1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_bmap_btree.h" 29 #include "xfs_alloc_btree.h" 30 #include "xfs_ialloc_btree.h" 31 #include "xfs_dinode.h" 32 #include "xfs_inode.h" 33 #include "xfs_buf_item.h" 34 #include "xfs_trans_priv.h" 35 #include "xfs_error.h" 36 #include "xfs_rw.h" 37 #include "xfs_trace.h" 38 39 /* 40 * Check to see if a buffer matching the given parameters is already 41 * a part of the given transaction. 42 */ 43 STATIC struct xfs_buf * 44 xfs_trans_buf_item_match( 45 struct xfs_trans *tp, 46 struct xfs_buftarg *target, 47 xfs_daddr_t blkno, 48 int len) 49 { 50 struct xfs_log_item_desc *lidp; 51 struct xfs_buf_log_item *blip; 52 53 len = BBTOB(len); 54 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 55 blip = (struct xfs_buf_log_item *)lidp->lid_item; 56 if (blip->bli_item.li_type == XFS_LI_BUF && 57 blip->bli_buf->b_target == target && 58 XFS_BUF_ADDR(blip->bli_buf) == blkno && 59 XFS_BUF_COUNT(blip->bli_buf) == len) 60 return blip->bli_buf; 61 } 62 63 return NULL; 64 } 65 66 /* 67 * Add the locked buffer to the transaction. 68 * 69 * The buffer must be locked, and it cannot be associated with any 70 * transaction. 71 * 72 * If the buffer does not yet have a buf log item associated with it, 73 * then allocate one for it. Then add the buf item to the transaction. 74 */ 75 STATIC void 76 _xfs_trans_bjoin( 77 struct xfs_trans *tp, 78 struct xfs_buf *bp, 79 int reset_recur) 80 { 81 struct xfs_buf_log_item *bip; 82 83 ASSERT(bp->b_transp == NULL); 84 85 /* 86 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 87 * it doesn't have one yet, then allocate one and initialize it. 88 * The checks to see if one is there are in xfs_buf_item_init(). 89 */ 90 xfs_buf_item_init(bp, tp->t_mountp); 91 bip = bp->b_fspriv; 92 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 93 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 94 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 95 if (reset_recur) 96 bip->bli_recur = 0; 97 98 /* 99 * Take a reference for this transaction on the buf item. 100 */ 101 atomic_inc(&bip->bli_refcount); 102 103 /* 104 * Get a log_item_desc to point at the new item. 105 */ 106 xfs_trans_add_item(tp, &bip->bli_item); 107 108 /* 109 * Initialize b_fsprivate2 so we can find it with incore_match() 110 * in xfs_trans_get_buf() and friends above. 111 */ 112 bp->b_transp = tp; 113 114 } 115 116 void 117 xfs_trans_bjoin( 118 struct xfs_trans *tp, 119 struct xfs_buf *bp) 120 { 121 _xfs_trans_bjoin(tp, bp, 0); 122 trace_xfs_trans_bjoin(bp->b_fspriv); 123 } 124 125 /* 126 * Get and lock the buffer for the caller if it is not already 127 * locked within the given transaction. If it is already locked 128 * within the transaction, just increment its lock recursion count 129 * and return a pointer to it. 130 * 131 * If the transaction pointer is NULL, make this just a normal 132 * get_buf() call. 133 */ 134 xfs_buf_t * 135 xfs_trans_get_buf(xfs_trans_t *tp, 136 xfs_buftarg_t *target_dev, 137 xfs_daddr_t blkno, 138 int len, 139 uint flags) 140 { 141 xfs_buf_t *bp; 142 xfs_buf_log_item_t *bip; 143 144 if (flags == 0) 145 flags = XBF_LOCK | XBF_MAPPED; 146 147 /* 148 * Default to a normal get_buf() call if the tp is NULL. 149 */ 150 if (tp == NULL) 151 return xfs_buf_get(target_dev, blkno, len, 152 flags | XBF_DONT_BLOCK); 153 154 /* 155 * If we find the buffer in the cache with this transaction 156 * pointer in its b_fsprivate2 field, then we know we already 157 * have it locked. In this case we just increment the lock 158 * recursion count and return the buffer to the caller. 