1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec_handover.c - kexec handover metadata processing 4 * Copyright (C) 2023 Alexander Graf <graf@amazon.com> 5 * Copyright (C) 2025 Microsoft Corporation, Mike Rapoport <rppt@kernel.org> 6 * Copyright (C) 2025 Google LLC, Changyuan Lyu <changyuanl@google.com> 7 */ 8 9 #define pr_fmt(fmt) "KHO: " fmt 10 11 #include <linux/cma.h> 12 #include <linux/count_zeros.h> 13 #include <linux/debugfs.h> 14 #include <linux/kexec.h> 15 #include <linux/kexec_handover.h> 16 #include <linux/libfdt.h> 17 #include <linux/list.h> 18 #include <linux/memblock.h> 19 #include <linux/notifier.h> 20 #include <linux/page-isolation.h> 21 22 #include <asm/early_ioremap.h> 23 24 /* 25 * KHO is tightly coupled with mm init and needs access to some of mm 26 * internal APIs. 27 */ 28 #include "../mm/internal.h" 29 #include "kexec_internal.h" 30 31 #define KHO_FDT_COMPATIBLE "kho-v1" 32 #define PROP_PRESERVED_MEMORY_MAP "preserved-memory-map" 33 #define PROP_SUB_FDT "fdt" 34 35 static bool kho_enable __ro_after_init; 36 37 bool kho_is_enabled(void) 38 { 39 return kho_enable; 40 } 41 EXPORT_SYMBOL_GPL(kho_is_enabled); 42 43 static int __init kho_parse_enable(char *p) 44 { 45 return kstrtobool(p, &kho_enable); 46 } 47 early_param("kho", kho_parse_enable); 48 49 /* 50 * Keep track of memory that is to be preserved across KHO. 51 * 52 * The serializing side uses two levels of xarrays to manage chunks of per-order 53 * 512 byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order of a 54 * 1TB system would fit inside a single 512 byte bitmap. For order 0 allocations 55 * each bitmap will cover 16M of address space. Thus, for 16G of memory at most 56 * 512K of bitmap memory will be needed for order 0. 57 * 58 * This approach is fully incremental, as the serialization progresses folios 59 * can continue be aggregated to the tracker. The final step, immediately prior 60 * to kexec would serialize the xarray information into a linked list for the 61 * successor kernel to parse. 62 */ 63 64 #define PRESERVE_BITS (512 * 8) 65 66 struct kho_mem_phys_bits { 67 DECLARE_BITMAP(preserve, PRESERVE_BITS); 68 }; 69 70 struct kho_mem_phys { 71 /* 72 * Points to kho_mem_phys_bits, a sparse bitmap array. Each bit is sized 73 * to order. 74 */ 75 struct xarray phys_bits; 76 }; 77 78 struct kho_mem_track { 79 /* Points to kho_mem_phys, each order gets its own bitmap tree */ 80 struct xarray orders; 81 }; 82 83 struct khoser_mem_chunk; 84 85 struct kho_serialization { 86 struct page *fdt; 87 struct list_head fdt_list; 88 struct dentry *sub_fdt_dir; 89 struct kho_mem_track track; 90 /* First chunk of serialized preserved memory map */ 91 struct khoser_mem_chunk *preserved_mem_map; 92 }; 93 94 static void *xa_load_or_alloc(struct xarray *xa, unsigned long index, size_t sz) 95 { 96 void *elm, *res; 97 98 elm = xa_load(xa, index); 99 if (elm) 100 return elm; 101 102 elm = kzalloc(sz, GFP_KERNEL); 103 if (!elm) 104 return ERR_PTR(-ENOMEM); 105 106 res = xa_cmpxchg(xa, index, NULL, elm, GFP_KERNEL); 107 if (xa_is_err(res)) 108 res = ERR_PTR(xa_err(res)); 109 110 if (res) { 111 kfree(elm); 112 return res; 113 } 114 115 return elm; 116 } 117 118 static void __kho_unpreserve(struct kho_mem_track *track, unsigned long pfn, 119 unsigned long end_pfn) 120 { 121 struct kho_mem_phys_bits *bits; 122 struct kho_mem_phys *physxa; 123 124 while (pfn < end_pfn) { 125 const unsigned int order = 126 min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn)); 127 const unsigned long pfn_high = pfn >> order; 128 129 physxa = xa_load(&track->orders, order); 130 if (!physxa) 131 continue; 132 133 bits = xa_load(&physxa->phys_bits, pfn_high / PRESERVE_BITS); 134 if (!bits) 135 continue; 136 137 clear_bit(pfn_high % PRESERVE_BITS, bits->preserve); 138 139 pfn += 1 << order; 140 } 141 } 142 143 static int __kho_preserve_order(struct kho_mem_track *track, unsigned long pfn, 144 unsigned int order) 145 { 146 struct kho_mem_phys_bits *bits; 147 struct kho_mem_phys *physxa, *new_physxa; 148 const unsigned long pfn_high = pfn >> order; 149 150 might_sleep(); 151 152 physxa = xa_load(&track->orders, order); 153 if (!physxa) { 154 int err; 155 156 new_physxa = kzalloc(sizeof(*physxa), GFP_KERNEL); 157 if (!new_physxa) 158 return -ENOMEM; 159 160 xa_init(&new_physxa->phys_bits); 161 physxa = xa_cmpxchg(&track->orders, order, NULL, new_physxa, 162 GFP_KERNEL); 163 164 err = xa_err(physxa); 165 if (err || physxa) { 166 xa_destroy(&new_physxa->phys_bits); 167 kfree(new_physxa); 168 169 if (err) 170 return err; 171 } else { 172 physxa = new_physxa; 173 } 174 } 175 176 bits = xa_load_or_alloc(&physxa->phys_bits, pfn_high / PRESERVE_BITS, 177 sizeof(*bits)); 178 if (IS_ERR(bits)) 179 return PTR_ERR(bits); 180 181 set_bit(pfn_high % PRESERVE_BITS, bits->preserve); 182 183 return 0; 184 } 185 186 /* almost as free_reserved_page(), just don't free the page */ 187 static void kho_restore_page(struct page *page, unsigned int order) 188 { 189 unsigned int nr_pages = (1 << order); 190 191 /* Head page gets refcount of 1. */ 192 set_page_count(page, 1); 193 194 /* For higher order folios, tail pages get a page count of zero. */ 195 for (unsigned int i = 1; i < nr_pages; i++) 196 set_page_count(page + i, 0); 197 198 if (order > 0) 199 prep_compound_page(page, order); 200 201 adjust_managed_page_count(page, nr_pages); 202 } 203 204 /** 205 * kho_restore_folio - recreates the folio from the preserved memory. 206 * @phys: physical address of the folio. 207 * 208 * Return: pointer to the struct folio on success, NULL on failure. 209 */ 210 struct folio *kho_restore_folio(phys_addr_t phys) 211 { 212 struct page *page = pfn_to_online_page(PHYS_PFN(phys)); 213 unsigned long order; 214 215 if (!page) 216 return NULL; 217 218 order = page->private; 219 if (order > MAX_PAGE_ORDER) 220 return NULL; 221 222 kho_restore_page(page, order); 223 return page_folio(page); 224 } 225 EXPORT_SYMBOL_GPL(kho_restore_folio); 226 227 /* Serialize and deserialize struct kho_mem_phys across kexec 228 * 229 * Record all the bitmaps in a linked list of pages for the next kernel to 230 * process. Each chunk holds bitmaps of the same order and each block of bitmaps 231 * starts at a given physical address. This allows the bitmaps to be sparse. The 232 * xarray is used to store them in a tree while building up the data structure, 233 * but the KHO successor kernel only needs to process them once in order. 234 * 235 * All of this memory is normal kmalloc() memory and is not marked for 236 * preservation. The successor kernel will remain isolated to the scratch space 237 * until it completes processing this list. Once processed all the memory 238 * storing these ranges will be marked as free. 239 */ 240 241 struct khoser_mem_bitmap_ptr { 242 phys_addr_t phys_start; 243 DECLARE_KHOSER_PTR(bitmap, struct kho_mem_phys_bits *); 244 }; 245 246 struct khoser_mem_chunk_hdr { 247 DECLARE_KHOSER_PTR(next, struct khoser_mem_chunk *); 248 unsigned int order; 249 unsigned int num_elms; 250 }; 251 252 #define KHOSER_BITMAP_SIZE \ 253 ((PAGE_SIZE - sizeof(struct khoser_mem_chunk_hdr)) / \ 254 sizeof(struct khoser_mem_bitmap_ptr)) 255 256 struct khoser_mem_chunk { 257 struct khoser_mem_chunk_hdr hdr; 258 struct khoser_mem_bitmap_ptr bitmaps[KHOSER_BITMAP_SIZE]; 259 }; 260 261 static_assert(sizeof(struct khoser_mem_chunk) == PAGE_SIZE); 262 263 static struct khoser_mem_chunk *new_chunk(struct khoser_mem_chunk *cur_chunk, 264 unsigned long order) 265 { 266 struct khoser_mem_chunk *chunk; 267 268 chunk = kzalloc(PAGE_SIZE, GFP_KERNEL); 269 if (!chunk) 270 return NULL; 271 chunk->hdr.order = order; 272 if (cur_chunk) 273 KHOSER_STORE_PTR(cur_chunk->hdr.next, chunk); 274 return chunk; 275 } 276 277 static void kho_mem_ser_free(struct khoser_mem_chunk *first_chunk) 278 { 279 struct khoser_mem_chunk *chunk = first_chunk; 280 281 while (chunk) { 282 struct khoser_mem_chunk *tmp = chunk; 283 284 chunk = KHOSER_LOAD_PTR(chunk->hdr.next); 285 kfree(tmp); 286 } 287 } 288 289 static int kho_mem_serialize(struct kho_serialization *ser) 290 { 291 struct khoser_mem_chunk *first_chunk = NULL; 292 struct khoser_mem_chunk *chunk = NULL; 293 struct kho_mem_phys *physxa; 294 unsigned long order; 295 296 xa_for_each(&ser->track.orders, order, physxa) { 297 struct kho_mem_phys_bits *bits; 298 unsigned long phys; 299 300 chunk = new_chunk(chunk, order); 301 if (!chunk) 302 goto err_free; 303 304 if (!first_chunk) 305 first_chunk = chunk; 306 307 xa_for_each(&physxa->phys_bits, phys, bits) { 308 struct khoser_mem_bitmap_ptr *elm; 309 310 if (chunk->hdr.num_elms == ARRAY_SIZE(chunk->bitmaps)) { 311 chunk = new_chunk(chunk, order); 312 if (!chunk) 313 goto err_free; 314 } 315 316 elm = &chunk->bitmaps[chunk->hdr.num_elms]; 317 chunk->hdr.num_elms++; 318 elm->phys_start = (phys * PRESERVE_BITS) 319 << (order + PAGE_SHIFT); 320 KHOSER_STORE_PTR(elm->bitmap, bits); 321 } 322 } 323 324 ser->preserved_mem_map = first_chunk; 325 326 return 0; 327 328 err_free: 329 kho_mem_ser_free(first_chunk); 330 return -ENOMEM; 331 } 332 333 static void __init deserialize_bitmap(unsigned int order, 334 struct khoser_mem_bitmap_ptr *elm) 335 { 336 struct kho_mem_phys_bits *bitmap = KHOSER_LOAD_PTR(elm->bitmap); 337 unsigned long bit; 338 339 for_each_set_bit(bit, bitmap->preserve, PRESERVE_BITS) { 340 int sz = 1 << (order + PAGE_SHIFT); 341 phys_addr_t phys = 342 elm->phys_start + (bit << (order + PAGE_SHIFT)); 343 struct page *page = phys_to_page(phys); 344 345 memblock_reserve(phys, sz); 346 memblock_reserved_mark_noinit(phys, sz); 347 page->private = order; 348 } 349 } 350 351 static void __init kho_mem_deserialize(const void *fdt) 352 { 353 struct khoser_mem_chunk *chunk; 354 const phys_addr_t *mem; 355 int len; 356 357 mem = fdt_getprop(fdt, 0, PROP_PRESERVED_MEMORY_MAP, &len); 358 359 if (!mem || len != sizeof(*mem)) { 360 pr_err("failed to get preserved memory bitmaps\n"); 361 return; 362 } 363 364 chunk = *mem ? phys_to_virt(*mem) : NULL; 365 while (chunk) { 366 unsigned int i; 367 368 for (i = 0; i != chunk->hdr.num_elms; i++) 369 deserialize_bitmap(chunk->hdr.order, 370 &chunk->bitmaps[i]); 371 chunk = KHOSER_LOAD_PTR(chunk->hdr.next); 372 } 373 } 374 375 /* 376 * With KHO enabled, memory can become fragmented because KHO regions may 377 * be anywhere in physical address space. The scratch regions give us a 378 * safe zones that we will never see KHO allocations from. This is where we 379 * can later safely load our new kexec images into and then use the scratch 380 * area for early allocations that happen before page allocator is 381 * initialized. 382 */ 383 static struct kho_scratch *kho_scratch; 384 static unsigned int kho_scratch_cnt; 385 386 /* 387 * The scratch areas are scaled by default as percent of memory allocated from 388 * memblock. A user can override the scale with command line parameter: 389 * 390 * kho_scratch=N% 391 * 392 * It is also possible to explicitly define size for a lowmem, a global and 393 * per-node scratch areas: 394 * 395 * kho_scratch=l[KMG],n[KMG],m[KMG] 396 * 397 * The explicit size definition takes precedence over scale definition. 398 */ 399 static unsigned int scratch_scale __initdata = 200; 400 static phys_addr_t scratch_size_global __initdata; 401 static phys_addr_t scratch_size_pernode __initdata; 402 static phys_addr_t scratch_size_lowmem __initdata; 403 404 static int __init kho_parse_scratch_size(char *p) 405 { 406 size_t len; 407 unsigned long sizes[3]; 408 int i; 409 410 if (!p) 411 return -EINVAL; 412 413 len = strlen(p); 414 if (!len) 415 return -EINVAL; 416 417 /* parse nn% */ 418 if (p[len - 1] == '%') { 419 /* unsigned int max is 4,294,967,295, 10 chars */ 420 char s_scale[11] = {}; 421 int ret = 0; 422 423 if (len > ARRAY_SIZE(s_scale)) 424 return -EINVAL; 425 426 memcpy(s_scale, p, len - 1); 427 ret = kstrtouint(s_scale, 10, &scratch_scale); 428 if (!ret) 429 pr_notice("scratch scale is %d%%\n", scratch_scale); 430 return ret; 431 } 432 433 /* parse ll[KMG],mm[KMG],nn[KMG] */ 434 for (i = 0; i < ARRAY_SIZE(sizes); i++) { 435 char *endp = p; 436 437 if (i > 0) { 438 if (*p != ',') 439 return -EINVAL; 440 p += 1; 441 } 442 443 sizes[i] = memparse(p, &endp); 444 if (!sizes[i] || endp == p) 445 return -EINVAL; 446 p = endp; 447 } 448 449 scratch_size_lowmem = sizes[0]; 450 scratch_size_global = sizes[1]; 451 scratch_size_pernode = sizes[2]; 452 scratch_scale = 0; 453 454 pr_notice("scratch areas: lowmem: %lluMiB global: %lluMiB pernode: %lldMiB\n", 455 (u64)(scratch_size_lowmem >> 20), 456 (u64)(scratch_size_global >> 20), 457 (u64)(scratch_size_pernode >> 20)); 458 459 return 0; 460 } 461 early_param("kho_scratch", kho_parse_scratch_size); 462 463 static void __init scratch_size_update(void) 464 { 465 phys_addr_t size; 466 467 if (!scratch_scale) 468 return; 469 470 size = memblock_reserved_kern_size(ARCH_LOW_ADDRESS_LIMIT, 471 NUMA_NO_NODE); 472 size = size * scratch_scale / 100; 473 scratch_size_lowmem = round_up(size, CMA_MIN_ALIGNMENT_BYTES); 474 475 size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE, 476 NUMA_NO_NODE); 477 size = size * scratch_scale / 100 - scratch_size_lowmem; 478 scratch_size_global = round_up(size, CMA_MIN_ALIGNMENT_BYTES); 479 } 480 481 static phys_addr_t __init scratch_size_node(int nid) 482 { 483 phys_addr_t size; 484 485 if (scratch_scale) { 486 size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE, 487 nid); 488 size = size * scratch_scale / 100; 489 } else { 490 size = scratch_size_pernode; 491 } 492 493 return round_up(size, CMA_MIN_ALIGNMENT_BYTES); 494 } 495 496 /** 497 * kho_reserve_scratch - Reserve a contiguous chunk of memory for kexec 498 * 499 * With KHO we can preserve arbitrary pages in the system. To ensure we still 500 * have a large contiguous region of memory when we search the physical address 501 * space for target memory, let's make sure we always have a large CMA region 502 * active. This CMA region will only be used for movable pages which are not a 503 * problem for us during KHO because we can just move them somewhere else. 504 */ 505 static void __init kho_reserve_scratch(void) 506 { 507 phys_addr_t addr, size; 508 int nid, i = 0; 509 510 if (!kho_enable) 511 return; 512 513 scratch_size_update(); 514 515 /* FIXME: deal with node hot-plug/remove */ 516 kho_scratch_cnt = num_online_nodes() + 2; 517 size = kho_scratch_cnt * sizeof(*kho_scratch); 518 kho_scratch = memblock_alloc(size, PAGE_SIZE); 519 if (!kho_scratch) 520 goto err_disable_kho; 521 522 /* 523 * reserve scratch area in low memory for lowmem allocations in the 524 * next kernel 525 */ 526 size = scratch_size_lowmem; 527 addr = memblock_phys_alloc_range(size, CMA_MIN_ALIGNMENT_BYTES, 0, 528 ARCH_LOW_ADDRESS_LIMIT); 529 if (!addr) 530 goto err_free_scratch_desc; 531 532 kho_scratch[i].addr = addr; 533 kho_scratch[i].size = size; 534 i++; 535 536 /* reserve large contiguous area for allocations without nid */ 537 size = scratch_size_global; 538 addr = memblock_phys_alloc(size, CMA_MIN_ALIGNMENT_BYTES); 539 if (!addr) 540 goto err_free_scratch_areas; 541 542 kho_scratch[i].addr = addr; 543 kho_scratch[i].size = size; 544 i++; 545 546 for_each_online_node(nid) { 547 size = scratch_size_node(nid); 548 addr = memblock_alloc_range_nid(size, CMA_MIN_ALIGNMENT_BYTES, 549 0, MEMBLOCK_ALLOC_ACCESSIBLE, 550 nid, true); 551 if (!addr) 552 goto err_free_scratch_areas; 553 554 kho_scratch[i].addr = addr; 555 kho_scratch[i].size = size; 556 i++; 557 } 558 559 return; 560 561 err_free_scratch_areas: 562 for (i--; i >= 0; i--) 563 memblock_phys_free(kho_scratch[i].addr, kho_scratch[i].size); 564 err_free_scratch_desc: 565 memblock_free(kho_scratch, kho_scratch_cnt * sizeof(*kho_scratch)); 566 err_disable_kho: 567 pr_warn("Failed to reserve scratch area, disabling kexec handover\n"); 568 kho_enable = false; 569 } 570 571 struct fdt_debugfs { 572 struct list_head list; 573 struct debugfs_blob_wrapper wrapper; 574 struct dentry *file; 575 }; 576 577 static int kho_debugfs_fdt_add(struct list_head *list, struct dentry *dir, 578 const char *name, const void *fdt) 579 { 580 struct fdt_debugfs *f; 581 struct dentry *file; 582 583 f = kmalloc(sizeof(*f), GFP_KERNEL); 584 if (!f) 585 return -ENOMEM; 586 587 f->wrapper.data = (void *)fdt; 588 f->wrapper.size = fdt_totalsize(fdt); 589 590 file = debugfs_create_blob(name, 0400, dir, &f->wrapper); 591 if (IS_ERR(file)) { 592 kfree(f); 593 return PTR_ERR(file); 594 } 595 596 f->file = file; 597 list_add(&f->list, list); 598 599 return 0; 600 } 601 602 /** 603 * kho_add_subtree - record the physical address of a sub FDT in KHO root tree. 604 * @ser: serialization control object passed by KHO notifiers. 605 * @name: name of the sub tree. 606 * @fdt: the sub tree blob. 607 * 608 * Creates a new child node named @name in KHO root FDT and records 609 * the physical address of @fdt. The pages of @fdt must also be preserved 610 * by KHO for the new kernel to retrieve it after kexec. 611 * 612 * A debugfs blob entry is also created at 613 * ``/sys/kernel/debug/kho/out/sub_fdts/@name``. 