xref: /linux/fs/xfs/xfs_trans_buf.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_buf_item.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 
18 /*
19  * Check to see if a buffer matching the given parameters is already
20  * a part of the given transaction.
21  */
22 STATIC struct xfs_buf *
xfs_trans_buf_item_match(struct xfs_trans * tp,struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps)23 xfs_trans_buf_item_match(
24 	struct xfs_trans	*tp,
25 	struct xfs_buftarg	*target,
26 	struct xfs_buf_map	*map,
27 	int			nmaps)
28 {
29 	struct xfs_log_item	*lip;
30 	struct xfs_buf_log_item	*blip;
31 	int			len = 0;
32 	int			i;
33 
34 	for (i = 0; i < nmaps; i++)
35 		len += map[i].bm_len;
36 
37 	list_for_each_entry(lip, &tp->t_items, li_trans) {
38 		blip = (struct xfs_buf_log_item *)lip;
39 		if (blip->bli_item.li_type == XFS_LI_BUF &&
40 		    blip->bli_buf->b_target == target &&
41 		    xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
42 		    blip->bli_buf->b_length == len) {
43 			ASSERT(blip->bli_buf->b_map_count == nmaps);
44 			return blip->bli_buf;
45 		}
46 	}
47 
48 	return NULL;
49 }
50 
51 /*
52  * Add the locked buffer to the transaction.
53  *
54  * The buffer must be locked, and it cannot be associated with any
55  * transaction.
56  *
57  * If the buffer does not yet have a buf log item associated with it,
58  * then allocate one for it.  Then add the buf item to the transaction.
59  */
60 STATIC void
_xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp,int reset_recur)61 _xfs_trans_bjoin(
62 	struct xfs_trans	*tp,
63 	struct xfs_buf		*bp,
64 	int			reset_recur)
65 {
66 	struct xfs_buf_log_item	*bip;
67 
68 	ASSERT(bp->b_transp == NULL);
69 
70 	/*
71 	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
72 	 * it doesn't have one yet, then allocate one and initialize it.
73 	 * The checks to see if one is there are in xfs_buf_item_init().
74 	 */
75 	xfs_buf_item_init(bp, tp->t_mountp);
76 	bip = bp->b_log_item;
77 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 	if (reset_recur)
81 		bip->bli_recur = 0;
82 
83 	/*
84 	 * Take a reference for this transaction on the buf item.
85 	 */
86 	atomic_inc(&bip->bli_refcount);
87 
88 	/*
89 	 * Attach the item to the transaction so we can find it in
90 	 * xfs_trans_get_buf() and friends.
91 	 */
92 	xfs_trans_add_item(tp, &bip->bli_item);
93 	bp->b_transp = tp;
94 
95 }
96 
97 void
xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp)98 xfs_trans_bjoin(
99 	struct xfs_trans	*tp,
100 	struct xfs_buf		*bp)
101 {
102 	_xfs_trans_bjoin(tp, bp, 0);
103 	trace_xfs_trans_bjoin(bp->b_log_item);
104 }
105 
106 /*
107  * Get and lock the buffer for the caller if it is not already
108  * locked within the given transaction.  If it is already locked
109  * within the transaction, just increment its lock recursion count
110  * and return a pointer to it.
111  *
112  * If the transaction pointer is NULL, make this just a normal
113  * get_buf() call.
114  */
115 int
xfs_trans_get_buf_map(struct xfs_trans * tp,struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)116 xfs_trans_get_buf_map(
117 	struct xfs_trans	*tp,
118 	struct xfs_buftarg	*target,
119 	struct xfs_buf_map	*map,
120 	int			nmaps,
121 	xfs_buf_flags_t		flags,
122 	struct xfs_buf		**bpp)
123 {
124 	struct xfs_buf		*bp;
125 	struct xfs_buf_log_item	*bip;
126 	int			error;
127 
128 	*bpp = NULL;
129 	if (!tp)
130 		return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131 
132 	/*
133 	 * If we find the buffer in the cache with this transaction
134 	 * pointer in its b_fsprivate2 field, then we know we already
135 	 * have it locked.  In this case we just increment the lock
136 	 * recursion count and return the buffer to the caller.
