1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_buf_item.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_error.h" 18 #include "xfs_trace.h" 19 20 /* 21 * Check to see if a buffer matching the given parameters is already 22 * a part of the given transaction. 23 */ 24 STATIC struct xfs_buf * 25 xfs_trans_buf_item_match( 26 struct xfs_trans *tp, 27 struct xfs_buftarg *target, 28 struct xfs_buf_map *map, 29 int nmaps) 30 { 31 struct xfs_log_item *lip; 32 struct xfs_buf_log_item *blip; 33 int len = 0; 34 int i; 35 36 for (i = 0; i < nmaps; i++) 37 len += map[i].bm_len; 38 39 list_for_each_entry(lip, &tp->t_items, li_trans) { 40 blip = (struct xfs_buf_log_item *)lip; 41 if (blip->bli_item.li_type == XFS_LI_BUF && 42 blip->bli_buf->b_target == target && 43 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 44 blip->bli_buf->b_length == len) { 45 ASSERT(blip->bli_buf->b_map_count == nmaps); 46 return blip->bli_buf; 47 } 48 } 49 50 return NULL; 51 } 52 53 /* 54 * Add the locked buffer to the transaction. 55 * 56 * The buffer must be locked, and it cannot be associated with any 57 * transaction. 58 * 59 * If the buffer does not yet have a buf log item associated with it, 60 * then allocate one for it. Then add the buf item to the transaction. 61 */ 62 STATIC void 63 _xfs_trans_bjoin( 64 struct xfs_trans *tp, 65 struct xfs_buf *bp, 66 int reset_recur) 67 { 68 struct xfs_buf_log_item *bip; 69 70 ASSERT(bp->b_transp == NULL); 71 72 /* 73 * The xfs_buf_log_item pointer is stored in b_log_item. If 74 * it doesn't have one yet, then allocate one and initialize it. 75 * The checks to see if one is there are in xfs_buf_item_init(). 76 */ 77 xfs_buf_item_init(bp, tp->t_mountp); 78 bip = bp->b_log_item; 79 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 80 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 81 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 82 if (reset_recur) 83 bip->bli_recur = 0; 84 85 /* 86 * Take a reference for this transaction on the buf item. 87 */ 88 atomic_inc(&bip->bli_refcount); 89 90 /* 91 * Attach the item to the transaction so we can find it in 92 * xfs_trans_get_buf() and friends. 93 */ 94 xfs_trans_add_item(tp, &bip->bli_item); 95 bp->b_transp = tp; 96 97 } 98 99 void 100 xfs_trans_bjoin( 101 struct xfs_trans *tp, 102 struct xfs_buf *bp) 103 { 104 _xfs_trans_bjoin(tp, bp, 0); 105 trace_xfs_trans_bjoin(bp->b_log_item); 106 } 107 108 /* 109 * Get and lock the buffer for the caller if it is not already 110 * locked within the given transaction. If it is already locked 111 * within the transaction, just increment its lock recursion count 112 * and return a pointer to it. 113 * 114 * If the transaction pointer is NULL, make this just a normal 115 * get_buf() call. 116 */ 117 struct xfs_buf * 118 xfs_trans_get_buf_map( 119 struct xfs_trans *tp, 120 struct xfs_buftarg *target, 121 struct xfs_buf_map *map, 122 int nmaps, 123 xfs_buf_flags_t flags) 124 { 125 xfs_buf_t *bp; 126 struct xfs_buf_log_item *bip; 127 128 if (!tp) 129 return xfs_buf_get_map(target, map, nmaps, flags); 130 131 /* 132 * If we find the buffer in the cache with this transaction 133 * pointer in its b_fsprivate2 field, then we know we already 134 * have it locked. In this case we just increment the lock 135 * recursion count and return the buffer to the caller. 136 */ 137 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 138 if (bp != NULL) { 139 ASSERT(xfs_buf_islocked(bp)); 140 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 141 xfs_buf_stale(bp); 142 bp->b_flags |= XBF_DONE; 143 } 144 145 ASSERT(bp->b_transp == tp); 146 bip = bp->b_log_item; 147 ASSERT(bip != NULL); 148 ASSERT(atomic_read(&bip->bli_refcount) > 0); 149 bip->bli_recur++; 150 trace_xfs_trans_get_buf_recur(bip); 151 return bp; 152 } 153 154 bp = xfs_buf_get_map(target, map, nmaps, flags); 155 if (bp == NULL) { 156 return NULL; 157 } 158 159 ASSERT(!bp->b_error); 160 161 _xfs_trans_bjoin(tp, bp, 1); 162 trace_xfs_trans_get_buf(bp->b_log_item); 163 return bp; 164 } 165 166 /* 167 * Get and lock the superblock buffer of this file system for the 168 * given transaction. 