xref: /linux/fs/xfs/xfs_trans_buf.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
19 
20 /*
21  * Check to see if a buffer matching the given parameters is already
22  * a part of the given transaction.
23  */
24 STATIC struct xfs_buf *
25 xfs_trans_buf_item_match(
26 	struct xfs_trans	*tp,
27 	struct xfs_buftarg	*target,
28 	struct xfs_buf_map	*map,
29 	int			nmaps)
30 {
31 	struct xfs_log_item	*lip;
32 	struct xfs_buf_log_item	*blip;
33 	int			len = 0;
34 	int			i;
35 
36 	for (i = 0; i < nmaps; i++)
37 		len += map[i].bm_len;
38 
39 	list_for_each_entry(lip, &tp->t_items, li_trans) {
40 		blip = (struct xfs_buf_log_item *)lip;
41 		if (blip->bli_item.li_type == XFS_LI_BUF &&
42 		    blip->bli_buf->b_target == target &&
43 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
44 		    blip->bli_buf->b_length == len) {
45 			ASSERT(blip->bli_buf->b_map_count == nmaps);
46 			return blip->bli_buf;
47 		}
48 	}
49 
50 	return NULL;
51 }
52 
53 /*
54  * Add the locked buffer to the transaction.
55  *
56  * The buffer must be locked, and it cannot be associated with any
57  * transaction.
58  *
59  * If the buffer does not yet have a buf log item associated with it,
60  * then allocate one for it.  Then add the buf item to the transaction.
61  */
62 STATIC void
63 _xfs_trans_bjoin(
64 	struct xfs_trans	*tp,
65 	struct xfs_buf		*bp,
66 	int			reset_recur)
67 {
68 	struct xfs_buf_log_item	*bip;
69 
70 	ASSERT(bp->b_transp == NULL);
71 
72 	/*
73 	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
74 	 * it doesn't have one yet, then allocate one and initialize it.
75 	 * The checks to see if one is there are in xfs_buf_item_init().
76 	 */
77 	xfs_buf_item_init(bp, tp->t_mountp);
78 	bip = bp->b_log_item;
79 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
80 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
81 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
82 	if (reset_recur)
83 		bip->bli_recur = 0;
84 
85 	/*
86 	 * Take a reference for this transaction on the buf item.
87 	 */
88 	atomic_inc(&bip->bli_refcount);
89 
90 	/*
91 	 * Attach the item to the transaction so we can find it in
92 	 * xfs_trans_get_buf() and friends.
93 	 */
94 	xfs_trans_add_item(tp, &bip->bli_item);
95 	bp->b_transp = tp;
96 
97 }
98 
99 void
100 xfs_trans_bjoin(
101 	struct xfs_trans	*tp,
102 	struct xfs_buf		*bp)
103 {
104 	_xfs_trans_bjoin(tp, bp, 0);
105 	trace_xfs_trans_bjoin(bp->b_log_item);
106 }
107 
108 /*
109  * Get and lock the buffer for the caller if it is not already
110  * locked within the given transaction.  If it is already locked
111  * within the transaction, just increment its lock recursion count
112  * and return a pointer to it.
113  *
114  * If the transaction pointer is NULL, make this just a normal
115  * get_buf() call.
116  */
117 struct xfs_buf *
118 xfs_trans_get_buf_map(
119 	struct xfs_trans	*tp,
120 	struct xfs_buftarg	*target,
121 	struct xfs_buf_map	*map,
122 	int			nmaps,
123 	xfs_buf_flags_t		flags)
124 {
125 	xfs_buf_t		*bp;
126 	struct xfs_buf_log_item	*bip;
127 
128 	if (!tp)
129 		return xfs_buf_get_map(target, map, nmaps, flags);
130 
131 	/*
132 	 * If we find the buffer in the cache with this transaction
133 	 * pointer in its b_fsprivate2 field, then we know we already
134 	 * have it locked.  In this case we just increment the lock
135 	 * recursion count and return the buffer to the caller.