137 	 */
138 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139 	if (bp != NULL) {
140 		ASSERT(xfs_buf_islocked(bp));
141 		if (xfs_is_shutdown(tp->t_mountp)) {
142 			xfs_buf_stale(bp);
143 			bp->b_flags |= XBF_DONE;
144 		}
145 
146 		ASSERT(bp->b_transp == tp);
147 		bip = bp->b_log_item;
148 		ASSERT(bip != NULL);
149 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 		bip->bli_recur++;
151 		trace_xfs_trans_get_buf_recur(bip);
152 		*bpp = bp;
153 		return 0;
154 	}
155 
156 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 	if (error)
158 		return error;
159 
160 	ASSERT(!bp->b_error);
161 
162 	_xfs_trans_bjoin(tp, bp, 1);
163 	trace_xfs_trans_get_buf(bp->b_log_item);
164 	*bpp = bp;
165 	return 0;
166 }
167 
168 /*
169  * Get and lock the superblock buffer for the given transaction.
170  */
171 struct xfs_buf *
xfs_trans_getsb(struct xfs_trans * tp)172 xfs_trans_getsb(
173 	struct xfs_trans	*tp)
174 {
175 	struct xfs_buf		*bp = tp->t_mountp->m_sb_bp;
176 
177 	/*
178 	 * Just increment the lock recursion count if the buffer is already
179 	 * attached to this transaction.
180 	 */
181 	if (bp->b_transp == tp) {
182 		struct xfs_buf_log_item	*bip = bp->b_log_item;
183 
184 		ASSERT(bip != NULL);
185 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
186 		bip->bli_recur++;
187 
188 		trace_xfs_trans_getsb_recur(bip);
189 	} else {
190 		xfs_buf_lock(bp);
191 		xfs_buf_hold(bp);
192 		_xfs_trans_bjoin(tp, bp, 1);
193 
194 		trace_xfs_trans_getsb(bp->b_log_item);
195 	}
196 
197 	return bp;
198 }
199 
200 /*
201  * Get and lock the buffer for the caller if it is not already
202  * locked within the given transaction.  If it has not yet been
203  * read in, read it from disk. If it is already locked
204  * within the transaction and already read in, just increment its
205  * lock recursion count and return a pointer to it.
206  *
207  * If the transaction pointer is NULL, make this just a normal
208  * read_buf() call.
209  */
210 int
xfs_trans_read_buf_map(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)211 xfs_trans_read_buf_map(
212 	struct xfs_mount	*mp,
213 	struct xfs_trans	*tp,
214 	struct xfs_buftarg	*target,
215 	struct xfs_buf_map	*map,
216 	int			nmaps,
217 	xfs_buf_flags_t		flags,
218 	struct xfs_buf		**bpp,
219 	const struct xfs_buf_ops *ops)
220 {
221 	struct xfs_buf		*bp = NULL;
222 	struct xfs_buf_log_item	*bip;
223 	int			error;
224 
225 	*bpp = NULL;
226 	/*
227 	 * If we find the buffer in the cache with this transaction
228 	 * pointer in its b_fsprivate2 field, then we know we already
229 	 * have it locked.  If it is already read in we just increment
230 	 * the lock recursion count and return the buffer to the caller.
231 	 * If the buffer is not yet read in, then we read it in, increment
232 	 * the lock recursion count, and return it to the caller.
233 	 */
234 	if (tp)
235 		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
236 	if (bp) {
237 		ASSERT(xfs_buf_islocked(bp));
238 		ASSERT(bp->b_transp == tp);
239 		ASSERT(bp->b_log_item != NULL);
240 		ASSERT(!bp->b_error);
241 		ASSERT(bp->b_flags & XBF_DONE);
242 
243 		/*
244 		 * We never locked this buf ourselves, so we shouldn't
245 		 * brelse it either. Just get out.
