xref: /linux/kernel/sched/ext_idle.c (revision 48849271e66114cb980a3bc44218b04d0f8cdcdd)
1337d1b35SAndrea Righi // SPDX-License-Identifier: GPL-2.0
2337d1b35SAndrea Righi /*
3337d1b35SAndrea Righi  * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4337d1b35SAndrea Righi  *
5337d1b35SAndrea Righi  * Built-in idle CPU tracking policy.
6337d1b35SAndrea Righi  *
7337d1b35SAndrea Righi  * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
8337d1b35SAndrea Righi  * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
9337d1b35SAndrea Righi  * Copyright (c) 2022 David Vernet <dvernet@meta.com>
10337d1b35SAndrea Righi  * Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
11337d1b35SAndrea Righi  */
12337d1b35SAndrea Righi #include "ext_idle.h"
13337d1b35SAndrea Righi 
14337d1b35SAndrea Righi /* Enable/disable built-in idle CPU selection policy */
15d73249f8SAndrea Righi static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
16337d1b35SAndrea Righi 
170aaaf89dSAndrea Righi /* Enable/disable per-node idle cpumasks */
180aaaf89dSAndrea Righi static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);
190aaaf89dSAndrea Righi 
20337d1b35SAndrea Righi #ifdef CONFIG_SMP
21337d1b35SAndrea Righi /* Enable/disable LLC aware optimizations */
22d73249f8SAndrea Righi static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
23337d1b35SAndrea Righi 
24337d1b35SAndrea Righi /* Enable/disable NUMA aware optimizations */
25d73249f8SAndrea Righi static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
26337d1b35SAndrea Righi 
27*48849271SAndrea Righi /*
28*48849271SAndrea Righi  * cpumasks to track idle CPUs within each NUMA node.
29*48849271SAndrea Righi  *
30*48849271SAndrea Righi  * If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask
31*48849271SAndrea Righi  * from is used to track all the idle CPUs in the system.
32*48849271SAndrea Righi  */
33*48849271SAndrea Righi struct scx_idle_cpus {
34337d1b35SAndrea Righi 	cpumask_var_t cpu;
35337d1b35SAndrea Righi 	cpumask_var_t smt;
36*48849271SAndrea Righi };
37*48849271SAndrea Righi 
38*48849271SAndrea Righi /*
39*48849271SAndrea Righi  * Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE
40*48849271SAndrea Righi  * is not enabled).
41*48849271SAndrea Righi  */
42*48849271SAndrea Righi static struct scx_idle_cpus scx_idle_global_masks;
43*48849271SAndrea Righi 
44*48849271SAndrea Righi /*
45*48849271SAndrea Righi  * Per-node idle cpumasks.
46*48849271SAndrea Righi  */
47*48849271SAndrea Righi static struct scx_idle_cpus **scx_idle_node_masks;
48*48849271SAndrea Righi 
49*48849271SAndrea Righi /*
50*48849271SAndrea Righi  * Return the idle masks associated to a target @node.
51*48849271SAndrea Righi  *
52*48849271SAndrea Righi  * NUMA_NO_NODE identifies the global idle cpumask.
53*48849271SAndrea Righi  */
54*48849271SAndrea Righi static struct scx_idle_cpus *idle_cpumask(int node)
55*48849271SAndrea Righi {
56*48849271SAndrea Righi 	return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node];
57*48849271SAndrea Righi }
58*48849271SAndrea Righi 
59*48849271SAndrea Righi /*
60*48849271SAndrea Righi  * Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if
61*48849271SAndrea Righi  * per-node idle cpumasks are disabled.
62*48849271SAndrea Righi  */
63*48849271SAndrea Righi static int scx_cpu_node_if_enabled(int cpu)
64*48849271SAndrea Righi {
65*48849271SAndrea Righi 	if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node))
66*48849271SAndrea Righi 		return NUMA_NO_NODE;
67*48849271SAndrea Righi 
68*48849271SAndrea Righi 	return cpu_to_node(cpu);
69*48849271SAndrea Righi }
70337d1b35SAndrea Righi 
71337d1b35SAndrea Righi bool scx_idle_test_and_clear_cpu(int cpu)
72337d1b35SAndrea Righi {
73*48849271SAndrea Righi 	int node = scx_cpu_node_if_enabled(cpu);
74*48849271SAndrea Righi 	struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
75*48849271SAndrea Righi 
76337d1b35SAndrea Righi #ifdef CONFIG_SCHED_SMT
77337d1b35SAndrea Righi 	/*
78337d1b35SAndrea Righi 	 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
79337d1b35SAndrea Righi 	 * cluster is not wholly idle either way. This also prevents
80337d1b35SAndrea Righi 	 * scx_pick_idle_cpu() from getting caught in an infinite loop.
81337d1b35SAndrea Righi 	 */
82337d1b35SAndrea Righi 	if (sched_smt_active()) {
83337d1b35SAndrea Righi 		const struct cpumask *smt = cpu_smt_mask(cpu);
84*48849271SAndrea Righi 		struct cpumask *idle_smts = idle_cpumask(node)->smt;
85337d1b35SAndrea Righi 
86337d1b35SAndrea Righi 		/*
87337d1b35SAndrea Righi 		 * If offline, @cpu is not its own sibling and
88337d1b35SAndrea Righi 		 * scx_pick_idle_cpu() can get caught in an infinite loop as
89*48849271SAndrea Righi 		 * @cpu is never cleared from the idle SMT mask. Ensure that
90*48849271SAndrea Righi 		 * @cpu is eventually cleared.
91337d1b35SAndrea Righi 		 *
92337d1b35SAndrea Righi 		 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
93337d1b35SAndrea Righi 		 * reduce memory writes, which may help alleviate cache
94337d1b35SAndrea Righi 		 * coherence pressure.
95337d1b35SAndrea Righi 		 */
96*48849271SAndrea Righi 		if (cpumask_intersects(smt, idle_smts))
97*48849271SAndrea Righi 			cpumask_andnot(idle_smts, idle_smts, smt);
98*48849271SAndrea Righi 		else if (cpumask_test_cpu(cpu, idle_smts))
99*48849271SAndrea Righi 			__cpumask_clear_cpu(cpu, idle_smts);
100337d1b35SAndrea Righi 	}
101337d1b35SAndrea Righi #endif
102*48849271SAndrea Righi 
103*48849271SAndrea Righi 	return cpumask_test_and_clear_cpu(cpu, idle_cpus);
104337d1b35SAndrea Righi }
105337d1b35SAndrea Righi 
106*48849271SAndrea Righi /*
107*48849271SAndrea Righi  * Pick an idle CPU in a specific NUMA node.
