1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Alarmtimer interface 4 * 5 * This interface provides a timer which is similar to hrtimers, 6 * but triggers a RTC alarm if the box is suspend. 7 * 8 * This interface is influenced by the Android RTC Alarm timer 9 * interface. 10 * 11 * Copyright (C) 2010 IBM Corporation 12 * 13 * Author: John Stultz <john.stultz@linaro.org> 14 */ 15 #include <linux/time.h> 16 #include <linux/hrtimer.h> 17 #include <linux/timerqueue.h> 18 #include <linux/rtc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/alarmtimer.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/posix-timers.h> 25 #include <linux/workqueue.h> 26 #include <linux/freezer.h> 27 #include <linux/compat.h> 28 #include <linux/module.h> 29 #include <linux/time_namespace.h> 30 31 #include "posix-timers.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/alarmtimer.h> 35 36 /** 37 * struct alarm_base - Alarm timer bases 38 * @lock: Lock for syncrhonized access to the base 39 * @timerqueue: Timerqueue head managing the list of events 40 * @get_ktime: Function to read the time correlating to the base 41 * @get_timespec: Function to read the namespace time correlating to the base 42 * @base_clockid: clockid for the base 43 */ 44 static struct alarm_base { 45 spinlock_t lock; 46 struct timerqueue_head timerqueue; 47 ktime_t (*get_ktime)(void); 48 void (*get_timespec)(struct timespec64 *tp); 49 clockid_t base_clockid; 50 } alarm_bases[ALARM_NUMTYPE]; 51 52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 53 /* freezer information to handle clock_nanosleep triggered wakeups */ 54 static enum alarmtimer_type freezer_alarmtype; 55 static ktime_t freezer_expires; 56 static ktime_t freezer_delta; 57 static DEFINE_SPINLOCK(freezer_delta_lock); 58 #endif 59 60 #ifdef CONFIG_RTC_CLASS 61 /* rtc timer and device for setting alarm wakeups at suspend */ 62 static struct rtc_timer rtctimer; 63 static struct rtc_device *rtcdev; 64 static DEFINE_SPINLOCK(rtcdev_lock); 65 66 /** 67 * alarmtimer_get_rtcdev - Return selected rtcdevice 68 * 69 * This function returns the rtc device to use for wakealarms. 70 */ 71 struct rtc_device *alarmtimer_get_rtcdev(void) 72 { 73 unsigned long flags; 74 struct rtc_device *ret; 75 76 spin_lock_irqsave(&rtcdev_lock, flags); 77 ret = rtcdev; 78 spin_unlock_irqrestore(&rtcdev_lock, flags); 79 80 return ret; 81 } 82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 83 84 static int alarmtimer_rtc_add_device(struct device *dev) 85 { 86 unsigned long flags; 87 struct rtc_device *rtc = to_rtc_device(dev); 88 struct platform_device *pdev; 89 int ret = 0; 90 91 if (rtcdev) 92 return -EBUSY; 93 94 if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 95 return -1; 96 if (!device_may_wakeup(rtc->dev.parent)) 97 return -1; 98 99 pdev = platform_device_register_data(dev, "alarmtimer", 100 PLATFORM_DEVID_AUTO, NULL, 0); 101 if (!IS_ERR(pdev)) 102 device_init_wakeup(&pdev->dev, true); 103 104 spin_lock_irqsave(&rtcdev_lock, flags); 105 if (!IS_ERR(pdev) && !rtcdev) { 106 if (!try_module_get(rtc->owner)) { 107 ret = -1; 108 goto unlock; 109 } 110 111 rtcdev = rtc; 112 /* hold a reference so it doesn't go away */ 113 get_device(dev); 114 pdev = NULL; 115 } else { 116 ret = -1; 117 } 118 unlock: 119 spin_unlock_irqrestore(&rtcdev_lock, flags); 120 121 platform_device_unregister(pdev); 122 123 return ret; 124 } 125 126 static inline void alarmtimer_rtc_timer_init(void) 127 { 128 rtc_timer_init(&rtctimer, NULL, NULL); 129 } 130 131 static struct class_interface alarmtimer_rtc_interface = { 132 .add_dev = &alarmtimer_rtc_add_device, 133 }; 134 135 static int alarmtimer_rtc_interface_setup(void) 136 { 137 alarmtimer_rtc_interface.class = &rtc_class; 138 return class_interface_register(&alarmtimer_rtc_interface); 139 } 140 static void alarmtimer_rtc_interface_remove(void) 141 { 142 class_interface_unregister(&alarmtimer_rtc_interface); 143 } 144 #else 145 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 146 static inline void alarmtimer_rtc_interface_remove(void) { } 147 static inline void alarmtimer_rtc_timer_init(void) { } 148 #endif 149 150 /** 151 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 152 * @base: pointer to the base where the timer is being run 153 * @alarm: pointer to alarm being enqueued. 