1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/alarmtimer.h> 23 #include <linux/mutex.h> 24 #include <linux/platform_device.h> 25 #include <linux/posix-timers.h> 26 #include <linux/workqueue.h> 27 #include <linux/freezer.h> 28 29 /** 30 * struct alarm_base - Alarm timer bases 31 * @lock: Lock for syncrhonized access to the base 32 * @timerqueue: Timerqueue head managing the list of events 33 * @gettime: Function to read the time correlating to the base 34 * @base_clockid: clockid for the base 35 */ 36 static struct alarm_base { 37 spinlock_t lock; 38 struct timerqueue_head timerqueue; 39 ktime_t (*gettime)(void); 40 clockid_t base_clockid; 41 } alarm_bases[ALARM_NUMTYPE]; 42 43 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */ 44 static ktime_t freezer_delta; 45 static DEFINE_SPINLOCK(freezer_delta_lock); 46 47 static struct wakeup_source *ws; 48 49 #ifdef CONFIG_RTC_CLASS 50 /* rtc timer and device for setting alarm wakeups at suspend */ 51 static struct rtc_timer rtctimer; 52 static struct rtc_device *rtcdev; 53 static DEFINE_SPINLOCK(rtcdev_lock); 54 55 /** 56 * alarmtimer_get_rtcdev - Return selected rtcdevice 57 * 58 * This function returns the rtc device to use for wakealarms. 59 * If one has not already been chosen, it checks to see if a 60 * functional rtc device is available. 61 */ 62 struct rtc_device *alarmtimer_get_rtcdev(void) 63 { 64 unsigned long flags; 65 struct rtc_device *ret; 66 67 spin_lock_irqsave(&rtcdev_lock, flags); 68 ret = rtcdev; 69 spin_unlock_irqrestore(&rtcdev_lock, flags); 70 71 return ret; 72 } 73 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 74 75 static int alarmtimer_rtc_add_device(struct device *dev, 76 struct class_interface *class_intf) 77 { 78 unsigned long flags; 79 struct rtc_device *rtc = to_rtc_device(dev); 80 81 if (rtcdev) 82 return -EBUSY; 83 84 if (!rtc->ops->set_alarm) 85 return -1; 86 if (!device_may_wakeup(rtc->dev.parent)) 87 return -1; 88 89 spin_lock_irqsave(&rtcdev_lock, flags); 90 if (!rtcdev) { 91 rtcdev = rtc; 92 /* hold a reference so it doesn't go away */ 93 get_device(dev); 94 } 95 spin_unlock_irqrestore(&rtcdev_lock, flags); 96 return 0; 97 } 98 99 static inline void alarmtimer_rtc_timer_init(void) 100 { 101 rtc_timer_init(&rtctimer, NULL, NULL); 102 } 103 104 static struct class_interface alarmtimer_rtc_interface = { 105 .add_dev = &alarmtimer_rtc_add_device, 106 }; 107 108 static int alarmtimer_rtc_interface_setup(void) 109 { 110 alarmtimer_rtc_interface.class = rtc_class; 111 return class_interface_register(&alarmtimer_rtc_interface); 112 } 113 static void alarmtimer_rtc_interface_remove(void) 114 { 115 class_interface_unregister(&alarmtimer_rtc_interface); 116 } 117 #else 118 struct rtc_device *alarmtimer_get_rtcdev(void) 119 { 120 return NULL; 121 } 122 #define rtcdev (NULL) 123 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 124 static inline void alarmtimer_rtc_interface_remove(void) { } 125 static inline void alarmtimer_rtc_timer_init(void) { } 126 #endif 127 128 /** 129 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 130 * @base: pointer to the base where the timer is being run 131 * @alarm: pointer to alarm being enqueued. 132 * 133 * Adds alarm to a alarm_base timerqueue 134 * 135 * Must hold base->lock when calling. 136 */ 137 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 138 { 139 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 140 timerqueue_del(&base->timerqueue, &alarm->node); 141 142 timerqueue_add(&base->timerqueue, &alarm->node); 143 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 144 } 145 146 /** 147 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 148 * @base: pointer to the base where the timer is running 149 * @alarm: pointer to alarm being removed 150 * 151 * Removes alarm to a alarm_base timerqueue 152 * 153 * Must hold base->lock when calling. 