108*48849271SAndrea Righi  */
109*48849271SAndrea Righi static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags)
110337d1b35SAndrea Righi {
111337d1b35SAndrea Righi 	int cpu;
112337d1b35SAndrea Righi 
113337d1b35SAndrea Righi retry:
114337d1b35SAndrea Righi 	if (sched_smt_active()) {
115*48849271SAndrea Righi 		cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed);
116337d1b35SAndrea Righi 		if (cpu < nr_cpu_ids)
117337d1b35SAndrea Righi 			goto found;
118337d1b35SAndrea Righi 
119337d1b35SAndrea Righi 		if (flags & SCX_PICK_IDLE_CORE)
120337d1b35SAndrea Righi 			return -EBUSY;
121337d1b35SAndrea Righi 	}
122337d1b35SAndrea Righi 
123*48849271SAndrea Righi 	cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed);
124337d1b35SAndrea Righi 	if (cpu >= nr_cpu_ids)
125337d1b35SAndrea Righi 		return -EBUSY;
126337d1b35SAndrea Righi 
127337d1b35SAndrea Righi found:
128337d1b35SAndrea Righi 	if (scx_idle_test_and_clear_cpu(cpu))
129337d1b35SAndrea Righi 		return cpu;
130337d1b35SAndrea Righi 	else
131337d1b35SAndrea Righi 		goto retry;
132337d1b35SAndrea Righi }
133337d1b35SAndrea Righi 
134337d1b35SAndrea Righi /*
135*48849271SAndrea Righi  * Tracks nodes that have not yet been visited when searching for an idle
136*48849271SAndrea Righi  * CPU across all available nodes.
137*48849271SAndrea Righi  */
138*48849271SAndrea Righi static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited);
139*48849271SAndrea Righi 
140*48849271SAndrea Righi /*
141*48849271SAndrea Righi  * Search for an idle CPU across all nodes, excluding @node.
142*48849271SAndrea Righi  */
143*48849271SAndrea Righi static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
144*48849271SAndrea Righi {
145*48849271SAndrea Righi 	nodemask_t *unvisited;
146*48849271SAndrea Righi 	s32 cpu = -EBUSY;
147*48849271SAndrea Righi 
148*48849271SAndrea Righi 	preempt_disable();
149*48849271SAndrea Righi 	unvisited = this_cpu_ptr(&per_cpu_unvisited);
150*48849271SAndrea Righi 
151*48849271SAndrea Righi 	/*
152*48849271SAndrea Righi 	 * Restrict the search to the online nodes (excluding the current
153*48849271SAndrea Righi 	 * node that has been visited already).
154*48849271SAndrea Righi 	 */
155*48849271SAndrea Righi 	nodes_copy(*unvisited, node_states[N_ONLINE]);
156*48849271SAndrea Righi 	node_clear(node, *unvisited);
157*48849271SAndrea Righi 
158*48849271SAndrea Righi 	/*
159*48849271SAndrea Righi 	 * Traverse all nodes in order of increasing distance, starting
160*48849271SAndrea Righi 	 * from @node.
161*48849271SAndrea Righi 	 *
162*48849271SAndrea Righi 	 * This loop is O(N^2), with N being the amount of NUMA nodes,
163*48849271SAndrea Righi 	 * which might be quite expensive in large NUMA systems. However,
164*48849271SAndrea Righi 	 * this complexity comes into play only when a scheduler enables
165*48849271SAndrea Righi 	 * SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU
166*48849271SAndrea Righi 	 * without specifying a target NUMA node, so it shouldn't be a
167*48849271SAndrea Righi 	 * bottleneck is most cases.
168*48849271SAndrea Righi 	 *
169*48849271SAndrea Righi 	 * As a future optimization we may want to cache the list of nodes
170*48849271SAndrea Righi 	 * in a per-node array, instead of actually traversing them every
171*48849271SAndrea Righi 	 * time.
172*48849271SAndrea Righi 	 */
173*48849271SAndrea Righi 	for_each_node_numadist(node, *unvisited) {
174*48849271SAndrea Righi 		cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
175*48849271SAndrea Righi 		if (cpu >= 0)
176*48849271SAndrea Righi 			break;
177*48849271SAndrea Righi 	}
178*48849271SAndrea Righi 	preempt_enable();
179*48849271SAndrea Righi 
180*48849271SAndrea Righi 	return cpu;
181*48849271SAndrea Righi }
182*48849271SAndrea Righi 
183*48849271SAndrea Righi /*
184*48849271SAndrea Righi  * Find an idle CPU in the system, starting from @node.
185*48849271SAndrea Righi  */
186*48849271SAndrea Righi s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags)
187*48849271SAndrea Righi {
188*48849271SAndrea Righi 	s32 cpu;
189*48849271SAndrea Righi 
190*48849271SAndrea Righi 	/*
191*48849271SAndrea Righi 	 * Always search in the starting node first (this is an
192*48849271SAndrea Righi 	 * optimization that can save some cycles even when the search is
193*48849271SAndrea Righi 	 * not limited to a single node).
194*48849271SAndrea Righi 	 */
195*48849271SAndrea Righi 	cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
196*48849271SAndrea Righi 	if (cpu >= 0)
197*48849271SAndrea Righi 		return cpu;
198*48849271SAndrea Righi 
199*48849271SAndrea Righi 	/*
200*48849271SAndrea Righi 	 * Stop the search if we are using only a single global cpumask
201*48849271SAndrea Righi 	 * (NUMA_NO_NODE) or if the search is restricted to the first node
202*48849271SAndrea Righi 	 * only.
203*48849271SAndrea Righi 	 */
204*48849271SAndrea Righi 	if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE)
205*48849271SAndrea Righi 		return -EBUSY;
206*48849271SAndrea Righi 
207*48849271SAndrea Righi 	/*
208*48849271SAndrea Righi 	 * Extend the search to the other online nodes.
209*48849271SAndrea Righi 	 */
210*48849271SAndrea Righi 	return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags);
211*48849271SAndrea Righi }
212*48849271SAndrea Righi 
213*48849271SAndrea Righi /*
214337d1b35SAndrea Righi  * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
215337d1b35SAndrea Righi  * domain is not defined).
216337d1b35SAndrea Righi  */
217337d1b35SAndrea Righi static unsigned int llc_weight(s32 cpu)
218337d1b35SAndrea Righi {
219337d1b35SAndrea Righi 	struct sched_domain *sd;
220337d1b35SAndrea Righi 
221337d1b35SAndrea Righi 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
222337d1b35SAndrea Righi 	if (!sd)
223337d1b35SAndrea Righi 		return 0;
224337d1b35SAndrea Righi 
225337d1b35SAndrea Righi 	return sd->span_weight;
226337d1b35SAndrea Righi }
227337d1b35SAndrea Righi 
228337d1b35SAndrea Righi /*
229337d1b35SAndrea Righi  * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
230337d1b35SAndrea Righi  * domain is not defined).
231337d1b35SAndrea Righi  */
232337d1b35SAndrea Righi static struct cpumask *llc_span(s32 cpu)
233337d1b35SAndrea Righi {
234337d1b35SAndrea Righi 	struct sched_domain *sd;
235337d1b35SAndrea Righi 
236337d1b35SAndrea Righi 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
237337d1b35SAndrea Righi 	if (!sd)
238337d1b35SAndrea Righi 		return 0;
239337d1b35SAndrea Righi 
240337d1b35SAndrea Righi 	return sched_domain_span(sd);
241337d1b35SAndrea Righi }
242337d1b35SAndrea Righi 
243337d1b35SAndrea Righi /*
244337d1b35SAndrea Righi  * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
245337d1b35SAndrea Righi  * NUMA domain is not defined).
