xref: /linux/kernel/kexec_handover.c (revision c06944560a562828d507166b4f87c01c367cc9c1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec_handover.c - kexec handover metadata processing
4  * Copyright (C) 2023 Alexander Graf <graf@amazon.com>
5  * Copyright (C) 2025 Microsoft Corporation, Mike Rapoport <rppt@kernel.org>
6  * Copyright (C) 2025 Google LLC, Changyuan Lyu <changyuanl@google.com>
7  */
8 
9 #define pr_fmt(fmt) "KHO: " fmt
10 
11 #include <linux/cma.h>
12 #include <linux/count_zeros.h>
13 #include <linux/debugfs.h>
14 #include <linux/kexec.h>
15 #include <linux/kexec_handover.h>
16 #include <linux/libfdt.h>
17 #include <linux/list.h>
18 #include <linux/memblock.h>
19 #include <linux/notifier.h>
20 #include <linux/page-isolation.h>
21 
22 #include <asm/early_ioremap.h>
23 
24 /*
25  * KHO is tightly coupled with mm init and needs access to some of mm
26  * internal APIs.
27  */
28 #include "../mm/internal.h"
29 #include "kexec_internal.h"
30 
31 #define KHO_FDT_COMPATIBLE "kho-v1"
32 #define PROP_PRESERVED_MEMORY_MAP "preserved-memory-map"
33 #define PROP_SUB_FDT "fdt"
34 
35 static bool kho_enable __ro_after_init;
36 
kho_is_enabled(void)37 bool kho_is_enabled(void)
38 {
39 	return kho_enable;
40 }
41 EXPORT_SYMBOL_GPL(kho_is_enabled);
42 
kho_parse_enable(char * p)43 static int __init kho_parse_enable(char *p)
44 {
45 	return kstrtobool(p, &kho_enable);
46 }
47 early_param("kho", kho_parse_enable);
48 
49 /*
50  * Keep track of memory that is to be preserved across KHO.
51  *
52  * The serializing side uses two levels of xarrays to manage chunks of per-order
53  * 512 byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order of a
54  * 1TB system would fit inside a single 512 byte bitmap. For order 0 allocations
55  * each bitmap will cover 16M of address space. Thus, for 16G of memory at most
56  * 512K of bitmap memory will be needed for order 0.
57  *
58  * This approach is fully incremental, as the serialization progresses folios
59  * can continue be aggregated to the tracker. The final step, immediately prior
60  * to kexec would serialize the xarray information into a linked list for the
61  * successor kernel to parse.
62  */
63 
64 #define PRESERVE_BITS (512 * 8)
65 
66 struct kho_mem_phys_bits {
67 	DECLARE_BITMAP(preserve, PRESERVE_BITS);
68 };
69 
70 struct kho_mem_phys {
71 	/*
72 	 * Points to kho_mem_phys_bits, a sparse bitmap array. Each bit is sized
73 	 * to order.
74 	 */
75 	struct xarray phys_bits;
76 };
77 
78 struct kho_mem_track {
79 	/* Points to kho_mem_phys, each order gets its own bitmap tree */
80 	struct xarray orders;
81 };
82 
83 struct khoser_mem_chunk;
84 
85 struct kho_serialization {
86 	struct page *fdt;
87 	struct list_head fdt_list;
88 	struct dentry *sub_fdt_dir;
89 	struct kho_mem_track track;
90 	/* First chunk of serialized preserved memory map */
91 	struct khoser_mem_chunk *preserved_mem_map;
92 };
93 
xa_load_or_alloc(struct xarray * xa,unsigned long index,size_t sz)94 static void *xa_load_or_alloc(struct xarray *xa, unsigned long index, size_t sz)
95 {
96 	void *elm, *res;
97 
98 	elm = xa_load(xa, index);
99 	if (elm)
100 		return elm;
101 
102 	elm = kzalloc(sz, GFP_KERNEL);
103 	if (!elm)
104 		return ERR_PTR(-ENOMEM);
105 
106 	res = xa_cmpxchg(xa, index, NULL, elm, GFP_KERNEL);
107 	if (xa_is_err(res))
108 		res = ERR_PTR(xa_err(res));
109 
110 	if (res) {
111 		kfree(elm);
112 		return res;
113 	}
114 
115 	return elm;
116 }
117 
__kho_unpreserve(struct kho_mem_track * track,unsigned long pfn,unsigned long end_pfn)118 static void __kho_unpreserve(struct kho_mem_track *track, unsigned long pfn,
119 			     unsigned long end_pfn)
120 {
121 	struct kho_mem_phys_bits *bits;
122 	struct kho_mem_phys *physxa;
123 
124 	while (pfn < end_pfn) {
125 		const unsigned int order =
126 			min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
127 		const unsigned long pfn_high = pfn >> order;
128 
129 		physxa = xa_load(&track->orders, order);
130 		if (!physxa)
131 			continue;
132 
133 		bits = xa_load(&physxa->phys_bits, pfn_high / PRESERVE_BITS);
134 		if (!bits)
135 			continue;
136 
137 		clear_bit(pfn_high % PRESERVE_BITS, bits->preserve);
138 
139 		pfn += 1 << order;
140 	}
141 }
142 
__kho_preserve_order(struct kho_mem_track * track,unsigned long pfn,unsigned int order)143 static int __kho_preserve_order(struct kho_mem_track *track, unsigned long pfn,
144 				unsigned int order)
145 {
146 	struct kho_mem_phys_bits *bits;
147 	struct kho_mem_phys *physxa;
148 	const unsigned long pfn_high = pfn >> order;
149 
150 	might_sleep();
151 
152 	physxa = xa_load_or_alloc(&track->orders, order, sizeof(*physxa));
153 	if (IS_ERR(physxa))
154 		return PTR_ERR(physxa);
155 
156 	bits = xa_load_or_alloc(&physxa->phys_bits, pfn_high / PRESERVE_BITS,
157 				sizeof(*bits));
158 	if (IS_ERR(bits))
159 		return PTR_ERR(bits);
160 
161 	set_bit(pfn_high % PRESERVE_BITS, bits->preserve);
162 
163 	return 0;
164 }
165 
166 /* almost as free_reserved_page(), just don't free the page */
kho_restore_page(struct page * page,unsigned int order)167 static void kho_restore_page(struct page *page, unsigned int order)
168 {
169 	unsigned int nr_pages = (1 << order);
170 
171 	/* Head page gets refcount of 1. */
172 	set_page_count(page, 1);
173 
174 	/* For higher order folios, tail pages get a page count of zero. */
175 	for (unsigned int i = 1; i < nr_pages; i++)
176 		set_page_count(page + i, 0);
177 
178 	if (order > 0)
179 		prep_compound_page(page, order);
180 
181 	adjust_managed_page_count(page, nr_pages);
182 }
183 
184 /**
185  * kho_restore_folio - recreates the folio from the preserved memory.