169 * 170 * We don't need to use incore_match() here, because the superblock 171 * buffer is a private buffer which we keep a pointer to in the 172 * mount structure. 173 */ 174 xfs_buf_t * 175 xfs_trans_getsb( 176 xfs_trans_t *tp, 177 struct xfs_mount *mp, 178 int flags) 179 { 180 xfs_buf_t *bp; 181 struct xfs_buf_log_item *bip; 182 183 /* 184 * Default to just trying to lock the superblock buffer 185 * if tp is NULL. 186 */ 187 if (tp == NULL) 188 return xfs_getsb(mp, flags); 189 190 /* 191 * If the superblock buffer already has this transaction 192 * pointer in its b_fsprivate2 field, then we know we already 193 * have it locked. In this case we just increment the lock 194 * recursion count and return the buffer to the caller. 195 */ 196 bp = mp->m_sb_bp; 197 if (bp->b_transp == tp) { 198 bip = bp->b_log_item; 199 ASSERT(bip != NULL); 200 ASSERT(atomic_read(&bip->bli_refcount) > 0); 201 bip->bli_recur++; 202 trace_xfs_trans_getsb_recur(bip); 203 return bp; 204 } 205 206 bp = xfs_getsb(mp, flags); 207 if (bp == NULL) 208 return NULL; 209 210 _xfs_trans_bjoin(tp, bp, 1); 211 trace_xfs_trans_getsb(bp->b_log_item); 212 return bp; 213 } 214 215 /* 216 * Get and lock the buffer for the caller if it is not already 217 * locked within the given transaction. If it has not yet been 218 * read in, read it from disk. If it is already locked 219 * within the transaction and already read in, just increment its 220 * lock recursion count and return a pointer to it. 221 * 222 * If the transaction pointer is NULL, make this just a normal 223 * read_buf() call. 224 */ 225 int 226 xfs_trans_read_buf_map( 227 struct xfs_mount *mp, 228 struct xfs_trans *tp, 229 struct xfs_buftarg *target, 230 struct xfs_buf_map *map, 231 int nmaps, 232 xfs_buf_flags_t flags, 233 struct xfs_buf **bpp, 234 const struct xfs_buf_ops *ops) 235 { 236 struct xfs_buf *bp = NULL; 237 struct xfs_buf_log_item *bip; 238 int error; 239 240 *bpp = NULL; 241 /* 242 * If we find the buffer in the cache with this transaction 243 * pointer in its b_fsprivate2 field, then we know we already 244 * have it locked. If it is already read in we just increment 245 * the lock recursion count and return the buffer to the caller. 246 * If the buffer is not yet read in, then we read it in, increment 247 * the lock recursion count, and return it to the caller. 248 */ 249 if (tp) 250 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 251 if (bp) { 252 ASSERT(xfs_buf_islocked(bp)); 253 ASSERT(bp->b_transp == tp); 254 ASSERT(bp->b_log_item != NULL); 255 ASSERT(!bp->b_error); 256 ASSERT(bp->b_flags & XBF_DONE); 257 258 /* 259 * We never locked this buf ourselves, so we shouldn't 260 * brelse it either. Just get out. 261 */ 262 if (XFS_FORCED_SHUTDOWN(mp)) { 263 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 264 return -EIO; 265 } 266 267 /* 268 * Check if the caller is trying to read a buffer that is 269 * already attached to the transaction yet has no buffer ops 270 * assigned. Ops are usually attached when the buffer is 271 * attached to the transaction, or by the read caller if 272 * special circumstances. That didn't happen, which is not 273 * how this is supposed to go. 274 * 275 * If the buffer passes verification we'll let this go, but if 276 * not we have to shut down. Let the transaction cleanup code 277 * release this buffer when it kills the tranaction. 278 */ 279 ASSERT(bp->b_ops != NULL); 280 error = xfs_buf_ensure_ops(bp, ops); 281 if (error) { 282 xfs_buf_ioerror_alert(bp, __func__); 283 284 if (tp->t_flags & XFS_TRANS_DIRTY) 285 xfs_force_shutdown(tp->t_mountp, 286 SHUTDOWN_META_IO_ERROR); 287 288 /* bad CRC means corrupted metadata */ 289 if (error == -EFSBADCRC) 290 error = -EFSCORRUPTED; 291 return error; 292 } 293 294 bip = bp->b_log_item; 295 bip->bli_recur++; 296 297 ASSERT(atomic_read(&bip->bli_refcount) > 0); 298 trace_xfs_trans_read_buf_recur(bip); 299 ASSERT(bp->b_ops != NULL || ops == NULL); 300 *bpp = bp; 301 return 0; 302 } 303 304 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 305 if (!bp) { 306 if (!