xref: /linux/kernel/time/alarmtimer.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:		Lock for syncrhonized access to the base
32  * @timerqueue:		Timerqueue head managing the list of events
33  * @timer: 		hrtimer used to schedule events while running
34  * @gettime:		Function to read the time correlating to the base
35  * @base_clockid:	clockid for the base
36  */
37 static struct alarm_base {
38 	spinlock_t		lock;
39 	struct timerqueue_head	timerqueue;
40 	ktime_t			(*gettime)(void);
41 	clockid_t		base_clockid;
42 } alarm_bases[ALARM_NUMTYPE];
43 
44 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
45 static ktime_t freezer_delta;
46 static DEFINE_SPINLOCK(freezer_delta_lock);
47 
48 static struct wakeup_source *ws;
49 
50 #ifdef CONFIG_RTC_CLASS
51 /* rtc timer and device for setting alarm wakeups at suspend */
52 static struct rtc_timer		rtctimer;
53 static struct rtc_device	*rtcdev;
54 static DEFINE_SPINLOCK(rtcdev_lock);
55 
56 /**
57  * alarmtimer_get_rtcdev - Return selected rtcdevice
58  *
59  * This function returns the rtc device to use for wakealarms.
60  * If one has not already been chosen, it checks to see if a
61  * functional rtc device is available.
62  */
63 struct rtc_device *alarmtimer_get_rtcdev(void)
64 {
65 	unsigned long flags;
66 	struct rtc_device *ret;
67 
68 	spin_lock_irqsave(&rtcdev_lock, flags);
69 	ret = rtcdev;
70 	spin_unlock_irqrestore(&rtcdev_lock, flags);
71 
72 	return ret;
73 }
74 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
75 
76 static int alarmtimer_rtc_add_device(struct device *dev,
77 				struct class_interface *class_intf)
78 {
79 	unsigned long flags;
80 	struct rtc_device *rtc = to_rtc_device(dev);
81 
82 	if (rtcdev)
83 		return -EBUSY;
84 
85 	if (!rtc->ops->set_alarm)
86 		return -1;
87 	if (!device_may_wakeup(rtc->dev.parent))
88 		return -1;
89 
90 	spin_lock_irqsave(&rtcdev_lock, flags);
91 	if (!rtcdev) {
92 		rtcdev = rtc;
93 		/* hold a reference so it doesn't go away */
94 		get_device(dev);
95 	}
96 	spin_unlock_irqrestore(&rtcdev_lock, flags);
97 	return 0;
98 }
99 
100 static inline void alarmtimer_rtc_timer_init(void)
101 {
102 	rtc_timer_init(&rtctimer, NULL, NULL);
103 }
104 
105 static struct class_interface alarmtimer_rtc_interface = {
106 	.add_dev = &alarmtimer_rtc_add_device,
107 };
108 
109 static int alarmtimer_rtc_interface_setup(void)
110 {
111 	alarmtimer_rtc_interface.class = rtc_class;
112 	return class_interface_register(&alarmtimer_rtc_interface);
113 }
114 static void alarmtimer_rtc_interface_remove(void)
115 {
116 	class_interface_unregister(&alarmtimer_rtc_interface);
117 }
118 #else
119 struct rtc_device *alarmtimer_get_rtcdev(void)
120 {
121 	return NULL;
122 }
123 #define rtcdev (NULL)
124 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125 static inline void alarmtimer_rtc_interface_remove(void) { }
126 static inline void alarmtimer_rtc_timer_init(void) { }
127 #endif
128 
129 /**
130  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131  * @base: pointer to the base where the timer is being run
132  * @alarm: pointer to alarm being enqueued.
133  *
134  * Adds alarm to a alarm_base timerqueue
135  *
136  * Must hold base->lock when calling.
137  */
138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139 {
140 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 		timerqueue_del(&base->timerqueue, &alarm->node);
142 
143 	timerqueue_add(&base->timerqueue, &alarm->node);
144 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145 }
146 
147 /**
148  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149  * @base: pointer to the base where the timer is running
150  * @alarm: pointer to alarm being removed
151  *
152  * Removes alarm to a alarm_base timerqueue
153  *
154  * Must hold base->lock when calling.
155  */
156 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157 {
158 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 		return;
160 
161 	timerqueue_del(&base->timerqueue, &alarm->node);
162 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163 }
164 
165 
166 /**
167  * alarmtimer_fired - Handles alarm hrtimer being fired.