186  * @phys: physical address of the folio.
187  *
188  * Return: pointer to the struct folio on success, NULL on failure.
189  */
kho_restore_folio(phys_addr_t phys)190 struct folio *kho_restore_folio(phys_addr_t phys)
191 {
192 	struct page *page = pfn_to_online_page(PHYS_PFN(phys));
193 	unsigned long order;
194 
195 	if (!page)
196 		return NULL;
197 
198 	order = page->private;
199 	if (order > MAX_PAGE_ORDER)
200 		return NULL;
201 
202 	kho_restore_page(page, order);
203 	return page_folio(page);
204 }
205 EXPORT_SYMBOL_GPL(kho_restore_folio);
206 
207 /* Serialize and deserialize struct kho_mem_phys across kexec
208  *
209  * Record all the bitmaps in a linked list of pages for the next kernel to
210  * process. Each chunk holds bitmaps of the same order and each block of bitmaps
211  * starts at a given physical address. This allows the bitmaps to be sparse. The
212  * xarray is used to store them in a tree while building up the data structure,
213  * but the KHO successor kernel only needs to process them once in order.
214  *
215  * All of this memory is normal kmalloc() memory and is not marked for
216  * preservation. The successor kernel will remain isolated to the scratch space
217  * until it completes processing this list. Once processed all the memory
218  * storing these ranges will be marked as free.
219  */
220 
221 struct khoser_mem_bitmap_ptr {
222 	phys_addr_t phys_start;
223 	DECLARE_KHOSER_PTR(bitmap, struct kho_mem_phys_bits *);
224 };
225 
226 struct khoser_mem_chunk_hdr {
227 	DECLARE_KHOSER_PTR(next, struct khoser_mem_chunk *);
228 	unsigned int order;
229 	unsigned int num_elms;
230 };
231 
232 #define KHOSER_BITMAP_SIZE                                   \
233 	((PAGE_SIZE - sizeof(struct khoser_mem_chunk_hdr)) / \
234 	 sizeof(struct khoser_mem_bitmap_ptr))
235 
236 struct khoser_mem_chunk {
237 	struct khoser_mem_chunk_hdr hdr;
238 	struct khoser_mem_bitmap_ptr bitmaps[KHOSER_BITMAP_SIZE];
239 };
240 
241 static_assert(sizeof(struct khoser_mem_chunk) == PAGE_SIZE);
242 
new_chunk(struct khoser_mem_chunk * cur_chunk,unsigned long order)243 static struct khoser_mem_chunk *new_chunk(struct khoser_mem_chunk *cur_chunk,
244 					  unsigned long order)
245 {
246 	struct khoser_mem_chunk *chunk;
247 
248 	chunk = kzalloc(PAGE_SIZE, GFP_KERNEL);
249 	if (!chunk)
250 		return NULL;
251 	chunk->hdr.order = order;
252 	if (cur_chunk)
253 		KHOSER_STORE_PTR(cur_chunk->hdr.next, chunk);
254 	return chunk;
255 }
256 
kho_mem_ser_free(struct khoser_mem_chunk * first_chunk)257 static void kho_mem_ser_free(struct khoser_mem_chunk *first_chunk)
258 {
259 	struct khoser_mem_chunk *chunk = first_chunk;
260 
261 	while (chunk) {
262 		struct khoser_mem_chunk *tmp = chunk;
263 
264 		chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
265 		kfree(tmp);
266 	}
267 }
268 
kho_mem_serialize(struct kho_serialization * ser)269 static int kho_mem_serialize(struct kho_serialization *ser)
270 {
271 	struct khoser_mem_chunk *first_chunk = NULL;
272 	struct khoser_mem_chunk *chunk = NULL;
273 	struct kho_mem_phys *physxa;
274 	unsigned long order;
275 
276 	xa_for_each(&ser->track.orders, order, physxa) {
277 		struct kho_mem_phys_bits *bits;
278 		unsigned long phys;
279 
280 		chunk = new_chunk(chunk, order);
281 		if (!chunk)
282 			goto err_free;
283 
284 		if (!first_chunk)
285 			first_chunk = chunk;
286 
287 		xa_for_each(&physxa->phys_bits, phys, bits) {
288 			struct khoser_mem_bitmap_ptr *elm;
289 
290 			if (chunk->hdr.num_elms == ARRAY_SIZE(chunk->bitmaps)) {
291 				chunk = new_chunk(chunk, order);
292 				if (!chunk)
293 					goto err_free;
294 			}
295 
296 			elm = &chunk->bitmaps[chunk->hdr.num_elms];
297 			chunk->hdr.num_elms++;
298 			elm->phys_start = (phys * PRESERVE_BITS)
299 					  << (order + PAGE_SHIFT);
300 			KHOSER_STORE_PTR(elm->bitmap, bits);
301 		}
302 	}
303 
304 	ser->preserved_mem_map = first_chunk;
305 
306 	return 0;
307 
308 err_free:
309 	kho_mem_ser_free(first_chunk);
310 	return -ENOMEM;
311 }
312 
deserialize_bitmap(unsigned int order,struct khoser_mem_bitmap_ptr * elm)313 static void deserialize_bitmap(unsigned int order,
314 			       struct khoser_mem_bitmap_ptr *elm)
315 {
316 	struct kho_mem_phys_bits *bitmap = KHOSER_LOAD_PTR(elm->bitmap);
317 	unsigned long bit;
318 
319 	for_each_set_bit(bit, bitmap->preserve, PRESERVE_BITS) {
320 		int sz = 1 << (order + PAGE_SHIFT);
321 		phys_addr_t phys =
322 			elm->phys_start + (bit << (order + PAGE_SHIFT));
323 		struct page *page = phys_to_page(phys);
324 
325 		memblock_reserve(phys, sz);
326 		memblock_reserved_mark_noinit(phys, sz);
327 		page->private = order;
328 	}
329 }
330 
kho_mem_deserialize(const void * fdt)331 static void __init kho_mem_deserialize(const void *fdt)
