xref: /linux/kernel/time/alarmtimer.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:		Lock for syncrhonized access to the base
32  * @timerqueue:		Timerqueue head managing the list of events
33  * @gettime:		Function to read the time correlating to the base
34  * @base_clockid:	clockid for the base
35  */
36 static struct alarm_base {
37 	spinlock_t		lock;
38 	struct timerqueue_head	timerqueue;
39 	ktime_t			(*gettime)(void);
40 	clockid_t		base_clockid;
41 } alarm_bases[ALARM_NUMTYPE];
42 
43 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
44 static ktime_t freezer_delta;
45 static DEFINE_SPINLOCK(freezer_delta_lock);
46 
47 static struct wakeup_source *ws;
48 
49 #ifdef CONFIG_RTC_CLASS
50 /* rtc timer and device for setting alarm wakeups at suspend */
51 static struct rtc_timer		rtctimer;
52 static struct rtc_device	*rtcdev;
53 static DEFINE_SPINLOCK(rtcdev_lock);
54 
55 /**
56  * alarmtimer_get_rtcdev - Return selected rtcdevice
57  *
58  * This function returns the rtc device to use for wakealarms.
59  * If one has not already been chosen, it checks to see if a
60  * functional rtc device is available.
61  */
62 struct rtc_device *alarmtimer_get_rtcdev(void)
63 {
64 	unsigned long flags;
65 	struct rtc_device *ret;
66 
67 	spin_lock_irqsave(&rtcdev_lock, flags);
68 	ret = rtcdev;
69 	spin_unlock_irqrestore(&rtcdev_lock, flags);
70 
71 	return ret;
72 }
73 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
74 
75 static int alarmtimer_rtc_add_device(struct device *dev,
76 				struct class_interface *class_intf)
77 {
78 	unsigned long flags;
79 	struct rtc_device *rtc = to_rtc_device(dev);
80 
81 	if (rtcdev)
82 		return -EBUSY;
83 
84 	if (!rtc->ops->set_alarm)
85 		return -1;
86 	if (!device_may_wakeup(rtc->dev.parent))
87 		return -1;
88 
89 	spin_lock_irqsave(&rtcdev_lock, flags);
90 	if (!rtcdev) {
91 		rtcdev = rtc;
92 		/* hold a reference so it doesn't go away */
93 		get_device(dev);
94 	}
95 	spin_unlock_irqrestore(&rtcdev_lock, flags);
96 	return 0;
97 }
98 
99 static inline void alarmtimer_rtc_timer_init(void)
100 {
101 	rtc_timer_init(&rtctimer, NULL, NULL);
102 }
103 
104 static struct class_interface alarmtimer_rtc_interface = {
105 	.add_dev = &alarmtimer_rtc_add_device,
106 };
107 
108 static int alarmtimer_rtc_interface_setup(void)
109 {
110 	alarmtimer_rtc_interface.class = rtc_class;
111 	return class_interface_register(&alarmtimer_rtc_interface);
112 }
113 static void alarmtimer_rtc_interface_remove(void)
114 {
115 	class_interface_unregister(&alarmtimer_rtc_interface);
116 }
117 #else
118 struct rtc_device *alarmtimer_get_rtcdev(void)
119 {
120 	return NULL;
121 }
122 #define rtcdev (NULL)
123 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124 static inline void alarmtimer_rtc_interface_remove(void) { }
125 static inline void alarmtimer_rtc_timer_init(void) { }
126 #endif
127 
128 /**
129  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130  * @base: pointer to the base where the timer is being run
131  * @alarm: pointer to alarm being enqueued.
132  *
133  * Adds alarm to a alarm_base timerqueue
134  *
135  * Must hold base->lock when calling.
136  */
137 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
138 {
139 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
140 		timerqueue_del(&base->timerqueue, &alarm->node);
141 
142 	timerqueue_add(&base->timerqueue, &alarm->node);
143 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
144 }
145 
146 /**
147  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
148  * @base: pointer to the base where the timer is running
149  * @alarm: pointer to alarm being removed
150  *
151  * Removes alarm to a alarm_base timerqueue
152  *
153  * Must hold base->lock when calling.
154  */
155 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
156 {
157 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
158 		return;
159 
160 	timerqueue_del(&base->timerqueue, &alarm->node);
161 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
162 }
163 
164 
165 /**
166  * alarmtimer_fired - Handles alarm hrtimer being fired.
