1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Built-in idle CPU tracking policy.
6 *
7 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
8 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
9 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
10 * Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
11 */
12 #include "ext_idle.h"
13
14 /* Enable/disable built-in idle CPU selection policy */
15 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
16
17 /* Enable/disable per-node idle cpumasks */
18 static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);
19
20 #ifdef CONFIG_SMP
21 /* Enable/disable LLC aware optimizations */
22 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
23
24 /* Enable/disable NUMA aware optimizations */
25 static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
26
27 /*
28 * cpumasks to track idle CPUs within each NUMA node.
29 *
30 * If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask
31 * from is used to track all the idle CPUs in the system.
32 */
33 struct scx_idle_cpus {
34 cpumask_var_t cpu;
35 cpumask_var_t smt;
36 };
37
38 /*
39 * Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE
40 * is not enabled).
41 */
42 static struct scx_idle_cpus scx_idle_global_masks;
43
44 /*
45 * Per-node idle cpumasks.
46 */
47 static struct scx_idle_cpus **scx_idle_node_masks;
48
49 /*
50 * Return the idle masks associated to a target @node.
51 *
52 * NUMA_NO_NODE identifies the global idle cpumask.
53 */
idle_cpumask(int node)54 static struct scx_idle_cpus *idle_cpumask(int node)
55 {
56 return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node];
57 }
58
59 /*
60 * Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if
61 * per-node idle cpumasks are disabled.
62 */
scx_cpu_node_if_enabled(int cpu)63 static int scx_cpu_node_if_enabled(int cpu)
64 {
65 if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node))
66 return NUMA_NO_NODE;
67
68 return cpu_to_node(cpu);
69 }
70
scx_idle_test_and_clear_cpu(int cpu)71 bool scx_idle_test_and_clear_cpu(int cpu)
72 {
73 int node = scx_cpu_node_if_enabled(cpu);
74 struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
75
76 #ifdef CONFIG_SCHED_SMT
77 /*
78 * SMT mask should be cleared whether we can claim @cpu or not. The SMT
79 * cluster is not wholly idle either way. This also prevents
80 * scx_pick_idle_cpu() from getting caught in an infinite loop.
81 */
82 if (sched_smt_active()) {
83 const struct cpumask *smt = cpu_smt_mask(cpu);
84 struct cpumask *idle_smts = idle_cpumask(node)->smt;
85
86 /*
87 * If offline, @cpu is not its own sibling and
88 * scx_pick_idle_cpu() can get caught in an infinite loop as
89 * @cpu is never cleared from the idle SMT mask. Ensure that
90 * @cpu is eventually cleared.
91 *
92 * NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
93 * reduce memory writes, which may help alleviate cache
94 * coherence pressure.
95 */
96 if (cpumask_intersects(smt, idle_smts))
97 cpumask_andnot(idle_smts, idle_smts, smt);
98 else if (cpumask_test_cpu(cpu, idle_smts))
99 __cpumask_clear_cpu(cpu, idle_smts);
100 }
101 #endif
102
103 return cpumask_test_and_clear_cpu(cpu, idle_cpus);
104 }
105
106 /*
107 * Pick an idle CPU in a specific NUMA node.
108 */
pick_idle_cpu_in_node(const struct cpumask * cpus_allowed,int node,u64 flags)109 static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags)
110 {
111 int cpu;
112
113 retry:
114 if (sched_smt_active()) {
115 cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed);
116 if (cpu < nr_cpu_ids)
117 goto found;
118
119 if (flags & SCX_PICK_IDLE_CORE)
120 return -EBUSY;
121 }
122
123 cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed);
124 if (cpu >= nr_cpu_ids)
125 return -EBUSY;
126
127 found:
128 if (scx_idle_test_and_clear_cpu(cpu))
129 return cpu;
130 else
131 goto retry;
132 }
133
134 /*
135 * Tracks nodes that have not yet been visited when searching for an idle
136 * CPU across all available nodes.
137 */
138 static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited);
139
140 /*
141 * Search for an idle CPU across all nodes, excluding @node.
142 */
pick_idle_cpu_from_online_nodes(const struct cpumask * cpus_allowed,int node,u64 flags)143 static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
144 {
145 nodemask_t *unvisited;
146 s32 cpu = -EBUSY;
147
148 preempt_disable();
149 unvisited = this_cpu_ptr(&per_cpu_unvisited);
150
151 /*
152 * Restrict the search to the online nodes (excluding the current
153 * node that has been visited already).