154 */ 155 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 156 { 157 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 158 return; 159 160 timerqueue_del(&base->timerqueue, &alarm->node); 161 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 162 } 163 164 165 /** 166 * alarmtimer_fired - Handles alarm hrtimer being fired. 167 * @timer: pointer to hrtimer being run 168 * 169 * When a alarm timer fires, this runs through the timerqueue to 170 * see which alarms expired, and runs those. If there are more alarm 171 * timers queued for the future, we set the hrtimer to fire when 172 * when the next future alarm timer expires. 173 */ 174 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 175 { 176 struct alarm *alarm = container_of(timer, struct alarm, timer); 177 struct alarm_base *base = &alarm_bases[alarm->type]; 178 unsigned long flags; 179 int ret = HRTIMER_NORESTART; 180 int restart = ALARMTIMER_NORESTART; 181 182 spin_lock_irqsave(&base->lock, flags); 183 alarmtimer_dequeue(base, alarm); 184 spin_unlock_irqrestore(&base->lock, flags); 185 186 if (alarm->function) 187 restart = alarm->function(alarm, base->gettime()); 188 189 spin_lock_irqsave(&base->lock, flags); 190 if (restart != ALARMTIMER_NORESTART) { 191 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 192 alarmtimer_enqueue(base, alarm); 193 ret = HRTIMER_RESTART; 194 } 195 spin_unlock_irqrestore(&base->lock, flags); 196 197 return ret; 198 199 } 200 201 ktime_t alarm_expires_remaining(const struct alarm *alarm) 202 { 203 struct alarm_base *base = &alarm_bases[alarm->type]; 204 return ktime_sub(alarm->node.expires, base->gettime()); 205 } 206 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 207 208 #ifdef CONFIG_RTC_CLASS 209 /** 210 * alarmtimer_suspend - Suspend time callback 211 * @dev: unused 212 * @state: unused 213 * 214 * When we are going into suspend, we look through the bases 215 * to see which is the soonest timer to expire. We then 216 * set an rtc timer to fire that far into the future, which 217 * will wake us from suspend. 218 */ 219 static int alarmtimer_suspend(struct device *dev) 220 { 221 struct rtc_time tm; 222 ktime_t min, now; 223 unsigned long flags; 224 struct rtc_device *rtc; 225 int i; 226 int ret; 227 228 spin_lock_irqsave(&freezer_delta_lock, flags); 229 min = freezer_delta; 230 freezer_delta = ktime_set(0, 0); 231 spin_unlock_irqrestore(&freezer_delta_lock, flags); 232 233 rtc = alarmtimer_get_rtcdev(); 234 /* If we have no rtcdev, just return */ 235 if (!rtc) 236 return 0; 237 238 /* Find the soonest timer to expire*/ 239 for (i = 0; i < ALARM_NUMTYPE; i++) { 240 struct alarm_base *base = &alarm_bases[i]; 241 struct timerqueue_node *next; 242 ktime_t delta; 243 244 spin_lock_irqsave(&base->lock, flags); 245 next = timerqueue_getnext(&base->timerqueue); 246 spin_unlock_irqrestore(&base->lock, flags); 247 if (!next) 248 continue; 249 delta = ktime_sub(next->expires, base->gettime()); 250 if (!min.tv64 || (delta.tv64 < min.tv64)) 251 min = delta; 252 } 253 if (min.tv64 == 0) 254 return 0; 255 256 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 257 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 258 return -EBUSY; 259 } 260 261 /* Setup an rtc timer to fire that far in the future */ 262 rtc_timer_cancel(rtc, &rtctimer); 263 rtc_read_time(rtc, &tm); 264 now = rtc_tm_to_ktime(tm); 265 now = ktime_add(now, min); 266 267 /* Set alarm, if in the past reject suspend briefly to handle */ 268 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0)); 269 if (ret < 0) 270 __pm_wakeup_event(ws, MSEC_PER_SEC); 271 return ret; 272 } 273 274 static int alarmtimer_resume(struct device *dev) 275 { 276 struct rtc_device *rtc; 277 278 rtc = alarmtimer_get_rtcdev(); 279 if (rtc) 280 rtc_timer_cancel(rtc, &rtctimer); 281 return 0; 282 } 283 284 #else 285 static int alarmtimer_suspend(struct device *dev) 286 { 287 return 0; 288 } 289 290 static int alarmtimer_resume(struct device *dev) 