154 * 155 * Adds alarm to a alarm_base timerqueue 156 * 157 * Must hold base->lock when calling. 158 */ 159 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 160 { 161 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 162 timerqueue_del(&base->timerqueue, &alarm->node); 163 164 timerqueue_add(&base->timerqueue, &alarm->node); 165 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 166 } 167 168 /** 169 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 170 * @base: pointer to the base where the timer is running 171 * @alarm: pointer to alarm being removed 172 * 173 * Removes alarm to a alarm_base timerqueue 174 * 175 * Must hold base->lock when calling. 176 */ 177 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 178 { 179 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 180 return; 181 182 timerqueue_del(&base->timerqueue, &alarm->node); 183 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 184 } 185 186 187 /** 188 * alarmtimer_fired - Handles alarm hrtimer being fired. 189 * @timer: pointer to hrtimer being run 190 * 191 * When a alarm timer fires, this runs through the timerqueue to 192 * see which alarms expired, and runs those. If there are more alarm 193 * timers queued for the future, we set the hrtimer to fire when 194 * the next future alarm timer expires. 195 */ 196 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 197 { 198 struct alarm *alarm = container_of(timer, struct alarm, timer); 199 struct alarm_base *base = &alarm_bases[alarm->type]; 200 unsigned long flags; 201 int ret = HRTIMER_NORESTART; 202 int restart = ALARMTIMER_NORESTART; 203 204 spin_lock_irqsave(&base->lock, flags); 205 alarmtimer_dequeue(base, alarm); 206 spin_unlock_irqrestore(&base->lock, flags); 207 208 if (alarm->function) 209 restart = alarm->function(alarm, base->get_ktime()); 210 211 spin_lock_irqsave(&base->lock, flags); 212 if (restart != ALARMTIMER_NORESTART) { 213 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 214 alarmtimer_enqueue(base, alarm); 215 ret = HRTIMER_RESTART; 216 } 217 spin_unlock_irqrestore(&base->lock, flags); 218 219 trace_alarmtimer_fired(alarm, base->get_ktime()); 220 return ret; 221 222 } 223 224 ktime_t alarm_expires_remaining(const struct alarm *alarm) 225 { 226 struct alarm_base *base = &alarm_bases[alarm->type]; 227 return ktime_sub(alarm->node.expires, base->get_ktime()); 228 } 229 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 230 231 #ifdef CONFIG_RTC_CLASS 232 /** 233 * alarmtimer_suspend - Suspend time callback 234 * @dev: unused 235 * 236 * When we are going into suspend, we look through the bases 237 * to see which is the soonest timer to expire. We then 238 * set an rtc timer to fire that far into the future, which 239 * will wake us from suspend. 240 */ 241 static int alarmtimer_suspend(struct device *dev) 242 { 243 ktime_t min, now, expires; 244 int i, ret, type; 245 struct rtc_device *rtc; 246 unsigned long flags; 247 struct rtc_time tm; 248 249 spin_lock_irqsave(&freezer_delta_lock, flags); 250 min = freezer_delta; 251 expires = freezer_expires; 252 type = freezer_alarmtype; 253 freezer_delta = 0; 254 spin_unlock_irqrestore(&freezer_delta_lock, flags); 255 256 rtc = alarmtimer_get_rtcdev(); 257 /* If we have no rtcdev, just return */ 258 if (!rtc) 259 return 0; 260 261 /* Find the soonest timer to expire*/ 262 for (i = 0; i < ALARM_NUMTYPE; i++) { 263 struct alarm_base *base = &alarm_bases[i]; 264 struct timerqueue_node *next; 265 ktime_t delta; 266 267 spin_lock_irqsave(&base->lock, flags); 268 next = timerqueue_getnext(&base->timerqueue); 269 spin_unlock_irqrestore(&base->lock, flags); 270 if (!next) 271 continue; 272 delta = ktime_sub(next->expires, base->get_ktime()); 273 if (!min || (delta < min)) { 274 expires = next->expires; 275 min = delta; 276 type = i; 277 } 278 } 279 if (min == 0) 280 return 0; 281 282 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 283 pm_wakeup_event(dev, 2 * MSEC_PER_SEC); 284 return -EBUSY; 285 } 286 287 trace_alarmtimer_suspend(expires, type); 288 289 /* Setup an rtc timer to fire that far in the future */ 290 rtc_timer_cancel(rtc, &rtctimer); 291 rtc_read_time(rtc, &tm); 292 now = rtc_tm_to_ktime(tm); 293 294 /* 295 * If the RTC alarm timer only supports a limited time offset, set the 296 * alarm time to the maximum supported value. 297 * The system may wake up earlier (possibly much earlier) than expected 298 * when the alarmtimer runs. This is the best the kernel can do if 299 * the alarmtimer exceeds the time that the rtc device can be programmed 300 * for. 301 */ 302 min = rtc_bound_alarmtime(rtc, min); 303 304 now = ktime_add(now, min); 305 306 /* Set alarm, if in the past reject suspend briefly to handle */ 307 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 308 if (ret < 0) 309 pm_wakeup_event(dev, MSEC_PER_SEC); 310 return ret; 311 } 312 313 static int alarmtimer_resume(struct device *dev) 314 { 315 struct rtc_device *rtc; 316 317 rtc = alarmtimer_get_rtcdev(); 318 if (rtc) 319 rtc_timer_cancel(rtc, &rtctimer); 320 return 0; 321 } 322 323 #else 324 static int alarmtimer_suspend(struct device *dev) 325 { 326 return 0; 327 } 328 329 static int alarmtimer_resume(struct device *dev) 330 { 331 return 0; 332 } 333 #endif 334 335 static void 336 __alarm_init(struct alarm *alarm, enum alarmtimer_type type, 337 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 338 { 339 timerqueue_init(&alarm->node); 340 alarm->timer.function = alarmtimer_fired; 341 alarm->function = function; 342 alarm->type = type; 343 alarm->state = ALARMTIMER_STATE_INACTIVE; 344 } 345 346 /** 347 * alarm_init - Initialize an alarm structure 348 * @alarm: ptr to alarm to be initialized 349 * @type: the type of the alarm 350 * @function: callback that is run when the alarm fires 351 */ 352 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 353 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 354 { 355 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 356 HRTIMER_MODE_ABS); 357 __alarm_init(alarm, type, function); 358 } 359 EXPORT_SYMBOL_GPL(alarm_init); 360 361 /** 362 * alarm_start - Sets an absolute alarm to fire 363 * @alarm: ptr to alarm to set 364 * @start: time to run the alarm 365 */ 366 void alarm_start(struct alarm *alarm, ktime_t start) 367 { 368 struct alarm_base *base = &alarm_bases[alarm->type]; 369 unsigned long flags; 370 371 spin_lock_irqsave(&base->lock, flags); 372 alarm->node.expires = start; 373 alarmtimer_enqueue(base, alarm); 374 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 375 spin_unlock_irqrestore(&base->lock, flags); 376 377 trace_alarmtimer_start(alarm, base->get_ktime()); 378 } 379 EXPORT_SYMBOL_GPL(alarm_start); 380 381 /** 382 * alarm_start_relative - Sets a relative alarm to fire 383 * @alarm: ptr to alarm to set 384 * @start: time relative to now to run the alarm 385 */ 386 void alarm_start_relative(struct alarm *alarm, ktime_t start) 387 { 388 struct alarm_base *base = &alarm_bases[alarm->type]; 389 390 start = ktime_add_safe(start, base->get_ktime()); 391 alarm_start(alarm, start); 392 } 393 EXPORT_SYMBOL_GPL(alarm_start_relative); 394 395 void alarm_restart(struct alarm *alarm) 396 { 397 struct alarm_base *base = &alarm_bases[alarm->type]; 398 unsigned long flags; 399 400 spin_lock_irqsave(&base->lock, flags); 401 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 402 hrtimer_restart(&alarm->timer); 403 alarmtimer_enqueue(base, alarm); 404 spin_unlock_irqrestore(&base->lock, flags); 405 } 406 