xref: /linux/include/uapi/linux/hyperv.h (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
17  * Place - Suite 330, Boston, MA 02111-1307 USA.
18  *
19  * Authors:
20  *   Haiyang Zhang <haiyangz@microsoft.com>
21  *   Hank Janssen  <hjanssen@microsoft.com>
22  *   K. Y. Srinivasan <kys@microsoft.com>
23  *
24  */
25 
26 #ifndef _UAPI_HYPERV_H
27 #define _UAPI_HYPERV_H
28 
29 #include <linux/types.h>
30 
31 /*
32  * Framework version for util services.
33  */
34 #define UTIL_FW_MINOR  0
35 
36 #define UTIL_WS2K8_FW_MAJOR  1
37 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
38 
39 #define UTIL_FW_MAJOR  3
40 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
41 
42 
43 /*
44  * Implementation of host controlled snapshot of the guest.
45  */
46 
47 #define VSS_OP_REGISTER 128
48 
49 /*
50   Daemon code with full handshake support.
51  */
52 #define VSS_OP_REGISTER1 129
53 
54 enum hv_vss_op {
55 	VSS_OP_CREATE = 0,
56 	VSS_OP_DELETE,
57 	VSS_OP_HOT_BACKUP,
58 	VSS_OP_GET_DM_INFO,
59 	VSS_OP_BU_COMPLETE,
60 	/*
61 	 * Following operations are only supported with IC version >= 5.0
62 	 */
63 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
64 	VSS_OP_THAW, /* Unfreeze the file systems */
65 	VSS_OP_AUTO_RECOVER,
66 	VSS_OP_COUNT /* Number of operations, must be last */
67 };
68 
69 
70 /*
71  * Header for all VSS messages.
72  */
73 struct hv_vss_hdr {
74 	__u8 operation;
75 	__u8 reserved[7];
76 } __attribute__((packed));
77 
78 
79 /*
80  * Flag values for the hv_vss_check_feature. Linux supports only
81  * one value.
82  */
83 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
84 
85 struct hv_vss_check_feature {
86 	__u32 flags;
87 } __attribute__((packed));
88 
89 struct hv_vss_check_dm_info {
90 	__u32 flags;
91 } __attribute__((packed));
92 
93 /*
94  * struct hv_vss_msg encodes the fields that the Linux VSS
95  * driver accesses. However, FREEZE messages from Hyper-V contain
96  * additional LUN information that Linux doesn't use and are not
97  * represented in struct hv_vss_msg. A received FREEZE message may
98  * be as large as 6,260 bytes, so the driver must allocate at least
99  * that much space, not sizeof(struct hv_vss_msg). Other messages
100  * such as AUTO_RECOVER may be as large as 12,500 bytes. However,
101  * because the Linux VSS driver responds that it doesn't support
102  * auto-recovery, it should not receive such messages.
103  */
104 struct hv_vss_msg {
105 	union {
106 		struct hv_vss_hdr vss_hdr;
107 		int error;
108 	};
109 	union {
110 		struct hv_vss_check_feature vss_cf;
111 		struct hv_vss_check_dm_info dm_info;
112 	};
113 } __attribute__((packed));
114 
115 /*
116  * Implementation of a host to guest copy facility.
117  */
118 
119 #define FCOPY_VERSION_0 0
120 #define FCOPY_VERSION_1 1
121 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
122 #define W_MAX_PATH 260
123 
124 enum hv_fcopy_op {
125 	START_FILE_COPY = 0,
126 	WRITE_TO_FILE,
127 	COMPLETE_FCOPY,
128 	CANCEL_FCOPY,
129 };
130 
131 struct hv_fcopy_hdr {
132 	__u32 operation;
133 	__u8 service_id0[16]; /* currently unused */
134 	__u8 service_id1[16]; /* currently unused */
135 } __attribute__((packed));
136 
137 #define OVER_WRITE	0x1
138 #define CREATE_PATH	0x2
139 
140 struct hv_start_fcopy {
141 	struct hv_fcopy_hdr hdr;
142 	__u16 file_name[W_MAX_PATH];
143 	__u16 path_name[W_MAX_PATH];
144 	__u32 copy_flags;
145 	__u64 file_size;
146 } __attribute__((packed));
147 
148 /*
149  * The file is chunked into fragments.