291 { 292 return 0; 293 } 294 #endif 295 296 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 297 { 298 ktime_t delta; 299 unsigned long flags; 300 struct alarm_base *base = &alarm_bases[type]; 301 302 delta = ktime_sub(absexp, base->gettime()); 303 304 spin_lock_irqsave(&freezer_delta_lock, flags); 305 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64)) 306 freezer_delta = delta; 307 spin_unlock_irqrestore(&freezer_delta_lock, flags); 308 } 309 310 311 /** 312 * alarm_init - Initialize an alarm structure 313 * @alarm: ptr to alarm to be initialized 314 * @type: the type of the alarm 315 * @function: callback that is run when the alarm fires 316 */ 317 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 318 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 319 { 320 timerqueue_init(&alarm->node); 321 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 322 HRTIMER_MODE_ABS); 323 alarm->timer.function = alarmtimer_fired; 324 alarm->function = function; 325 alarm->type = type; 326 alarm->state = ALARMTIMER_STATE_INACTIVE; 327 } 328 EXPORT_SYMBOL_GPL(alarm_init); 329 330 /** 331 * alarm_start - Sets an absolute alarm to fire 332 * @alarm: ptr to alarm to set 333 * @start: time to run the alarm 334 */ 335 void alarm_start(struct alarm *alarm, ktime_t start) 336 { 337 struct alarm_base *base = &alarm_bases[alarm->type]; 338 unsigned long flags; 339 340 spin_lock_irqsave(&base->lock, flags); 341 alarm->node.expires = start; 342 alarmtimer_enqueue(base, alarm); 343 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 344 spin_unlock_irqrestore(&base->lock, flags); 345 } 346 EXPORT_SYMBOL_GPL(alarm_start); 347 348 /** 349 * alarm_start_relative - Sets a relative alarm to fire 350 * @alarm: ptr to alarm to set 351 * @start: time relative to now to run the alarm 352 */ 353 void alarm_start_relative(struct alarm *alarm, ktime_t start) 354 { 355 struct alarm_base *base = &alarm_bases[alarm->type]; 356 357 start = ktime_add(start, base->gettime()); 358 alarm_start(alarm, start); 359 } 360 EXPORT_SYMBOL_GPL(alarm_start_relative); 361 362 void alarm_restart(struct alarm *alarm) 363 { 364 struct alarm_base *base = &alarm_bases[alarm->type]; 365 unsigned long flags; 366 367 spin_lock_irqsave(&base->lock, flags); 368 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 369 hrtimer_restart(&alarm->timer); 370 alarmtimer_enqueue(base, alarm); 371 spin_unlock_irqrestore(&base->lock, flags); 372 } 373 EXPORT_SYMBOL_GPL(alarm_restart); 374 375 /** 376 * alarm_try_to_cancel - Tries to cancel an alarm timer 377 * @alarm: ptr to alarm to be canceled 378 * 379 * Returns 1 if the timer was canceled, 0 if it was not running, 380 * and -1 if the callback was running 381 */ 382 int alarm_try_to_cancel(struct alarm *alarm) 383 { 384 struct alarm_base *base = &alarm_bases[alarm->type]; 385 unsigned long flags; 386 int ret; 387 388 spin_lock_irqsave(&base->lock, flags); 389 ret = hrtimer_try_to_cancel(&alarm->timer); 390 if (ret >= 0) 391 alarmtimer_dequeue(base, alarm); 392 spin_unlock_irqrestore(&base->lock, flags); 393 return ret; 394 } 395 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 396 397 398 /** 399 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 400 * @alarm: ptr to alarm to be canceled 401 * 402 * Returns 1 if the timer was canceled, 0 if it was not active. 