614 * 615 * Return: 0 on success, error code on failure 616 */ 617 int kho_add_subtree(struct kho_serialization *ser, const char *name, void *fdt) 618 { 619 int err = 0; 620 u64 phys = (u64)virt_to_phys(fdt); 621 void *root = page_to_virt(ser->fdt); 622 623 err |= fdt_begin_node(root, name); 624 err |= fdt_property(root, PROP_SUB_FDT, &phys, sizeof(phys)); 625 err |= fdt_end_node(root); 626 627 if (err) 628 return err; 629 630 return kho_debugfs_fdt_add(&ser->fdt_list, ser->sub_fdt_dir, name, fdt); 631 } 632 EXPORT_SYMBOL_GPL(kho_add_subtree); 633 634 struct kho_out { 635 struct blocking_notifier_head chain_head; 636 637 struct dentry *dir; 638 639 struct mutex lock; /* protects KHO FDT finalization */ 640 641 struct kho_serialization ser; 642 bool finalized; 643 }; 644 645 static struct kho_out kho_out = { 646 .chain_head = BLOCKING_NOTIFIER_INIT(kho_out.chain_head), 647 .lock = __MUTEX_INITIALIZER(kho_out.lock), 648 .ser = { 649 .fdt_list = LIST_HEAD_INIT(kho_out.ser.fdt_list), 650 .track = { 651 .orders = XARRAY_INIT(kho_out.ser.track.orders, 0), 652 }, 653 }, 654 .finalized = false, 655 }; 656 657 int register_kho_notifier(struct notifier_block *nb) 658 { 659 return blocking_notifier_chain_register(&kho_out.chain_head, nb); 660 } 661 EXPORT_SYMBOL_GPL(register_kho_notifier); 662 663 int unregister_kho_notifier(struct notifier_block *nb) 664 { 665 return blocking_notifier_chain_unregister(&kho_out.chain_head, nb); 666 } 667 EXPORT_SYMBOL_GPL(unregister_kho_notifier); 668 669 /** 670 * kho_preserve_folio - preserve a folio across kexec. 671 * @folio: folio to preserve. 672 * 673 * Instructs KHO to preserve the whole folio across kexec. The order 674 * will be preserved as well. 675 * 676 * Return: 0 on success, error code on failure 677 */ 678 int kho_preserve_folio(struct folio *folio) 679 { 680 const unsigned long pfn = folio_pfn(folio); 681 const unsigned int order = folio_order(folio); 682 struct kho_mem_track *track = &kho_out.ser.track; 683 684 if (kho_out.finalized) 685 return -EBUSY; 686 687 return __kho_preserve_order(track, pfn, order); 688 } 689 EXPORT_SYMBOL_GPL(kho_preserve_folio); 690 691 /** 692 * kho_preserve_phys - preserve a physically contiguous range across kexec. 693 * @phys: physical address of the range. 694 * @size: size of the range. 695 * 696 * Instructs KHO to preserve the memory range from @phys to @phys + @size 697 * across kexec. 698 * 699 * Return: 0 on success, error code on failure 700 */ 701 int kho_preserve_phys(phys_addr_t phys, size_t size) 702 { 703 unsigned long pfn = PHYS_PFN(phys); 704 unsigned long failed_pfn = 0; 705 const unsigned long start_pfn = pfn; 706 const unsigned long end_pfn = PHYS_PFN(phys + size); 707 int err = 0; 708 struct kho_mem_track *track = &kho_out.ser.track; 709 710 if (kho_out.finalized) 711 return -EBUSY; 712 713 if (!PAGE_ALIGNED(phys) || !PAGE_ALIGNED(size)) 714 return -EINVAL; 715 716 while (pfn < end_pfn) { 717 const unsigned int order = 718 min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn)); 719 720 err = __kho_preserve_order(track, pfn, order); 721 if (err) { 722 failed_pfn = pfn; 723 break; 724 } 725 726 pfn += 1 << order; 727 } 728 729 if (err) 730 __kho_unpreserve(track, start_pfn, failed_pfn); 731 732 return err; 733 } 734 EXPORT_SYMBOL_GPL(kho_preserve_phys); 735 736 /* Handling for debug/kho/out */ 737 738 static struct dentry *debugfs_root; 739 740 static int kho_out_update_debugfs_fdt(void) 741 { 742 int err = 0; 743 struct fdt_debugfs *ff, *tmp; 744 745 if (kho_out.finalized) { 746 err = kho_debugfs_fdt_add(&kho_out.ser.fdt_list, kho_out.dir, 747 "fdt", page_to_virt(kho_out.ser.fdt)); 748 } else { 749 list_for_each_entry_safe(ff, tmp, &kho_out.ser.fdt_list, list) { 750 debugfs_remove(ff->file); 751 list_del(&ff->list); 752 kfree(ff); 753 } 754 } 755 756 return err; 757 } 758 759 static int kho_abort(void) 760 { 761 int err; 762 unsigned long order; 763 struct kho_mem_phys *physxa; 764 765 xa_for_each(&kho_out.ser.track.orders, order, physxa) { 766 struct kho_mem_phys_bits *bits; 767 unsigned long phys; 768 769 xa_for_each(&physxa->phys_bits, phys, bits) 770 kfree(bits); 771 772 xa_destroy(&physxa->phys_bits); 773 kfree(physxa); 774 } 775 xa_destroy(&kho_out.ser.track.orders); 776 777 if (kho_out.ser.preserved_mem_map) { 778 kho_mem_ser_free(kho_out.ser.preserved_mem_map); 779 kho_out.ser.preserved_mem_map = NULL; 780 } 781 782 err = blocking_notifier_call_chain(&kho_out.chain_head, KEXEC_KHO_ABORT, 783 NULL); 784 err = notifier_to_errno(err); 785 786 if (err) 787 pr_err("Failed to abort KHO finalization: %d\n", err); 788 789 return err; 790 } 791 792 static int kho_finalize(void) 793 { 794 int err = 0; 795 u64 *preserved_mem_map; 796 void *fdt = page_to_virt(kho_out.ser.fdt); 797 798 err |= fdt_create(fdt, PAGE_SIZE); 799 err |= fdt_finish_reservemap(fdt); 800 err |= fdt_begin_node(fdt, ""); 801 err |= fdt_property_string(fdt, "compatible", KHO_FDT_COMPATIBLE); 802 /** 803 * Reserve the preserved-memory-map property in the root FDT, so 804 * that all property definitions will precede subnodes created by 805 * KHO callers. 