(flags & XBF_TRYLOCK)) 307 return -ENOMEM; 308 return tp ? 0 : -EAGAIN; 309 } 310 311 /* 312 * If we've had a read error, then the contents of the buffer are 313 * invalid and should not be used. To ensure that a followup read tries 314 * to pull the buffer from disk again, we clear the XBF_DONE flag and 315 * mark the buffer stale. This ensures that anyone who has a current 316 * reference to the buffer will interpret it's contents correctly and 317 * future cache lookups will also treat it as an empty, uninitialised 318 * buffer. 319 */ 320 if (bp->b_error) { 321 error = bp->b_error; 322 if (!XFS_FORCED_SHUTDOWN(mp)) 323 xfs_buf_ioerror_alert(bp, __func__); 324 bp->b_flags &= ~XBF_DONE; 325 xfs_buf_stale(bp); 326 327 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 328 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 329 xfs_buf_relse(bp); 330 331 /* bad CRC means corrupted metadata */ 332 if (error == -EFSBADCRC) 333 error = -EFSCORRUPTED; 334 return error; 335 } 336 337 if (XFS_FORCED_SHUTDOWN(mp)) { 338 xfs_buf_relse(bp); 339 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 340 return -EIO; 341 } 342 343 if (tp) { 344 _xfs_trans_bjoin(tp, bp, 1); 345 trace_xfs_trans_read_buf(bp->b_log_item); 346 } 347 ASSERT(bp->b_ops != NULL || ops == NULL); 348 *bpp = bp; 349 return 0; 350 351 } 352 353 /* Has this buffer been dirtied by anyone? */ 354 bool 355 xfs_trans_buf_is_dirty( 356 struct xfs_buf *bp) 357 { 358 struct xfs_buf_log_item *bip = bp->b_log_item; 359 360 if (!bip) 361 return false; 362 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 363 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 364 } 365 366 /* 367 * Release a buffer previously joined to the transaction. If the buffer is 368 * modified within this transaction, decrement the recursion count but do not 369 * release the buffer even if the count goes to 0. If the buffer is not modified 370 * within the transaction, decrement the recursion count and release the buffer 371 * if the recursion count goes to 0. 372 * 373 * If the buffer is to be released and it was not already dirty before this 374 * transaction began, then also free the buf_log_item associated with it. 375 * 376 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call. 377 */ 378 void 379 xfs_trans_brelse( 380 struct xfs_trans *tp, 381 struct xfs_buf *bp) 382 { 383 struct xfs_buf_log_item *bip = bp->b_log_item; 384 385 ASSERT(bp->b_transp == tp); 386 387 if (!tp) { 388 xfs_buf_relse(bp); 389 return; 390 } 391 392 trace_xfs_trans_brelse(bip); 393 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 394 ASSERT(atomic_read(&bip->bli_refcount) > 0); 395 396 /* 397 * If the release is for a recursive lookup, then decrement the count 398 * and return. 399 */ 400 if (bip->bli_recur > 0) { 401 bip->bli_recur--; 402 return; 403 } 404 405 /* 406 * If the buffer is invalidated or dirty in this transaction, we can't 407 * release it until we commit. 408 */ 409 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 410 return; 411 if (bip->bli_flags & XFS_BLI_STALE) 412 return; 413 414 /* 415 * Unlink the log item from the transaction and clear the hold flag, if 416 * set. We wouldn't want the next user of the buffer to get confused. 417 */ 418 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 419 xfs_trans_del_item(&bip->bli_item); 420 bip->bli_flags &= ~XFS_BLI_HOLD; 421 422 /* drop the reference to the bli */ 423 xfs_buf_item_put(bip); 424 425 bp->b_transp = NULL; 426 xfs_buf_relse(bp); 427 } 428 429 /* 430 * Mark the buffer as not needing to be unlocked when the buf item's 431 * iop_unlock() routine is called. The buffer must already be locked 432 * and associated with the given transaction. 