403 */ 404 int alarm_cancel(struct alarm *alarm) 405 { 406 for (;;) { 407 int ret = alarm_try_to_cancel(alarm); 408 if (ret >= 0) 409 return ret; 410 cpu_relax(); 411 } 412 } 413 EXPORT_SYMBOL_GPL(alarm_cancel); 414 415 416 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 417 { 418 u64 overrun = 1; 419 ktime_t delta; 420 421 delta = ktime_sub(now, alarm->node.expires); 422 423 if (delta.tv64 < 0) 424 return 0; 425 426 if (unlikely(delta.tv64 >= interval.tv64)) { 427 s64 incr = ktime_to_ns(interval); 428 429 overrun = ktime_divns(delta, incr); 430 431 alarm->node.expires = ktime_add_ns(alarm->node.expires, 432 incr*overrun); 433 434 if (alarm->node.expires.tv64 > now.tv64) 435 return overrun; 436 /* 437 * This (and the ktime_add() below) is the 438 * correction for exact: 439 */ 440 overrun++; 441 } 442 443 alarm->node.expires = ktime_add(alarm->node.expires, interval); 444 return overrun; 445 } 446 EXPORT_SYMBOL_GPL(alarm_forward); 447 448 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 449 { 450 struct alarm_base *base = &alarm_bases[alarm->type]; 451 452 return alarm_forward(alarm, base->gettime(), interval); 453 } 454 EXPORT_SYMBOL_GPL(alarm_forward_now); 455 456 457 /** 458 * clock2alarm - helper that converts from clockid to alarmtypes 459 * @clockid: clockid. 460 */ 461 static enum alarmtimer_type clock2alarm(clockid_t clockid) 462 { 463 if (clockid == CLOCK_REALTIME_ALARM) 464 return ALARM_REALTIME; 465 if (clockid == CLOCK_BOOTTIME_ALARM) 466 return ALARM_BOOTTIME; 467 return -1; 468 } 469 470 /** 471 * alarm_handle_timer - Callback for posix timers 472 * @alarm: alarm that fired 473 * 474 * Posix timer callback for expired alarm timers. 475 */ 476 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 477 ktime_t now) 478 { 479 unsigned long flags; 480 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 481 it.alarm.alarmtimer); 482 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 483 484 spin_lock_irqsave(&ptr->it_lock, flags); 485 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) { 486 if (posix_timer_event(ptr, 0) != 0) 487 ptr->it_overrun++; 488 } 489 490 /* Re-add periodic timers */ 491 if (ptr->it.alarm.interval.tv64) { 492 ptr->it_overrun += alarm_forward(alarm, now, 493 ptr->it.alarm.interval); 494 result = ALARMTIMER_RESTART; 495 } 496 spin_unlock_irqrestore(&ptr->it_lock, flags); 497 498 return result; 499 } 500 501 /** 502 * alarm_clock_getres - posix getres interface 503 * @which_clock: clockid 504 * @tp: timespec to fill 505 * 506 * Returns the granularity of underlying alarm base clock 507 */ 508 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp) 509 { 510 if (!alarmtimer_get_rtcdev()) 511 return -EINVAL; 512 513 tp->tv_sec = 0; 514 tp->tv_nsec = hrtimer_resolution; 515 return 0; 516 } 517 518 /** 519 * alarm_clock_get - posix clock_get interface 520 * @which_clock: clockid 521 * @tp: timespec to fill. 522 * 523 * Provides the underlying alarm base time. 524 */ 525 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp) 526 { 527 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 528 529 if (!alarmtimer_get_rtcdev()) 530 return -EINVAL; 531 532 *tp = ktime_to_timespec(base->gettime()); 533 return 0; 534 } 535 536 /** 537 * alarm_timer_create - posix timer_create interface 538 * @new_timer: k_itimer pointer to manage 539 * 540 * Initializes the k_itimer structure. 541 */ 542 static int alarm_timer_create(struct k_itimer *new_timer) 543 { 544 enum alarmtimer_type type; 545 struct alarm_base *base; 546 547 if (!alarmtimer_get_rtcdev()) 548 return -ENOTSUPP; 549 550 if (!capable(CAP_WAKE_ALARM)) 551 return -EPERM; 552 553 type = clock2alarm(new_timer->it_clock); 554 base = &alarm_bases[type]; 555 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 556 return 0; 557 } 558 559 /** 560 * alarm_timer_get - posix timer_get interface 561 * @new_timer: k_itimer pointer 562 * @cur_setting: itimerspec data to fill 563 * 564 * Copies out the current itimerspec data 565 */ 566 static void alarm_timer_get(struct k_itimer *timr, 567 struct itimerspec *cur_setting) 568 { 569 ktime_t relative_expiry_time = 570 alarm_expires_remaining(&(timr->it.alarm.alarmtimer)); 571 572 if (ktime_to_ns(relative_expiry_time) > 0) { 573 cur_setting->it_value = ktime_to_timespec(relative_expiry_time); 574 } else { 575 cur_setting->it_value.tv_sec = 0; 576 cur_setting->it_value.tv_nsec = 0; 577 } 578 579 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval); 580 } 581 582 /** 583 * alarm_timer_del - posix timer_del interface 584 * @timr: k_itimer pointer to be deleted 585 * 586 * Cancels any programmed alarms for the given timer. 