168  * @timer: pointer to hrtimer being run
169  *
170  * When a alarm timer fires, this runs through the timerqueue to
171  * see which alarms expired, and runs those. If there are more alarm
172  * timers queued for the future, we set the hrtimer to fire when
173  * when the next future alarm timer expires.
174  */
175 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176 {
177 	struct alarm *alarm = container_of(timer, struct alarm, timer);
178 	struct alarm_base *base = &alarm_bases[alarm->type];
179 	unsigned long flags;
180 	int ret = HRTIMER_NORESTART;
181 	int restart = ALARMTIMER_NORESTART;
182 
183 	spin_lock_irqsave(&base->lock, flags);
184 	alarmtimer_dequeue(base, alarm);
185 	spin_unlock_irqrestore(&base->lock, flags);
186 
187 	if (alarm->function)
188 		restart = alarm->function(alarm, base->gettime());
189 
190 	spin_lock_irqsave(&base->lock, flags);
191 	if (restart != ALARMTIMER_NORESTART) {
192 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 		alarmtimer_enqueue(base, alarm);
194 		ret = HRTIMER_RESTART;
195 	}
196 	spin_unlock_irqrestore(&base->lock, flags);
197 
198 	return ret;
199 
200 }
201 
202 ktime_t alarm_expires_remaining(const struct alarm *alarm)
203 {
204 	struct alarm_base *base = &alarm_bases[alarm->type];
205 	return ktime_sub(alarm->node.expires, base->gettime());
206 }
207 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208 
209 #ifdef CONFIG_RTC_CLASS
210 /**
211  * alarmtimer_suspend - Suspend time callback
212  * @dev: unused
213  * @state: unused
214  *
215  * When we are going into suspend, we look through the bases
216  * to see which is the soonest timer to expire. We then
217  * set an rtc timer to fire that far into the future, which
218  * will wake us from suspend.
219  */
220 static int alarmtimer_suspend(struct device *dev)
221 {
222 	struct rtc_time tm;
223 	ktime_t min, now;
224 	unsigned long flags;
225 	struct rtc_device *rtc;
226 	int i;
227 	int ret;
228 
229 	spin_lock_irqsave(&freezer_delta_lock, flags);
230 	min = freezer_delta;
231 	freezer_delta = ktime_set(0, 0);
232 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
233 
234 	rtc = alarmtimer_get_rtcdev();
235 	/* If we have no rtcdev, just return */
236 	if (!rtc)
237 		return 0;
238 
239 	/* Find the soonest timer to expire*/
240 	for (i = 0; i < ALARM_NUMTYPE; i++) {
241 		struct alarm_base *base = &alarm_bases[i];
242 		struct timerqueue_node *next;
243 		ktime_t delta;
244 
245 		spin_lock_irqsave(&base->lock, flags);
246 		next = timerqueue_getnext(&base->timerqueue);
247 		spin_unlock_irqrestore(&base->lock, flags);
248 		if (!next)
249 			continue;
250 		delta = ktime_sub(next->expires, base->gettime());
251 		if (!min.tv64 || (delta.tv64 < min.tv64))
252 			min = delta;
253 	}
254 	if (min.tv64 == 0)
255 		return 0;
256 
257 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 		return -EBUSY;
260 	}
261 
262 	/* Setup an rtc timer to fire that far in the future */
263 	rtc_timer_cancel(rtc, &rtctimer);
264 	rtc_read_time(rtc, &tm);
265 	now = rtc_tm_to_ktime(tm);
266 	now = ktime_add(now, min);
267 
268 	/* Set alarm, if in the past reject suspend briefly to handle */
269 	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 	if (ret < 0)
271 		__pm_wakeup_event(ws, MSEC_PER_SEC);
272 	return ret;
273 }
274 
275 static int alarmtimer_resume(struct device *dev)
276 {
277 	struct rtc_device *rtc;
278 
279 	rtc = alarmtimer_get_rtcdev();
280 	if (rtc)
281 		rtc_timer_cancel(rtc, &rtctimer);
282 	return 0;
283 }
284 
285 #else
286 static int alarmtimer_suspend(struct device *dev)
287 {
288 	return 0;
289 }
290 
291 static int alarmtimer_resume(struct device *dev)
292 {
293 	return 0;
294 }
295 #endif
296 
297 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
298 {
299 	ktime_t delta;
300 	unsigned long flags;
301 	struct alarm_base *base = &alarm_bases[type];
302 
303 	delta = ktime_sub(absexp, base->gettime());
304 
305 	spin_lock_irqsave(&freezer_delta_lock, flags);
306 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
307 		freezer_delta = delta;
308 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
309 }
310 
311 
312 /**
313  * alarm_init - Initialize an alarm structure