332 {
333 	struct khoser_mem_chunk *chunk;
334 	const phys_addr_t *mem;
335 	int len;
336 
337 	mem = fdt_getprop(fdt, 0, PROP_PRESERVED_MEMORY_MAP, &len);
338 
339 	if (!mem || len != sizeof(*mem)) {
340 		pr_err("failed to get preserved memory bitmaps\n");
341 		return;
342 	}
343 
344 	chunk = *mem ? phys_to_virt(*mem) : NULL;
345 	while (chunk) {
346 		unsigned int i;
347 
348 		for (i = 0; i != chunk->hdr.num_elms; i++)
349 			deserialize_bitmap(chunk->hdr.order,
350 					   &chunk->bitmaps[i]);
351 		chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
352 	}
353 }
354 
355 /*
356  * With KHO enabled, memory can become fragmented because KHO regions may
357  * be anywhere in physical address space. The scratch regions give us a
358  * safe zones that we will never see KHO allocations from. This is where we
359  * can later safely load our new kexec images into and then use the scratch
360  * area for early allocations that happen before page allocator is
361  * initialized.
362  */
363 static struct kho_scratch *kho_scratch;
364 static unsigned int kho_scratch_cnt;
365 
366 /*
367  * The scratch areas are scaled by default as percent of memory allocated from
368  * memblock. A user can override the scale with command line parameter:
369  *
370  * kho_scratch=N%
371  *
372  * It is also possible to explicitly define size for a lowmem, a global and
373  * per-node scratch areas:
374  *
375  * kho_scratch=l[KMG],n[KMG],m[KMG]
376  *
377  * The explicit size definition takes precedence over scale definition.
378  */
379 static unsigned int scratch_scale __initdata = 200;
380 static phys_addr_t scratch_size_global __initdata;
381 static phys_addr_t scratch_size_pernode __initdata;
382 static phys_addr_t scratch_size_lowmem __initdata;
383 
kho_parse_scratch_size(char * p)384 static int __init kho_parse_scratch_size(char *p)
385 {
386 	size_t len;
387 	unsigned long sizes[3];
388 	int i;
389 
390 	if (!p)
391 		return -EINVAL;
392 
393 	len = strlen(p);
394 	if (!len)
395 		return -EINVAL;
396 
397 	/* parse nn% */
398 	if (p[len - 1] == '%') {
399 		/* unsigned int max is 4,294,967,295, 10 chars */
400 		char s_scale[11] = {};
401 		int ret = 0;
402 
403 		if (len > ARRAY_SIZE(s_scale))
404 			return -EINVAL;
405 
406 		memcpy(s_scale, p, len - 1);
407 		ret = kstrtouint(s_scale, 10, &scratch_scale);
408 		if (!ret)
409 			pr_notice("scratch scale is %d%%\n", scratch_scale);
410 		return ret;
411 	}
412 
413 	/* parse ll[KMG],mm[KMG],nn[KMG] */
414 	for (i = 0; i < ARRAY_SIZE(sizes); i++) {
415 		char *endp = p;
416 
417 		if (i > 0) {
418 			if (*p != ',')
419 				return -EINVAL;
420 			p += 1;
421 		}
422 
423 		sizes[i] = memparse(p, &endp);
424 		if (!sizes[i] || endp == p)
425 			return -EINVAL;
426 		p = endp;
427 	}
428 
429 	scratch_size_lowmem = sizes[0];
430 	scratch_size_global = sizes[1];
431 	scratch_size_pernode = sizes[2];
432 	scratch_scale = 0;
433 
434 	pr_notice("scratch areas: lowmem: %lluMiB global: %lluMiB pernode: %lldMiB\n",
435 		  (u64)(scratch_size_lowmem >> 20),
436 		  (u64)(scratch_size_global >> 20),
437 		  (u64)(scratch_size_pernode >> 20));
438 
439 	return 0;
440 }
441 early_param("kho_scratch", kho_parse_scratch_size);
442 
scratch_size_update(void)443 static void __init scratch_size_update(void)
444 {
445 	phys_addr_t size;
446 
447 	if (!scratch_scale)
448 		return;
449 
450 	size = memblock_reserved_kern_size(ARCH_LOW_ADDRESS_LIMIT,
451 					   NUMA_NO_NODE);
452 	size = size * scratch_scale / 100;
453 	scratch_size_lowmem = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
454 
455 	size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
456 					   NUMA_NO_NODE);
457 	size = size * scratch_scale / 100 - scratch_size_lowmem;
458 	scratch_size_global = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
459 }
460 
scratch_size_node(int nid)461 static phys_addr_t __init scratch_size_node(int nid)
462 {
463 	phys_addr_t size;
464 
465 	if (scratch_scale) {
466 		size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
467 						   nid);
468 		size = size * scratch_scale / 100;
469 	} else {
470 		size = scratch_size_pernode;
471 	}
472 
473 	return round_up(size, CMA_MIN_ALIGNMENT_BYTES);
474 }
475 
476 /**
477  * kho_reserve_scratch - Reserve a contiguous chunk of memory for kexec
478  *
479  * With KHO we can preserve arbitrary pages in the system. To ensure we still
480  * have a large contiguous region of memory when we search the physical address
481  * space for target memory, let's make sure we always have a large CMA region
482  * active. This CMA region will only be used for movable pages which are not a
483  * problem for us during KHO because we can just move them somewhere else.