136 	 */
137 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
138 	if (bp != NULL) {
139 		ASSERT(xfs_buf_islocked(bp));
140 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
141 			xfs_buf_stale(bp);
142 			bp->b_flags |= XBF_DONE;
143 		}
144 
145 		ASSERT(bp->b_transp == tp);
146 		bip = bp->b_log_item;
147 		ASSERT(bip != NULL);
148 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
149 		bip->bli_recur++;
150 		trace_xfs_trans_get_buf_recur(bip);
151 		return bp;
152 	}
153 
154 	bp = xfs_buf_get_map(target, map, nmaps, flags);
155 	if (bp == NULL) {
156 		return NULL;
157 	}
158 
159 	ASSERT(!bp->b_error);
160 
161 	_xfs_trans_bjoin(tp, bp, 1);
162 	trace_xfs_trans_get_buf(bp->b_log_item);
163 	return bp;
164 }
165 
166 /*
167  * Get and lock the superblock buffer of this file system for the
168  * given transaction.
169  *
170  * We don't need to use incore_match() here, because the superblock
171  * buffer is a private buffer which we keep a pointer to in the
172  * mount structure.
173  */
174 xfs_buf_t *
175 xfs_trans_getsb(
176 	xfs_trans_t		*tp,
177 	struct xfs_mount	*mp,
178 	int			flags)
179 {
180 	xfs_buf_t		*bp;
181 	struct xfs_buf_log_item	*bip;
182 
183 	/*
184 	 * Default to just trying to lock the superblock buffer
185 	 * if tp is NULL.
186 	 */
187 	if (tp == NULL)
188 		return xfs_getsb(mp, flags);
189 
190 	/*
191 	 * If the superblock buffer already has this transaction
192 	 * pointer in its b_fsprivate2 field, then we know we already
193 	 * have it locked.  In this case we just increment the lock
194 	 * recursion count and return the buffer to the caller.
195 	 */
196 	bp = mp->m_sb_bp;
197 	if (bp->b_transp == tp) {
198 		bip = bp->b_log_item;
199 		ASSERT(bip != NULL);
200 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
201 		bip->bli_recur++;
202 		trace_xfs_trans_getsb_recur(bip);
203 		return bp;
204 	}
205 
206 	bp = xfs_getsb(mp, flags);
207 	if (bp == NULL)
208 		return NULL;
209 
210 	_xfs_trans_bjoin(tp, bp, 1);
211 	trace_xfs_trans_getsb(bp->b_log_item);
212 	return bp;
213 }
214 
215 /*
216  * Get and lock the buffer for the caller if it is not already
217  * locked within the given transaction.  If it has not yet been
218  * read in, read it from disk. If it is already locked
219  * within the transaction and already read in, just increment its
220  * lock recursion count and return a pointer to it.
221  *
222  * If the transaction pointer is NULL, make this just a normal
223  * read_buf() call.
224  */
225 int
226 xfs_trans_read_buf_map(
227 	struct xfs_mount	*mp,
228 	struct xfs_trans	*tp,
229 	struct xfs_buftarg	*target,
230 	struct xfs_buf_map	*map,
231 	int			nmaps,
232 	xfs_buf_flags_t		flags,
233 	struct xfs_buf		**bpp,
234 	const struct xfs_buf_ops *ops)
235 {
236 	struct xfs_buf		*bp = NULL;
237 	struct xfs_buf_log_item	*bip;
238 	int			error;
239 
240 	*bpp = NULL;
241 	/*
242 	 * If we find the buffer in the cache with this transaction
243 	 * pointer in its b_fsprivate2 field, then we know we already
244 	 * have it locked.  If it is already read in we just increment
245 	 * the lock recursion count and return the buffer to the caller.
246 	 * If the buffer is not yet read in, then we read it in, increment
247 	 * the lock recursion count, and return it to the caller.
248 	 */
249 	if (tp)
250 		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
251 	if (bp) {
252 		ASSERT(xfs_buf_islocked(bp));
253 		ASSERT(bp->b_transp == tp);
254 		ASSERT(bp->b_log_item != NULL);
255 		ASSERT(!bp->b_error);
256 		ASSERT(bp->b_flags & XBF_DONE);
257 
258 		/*
259 		 * We never locked this buf ourselves, so we shouldn't
260 		 * brelse it either. Just get out.
261 		 */
262 		if (XFS_FORCED_SHUTDOWN(mp)) {
263 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
264 			return -EIO;
265 		}
266 
267 		/*
268 		 * Check if the caller is trying to read a buffer that is
269 		 * already attached to the transaction yet has no buffer ops
270 		 * assigned.  Ops are usually attached when the buffer is
271 		 * attached to the transaction, or by the read caller if
272 		 * special circumstances.  That didn't happen, which is not
273 		 * how this is supposed to go.