150  */
151 #define DATA_FRAGMENT	(6 * 1024)
152 
153 struct hv_do_fcopy {
154 	struct hv_fcopy_hdr hdr;
155 	__u32   pad;
156 	__u64	offset;
157 	__u32	size;
158 	__u8	data[DATA_FRAGMENT];
159 } __attribute__((packed));
160 
161 /*
162  * An implementation of HyperV key value pair (KVP) functionality for Linux.
163  *
164  *
165  * Copyright (C) 2010, Novell, Inc.
166  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
167  *
168  */
169 
170 /*
171  * Maximum value size - used for both key names and value data, and includes
172  * any applicable NULL terminators.
173  *
174  * Note:  This limit is somewhat arbitrary, but falls easily within what is
175  * supported for all native guests (back to Win 2000) and what is reasonable
176  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
177  * limited to 255 character key names.
178  *
179  * MSDN recommends not storing data values larger than 2048 bytes in the
180  * registry.
181  *
182  * Note:  This value is used in defining the KVP exchange message - this value
183  * cannot be modified without affecting the message size and compatibility.
184  */
185 
186 /*
187  * bytes, including any null terminators
188  */
189 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
190 
191 
192 /*
193  * Maximum key size - the registry limit for the length of an entry name
194  * is 256 characters, including the null terminator
195  */
196 
197 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
198 
199 /*
200  * In Linux, we implement the KVP functionality in two components:
201  * 1) The kernel component which is packaged as part of the hv_utils driver
202  * is responsible for communicating with the host and responsible for
203  * implementing the host/guest protocol. 2) A user level daemon that is
204  * responsible for data gathering.
205  *
206  * Host/Guest Protocol: The host iterates over an index and expects the guest
207  * to assign a key name to the index and also return the value corresponding to
208  * the key. The host will have atmost one KVP transaction outstanding at any
209  * given point in time. The host side iteration stops when the guest returns
210  * an error. Microsoft has specified the following mapping of key names to
211  * host specified index:
212  *
213  *	Index		Key Name
214  *	0		FullyQualifiedDomainName
215  *	1		IntegrationServicesVersion
216  *	2		NetworkAddressIPv4
217  *	3		NetworkAddressIPv6
218  *	4		OSBuildNumber
219  *	5		OSName
220  *	6		OSMajorVersion
221  *	7		OSMinorVersion
222  *	8		OSVersion
223  *	9		ProcessorArchitecture
224  *
225  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
226  *
227  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
228  * data gathering functionality in a user mode daemon. The user level daemon
229  * is also responsible for binding the key name to the index as well. The
230  * kernel and user-level daemon communicate using a connector channel.
231  *
232  * The user mode component first registers with the
233  * kernel component. Subsequently, the kernel component requests, data
234  * for the specified keys. In response to this message the user mode component
235  * fills in the value corresponding to the specified key. We overload the
236  * sequence field in the cn_msg header to define our KVP message types.
237  *
238  *
239  * The kernel component simply acts as a conduit for communication between the
240  * Windows host and the user-level daemon. The kernel component passes up the
241  * index received from the Host to the user-level daemon. If the index is
242  * valid (supported), the corresponding key as well as its
243  * value (both are strings) is returned. If the index is invalid
244  * (not supported), a NULL key string is returned.
245  */
246 
247 
248 /*
249  * Registry value types.
250  */
251 
252 #define REG_SZ 1
253 #define REG_U32 4
254 #define REG_U64 8
255 
256 /*
257  * As we look at expanding the KVP functionality to include
258  * IP injection functionality, we need to maintain binary
259  * compatibility with older daemons.
260  *
261  * The KVP opcodes are defined by the host and it was unfortunate
262  * that I chose to treat the registration operation as part of the
263  * KVP operations defined by the host.
264  * Here is the level of compatibility
265  * (between the user level daemon and the kernel KVP driver) that we
266  * will implement:
267  *
268  * An older daemon will always be supported on a newer driver.
269  * A given user level daemon will require a minimal version of the
270  * kernel driver.
271  * If we cannot handle the version differences, we will fail gracefully
272  * (this can happen when we have a user level daemon that is more
273  * advanced than the KVP driver.
274  *
275  * We will use values used in this handshake for determining if we have
276  * workable user level daemon and the kernel driver. We begin by taking the
277  * registration opcode out of the KVP opcode namespace. We will however,
278  * maintain compatibility with the existing user-level daemon code.
279  */
280 
281 /*
282  * Daemon code not supporting IP injection (legacy daemon).