433 */ 434 /* ARGSUSED */ 435 void 436 xfs_trans_bhold( 437 xfs_trans_t *tp, 438 xfs_buf_t *bp) 439 { 440 struct xfs_buf_log_item *bip = bp->b_log_item; 441 442 ASSERT(bp->b_transp == tp); 443 ASSERT(bip != NULL); 444 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 445 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 446 ASSERT(atomic_read(&bip->bli_refcount) > 0); 447 448 bip->bli_flags |= XFS_BLI_HOLD; 449 trace_xfs_trans_bhold(bip); 450 } 451 452 /* 453 * Cancel the previous buffer hold request made on this buffer 454 * for this transaction. 455 */ 456 void 457 xfs_trans_bhold_release( 458 xfs_trans_t *tp, 459 xfs_buf_t *bp) 460 { 461 struct xfs_buf_log_item *bip = bp->b_log_item; 462 463 ASSERT(bp->b_transp == tp); 464 ASSERT(bip != NULL); 465 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 466 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 467 ASSERT(atomic_read(&bip->bli_refcount) > 0); 468 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 469 470 bip->bli_flags &= ~XFS_BLI_HOLD; 471 trace_xfs_trans_bhold_release(bip); 472 } 473 474 /* 475 * Mark a buffer dirty in the transaction. 476 */ 477 void 478 xfs_trans_dirty_buf( 479 struct xfs_trans *tp, 480 struct xfs_buf *bp) 481 { 482 struct xfs_buf_log_item *bip = bp->b_log_item; 483 484 ASSERT(bp->b_transp == tp); 485 ASSERT(bip != NULL); 486 ASSERT(bp->b_iodone == NULL || 487 bp->b_iodone == xfs_buf_iodone_callbacks); 488 489 /* 490 * Mark the buffer as needing to be written out eventually, 491 * and set its iodone function to remove the buffer's buf log 492 * item from the AIL and free it when the buffer is flushed 493 * to disk. See xfs_buf_attach_iodone() for more details 494 * on li_cb and xfs_buf_iodone_callbacks(). 495 * If we end up aborting this transaction, we trap this buffer 496 * inside the b_bdstrat callback so that this won't get written to 497 * disk. 498 */ 499 bp->b_flags |= XBF_DONE; 500 501 ASSERT(atomic_read(&bip->bli_refcount) > 0); 502 bp->b_iodone = xfs_buf_iodone_callbacks; 503 bip->bli_item.li_cb = xfs_buf_iodone; 504 505 /* 506 * If we invalidated the buffer within this transaction, then 507 * cancel the invalidation now that we're dirtying the buffer 508 * again. There are no races with the code in xfs_buf_item_unpin(), 509 * because we have a reference to the buffer this entire time. 510 */ 511 if (bip->bli_flags & XFS_BLI_STALE) { 512 bip->bli_flags &= ~XFS_BLI_STALE; 513 ASSERT(bp->b_flags & XBF_STALE); 514 bp->b_flags &= ~XBF_STALE; 515 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 516 } 517 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 518 519 tp->t_flags |= XFS_TRANS_DIRTY; 520 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 521 } 522 523 /* 524 * This is called to mark bytes first through last inclusive of the given 525 * buffer as needing to be logged when the transaction is committed. 526 * The buffer must already be associated with the given transaction. 527 * 528 * First and last are numbers relative to the beginning of this buffer, 529 * so the first byte in the buffer is numbered 0 regardless of the 530 * value of b_blkno. 531 */ 532 void 533 xfs_trans_log_buf( 534 struct xfs_trans *tp, 535 struct xfs_buf *bp, 536 uint first, 537 uint last) 538 { 539 struct xfs_buf_log_item *bip = bp->b_log_item; 540 541 ASSERT(first <= last && last < BBTOB(bp->b_length)); 542 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 543 544 xfs_trans_dirty_buf(tp, bp); 545 546 trace_xfs_trans_log_buf(bip); 547 xfs_buf_item_log(bip, first, last); 548 } 549 550 551 /* 552 * Invalidate a buffer that is being used within a transaction. 