484  */
kho_reserve_scratch(void)485 static void __init kho_reserve_scratch(void)
486 {
487 	phys_addr_t addr, size;
488 	int nid, i = 0;
489 
490 	if (!kho_enable)
491 		return;
492 
493 	scratch_size_update();
494 
495 	/* FIXME: deal with node hot-plug/remove */
496 	kho_scratch_cnt = num_online_nodes() + 2;
497 	size = kho_scratch_cnt * sizeof(*kho_scratch);
498 	kho_scratch = memblock_alloc(size, PAGE_SIZE);
499 	if (!kho_scratch)
500 		goto err_disable_kho;
501 
502 	/*
503 	 * reserve scratch area in low memory for lowmem allocations in the
504 	 * next kernel
505 	 */
506 	size = scratch_size_lowmem;
507 	addr = memblock_phys_alloc_range(size, CMA_MIN_ALIGNMENT_BYTES, 0,
508 					 ARCH_LOW_ADDRESS_LIMIT);
509 	if (!addr)
510 		goto err_free_scratch_desc;
511 
512 	kho_scratch[i].addr = addr;
513 	kho_scratch[i].size = size;
514 	i++;
515 
516 	/* reserve large contiguous area for allocations without nid */
517 	size = scratch_size_global;
518 	addr = memblock_phys_alloc(size, CMA_MIN_ALIGNMENT_BYTES);
519 	if (!addr)
520 		goto err_free_scratch_areas;
521 
522 	kho_scratch[i].addr = addr;
523 	kho_scratch[i].size = size;
524 	i++;
525 
526 	for_each_online_node(nid) {
527 		size = scratch_size_node(nid);
528 		addr = memblock_alloc_range_nid(size, CMA_MIN_ALIGNMENT_BYTES,
529 						0, MEMBLOCK_ALLOC_ACCESSIBLE,
530 						nid, true);
531 		if (!addr)
532 			goto err_free_scratch_areas;
533 
534 		kho_scratch[i].addr = addr;
535 		kho_scratch[i].size = size;
536 		i++;
537 	}
538 
539 	return;
540 
541 err_free_scratch_areas:
542 	for (i--; i >= 0; i--)
543 		memblock_phys_free(kho_scratch[i].addr, kho_scratch[i].size);
544 err_free_scratch_desc:
545 	memblock_free(kho_scratch, kho_scratch_cnt * sizeof(*kho_scratch));
546 err_disable_kho:
547 	kho_enable = false;
548 }
549 
550 struct fdt_debugfs {
551 	struct list_head list;
552 	struct debugfs_blob_wrapper wrapper;
553 	struct dentry *file;
554 };
555 
kho_debugfs_fdt_add(struct list_head * list,struct dentry * dir,const char * name,const void * fdt)556 static int kho_debugfs_fdt_add(struct list_head *list, struct dentry *dir,
557 			       const char *name, const void *fdt)
558 {
559 	struct fdt_debugfs *f;
560 	struct dentry *file;
561 
562 	f = kmalloc(sizeof(*f), GFP_KERNEL);
563 	if (!f)
564 		return -ENOMEM;
565 
566 	f->wrapper.data = (void *)fdt;
567 	f->wrapper.size = fdt_totalsize(fdt);
568 
569 	file = debugfs_create_blob(name, 0400, dir, &f->wrapper);
570 	if (IS_ERR(file)) {
571 		kfree(f);
572 		return PTR_ERR(file);
573 	}
574 
575 	f->file = file;
576 	list_add(&f->list, list);
577 
578 	return 0;
579 }
580 
581 /**
582  * kho_add_subtree - record the physical address of a sub FDT in KHO root tree.
583  * @ser: serialization control object passed by KHO notifiers.
584  * @name: name of the sub tree.
585  * @fdt: the sub tree blob.
586  *
587  * Creates a new child node named @name in KHO root FDT and records
588  * the physical address of @fdt. The pages of @fdt must also be preserved
589  * by KHO for the new kernel to retrieve it after kexec.
590  *
591  * A debugfs blob entry is also created at
592  * ``/sys/kernel/debug/kho/out/sub_fdts/@name``.
593  *
594  * Return: 0 on success, error code on failure
595  */
kho_add_subtree(struct kho_serialization * ser,const char * name,void * fdt)596 int kho_add_subtree(struct kho_serialization *ser, const char *name, void *fdt)
597 {
598 	int err = 0;
599 	u64 phys = (u64)virt_to_phys(fdt);
600 	void *root = page_to_virt(ser->fdt);
601 
602 	err |= fdt_begin_node(root, name);
603 	err |= fdt_property(root, PROP_SUB_FDT, &phys, sizeof(phys));
604 	err |= fdt_end_node(root);
605 
606 	if (err)
607 		return err;
608 
609 	return kho_debugfs_fdt_add(&ser->fdt_list, ser->sub_fdt_dir, name, fdt);
610 }
611 EXPORT_SYMBOL_GPL(kho_add_subtree);
612 
613 struct kho_out {
614 	struct blocking_notifier_head chain_head;
615 
616 	struct dentry *dir;
617 
618 	struct mutex lock; /* protects KHO FDT finalization */
619 
620 	struct kho_serialization ser;
621 	bool finalized;
622 };
623 
624 static struct kho_out kho_out = {
625 	.chain_head = BLOCKING_NOTIFIER_INIT(kho_out.chain_head),
626 	.lock = __MUTEX_INITIALIZER(kho_out.lock),
627 	.ser = {
628 		.fdt_list = LIST_HEAD_INIT(kho_out.ser.fdt_list),
629 		.track = {
630 			.orders = XARRAY_INIT(kho_out.ser.track.orders, 0),
631 		},
632 	},
633 	.finalized = false,
634 };
635 
register_kho_notifier(struct notifier_block * nb)636 int register_kho_notifier(struct notifier_block *nb)
637 {
638 	return blocking_notifier_chain_register(&kho_out.chain_head, nb);
639 }
640 EXPORT_SYMBOL_GPL(register_kho_notifier);
641 
unregister_kho_notifier(struct notifier_block * nb)642 int unregister_kho_notifier(struct notifier_block *nb)
643 {
644 	return blocking_notifier_chain_unregister(&kho_out.chain_head, nb);
645 }
646 EXPORT_SYMBOL_GPL(unregister_kho_notifier);
647 
648 /**
649  * kho_preserve_folio - preserve a folio across kexec.