154 */
155 nodes_copy(*unvisited, node_states[N_ONLINE]);
156 node_clear(node, *unvisited);
157
158 /*
159 * Traverse all nodes in order of increasing distance, starting
160 * from @node.
161 *
162 * This loop is O(N^2), with N being the amount of NUMA nodes,
163 * which might be quite expensive in large NUMA systems. However,
164 * this complexity comes into play only when a scheduler enables
165 * SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU
166 * without specifying a target NUMA node, so it shouldn't be a
167 * bottleneck is most cases.
168 *
169 * As a future optimization we may want to cache the list of nodes
170 * in a per-node array, instead of actually traversing them every
171 * time.
172 */
173 for_each_node_numadist(node, *unvisited) {
174 cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
175 if (cpu >= 0)
176 break;
177 }
178 preempt_enable();
179
180 return cpu;
181 }
182
183 /*
184 * Find an idle CPU in the system, starting from @node.
185 */
scx_pick_idle_cpu(const struct cpumask * cpus_allowed,int node,u64 flags)186 s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags)
187 {
188 s32 cpu;
189
190 /*
191 * Always search in the starting node first (this is an
192 * optimization that can save some cycles even when the search is
193 * not limited to a single node).
194 */
195 cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
196 if (cpu >= 0)
197 return cpu;
198
199 /*
200 * Stop the search if we are using only a single global cpumask
201 * (NUMA_NO_NODE) or if the search is restricted to the first node
202 * only.
203 */
204 if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE)
205 return -EBUSY;
206
207 /*
208 * Extend the search to the other online nodes.
209 */
210 return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags);
211 }
212
213 /*
214 * Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
215 * domain is not defined).
216 */
llc_weight(s32 cpu)217 static unsigned int llc_weight(s32 cpu)
218 {
219 struct sched_domain *sd;
220
221 sd = rcu_dereference(per_cpu(sd_llc, cpu));
222 if (!sd)
223 return 0;
224
225 return sd->span_weight;
226 }
227
228 /*
229 * Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
230 * domain is not defined).
231 */
llc_span(s32 cpu)232 static struct cpumask *llc_span(s32 cpu)
233 {
234 struct sched_domain *sd;
235
236 sd = rcu_dereference(per_cpu(sd_llc, cpu));
237 if (!sd)
238 return 0;
239
240 return sched_domain_span(sd);
241 }
242
243 /*
244 * Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
245 * NUMA domain is not defined).
246 */
numa_weight(s32 cpu)247 static unsigned int numa_weight(s32 cpu)
248 {
249 struct sched_domain *sd;
250 struct sched_group *sg;
251
252 sd = rcu_dereference(per_cpu(sd_numa, cpu));
253 if (!sd)
254 return 0;
255 sg = sd->groups;
256 if (!sg)
257 return 0;
258
259 return sg->group_weight;
260 }
261
262 /*
263 * Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
264 * domain is not defined).
265 */
numa_span(s32 cpu)266 static struct cpumask *numa_span(s32 cpu)
267 {
268 struct sched_domain *sd;
269 struct sched_group *sg;
270
271 sd = rcu_dereference(per_cpu(sd_numa, cpu));
272 if (!sd)
273 return NULL;
274 sg = sd->groups;
275 if (!sg)
276 return NULL;
277
278 return sched_group_span(sg);
279 }
280
281 /*
282 * Return true if the LLC domains do not perfectly overlap with the NUMA
283 * domains, false otherwise.
284 */
llc_numa_mismatch(void)285 static bool llc_numa_mismatch(void)
286 {
287 int cpu;
288
289 /*
290 * We need to scan all online CPUs to verify whether their scheduling
291 * domains overlap.
292 *
293 * While it is rare to encounter architectures with asymmetric NUMA
294 * topologies, CPU hotplugging or virtualized environments can result
295 * in asymmetric configurations.
296 *
297 * For example:
298 *
299 * NUMA 0:
300 * - LLC 0: cpu0..cpu7
301 * - LLC 1: cpu8..cpu15 [offline]
302 *
303 * NUMA 1:
304 * - LLC 0: cpu16..cpu23
305 * - LLC 1: cpu24..cpu31
306 *
307 * In this case, if we only check the first online CPU (cpu0), we might
308 * incorrectly assume that the LLC and NUMA domains are fully
309 * overlapping, which is incorrect (as NUMA 1 has two distinct LLC
310 * domains).
311 */
312 for_each_online_cpu(cpu)
313 if (llc_weight(cpu) != numa_weight(cpu))
314 return true;
315
316 return false;
317 }
318
319 /*
320 * Initialize topology-aware scheduling.