806 */ 807 err |= fdt_property_placeholder(fdt, PROP_PRESERVED_MEMORY_MAP, 808 sizeof(*preserved_mem_map), 809 (void **)&preserved_mem_map); 810 if (err) 811 goto abort; 812 813 err = kho_preserve_folio(page_folio(kho_out.ser.fdt)); 814 if (err) 815 goto abort; 816 817 err = blocking_notifier_call_chain(&kho_out.chain_head, 818 KEXEC_KHO_FINALIZE, &kho_out.ser); 819 err = notifier_to_errno(err); 820 if (err) 821 goto abort; 822 823 err = kho_mem_serialize(&kho_out.ser); 824 if (err) 825 goto abort; 826 827 *preserved_mem_map = (u64)virt_to_phys(kho_out.ser.preserved_mem_map); 828 829 err |= fdt_end_node(fdt); 830 err |= fdt_finish(fdt); 831 832 abort: 833 if (err) { 834 pr_err("Failed to convert KHO state tree: %d\n", err); 835 kho_abort(); 836 } 837 838 return err; 839 } 840 841 static int kho_out_finalize_get(void *data, u64 *val) 842 { 843 mutex_lock(&kho_out.lock); 844 *val = kho_out.finalized; 845 mutex_unlock(&kho_out.lock); 846 847 return 0; 848 } 849 850 static int kho_out_finalize_set(void *data, u64 _val) 851 { 852 int ret = 0; 853 bool val = !!_val; 854 855 mutex_lock(&kho_out.lock); 856 857 if (val == kho_out.finalized) { 858 if (kho_out.finalized) 859 ret = -EEXIST; 860 else 861 ret = -ENOENT; 862 goto unlock; 863 } 864 865 if (val) 866 ret = kho_finalize(); 867 else 868 ret = kho_abort(); 869 870 if (ret) 871 goto unlock; 872 873 kho_out.finalized = val; 874 ret = kho_out_update_debugfs_fdt(); 875 876 unlock: 877 mutex_unlock(&kho_out.lock); 878 return ret; 879 } 880 881 DEFINE_DEBUGFS_ATTRIBUTE(fops_kho_out_finalize, kho_out_finalize_get, 882 kho_out_finalize_set, "%llu\n"); 883 884 static int scratch_phys_show(struct seq_file *m, void *v) 885 { 886 for (int i = 0; i < kho_scratch_cnt; i++) 887 seq_printf(m, "0x%llx\n", kho_scratch[i].addr); 888 889 return 0; 890 } 891 DEFINE_SHOW_ATTRIBUTE(scratch_phys); 892 893 static int scratch_len_show(struct seq_file *m, void *v) 894 { 895 for (int i = 0; i < kho_scratch_cnt; i++) 896 seq_printf(m, "0x%llx\n", kho_scratch[i].size); 897 898 return 0; 899 } 900 DEFINE_SHOW_ATTRIBUTE(scratch_len); 901 902 static __init int kho_out_debugfs_init(void) 903 { 904 struct dentry *dir, *f, *sub_fdt_dir; 905 906 dir = debugfs_create_dir("out", debugfs_root); 907 if (IS_ERR(dir)) 908 return -ENOMEM; 909 910 sub_fdt_dir = debugfs_create_dir("sub_fdts", dir); 911 if (IS_ERR(sub_fdt_dir)) 912 goto err_rmdir; 913 914 f = debugfs_create_file("scratch_phys", 0400, dir, NULL, 915 &scratch_phys_fops); 916 if (IS_ERR(f)) 917 goto err_rmdir; 918 919 f = debugfs_create_file("scratch_len", 0400, dir, NULL, 920 &scratch_len_fops); 921 if (IS_ERR(f)) 922 goto err_rmdir; 923 924 f = debugfs_create_file("finalize", 0600, dir, NULL, 925 &fops_kho_out_finalize); 926 if (IS_ERR(f)) 927 goto err_rmdir; 928 929 kho_out.dir = dir; 930 kho_out.ser.sub_fdt_dir = sub_fdt_dir; 931 return 0; 932 933 err_rmdir: 934 debugfs_remove_recursive(dir); 935 return -ENOENT; 936 } 937 938 struct kho_in { 939 struct dentry *dir; 940 phys_addr_t fdt_phys; 941 phys_addr_t scratch_phys; 942 struct list_head fdt_list; 943 }; 944 945 static struct kho_in kho_in = { 946 .fdt_list = LIST_HEAD_INIT(kho_in.fdt_list), 947 }; 948 949 static const void *kho_get_fdt(void) 950 { 951 return kho_in.fdt_phys ? phys_to_virt(kho_in.fdt_phys) : NULL; 952 } 953 954 /** 955 * kho_retrieve_subtree - retrieve a preserved sub FDT by its name. 956 * @name: the name of the sub FDT passed to kho_add_subtree(). 