159 */ 160 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); 161 if (bp != NULL) { 162 ASSERT(xfs_buf_islocked(bp)); 163 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 164 xfs_buf_stale(bp); 165 XFS_BUF_DONE(bp); 166 } 167 168 /* 169 * If the buffer is stale then it was binval'ed 170 * since last read. This doesn't matter since the 171 * caller isn't allowed to use the data anyway. 172 */ 173 else if (XFS_BUF_ISSTALE(bp)) 174 ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); 175 176 ASSERT(bp->b_transp == tp); 177 bip = bp->b_fspriv; 178 ASSERT(bip != NULL); 179 ASSERT(atomic_read(&bip->bli_refcount) > 0); 180 bip->bli_recur++; 181 trace_xfs_trans_get_buf_recur(bip); 182 return (bp); 183 } 184 185 /* 186 * We always specify the XBF_DONT_BLOCK flag within a transaction 187 * so that get_buf does not try to push out a delayed write buffer 188 * which might cause another transaction to take place (if the 189 * buffer was delayed alloc). Such recursive transactions can 190 * easily deadlock with our current transaction as well as cause 191 * us to run out of stack space. 192 */ 193 bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK); 194 if (bp == NULL) { 195 return NULL; 196 } 197 198 ASSERT(!bp->b_error); 199 200 _xfs_trans_bjoin(tp, bp, 1); 201 trace_xfs_trans_get_buf(bp->b_fspriv); 202 return (bp); 203 } 204 205 /* 206 * Get and lock the superblock buffer of this file system for the 207 * given transaction. 208 * 209 * We don't need to use incore_match() here, because the superblock 210 * buffer is a private buffer which we keep a pointer to in the 211 * mount structure. 212 */ 213 xfs_buf_t * 214 xfs_trans_getsb(xfs_trans_t *tp, 215 struct xfs_mount *mp, 216 int flags) 217 { 218 xfs_buf_t *bp; 219 xfs_buf_log_item_t *bip; 220 221 /* 222 * Default to just trying to lock the superblock buffer 223 * if tp is NULL. 224 */ 225 if (tp == NULL) { 226 return (xfs_getsb(mp, flags)); 227 } 228 229 /* 230 * If the superblock buffer already has this transaction 231 * pointer in its b_fsprivate2 field, then we know we already 232 * have it locked. In this case we just increment the lock 233 * recursion count and return the buffer to the caller. 234 */ 235 bp = mp->m_sb_bp; 236 if (bp->b_transp == tp) { 237 bip = bp->b_fspriv; 238 ASSERT(bip != NULL); 239 ASSERT(atomic_read(&bip->bli_refcount) > 0); 240 bip->bli_recur++; 241 trace_xfs_trans_getsb_recur(bip); 242 return (bp); 243 } 244 245 bp = xfs_getsb(mp, flags); 246 if (bp == NULL) 247 return NULL; 248 249 _xfs_trans_bjoin(tp, bp, 1); 250 trace_xfs_trans_getsb(bp->b_fspriv); 251 return (bp); 252 } 253 254 #ifdef DEBUG 255 xfs_buftarg_t *xfs_error_target; 256 int xfs_do_error; 257 int xfs_req_num; 258 int xfs_error_mod = 33; 259 #endif 260 261 /* 262 * Get and lock the buffer for the caller if it is not already 263 * locked within the given transaction. If it has not yet been 264 * read in, read it from disk. If it is already locked 265 * within the transaction and already read in, just increment its 266 * lock recursion count and return a pointer to it. 267 * 268 * If the transaction pointer is NULL, make this just a normal 269 * read_buf() call. 270 */ 271 int 272 xfs_trans_read_buf( 273 xfs_mount_t *mp, 274 xfs_trans_t *tp, 275 xfs_buftarg_t *target, 276 xfs_daddr_t blkno, 277 int len, 278 uint flags, 279 xfs_buf_t **bpp) 280 { 281 xfs_buf_t *bp; 282 xfs_buf_log_item_t *bip; 283 int error; 284 285 if (flags == 0) 286 flags = XBF_LOCK | XBF_MAPPED; 287 288 /* 289 * Default to a normal get_buf() call if the tp is NULL. 290 */ 291 if (tp == NULL) { 292 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); 293 if (!bp) 294 return (flags & XBF_TRYLOCK) ? 