321 *
322 * Detect if the system has multiple LLC or multiple NUMA domains and enable
323 * cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
324 * selection policy.
325 *
326 * Assumption: the kernel's internal topology representation assumes that each
327 * CPU belongs to a single LLC domain, and that each LLC domain is entirely
328 * contained within a single NUMA node.
329 */
scx_idle_update_selcpu_topology(struct sched_ext_ops * ops)330 void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
331 {
332 bool enable_llc = false, enable_numa = false;
333 unsigned int nr_cpus;
334 s32 cpu = cpumask_first(cpu_online_mask);
335
336 /*
337 * Enable LLC domain optimization only when there are multiple LLC
338 * domains among the online CPUs. If all online CPUs are part of a
339 * single LLC domain, the idle CPU selection logic can choose any
340 * online CPU without bias.
341 *
342 * Note that it is sufficient to check the LLC domain of the first
343 * online CPU to determine whether a single LLC domain includes all
344 * CPUs.
345 */
346 rcu_read_lock();
347 nr_cpus = llc_weight(cpu);
348 if (nr_cpus > 0) {
349 if (nr_cpus < num_online_cpus())
350 enable_llc = true;
351 pr_debug("sched_ext: LLC=%*pb weight=%u\n",
352 cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
353 }
354
355 /*
356 * Enable NUMA optimization only when there are multiple NUMA domains
357 * among the online CPUs and the NUMA domains don't perfectly overlaps
358 * with the LLC domains.
359 *
360 * If all CPUs belong to the same NUMA node and the same LLC domain,
361 * enabling both NUMA and LLC optimizations is unnecessary, as checking
362 * for an idle CPU in the same domain twice is redundant.
363 *
364 * If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
365 * optimization, as we would naturally select idle CPUs within
366 * specific NUMA nodes querying the corresponding per-node cpumask.
367 */
368 if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
369 nr_cpus = numa_weight(cpu);
370 if (nr_cpus > 0) {
371 if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
372 enable_numa = true;
373 pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
374 cpumask_pr_args(numa_span(cpu)), nr_cpus);
375 }
376 }
377 rcu_read_unlock();
378
379 pr_debug("sched_ext: LLC idle selection %s\n",
380 str_enabled_disabled(enable_llc));
381 pr_debug("sched_ext: NUMA idle selection %s\n",
382 str_enabled_disabled(enable_numa));
383
384 if (enable_llc)
385 static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
386 else
387 static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
388 if (enable_numa)
389 static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
390 else
391 static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
392 }
393
394 /*
395 * Built-in CPU idle selection policy:
396 *
397 * 1. Prioritize full-idle cores:
398 * - always prioritize CPUs from fully idle cores (both logical CPUs are
399 * idle) to avoid interference caused by SMT.
400 *
401 * 2. Reuse the same CPU:
402 * - prefer the last used CPU to take advantage of cached data (L1, L2) and
403 * branch prediction optimizations.
404 *
405 * 3. Pick a CPU within the same LLC (Last-Level Cache):
406 * - if the above conditions aren't met, pick a CPU that shares the same LLC
407 * to maintain cache locality.
408 *
409 * 4. Pick a CPU within the same NUMA node, if enabled:
410 * - choose a CPU from the same NUMA node to reduce memory access latency.
411 *
412 * 5. Pick any idle CPU usable by the task.
413 *
414 * Step 3 and 4 are performed only if the system has, respectively,
415 * multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and
416 * scx_selcpu_topo_numa) and they don't contain the same subset of CPUs.
417 *
418 * If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always
419 * begin in @prev_cpu's node and proceed to other nodes in order of
420 * increasing distance.
421 *
422 * Return the picked CPU if idle, or a negative value otherwise.
423 *
424 * NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
425 * we never call ops.select_cpu() for them, see select_task_rq().
426 */
scx_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,u64 flags)427 s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, u64 flags)
428 {
429 const struct cpumask *llc_cpus = NULL;
430 const struct cpumask *numa_cpus = NULL;
431 int node = scx_cpu_node_if_enabled(prev_cpu);
432 s32 cpu;
433
434 /*
435 * This is necessary to protect llc_cpus.
436 */
437 rcu_read_lock();
438
439 /*
440 * Determine the scheduling domain only if the task is allowed to run
441 * on all CPUs.
442 *
443 * This is done primarily for efficiency, as it avoids the overhead of
444 * updating a cpumask every time we need to select an idle CPU (which
445 * can be costly in large SMP systems), but it also aligns logically:
446 * if a task's scheduling domain is restricted by user-space (through
447 * CPU affinity), the task will simply use the flat scheduling domain
448 * defined by user-space.