650  * @folio: folio to preserve.
651  *
652  * Instructs KHO to preserve the whole folio across kexec. The order
653  * will be preserved as well.
654  *
655  * Return: 0 on success, error code on failure
656  */
kho_preserve_folio(struct folio * folio)657 int kho_preserve_folio(struct folio *folio)
658 {
659 	const unsigned long pfn = folio_pfn(folio);
660 	const unsigned int order = folio_order(folio);
661 	struct kho_mem_track *track = &kho_out.ser.track;
662 
663 	if (kho_out.finalized)
664 		return -EBUSY;
665 
666 	return __kho_preserve_order(track, pfn, order);
667 }
668 EXPORT_SYMBOL_GPL(kho_preserve_folio);
669 
670 /**
671  * kho_preserve_phys - preserve a physically contiguous range across kexec.
672  * @phys: physical address of the range.
673  * @size: size of the range.
674  *
675  * Instructs KHO to preserve the memory range from @phys to @phys + @size
676  * across kexec.
677  *
678  * Return: 0 on success, error code on failure
679  */
kho_preserve_phys(phys_addr_t phys,size_t size)680 int kho_preserve_phys(phys_addr_t phys, size_t size)
681 {
682 	unsigned long pfn = PHYS_PFN(phys);
683 	unsigned long failed_pfn = 0;
684 	const unsigned long start_pfn = pfn;
685 	const unsigned long end_pfn = PHYS_PFN(phys + size);
686 	int err = 0;
687 	struct kho_mem_track *track = &kho_out.ser.track;
688 
689 	if (kho_out.finalized)
690 		return -EBUSY;
691 
692 	if (!PAGE_ALIGNED(phys) || !PAGE_ALIGNED(size))
693 		return -EINVAL;
694 
695 	while (pfn < end_pfn) {
696 		const unsigned int order =
697 			min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
698 
699 		err = __kho_preserve_order(track, pfn, order);
700 		if (err) {
701 			failed_pfn = pfn;
702 			break;
703 		}
704 
705 		pfn += 1 << order;
706 	}
707 
708 	if (err)
709 		__kho_unpreserve(track, start_pfn, failed_pfn);
710 
711 	return err;
712 }
713 EXPORT_SYMBOL_GPL(kho_preserve_phys);
714 
715 /* Handling for debug/kho/out */
716 
717 static struct dentry *debugfs_root;
718 
kho_out_update_debugfs_fdt(void)719 static int kho_out_update_debugfs_fdt(void)
720 {
721 	int err = 0;
722 	struct fdt_debugfs *ff, *tmp;
723 
724 	if (kho_out.finalized) {
725 		err = kho_debugfs_fdt_add(&kho_out.ser.fdt_list, kho_out.dir,
726 					  "fdt", page_to_virt(kho_out.ser.fdt));
727 	} else {
728 		list_for_each_entry_safe(ff, tmp, &kho_out.ser.fdt_list, list) {
729 			debugfs_remove(ff->file);
730 			list_del(&ff->list);
731 			kfree(ff);
732 		}
733 	}
734 
735 	return err;
736 }
737 
kho_abort(void)738 static int kho_abort(void)
739 {
740 	int err;
741 	unsigned long order;
742 	struct kho_mem_phys *physxa;
743 
744 	xa_for_each(&kho_out.ser.track.orders, order, physxa) {
745 		struct kho_mem_phys_bits *bits;
746 		unsigned long phys;
747 
748 		xa_for_each(&physxa->phys_bits, phys, bits)
749 			kfree(bits);
750 
751 		xa_destroy(&physxa->phys_bits);
752 		kfree(physxa);
753 	}
754 	xa_destroy(&kho_out.ser.track.orders);
755 
756 	if (kho_out.ser.preserved_mem_map) {
757 		kho_mem_ser_free(kho_out.ser.preserved_mem_map);
758 		kho_out.ser.preserved_mem_map = NULL;
759 	}
760 
761 	err = blocking_notifier_call_chain(&kho_out.chain_head, KEXEC_KHO_ABORT,
762 					   NULL);
763 	err = notifier_to_errno(err);
764 
765 	if (err)
766 		pr_err("Failed to abort KHO finalization: %d\n", err);
767 
768 	return err;
769 }
770 
kho_finalize(void)771 static int kho_finalize(void)
772 {
773 	int err = 0;
774 	u64 *preserved_mem_map;
775 	void *fdt = page_to_virt(kho_out.ser.fdt);
776 
777 	err |= fdt_create(fdt, PAGE_SIZE);
778 	err |= fdt_finish_reservemap(fdt);
779 	err |= fdt_begin_node(fdt, "");
780 	err |= fdt_property_string(fdt, "compatible", KHO_FDT_COMPATIBLE);
781 	/**
782 	 * Reserve the preserved-memory-map property in the root FDT, so
783 	 * that all property definitions will precede subnodes created by
784 	 * KHO callers.