295 EAGAIN : XFS_ERROR(ENOMEM); 296 297 if (bp->b_error) { 298 error = bp->b_error; 299 xfs_buf_ioerror_alert(bp, __func__); 300 xfs_buf_relse(bp); 301 return error; 302 } 303 #ifdef DEBUG 304 if (xfs_do_error) { 305 if (xfs_error_target == target) { 306 if (((xfs_req_num++) % xfs_error_mod) == 0) { 307 xfs_buf_relse(bp); 308 xfs_debug(mp, "Returning error!"); 309 return XFS_ERROR(EIO); 310 } 311 } 312 } 313 #endif 314 if (XFS_FORCED_SHUTDOWN(mp)) 315 goto shutdown_abort; 316 *bpp = bp; 317 return 0; 318 } 319 320 /* 321 * If we find the buffer in the cache with this transaction 322 * pointer in its b_fsprivate2 field, then we know we already 323 * have it locked. If it is already read in we just increment 324 * the lock recursion count and return the buffer to the caller. 325 * If the buffer is not yet read in, then we read it in, increment 326 * the lock recursion count, and return it to the caller. 327 */ 328 bp = xfs_trans_buf_item_match(tp, target, blkno, len); 329 if (bp != NULL) { 330 ASSERT(xfs_buf_islocked(bp)); 331 ASSERT(bp->b_transp == tp); 332 ASSERT(bp->b_fspriv != NULL); 333 ASSERT(!bp->b_error); 334 if (!(XFS_BUF_ISDONE(bp))) { 335 trace_xfs_trans_read_buf_io(bp, _RET_IP_); 336 ASSERT(!XFS_BUF_ISASYNC(bp)); 337 XFS_BUF_READ(bp); 338 xfsbdstrat(tp->t_mountp, bp); 339 error = xfs_buf_iowait(bp); 340 if (error) { 341 xfs_buf_ioerror_alert(bp, __func__); 342 xfs_buf_relse(bp); 343 /* 344 * We can gracefully recover from most read 345 * errors. Ones we can't are those that happen 346 * after the transaction's already dirty. 347 */ 348 if (tp->t_flags & XFS_TRANS_DIRTY) 349 xfs_force_shutdown(tp->t_mountp, 350 SHUTDOWN_META_IO_ERROR); 351 return error; 352 } 353 } 354 /* 355 * We never locked this buf ourselves, so we shouldn't 356 * brelse it either. Just get out. 357 */ 358 if (XFS_FORCED_SHUTDOWN(mp)) { 359 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 360 *bpp = NULL; 361 return XFS_ERROR(EIO); 362 } 363 364 365 bip = bp->b_fspriv; 366 bip->bli_recur++; 367 368 ASSERT(atomic_read(&bip->bli_refcount) > 0); 369 trace_xfs_trans_read_buf_recur(bip); 370 *bpp = bp; 371 return 0; 372 } 373 374 /* 375 * We always specify the XBF_DONT_BLOCK flag within a transaction 376 * so that get_buf does not try to push out a delayed write buffer 377 * which might cause another transaction to take place (if the 378 * buffer was delayed alloc). Such recursive transactions can 379 * easily deadlock with our current transaction as well as cause 380 * us to run out of stack space. 381 */ 382 bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); 383 if (bp == NULL) { 384 *bpp = NULL; 385 return (flags & XBF_TRYLOCK) ? 386 0 : XFS_ERROR(ENOMEM); 387 } 388 if (bp->b_error) { 389 error = bp->b_error; 390 xfs_buf_stale(bp); 391 XFS_BUF_DONE(bp); 392 xfs_buf_ioerror_alert(bp, __func__); 393 if (tp->t_flags & XFS_TRANS_DIRTY) 394 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 395 xfs_buf_relse(bp); 396 return error; 397 } 398 #ifdef DEBUG 399 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 400 if (xfs_error_target == target) { 401 if (((xfs_req_num++) % xfs_error_mod) == 0) { 402 xfs_force_shutdown(tp->t_mountp, 403 SHUTDOWN_META_IO_ERROR); 404 xfs_buf_relse(bp); 405 xfs_debug(mp, "Returning trans error!"); 406 return XFS_ERROR(EIO); 407 } 408 } 409 } 410 #endif 411 if (XFS_FORCED_SHUTDOWN(mp)) 412 goto shutdown_abort; 413 414 _xfs_trans_bjoin(tp, bp, 1); 415 