957 * @phys: if found, the physical address of the sub FDT is stored in @phys. 958 * 959 * Retrieve a preserved sub FDT named @name and store its physical 960 * address in @phys. 961 * 962 * Return: 0 on success, error code on failure 963 */ 964 int kho_retrieve_subtree(const char *name, phys_addr_t *phys) 965 { 966 const void *fdt = kho_get_fdt(); 967 const u64 *val; 968 int offset, len; 969 970 if (!fdt) 971 return -ENOENT; 972 973 if (!phys) 974 return -EINVAL; 975 976 offset = fdt_subnode_offset(fdt, 0, name); 977 if (offset < 0) 978 return -ENOENT; 979 980 val = fdt_getprop(fdt, offset, PROP_SUB_FDT, &len); 981 if (!val || len != sizeof(*val)) 982 return -EINVAL; 983 984 *phys = (phys_addr_t)*val; 985 986 return 0; 987 } 988 EXPORT_SYMBOL_GPL(kho_retrieve_subtree); 989 990 /* Handling for debugfs/kho/in */ 991 992 static __init int kho_in_debugfs_init(const void *fdt) 993 { 994 struct dentry *sub_fdt_dir; 995 int err, child; 996 997 kho_in.dir = debugfs_create_dir("in", debugfs_root); 998 if (IS_ERR(kho_in.dir)) 999 return PTR_ERR(kho_in.dir); 1000 1001 sub_fdt_dir = debugfs_create_dir("sub_fdts", kho_in.dir); 1002 if (IS_ERR(sub_fdt_dir)) { 1003 err = PTR_ERR(sub_fdt_dir); 1004 goto err_rmdir; 1005 } 1006 1007 err = kho_debugfs_fdt_add(&kho_in.fdt_list, kho_in.dir, "fdt", fdt); 1008 if (err) 1009 goto err_rmdir; 1010 1011 fdt_for_each_subnode(child, fdt, 0) { 1012 int len = 0; 1013 const char *name = fdt_get_name(fdt, child, NULL); 1014 const u64 *fdt_phys; 1015 1016 fdt_phys = fdt_getprop(fdt, child, "fdt", &len); 1017 if (!fdt_phys) 1018 continue; 1019 if (len != sizeof(*fdt_phys)) { 1020 pr_warn("node `%s`'s prop `fdt` has invalid length: %d\n", 1021 name, len); 1022 continue; 1023 } 1024 err = kho_debugfs_fdt_add(&kho_in.fdt_list, sub_fdt_dir, name, 1025 phys_to_virt(*fdt_phys)); 1026 if (err) { 1027 pr_warn("failed to add fdt `%s` to debugfs: %d\n", name, 1028 err); 1029 continue; 1030 } 1031 } 1032 1033 return 0; 1034 1035 err_rmdir: 1036 debugfs_remove_recursive(kho_in.dir); 1037 return err; 1038 } 1039 1040 static __init int kho_init(void) 1041 { 1042 int err = 0; 1043 const void *fdt = kho_get_fdt(); 1044 1045 if (!kho_enable) 1046 return 0; 1047 1048 kho_out.ser.fdt = alloc_page(GFP_KERNEL); 1049 if (!kho_out.ser.fdt) { 1050 err = -ENOMEM; 1051 goto err_free_scratch; 1052 } 1053 1054 debugfs_root = debugfs_create_dir("kho", NULL); 1055 if (IS_ERR(debugfs_root)) { 1056 err = -ENOENT; 1057 goto err_free_fdt; 1058 } 1059 1060 err = kho_out_debugfs_init(); 1061 if (err) 1062 goto err_free_fdt; 1063 1064 if (fdt) { 1065 err = kho_in_debugfs_init(fdt); 1066 /* 1067 * Failure to create /sys/kernel/debug/kho/in does not prevent 1068 * reviving state from KHO and setting up KHO for the next 1069 * kexec. 1070 */ 1071 if (err) 1072 pr_err("failed exposing handover FDT in debugfs: %d\n", 1073 err); 1074 1075 return 0; 1076 } 1077 1078 for (int i = 0; i < kho_scratch_cnt; i++) { 1079 unsigned long base_pfn = PHYS_PFN(kho_scratch[i].addr); 1080 unsigned long count = kho_scratch[i].size >> PAGE_SHIFT; 1081 unsigned long pfn; 1082 1083 for (pfn = base_pfn; pfn < base_pfn + count; 1084 pfn += pageblock_nr_pages) 1085 init_cma_reserved_pageblock(pfn_to_page(pfn)); 1086 } 1087 1088 return 0; 1089 1090 err_free_fdt: 1091 put_page(kho_out.ser.fdt); 1092 kho_out.ser.fdt = NULL; 1093 err_free_scratch: 1094 for (int i = 0; i < kho_scratch_cnt; i++) { 1095 void *start = __va(kho_scratch[i].addr); 1096 void *end = start + kho_scratch[i].size; 1097 1098 free_reserved_area(start, end, -1, ""); 1099 } 1100 kho_enable = false; 1101 return err; 1102 } 1103 late_initcall(kho_init); 1104 1105 static void __init kho_release_scratch(void) 1106 { 1107 phys_addr_t start, end; 1108 u64 i; 1109 1110 memmap_init_kho_scratch_pages(); 1111 1112 /* 1113 * Mark scratch mem as CMA before we return it. That way we 1114 * ensure that no kernel allocations happen on it. That means 1115 * we can reuse it as scratch memory again later. 1116 */ 1117 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, 1118 MEMBLOCK_KHO_SCRATCH, &start, &end, NULL) { 1119 ulong start_pfn = pageblock_start_pfn(PFN_DOWN(start)); 1120 ulong end_pfn = pageblock_align(PFN_UP(end)); 1121 ulong pfn; 1122 1123 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) 1124 init_pageblock_migratetype(pfn_to_page(pfn), 1125 MIGRATE_CMA, false); 1126 } 1127 } 1128 1129 void __init kho_memory_init(void) 1130 { 1131 struct folio *folio; 1132 1133 if (kho_in.scratch_phys) { 1134 kho_scratch = phys_to_virt(kho_in.scratch_phys); 1135 kho_release_scratch(); 1136 1137 kho_mem_deserialize(kho_get_fdt()); 1138 folio = kho_restore_folio(kho_in.fdt_phys); 1139 