785 	 */
786 	err |= fdt_property_placeholder(fdt, PROP_PRESERVED_MEMORY_MAP,
787 					sizeof(*preserved_mem_map),
788 					(void **)&preserved_mem_map);
789 	if (err)
790 		goto abort;
791 
792 	err = kho_preserve_folio(page_folio(kho_out.ser.fdt));
793 	if (err)
794 		goto abort;
795 
796 	err = blocking_notifier_call_chain(&kho_out.chain_head,
797 					   KEXEC_KHO_FINALIZE, &kho_out.ser);
798 	err = notifier_to_errno(err);
799 	if (err)
800 		goto abort;
801 
802 	err = kho_mem_serialize(&kho_out.ser);
803 	if (err)
804 		goto abort;
805 
806 	*preserved_mem_map = (u64)virt_to_phys(kho_out.ser.preserved_mem_map);
807 
808 	err |= fdt_end_node(fdt);
809 	err |= fdt_finish(fdt);
810 
811 abort:
812 	if (err) {
813 		pr_err("Failed to convert KHO state tree: %d\n", err);
814 		kho_abort();
815 	}
816 
817 	return err;
818 }
819 
kho_out_finalize_get(void * data,u64 * val)820 static int kho_out_finalize_get(void *data, u64 *val)
821 {
822 	mutex_lock(&kho_out.lock);
823 	*val = kho_out.finalized;
824 	mutex_unlock(&kho_out.lock);
825 
826 	return 0;
827 }
828 
kho_out_finalize_set(void * data,u64 _val)829 static int kho_out_finalize_set(void *data, u64 _val)
830 {
831 	int ret = 0;
832 	bool val = !!_val;
833 
834 	mutex_lock(&kho_out.lock);
835 
836 	if (val == kho_out.finalized) {
837 		if (kho_out.finalized)
838 			ret = -EEXIST;
839 		else
840 			ret = -ENOENT;
841 		goto unlock;
842 	}
843 
844 	if (val)
845 		ret = kho_finalize();
846 	else
847 		ret = kho_abort();
848 
849 	if (ret)
850 		goto unlock;
851 
852 	kho_out.finalized = val;
853 	ret = kho_out_update_debugfs_fdt();
854 
855 unlock:
856 	mutex_unlock(&kho_out.lock);
857 	return ret;
858 }
859 
860 DEFINE_DEBUGFS_ATTRIBUTE(fops_kho_out_finalize, kho_out_finalize_get,
861 			 kho_out_finalize_set, "%llu\n");
862 
scratch_phys_show(struct seq_file * m,void * v)863 static int scratch_phys_show(struct seq_file *m, void *v)
864 {
865 	for (int i = 0; i < kho_scratch_cnt; i++)
866 		seq_printf(m, "0x%llx\n", kho_scratch[i].addr);
867 
868 	return 0;
869 }
870 DEFINE_SHOW_ATTRIBUTE(scratch_phys);
871 
scratch_len_show(struct seq_file * m,void * v)872 static int scratch_len_show(struct seq_file *m, void *v)
873 {
874 	for (int i = 0; i < kho_scratch_cnt; i++)
875 		seq_printf(m, "0x%llx\n", kho_scratch[i].size);
876 
877 	return 0;
878 }
879 DEFINE_SHOW_ATTRIBUTE(scratch_len);
880 
kho_out_debugfs_init(void)881 static __init int kho_out_debugfs_init(void)
882 {
883 	struct dentry *dir, *f, *sub_fdt_dir;
884 
885 	dir = debugfs_create_dir("out", debugfs_root);
886 	if (IS_ERR(dir))
887 		return -ENOMEM;
888 
889 	sub_fdt_dir = debugfs_create_dir("sub_fdts", dir);
890 	if (IS_ERR(sub_fdt_dir))
891 		goto err_rmdir;
892 
893 	f = debugfs_create_file("scratch_phys", 0400, dir, NULL,
894 				&scratch_phys_fops);
895 	if (IS_ERR(f))
896 		goto err_rmdir;
897 
898 	f = debugfs_create_file("scratch_len", 0400, dir, NULL,
899 				&scratch_len_fops);
900 	if (IS_ERR(f))
901 		goto err_rmdir;
902 
903 	f = debugfs_create_file("finalize", 0600, dir, NULL,
904 				&fops_kho_out_finalize);
905 	if (IS_ERR(f))
906 		goto err_rmdir;
907 
908 	kho_out.dir = dir;
909 	kho_out.ser.sub_fdt_dir = sub_fdt_dir;
910 	return 0;
911 
912 err_rmdir:
913 	debugfs_remove_recursive(dir);
914 	return -ENOENT;
915 }
916 
917 struct kho_in {
918 	struct dentry *dir;
919 	phys_addr_t fdt_phys;
920 	phys_addr_t scratch_phys;
921 	struct list_head fdt_list;
922 };
923 
924 static struct kho_in kho_in = {
925 	.fdt_list = LIST_HEAD_INIT(kho_in.fdt_list),
926 };
927 
kho_get_fdt(void)928 static const void *kho_get_fdt(void)
929 {
930 	return kho_in.fdt_phys ? phys_to_virt(kho_in.fdt_phys) : NULL;
931 }
932 
933 /**
934  * kho_retrieve_subtree - retrieve a preserved sub FDT by its name.
935  * @name: the name of the sub FDT passed to kho_add_subtree().
936  * @phys: if found, the physical address of the sub FDT is stored in @phys.
937  *
938  * Retrieve a preserved sub FDT named @name and store its physical
939  * address in @phys.