314  * @alarm: ptr to alarm to be initialized
315  * @type: the type of the alarm
316  * @function: callback that is run when the alarm fires
317  */
318 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
319 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
320 {
321 	timerqueue_init(&alarm->node);
322 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
323 			HRTIMER_MODE_ABS);
324 	alarm->timer.function = alarmtimer_fired;
325 	alarm->function = function;
326 	alarm->type = type;
327 	alarm->state = ALARMTIMER_STATE_INACTIVE;
328 }
329 EXPORT_SYMBOL_GPL(alarm_init);
330 
331 /**
332  * alarm_start - Sets an absolute alarm to fire
333  * @alarm: ptr to alarm to set
334  * @start: time to run the alarm
335  */
336 void alarm_start(struct alarm *alarm, ktime_t start)
337 {
338 	struct alarm_base *base = &alarm_bases[alarm->type];
339 	unsigned long flags;
340 
341 	spin_lock_irqsave(&base->lock, flags);
342 	alarm->node.expires = start;
343 	alarmtimer_enqueue(base, alarm);
344 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
345 	spin_unlock_irqrestore(&base->lock, flags);
346 }
347 EXPORT_SYMBOL_GPL(alarm_start);
348 
349 /**
350  * alarm_start_relative - Sets a relative alarm to fire
351  * @alarm: ptr to alarm to set
352  * @start: time relative to now to run the alarm
353  */
354 void alarm_start_relative(struct alarm *alarm, ktime_t start)
355 {
356 	struct alarm_base *base = &alarm_bases[alarm->type];
357 
358 	start = ktime_add(start, base->gettime());
359 	alarm_start(alarm, start);
360 }
361 EXPORT_SYMBOL_GPL(alarm_start_relative);
362 
363 void alarm_restart(struct alarm *alarm)
364 {
365 	struct alarm_base *base = &alarm_bases[alarm->type];
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&base->lock, flags);
369 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
370 	hrtimer_restart(&alarm->timer);
371 	alarmtimer_enqueue(base, alarm);
372 	spin_unlock_irqrestore(&base->lock, flags);
373 }
374 EXPORT_SYMBOL_GPL(alarm_restart);
375 
376 /**
377  * alarm_try_to_cancel - Tries to cancel an alarm timer
378  * @alarm: ptr to alarm to be canceled
379  *
380  * Returns 1 if the timer was canceled, 0 if it was not running,
381  * and -1 if the callback was running
382  */
383 int alarm_try_to_cancel(struct alarm *alarm)
384 {
385 	struct alarm_base *base = &alarm_bases[alarm->type];
386 	unsigned long flags;
387 	int ret;
388 
389 	spin_lock_irqsave(&base->lock, flags);
390 	ret = hrtimer_try_to_cancel(&alarm->timer);
391 	if (ret >= 0)
392 		alarmtimer_dequeue(base, alarm);
393 	spin_unlock_irqrestore(&base->lock, flags);
394 	return ret;
395 }
396 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
397 
398 
399 /**
400  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
401  * @alarm: ptr to alarm to be canceled
402  *
403  * Returns 1 if the timer was canceled, 0 if it was not active.
404  */
405 int alarm_cancel(struct alarm *alarm)
406 {
407 	for (;;) {
408 		int ret = alarm_try_to_cancel(alarm);
409 		if (ret >= 0)
410 			return ret;
411 		cpu_relax();
412 	}
413 }
414 EXPORT_SYMBOL_GPL(alarm_cancel);
415 
416 
417 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
418 {
419 	u64 overrun = 1;
420 	ktime_t delta;
421 
422 	delta = ktime_sub(now, alarm->node.expires);
423 
424 	if (delta.tv64 < 0)
425 		return 0;
426 
427 	if (unlikely(delta.tv64 >= interval.tv64)) {
428 		s64 incr = ktime_to_ns(interval);
429 
430 		overrun = ktime_divns(delta, incr);
431 
432 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
433 							incr*overrun);
434 
435 		if (alarm->node.expires.tv64 > now.tv64)
436 			return overrun;
437 		/*
438 		 * This (and the ktime_add() below) is the
439 		 * correction for exact:
440 		 */
441 		overrun++;
442 	}
443 
444 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
445 	return overrun;
446 }
447 EXPORT_SYMBOL_GPL(alarm_forward);
448 
449 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
450 {
451 	struct alarm_base *base = &alarm_bases[alarm->type];
452 
453 	return alarm_forward(alarm, base->gettime(), interval);
454 }
455 EXPORT_SYMBOL_GPL(alarm_forward_now);
456 
457 
458 /**
459  * clock2alarm - helper that converts from clockid to alarmtypes
460  * @clockid: clockid.