246 		 */
247 		if (xfs_is_shutdown(mp)) {
248 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
249 			return -EIO;
250 		}
251 
252 		/*
253 		 * Check if the caller is trying to read a buffer that is
254 		 * already attached to the transaction yet has no buffer ops
255 		 * assigned.  Ops are usually attached when the buffer is
256 		 * attached to the transaction, or by the read caller if
257 		 * special circumstances.  That didn't happen, which is not
258 		 * how this is supposed to go.
259 		 *
260 		 * If the buffer passes verification we'll let this go, but if
261 		 * not we have to shut down.  Let the transaction cleanup code
262 		 * release this buffer when it kills the tranaction.
263 		 */
264 		ASSERT(bp->b_ops != NULL);
265 		error = xfs_buf_reverify(bp, ops);
266 		if (error) {
267 			xfs_buf_ioerror_alert(bp, __return_address);
268 
269 			if (tp->t_flags & XFS_TRANS_DIRTY)
270 				xfs_force_shutdown(tp->t_mountp,
271 						SHUTDOWN_META_IO_ERROR);
272 
273 			/* bad CRC means corrupted metadata */
274 			if (error == -EFSBADCRC)
275 				error = -EFSCORRUPTED;
276 			return error;
277 		}
278 
279 		bip = bp->b_log_item;
280 		bip->bli_recur++;
281 
282 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
283 		trace_xfs_trans_read_buf_recur(bip);
284 		ASSERT(bp->b_ops != NULL || ops == NULL);
285 		*bpp = bp;
286 		return 0;
287 	}
288 
289 	error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
290 			__return_address);
291 	switch (error) {
292 	case 0:
293 		break;
294 	default:
295 		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
296 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
297 		fallthrough;
298 	case -ENOMEM:
299 	case -EAGAIN:
300 		return error;
301 	}
302 
303 	if (xfs_is_shutdown(mp)) {
304 		xfs_buf_relse(bp);
305 		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
306 		return -EIO;
307 	}
308 
309 	if (tp) {
310 		_xfs_trans_bjoin(tp, bp, 1);
311 		trace_xfs_trans_read_buf(bp->b_log_item);
312 	}
313 	ASSERT(bp->b_ops != NULL || ops == NULL);
314 	*bpp = bp;
315 	return 0;
316 
317 }
318 
319 /* Has this buffer been dirtied by anyone? */
320 bool
xfs_trans_buf_is_dirty(struct xfs_buf * bp)321 xfs_trans_buf_is_dirty(
322 	struct xfs_buf		*bp)
323 {
324 	struct xfs_buf_log_item	*bip = bp->b_log_item;
325 
326 	if (!bip)
327 		return false;
328 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
329 	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
330 }
331 
332 /*
333  * Release a buffer previously joined to the transaction. If the buffer is
334  * modified within this transaction, decrement the recursion count but do not
335  * release the buffer even if the count goes to 0. If the buffer is not modified
336  * within the transaction, decrement the recursion count and release the buffer
337  * if the recursion count goes to 0.
338  *
339  * If the buffer is to be released and it was not already dirty before this
340  * transaction began, then also free the buf_log_item associated with it.
341  *
342  * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
343  */
344 void
xfs_trans_brelse(struct xfs_trans * tp,struct xfs_buf * bp)345 xfs_trans_brelse(
346 	struct xfs_trans	*tp,
347 	struct xfs_buf		*bp)
348 {
349 	struct xfs_buf_log_item	*bip = bp->b_log_item;
350 
351 	ASSERT(bp->b_transp == tp);
352 
353 	if (!tp) {
354 		xfs_buf_relse(bp);
355 		return;
356 	}
357 
358 	trace_xfs_trans_brelse(bip);
359 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
361 
362 	/*
363 	 * If the release is for a recursive lookup, then decrement the count
364 	 * and return.