167  * @timer: pointer to hrtimer being run
168  *
169  * When a alarm timer fires, this runs through the timerqueue to
170  * see which alarms expired, and runs those. If there are more alarm
171  * timers queued for the future, we set the hrtimer to fire when
172  * when the next future alarm timer expires.
173  */
174 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
175 {
176 	struct alarm *alarm = container_of(timer, struct alarm, timer);
177 	struct alarm_base *base = &alarm_bases[alarm->type];
178 	unsigned long flags;
179 	int ret = HRTIMER_NORESTART;
180 	int restart = ALARMTIMER_NORESTART;
181 
182 	spin_lock_irqsave(&base->lock, flags);
183 	alarmtimer_dequeue(base, alarm);
184 	spin_unlock_irqrestore(&base->lock, flags);
185 
186 	if (alarm->function)
187 		restart = alarm->function(alarm, base->gettime());
188 
189 	spin_lock_irqsave(&base->lock, flags);
190 	if (restart != ALARMTIMER_NORESTART) {
191 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
192 		alarmtimer_enqueue(base, alarm);
193 		ret = HRTIMER_RESTART;
194 	}
195 	spin_unlock_irqrestore(&base->lock, flags);
196 
197 	return ret;
198 
199 }
200 
201 ktime_t alarm_expires_remaining(const struct alarm *alarm)
202 {
203 	struct alarm_base *base = &alarm_bases[alarm->type];
204 	return ktime_sub(alarm->node.expires, base->gettime());
205 }
206 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
207 
208 #ifdef CONFIG_RTC_CLASS
209 /**
210  * alarmtimer_suspend - Suspend time callback
211  * @dev: unused
212  * @state: unused
213  *
214  * When we are going into suspend, we look through the bases
215  * to see which is the soonest timer to expire. We then
216  * set an rtc timer to fire that far into the future, which
217  * will wake us from suspend.
218  */
219 static int alarmtimer_suspend(struct device *dev)
220 {
221 	struct rtc_time tm;
222 	ktime_t min, now;
223 	unsigned long flags;
224 	struct rtc_device *rtc;
225 	int i;
226 	int ret;
227 
228 	spin_lock_irqsave(&freezer_delta_lock, flags);
229 	min = freezer_delta;
230 	freezer_delta = ktime_set(0, 0);
231 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
232 
233 	rtc = alarmtimer_get_rtcdev();
234 	/* If we have no rtcdev, just return */
235 	if (!rtc)
236 		return 0;
237 
238 	/* Find the soonest timer to expire*/
239 	for (i = 0; i < ALARM_NUMTYPE; i++) {
240 		struct alarm_base *base = &alarm_bases[i];
241 		struct timerqueue_node *next;
242 		ktime_t delta;
243 
244 		spin_lock_irqsave(&base->lock, flags);
245 		next = timerqueue_getnext(&base->timerqueue);
246 		spin_unlock_irqrestore(&base->lock, flags);
247 		if (!next)
248 			continue;
249 		delta = ktime_sub(next->expires, base->gettime());
250 		if (!min.tv64 || (delta.tv64 < min.tv64))
251 			min = delta;
252 	}
253 	if (min.tv64 == 0)
254 		return 0;
255 
256 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
257 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
258 		return -EBUSY;
259 	}
260 
261 	/* Setup an rtc timer to fire that far in the future */
262 	rtc_timer_cancel(rtc, &rtctimer);
263 	rtc_read_time(rtc, &tm);
264 	now = rtc_tm_to_ktime(tm);
265 	now = ktime_add(now, min);
266 
267 	/* Set alarm, if in the past reject suspend briefly to handle */
268 	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
269 	if (ret < 0)
270 		__pm_wakeup_event(ws, MSEC_PER_SEC);
271 	return ret;
272 }
273 
274 static int alarmtimer_resume(struct device *dev)
275 {
276 	struct rtc_device *rtc;
277 
278 	rtc = alarmtimer_get_rtcdev();
279 	if (rtc)
280 		rtc_timer_cancel(rtc, &rtctimer);
281 	return 0;
282 }
283 
284 #else
285 static int alarmtimer_suspend(struct device *dev)
286 {
287 	return 0;
288 }
289 
290 static int alarmtimer_resume(struct device *dev)
291 {
292 	return 0;
293 }
294 #endif
295 
296 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
297 {
298 	ktime_t delta;
299 	unsigned long flags;
300 	struct alarm_base *base = &alarm_bases[type];
301 
302 	delta = ktime_sub(absexp, base->gettime());
303 
304 	spin_lock_irqsave(&freezer_delta_lock, flags);
305 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
306 		freezer_delta = delta;
307 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