461  */
462 static enum alarmtimer_type clock2alarm(clockid_t clockid)
463 {
464 	if (clockid == CLOCK_REALTIME_ALARM)
465 		return ALARM_REALTIME;
466 	if (clockid == CLOCK_BOOTTIME_ALARM)
467 		return ALARM_BOOTTIME;
468 	return -1;
469 }
470 
471 /**
472  * alarm_handle_timer - Callback for posix timers
473  * @alarm: alarm that fired
474  *
475  * Posix timer callback for expired alarm timers.
476  */
477 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
478 							ktime_t now)
479 {
480 	unsigned long flags;
481 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
482 						it.alarm.alarmtimer);
483 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
484 
485 	spin_lock_irqsave(&ptr->it_lock, flags);
486 	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
487 		if (posix_timer_event(ptr, 0) != 0)
488 			ptr->it_overrun++;
489 	}
490 
491 	/* Re-add periodic timers */
492 	if (ptr->it.alarm.interval.tv64) {
493 		ptr->it_overrun += alarm_forward(alarm, now,
494 						ptr->it.alarm.interval);
495 		result = ALARMTIMER_RESTART;
496 	}
497 	spin_unlock_irqrestore(&ptr->it_lock, flags);
498 
499 	return result;
500 }
501 
502 /**
503  * alarm_clock_getres - posix getres interface
504  * @which_clock: clockid
505  * @tp: timespec to fill
506  *
507  * Returns the granularity of underlying alarm base clock
508  */
509 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
510 {
511 	if (!alarmtimer_get_rtcdev())
512 		return -EINVAL;
513 
514 	tp->tv_sec = 0;
515 	tp->tv_nsec = hrtimer_resolution;
516 	return 0;
517 }
518 
519 /**
520  * alarm_clock_get - posix clock_get interface
521  * @which_clock: clockid
522  * @tp: timespec to fill.
523  *
524  * Provides the underlying alarm base time.
525  */
526 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
527 {
528 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
529 
530 	if (!alarmtimer_get_rtcdev())
531 		return -EINVAL;
532 
533 	*tp = ktime_to_timespec(base->gettime());
534 	return 0;
535 }
536 
537 /**
538  * alarm_timer_create - posix timer_create interface
539  * @new_timer: k_itimer pointer to manage
540  *
541  * Initializes the k_itimer structure.
542  */
543 static int alarm_timer_create(struct k_itimer *new_timer)
544 {
545 	enum  alarmtimer_type type;
546 	struct alarm_base *base;
547 
548 	if (!alarmtimer_get_rtcdev())
549 		return -ENOTSUPP;
550 
551 	if (!capable(CAP_WAKE_ALARM))
552 		return -EPERM;
553 
554 	type = clock2alarm(new_timer->it_clock);
555 	base = &alarm_bases[type];
556 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
557 	return 0;
558 }
559 
560 /**
561  * alarm_timer_get - posix timer_get interface
562  * @new_timer: k_itimer pointer
563  * @cur_setting: itimerspec data to fill
564  *
565  * Copies out the current itimerspec data
566  */
567 static void alarm_timer_get(struct k_itimer *timr,
568 				struct itimerspec *cur_setting)
569 {
570 	ktime_t relative_expiry_time =
571 		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
572 
573 	if (ktime_to_ns(relative_expiry_time) > 0) {
574 		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
575 	} else {
576 		cur_setting->it_value.tv_sec = 0;
577 		cur_setting->it_value.tv_nsec = 0;
578 	}
579 
580 	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
581 }
582 
583 /**
584  * alarm_timer_del - posix timer_del interface
585  * @timr: k_itimer pointer to be deleted
586  *
587  * Cancels any programmed alarms for the given timer.