trace_xfs_trans_read_buf(bp->b_fspriv); 416 417 *bpp = bp; 418 return 0; 419 420 shutdown_abort: 421 /* 422 * the theory here is that buffer is good but we're 423 * bailing out because the filesystem is being forcibly 424 * shut down. So we should leave the b_flags alone since 425 * the buffer's not staled and just get out. 426 */ 427 #if defined(DEBUG) 428 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) 429 xfs_notice(mp, "about to pop assert, bp == 0x%p", bp); 430 #endif 431 ASSERT((bp->b_flags & (XBF_STALE|XBF_DELWRI)) != 432 (XBF_STALE|XBF_DELWRI)); 433 434 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 435 xfs_buf_relse(bp); 436 *bpp = NULL; 437 return XFS_ERROR(EIO); 438 } 439 440 441 /* 442 * Release the buffer bp which was previously acquired with one of the 443 * xfs_trans_... buffer allocation routines if the buffer has not 444 * been modified within this transaction. If the buffer is modified 445 * within this transaction, do decrement the recursion count but do 446 * not release the buffer even if the count goes to 0. If the buffer is not 447 * modified within the transaction, decrement the recursion count and 448 * release the buffer if the recursion count goes to 0. 449 * 450 * If the buffer is to be released and it was not modified before 451 * this transaction began, then free the buf_log_item associated with it. 452 * 453 * If the transaction pointer is NULL, make this just a normal 454 * brelse() call. 455 */ 456 void 457 xfs_trans_brelse(xfs_trans_t *tp, 458 xfs_buf_t *bp) 459 { 460 xfs_buf_log_item_t *bip; 461 462 /* 463 * Default to a normal brelse() call if the tp is NULL. 464 */ 465 if (tp == NULL) { 466 struct xfs_log_item *lip = bp->b_fspriv; 467 468 ASSERT(bp->b_transp == NULL); 469 470 /* 471 * If there's a buf log item attached to the buffer, 472 * then let the AIL know that the buffer is being 473 * unlocked. 474 */ 475 if (lip != NULL && lip->li_type == XFS_LI_BUF) { 476 bip = bp->b_fspriv; 477 xfs_trans_unlocked_item(bip->bli_item.li_ailp, lip); 478 } 479 xfs_buf_relse(bp); 480 return; 481 } 482 483 ASSERT(bp->b_transp == tp); 484 bip = bp->b_fspriv; 485 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 486 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 487 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 488 ASSERT(atomic_read(&bip->bli_refcount) > 0); 489 490 trace_xfs_trans_brelse(bip); 491 492 /* 493 * If the release is just for a recursive lock, 494 * then decrement the count and return. 495 */ 496 if (bip->bli_recur > 0) { 497 bip->bli_recur--; 498 return; 499 } 500 501 /* 502 * If the buffer is dirty within this transaction, we can't 503 * release it until we commit. 504 */ 505 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 506 return; 507 508 /* 509 * If the buffer has been invalidated, then we can't release 510 * it until the transaction commits to disk unless it is re-dirtied 511 * as part of this transaction. This prevents us from pulling 512 * the item from the AIL before we should. 513 */ 514 if (bip->bli_flags & XFS_BLI_STALE) 515 return; 516 517 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 518 519 /* 520 * Free up the log item descriptor tracking the released item. 521 */ 522 xfs_trans_del_item(&bip->bli_item); 523 524 /* 525 * Clear the hold flag in the buf log item if it is set. 526 * We wouldn't want the next user of the buffer to 527 * get confused. 