308 }
309 
310 
311 /**
312  * alarm_init - Initialize an alarm structure
313  * @alarm: ptr to alarm to be initialized
314  * @type: the type of the alarm
315  * @function: callback that is run when the alarm fires
316  */
317 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
318 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
319 {
320 	timerqueue_init(&alarm->node);
321 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
322 			HRTIMER_MODE_ABS);
323 	alarm->timer.function = alarmtimer_fired;
324 	alarm->function = function;
325 	alarm->type = type;
326 	alarm->state = ALARMTIMER_STATE_INACTIVE;
327 }
328 EXPORT_SYMBOL_GPL(alarm_init);
329 
330 /**
331  * alarm_start - Sets an absolute alarm to fire
332  * @alarm: ptr to alarm to set
333  * @start: time to run the alarm
334  */
335 void alarm_start(struct alarm *alarm, ktime_t start)
336 {
337 	struct alarm_base *base = &alarm_bases[alarm->type];
338 	unsigned long flags;
339 
340 	spin_lock_irqsave(&base->lock, flags);
341 	alarm->node.expires = start;
342 	alarmtimer_enqueue(base, alarm);
343 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
344 	spin_unlock_irqrestore(&base->lock, flags);
345 }
346 EXPORT_SYMBOL_GPL(alarm_start);
347 
348 /**
349  * alarm_start_relative - Sets a relative alarm to fire
350  * @alarm: ptr to alarm to set
351  * @start: time relative to now to run the alarm
352  */
353 void alarm_start_relative(struct alarm *alarm, ktime_t start)
354 {
355 	struct alarm_base *base = &alarm_bases[alarm->type];
356 
357 	start = ktime_add(start, base->gettime());
358 	alarm_start(alarm, start);
359 }
360 EXPORT_SYMBOL_GPL(alarm_start_relative);
361 
362 void alarm_restart(struct alarm *alarm)
363 {
364 	struct alarm_base *base = &alarm_bases[alarm->type];
365 	unsigned long flags;
366 
367 	spin_lock_irqsave(&base->lock, flags);
368 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
369 	hrtimer_restart(&alarm->timer);
370 	alarmtimer_enqueue(base, alarm);
371 	spin_unlock_irqrestore(&base->lock, flags);
372 }
373 EXPORT_SYMBOL_GPL(alarm_restart);
374 
375 /**
376  * alarm_try_to_cancel - Tries to cancel an alarm timer
377  * @alarm: ptr to alarm to be canceled
378  *
379  * Returns 1 if the timer was canceled, 0 if it was not running,
380  * and -1 if the callback was running
381  */
382 int alarm_try_to_cancel(struct alarm *alarm)
383 {
384 	struct alarm_base *base = &alarm_bases[alarm->type];
385 	unsigned long flags;
386 	int ret;
387 
388 	spin_lock_irqsave(&base->lock, flags);
389 	ret = hrtimer_try_to_cancel(&alarm->timer);
390 	if (ret >= 0)
391 		alarmtimer_dequeue(base, alarm);
392 	spin_unlock_irqrestore(&base->lock, flags);
393 	return ret;
394 }
395 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
396 
397 
398 /**
399  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not active.
403  */
404 int alarm_cancel(struct alarm *alarm)
405 {
406 	for (;;) {
407 		int ret = alarm_try_to_cancel(alarm);
408 		if (ret >= 0)
409 			return ret;
410 		cpu_relax();
411 	}
412 }
413 EXPORT_SYMBOL_GPL(alarm_cancel);
414 
415 
416 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
417 {
418 	u64 overrun = 1;
419 	ktime_t delta;
420 
421 	delta = ktime_sub(now, alarm->node.expires);
422 
423 	if (delta.tv64 < 0)
424 		return 0;
425 
426 	if (unlikely(delta.tv64 >= interval.tv64)) {
427 		s64 incr = ktime_to_ns(interval);
428 
429 		overrun = ktime_divns(delta, incr);
430 
431 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
432 							incr*overrun);
433 
434 		if (alarm->node.expires.tv64 > now.tv64)
435 			return overrun;
436 		/*
437 		 * This (and the ktime_add() below) is the
438 		 * correction for exact:
439 		 */
440 		overrun++;
441 	}
442 
443 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
444 	return overrun;
445 }
446 EXPORT_SYMBOL_GPL(alarm_forward);
447 
448 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
449 {
450 	struct alarm_base *base = &alarm_bases[alarm->type];
451 
452 	return alarm_forward(alarm, base->gettime(), interval);
453 }
454 EXPORT_SYMBOL_GPL(alarm_forward_now);
455 
456 
457 /**
458  * clock2alarm - helper that converts from clockid to alarmtypes
459  * @clockid: clockid.