449 */
450 if (p->nr_cpus_allowed >= num_possible_cpus()) {
451 if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa))
452 numa_cpus = numa_span(prev_cpu);
453
454 if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc))
455 llc_cpus = llc_span(prev_cpu);
456 }
457
458 /*
459 * If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
460 */
461 if (wake_flags & SCX_WAKE_SYNC) {
462 int waker_node;
463
464 /*
465 * If the waker's CPU is cache affine and prev_cpu is idle,
466 * then avoid a migration.
467 */
468 cpu = smp_processor_id();
469 if (cpus_share_cache(cpu, prev_cpu) &&
470 scx_idle_test_and_clear_cpu(prev_cpu)) {
471 cpu = prev_cpu;
472 goto out_unlock;
473 }
474
475 /*
476 * If the waker's local DSQ is empty, and the system is under
477 * utilized, try to wake up @p to the local DSQ of the waker.
478 *
479 * Checking only for an empty local DSQ is insufficient as it
480 * could give the wakee an unfair advantage when the system is
481 * oversaturated.
482 *
483 * Checking only for the presence of idle CPUs is also
484 * insufficient as the local DSQ of the waker could have tasks
485 * piled up on it even if there is an idle core elsewhere on
486 * the system.
487 */
488 waker_node = cpu_to_node(cpu);
489 if (!(current->flags & PF_EXITING) &&
490 cpu_rq(cpu)->scx.local_dsq.nr == 0 &&
491 (!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) &&
492 !cpumask_empty(idle_cpumask(waker_node)->cpu)) {
493 if (cpumask_test_cpu(cpu, p->cpus_ptr))
494 goto out_unlock;
495 }
496 }
497
498 /*
499 * If CPU has SMT, any wholly idle CPU is likely a better pick than
500 * partially idle @prev_cpu.
501 */
502 if (sched_smt_active()) {
503 /*
504 * Keep using @prev_cpu if it's part of a fully idle core.
505 */
506 if (cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) &&
507 scx_idle_test_and_clear_cpu(prev_cpu)) {
508 cpu = prev_cpu;
509 goto out_unlock;
510 }
511
512 /*
513 * Search for any fully idle core in the same LLC domain.
514 */
515 if (llc_cpus) {
516 cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE);
517 if (cpu >= 0)
518 goto out_unlock;
519 }
520
521 /*
522 * Search for any fully idle core in the same NUMA node.
523 */
524 if (numa_cpus) {
525 cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE);
526 if (cpu >= 0)
527 goto out_unlock;
528 }
529
530 /*
531 * Search for any full-idle core usable by the task.
532 *
533 * If the node-aware idle CPU selection policy is enabled
534 * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always
535 * begin in prev_cpu's node and proceed to other nodes in
536 * order of increasing distance.
537 */
538 cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags | SCX_PICK_IDLE_CORE);
539 if (cpu >= 0)
540 goto out_unlock;
541
542 /*
543 * Give up if we're strictly looking for a full-idle SMT
544 * core.
545 */
546 if (flags & SCX_PICK_IDLE_CORE) {
547 cpu = -EBUSY;
548 goto out_unlock;
549 }
550 }
551
552 /*
553 * Use @prev_cpu if it's idle.
554 */
555 if (scx_idle_test_and_clear_cpu(prev_cpu)) {
556 cpu = prev_cpu;
557 goto out_unlock;
558 }
559
560 /*
561 * Search for any idle CPU in the same LLC domain.
562 */
563 if (llc_cpus) {
564 cpu = pick_idle_cpu_in_node(llc_cpus, node, 0);
565 if (cpu >= 0)
566 goto out_unlock;
567 }
568
569 /*
570 * Search for any idle CPU in the same NUMA node.
571 */
572 if (numa_cpus) {
573 cpu = pick_idle_cpu_in_node(numa_cpus, node, 0);
574 if (cpu >= 0)
575 goto out_unlock;
576 }
577
578 /*
579 * Search for any idle CPU usable by the task.
580 *
581 * If the node-aware idle CPU selection policy is enabled
582 * (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin
583 * in prev_cpu's node and proceed to other nodes in order of
584 * increasing distance.
585 */
586 cpu = scx_pick_idle_cpu(p->cpus_ptr, node, flags);
587
588 out_unlock:
589 rcu_read_unlock();
590
591 return cpu;
592 }
593
594 /*
595 * Initialize global and per-node idle cpumasks.