246337d1b35SAndrea Righi  */
247337d1b35SAndrea Righi static unsigned int numa_weight(s32 cpu)
248337d1b35SAndrea Righi {
249337d1b35SAndrea Righi 	struct sched_domain *sd;
250337d1b35SAndrea Righi 	struct sched_group *sg;
251337d1b35SAndrea Righi 
252337d1b35SAndrea Righi 	sd = rcu_dereference(per_cpu(sd_numa, cpu));
253337d1b35SAndrea Righi 	if (!sd)
254337d1b35SAndrea Righi 		return 0;
255337d1b35SAndrea Righi 	sg = sd->groups;
256337d1b35SAndrea Righi 	if (!sg)
257337d1b35SAndrea Righi 		return 0;
258337d1b35SAndrea Righi 
259337d1b35SAndrea Righi 	return sg->group_weight;
260337d1b35SAndrea Righi }
261337d1b35SAndrea Righi 
262337d1b35SAndrea Righi /*
263337d1b35SAndrea Righi  * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
264337d1b35SAndrea Righi  * domain is not defined).
265337d1b35SAndrea Righi  */
266337d1b35SAndrea Righi static struct cpumask *numa_span(s32 cpu)
267337d1b35SAndrea Righi {
268337d1b35SAndrea Righi 	struct sched_domain *sd;
269337d1b35SAndrea Righi 	struct sched_group *sg;
270337d1b35SAndrea Righi 
271337d1b35SAndrea Righi 	sd = rcu_dereference(per_cpu(sd_numa, cpu));
272337d1b35SAndrea Righi 	if (!sd)
273337d1b35SAndrea Righi 		return NULL;
274337d1b35SAndrea Righi 	sg = sd->groups;
275337d1b35SAndrea Righi 	if (!sg)
276337d1b35SAndrea Righi 		return NULL;
277337d1b35SAndrea Righi 
278337d1b35SAndrea Righi 	return sched_group_span(sg);
279337d1b35SAndrea Righi }
280337d1b35SAndrea Righi 
281337d1b35SAndrea Righi /*
282337d1b35SAndrea Righi  * Return true if the LLC domains do not perfectly overlap with the NUMA
283337d1b35SAndrea Righi  * domains, false otherwise.
284337d1b35SAndrea Righi  */
285337d1b35SAndrea Righi static bool llc_numa_mismatch(void)
286337d1b35SAndrea Righi {
287337d1b35SAndrea Righi 	int cpu;
288337d1b35SAndrea Righi 
289337d1b35SAndrea Righi 	/*
290337d1b35SAndrea Righi 	 * We need to scan all online CPUs to verify whether their scheduling
291337d1b35SAndrea Righi 	 * domains overlap.
292337d1b35SAndrea Righi 	 *
293337d1b35SAndrea Righi 	 * While it is rare to encounter architectures with asymmetric NUMA
294337d1b35SAndrea Righi 	 * topologies, CPU hotplugging or virtualized environments can result
295337d1b35SAndrea Righi 	 * in asymmetric configurations.
296337d1b35SAndrea Righi 	 *
297337d1b35SAndrea Righi 	 * For example:
298337d1b35SAndrea Righi 	 *
299337d1b35SAndrea Righi 	 *  NUMA 0:
300337d1b35SAndrea Righi 	 *    - LLC 0: cpu0..cpu7
301337d1b35SAndrea Righi 	 *    - LLC 1: cpu8..cpu15 [offline]
302337d1b35SAndrea Righi 	 *
303337d1b35SAndrea Righi 	 *  NUMA 1:
304337d1b35SAndrea Righi 	 *    - LLC 0: cpu16..cpu23
305337d1b35SAndrea Righi 	 *    - LLC 1: cpu24..cpu31
306337d1b35SAndrea Righi 	 *
307337d1b35SAndrea Righi 	 * In this case, if we only check the first online CPU (cpu0), we might
308337d1b35SAndrea Righi 	 * incorrectly assume that the LLC and NUMA domains are fully
309337d1b35SAndrea Righi 	 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
310337d1b35SAndrea Righi 	 * domains).
311337d1b35SAndrea Righi 	 */
312337d1b35SAndrea Righi 	for_each_online_cpu(cpu)
313337d1b35SAndrea Righi 		if (llc_weight(cpu) != numa_weight(cpu))
314337d1b35SAndrea Righi 			return true;
315337d1b35SAndrea Righi 
316337d1b35SAndrea Righi 	return false;
317337d1b35SAndrea Righi }
318337d1b35SAndrea Righi 
319337d1b35SAndrea Righi /*
320337d1b35SAndrea Righi  * Initialize topology-aware scheduling.
321337d1b35SAndrea Righi  *
322337d1b35SAndrea Righi  * Detect if the system has multiple LLC or multiple NUMA domains and enable
323337d1b35SAndrea Righi  * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
324337d1b35SAndrea Righi  * selection policy.
325337d1b35SAndrea Righi  *
326337d1b35SAndrea Righi  * Assumption: the kernel's internal topology representation assumes that each
327337d1b35SAndrea Righi  * CPU belongs to a single LLC domain, and that each LLC domain is entirely
328337d1b35SAndrea Righi  * contained within a single NUMA node.
329337d1b35SAndrea Righi  */
3300aaaf89dSAndrea Righi void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
331337d1b35SAndrea Righi {
332337d1b35SAndrea Righi 	bool enable_llc = false, enable_numa = false;
333337d1b35SAndrea Righi 	unsigned int nr_cpus;
334337d1b35SAndrea Righi 	s32 cpu = cpumask_first(cpu_online_mask);
335337d1b35SAndrea Righi 
336337d1b35SAndrea Righi 	/*
337337d1b35SAndrea Righi 	 * Enable LLC domain optimization only when there are multiple LLC
338337d1b35SAndrea Righi 	 * domains among the online CPUs. If all online CPUs are part of a
339337d1b35SAndrea Righi 	 * single LLC domain, the idle CPU selection logic can choose any
340337d1b35SAndrea Righi 	 * online CPU without bias.
341337d1b35SAndrea Righi 	 *
342337d1b35SAndrea Righi 	 * Note that it is sufficient to check the LLC domain of the first
343337d1b35SAndrea Righi 	 * online CPU to determine whether a single LLC domain includes all
344337d1b35SAndrea Righi 	 * CPUs.
345337d1b35SAndrea Righi 	 */
346337d1b35SAndrea Righi 	rcu_read_lock();
347337d1b35SAndrea Righi 	nr_cpus = llc_weight(cpu);
348337d1b35SAndrea Righi 	if (nr_cpus > 0) {
349337d1b35SAndrea Righi 		if (nr_cpus < num_online_cpus())
350337d1b35SAndrea Righi 			enable_llc = true;
351337d1b35SAndrea Righi 		pr_debug("sched_ext: LLC=%*pb weight=%u\n",
352337d1b35SAndrea Righi 			 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
353337d1b35SAndrea Righi 	}
354337d1b35SAndrea Righi 
355337d1b35SAndrea Righi 	/*
356337d1b35SAndrea Righi 	 * Enable NUMA optimization only when there are multiple NUMA domains
357337d1b35SAndrea Righi 	 * among the online CPUs and the NUMA domains don't perfectly overlaps
358337d1b35SAndrea Righi 	 * with the LLC domains.
359337d1b35SAndrea Righi 	 *
360337d1b35SAndrea Righi 	 * If all CPUs belong to the same NUMA node and the same LLC domain,
361337d1b35SAndrea Righi 	 * enabling both NUMA and LLC optimizations is unnecessary, as checking
362337d1b35SAndrea Righi 	 * for an idle CPU in the same domain twice is redundant.
3630aaaf89dSAndrea Righi 	 *
3640aaaf89dSAndrea Righi 	 * If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
3650aaaf89dSAndrea Righi 	 * optimization, as we would naturally select idle CPUs within
3660aaaf89dSAndrea Righi 	 * specific NUMA nodes querying the corresponding per-node cpumask.