460  */
461 static enum alarmtimer_type clock2alarm(clockid_t clockid)
462 {
463 	if (clockid == CLOCK_REALTIME_ALARM)
464 		return ALARM_REALTIME;
465 	if (clockid == CLOCK_BOOTTIME_ALARM)
466 		return ALARM_BOOTTIME;
467 	return -1;
468 }
469 
470 /**
471  * alarm_handle_timer - Callback for posix timers
472  * @alarm: alarm that fired
473  *
474  * Posix timer callback for expired alarm timers.
475  */
476 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
477 							ktime_t now)
478 {
479 	unsigned long flags;
480 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
481 						it.alarm.alarmtimer);
482 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
483 
484 	spin_lock_irqsave(&ptr->it_lock, flags);
485 	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
486 		if (posix_timer_event(ptr, 0) != 0)
487 			ptr->it_overrun++;
488 	}
489 
490 	/* Re-add periodic timers */
491 	if (ptr->it.alarm.interval.tv64) {
492 		ptr->it_overrun += alarm_forward(alarm, now,
493 						ptr->it.alarm.interval);
494 		result = ALARMTIMER_RESTART;
495 	}
496 	spin_unlock_irqrestore(&ptr->it_lock, flags);
497 
498 	return result;
499 }
500 
501 /**
502  * alarm_clock_getres - posix getres interface
503  * @which_clock: clockid
504  * @tp: timespec to fill
505  *
506  * Returns the granularity of underlying alarm base clock
507  */
508 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
509 {
510 	if (!alarmtimer_get_rtcdev())
511 		return -EINVAL;
512 
513 	tp->tv_sec = 0;
514 	tp->tv_nsec = hrtimer_resolution;
515 	return 0;
516 }
517 
518 /**
519  * alarm_clock_get - posix clock_get interface
520  * @which_clock: clockid
521  * @tp: timespec to fill.
522  *
523  * Provides the underlying alarm base time.
524  */
525 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
526 {
527 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
528 
529 	if (!alarmtimer_get_rtcdev())
530 		return -EINVAL;
531 
532 	*tp = ktime_to_timespec(base->gettime());
533 	return 0;
534 }
535 
536 /**
537  * alarm_timer_create - posix timer_create interface
538  * @new_timer: k_itimer pointer to manage
539  *
540  * Initializes the k_itimer structure.
541  */
542 static int alarm_timer_create(struct k_itimer *new_timer)
543 {
544 	enum  alarmtimer_type type;
545 	struct alarm_base *base;
546 
547 	if (!alarmtimer_get_rtcdev())
548 		return -ENOTSUPP;
549 
550 	if (!capable(CAP_WAKE_ALARM))
551 		return -EPERM;
552 
553 	type = clock2alarm(new_timer->it_clock);
554 	base = &alarm_bases[type];
555 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
556 	return 0;
557 }
558 
559 /**
560  * alarm_timer_get - posix timer_get interface
561  * @new_timer: k_itimer pointer
562  * @cur_setting: itimerspec data to fill
563  *
564  * Copies out the current itimerspec data
565  */
566 static void alarm_timer_get(struct k_itimer *timr,
567 				struct itimerspec *cur_setting)
568 {
569 	ktime_t relative_expiry_time =
570 		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
571 
572 	if (ktime_to_ns(relative_expiry_time) > 0) {
573 		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
574 	} else {
575 		cur_setting->it_value.tv_sec = 0;
576 		cur_setting->it_value.tv_nsec = 0;
577 	}
578 
579 	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
580 }
581 
582 /**
583  * alarm_timer_del - posix timer_del interface
584  * @timr: k_itimer pointer to be deleted
585  *
586  * Cancels any programmed alarms for the given timer.