588  */
589 static int alarm_timer_del(struct k_itimer *timr)
590 {
591 	if (!rtcdev)
592 		return -ENOTSUPP;
593 
594 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
595 		return TIMER_RETRY;
596 
597 	return 0;
598 }
599 
600 /**
601  * alarm_timer_set - posix timer_set interface
602  * @timr: k_itimer pointer to be deleted
603  * @flags: timer flags
604  * @new_setting: itimerspec to be used
605  * @old_setting: itimerspec being replaced
606  *
607  * Sets the timer to new_setting, and starts the timer.
608  */
609 static int alarm_timer_set(struct k_itimer *timr, int flags,
610 				struct itimerspec *new_setting,
611 				struct itimerspec *old_setting)
612 {
613 	ktime_t exp;
614 
615 	if (!rtcdev)
616 		return -ENOTSUPP;
617 
618 	if (flags & ~TIMER_ABSTIME)
619 		return -EINVAL;
620 
621 	if (old_setting)
622 		alarm_timer_get(timr, old_setting);
623 
624 	/* If the timer was already set, cancel it */
625 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
626 		return TIMER_RETRY;
627 
628 	/* start the timer */
629 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
630 	exp = timespec_to_ktime(new_setting->it_value);
631 	/* Convert (if necessary) to absolute time */
632 	if (flags != TIMER_ABSTIME) {
633 		ktime_t now;
634 
635 		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
636 		exp = ktime_add(now, exp);
637 	}
638 
639 	alarm_start(&timr->it.alarm.alarmtimer, exp);
640 	return 0;
641 }
642 
643 /**
644  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
645  * @alarm: ptr to alarm that fired
646  *
647  * Wakes up the task that set the alarmtimer
648  */
649 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
650 								ktime_t now)
651 {
652 	struct task_struct *task = (struct task_struct *)alarm->data;
653 
654 	alarm->data = NULL;
655 	if (task)
656 		wake_up_process(task);
657 	return ALARMTIMER_NORESTART;
658 }
659 
660 /**
661  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
662  * @alarm: ptr to alarmtimer
663  * @absexp: absolute expiration time
664  *
665  * Sets the alarm timer and sleeps until it is fired or interrupted.
666  */
667 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
668 {
669 	alarm->data = (void *)current;
670 	do {
671 		set_current_state(TASK_INTERRUPTIBLE);
672 		alarm_start(alarm, absexp);
673 		if (likely(alarm->data))
674 			schedule();
675 
676 		alarm_cancel(alarm);
677 	} while (alarm->data && !signal_pending(current));
678 
679 	__set_current_state(TASK_RUNNING);
680 
681 	return (alarm->data == NULL);
682 }
683 
684 
685 /**
686  * update_rmtp - Update remaining timespec value
687  * @exp: expiration time
688  * @type: timer type
689  * @rmtp: user pointer to remaining timepsec value
690  *
691  * Helper function that fills in rmtp value with time between
692  * now and the exp value
693  */
694 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
695 			struct timespec __user *rmtp)
696 {
697 	struct timespec rmt;
698 	ktime_t rem;
699 
700 	rem = ktime_sub(exp, alarm_bases[type].gettime());
701 
702 	if (rem.tv64 <= 0)
703 		return 0;
704 	rmt = ktime_to_timespec(rem);
705 
706 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
707 		return -EFAULT;
708 
709 	return 1;
710 
711 }
712 
713 /**
714  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
715  * @restart: ptr to restart block
716  *
717  * Handles restarted clock_nanosleep calls
718  */
719 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
720 {
721 	enum  alarmtimer_type type = restart->nanosleep.clockid;
722 	ktime_t exp;
723 	struct timespec __user  *rmtp;
724 	struct alarm alarm;
725 	int ret = 0;
726 
727 	exp.tv64 = restart->nanosleep.expires;
728 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
729 
730 	if (alarmtimer_do_nsleep(&alarm, exp))
731 		goto out;
732 
733 	if (freezing(current))
734 		alarmtimer_freezerset(exp, type);
735 
736 	rmtp = restart->nanosleep.rmtp;
737 	if (rmtp) {
738 		ret = update_rmtp(exp, type, rmtp);
739 		if (ret <= 0)