367337d1b35SAndrea Righi 	 */
3680aaaf89dSAndrea Righi 	if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
369337d1b35SAndrea Righi 		nr_cpus = numa_weight(cpu);
370337d1b35SAndrea Righi 		if (nr_cpus > 0) {
371337d1b35SAndrea Righi 			if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
372337d1b35SAndrea Righi 				enable_numa = true;
373337d1b35SAndrea Righi 			pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
3740aaaf89dSAndrea Righi 				 cpumask_pr_args(numa_span(cpu)), nr_cpus);
3750aaaf89dSAndrea Righi 		}
376337d1b35SAndrea Righi 	}
377337d1b35SAndrea Righi 	rcu_read_unlock();
378337d1b35SAndrea Righi 
379337d1b35SAndrea Righi 	pr_debug("sched_ext: LLC idle selection %s\n",
380337d1b35SAndrea Righi 		 str_enabled_disabled(enable_llc));
381337d1b35SAndrea Righi 	pr_debug("sched_ext: NUMA idle selection %s\n",
382337d1b35SAndrea Righi 		 str_enabled_disabled(enable_numa));
383337d1b35SAndrea Righi 
384337d1b35SAndrea Righi 	if (enable_llc)
385337d1b35SAndrea Righi 		static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
386337d1b35SAndrea Righi 	else
387337d1b35SAndrea Righi 		static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
388337d1b35SAndrea Righi 	if (enable_numa)
389337d1b35SAndrea Righi 		static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
390337d1b35SAndrea Righi 	else
391337d1b35SAndrea Righi 		static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
392337d1b35SAndrea Righi }
393337d1b35SAndrea Righi 
394337d1b35SAndrea Righi /*
395337d1b35SAndrea Righi  * Built-in CPU idle selection policy:
396337d1b35SAndrea Righi  *
397337d1b35SAndrea Righi  * 1. Prioritize full-idle cores:
398337d1b35SAndrea Righi  *   - always prioritize CPUs from fully idle cores (both logical CPUs are
399337d1b35SAndrea Righi  *     idle) to avoid interference caused by SMT.
400337d1b35SAndrea Righi  *
401337d1b35SAndrea Righi  * 2. Reuse the same CPU:
402337d1b35SAndrea Righi  *   - prefer the last used CPU to take advantage of cached data (L1, L2) and
403337d1b35SAndrea Righi  *     branch prediction optimizations.
404337d1b35SAndrea Righi  *
405337d1b35SAndrea Righi  * 3. Pick a CPU within the same LLC (Last-Level Cache):
406337d1b35SAndrea Righi  *   - if the above conditions aren't met, pick a CPU that shares the same LLC
407337d1b35SAndrea Righi  *     to maintain cache locality.
408337d1b35SAndrea Righi  *
409337d1b35SAndrea Righi  * 4. Pick a CPU within the same NUMA node, if enabled:
410337d1b35SAndrea Righi  *   - choose a CPU from the same NUMA node to reduce memory access latency.
411337d1b35SAndrea Righi  *
412337d1b35SAndrea Righi  * 5. Pick any idle CPU usable by the task.
413337d1b35SAndrea Righi  *
414337d1b35SAndrea Righi  * Step 3 and 4 are performed only if the system has, respectively, multiple
415337d1b35SAndrea Righi  * LLC domains / multiple NUMA nodes (see scx_selcpu_topo_llc and
416337d1b35SAndrea Righi  * scx_selcpu_topo_numa).
417337d1b35SAndrea Righi  *
418337d1b35SAndrea Righi  * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
419337d1b35SAndrea Righi  * we never call ops.select_cpu() for them, see select_task_rq().
420337d1b35SAndrea Righi  */
421337d1b35SAndrea Righi s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *found)
422337d1b35SAndrea Righi {
423337d1b35SAndrea Righi 	const struct cpumask *llc_cpus = NULL;
424337d1b35SAndrea Righi 	const struct cpumask *numa_cpus = NULL;
425*48849271SAndrea Righi 	int node = scx_cpu_node_if_enabled(prev_cpu);
426337d1b35SAndrea Righi 	s32 cpu;
427337d1b35SAndrea Righi 
428337d1b35SAndrea Righi 	*found = false;
429337d1b35SAndrea Righi 
430337d1b35SAndrea Righi 	/*
431337d1b35SAndrea Righi 	 * This is necessary to protect llc_cpus.
432337d1b35SAndrea Righi 	 */
433337d1b35SAndrea Righi 	rcu_read_lock();
434337d1b35SAndrea Righi 
435337d1b35SAndrea Righi 	/*
436337d1b35SAndrea Righi 	 * Determine the scheduling domain only if the task is allowed to run
437337d1b35SAndrea Righi 	 * on all CPUs.
438337d1b35SAndrea Righi 	 *
439337d1b35SAndrea Righi 	 * This is done primarily for efficiency, as it avoids the overhead of
440337d1b35SAndrea Righi 	 * updating a cpumask every time we need to select an idle CPU (which
441337d1b35SAndrea Righi 	 * can be costly in large SMP systems), but it also aligns logically:
442337d1b35SAndrea Righi 	 * if a task's scheduling domain is restricted by user-space (through
443337d1b35SAndrea Righi 	 * CPU affinity), the task will simply use the flat scheduling domain
444337d1b35SAndrea Righi 	 * defined by user-space.
445337d1b35SAndrea Righi 	 */
446337d1b35SAndrea Righi 	if (p->nr_cpus_allowed >= num_possible_cpus()) {
447337d1b35SAndrea Righi 		if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
448337d1b35SAndrea Righi 			numa_cpus = numa_span(prev_cpu);
449337d1b35SAndrea Righi 
450337d1b35SAndrea Righi 		if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc))
451337d1b35SAndrea Righi 			llc_cpus = llc_span(prev_cpu);
452337d1b35SAndrea Righi 	}
453337d1b35SAndrea Righi 
454337d1b35SAndrea Righi 	/*
455337d1b35SAndrea Righi 	 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
456337d1b35SAndrea Righi 	 */
457337d1b35SAndrea Righi 	if (wake_flags & SCX_WAKE_SYNC) {
458337d1b35SAndrea Righi 		cpu = smp_processor_id();
459337d1b35SAndrea Righi 
460337d1b35SAndrea Righi 		/*
461337d1b35SAndrea Righi 		 * If the waker's CPU is cache affine and prev_cpu is idle,
462337d1b35SAndrea Righi 		 * then avoid a migration.
463337d1b35SAndrea Righi 		 */
464337d1b35SAndrea Righi 		if (cpus_share_cache(cpu, prev_cpu) &&
465337d1b35SAndrea Righi 		    scx_idle_test_and_clear_cpu(prev_cpu)) {
466337d1b35SAndrea Righi 			cpu = prev_cpu;
467337d1b35SAndrea Righi 			goto cpu_found;
468337d1b35SAndrea Righi 		}
469337d1b35SAndrea Righi 
470337d1b35SAndrea Righi 		/*
471337d1b35SAndrea Righi 		 * If the waker's local DSQ is empty, and the system is under
472337d1b35SAndrea Righi 		 * utilized, try to wake up @p to the local DSQ of the waker.
473337d1b35SAndrea Righi 		 *
474337d1b35SAndrea Righi 		 * Checking only for an empty local DSQ is insufficient as it
475337d1b35SAndrea Righi 		 * could give the wakee an unfair advantage when the system is
476337d1b35SAndrea Righi 		 * oversaturated.