596 */
scx_idle_init_masks(void)597 void scx_idle_init_masks(void)
598 {
599 int node;
600
601 /* Allocate global idle cpumasks */
602 BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL));
603 BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL));
604
605 /* Allocate per-node idle cpumasks */
606 scx_idle_node_masks = kcalloc(num_possible_nodes(),
607 sizeof(*scx_idle_node_masks), GFP_KERNEL);
608 BUG_ON(!scx_idle_node_masks);
609
610 for_each_node(node) {
611 scx_idle_node_masks[node] = kzalloc_node(sizeof(**scx_idle_node_masks),
612 GFP_KERNEL, node);
613 BUG_ON(!scx_idle_node_masks[node]);
614
615 BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->cpu, GFP_KERNEL, node));
616 BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[node]->smt, GFP_KERNEL, node));
617 }
618 }
619
update_builtin_idle(int cpu,bool idle)620 static void update_builtin_idle(int cpu, bool idle)
621 {
622 int node = scx_cpu_node_if_enabled(cpu);
623 struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
624
625 assign_cpu(cpu, idle_cpus, idle);
626
627 #ifdef CONFIG_SCHED_SMT
628 if (sched_smt_active()) {
629 const struct cpumask *smt = cpu_smt_mask(cpu);
630 struct cpumask *idle_smts = idle_cpumask(node)->smt;
631
632 if (idle) {
633 /*
634 * idle_smt handling is racy but that's fine as it's
635 * only for optimization and self-correcting.
636 */
637 if (!cpumask_subset(smt, idle_cpus))
638 return;
639 cpumask_or(idle_smts, idle_smts, smt);
640 } else {
641 cpumask_andnot(idle_smts, idle_smts, smt);
642 }
643 }
644 #endif
645 }
646
647 /*
648 * Update the idle state of a CPU to @idle.
649 *
650 * If @do_notify is true, ops.update_idle() is invoked to notify the scx
651 * scheduler of an actual idle state transition (idle to busy or vice
652 * versa). If @do_notify is false, only the idle state in the idle masks is
653 * refreshed without invoking ops.update_idle().
654 *
655 * This distinction is necessary, because an idle CPU can be "reserved" and
656 * awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
657 * busy even if no tasks are dispatched. In this case, the CPU may return
658 * to idle without a true state transition. Refreshing the idle masks
659 * without invoking ops.update_idle() ensures accurate idle state tracking
660 * while avoiding unnecessary updates and maintaining balanced state
661 * transitions.
662 */
__scx_update_idle(struct rq * rq,bool idle,bool do_notify)663 void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
664 {
665 int cpu = cpu_of(rq);
666
667 lockdep_assert_rq_held(rq);
668
669 /*
670 * Trigger ops.update_idle() only when transitioning from a task to
671 * the idle thread and vice versa.
672 *
673 * Idle transitions are indicated by do_notify being set to true,
674 * managed by put_prev_task_idle()/set_next_task_idle().
675 */
676 if (SCX_HAS_OP(update_idle) && do_notify && !scx_rq_bypassing(rq))
677 SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle);
678
679 /*
680 * Update the idle masks:
681 * - for real idle transitions (do_notify == true)
682 * - for idle-to-idle transitions (indicated by the previous task
683 * being the idle thread, managed by pick_task_idle())
684 *
685 * Skip updating idle masks if the previous task is not the idle
686 * thread, since set_next_task_idle() has already handled it when
687 * transitioning from a task to the idle thread (calling this
688 * function with do_notify == true).
689 *
690 * In this way we can avoid updating the idle masks twice,
691 * unnecessarily.
692 */
693 if (static_branch_likely(&scx_builtin_idle_enabled))
694 if (do_notify || is_idle_task(rq->curr))
695 update_builtin_idle(cpu, idle);
696 }
697
reset_idle_masks(struct sched_ext_ops * ops)698 static void reset_idle_masks(struct sched_ext_ops *ops)
699 {
700 int node;
701
702 /*
703 * Consider all online cpus idle. Should converge to the actual state
704 * quickly.