365 	 */
366 	if (bip->bli_recur > 0) {
367 		bip->bli_recur--;
368 		return;
369 	}
370 
371 	/*
372 	 * If the buffer is invalidated or dirty in this transaction, we can't
373 	 * release it until we commit.
374 	 */
375 	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
376 		return;
377 	if (bip->bli_flags & XFS_BLI_STALE)
378 		return;
379 
380 	/*
381 	 * Unlink the log item from the transaction and clear the hold flag, if
382 	 * set. We wouldn't want the next user of the buffer to get confused.
383 	 */
384 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
385 	xfs_trans_del_item(&bip->bli_item);
386 	bip->bli_flags &= ~XFS_BLI_HOLD;
387 
388 	/* drop the reference to the bli */
389 	xfs_buf_item_put(bip);
390 
391 	bp->b_transp = NULL;
392 	xfs_buf_relse(bp);
393 }
394 
395 /*
396  * Forcibly detach a buffer previously joined to the transaction.  The caller
397  * will retain its locked reference to the buffer after this function returns.
398  * The buffer must be completely clean and must not be held to the transaction.
399  */
400 void
xfs_trans_bdetach(struct xfs_trans * tp,struct xfs_buf * bp)401 xfs_trans_bdetach(
402 	struct xfs_trans	*tp,
403 	struct xfs_buf		*bp)
404 {
405 	struct xfs_buf_log_item	*bip = bp->b_log_item;
406 
407 	ASSERT(tp != NULL);
408 	ASSERT(bp->b_transp == tp);
409 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
410 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
411 
412 	trace_xfs_trans_bdetach(bip);
413 
414 	/*
415 	 * Erase all recursion count, since we're removing this buffer from the
416 	 * transaction.
417 	 */
418 	bip->bli_recur = 0;
419 
420 	/*
421 	 * The buffer must be completely clean.  Specifically, it had better
422 	 * not be dirty, stale, logged, ordered, or held to the transaction.
423 	 */
424 	ASSERT(!test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
425 	ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY));
426 	ASSERT(!(bip->bli_flags & XFS_BLI_HOLD));
427 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
428 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
429 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
430 
431 	/* Unlink the log item from the transaction and drop the log item. */
432 	xfs_trans_del_item(&bip->bli_item);
433 	xfs_buf_item_put(bip);
434 	bp->b_transp = NULL;
435 }
436 
437 /*
438  * Mark the buffer as not needing to be unlocked when the buf item's
439  * iop_committing() routine is called.  The buffer must already be locked
440  * and associated with the given transaction.
441  */
442 /* ARGSUSED */
443 void
xfs_trans_bhold(xfs_trans_t * tp,struct xfs_buf * bp)444 xfs_trans_bhold(
445 	xfs_trans_t		*tp,
446 	struct xfs_buf		*bp)
447 {
448 	struct xfs_buf_log_item	*bip = bp->b_log_item;
449 
450 	ASSERT(bp->b_transp == tp);
451 	ASSERT(bip != NULL);
452 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
453 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
454 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
455 
456 	bip->bli_flags |= XFS_BLI_HOLD;
457 	trace_xfs_trans_bhold(bip);
458 }
459 
460 /*
461  * Cancel the previous buffer hold request made on this buffer
462  * for this transaction.
463  */
464 void
xfs_trans_bhold_release(xfs_trans_t * tp,struct xfs_buf * bp)465 xfs_trans_bhold_release(
466 	xfs_trans_t		*tp,
467 	struct xfs_buf		*bp)
468 {
469 	struct xfs_buf_log_item	*bip = bp->b_log_item;
470 
471 	ASSERT(bp->b_transp == tp);
472 	ASSERT(bip != NULL);
473 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
474 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
475 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
476 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
477 
478 	bip->bli_flags &= ~XFS_BLI_HOLD;
479 	trace_xfs_trans_bhold_release(bip);
480 }
481 
482 /*
483  * Mark a buffer dirty in the transaction.