477337d1b35SAndrea Righi 		 *
478337d1b35SAndrea Righi 		 * Checking only for the presence of idle CPUs is also
479337d1b35SAndrea Righi 		 * insufficient as the local DSQ of the waker could have tasks
480337d1b35SAndrea Righi 		 * piled up on it even if there is an idle core elsewhere on
481337d1b35SAndrea Righi 		 * the system.
482337d1b35SAndrea Righi 		 */
483*48849271SAndrea Righi 		if (!(current->flags & PF_EXITING) &&
484*48849271SAndrea Righi 		    cpu_rq(cpu)->scx.local_dsq.nr == 0 &&
485*48849271SAndrea Righi 		    !cpumask_empty(idle_cpumask(cpu_to_node(cpu))->cpu)) {
486337d1b35SAndrea Righi 			if (cpumask_test_cpu(cpu, p->cpus_ptr))
487337d1b35SAndrea Righi 				goto cpu_found;
488337d1b35SAndrea Righi 		}
489337d1b35SAndrea Righi 	}
490337d1b35SAndrea Righi 
491337d1b35SAndrea Righi 	/*
492337d1b35SAndrea Righi 	 * If CPU has SMT, any wholly idle CPU is likely a better pick than
493337d1b35SAndrea Righi 	 * partially idle @prev_cpu.
494337d1b35SAndrea Righi 	 */
495337d1b35SAndrea Righi 	if (sched_smt_active()) {
496337d1b35SAndrea Righi 		/*
497337d1b35SAndrea Righi 		 * Keep using @prev_cpu if it's part of a fully idle core.
498337d1b35SAndrea Righi 		 */
499*48849271SAndrea Righi 		if (cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) &&
500337d1b35SAndrea Righi 		    scx_idle_test_and_clear_cpu(prev_cpu)) {
501337d1b35SAndrea Righi 			cpu = prev_cpu;
502337d1b35SAndrea Righi 			goto cpu_found;
503337d1b35SAndrea Righi 		}
504337d1b35SAndrea Righi 
505337d1b35SAndrea Righi 		/*
506337d1b35SAndrea Righi 		 * Search for any fully idle core in the same LLC domain.
507337d1b35SAndrea Righi 		 */
508337d1b35SAndrea Righi 		if (llc_cpus) {
509*48849271SAndrea Righi 			cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE);
510337d1b35SAndrea Righi 			if (cpu >= 0)
511337d1b35SAndrea Righi 				goto cpu_found;
512337d1b35SAndrea Righi 		}
513337d1b35SAndrea Righi 
514337d1b35SAndrea Righi 		/*
515337d1b35SAndrea Righi 		 * Search for any fully idle core in the same NUMA node.
516337d1b35SAndrea Righi 		 */
517337d1b35SAndrea Righi 		if (numa_cpus) {
518*48849271SAndrea Righi 			cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE);
519337d1b35SAndrea Righi 			if (cpu >= 0)
520337d1b35SAndrea Righi 				goto cpu_found;
521337d1b35SAndrea Righi 		}
522337d1b35SAndrea Righi 
523337d1b35SAndrea Righi 		/*
524337d1b35SAndrea Righi 		 * Search for any full idle core usable by the task.
525*48849271SAndrea Righi 		 *
526*48849271SAndrea Righi 		 * If NUMA aware idle selection is enabled, the search will
527*48849271SAndrea Righi 		 * begin in prev_cpu's node and proceed to other nodes in
528*48849271SAndrea Righi 		 * order of increasing distance.
529337d1b35SAndrea Righi 		 */
530*48849271SAndrea Righi 		cpu = scx_pick_idle_cpu(p->cpus_ptr, node, SCX_PICK_IDLE_CORE);
531337d1b35SAndrea Righi 		if (cpu >= 0)
532337d1b35SAndrea Righi 			goto cpu_found;
533337d1b35SAndrea Righi 	}
534337d1b35SAndrea Righi 
535337d1b35SAndrea Righi 	/*
536337d1b35SAndrea Righi 	 * Use @prev_cpu if it's idle.
537337d1b35SAndrea Righi 	 */
538337d1b35SAndrea Righi 	if (scx_idle_test_and_clear_cpu(prev_cpu)) {
539337d1b35SAndrea Righi 		cpu = prev_cpu;
540337d1b35SAndrea Righi 		goto cpu_found;
541337d1b35SAndrea Righi 	}
542337d1b35SAndrea Righi 
543337d1b35SAndrea Righi 	/*
544337d1b35SAndrea Righi 	 * Search for any idle CPU in the same LLC domain.
545337d1b35SAndrea Righi 	 */
546337d1b35SAndrea Righi 	if (llc_cpus) {
547*48849271SAndrea Righi 		cpu = pick_idle_cpu_in_node(llc_cpus, node, 0);
548337d1b35SAndrea Righi 		if (cpu >= 0)
549337d1b35SAndrea Righi 			goto cpu_found;
550337d1b35SAndrea Righi 	}
551337d1b35SAndrea Righi 
552337d1b35SAndrea Righi 	/*
553337d1b35SAndrea Righi 	 * Search for any idle CPU in the same NUMA node.
554337d1b35SAndrea Righi 	 */
555337d1b35SAndrea Righi 	if (numa_cpus) {
556*48849271SAndrea Righi 		cpu = pick_idle_cpu_in_node(numa_cpus, node, 0);
557337d1b35SAndrea Righi 		if (cpu >= 0)
558337d1b35SAndrea Righi 			goto cpu_found;
559337d1b35SAndrea Righi 	}
560337d1b35SAndrea Righi 
561337d1b35SAndrea Righi 	/*
562337d1b35SAndrea Righi 	 * Search for any idle CPU usable by the task.
563337d1b35SAndrea Righi 	 */
564*48849271SAndrea Righi 	cpu = scx_pick_idle_cpu(p->cpus_ptr, node, 0);
565337d1b35SAndrea Righi 	if (cpu >= 0)
566337d1b35SAndrea Righi 		goto cpu_found;
567337d1b35SAndrea Righi 
568337d1b35SAndrea Righi 	rcu_read_unlock();
569337d1b35SAndrea Righi 	return prev_cpu;
570337d1b35SAndrea Righi 
571337d1b35SAndrea Righi cpu_found:
572337d1b35SAndrea Righi 	rcu_read_unlock();
573337d1b35SAndrea Righi 
574337d1b35SAndrea Righi 	*found = true;
575337d1b35SAndrea Righi 	return cpu;
576337d1b35SAndrea Righi }
577337d1b35SAndrea Righi 
578*48849271SAndrea Righi /*
579*48849271SAndrea Righi  * Initialize global and per-node idle cpumasks.