587  */
588 static int alarm_timer_del(struct k_itimer *timr)
589 {
590 	if (!rtcdev)
591 		return -ENOTSUPP;
592 
593 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
594 		return TIMER_RETRY;
595 
596 	return 0;
597 }
598 
599 /**
600  * alarm_timer_set - posix timer_set interface
601  * @timr: k_itimer pointer to be deleted
602  * @flags: timer flags
603  * @new_setting: itimerspec to be used
604  * @old_setting: itimerspec being replaced
605  *
606  * Sets the timer to new_setting, and starts the timer.
607  */
608 static int alarm_timer_set(struct k_itimer *timr, int flags,
609 				struct itimerspec *new_setting,
610 				struct itimerspec *old_setting)
611 {
612 	ktime_t exp;
613 
614 	if (!rtcdev)
615 		return -ENOTSUPP;
616 
617 	if (flags & ~TIMER_ABSTIME)
618 		return -EINVAL;
619 
620 	if (old_setting)
621 		alarm_timer_get(timr, old_setting);
622 
623 	/* If the timer was already set, cancel it */
624 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
625 		return TIMER_RETRY;
626 
627 	/* start the timer */
628 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
629 	exp = timespec_to_ktime(new_setting->it_value);
630 	/* Convert (if necessary) to absolute time */
631 	if (flags != TIMER_ABSTIME) {
632 		ktime_t now;
633 
634 		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
635 		exp = ktime_add(now, exp);
636 	}
637 
638 	alarm_start(&timr->it.alarm.alarmtimer, exp);
639 	return 0;
640 }
641 
642 /**
643  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
644  * @alarm: ptr to alarm that fired
645  *
646  * Wakes up the task that set the alarmtimer
647  */
648 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
649 								ktime_t now)
650 {
651 	struct task_struct *task = (struct task_struct *)alarm->data;
652 
653 	alarm->data = NULL;
654 	if (task)
655 		wake_up_process(task);
656 	return ALARMTIMER_NORESTART;
657 }
658 
659 /**
660  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
661  * @alarm: ptr to alarmtimer
662  * @absexp: absolute expiration time
663  *
664  * Sets the alarm timer and sleeps until it is fired or interrupted.
665  */
666 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
667 {
668 	alarm->data = (void *)current;
669 	do {
670 		set_current_state(TASK_INTERRUPTIBLE);
671 		alarm_start(alarm, absexp);
672 		if (likely(alarm->data))
673 			schedule();
674 
675 		alarm_cancel(alarm);
676 	} while (alarm->data && !signal_pending(current));
677 
678 	__set_current_state(TASK_RUNNING);
679 
680 	return (alarm->data == NULL);
681 }
682 
683 
684 /**
685  * update_rmtp - Update remaining timespec value
686  * @exp: expiration time
687  * @type: timer type
688  * @rmtp: user pointer to remaining timepsec value
689  *
690  * Helper function that fills in rmtp value with time between
691  * now and the exp value
692  */
693 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
694 			struct timespec __user *rmtp)
695 {
696 	struct timespec rmt;
697 	ktime_t rem;
698 
699 	rem = ktime_sub(exp, alarm_bases[type].gettime());
700 
701 	if (rem.tv64 <= 0)
702 		return 0;
703 	rmt = ktime_to_timespec(rem);
704 
705 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
706 		return -EFAULT;
707 
708 	return 1;
709 
710 }
711 
712 /**
713  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
714  * @restart: ptr to restart block
715  *
716  * Handles restarted clock_nanosleep calls
717  */
718 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
719 {
720 	enum  alarmtimer_type type = restart->nanosleep.clockid;
721 	ktime_t exp;
722 	struct timespec __user  *rmtp;
723 	struct alarm alarm;
724 	int ret = 0;
725 
726 	exp.tv64 = restart->nanosleep.expires;
727 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
728 
729 	if (alarmtimer_do_nsleep(&alarm, exp))
730 		goto out;
731 
732 	if (freezing(current))
733 		alarmtimer_freezerset(exp, type);
734 
735 	rmtp = restart->nanosleep.rmtp;
736 	if (rmtp) {
737 		ret = update_rmtp(exp, type, rmtp);
738 		if (ret <= 0)