274 		 *
275 		 * If the buffer passes verification we'll let this go, but if
276 		 * not we have to shut down.  Let the transaction cleanup code
277 		 * release this buffer when it kills the tranaction.
278 		 */
279 		ASSERT(bp->b_ops != NULL);
280 		error = xfs_buf_ensure_ops(bp, ops);
281 		if (error) {
282 			xfs_buf_ioerror_alert(bp, __func__);
283 
284 			if (tp->t_flags & XFS_TRANS_DIRTY)
285 				xfs_force_shutdown(tp->t_mountp,
286 						SHUTDOWN_META_IO_ERROR);
287 
288 			/* bad CRC means corrupted metadata */
289 			if (error == -EFSBADCRC)
290 				error = -EFSCORRUPTED;
291 			return error;
292 		}
293 
294 		bip = bp->b_log_item;
295 		bip->bli_recur++;
296 
297 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
298 		trace_xfs_trans_read_buf_recur(bip);
299 		ASSERT(bp->b_ops != NULL || ops == NULL);
300 		*bpp = bp;
301 		return 0;
302 	}
303 
304 	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
305 	if (!bp) {
306 		if (!(flags & XBF_TRYLOCK))
307 			return -ENOMEM;
308 		return tp ? 0 : -EAGAIN;
309 	}
310 
311 	/*
312 	 * If we've had a read error, then the contents of the buffer are
313 	 * invalid and should not be used. To ensure that a followup read tries
314 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
315 	 * mark the buffer stale. This ensures that anyone who has a current
316 	 * reference to the buffer will interpret it's contents correctly and
317 	 * future cache lookups will also treat it as an empty, uninitialised
318 	 * buffer.
319 	 */
320 	if (bp->b_error) {
321 		error = bp->b_error;
322 		if (!XFS_FORCED_SHUTDOWN(mp))
323 			xfs_buf_ioerror_alert(bp, __func__);
324 		bp->b_flags &= ~XBF_DONE;
325 		xfs_buf_stale(bp);
326 
327 		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
328 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
329 		xfs_buf_relse(bp);
330 
331 		/* bad CRC means corrupted metadata */
332 		if (error == -EFSBADCRC)
333 			error = -EFSCORRUPTED;
334 		return error;
335 	}
336 
337 	if (XFS_FORCED_SHUTDOWN(mp)) {
338 		xfs_buf_relse(bp);
339 		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
340 		return -EIO;
341 	}
342 
343 	if (tp) {
344 		_xfs_trans_bjoin(tp, bp, 1);
345 		trace_xfs_trans_read_buf(bp->b_log_item);
346 	}
347 	ASSERT(bp->b_ops != NULL || ops == NULL);
348 	*bpp = bp;
349 	return 0;
350 
351 }
352 
353 /* Has this buffer been dirtied by anyone? */
354 bool
355 xfs_trans_buf_is_dirty(
356 	struct xfs_buf		*bp)
357 {
358 	struct xfs_buf_log_item	*bip = bp->b_log_item;
359 
360 	if (!bip)
361 		return false;
362 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
363 	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
364 }
365 
366 /*
367  * Release a buffer previously joined to the transaction. If the buffer is
368  * modified within this transaction, decrement the recursion count but do not
369  * release the buffer even if the count goes to 0. If the buffer is not modified
370  * within the transaction, decrement the recursion count and release the buffer
371  * if the recursion count goes to 0.
372  *
373  * If the buffer is to be released and it was not already dirty before this
374  * transaction began, then also free the buf_log_item associated with it.
375  *
376  * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
377  */
378 void
379 xfs_trans_brelse(
380 	struct xfs_trans	*tp,
381 	struct xfs_buf		*bp)
382 {
383 	struct xfs_buf_log_item	*bip = bp->b_log_item;
384 
385 	ASSERT(bp->b_transp == tp);
386 
387 	if (!tp) {
388 		xfs_buf_relse(bp);
389 		return;
390 	}
391 
392 	trace_xfs_trans_brelse(bip);
393 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
394 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
395 
396 	/*
397 	 * If the release is for a recursive lookup, then decrement the count
398 	 * and return.
399 	 */
400 	if (bip->bli_recur > 0) {
401 		bip->bli_recur--;
402 		return;
403 	}
404 
405 	/*
406 	 * If the buffer is invalidated or dirty in this transaction, we can't
407 	 * release it until we commit.