587 */ 588 static int alarm_timer_del(struct k_itimer *timr) 589 { 590 if (!rtcdev) 591 return -ENOTSUPP; 592 593 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 594 return TIMER_RETRY; 595 596 return 0; 597 } 598 599 /** 600 * alarm_timer_set - posix timer_set interface 601 * @timr: k_itimer pointer to be deleted 602 * @flags: timer flags 603 * @new_setting: itimerspec to be used 604 * @old_setting: itimerspec being replaced 605 * 606 * Sets the timer to new_setting, and starts the timer. 607 */ 608 static int alarm_timer_set(struct k_itimer *timr, int flags, 609 struct itimerspec *new_setting, 610 struct itimerspec *old_setting) 611 { 612 ktime_t exp; 613 614 if (!rtcdev) 615 return -ENOTSUPP; 616 617 if (flags & ~TIMER_ABSTIME) 618 return -EINVAL; 619 620 if (old_setting) 621 alarm_timer_get(timr, old_setting); 622 623 /* If the timer was already set, cancel it */ 624 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 625 return TIMER_RETRY; 626 627 /* start the timer */ 628 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval); 629 exp = timespec_to_ktime(new_setting->it_value); 630 /* Convert (if necessary) to absolute time */ 631 if (flags != TIMER_ABSTIME) { 632 ktime_t now; 633 634 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime(); 635 exp = ktime_add(now, exp); 636 } 637 638 alarm_start(&timr->it.alarm.alarmtimer, exp); 639 return 0; 640 } 641 642 /** 643 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 644 * @alarm: ptr to alarm that fired 645 * 646 * Wakes up the task that set the alarmtimer 647 */ 648 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 649 ktime_t now) 650 { 651 struct task_struct *task = (struct task_struct *)alarm->data; 652 653 alarm->data = NULL; 654 if (task) 655 wake_up_process(task); 656 return ALARMTIMER_NORESTART; 657 } 658 659 /** 660 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 661 * @alarm: ptr to alarmtimer 662 * @absexp: absolute expiration time 663 * 664 * Sets the alarm timer and sleeps until it is fired or interrupted. 665 */ 666 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 667 { 668 alarm->data = (void *)current; 669 do { 670 set_current_state(TASK_INTERRUPTIBLE); 671 alarm_start(alarm, absexp); 672 if (likely(alarm->data)) 673 schedule(); 674 675 alarm_cancel(alarm); 676 } while (alarm->data && !signal_pending(current)); 677 678 __set_current_state(TASK_RUNNING); 679 680 return (alarm->data == NULL); 681 } 682 683 684 /** 685 * update_rmtp - Update remaining timespec value 686 * @exp: expiration time 687 * @type: timer type 688 * @rmtp: user pointer to remaining timepsec value 689 * 690 * Helper function that fills in rmtp value with time between 691 * now and the exp value 692 */ 693 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 694 struct timespec __user *rmtp) 695 { 696 struct timespec rmt; 697 ktime_t rem; 698 699 rem = ktime_sub(exp, alarm_bases[type].gettime()); 700 701 if (rem.tv64 <= 0) 702 return 0; 703 rmt = ktime_to_timespec(rem); 704 705 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 706 return -EFAULT; 707 708 return 1; 709 710 } 711 712 /** 713 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 714 * @restart: ptr to restart block 715 * 716 * Handles restarted clock_nanosleep calls 717 */ 718 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 719 { 720 enum alarmtimer_type type = restart->nanosleep.clockid; 721 ktime_t exp; 722 struct timespec __user *rmtp; 723 struct alarm alarm; 724 int ret = 0; 725 726 exp.tv64 = restart->nanosleep.expires; 727 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 728 729 if (alarmtimer_do_nsleep(&alarm, exp)) 730 goto out; 731 732 if (freezing(current)) 733 alarmtimer_freezerset(exp, type); 734 735 rmtp = restart->nanosleep.rmtp; 