705 */
706 if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
707 cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask);
708 cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask);
709 return;
710 }
711
712 for_each_node(node) {
713 const struct cpumask *node_mask = cpumask_of_node(node);
714
715 cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask);
716 cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask);
717 }
718 }
719 #endif /* CONFIG_SMP */
720
scx_idle_enable(struct sched_ext_ops * ops)721 void scx_idle_enable(struct sched_ext_ops *ops)
722 {
723 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))
724 static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
725 else
726 static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
727
728 if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
729 static_branch_enable_cpuslocked(&scx_builtin_idle_per_node);
730 else
731 static_branch_disable_cpuslocked(&scx_builtin_idle_per_node);
732
733 #ifdef CONFIG_SMP
734 reset_idle_masks(ops);
735 #endif
736 }
737
scx_idle_disable(void)738 void scx_idle_disable(void)
739 {
740 static_branch_disable(&scx_builtin_idle_enabled);
741 static_branch_disable(&scx_builtin_idle_per_node);
742 }
743
744 /********************************************************************************
745 * Helpers that can be called from the BPF scheduler.
746 */
747
validate_node(int node)748 static int validate_node(int node)
749 {
750 if (!static_branch_likely(&scx_builtin_idle_per_node)) {
751 scx_ops_error("per-node idle tracking is disabled");
752 return -EOPNOTSUPP;
753 }
754
755 /* Return no entry for NUMA_NO_NODE (not a critical scx error) */
756 if (node == NUMA_NO_NODE)
757 return -ENOENT;
758
759 /* Make sure node is in a valid range */
760 if (node < 0 || node >= nr_node_ids) {
761 scx_ops_error("invalid node %d", node);
762 return -EINVAL;
763 }
764
765 /* Make sure the node is part of the set of possible nodes */
766 if (!node_possible(node)) {
767 scx_ops_error("unavailable node %d", node);
768 return -EINVAL;
769 }
770
771 return node;
772 }
773
774 __bpf_kfunc_start_defs();
775
check_builtin_idle_enabled(void)776 static bool check_builtin_idle_enabled(void)
777 {
778 if (static_branch_likely(&scx_builtin_idle_enabled))
779 return true;
780
781 scx_ops_error("built-in idle tracking is disabled");
782 return false;
783 }
784
785 /**
786 * scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or
787 * trigger an error if @cpu is invalid
788 * @cpu: target CPU
789 */
scx_bpf_cpu_node(s32 cpu)790 __bpf_kfunc int scx_bpf_cpu_node(s32 cpu)
791 {
792 #ifdef CONFIG_NUMA
793 if (!ops_cpu_valid(cpu, NULL))
794 return NUMA_NO_NODE;
795
796 return cpu_to_node(cpu);
797 #else
798 return 0;
799 #endif
800 }
801
802 /**
803 * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
804 * @p: task_struct to select a CPU for
805 * @prev_cpu: CPU @p was on previously
806 * @wake_flags: %SCX_WAKE_* flags
807 * @is_idle: out parameter indicating whether the returned CPU is idle
808 *
809 * Can only be called from ops.select_cpu() if the built-in CPU selection is
810 * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set.
811 * @p, @prev_cpu and @wake_flags match ops.select_cpu().
812 *
813 * Returns the picked CPU with *@is_idle indicating whether the picked CPU is
814 * currently idle and thus a good candidate for direct dispatching.
815 */
scx_bpf_select_cpu_dfl(struct task_struct * p,s32 prev_cpu,u64 wake_flags,bool * is_idle)816 __bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
817 u64 wake_flags, bool *is_idle)
818 {
819 #ifdef CONFIG_SMP
820 s32 cpu;
821 #endif
822 if (!ops_cpu_valid(prev_cpu, NULL))
823 goto prev_cpu;
824
825 if (!check_builtin_idle_enabled())
826 goto prev_cpu;
827
828 if (!scx_kf_allowed(SCX_KF_SELECT_CPU))
829 goto prev_cpu;
830
831 #ifdef CONFIG_SMP
832 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, 0);
833 if (cpu >= 0) {
834 *is_idle = true;
835 return cpu;
836 }
837 #endif
838
839 prev_cpu:
840 *is_idle = false;
841 return prev_cpu;
842 }
843
844 /**
845 * scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the
846 * idle-tracking per-CPU cpumask of a target NUMA node.
847 * @node: target NUMA node
848 *
849 * Returns an empty cpumask if idle tracking is not enabled, if @node is
850 * not valid, or running on a UP kernel. In this case the actual error will
851 * be reported to the BPF scheduler via scx_ops_error().
852 */
scx_bpf_get_idle_cpumask_node(int node)853 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node)
854 {
855 node = validate_node(node);
856 if (node < 0)
857 return cpu_none_mask;
858
859 #ifdef CONFIG_SMP
860 return idle_cpumask(node)->cpu;
861 #else
862 return cpu_none_mask;
863 #endif
864 }
865
866 /**
867 * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
868 * per-CPU cpumask.
869 *
870 * Returns an empty mask if idle tracking is not enabled, or running on a
871 * UP kernel.