740 			goto out;
741 	}
742 
743 
744 	/* The other values in restart are already filled in */
745 	ret = -ERESTART_RESTARTBLOCK;
746 out:
747 	return ret;
748 }
749 
750 /**
751  * alarm_timer_nsleep - alarmtimer nanosleep
752  * @which_clock: clockid
753  * @flags: determins abstime or relative
754  * @tsreq: requested sleep time (abs or rel)
755  * @rmtp: remaining sleep time saved
756  *
757  * Handles clock_nanosleep calls against _ALARM clockids
758  */
759 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
760 		     struct timespec *tsreq, struct timespec __user *rmtp)
761 {
762 	enum  alarmtimer_type type = clock2alarm(which_clock);
763 	struct alarm alarm;
764 	ktime_t exp;
765 	int ret = 0;
766 	struct restart_block *restart;
767 
768 	if (!alarmtimer_get_rtcdev())
769 		return -ENOTSUPP;
770 
771 	if (flags & ~TIMER_ABSTIME)
772 		return -EINVAL;
773 
774 	if (!capable(CAP_WAKE_ALARM))
775 		return -EPERM;
776 
777 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
778 
779 	exp = timespec_to_ktime(*tsreq);
780 	/* Convert (if necessary) to absolute time */
781 	if (flags != TIMER_ABSTIME) {
782 		ktime_t now = alarm_bases[type].gettime();
783 		exp = ktime_add(now, exp);
784 	}
785 
786 	if (alarmtimer_do_nsleep(&alarm, exp))
787 		goto out;
788 
789 	if (freezing(current))
790 		alarmtimer_freezerset(exp, type);
791 
792 	/* abs timers don't set remaining time or restart */
793 	if (flags == TIMER_ABSTIME) {
794 		ret = -ERESTARTNOHAND;
795 		goto out;
796 	}
797 
798 	if (rmtp) {
799 		ret = update_rmtp(exp, type, rmtp);
800 		if (ret <= 0)
801 			goto out;
802 	}
803 
804 	restart = &current->restart_block;
805 	restart->fn = alarm_timer_nsleep_restart;
806 	restart->nanosleep.clockid = type;
807 	restart->nanosleep.expires = exp.tv64;
808 	restart->nanosleep.rmtp = rmtp;
809 	ret = -ERESTART_RESTARTBLOCK;
810 
811 out:
812 	return ret;
813 }
814 
815 
816 /* Suspend hook structures */
817 static const struct dev_pm_ops alarmtimer_pm_ops = {
818 	.suspend = alarmtimer_suspend,
819 	.resume = alarmtimer_resume,
820 };
821 
822 static struct platform_driver alarmtimer_driver = {
823 	.driver = {
824 		.name = "alarmtimer",
825 		.pm = &alarmtimer_pm_ops,
826 	}
827 };
828 
829 /**
830  * alarmtimer_init - Initialize alarm timer code
831  *
832  * This function initializes the alarm bases and registers
833  * the posix clock ids.
834  */
835 static int __init alarmtimer_init(void)
836 {
837 	struct platform_device *pdev;
838 	int error = 0;
839 	int i;
840 	struct k_clock alarm_clock = {
841 		.clock_getres	= alarm_clock_getres,
842 		.clock_get	= alarm_clock_get,
843 		.timer_create	= alarm_timer_create,
844 		.timer_set	= alarm_timer_set,
845 		.timer_del	= alarm_timer_del,
846 		.timer_get	= alarm_timer_get,
847 		.nsleep		= alarm_timer_nsleep,
848 	};
849 
850 	alarmtimer_rtc_timer_init();
851 
852 	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
853 	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
854 
855 	/* Initialize alarm bases */
856 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
857 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
858 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
859 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
860 	for (i = 0; i < ALARM_NUMTYPE; i++) {
861 		timerqueue_init_head(&alarm_bases[i].timerqueue);
862 		spin_lock_init(&alarm_bases[i].lock);
863 	}
864 
865 	error = alarmtimer_rtc_interface_setup();
866 	if (error)
867 		return error;
868 
869 	error = platform_driver_register(&alarmtimer_driver);
870 	if (error)
871 		goto out_if;
872 
873 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
874 	if (IS_ERR(pdev)) {
875 		error = PTR_ERR(pdev);
876 		goto out_drv;
877 	}
878 	ws = wakeup_source_register("alarmtimer");
879 	return 0;
880 
881 out_drv:
882 	platform_driver_unregister(&alarmtimer_driver);
883 out_if:
884 	alarmtimer_rtc_interface_remove();
885 	return error;
886 }
887 device_initcall(alarmtimer_init);
888