484  */
485 void
xfs_trans_dirty_buf(struct xfs_trans * tp,struct xfs_buf * bp)486 xfs_trans_dirty_buf(
487 	struct xfs_trans	*tp,
488 	struct xfs_buf		*bp)
489 {
490 	struct xfs_buf_log_item	*bip = bp->b_log_item;
491 
492 	ASSERT(bp->b_transp == tp);
493 	ASSERT(bip != NULL);
494 
495 	/*
496 	 * Mark the buffer as needing to be written out eventually,
497 	 * and set its iodone function to remove the buffer's buf log
498 	 * item from the AIL and free it when the buffer is flushed
499 	 * to disk.
500 	 */
501 	bp->b_flags |= XBF_DONE;
502 
503 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
504 
505 	/*
506 	 * If we invalidated the buffer within this transaction, then
507 	 * cancel the invalidation now that we're dirtying the buffer
508 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
509 	 * because we have a reference to the buffer this entire time.
510 	 */
511 	if (bip->bli_flags & XFS_BLI_STALE) {
512 		bip->bli_flags &= ~XFS_BLI_STALE;
513 		ASSERT(bp->b_flags & XBF_STALE);
514 		bp->b_flags &= ~XBF_STALE;
515 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
516 	}
517 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
518 
519 	tp->t_flags |= XFS_TRANS_DIRTY;
520 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
521 }
522 
523 /*
524  * This is called to mark bytes first through last inclusive of the given
525  * buffer as needing to be logged when the transaction is committed.
526  * The buffer must already be associated with the given transaction.
527  *
528  * First and last are numbers relative to the beginning of this buffer,
529  * so the first byte in the buffer is numbered 0 regardless of the
530  * value of b_blkno.
531  */
532 void
xfs_trans_log_buf(struct xfs_trans * tp,struct xfs_buf * bp,uint first,uint last)533 xfs_trans_log_buf(
534 	struct xfs_trans	*tp,
535 	struct xfs_buf		*bp,
536 	uint			first,
537 	uint			last)
538 {
539 	struct xfs_buf_log_item	*bip = bp->b_log_item;
540 
541 	ASSERT(first <= last && last < BBTOB(bp->b_length));
542 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
543 
544 	xfs_trans_dirty_buf(tp, bp);
545 
546 	trace_xfs_trans_log_buf(bip);
547 	xfs_buf_item_log(bip, first, last);
548 }
549 
550 
551 /*
552  * Invalidate a buffer that is being used within a transaction.
553  *
554  * Typically this is because the blocks in the buffer are being freed, so we
555  * need to prevent it from being written out when we're done.  Allowing it
556  * to be written again might overwrite data in the free blocks if they are
557  * reallocated to a file.
558  *
559  * We prevent the buffer from being written out by marking it stale.  We can't
560  * get rid of the buf log item at this point because the buffer may still be
561  * pinned by another transaction.  If that is the case, then we'll wait until
562  * the buffer is committed to disk for the last time (we can tell by the ref
563  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
564  * keep the buffer locked so that the buffer and buf log item are not reused.
565  *
566  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
567  * the buf item.  This will be used at recovery time to determine that copies
568  * of the buffer in the log before this should not be replayed.
569  *
570  * We mark the item descriptor and the transaction dirty so that we'll hold
571  * the buffer until after the commit.
572  *
573  * Since we're invalidating the buffer, we also clear the state about which
574  * parts of the buffer have been logged.  We also clear the flag indicating
575  * that this is an inode buffer since the data in the buffer will no longer
576  * be valid.
577  *
578  * We set the stale bit in the buffer as well since we're getting rid of it.
579  */
580 void
xfs_trans_binval(xfs_trans_t * tp,struct xfs_buf * bp)581 xfs_trans_binval(
582 	xfs_trans_t		*tp,
583 	struct xfs_buf		*bp)
584 {
585 	struct xfs_buf_log_item	*bip = bp->b_log_item;
586 	int			i;
587 
588 	ASSERT(bp->b_transp == tp);
589 	ASSERT(bip != NULL);
590 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
591 
592 	trace_xfs_trans_binval(bip);
593 
594 	if (bip->bli_flags & XFS_BLI_STALE) {
595 		/*
596 		 * If the buffer is already invalidated, then
597 		 * just return.