940  *
941  * Return: 0 on success, error code on failure
942  */
kho_retrieve_subtree(const char * name,phys_addr_t * phys)943 int kho_retrieve_subtree(const char *name, phys_addr_t *phys)
944 {
945 	const void *fdt = kho_get_fdt();
946 	const u64 *val;
947 	int offset, len;
948 
949 	if (!fdt)
950 		return -ENOENT;
951 
952 	if (!phys)
953 		return -EINVAL;
954 
955 	offset = fdt_subnode_offset(fdt, 0, name);
956 	if (offset < 0)
957 		return -ENOENT;
958 
959 	val = fdt_getprop(fdt, offset, PROP_SUB_FDT, &len);
960 	if (!val || len != sizeof(*val))
961 		return -EINVAL;
962 
963 	*phys = (phys_addr_t)*val;
964 
965 	return 0;
966 }
967 EXPORT_SYMBOL_GPL(kho_retrieve_subtree);
968 
969 /* Handling for debugfs/kho/in */
970 
kho_in_debugfs_init(const void * fdt)971 static __init int kho_in_debugfs_init(const void *fdt)
972 {
973 	struct dentry *sub_fdt_dir;
974 	int err, child;
975 
976 	kho_in.dir = debugfs_create_dir("in", debugfs_root);
977 	if (IS_ERR(kho_in.dir))
978 		return PTR_ERR(kho_in.dir);
979 
980 	sub_fdt_dir = debugfs_create_dir("sub_fdts", kho_in.dir);
981 	if (IS_ERR(sub_fdt_dir)) {
982 		err = PTR_ERR(sub_fdt_dir);
983 		goto err_rmdir;
984 	}
985 
986 	err = kho_debugfs_fdt_add(&kho_in.fdt_list, kho_in.dir, "fdt", fdt);
987 	if (err)
988 		goto err_rmdir;
989 
990 	fdt_for_each_subnode(child, fdt, 0) {
991 		int len = 0;
992 		const char *name = fdt_get_name(fdt, child, NULL);
993 		const u64 *fdt_phys;
994 
995 		fdt_phys = fdt_getprop(fdt, child, "fdt", &len);
996 		if (!fdt_phys)
997 			continue;
998 		if (len != sizeof(*fdt_phys)) {
999 			pr_warn("node `%s`'s prop `fdt` has invalid length: %d\n",
1000 				name, len);
1001 			continue;
1002 		}
1003 		err = kho_debugfs_fdt_add(&kho_in.fdt_list, sub_fdt_dir, name,
1004 					  phys_to_virt(*fdt_phys));
1005 		if (err) {
1006 			pr_warn("failed to add fdt `%s` to debugfs: %d\n", name,
1007 				err);
1008 			continue;
1009 		}
1010 	}
1011 
1012 	return 0;
1013 
1014 err_rmdir:
1015 	debugfs_remove_recursive(kho_in.dir);
1016 	return err;
1017 }
1018 
kho_init(void)1019 static __init int kho_init(void)
1020 {
1021 	int err = 0;
1022 	const void *fdt = kho_get_fdt();
1023 
1024 	if (!kho_enable)
1025 		return 0;
1026 
1027 	kho_out.ser.fdt = alloc_page(GFP_KERNEL);
1028 	if (!kho_out.ser.fdt) {
1029 		err = -ENOMEM;
1030 		goto err_free_scratch;
1031 	}
1032 
1033 	debugfs_root = debugfs_create_dir("kho", NULL);
1034 	if (IS_ERR(debugfs_root)) {
1035 		err = -ENOENT;
1036 		goto err_free_fdt;
1037 	}
1038 
1039 	err = kho_out_debugfs_init();
1040 	if (err)
1041 		goto err_free_fdt;
1042 
1043 	if (fdt) {
1044 		err = kho_in_debugfs_init(fdt);
1045 		/*
1046 		 * Failure to create /sys/kernel/debug/kho/in does not prevent
1047 		 * reviving state from KHO and setting up KHO for the next
1048 		 * kexec.
1049 		 */
1050 		if (err)
1051 			pr_err("failed exposing handover FDT in debugfs: %d\n",
1052 			       err);
1053 
1054 		return 0;
1055 	}
1056 
1057 	for (int i = 0; i < kho_scratch_cnt; i++) {
1058 		unsigned long base_pfn = PHYS_PFN(kho_scratch[i].addr);
1059 		unsigned long count = kho_scratch[i].size >> PAGE_SHIFT;
1060 		unsigned long pfn;
1061 
1062 		for (pfn = base_pfn; pfn < base_pfn + count;
1063 		     pfn += pageblock_nr_pages)
1064 			init_cma_reserved_pageblock(pfn_to_page(pfn));
1065 	}
1066 
1067 	return 0;
1068 
1069 err_free_fdt:
1070 	put_page(kho_out.ser.fdt);
1071 	kho_out.ser.fdt = NULL;
1072 err_free_scratch:
1073 	for (int i = 0; i < kho_scratch_cnt; i++) {
1074 		void *start = __va(kho_scratch[i].addr);
1075 		void *end = start + kho_scratch[i].size;
1076 
1077 		free_reserved_area(start, end, -1, "");
1078 	}
1079 	kho_enable = false;
1080 	return err;
1081 }
1082 late_initcall(kho_init);
1083 
kho_release_scratch(void)1084 static void __init kho_release_scratch(void)
1085 {
1086 	phys_addr_t start, end;
1087 	u64 i;
1088 
1089 	memmap_init_kho_scratch_pages();
1090 
1091 	/*
1092 	 * Mark scratch mem as CMA before we return it. That way we
1093 	 * ensure that no kernel allocations happen on it. That means
1094 	 * we can reuse it as scratch memory again later.