408 	 */
409 	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
410 		return;
411 	if (bip->bli_flags & XFS_BLI_STALE)
412 		return;
413 
414 	/*
415 	 * Unlink the log item from the transaction and clear the hold flag, if
416 	 * set. We wouldn't want the next user of the buffer to get confused.
417 	 */
418 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
419 	xfs_trans_del_item(&bip->bli_item);
420 	bip->bli_flags &= ~XFS_BLI_HOLD;
421 
422 	/* drop the reference to the bli */
423 	xfs_buf_item_put(bip);
424 
425 	bp->b_transp = NULL;
426 	xfs_buf_relse(bp);
427 }
428 
429 /*
430  * Mark the buffer as not needing to be unlocked when the buf item's
431  * iop_unlock() routine is called.  The buffer must already be locked
432  * and associated with the given transaction.
433  */
434 /* ARGSUSED */
435 void
436 xfs_trans_bhold(
437 	xfs_trans_t		*tp,
438 	xfs_buf_t		*bp)
439 {
440 	struct xfs_buf_log_item	*bip = bp->b_log_item;
441 
442 	ASSERT(bp->b_transp == tp);
443 	ASSERT(bip != NULL);
444 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
445 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
446 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
447 
448 	bip->bli_flags |= XFS_BLI_HOLD;
449 	trace_xfs_trans_bhold(bip);
450 }
451 
452 /*
453  * Cancel the previous buffer hold request made on this buffer
454  * for this transaction.
455  */
456 void
457 xfs_trans_bhold_release(
458 	xfs_trans_t		*tp,
459 	xfs_buf_t		*bp)
460 {
461 	struct xfs_buf_log_item	*bip = bp->b_log_item;
462 
463 	ASSERT(bp->b_transp == tp);
464 	ASSERT(bip != NULL);
465 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
466 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
467 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
468 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
469 
470 	bip->bli_flags &= ~XFS_BLI_HOLD;
471 	trace_xfs_trans_bhold_release(bip);
472 }
473 
474 /*
475  * Mark a buffer dirty in the transaction.
476  */
477 void
478 xfs_trans_dirty_buf(
479 	struct xfs_trans	*tp,
480 	struct xfs_buf		*bp)
481 {
482 	struct xfs_buf_log_item	*bip = bp->b_log_item;
483 
484 	ASSERT(bp->b_transp == tp);
485 	ASSERT(bip != NULL);
486 	ASSERT(bp->b_iodone == NULL ||
487 	       bp->b_iodone == xfs_buf_iodone_callbacks);
488 
489 	/*
490 	 * Mark the buffer as needing to be written out eventually,
491 	 * and set its iodone function to remove the buffer's buf log
492 	 * item from the AIL and free it when the buffer is flushed
493 	 * to disk.  See xfs_buf_attach_iodone() for more details
494 	 * on li_cb and xfs_buf_iodone_callbacks().
495 	 * If we end up aborting this transaction, we trap this buffer
496 	 * inside the b_bdstrat callback so that this won't get written to
497 	 * disk.
498 	 */
499 	bp->b_flags |= XBF_DONE;
500 
501 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
502 	bp->b_iodone = xfs_buf_iodone_callbacks;
503 	bip->bli_item.li_cb = xfs_buf_iodone;
504 
505 	/*
506 	 * If we invalidated the buffer within this transaction, then
507 	 * cancel the invalidation now that we're dirtying the buffer
508 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
509 	 * because we have a reference to the buffer this entire time.
510 	 */
511 	if (bip->bli_flags & XFS_BLI_STALE) {
512 		bip->bli_flags &= ~XFS_BLI_STALE;
513 		ASSERT(bp->b_flags & XBF_STALE);
514 		bp->b_flags &= ~XBF_STALE;
515 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
516 	}
517 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
518 
519 	tp->t_flags |= XFS_TRANS_DIRTY;
520 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
521 }
522 
523 /*
524  * This is called to mark bytes first through last inclusive of the given
525  * buffer as needing to be logged when the transaction is committed.
526  * The buffer must already be associated with the given transaction.
527  *
528  * First and last are numbers relative to the beginning of this buffer,
529  * so the first byte in the buffer is numbered 0 regardless of the
530  * value of b_blkno.
531  */
532 void
533 xfs_trans_log_buf(
534 	struct xfs_trans	*tp,
535 	struct xfs_buf		*bp,
536 	uint			first,
537 	uint			last)
538 {
539 	struct xfs_buf_log_item	*bip = bp->b_log_item;
540 
541 	ASSERT(first <= last && last < BBTOB(bp->b_length));
542 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
543 
544 	xfs_trans_dirty_buf(tp, bp);
545 
546 	trace_xfs_trans_log_buf(bip);
547 	xfs_buf_item_log(bip, first, last);
548 }
549 
550 
551 /*
552  * Invalidate a buffer that is being used within a transaction.