EXPORT_SYMBOL_GPL(alarm_restart); 407 408 /** 409 * alarm_try_to_cancel - Tries to cancel an alarm timer 410 * @alarm: ptr to alarm to be canceled 411 * 412 * Returns 1 if the timer was canceled, 0 if it was not running, 413 * and -1 if the callback was running 414 */ 415 int alarm_try_to_cancel(struct alarm *alarm) 416 { 417 struct alarm_base *base = &alarm_bases[alarm->type]; 418 unsigned long flags; 419 int ret; 420 421 spin_lock_irqsave(&base->lock, flags); 422 ret = hrtimer_try_to_cancel(&alarm->timer); 423 if (ret >= 0) 424 alarmtimer_dequeue(base, alarm); 425 spin_unlock_irqrestore(&base->lock, flags); 426 427 trace_alarmtimer_cancel(alarm, base->get_ktime()); 428 return ret; 429 } 430 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 431 432 433 /** 434 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 435 * @alarm: ptr to alarm to be canceled 436 * 437 * Returns 1 if the timer was canceled, 0 if it was not active. 438 */ 439 int alarm_cancel(struct alarm *alarm) 440 { 441 for (;;) { 442 int ret = alarm_try_to_cancel(alarm); 443 if (ret >= 0) 444 return ret; 445 hrtimer_cancel_wait_running(&alarm->timer); 446 } 447 } 448 EXPORT_SYMBOL_GPL(alarm_cancel); 449 450 451 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 452 { 453 u64 overrun = 1; 454 ktime_t delta; 455 456 delta = ktime_sub(now, alarm->node.expires); 457 458 if (delta < 0) 459 return 0; 460 461 if (unlikely(delta >= interval)) { 462 s64 incr = ktime_to_ns(interval); 463 464 overrun = ktime_divns(delta, incr); 465 466 alarm->node.expires = ktime_add_ns(alarm->node.expires, 467 incr*overrun); 468 469 if (alarm->node.expires > now) 470 return overrun; 471 /* 472 * This (and the ktime_add() below) is the 473 * correction for exact: 474 */ 475 overrun++; 476 } 477 478 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 479 return overrun; 480 } 481 EXPORT_SYMBOL_GPL(alarm_forward); 482 483 static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle) 484 { 485 struct alarm_base *base = &alarm_bases[alarm->type]; 486 ktime_t now = base->get_ktime(); 487 488 if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) { 489 /* 490 * Same issue as with posix_timer_fn(). Timers which are 491 * periodic but the signal is ignored can starve the system 492 * with a very small interval. The real fix which was 493 * promised in the context of posix_timer_fn() never 494 * materialized, but someone should really work on it. 495 * 496 * To prevent DOS fake @now to be 1 jiffie out which keeps 497 * the overrun accounting correct but creates an 498 * inconsistency vs. timer_gettime(2). 499 */ 500 ktime_t kj = NSEC_PER_SEC / HZ; 501 502 if (interval < kj) 503 now = ktime_add(now, kj); 504 } 505 506 return alarm_forward(alarm, now, interval); 507 } 508 509 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 510 { 511 return __alarm_forward_now(alarm, interval, false); 512 } 513 EXPORT_SYMBOL_GPL(alarm_forward_now); 514 515 #ifdef CONFIG_POSIX_TIMERS 516 517 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 518 { 519 struct alarm_base *base; 520 unsigned long flags; 521 ktime_t delta; 522 523 switch(type) { 524 case ALARM_REALTIME: 525 base = &alarm_bases[ALARM_REALTIME]; 526 type = ALARM_REALTIME_FREEZER; 527 break; 528 case ALARM_BOOTTIME: 529 base = &alarm_bases[ALARM_BOOTTIME]; 530 type = ALARM_BOOTTIME_FREEZER; 531 break; 532 default: 533 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 534 return; 535 } 536 537 delta = ktime_sub(absexp, base->get_ktime()); 538 539 spin_lock_irqsave(&freezer_delta_lock, flags); 540 if (!freezer_delta || (delta < freezer_delta)) { 541 freezer_delta = delta; 542 freezer_expires = absexp; 543 freezer_alarmtype = type; 544 } 545 spin_unlock_irqrestore(&freezer_delta_lock, flags); 546 } 547 548 /** 549 * clock2alarm - helper that converts from clockid to alarmtypes 550 * @clockid: clockid. 