580*48849271SAndrea Righi  */
581337d1b35SAndrea Righi void scx_idle_init_masks(void)
582337d1b35SAndrea Righi {
583*48849271SAndrea Righi 	int node;
584*48849271SAndrea Righi 
585*48849271SAndrea Righi 	/* Allocate global idle cpumasks */
586*48849271SAndrea Righi 	BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL));
587*48849271SAndrea Righi 	BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL));
588*48849271SAndrea Righi 
589*48849271SAndrea Righi 	/* Allocate per-node idle cpumasks */
590*48849271SAndrea Righi 	scx_idle_node_masks = kcalloc(num_possible_nodes(),
591*48849271SAndrea Righi 				      sizeof(*scx_idle_node_masks), GFP_KERNEL);
592*48849271SAndrea Righi 	BUG_ON(!scx_idle_node_masks);
593*48849271SAndrea Righi 
594*48849271SAndrea Righi 	for_each_node(node) {
595*48849271SAndrea Righi 		scx_idle_node_masks[node] = kzalloc_node(sizeof(**scx_idle_node_masks),
596*48849271SAndrea Righi 							 GFP_KERNEL, node);
597*48849271SAndrea Righi 		BUG_ON(!scx_idle_node_masks[node]);
598*48849271SAndrea Righi 
599*48849271SAndrea Righi 		BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->cpu, GFP_KERNEL, node));
600*48849271SAndrea Righi 		BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->smt, GFP_KERNEL, node));
601*48849271SAndrea Righi 	}
602337d1b35SAndrea Righi }
603337d1b35SAndrea Righi 
604337d1b35SAndrea Righi static void update_builtin_idle(int cpu, bool idle)
605337d1b35SAndrea Righi {
606*48849271SAndrea Righi 	int node = scx_cpu_node_if_enabled(cpu);
607*48849271SAndrea Righi 	struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
608*48849271SAndrea Righi 
609*48849271SAndrea Righi 	assign_cpu(cpu, idle_cpus, idle);
610337d1b35SAndrea Righi 
611337d1b35SAndrea Righi #ifdef CONFIG_SCHED_SMT
612337d1b35SAndrea Righi 	if (sched_smt_active()) {
613337d1b35SAndrea Righi 		const struct cpumask *smt = cpu_smt_mask(cpu);
614*48849271SAndrea Righi 		struct cpumask *idle_smts = idle_cpumask(node)->smt;
615337d1b35SAndrea Righi 
616337d1b35SAndrea Righi 		if (idle) {
617337d1b35SAndrea Righi 			/*
618*48849271SAndrea Righi 			 * idle_smt handling is racy but that's fine as it's
619*48849271SAndrea Righi 			 * only for optimization and self-correcting.
620337d1b35SAndrea Righi 			 */
621*48849271SAndrea Righi 			if (!cpumask_subset(smt, idle_cpus))
622337d1b35SAndrea Righi 				return;
623*48849271SAndrea Righi 			cpumask_or(idle_smts, idle_smts, smt);
624337d1b35SAndrea Righi 		} else {
625*48849271SAndrea Righi 			cpumask_andnot(idle_smts, idle_smts, smt);
626337d1b35SAndrea Righi 		}
627337d1b35SAndrea Righi 	}
628337d1b35SAndrea Righi #endif
629337d1b35SAndrea Righi }
630337d1b35SAndrea Righi 
631337d1b35SAndrea Righi /*
632337d1b35SAndrea Righi  * Update the idle state of a CPU to @idle.
633337d1b35SAndrea Righi  *
634337d1b35SAndrea Righi  * If @do_notify is true, ops.update_idle() is invoked to notify the scx
635337d1b35SAndrea Righi  * scheduler of an actual idle state transition (idle to busy or vice
636337d1b35SAndrea Righi  * versa). If @do_notify is false, only the idle state in the idle masks is
637337d1b35SAndrea Righi  * refreshed without invoking ops.update_idle().
638337d1b35SAndrea Righi  *
639337d1b35SAndrea Righi  * This distinction is necessary, because an idle CPU can be "reserved" and
640337d1b35SAndrea Righi  * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
641337d1b35SAndrea Righi  * busy even if no tasks are dispatched. In this case, the CPU may return
642337d1b35SAndrea Righi  * to idle without a true state transition. Refreshing the idle masks
643337d1b35SAndrea Righi  * without invoking ops.update_idle() ensures accurate idle state tracking
644337d1b35SAndrea Righi  * while avoiding unnecessary updates and maintaining balanced state
645337d1b35SAndrea Righi  * transitions.
646337d1b35SAndrea Righi  */
647337d1b35SAndrea Righi void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
648337d1b35SAndrea Righi {
649337d1b35SAndrea Righi 	int cpu = cpu_of(rq);
650337d1b35SAndrea Righi 
651337d1b35SAndrea Righi 	lockdep_assert_rq_held(rq);
652337d1b35SAndrea Righi 
653337d1b35SAndrea Righi 	/*
654337d1b35SAndrea Righi 	 * Trigger ops.update_idle() only when transitioning from a task to
655337d1b35SAndrea Righi 	 * the idle thread and vice versa.
656337d1b35SAndrea Righi 	 *
657337d1b35SAndrea Righi 	 * Idle transitions are indicated by do_notify being set to true,
658337d1b35SAndrea Righi 	 * managed by put_prev_task_idle()/set_next_task_idle().
659337d1b35SAndrea Righi 	 */
660337d1b35SAndrea Righi 	if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq))
661337d1b35SAndrea Righi 		SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
662337d1b35SAndrea Righi 
663337d1b35SAndrea Righi 	/*
664337d1b35SAndrea Righi 	 * Update the idle masks:
665337d1b35SAndrea Righi 	 * - for real idle transitions (do_notify == true)
666337d1b35SAndrea Righi 	 * - for idle-to-idle transitions (indicated by the previous task
667337d1b35SAndrea Righi 	 *   being the idle thread, managed by pick_task_idle())
668337d1b35SAndrea Righi 	 *
669337d1b35SAndrea Righi 	 * Skip updating idle masks if the previous task is not the idle
670337d1b35SAndrea Righi 	 * thread, since set_next_task_idle() has already handled it when
671337d1b35SAndrea Righi 	 * transitioning from a task to the idle thread (calling this
672337d1b35SAndrea Righi 	 * function with do_notify == true).
673337d1b35SAndrea Righi 	 *
674337d1b35SAndrea Righi 	 * In this way we can avoid updating the idle masks twice,
675337d1b35SAndrea Righi 	 * unnecessarily.
676337d1b35SAndrea Righi 	 */
677337d1b35SAndrea Righi 	if (static_branch_likely(&scx_builtin_idle_enabled))
678337d1b35SAndrea Righi 		if (do_notify || is_idle_task(rq->curr))
679337d1b35SAndrea Righi 			update_builtin_idle(cpu, idle);
680337d1b35SAndrea Righi }
681*48849271SAndrea Righi 
682*48849271SAndrea Righi static void reset_idle_masks(struct sched_ext_ops *ops)
683*48849271SAndrea Righi {
684*48849271SAndrea Righi 	int node;
685*48849271SAndrea Righi 
686*48849271SAndrea Righi 	/*
687*48849271SAndrea Righi 	 * Consider all online cpus idle. Should converge to the actual state
688*48849271SAndrea Righi 	 * quickly.