528 */ 529 if (bip->bli_flags & XFS_BLI_HOLD) { 530 bip->bli_flags &= ~XFS_BLI_HOLD; 531 } 532 533 /* 534 * Drop our reference to the buf log item. 535 */ 536 atomic_dec(&bip->bli_refcount); 537 538 /* 539 * If the buf item is not tracking data in the log, then 540 * we must free it before releasing the buffer back to the 541 * free pool. Before releasing the buffer to the free pool, 542 * clear the transaction pointer in b_fsprivate2 to dissolve 543 * its relation to this transaction. 544 */ 545 if (!xfs_buf_item_dirty(bip)) { 546 /*** 547 ASSERT(bp->b_pincount == 0); 548 ***/ 549 ASSERT(atomic_read(&bip->bli_refcount) == 0); 550 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 551 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 552 xfs_buf_item_relse(bp); 553 bip = NULL; 554 } 555 bp->b_transp = NULL; 556 557 /* 558 * If we've still got a buf log item on the buffer, then 559 * tell the AIL that the buffer is being unlocked. 560 */ 561 if (bip != NULL) { 562 xfs_trans_unlocked_item(bip->bli_item.li_ailp, 563 (xfs_log_item_t*)bip); 564 } 565 566 xfs_buf_relse(bp); 567 return; 568 } 569 570 /* 571 * Mark the buffer as not needing to be unlocked when the buf item's 572 * IOP_UNLOCK() routine is called. The buffer must already be locked 573 * and associated with the given transaction. 574 */ 575 /* ARGSUSED */ 576 void 577 xfs_trans_bhold(xfs_trans_t *tp, 578 xfs_buf_t *bp) 579 { 580 xfs_buf_log_item_t *bip = bp->b_fspriv; 581 582 ASSERT(bp->b_transp == tp); 583 ASSERT(bip != NULL); 584 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 585 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 586 ASSERT(atomic_read(&bip->bli_refcount) > 0); 587 588 bip->bli_flags |= XFS_BLI_HOLD; 589 trace_xfs_trans_bhold(bip); 590 } 591 592 /* 593 * Cancel the previous buffer hold request made on this buffer 594 * for this transaction. 595 */ 596 void 597 xfs_trans_bhold_release(xfs_trans_t *tp, 598 xfs_buf_t *bp) 599 { 600 xfs_buf_log_item_t *bip = bp->b_fspriv; 601 602 ASSERT(bp->b_transp == tp); 603 ASSERT(bip != NULL); 604 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 605 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 606 ASSERT(atomic_read(&bip->bli_refcount) > 0); 607 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 608 609 bip->bli_flags &= ~XFS_BLI_HOLD; 610 trace_xfs_trans_bhold_release(bip); 611 } 612 613 /* 614 * This is called to mark bytes first through last inclusive of the given 615 * buffer as needing to be logged when the transaction is committed. 616 * The buffer must already be associated with the given transaction. 617 * 618 * First and last are numbers relative to the beginning of this buffer, 619 * so the first byte in the buffer is numbered 0 regardless of the 620 * value of b_blkno. 621 */ 622 void 623 xfs_trans_log_buf(xfs_trans_t *tp, 624 xfs_buf_t *bp, 625 uint first, 626 uint last) 627 { 628 xfs_buf_log_item_t *bip = bp->b_fspriv; 629 630 ASSERT(bp->b_transp == tp); 631 ASSERT(bip != NULL); 632 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); 633 ASSERT(bp->b_iodone == NULL || 634 bp->b_iodone == xfs_buf_iodone_callbacks); 635 636 /* 637 * Mark the buffer as needing to be written out eventually, 638 * and set its iodone function to remove the buffer's buf log 639 * item from the AIL and free it when the buffer is flushed 640 * to disk. See xfs_buf_attach_iodone() for more details 641 * on li_cb and xfs_buf_iodone_callbacks(). 