(&alarmtimer_driver); 796 out_if: 797 alarmtimer_rtc_interface_remove(); 798 return error; 799 } 800 device_initcall(alarmtimer_init); 801