551 */ 552 static enum alarmtimer_type clock2alarm(clockid_t clockid) 553 { 554 if (clockid == CLOCK_REALTIME_ALARM) 555 return ALARM_REALTIME; 556 if (clockid == CLOCK_BOOTTIME_ALARM) 557 return ALARM_BOOTTIME; 558 return -1; 559 } 560 561 /** 562 * alarm_handle_timer - Callback for posix timers 563 * @alarm: alarm that fired 564 * @now: time at the timer expiration 565 * 566 * Posix timer callback for expired alarm timers. 567 * 568 * Return: whether the timer is to be restarted 569 */ 570 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 571 ktime_t now) 572 { 573 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 574 it.alarm.alarmtimer); 575 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 576 unsigned long flags; 577 int si_private = 0; 578 579 spin_lock_irqsave(&ptr->it_lock, flags); 580 581 ptr->it_active = 0; 582 if (ptr->it_interval) 583 si_private = ++ptr->it_requeue_pending; 584 585 if (posix_timer_event(ptr, si_private) && ptr->it_interval) { 586 /* 587 * Handle ignored signals and rearm the timer. This will go 588 * away once we handle ignored signals proper. Ensure that 589 * small intervals cannot starve the system. 590 */ 591 ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true); 592 ++ptr->it_requeue_pending; 593 ptr->it_active = 1; 594 result = ALARMTIMER_RESTART; 595 } 596 spin_unlock_irqrestore(&ptr->it_lock, flags); 597 598 return result; 599 } 600 601 /** 602 * alarm_timer_rearm - Posix timer callback for rearming timer 603 * @timr: Pointer to the posixtimer data struct 604 */ 605 static void alarm_timer_rearm(struct k_itimer *timr) 606 { 607 struct alarm *alarm = &timr->it.alarm.alarmtimer; 608 609 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 610 alarm_start(alarm, alarm->node.expires); 611 } 612 613 /** 614 * alarm_timer_forward - Posix timer callback for forwarding timer 615 * @timr: Pointer to the posixtimer data struct 616 * @now: Current time to forward the timer against 617 */ 618 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now) 619 { 620 struct alarm *alarm = &timr->it.alarm.alarmtimer; 621 622 return alarm_forward(alarm, timr->it_interval, now); 623 } 624 625 /** 626 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 627 * @timr: Pointer to the posixtimer data struct 628 * @now: Current time to calculate against 629 */ 630 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 631 { 632 struct alarm *alarm = &timr->it.alarm.alarmtimer; 633 634 return ktime_sub(alarm->node.expires, now); 635 } 636 637 /** 638 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 639 * @timr: Pointer to the posixtimer data struct 640 */ 641 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 642 { 643 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 644 } 645 646 /** 647 * alarm_timer_wait_running - Posix timer callback to wait for a timer 648 * @timr: Pointer to the posixtimer data struct 649 * 650 * Called from the core code when timer cancel detected that the callback 651 * is running. @timr is unlocked and rcu read lock is held to prevent it 652 * from being freed. 653 */ 654 static void alarm_timer_wait_running(struct k_itimer *timr) 655 { 656 hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer); 657 } 658 659 /** 660 * alarm_timer_arm - Posix timer callback to arm a timer 661 * @timr: Pointer to the posixtimer data struct 662 * @expires: The new expiry time 663 * @absolute: Expiry value is absolute time 664 * @sigev_none: Posix timer does not deliver signals 665 */ 666 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 667 bool absolute, bool sigev_none) 668 { 669 struct alarm *alarm = &timr->it.alarm.alarmtimer; 670 struct alarm_base *base = &alarm_bases[alarm->type]; 671 672 if (!absolute) 673 expires = ktime_add_safe(expires, base->get_ktime()); 674 if (sigev_none) 675 alarm->node.expires = expires; 676 else 677 alarm_start(&timr->it.alarm.alarmtimer, expires); 678 } 679 680 /** 681 * alarm_clock_getres - posix getres interface 682 * @which_clock: clockid 683 * @tp: timespec to fill 684 * 685 * Returns the granularity of underlying alarm base clock 686 */ 687 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 688 { 689 if (!alarmtimer_get_rtcdev()) 690 return -EINVAL; 691 692 tp->tv_sec = 0; 693 tp->tv_nsec = hrtimer_resolution; 694 return 0; 695 } 696 697 /** 698 * alarm_clock_get_timespec - posix clock_get_timespec interface 699 * @which_clock: clockid 700 * @tp: timespec to fill. 701 * 702 * Provides the underlying alarm base time in a tasks time namespace. 