642 * If we end up aborting this transaction, we trap this buffer 643 * inside the b_bdstrat callback so that this won't get written to 644 * disk. 645 */ 646 XFS_BUF_DONE(bp); 647 648 ASSERT(atomic_read(&bip->bli_refcount) > 0); 649 bp->b_iodone = xfs_buf_iodone_callbacks; 650 bip->bli_item.li_cb = xfs_buf_iodone; 651 652 xfs_buf_delwri_queue(bp); 653 654 trace_xfs_trans_log_buf(bip); 655 656 /* 657 * If we invalidated the buffer within this transaction, then 658 * cancel the invalidation now that we're dirtying the buffer 659 * again. There are no races with the code in xfs_buf_item_unpin(), 660 * because we have a reference to the buffer this entire time. 661 */ 662 if (bip->bli_flags & XFS_BLI_STALE) { 663 bip->bli_flags &= ~XFS_BLI_STALE; 664 ASSERT(XFS_BUF_ISSTALE(bp)); 665 XFS_BUF_UNSTALE(bp); 666 bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL; 667 } 668 669 tp->t_flags |= XFS_TRANS_DIRTY; 670 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 671 bip->bli_flags |= XFS_BLI_LOGGED; 672 xfs_buf_item_log(bip, first, last); 673 } 674 675 676 /* 677 * This called to invalidate a buffer that is being used within 678 * a transaction. Typically this is because the blocks in the 679 * buffer are being freed, so we need to prevent it from being 680 * written out when we're done. Allowing it to be written again 681 * might overwrite data in the free blocks if they are reallocated 682 * to a file. 683 * 684 * We prevent the buffer from being written out by clearing the 685 * B_DELWRI flag. We can't always 686 * get rid of the buf log item at this point, though, because 687 * the buffer may still be pinned by another transaction. If that 688 * is the case, then we'll wait until the buffer is committed to 689 * disk for the last time (we can tell by the ref count) and 690 * free it in xfs_buf_item_unpin(). Until it is cleaned up we 691 * will keep the buffer locked so that the buffer and buf log item 692 * are not reused. 693 */ 694 void 695 xfs_trans_binval( 696 xfs_trans_t *tp, 697 xfs_buf_t *bp) 698 { 699 xfs_buf_log_item_t *bip = bp->b_fspriv; 700 701 ASSERT(bp->b_transp == tp); 702 ASSERT(bip != NULL); 703 ASSERT(atomic_read(&bip->bli_refcount) > 0); 704 705 trace_xfs_trans_binval(bip); 706 707 if (bip->bli_flags & XFS_BLI_STALE) { 708 /* 709 * If the buffer is already invalidated, then 710 * just return. 711 */ 712 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 713 ASSERT(XFS_BUF_ISSTALE(bp)); 714 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 715 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF)); 716 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 717 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 718 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 719 return; 720 } 721 722 /* 723 * Clear the dirty bit in the buffer and set the STALE flag 724 * in the buf log item. The STALE flag will be used in 725 * xfs_buf_item_unpin() to determine if it should clean up 726 * when the last reference to the buf item is given up. 727 * We set the XFS_BLF_CANCEL flag in the buf log format structure 728 * and log the buf item. This will be used at recovery time 729 * to determine that copies of the buffer in the log before 730 * this should not be replayed. 731 * We mark the item descriptor and the transaction dirty so 732 * that we'll hold the buffer until after the commit. 733 * 734 * Since we're invalidating the buffer, we also clear the state 735 * about which parts of the buffer have been logged. We also 736 * clear the flag indicating that this is an inode buffer since 737 * the data in the buffer will no longer be valid. 