872 */
scx_bpf_get_idle_cpumask(void)873 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
874 {
875 if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
876 scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
877 return cpu_none_mask;
878 }
879
880 if (!check_builtin_idle_enabled())
881 return cpu_none_mask;
882
883 #ifdef CONFIG_SMP
884 return idle_cpumask(NUMA_NO_NODE)->cpu;
885 #else
886 return cpu_none_mask;
887 #endif
888 }
889
890 /**
891 * scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the
892 * idle-tracking, per-physical-core cpumask of a target NUMA node. Can be
893 * used to determine if an entire physical core is free.
894 * @node: target NUMA node
895 *
896 * Returns an empty cpumask if idle tracking is not enabled, if @node is
897 * not valid, or running on a UP kernel. In this case the actual error will
898 * be reported to the BPF scheduler via scx_ops_error().
899 */
scx_bpf_get_idle_smtmask_node(int node)900 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node)
901 {
902 node = validate_node(node);
903 if (node < 0)
904 return cpu_none_mask;
905
906 #ifdef CONFIG_SMP
907 if (sched_smt_active())
908 return idle_cpumask(node)->smt;
909 else
910 return idle_cpumask(node)->cpu;
911 #else
912 return cpu_none_mask;
913 #endif
914 }
915
916 /**
917 * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
918 * per-physical-core cpumask. Can be used to determine if an entire physical
919 * core is free.
920 *
921 * Returns an empty mask if idle tracking is not enabled, or running on a
922 * UP kernel.
923 */
scx_bpf_get_idle_smtmask(void)924 __bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
925 {
926 if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
927 scx_ops_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
928 return cpu_none_mask;
929 }
930
931 if (!check_builtin_idle_enabled())
932 return cpu_none_mask;
933
934 #ifdef CONFIG_SMP
935 if (sched_smt_active())
936 return idle_cpumask(NUMA_NO_NODE)->smt;
937 else
938 return idle_cpumask(NUMA_NO_NODE)->cpu;
939 #else
940 return cpu_none_mask;
941 #endif
942 }
943
944 /**
945 * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
946 * either the percpu, or SMT idle-tracking cpumask.
947 * @idle_mask: &cpumask to use
948 */
scx_bpf_put_idle_cpumask(const struct cpumask * idle_mask)949 __bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
950 {
951 /*
952 * Empty function body because we aren't actually acquiring or releasing
953 * a reference to a global idle cpumask, which is read-only in the
954 * caller and is never released. The acquire / release semantics here
955 * are just used to make the cpumask a trusted pointer in the caller.
956 */
957 }
958
959 /**
960 * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
961 * @cpu: cpu to test and clear idle for
962 *
963 * Returns %true if @cpu was idle and its idle state was successfully cleared.
964 * %false otherwise.
965 *
966 * Unavailable if ops.update_idle() is implemented and
967 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
968 */
scx_bpf_test_and_clear_cpu_idle(s32 cpu)969 __bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
970 {
971 if (!check_builtin_idle_enabled())
972 return false;
973
974 if (ops_cpu_valid(cpu, NULL))
975 return scx_idle_test_and_clear_cpu(cpu);
976 else
977 return false;
978 }
979
980 /**
981 * scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node
982 * @cpus_allowed: Allowed cpumask
983 * @node: target NUMA node
984 * @flags: %SCX_PICK_IDLE_* flags
985 *
986 * Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node.
987 *
988 * Returns the picked idle cpu number on success, or -%EBUSY if no matching
989 * cpu was found.
990 *
991 * The search starts from @node and proceeds to other online NUMA nodes in
992 * order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified,
993 * in which case the search is limited to the target @node).
994 *
995 * Always returns an error if ops.update_idle() is implemented and
996 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if
997 * %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set.
998 */
scx_bpf_pick_idle_cpu_node(const struct cpumask * cpus_allowed,int node,u64 flags)999 __bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed,
1000 int node, u64 flags)
1001 {
1002 node = validate_node(node);
1003 if (node < 0)
1004 return node;
1005
1006 return scx_pick_idle_cpu(cpus_allowed, node, flags);
1007 }
1008
1009 /**
1010 * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
1011 * @cpus_allowed: Allowed cpumask
1012 * @flags: %SCX_PICK_IDLE_CPU_* flags
1013 *
1014 * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
1015 * number on success. -%EBUSY if no matching cpu was found.