689*48849271SAndrea Righi 	 */
690*48849271SAndrea Righi 	if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
691*48849271SAndrea Righi 		cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask);
692*48849271SAndrea Righi 		cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask);
693*48849271SAndrea Righi 		return;
694*48849271SAndrea Righi 	}
695*48849271SAndrea Righi 
696*48849271SAndrea Righi 	for_each_node(node) {
697*48849271SAndrea Righi 		const struct cpumask *node_mask = cpumask_of_node(node);
698*48849271SAndrea Righi 
699*48849271SAndrea Righi 		cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask);
700*48849271SAndrea Righi 		cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask);
701*48849271SAndrea Righi 	}
702*48849271SAndrea Righi }
703337d1b35SAndrea Righi #endif	/* CONFIG_SMP */
704337d1b35SAndrea Righi 
705d73249f8SAndrea Righi void scx_idle_enable(struct sched_ext_ops *ops)
706d73249f8SAndrea Righi {
707*48849271SAndrea Righi 	if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))
708d73249f8SAndrea Righi 		static_branch_enable(&scx_builtin_idle_enabled);
709*48849271SAndrea Righi 	else
710*48849271SAndrea Righi 		static_branch_disable(&scx_builtin_idle_enabled);
711d73249f8SAndrea Righi 
7120aaaf89dSAndrea Righi 	if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
7130aaaf89dSAndrea Righi 		static_branch_enable(&scx_builtin_idle_per_node);
7140aaaf89dSAndrea Righi 	else
7150aaaf89dSAndrea Righi 		static_branch_disable(&scx_builtin_idle_per_node);
7160aaaf89dSAndrea Righi 
717d73249f8SAndrea Righi #ifdef CONFIG_SMP
718*48849271SAndrea Righi 	reset_idle_masks(ops);
719d73249f8SAndrea Righi #endif
720d73249f8SAndrea Righi }
721d73249f8SAndrea Righi 
722d73249f8SAndrea Righi void scx_idle_disable(void)
723d73249f8SAndrea Righi {
724d73249f8SAndrea Righi 	static_branch_disable(&scx_builtin_idle_enabled);
7250aaaf89dSAndrea Righi 	static_branch_disable(&scx_builtin_idle_per_node);
726d73249f8SAndrea Righi }
727d73249f8SAndrea Righi 
728337d1b35SAndrea Righi /********************************************************************************
729337d1b35SAndrea Righi  * Helpers that can be called from the BPF scheduler.
730337d1b35SAndrea Righi  */
731337d1b35SAndrea Righi __bpf_kfunc_start_defs();
732337d1b35SAndrea Righi 
733337d1b35SAndrea Righi static bool check_builtin_idle_enabled(void)
734337d1b35SAndrea Righi {
735337d1b35SAndrea Righi 	if (static_branch_likely(&scx_builtin_idle_enabled))
736337d1b35SAndrea Righi 		return true;
737337d1b35SAndrea Righi 
738337d1b35SAndrea Righi 	scx_ops_error("built-in idle tracking is disabled");
739337d1b35SAndrea Righi 	return false;
740337d1b35SAndrea Righi }
741337d1b35SAndrea Righi 
742337d1b35SAndrea Righi /**
743337d1b35SAndrea Righi  * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
744337d1b35SAndrea Righi  * @p: task_struct to select a CPU for
745337d1b35SAndrea Righi  * @prev_cpu: CPU @p was on previously
746337d1b35SAndrea Righi  * @wake_flags: %SCX_WAKE_* flags
747337d1b35SAndrea Righi  * @is_idle: out parameter indicating whether the returned CPU is idle
748337d1b35SAndrea Righi  *
749337d1b35SAndrea Righi  * Can only be called from ops.select_cpu() if the built-in CPU selection is
750337d1b35SAndrea Righi  * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
751337d1b35SAndrea Righi  * @p, @prev_cpu and @wake_flags match ops.select_cpu().
752337d1b35SAndrea Righi  *
753337d1b35SAndrea Righi  * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
754337d1b35SAndrea Righi  * currently idle and thus a good candidate for direct dispatching.
755337d1b35SAndrea Righi  */
756337d1b35SAndrea Righi __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
757337d1b35SAndrea Righi 				       u64 wake_flags, bool *is_idle)
758337d1b35SAndrea Righi {
759337d1b35SAndrea Righi 	if (!check_builtin_idle_enabled())
760337d1b35SAndrea Righi 		goto prev_cpu;
761337d1b35SAndrea Righi 
762337d1b35SAndrea Righi 	if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
763337d1b35SAndrea Righi 		goto prev_cpu;
764337d1b35SAndrea Righi 
765337d1b35SAndrea Righi #ifdef CONFIG_SMP
766337d1b35SAndrea Righi 	return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle);
767337d1b35SAndrea Righi #endif
768337d1b35SAndrea Righi 
769337d1b35SAndrea Righi prev_cpu:
770337d1b35SAndrea Righi 	*is_idle = false;
771337d1b35SAndrea Righi 	return prev_cpu;
772337d1b35SAndrea Righi }
773337d1b35SAndrea Righi 
774337d1b35SAndrea Righi /**
775337d1b35SAndrea Righi  * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
776337d1b35SAndrea Righi  * per-CPU cpumask.
777337d1b35SAndrea Righi  *
778*48849271SAndrea Righi  * Returns an empty mask if idle tracking is not enabled, or running on a
779*48849271SAndrea Righi  * UP kernel.
780337d1b35SAndrea Righi  */
781337d1b35SAndrea Righi __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
782337d1b35SAndrea Righi {
783*48849271SAndrea Righi 	if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
784*48849271SAndrea Righi 		scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
785*48849271SAndrea Righi 		return cpu_none_mask;
786*48849271SAndrea Righi 	}
787*48849271SAndrea Righi 
788337d1b35SAndrea Righi 	if (!check_builtin_idle_enabled())
789337d1b35SAndrea Righi 		return cpu_none_mask;
790337d1b35SAndrea Righi 
791337d1b35SAndrea Righi #ifdef CONFIG_SMP
792*48849271SAndrea Righi 	return idle_cpumask(NUMA_NO_NODE)->cpu;
793337d1b35SAndrea Righi #else
794337d1b35SAndrea Righi 	return cpu_none_mask;
795337d1b35SAndrea Righi #endif
796337d1b35SAndrea Righi }
797337d1b35SAndrea Righi 
798337d1b35SAndrea Righi /**
799337d1b35SAndrea Righi  * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
800337d1b35SAndrea Righi  * per-physical-core cpumask. Can be used to determine if an entire physical
801337d1b35SAndrea Righi  * core is free.
802337d1b35SAndrea Righi  *
803*48849271SAndrea Righi  * Returns an empty mask if idle tracking is not enabled, or running on a
804*48849271SAndrea Righi  * UP kernel.
805337d1b35SAndrea Righi  */
806337d1b35SAndrea Righi __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
807337d1b35SAndrea Righi {
808*48849271SAndrea Righi 	if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
809*48849271SAndrea Righi 		scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
810*48849271SAndrea Righi 		return cpu_none_mask;
811*48849271SAndrea Righi 	}
812*48849271SAndrea Righi 
813337d1b35SAndrea Righi 	if (!check_builtin_idle_enabled())
814337d1b35SAndrea Righi 		return cpu_none_mask;
815337d1b35SAndrea Righi 
816337d1b35SAndrea Righi #ifdef CONFIG_SMP
817337d1b35SAndrea Righi 	if (sched_smt_active())
818*48849271SAndrea Righi 		return idle_cpumask(NUMA_NO_NODE)->smt;
819337d1b35SAndrea Righi 	else
820*48849271SAndrea Righi 		return idle_cpumask(NUMA_NO_NODE)->cpu;
821337d1b35SAndrea Righi #else
822337d1b35SAndrea Righi 	return cpu_none_mask;
823337d1b35SAndrea Righi #endif
824337d1b35SAndrea Righi }
825337d1b35SAndrea Righi 
826337d1b35SAndrea Righi /**
827337d1b35SAndrea Righi  * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
828337d1b35SAndrea Righi  * either the percpu, or SMT idle-tracking cpumask.