553  *
554  * Typically this is because the blocks in the buffer are being freed, so we
555  * need to prevent it from being written out when we're done.  Allowing it
556  * to be written again might overwrite data in the free blocks if they are
557  * reallocated to a file.
558  *
559  * We prevent the buffer from being written out by marking it stale.  We can't
560  * get rid of the buf log item at this point because the buffer may still be
561  * pinned by another transaction.  If that is the case, then we'll wait until
562  * the buffer is committed to disk for the last time (we can tell by the ref
563  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
564  * keep the buffer locked so that the buffer and buf log item are not reused.
565  *
566  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
567  * the buf item.  This will be used at recovery time to determine that copies
568  * of the buffer in the log before this should not be replayed.
569  *
570  * We mark the item descriptor and the transaction dirty so that we'll hold
571  * the buffer until after the commit.
572  *
573  * Since we're invalidating the buffer, we also clear the state about which
574  * parts of the buffer have been logged.  We also clear the flag indicating
575  * that this is an inode buffer since the data in the buffer will no longer
576  * be valid.
577  *
578  * We set the stale bit in the buffer as well since we're getting rid of it.
579  */
580 void
581 xfs_trans_binval(
582 	xfs_trans_t		*tp,
583 	xfs_buf_t		*bp)
584 {
585 	struct xfs_buf_log_item	*bip = bp->b_log_item;
586 	int			i;
587 
588 	ASSERT(bp->b_transp == tp);
589 	ASSERT(bip != NULL);
590 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
591 
592 	trace_xfs_trans_binval(bip);
593 
594 	if (bip->bli_flags & XFS_BLI_STALE) {
595 		/*
596 		 * If the buffer is already invalidated, then
597 		 * just return.
598 		 */
599 		ASSERT(bp->b_flags & XBF_STALE);
600 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
601 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
602 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
603 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
604 		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
605 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
606 		return;
607 	}
608 
609 	xfs_buf_stale(bp);
610 
611 	bip->bli_flags |= XFS_BLI_STALE;
612 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
613 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
614 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
615 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
616 	for (i = 0; i < bip->bli_format_count; i++) {
617 		memset(bip->bli_formats[i].blf_data_map, 0,
618 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
619 	}
620 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
621 	tp->t_flags |= XFS_TRANS_DIRTY;
622 }
623 
624 /*
625  * This call is used to indicate that the buffer contains on-disk inodes which
626  * must be handled specially during recovery.  They require special handling
627  * because only the di_next_unlinked from the inodes in the buffer should be
628  * recovered.  The rest of the data in the buffer is logged via the inodes
629  * themselves.
630  *
631  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
632  * transferred to the buffer's log format structure so that we'll know what to
633  * do at recovery time.
634  */
635 void
636 xfs_trans_inode_buf(
637 	xfs_trans_t		*tp,
638 	xfs_buf_t		*bp)
639 {
640 	struct xfs_buf_log_item	*bip = bp->b_log_item;
641 
642 	ASSERT(bp->b_transp == tp);
643 	ASSERT(bip != NULL);
644 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
645 
646 	bip->bli_flags |= XFS_BLI_INODE_BUF;
647 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
648 }
649 
650 /*
651  * This call is used to indicate that the buffer is going to
652  * be staled and was an inode buffer. This means it gets
653  * special processing during unpin - where any inodes
654  * associated with the buffer should be removed from ail.
655  * There is also special processing during recovery,
656  * any replay of the inodes in the buffer needs to be
657  * prevented as the buffer may have been reused.
658  */
659 void
660 xfs_trans_stale_inode_buf(
661 	xfs_trans_t		*tp,
662 	xfs_buf_t		*bp)
663 {
664 	struct xfs_buf_log_item	*bip = bp->b_log_item;
665 
666 	ASSERT(bp->b_transp == tp);
667 	ASSERT(bip != NULL);
668 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
669 
670 	bip->bli_flags |= XFS_BLI_STALE_INODE;
671 	bip->bli_item.li_cb = xfs_buf_iodone;
672 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
673 }
674 
675 /*
676  * Mark the buffer as being one which contains newly allocated
677  * inodes.  We need to make sure that even if this buffer is
678  * relogged as an 'inode buf' we still recover all of the inode
679  * images in the face of a crash.  This works in coordination with
680  * xfs_buf_item_committed() to ensure that the buffer remains in the
681  * AIL at its original location even after it has been relogged.