738 * 739 * We set the stale bit in the buffer as well since we're getting 740 * rid of it. 741 */ 742 xfs_buf_stale(bp); 743 bip->bli_flags |= XFS_BLI_STALE; 744 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 745 bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 746 bip->bli_format.blf_flags |= XFS_BLF_CANCEL; 747 memset((char *)(bip->bli_format.blf_data_map), 0, 748 (bip->bli_format.blf_map_size * sizeof(uint))); 749 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 750 tp->t_flags |= XFS_TRANS_DIRTY; 751 } 752 753 /* 754 * This call is used to indicate that the buffer contains on-disk inodes which 755 * must be handled specially during recovery. They require special handling 756 * because only the di_next_unlinked from the inodes in the buffer should be 757 * recovered. The rest of the data in the buffer is logged via the inodes 758 * themselves. 759 * 760 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 761 * transferred to the buffer's log format structure so that we'll know what to 762 * do at recovery time. 763 */ 764 void 765 xfs_trans_inode_buf( 766 xfs_trans_t *tp, 767 xfs_buf_t *bp) 768 { 769 xfs_buf_log_item_t *bip = bp->b_fspriv; 770 771 ASSERT(bp->b_transp == tp); 772 ASSERT(bip != NULL); 773 ASSERT(atomic_read(&bip->bli_refcount) > 0); 774 775 bip->bli_flags |= XFS_BLI_INODE_BUF; 776 } 777 778 /* 779 * This call is used to indicate that the buffer is going to 780 * be staled and was an inode buffer. This means it gets 781 * special processing during unpin - where any inodes 782 * associated with the buffer should be removed from ail. 783 * There is also special processing during recovery, 784 * any replay of the inodes in the buffer needs to be 785 * prevented as the buffer may have been reused. 786 */ 787 void 788 xfs_trans_stale_inode_buf( 789 xfs_trans_t *tp, 790 xfs_buf_t *bp) 791 { 792 xfs_buf_log_item_t *bip = bp->b_fspriv; 793 794 ASSERT(bp->b_transp == tp); 795 ASSERT(bip != NULL); 796 ASSERT(atomic_read(&bip->bli_refcount) > 0); 797 798 bip->bli_flags |= XFS_BLI_STALE_INODE; 799 bip->bli_item.li_cb = xfs_buf_iodone; 800 } 801 802 /* 803 * Mark the buffer as being one which contains newly allocated 804 * inodes. We need to make sure that even if this buffer is 805 * relogged as an 'inode buf' we still recover all of the inode 806 * images in the face of a crash. This works in coordination with 807 * xfs_buf_item_committed() to ensure that the buffer remains in the 808 * AIL at its original location even after it has been relogged. 809 */ 810 /* ARGSUSED */ 811 void 812 xfs_trans_inode_alloc_buf( 813 xfs_trans_t *tp, 814 xfs_buf_t *bp) 815 { 816 xfs_buf_log_item_t *bip = bp->b_fspriv; 817 818 ASSERT(bp->b_transp == tp); 819 ASSERT(bip != NULL); 820 ASSERT(atomic_read(&bip->bli_refcount) > 0); 821 822 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 823 } 824 825 826 /* 827 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 828 * dquots. However, unlike in inode buffer recovery, dquot buffers get 829 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 830 * The only thing that makes dquot buffers different from regular 831 * buffers is that we must not replay dquot bufs when recovering 832 * if a _corresponding_ quotaoff has happened. We also have to distinguish 833 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 834 * can be turned off independently. 835 */ 836 /* ARGSUSED */ 837 void 838 xfs_trans_dquot_buf( 839 xfs_trans_t *tp, 840 xfs_buf_t *bp, 841 uint type) 842 { 843 xfs_buf_log_item_t *bip = bp->b_fspriv; 844 845 ASSERT(bp->b_transp == tp); 846 ASSERT(bip != NULL); 847 ASSERT(type == XFS_BLF_UDQUOT_BUF || 848 type == XFS_BLF_PDQUOT_BUF || 849 type == XFS_BLF_GDQUOT_BUF); 850 ASSERT(atomic_read(&bip->bli_refcount) > 0); 851 852 bip->bli_format.blf_flags |= type; 853 } 854