736 if (rmtp) { 737 ret = update_rmtp(exp, type, rmtp); 738 if (ret <= 0) 739 goto out; 740 } 741 742 743 /* The other values in restart are already filled in */ 744 ret = -ERESTART_RESTARTBLOCK; 745 out: 746 return ret; 747 } 748 749 /** 750 * alarm_timer_nsleep - alarmtimer nanosleep 751 * @which_clock: clockid 752 * @flags: determins abstime or relative 753 * @tsreq: requested sleep time (abs or rel) 754 * @rmtp: remaining sleep time saved 755 * 756 * Handles clock_nanosleep calls against _ALARM clockids 757 */ 758 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 759 struct timespec *tsreq, struct timespec __user *rmtp) 760 { 761 enum alarmtimer_type type = clock2alarm(which_clock); 762 struct alarm alarm; 763 ktime_t exp; 764 int ret = 0; 765 struct restart_block *restart; 766 767 if (!alarmtimer_get_rtcdev()) 768 return -ENOTSUPP; 769 770 if (flags & ~TIMER_ABSTIME) 771 return -EINVAL; 772 773 if (!capable(CAP_WAKE_ALARM)) 774 return -EPERM; 775 776 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 777 778 exp = timespec_to_ktime(*tsreq); 779 /* Convert (if necessary) to absolute time */ 780 if (flags != TIMER_ABSTIME) { 781 ktime_t now = alarm_bases[type].gettime(); 782 exp = ktime_add(now, exp); 783 } 784 785 if (alarmtimer_do_nsleep(&alarm, exp)) 786 goto out; 787 788 if (freezing(current)) 789 alarmtimer_freezerset(exp, type); 790 791 /* abs timers don't set remaining time or restart */ 792 if (flags == TIMER_ABSTIME) { 793 ret = -ERESTARTNOHAND; 794 goto out; 795 } 796 797 if (rmtp) { 798 ret = update_rmtp(exp, type, rmtp); 799 if (ret <= 0) 800 goto out; 801 } 802 803 restart = ¤t->restart_block; 804 restart->fn = alarm_timer_nsleep_restart; 805 restart->nanosleep.clockid = type; 806 restart->nanosleep.expires = exp.tv64; 807 restart->nanosleep.rmtp = rmtp; 808 ret = -ERESTART_RESTARTBLOCK; 809 810 out: 811 return ret; 812 } 813 814 815 /* Suspend hook structures */ 816 static const struct dev_pm_ops alarmtimer_pm_ops = { 817 .suspend = alarmtimer_suspend, 818 .resume = alarmtimer_resume, 819 }; 820 821 static struct platform_driver alarmtimer_driver = { 822 .driver = { 823 .name = "alarmtimer", 824 .pm = &alarmtimer_pm_ops, 825 } 826 }; 827 828 /** 829 * alarmtimer_init - Initialize alarm timer code 830 * 831 * This function initializes the alarm bases and registers 832 * the posix clock ids. 833 */ 834 static int __init alarmtimer_init(void) 835 { 836 struct platform_device *pdev; 837 int error = 0; 838 int i; 839 struct k_clock alarm_clock = { 840 .clock_getres = alarm_clock_getres, 841 .clock_get = alarm_clock_get, 842 .timer_create = alarm_timer_create, 843 .timer_set = alarm_timer_set, 844 .timer_del = alarm_timer_del, 845 .timer_get = alarm_timer_get, 846 .nsleep = alarm_timer_nsleep, 847 }; 848 849 alarmtimer_rtc_timer_init(); 850 851 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock); 852 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock); 853 854 /* Initialize alarm bases */ 855 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 856 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 857 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 858 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 859 for (i = 0; i < ALARM_NUMTYPE; i++) { 860 timerqueue_init_head(&alarm_bases[i].timerqueue); 861 spin_lock_init(&alarm_bases[i].lock); 862 } 863 864 error = alarmtimer_rtc_interface_setup(); 865 if (error) 866 return error; 867 868 error = platform_driver_register(&alarmtimer_driver); 869 if (error) 870 goto out_if; 871 872 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 873 if (IS_ERR(pdev)) { 874 error = PTR_ERR(pdev); 875 goto out_drv; 876 } 877 ws = wakeup_source_register("alarmtimer"); 878 return 0; 879 880 out_drv: 881 platform_driver_unregister(&alarmtimer_driver); 882 out_if: 883 alarmtimer_rtc_interface_remove(); 884 return error; 885 } 886 device_initcall(alarmtimer_init); 887