if (!folio) 1140 pr_warn("failed to restore folio for KHO fdt\n"); 1141 } else { 1142 kho_reserve_scratch(); 1143 } 1144 } 1145 1146 void __init kho_populate(phys_addr_t fdt_phys, u64 fdt_len, 1147 phys_addr_t scratch_phys, u64 scratch_len) 1148 { 1149 void *fdt = NULL; 1150 struct kho_scratch *scratch = NULL; 1151 int err = 0; 1152 unsigned int scratch_cnt = scratch_len / sizeof(*kho_scratch); 1153 1154 /* Validate the input FDT */ 1155 fdt = early_memremap(fdt_phys, fdt_len); 1156 if (!fdt) { 1157 pr_warn("setup: failed to memremap FDT (0x%llx)\n", fdt_phys); 1158 err = -EFAULT; 1159 goto out; 1160 } 1161 err = fdt_check_header(fdt); 1162 if (err) { 1163 pr_warn("setup: handover FDT (0x%llx) is invalid: %d\n", 1164 fdt_phys, err); 1165 err = -EINVAL; 1166 goto out; 1167 } 1168 err = fdt_node_check_compatible(fdt, 0, KHO_FDT_COMPATIBLE); 1169 if (err) { 1170 pr_warn("setup: handover FDT (0x%llx) is incompatible with '%s': %d\n", 1171 fdt_phys, KHO_FDT_COMPATIBLE, err); 1172 err = -EINVAL; 1173 goto out; 1174 } 1175 1176 scratch = early_memremap(scratch_phys, scratch_len); 1177 if (!scratch) { 1178 pr_warn("setup: failed to memremap scratch (phys=0x%llx, len=%lld)\n", 1179 scratch_phys, scratch_len); 1180 err = -EFAULT; 1181 goto out; 1182 } 1183 1184 /* 1185 * We pass a safe contiguous blocks of memory to use for early boot 1186 * purporses from the previous kernel so that we can resize the 1187 * memblock array as needed. 1188 */ 1189 for (int i = 0; i < scratch_cnt; i++) { 1190 struct kho_scratch *area = &scratch[i]; 1191 u64 size = area->size; 1192 1193 memblock_add(area->addr, size); 1194 err = memblock_mark_kho_scratch(area->addr, size); 1195 if (WARN_ON(err)) { 1196 pr_warn("failed to mark the scratch region 0x%pa+0x%pa: %d", 1197 &area->addr, &size, err); 1198 goto out; 1199 } 1200 pr_debug("Marked 0x%pa+0x%pa as scratch", &area->addr, &size); 1201 } 1202 1203 memblock_reserve(scratch_phys, scratch_len); 1204 1205 /* 1206 * Now that we have a viable region of scratch memory, let's tell 1207 * the memblocks allocator to only use that for any allocations. 1208 * That way we ensure that nothing scribbles over in use data while 1209 * we initialize the page tables which we will need to ingest all 1210 * memory reservations from the previous kernel. 1211 */ 1212 memblock_set_kho_scratch_only(); 1213 1214 kho_in.fdt_phys = fdt_phys; 1215 kho_in.scratch_phys = scratch_phys; 1216 kho_scratch_cnt = scratch_cnt; 1217 pr_info("found kexec handover data. Will skip init for some devices\n"); 1218 1219 out: 1220 if (fdt) 1221 early_memunmap(fdt, fdt_len); 1222 if (scratch) 1223 early_memunmap(scratch, scratch_len); 1224 if (err) 1225 pr_warn("disabling KHO revival: %d\n", err); 1226 } 1227 1228 /* Helper functions for kexec_file_load */ 1229 1230 int kho_fill_kimage(struct kimage *image) 1231 { 1232 ssize_t scratch_size; 1233 int err = 0; 1234 struct kexec_buf scratch; 1235 1236 if (!kho_enable) 1237 return 0; 1238 1239 image->kho.fdt = page_to_phys(kho_out.ser.fdt); 1240 1241 scratch_size = sizeof(*kho_scratch) * kho_scratch_cnt; 1242 scratch = (struct kexec_buf){ 1243 .image = image, 1244 .buffer = kho_scratch, 1245 .bufsz = scratch_size, 1246 .mem = KEXEC_BUF_MEM_UNKNOWN, 1247 .memsz = scratch_size, 1248 .buf_align = SZ_64K, /* Makes it easier to map */ 1249 .buf_max = ULONG_MAX, 1250 .top_down = true, 1251 }; 1252 err = kexec_add_buffer(&scratch); 1253 if (err) 1254 return err; 1255 image->kho.scratch = &image->segment[image->nr_segments - 1]; 1256 1257 return 0; 1258 } 1259 1260 static int kho_walk_scratch(struct kexec_buf *kbuf, 1261 int (*func)(struct resource *, void *)) 1262 { 1263 int ret = 0; 1264 int i; 1265 1266 for (i = 0; i < kho_scratch_cnt; i++) { 1267 struct resource res = { 1268 .start = kho_scratch[i].addr, 1269 .end = kho_scratch[i].addr + kho_scratch[i].size - 1, 1270 }; 1271 1272 /* Try to fit the kimage into our KHO scratch region */ 1273 ret = func(&res, kbuf); 1274 if (ret) 1275 break; 1276 } 1277 1278 return ret; 1279 } 1280 1281 int kho_locate_mem_hole(struct kexec_buf *kbuf, 1282 int (*func)(struct resource *, void *)) 1283 { 1284 int ret; 1285 1286 if (!kho_enable || kbuf->image->type == KEXEC_TYPE_CRASH) 1287 return 1; 1288 1289 ret = kho_walk_scratch(kbuf, func); 1290 1291 return ret == 1 ? 0 : -EADDRNOTAVAIL; 1292 } 1293