682  */
683 /* ARGSUSED */
684 void
685 xfs_trans_inode_alloc_buf(
686 	xfs_trans_t		*tp,
687 	xfs_buf_t		*bp)
688 {
689 	struct xfs_buf_log_item	*bip = bp->b_log_item;
690 
691 	ASSERT(bp->b_transp == tp);
692 	ASSERT(bip != NULL);
693 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
694 
695 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
696 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
697 }
698 
699 /*
700  * Mark the buffer as ordered for this transaction. This means that the contents
701  * of the buffer are not recorded in the transaction but it is tracked in the
702  * AIL as though it was. This allows us to record logical changes in
703  * transactions rather than the physical changes we make to the buffer without
704  * changing writeback ordering constraints of metadata buffers.
705  */
706 bool
707 xfs_trans_ordered_buf(
708 	struct xfs_trans	*tp,
709 	struct xfs_buf		*bp)
710 {
711 	struct xfs_buf_log_item	*bip = bp->b_log_item;
712 
713 	ASSERT(bp->b_transp == tp);
714 	ASSERT(bip != NULL);
715 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
716 
717 	if (xfs_buf_item_dirty_format(bip))
718 		return false;
719 
720 	bip->bli_flags |= XFS_BLI_ORDERED;
721 	trace_xfs_buf_item_ordered(bip);
722 
723 	/*
724 	 * We don't log a dirty range of an ordered buffer but it still needs
725 	 * to be marked dirty and that it has been logged.
726 	 */
727 	xfs_trans_dirty_buf(tp, bp);
728 	return true;
729 }
730 
731 /*
732  * Set the type of the buffer for log recovery so that it can correctly identify
733  * and hence attach the correct buffer ops to the buffer after replay.
734  */
735 void
736 xfs_trans_buf_set_type(
737 	struct xfs_trans	*tp,
738 	struct xfs_buf		*bp,
739 	enum xfs_blft		type)
740 {
741 	struct xfs_buf_log_item	*bip = bp->b_log_item;
742 
743 	if (!tp)
744 		return;
745 
746 	ASSERT(bp->b_transp == tp);
747 	ASSERT(bip != NULL);
748 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
749 
750 	xfs_blft_to_flags(&bip->__bli_format, type);
751 }
752 
753 void
754 xfs_trans_buf_copy_type(
755 	struct xfs_buf		*dst_bp,
756 	struct xfs_buf		*src_bp)
757 {
758 	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
759 	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
760 	enum xfs_blft		type;
761 
762 	type = xfs_blft_from_flags(&sbip->__bli_format);
763 	xfs_blft_to_flags(&dbip->__bli_format, type);
764 }
765 
766 /*
767  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
768  * dquots. However, unlike in inode buffer recovery, dquot buffers get
769  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
770  * The only thing that makes dquot buffers different from regular
771  * buffers is that we must not replay dquot bufs when recovering
772  * if a _corresponding_ quotaoff has happened. We also have to distinguish
773  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
774  * can be turned off independently.
775  */
776 /* ARGSUSED */
777 void
778 xfs_trans_dquot_buf(
779 	xfs_trans_t		*tp,
780 	xfs_buf_t		*bp,
781 	uint			type)
782 {
783 	struct xfs_buf_log_item	*bip = bp->b_log_item;
784 
785 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
786 	       type == XFS_BLF_PDQUOT_BUF ||
787 	       type == XFS_BLF_GDQUOT_BUF);
788 
789 	bip->__bli_format.blf_flags |= type;
790 
791 	switch (type) {
792 	case XFS_BLF_UDQUOT_BUF:
793 		type = XFS_BLFT_UDQUOT_BUF;
794 		break;
795 	case XFS_BLF_PDQUOT_BUF:
796 		type = XFS_BLFT_PDQUOT_BUF;
797 		break;
798 	case XFS_BLF_GDQUOT_BUF:
799 		type = XFS_BLFT_GDQUOT_BUF;
800 		break;
801 	default:
802 		type = XFS_BLFT_UNKNOWN_BUF;
803 		break;
804 	}
805 
806 	xfs_trans_buf_set_type(tp, bp, type);
807 }
808