703 */ 704 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp) 705 { 706 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 707 708 if (!alarmtimer_get_rtcdev()) 709 return -EINVAL; 710 711 base->get_timespec(tp); 712 713 return 0; 714 } 715 716 /** 717 * alarm_clock_get_ktime - posix clock_get_ktime interface 718 * @which_clock: clockid 719 * 720 * Provides the underlying alarm base time in the root namespace. 721 */ 722 static ktime_t alarm_clock_get_ktime(clockid_t which_clock) 723 { 724 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 725 726 if (!alarmtimer_get_rtcdev()) 727 return -EINVAL; 728 729 return base->get_ktime(); 730 } 731 732 /** 733 * alarm_timer_create - posix timer_create interface 734 * @new_timer: k_itimer pointer to manage 735 * 736 * Initializes the k_itimer structure. 737 */ 738 static int alarm_timer_create(struct k_itimer *new_timer) 739 { 740 enum alarmtimer_type type; 741 742 if (!alarmtimer_get_rtcdev()) 743 return -EOPNOTSUPP; 744 745 if (!capable(CAP_WAKE_ALARM)) 746 return -EPERM; 747 748 type = clock2alarm(new_timer->it_clock); 749 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 750 return 0; 751 } 752 753 /** 754 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 755 * @alarm: ptr to alarm that fired 756 * @now: time at the timer expiration 757 * 758 * Wakes up the task that set the alarmtimer 759 * 760 * Return: ALARMTIMER_NORESTART 761 */ 762 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 763 ktime_t now) 764 { 765 struct task_struct *task = alarm->data; 766 767 alarm->data = NULL; 768 if (task) 769 wake_up_process(task); 770 return ALARMTIMER_NORESTART; 771 } 772 773 /** 774 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 775 * @alarm: ptr to alarmtimer 776 * @absexp: absolute expiration time 777 * @type: alarm type (BOOTTIME/REALTIME). 778 * 779 * Sets the alarm timer and sleeps until it is fired or interrupted. 780 */ 781 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, 782 enum alarmtimer_type type) 783 { 784 struct restart_block *restart; 785 alarm->data = (void *)current; 786 do { 787 set_current_state(TASK_INTERRUPTIBLE); 788 alarm_start(alarm, absexp); 789 if (likely(alarm->data)) 790 schedule(); 791 792 alarm_cancel(alarm); 793 } while (alarm->data && !signal_pending(current)); 794 795 __set_current_state(TASK_RUNNING); 796 797 destroy_hrtimer_on_stack(&alarm->timer); 798 799 if (!alarm->data) 800 return 0; 801 802 if (freezing(current)) 803 alarmtimer_freezerset(absexp, type); 804 restart = ¤t->restart_block; 805 if (restart->nanosleep.type != TT_NONE) { 806 struct timespec64 rmt; 807 ktime_t rem; 808 809 rem = ktime_sub(absexp, alarm_bases[type].get_ktime()); 810 811 if (rem <= 0) 812 return 0; 813 rmt = ktime_to_timespec64(rem); 814 815 return nanosleep_copyout(restart, &rmt); 816 } 817 return -ERESTART_RESTARTBLOCK; 818 } 819 820 static void 821 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, 822 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 823 { 824 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid, 825 HRTIMER_MODE_ABS); 826 __alarm_init(alarm, type, function); 827 } 828 829 /** 830 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 831 * @restart: ptr to restart block 832 * 833 * Handles restarted clock_nanosleep calls 834 */ 835 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 836 { 837 enum alarmtimer_type type = restart->nanosleep.clockid; 838 ktime_t exp = restart->nanosleep.expires; 839 struct alarm alarm; 840 841 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 842 843 return alarmtimer_do_nsleep(&alarm, exp, type); 844 } 845 846 /** 847 * alarm_timer_nsleep - alarmtimer nanosleep 848 * @which_clock: clockid 849 * @flags: determines abstime or relative 850 * @tsreq: requested sleep time (abs or rel) 851 * 852 * Handles clock_nanosleep calls against _ALARM clockids 853 */ 854 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 855 const struct timespec64 *tsreq) 856 { 857 enum alarmtimer_type type = clock2alarm(which_clock); 858 struct restart_block *restart = ¤t->restart_block; 859 struct alarm alarm; 860 ktime_t exp; 861 int ret; 862 863 if (!alarmtimer_get_rtcdev()) 864 return -EOPNOTSUPP; 865 866 if (flags & ~TIMER_ABSTIME) 867 return -EINVAL; 868 869 if (!capable(CAP_WAKE_ALARM)) 870 return -EPERM; 871 872 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 873 874 exp = timespec64_to_ktime(*tsreq); 875 /* Convert (if necessary) to absolute time */ 876 if (flags != TIMER_ABSTIME) { 877 ktime_t now = alarm_bases[type].get_ktime(); 878 879 exp = ktime_add_safe(now, exp); 880 } else { 881 exp = timens_ktime_to_host(which_clock, exp); 882 } 883 884 ret = alarmtimer_do_nsleep(&alarm, exp, type); 885 if (ret != -ERESTART_RESTARTBLOCK) 886 return ret; 887 888 /* abs timers don't set remaining time or restart */ 889 if (flags == TIMER_ABSTIME) 890 return -ERESTARTNOHAND; 891 892 restart->nanosleep.clockid = type; 893 restart->nanosleep.expires = exp; 894 set_restart_fn(restart, alarm_timer_nsleep_restart); 895 return ret; 896 } 897 898 const struct k_clock alarm_clock = { 899 .clock_getres = alarm_clock_getres, 900 .clock_get_ktime = alarm_clock_get_ktime, 901 .clock_get_timespec = alarm_clock_get_timespec, 902 .timer_create = alarm_timer_create, 903 .timer_set = common_timer_set, 904 .timer_del = common_timer_del, 905 .timer_get = common_timer_get, 906 .timer_arm = alarm_timer_arm, 907 .timer_rearm = alarm_timer_rearm, 908 .timer_forward = alarm_timer_forward, 909 .timer_remaining = alarm_timer_remaining, 910 .timer_try_to_cancel = alarm_timer_try_to_cancel, 911 .timer_wait_running = alarm_timer_wait_running, 912 .nsleep = alarm_timer_nsleep, 913 }; 914 #endif /* CONFIG_POSIX_TIMERS */ 915 916 917 /* Suspend hook structures */ 918 static const struct dev_pm_ops alarmtimer_pm_ops = { 919 .suspend = alarmtimer_suspend, 920 .resume = alarmtimer_resume, 921 }; 922 923 static struct platform_driver alarmtimer_driver = { 924 .driver = { 925 .name = "alarmtimer", 926 .pm = &alarmtimer_pm_ops, 927 } 928 }; 929 930 static void get_boottime_timespec(struct timespec64 *tp) 931 { 932 ktime_get_boottime_ts64(tp); 933 timens_add_boottime(tp); 934 } 935 936 /** 937 * alarmtimer_init - Initialize alarm timer code 938 * 939 * This function initializes the alarm bases and registers 940 * the posix clock ids. 941 */ 942 static int __init alarmtimer_init(void) 943 { 944 int error; 945 int i; 946 947 alarmtimer_rtc_timer_init(); 948 949 /* Initialize alarm bases */ 950 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 951 alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real; 952 alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64; 953 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 954 alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime; 955 alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec; 956 for (i = 0; i < ALARM_NUMTYPE; i++) { 957 timerqueue_init_head(&alarm_bases[i].timerqueue); 958 spin_lock_init(&alarm_bases[i].lock); 959 } 960 961 error = alarmtimer_rtc_interface_setup(); 962 if (error) 963 return error; 964 965 error = platform_driver_register(&alarmtimer_driver); 966 if (error) 967 goto out_if; 968 969 return 0; 970 out_if: 971 alarmtimer_rtc_interface_remove(); 972 return error; 973 } 974 device_initcall(alarmtimer_init); 975