598 		 */
599 		ASSERT(bp->b_flags & XBF_STALE);
600 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
601 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
602 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
603 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
604 		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
605 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
606 		return;
607 	}
608 
609 	xfs_buf_stale(bp);
610 
611 	bip->bli_flags |= XFS_BLI_STALE;
612 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
613 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
614 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
615 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
616 	for (i = 0; i < bip->bli_format_count; i++) {
617 		memset(bip->bli_formats[i].blf_data_map, 0,
618 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
619 	}
620 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
621 	tp->t_flags |= XFS_TRANS_DIRTY;
622 }
623 
624 /*
625  * This call is used to indicate that the buffer contains on-disk inodes which
626  * must be handled specially during recovery.  They require special handling
627  * because only the di_next_unlinked from the inodes in the buffer should be
628  * recovered.  The rest of the data in the buffer is logged via the inodes
629  * themselves.
630  *
631  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
632  * transferred to the buffer's log format structure so that we'll know what to
633  * do at recovery time.
634  */
635 void
xfs_trans_inode_buf(xfs_trans_t * tp,struct xfs_buf * bp)636 xfs_trans_inode_buf(
637 	xfs_trans_t		*tp,
638 	struct xfs_buf		*bp)
639 {
640 	struct xfs_buf_log_item	*bip = bp->b_log_item;
641 
642 	ASSERT(bp->b_transp == tp);
643 	ASSERT(bip != NULL);
644 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
645 
646 	bip->bli_flags |= XFS_BLI_INODE_BUF;
647 	bp->b_flags |= _XBF_INODES;
648 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
649 }
650 
651 /*
652  * This call is used to indicate that the buffer is going to
653  * be staled and was an inode buffer. This means it gets
654  * special processing during unpin - where any inodes
655  * associated with the buffer should be removed from ail.
656  * There is also special processing during recovery,
657  * any replay of the inodes in the buffer needs to be
658  * prevented as the buffer may have been reused.
659  */
660 void
xfs_trans_stale_inode_buf(xfs_trans_t * tp,struct xfs_buf * bp)661 xfs_trans_stale_inode_buf(
662 	xfs_trans_t		*tp,
663 	struct xfs_buf		*bp)
664 {
665 	struct xfs_buf_log_item	*bip = bp->b_log_item;
666 
667 	ASSERT(bp->b_transp == tp);
668 	ASSERT(bip != NULL);
669 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
670 
671 	bip->bli_flags |= XFS_BLI_STALE_INODE;
672 	bp->b_flags |= _XBF_INODES;
673 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
674 }
675 
676 /*
677  * Mark the buffer as being one which contains newly allocated
678  * inodes.  We need to make sure that even if this buffer is
679  * relogged as an 'inode buf' we still recover all of the inode
680  * images in the face of a crash.  This works in coordination with
681  * xfs_buf_item_committed() to ensure that the buffer remains in the
682  * AIL at its original location even after it has been relogged.
683  */
684 /* ARGSUSED */
685 void
xfs_trans_inode_alloc_buf(xfs_trans_t * tp,struct xfs_buf * bp)686 xfs_trans_inode_alloc_buf(
687 	xfs_trans_t		*tp,
688 	struct xfs_buf		*bp)
689 {
690 	struct xfs_buf_log_item	*bip = bp->b_log_item;
691 
692 	ASSERT(bp->b_transp == tp);
693 	ASSERT(bip != NULL);
694 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
695 
696 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
697 	bp->b_flags |= _XBF_INODES;
698 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
699 }
700 
701 /*
702  * Mark the buffer as ordered for this transaction. This means that the contents
703  * of the buffer are not recorded in the transaction but it is tracked in the
704  * AIL as though it was. This allows us to record logical changes in
705  * transactions rather than the physical changes we make to the buffer without
706  * changing writeback ordering constraints of metadata buffers.