739 			goto out;
740 	}
741 
742 
743 	/* The other values in restart are already filled in */
744 	ret = -ERESTART_RESTARTBLOCK;
745 out:
746 	return ret;
747 }
748 
749 /**
750  * alarm_timer_nsleep - alarmtimer nanosleep
751  * @which_clock: clockid
752  * @flags: determins abstime or relative
753  * @tsreq: requested sleep time (abs or rel)
754  * @rmtp: remaining sleep time saved
755  *
756  * Handles clock_nanosleep calls against _ALARM clockids
757  */
758 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
759 		     struct timespec *tsreq, struct timespec __user *rmtp)
760 {
761 	enum  alarmtimer_type type = clock2alarm(which_clock);
762 	struct alarm alarm;
763 	ktime_t exp;
764 	int ret = 0;
765 	struct restart_block *restart;
766 
767 	if (!alarmtimer_get_rtcdev())
768 		return -ENOTSUPP;
769 
770 	if (flags & ~TIMER_ABSTIME)
771 		return -EINVAL;
772 
773 	if (!capable(CAP_WAKE_ALARM))
774 		return -EPERM;
775 
776 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
777 
778 	exp = timespec_to_ktime(*tsreq);
779 	/* Convert (if necessary) to absolute time */
780 	if (flags != TIMER_ABSTIME) {
781 		ktime_t now = alarm_bases[type].gettime();
782 		exp = ktime_add(now, exp);
783 	}
784 
785 	if (alarmtimer_do_nsleep(&alarm, exp))
786 		goto out;
787 
788 	if (freezing(current))
789 		alarmtimer_freezerset(exp, type);
790 
791 	/* abs timers don't set remaining time or restart */
792 	if (flags == TIMER_ABSTIME) {
793 		ret = -ERESTARTNOHAND;
794 		goto out;
795 	}
796 
797 	if (rmtp) {
798 		ret = update_rmtp(exp, type, rmtp);
799 		if (ret <= 0)
800 			goto out;
801 	}
802 
803 	restart = &current->restart_block;
804 	restart->fn = alarm_timer_nsleep_restart;
805 	restart->nanosleep.clockid = type;
806 	restart->nanosleep.expires = exp.tv64;
807 	restart->nanosleep.rmtp = rmtp;
808 	ret = -ERESTART_RESTARTBLOCK;
809 
810 out:
811 	return ret;
812 }
813 
814 
815 /* Suspend hook structures */
816 static const struct dev_pm_ops alarmtimer_pm_ops = {
817 	.suspend = alarmtimer_suspend,
818 	.resume = alarmtimer_resume,
819 };
820 
821 static struct platform_driver alarmtimer_driver = {
822 	.driver = {
823 		.name = "alarmtimer",
824 		.pm = &alarmtimer_pm_ops,
825 	}
826 };
827 
828 /**
829  * alarmtimer_init - Initialize alarm timer code
830  *
831  * This function initializes the alarm bases and registers
832  * the posix clock ids.
833  */
834 static int __init alarmtimer_init(void)
835 {
836 	struct platform_device *pdev;
837 	int error = 0;
838 	int i;
839 	struct k_clock alarm_clock = {
840 		.clock_getres	= alarm_clock_getres,
841 		.clock_get	= alarm_clock_get,
842 		.timer_create	= alarm_timer_create,
843 		.timer_set	= alarm_timer_set,
844 		.timer_del	= alarm_timer_del,
845 		.timer_get	= alarm_timer_get,
846 		.nsleep		= alarm_timer_nsleep,
847 	};
848 
849 	alarmtimer_rtc_timer_init();
850 
851 	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
852 	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
853 
854 	/* Initialize alarm bases */
855 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
856 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
857 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
858 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
859 	for (i = 0; i < ALARM_NUMTYPE; i++) {
860 		timerqueue_init_head(&alarm_bases[i].timerqueue);
861 		spin_lock_init(&alarm_bases[i].lock);
862 	}
863 
864 	error = alarmtimer_rtc_interface_setup();
865 	if (error)
866 		return error;
867 
868 	error = platform_driver_register(&alarmtimer_driver);
869 	if (error)
870 		goto out_if;
871 
872 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
873 	if (IS_ERR(pdev)) {
874 		error = PTR_ERR(pdev);
875 		goto out_drv;
876 	}
877 	ws = wakeup_source_register("alarmtimer");
878 	return 0;
879 
880 out_drv:
881 	platform_driver_unregister(&alarmtimer_driver);
882 out_if:
883 	alarmtimer_rtc_interface_remove();
884 	return error;
885 }
886 device_initcall(alarmtimer_init);
887