283  */
284 
285 #define KVP_OP_REGISTER	4
286 
287 /*
288  * Daemon code supporting IP injection.
289  * The KVP opcode field is used to communicate the
290  * registration information; so define a namespace that
291  * will be distinct from the host defined KVP opcode.
292  */
293 
294 #define KVP_OP_REGISTER1 100
295 
296 enum hv_kvp_exchg_op {
297 	KVP_OP_GET = 0,
298 	KVP_OP_SET,
299 	KVP_OP_DELETE,
300 	KVP_OP_ENUMERATE,
301 	KVP_OP_GET_IP_INFO,
302 	KVP_OP_SET_IP_INFO,
303 	KVP_OP_COUNT /* Number of operations, must be last. */
304 };
305 
306 enum hv_kvp_exchg_pool {
307 	KVP_POOL_EXTERNAL = 0,
308 	KVP_POOL_GUEST,
309 	KVP_POOL_AUTO,
310 	KVP_POOL_AUTO_EXTERNAL,
311 	KVP_POOL_AUTO_INTERNAL,
312 	KVP_POOL_COUNT /* Number of pools, must be last. */
313 };
314 
315 /*
316  * Some Hyper-V status codes.
317  */
318 
319 #define HV_S_OK				0x00000000
320 #define HV_E_FAIL			0x80004005
321 #define HV_S_CONT			0x80070103
322 #define HV_ERROR_NOT_SUPPORTED		0x80070032
323 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
324 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
325 #define HV_INVALIDARG			0x80070057
326 #define HV_GUID_NOTFOUND		0x80041002
327 #define HV_ERROR_ALREADY_EXISTS		0x80070050
328 #define HV_ERROR_DISK_FULL		0x80070070
329 
330 #define ADDR_FAMILY_NONE	0x00
331 #define ADDR_FAMILY_IPV4	0x01
332 #define ADDR_FAMILY_IPV6	0x02
333 
334 #define MAX_ADAPTER_ID_SIZE	128
335 #define MAX_IP_ADDR_SIZE	1024
336 #define MAX_GATEWAY_SIZE	512
337 
338 
339 struct hv_kvp_ipaddr_value {
340 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
341 	__u8	addr_family;
342 	__u8	dhcp_enabled;
343 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
344 	__u16	sub_net[MAX_IP_ADDR_SIZE];
345 	__u16	gate_way[MAX_GATEWAY_SIZE];
346 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
347 } __attribute__((packed));
348 
349 
350 struct hv_kvp_hdr {
351 	__u8 operation;
352 	__u8 pool;
353 	__u16 pad;
354 } __attribute__((packed));
355 
356 struct hv_kvp_exchg_msg_value {
357 	__u32 value_type;
358 	__u32 key_size;
359 	__u32 value_size;
360 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
361 	union {
362 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
363 		__u32 value_u32;
364 		__u64 value_u64;
365 	};
366 } __attribute__((packed));
367 
368 struct hv_kvp_msg_enumerate {
369 	__u32 index;
370 	struct hv_kvp_exchg_msg_value data;
371 } __attribute__((packed));
372 
373 struct hv_kvp_msg_get {
374 	struct hv_kvp_exchg_msg_value data;
375 };
376 
377 struct hv_kvp_msg_set {
378 	struct hv_kvp_exchg_msg_value data;
379 };
380 
381 struct hv_kvp_msg_delete {
382 	__u32 key_size;
383 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
384 };
385 
386 struct hv_kvp_register {
387 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
388 };
389 
390 struct hv_kvp_msg {
391 	union {
392 		struct hv_kvp_hdr	kvp_hdr;
393 		int error;
394 	};
395 	union {
396 		struct hv_kvp_msg_get		kvp_get;
397 		struct hv_kvp_msg_set		kvp_set;
398 		struct hv_kvp_msg_delete	kvp_delete;
399 		struct hv_kvp_msg_enumerate	kvp_enum_data;
400 		struct hv_kvp_ipaddr_value      kvp_ip_val;
401 		struct hv_kvp_register		kvp_register;
402 	} body;
403 } __attribute__((packed));
404 
405 struct hv_kvp_ip_msg {
406 	__u8 operation;
407 	__u8 pool;
408 	struct hv_kvp_ipaddr_value      kvp_ip_val;
409 } __attribute__((packed));
410 
411 #endif /* _UAPI_HYPERV_H */
412