707  */
708 bool
xfs_trans_ordered_buf(struct xfs_trans * tp,struct xfs_buf * bp)709 xfs_trans_ordered_buf(
710 	struct xfs_trans	*tp,
711 	struct xfs_buf		*bp)
712 {
713 	struct xfs_buf_log_item	*bip = bp->b_log_item;
714 
715 	ASSERT(bp->b_transp == tp);
716 	ASSERT(bip != NULL);
717 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
718 
719 	if (xfs_buf_item_dirty_format(bip))
720 		return false;
721 
722 	bip->bli_flags |= XFS_BLI_ORDERED;
723 	trace_xfs_buf_item_ordered(bip);
724 
725 	/*
726 	 * We don't log a dirty range of an ordered buffer but it still needs
727 	 * to be marked dirty and that it has been logged.
728 	 */
729 	xfs_trans_dirty_buf(tp, bp);
730 	return true;
731 }
732 
733 /*
734  * Set the type of the buffer for log recovery so that it can correctly identify
735  * and hence attach the correct buffer ops to the buffer after replay.
736  */
737 void
xfs_trans_buf_set_type(struct xfs_trans * tp,struct xfs_buf * bp,enum xfs_blft type)738 xfs_trans_buf_set_type(
739 	struct xfs_trans	*tp,
740 	struct xfs_buf		*bp,
741 	enum xfs_blft		type)
742 {
743 	struct xfs_buf_log_item	*bip = bp->b_log_item;
744 
745 	if (!tp)
746 		return;
747 
748 	ASSERT(bp->b_transp == tp);
749 	ASSERT(bip != NULL);
750 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
751 
752 	xfs_blft_to_flags(&bip->__bli_format, type);
753 }
754 
755 void
xfs_trans_buf_copy_type(struct xfs_buf * dst_bp,struct xfs_buf * src_bp)756 xfs_trans_buf_copy_type(
757 	struct xfs_buf		*dst_bp,
758 	struct xfs_buf		*src_bp)
759 {
760 	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
761 	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
762 	enum xfs_blft		type;
763 
764 	type = xfs_blft_from_flags(&sbip->__bli_format);
765 	xfs_blft_to_flags(&dbip->__bli_format, type);
766 }
767 
768 /*
769  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
770  * dquots. However, unlike in inode buffer recovery, dquot buffers get
771  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
772  * The only thing that makes dquot buffers different from regular
773  * buffers is that we must not replay dquot bufs when recovering
774  * if a _corresponding_ quotaoff has happened. We also have to distinguish
775  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
776  * can be turned off independently.
777  */
778 /* ARGSUSED */
779 void
xfs_trans_dquot_buf(xfs_trans_t * tp,struct xfs_buf * bp,uint type)780 xfs_trans_dquot_buf(
781 	xfs_trans_t		*tp,
782 	struct xfs_buf		*bp,
783 	uint			type)
784 {
785 	struct xfs_buf_log_item	*bip = bp->b_log_item;
786 
787 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
788 	       type == XFS_BLF_PDQUOT_BUF ||
789 	       type == XFS_BLF_GDQUOT_BUF);
790 
791 	bip->__bli_format.blf_flags |= type;
792 
793 	switch (type) {
794 	case XFS_BLF_UDQUOT_BUF:
795 		type = XFS_BLFT_UDQUOT_BUF;
796 		break;
797 	case XFS_BLF_PDQUOT_BUF:
798 		type = XFS_BLFT_PDQUOT_BUF;
799 		break;
800 	case XFS_BLF_GDQUOT_BUF:
801 		type = XFS_BLFT_GDQUOT_BUF;
802 		break;
803 	default:
804 		type = XFS_BLFT_UNKNOWN_BUF;
805 		break;
806 	}
807 
808 	bp->b_flags |= _XBF_DQUOTS;
809 	xfs_trans_buf_set_type(tp, bp, type);
810 }
811