1016 *
1017 * Idle CPU tracking may race against CPU scheduling state transitions. For
1018 * example, this function may return -%EBUSY as CPUs are transitioning into the
1019 * idle state. If the caller then assumes that there will be dispatch events on
1020 * the CPUs as they were all busy, the scheduler may end up stalling with CPUs
1021 * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
1022 * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
1023 * event in the near future.
1024 *
1025 * Unavailable if ops.update_idle() is implemented and
1026 * %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
1027 *
1028 * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
1029 * scx_bpf_pick_idle_cpu_node() instead.
1030 */
scx_bpf_pick_idle_cpu(const struct cpumask * cpus_allowed,u64 flags)1031 __bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
1032 u64 flags)
1033 {
1034 if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
1035 scx_ops_error("per-node idle tracking is enabled");
1036 return -EBUSY;
1037 }
1038
1039 if (!check_builtin_idle_enabled())
1040 return -EBUSY;
1041
1042 return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
1043 }
1044
1045 /**
1046 * scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available
1047 * or pick any CPU from @node
1048 * @cpus_allowed: Allowed cpumask
1049 * @node: target NUMA node
1050 * @flags: %SCX_PICK_IDLE_CPU_* flags
1051 *
1052 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
1053 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
1054 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
1055 * empty.
1056 *
1057 * The search starts from @node and proceeds to other online NUMA nodes in
1058 * order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified,
1059 * in which case the search is limited to the target @node, regardless of
1060 * the CPU idle state).
1061 *
1062 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
1063 * set, this function can't tell which CPUs are idle and will always pick any
1064 * CPU.
1065 */
scx_bpf_pick_any_cpu_node(const struct cpumask * cpus_allowed,int node,u64 flags)1066 __bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed,
1067 int node, u64 flags)
1068 {
1069 s32 cpu;
1070
1071 node = validate_node(node);
1072 if (node < 0)
1073 return node;
1074
1075 cpu = scx_pick_idle_cpu(cpus_allowed, node, flags);
1076 if (cpu >= 0)
1077 return cpu;
1078
1079 if (flags & SCX_PICK_IDLE_IN_NODE)
1080 cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed);
1081 else
1082 cpu = cpumask_any_distribute(cpus_allowed);
1083 if (cpu < nr_cpu_ids)
1084 return cpu;
1085 else
1086 return -EBUSY;
1087 }
1088
1089 /**
1090 * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
1091 * @cpus_allowed: Allowed cpumask
1092 * @flags: %SCX_PICK_IDLE_CPU_* flags
1093 *
1094 * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
1095 * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
1096 * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
1097 * empty.
1098 *
1099 * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
1100 * set, this function can't tell which CPUs are idle and will always pick any
1101 * CPU.
1102 *
1103 * Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
1104 * scx_bpf_pick_any_cpu_node() instead.
1105 */
scx_bpf_pick_any_cpu(const struct cpumask * cpus_allowed,u64 flags)1106 __bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
1107 u64 flags)
1108 {
1109 s32 cpu;
1110
1111 if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
1112 scx_ops_error("per-node idle tracking is enabled");
1113 return -EBUSY;
1114 }
1115
1116 if (static_branch_likely(&scx_builtin_idle_enabled)) {
1117 cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
1118 if (cpu >= 0)
1119 return cpu;
1120 }
1121
1122 cpu = cpumask_any_distribute(cpus_allowed);
1123 if (cpu < nr_cpu_ids)
1124 return cpu;
1125 else
1126 return -EBUSY;
1127 }
1128
1129 __bpf_kfunc_end_defs();
1130
1131 BTF_KFUNCS_START(scx_kfunc_ids_idle)
1132 BTF_ID_FLAGS(func, scx_bpf_cpu_node)
1133 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE)
1134 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
1135 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE)
1136 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
1137 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
1138 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
1139 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU)
1140 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
1141 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU)
1142 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
1143 BTF_KFUNCS_END(scx_kfunc_ids_idle)
1144
1145 static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
1146 .owner = THIS_MODULE,
1147 .set = &scx_kfunc_ids_idle,
1148 };
1149
1150 BTF_KFUNCS_START(scx_kfunc_ids_select_cpu)
1151 BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
1152 BTF_KFUNCS_END(scx_kfunc_ids_select_cpu)
1153
1154 static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = {
1155 .owner = THIS_MODULE,
1156 .set = &scx_kfunc_ids_select_cpu,
1157 };
1158
scx_idle_init(void)1159 int scx_idle_init(void)
1160 {
1161 int ret;
1162
1163 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_select_cpu) ||
1164 register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
1165 register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
1166 register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);
1167
1168 return ret;
1169 }
1170