829337d1b35SAndrea Righi  * @idle_mask: &cpumask to use
830337d1b35SAndrea Righi  */
831337d1b35SAndrea Righi __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
832337d1b35SAndrea Righi {
833337d1b35SAndrea Righi 	/*
834337d1b35SAndrea Righi 	 * Empty function body because we aren't actually acquiring or releasing
835337d1b35SAndrea Righi 	 * a reference to a global idle cpumask, which is read-only in the
836337d1b35SAndrea Righi 	 * caller and is never released. The acquire / release semantics here
837337d1b35SAndrea Righi 	 * are just used to make the cpumask a trusted pointer in the caller.
838337d1b35SAndrea Righi 	 */
839337d1b35SAndrea Righi }
840337d1b35SAndrea Righi 
841337d1b35SAndrea Righi /**
842337d1b35SAndrea Righi  * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
843337d1b35SAndrea Righi  * @cpu: cpu to test and clear idle for
844337d1b35SAndrea Righi  *
845337d1b35SAndrea Righi  * Returns %true if @cpu was idle and its idle state was successfully cleared.
846337d1b35SAndrea Righi  * %false otherwise.
847337d1b35SAndrea Righi  *
848337d1b35SAndrea Righi  * Unavailable if ops.update_idle() is implemented and
849337d1b35SAndrea Righi  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
850337d1b35SAndrea Righi  */
851337d1b35SAndrea Righi __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
852337d1b35SAndrea Righi {
853337d1b35SAndrea Righi 	if (!check_builtin_idle_enabled())
854337d1b35SAndrea Righi 		return false;
855337d1b35SAndrea Righi 
856337d1b35SAndrea Righi 	if (ops_cpu_valid(cpu, NULL))
857337d1b35SAndrea Righi 		return scx_idle_test_and_clear_cpu(cpu);
858337d1b35SAndrea Righi 	else
859337d1b35SAndrea Righi 		return false;
860337d1b35SAndrea Righi }
861337d1b35SAndrea Righi 
862337d1b35SAndrea Righi /**
863337d1b35SAndrea Righi  * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
864337d1b35SAndrea Righi  * @cpus_allowed: Allowed cpumask
865337d1b35SAndrea Righi  * @flags: %SCX_PICK_IDLE_CPU_* flags
866337d1b35SAndrea Righi  *
867337d1b35SAndrea Righi  * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
868337d1b35SAndrea Righi  * number on success. -%EBUSY if no matching cpu was found.
869337d1b35SAndrea Righi  *
870337d1b35SAndrea Righi  * Idle CPU tracking may race against CPU scheduling state transitions. For
871337d1b35SAndrea Righi  * example, this function may return -%EBUSY as CPUs are transitioning into the
872337d1b35SAndrea Righi  * idle state. If the caller then assumes that there will be dispatch events on
873337d1b35SAndrea Righi  * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
874337d1b35SAndrea Righi  * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
875337d1b35SAndrea Righi  * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
876337d1b35SAndrea Righi  * event in the near future.
877337d1b35SAndrea Righi  *
878337d1b35SAndrea Righi  * Unavailable if ops.update_idle() is implemented and
879337d1b35SAndrea Righi  * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
880337d1b35SAndrea Righi  */
881337d1b35SAndrea Righi __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
882337d1b35SAndrea Righi 				      u64 flags)
883337d1b35SAndrea Righi {
884337d1b35SAndrea Righi 	if (!check_builtin_idle_enabled())
885337d1b35SAndrea Righi 		return -EBUSY;
886337d1b35SAndrea Righi 
887*48849271SAndrea Righi 	return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
888337d1b35SAndrea Righi }
889337d1b35SAndrea Righi 
890337d1b35SAndrea Righi /**
891337d1b35SAndrea Righi  * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
892337d1b35SAndrea Righi  * @cpus_allowed: Allowed cpumask
893337d1b35SAndrea Righi  * @flags: %SCX_PICK_IDLE_CPU_* flags
894337d1b35SAndrea Righi  *
895337d1b35SAndrea Righi  * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
896337d1b35SAndrea Righi  * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
897337d1b35SAndrea Righi  * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
898337d1b35SAndrea Righi  * empty.
899337d1b35SAndrea Righi  *
900337d1b35SAndrea Righi  * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
901337d1b35SAndrea Righi  * set, this function can't tell which CPUs are idle and will always pick any
902337d1b35SAndrea Righi  * CPU.
903337d1b35SAndrea Righi  */
904337d1b35SAndrea Righi __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
905337d1b35SAndrea Righi 				     u64 flags)
906337d1b35SAndrea Righi {
907337d1b35SAndrea Righi 	s32 cpu;
908337d1b35SAndrea Righi 
909337d1b35SAndrea Righi 	if (static_branch_likely(&scx_builtin_idle_enabled)) {
910*48849271SAndrea Righi 		cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
911337d1b35SAndrea Righi 		if (cpu >= 0)
912337d1b35SAndrea Righi 			return cpu;
913337d1b35SAndrea Righi 	}
914337d1b35SAndrea Righi 
915337d1b35SAndrea Righi 	cpu = cpumask_any_distribute(cpus_allowed);
916337d1b35SAndrea Righi 	if (cpu < nr_cpu_ids)
917337d1b35SAndrea Righi 		return cpu;
918337d1b35SAndrea Righi 	else
919337d1b35SAndrea Righi 		return -EBUSY;
920337d1b35SAndrea Righi }
921337d1b35SAndrea Righi 
922337d1b35SAndrea Righi __bpf_kfunc_end_defs();
923337d1b35SAndrea Righi 
924337d1b35SAndrea Righi BTF_KFUNCS_START(scx_kfunc_ids_idle)
925337d1b35SAndrea Righi BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
926337d1b35SAndrea Righi BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
927337d1b35SAndrea Righi BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
928337d1b35SAndrea Righi BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
929337d1b35SAndrea Righi BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
930337d1b35SAndrea Righi BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
931337d1b35SAndrea Righi BTF_KFUNCS_END(scx_kfunc_ids_idle)
932337d1b35SAndrea Righi 
933337d1b35SAndrea Righi static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
934337d1b35SAndrea Righi 	.owner			= THIS_MODULE,
935337d1b35SAndrea Righi 	.set			= &scx_kfunc_ids_idle,
936337d1b35SAndrea Righi };
937337d1b35SAndrea Righi 
938337d1b35SAndrea Righi BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
939337d1b35SAndrea Righi BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
940337d1b35SAndrea Righi BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
941337d1b35SAndrea Righi 
942337d1b35SAndrea Righi static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
943337d1b35SAndrea Righi 	.owner			= THIS_MODULE,
944337d1b35SAndrea Righi 	.set			= &scx_kfunc_ids_select_cpu,
945337d1b35SAndrea Righi };
946337d1b35SAndrea Righi 
947337d1b35SAndrea Righi int scx_idle_init(void)
948337d1b35SAndrea Righi {
949337d1b35SAndrea Righi 	int ret;
950337d1b35SAndrea Righi 
951337d1b35SAndrea Righi 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu) ||
952337d1b35SAndrea Righi 	      register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
953337d1b35SAndrea Righi 	      register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
954337d1b35SAndrea Righi 	      register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);
955337d1b35SAndrea Righi 
956337d1b35SAndrea Righi 	return ret;
957337d1b35SAndrea Righi }
958