1095 	 */
1096 	__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
1097 			     MEMBLOCK_KHO_SCRATCH, &start, &end, NULL) {
1098 		ulong start_pfn = pageblock_start_pfn(PFN_DOWN(start));
1099 		ulong end_pfn = pageblock_align(PFN_UP(end));
1100 		ulong pfn;
1101 
1102 		for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages)
1103 			set_pageblock_migratetype(pfn_to_page(pfn),
1104 						  MIGRATE_CMA);
1105 	}
1106 }
1107 
kho_memory_init(void)1108 void __init kho_memory_init(void)
1109 {
1110 	struct folio *folio;
1111 
1112 	if (kho_in.scratch_phys) {
1113 		kho_scratch = phys_to_virt(kho_in.scratch_phys);
1114 		kho_release_scratch();
1115 
1116 		kho_mem_deserialize(kho_get_fdt());
1117 		folio = kho_restore_folio(kho_in.fdt_phys);
1118 		if (!folio)
1119 			pr_warn("failed to restore folio for KHO fdt\n");
1120 	} else {
1121 		kho_reserve_scratch();
1122 	}
1123 }
1124 
kho_populate(phys_addr_t fdt_phys,u64 fdt_len,phys_addr_t scratch_phys,u64 scratch_len)1125 void __init kho_populate(phys_addr_t fdt_phys, u64 fdt_len,
1126 			 phys_addr_t scratch_phys, u64 scratch_len)
1127 {
1128 	void *fdt = NULL;
1129 	struct kho_scratch *scratch = NULL;
1130 	int err = 0;
1131 	unsigned int scratch_cnt = scratch_len / sizeof(*kho_scratch);
1132 
1133 	/* Validate the input FDT */
1134 	fdt = early_memremap(fdt_phys, fdt_len);
1135 	if (!fdt) {
1136 		pr_warn("setup: failed to memremap FDT (0x%llx)\n", fdt_phys);
1137 		err = -EFAULT;
1138 		goto out;
1139 	}
1140 	err = fdt_check_header(fdt);
1141 	if (err) {
1142 		pr_warn("setup: handover FDT (0x%llx) is invalid: %d\n",
1143 			fdt_phys, err);
1144 		err = -EINVAL;
1145 		goto out;
1146 	}
1147 	err = fdt_node_check_compatible(fdt, 0, KHO_FDT_COMPATIBLE);
1148 	if (err) {
1149 		pr_warn("setup: handover FDT (0x%llx) is incompatible with '%s': %d\n",
1150 			fdt_phys, KHO_FDT_COMPATIBLE, err);
1151 		err = -EINVAL;
1152 		goto out;
1153 	}
1154 
1155 	scratch = early_memremap(scratch_phys, scratch_len);
1156 	if (!scratch) {
1157 		pr_warn("setup: failed to memremap scratch (phys=0x%llx, len=%lld)\n",
1158 			scratch_phys, scratch_len);
1159 		err = -EFAULT;
1160 		goto out;
1161 	}
1162 
1163 	/*
1164 	 * We pass a safe contiguous blocks of memory to use for early boot
1165 	 * purporses from the previous kernel so that we can resize the
1166 	 * memblock array as needed.
1167 	 */
1168 	for (int i = 0; i < scratch_cnt; i++) {
1169 		struct kho_scratch *area = &scratch[i];
1170 		u64 size = area->size;
1171 
1172 		memblock_add(area->addr, size);
1173 		err = memblock_mark_kho_scratch(area->addr, size);
1174 		if (WARN_ON(err)) {
1175 			pr_warn("failed to mark the scratch region 0x%pa+0x%pa: %d",
1176 				&area->addr, &size, err);
1177 			goto out;
1178 		}
1179 		pr_debug("Marked 0x%pa+0x%pa as scratch", &area->addr, &size);
1180 	}
1181 
1182 	memblock_reserve(scratch_phys, scratch_len);
1183 
1184 	/*
1185 	 * Now that we have a viable region of scratch memory, let's tell
1186 	 * the memblocks allocator to only use that for any allocations.
1187 	 * That way we ensure that nothing scribbles over in use data while
1188 	 * we initialize the page tables which we will need to ingest all
1189 	 * memory reservations from the previous kernel.
1190 	 */
1191 	memblock_set_kho_scratch_only();
1192 
1193 	kho_in.fdt_phys = fdt_phys;
1194 	kho_in.scratch_phys = scratch_phys;
1195 	kho_scratch_cnt = scratch_cnt;
1196 	pr_info("found kexec handover data. Will skip init for some devices\n");
1197 
1198 out:
1199 	if (fdt)
1200 		early_memunmap(fdt, fdt_len);
1201 	if (scratch)
1202 		early_memunmap(scratch, scratch_len);
1203 	if (err)
1204 		pr_warn("disabling KHO revival: %d\n", err);
1205 }
1206 
1207 /* Helper functions for kexec_file_load */
1208 
kho_fill_kimage(struct kimage * image)1209 int kho_fill_kimage(struct kimage *image)
1210 {
1211 	ssize_t scratch_size;
1212 	int err = 0;
1213 	struct kexec_buf scratch;
1214 
1215 	if (!kho_enable)
1216 		return 0;
1217 
1218 	image->kho.fdt = page_to_phys(kho_out.ser.fdt);
1219 
1220 	scratch_size = sizeof(*kho_scratch) * kho_scratch_cnt;
1221 	scratch = (struct kexec_buf){
1222 		.image = image,
1223 		.buffer = kho_scratch,
1224 		.bufsz = scratch_size,
1225 		.mem = KEXEC_BUF_MEM_UNKNOWN,
1226 		.memsz = scratch_size,
1227 		.buf_align = SZ_64K, /* Makes it easier to map */
1228 		.buf_max = ULONG_MAX,
1229 		.top_down = true,
1230 	};
1231 	err = kexec_add_buffer(&scratch);
1232 	if (err)
1233 		return err;
1234 	image->kho.scratch = &image->segment[image->nr_segments - 1];
1235 
1236 	return 0;
1237 }
1238 
kho_walk_scratch(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))1239 static int kho_walk_scratch(struct kexec_buf *kbuf,
1240 			    int (*func)(struct resource *, void *))
1241 {
1242 	int ret = 0;
1243 	int i;
1244 
1245 	for (i = 0; i < kho_scratch_cnt; i++) {
1246 		struct resource res = {
1247 			.start = kho_scratch[i].addr,
1248 			.end = kho_scratch[i].addr + kho_scratch[i].size - 1,
1249 		};
1250 
1251 		/* Try to fit the kimage into our KHO scratch region */
1252 		ret = func(&res, kbuf);
1253 		if (ret)
1254 			break;
1255 	}
1256 
1257 	return ret;
1258 }
1259 
kho_locate_mem_hole(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))1260 int kho_locate_mem_hole(struct kexec_buf *kbuf,
1261 			int (*func)(struct resource *, void *))
1262 {
1263 	int ret;
1264 
1265 	if (!kho_enable || kbuf->image->type == KEXEC_TYPE_CRASH)
1266 		return 1;
1267 
1268 	ret = kho_walk_scratch(kbuf, func);
1269 
1270 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
1271 }
1272