553 * 554 * Typically this is because the blocks in the buffer are being freed, so we 555 * need to prevent it from being written out when we're done. Allowing it 556 * to be written again might overwrite data in the free blocks if they are 557 * reallocated to a file. 558 * 559 * We prevent the buffer from being written out by marking it stale. We can't 560 * get rid of the buf log item at this point because the buffer may still be 561 * pinned by another transaction. If that is the case, then we'll wait until 562 * the buffer is committed to disk for the last time (we can tell by the ref 563 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 564 * keep the buffer locked so that the buffer and buf log item are not reused. 565 * 566 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 567 * the buf item. This will be used at recovery time to determine that copies 568 * of the buffer in the log before this should not be replayed. 569 * 570 * We mark the item descriptor and the transaction dirty so that we'll hold 571 * the buffer until after the commit. 572 * 573 * Since we're invalidating the buffer, we also clear the state about which 574 * parts of the buffer have been logged. We also clear the flag indicating 575 * that this is an inode buffer since the data in the buffer will no longer 576 * be valid. 577 * 578 * We set the stale bit in the buffer as well since we're getting rid of it. 579 */ 580 void 581 xfs_trans_binval( 582 xfs_trans_t *tp, 583 xfs_buf_t *bp) 584 { 585 struct xfs_buf_log_item *bip = bp->b_log_item; 586 int i; 587 588 ASSERT(bp->b_transp == tp); 589 ASSERT(bip != NULL); 590 ASSERT(atomic_read(&bip->bli_refcount) > 0); 591 592 trace_xfs_trans_binval(bip); 593 594 if (bip->bli_flags & XFS_BLI_STALE) { 595 /* 596 * If the buffer is already invalidated, then 597 * just return. 598 */ 599 ASSERT(bp->b_flags & XBF_STALE); 600 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 601 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 602 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 603 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 604 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 605 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 606 return; 607 } 608 609 xfs_buf_stale(bp); 610 611 bip->bli_flags |= XFS_BLI_STALE; 612 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 613 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 614 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 615 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 616 for (i = 0; i < bip->bli_format_count; i++) { 617 memset(bip->bli_formats[i].blf_data_map, 0, 618 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 619 } 620 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 621 tp->t_flags |= XFS_TRANS_DIRTY; 622 } 623 624 /* 625 * This call is used to indicate that the buffer contains on-disk inodes which 626 * must be handled specially during recovery. They require special handling 627 * because only the di_next_unlinked from the inodes in the buffer should be 628 * recovered. The rest of the data in the buffer is logged via the inodes 629 * themselves. 630 * 631 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 632 * transferred to the buffer's log format structure so that we'll know what to 633 * do at recovery time. 634 */ 635 void 636 xfs_trans_inode_buf( 637 xfs_trans_t *tp, 638 xfs_buf_t *bp) 639 { 640 struct xfs_buf_log_item *bip = bp->b_log_item; 641 642 ASSERT(bp->b_transp == tp); 643 ASSERT(bip != NULL); 644 ASSERT(atomic_read(&bip->bli_refcount) > 0); 645 646 bip->bli_flags |= XFS_BLI_INODE_BUF; 647 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 648 } 649 650 /* 651 * This call is used to indicate that the buffer is going to 652 * be staled and was an inode buffer. This means it gets 653 * special processing during unpin - where any inodes 654 * associated with the buffer should be removed from ail. 655 * There is also special processing during recovery, 656 * any replay of the inodes in the buffer needs to be 657 * prevented as the buffer may have been reused. 658 */ 659 void 660 xfs_trans_stale_inode_buf( 661 xfs_trans_t *tp, 662 xfs_buf_t *bp) 663 { 664 struct xfs_buf_log_item *bip = bp->b_log_item; 665 666 ASSERT(bp->b_transp == tp); 667 ASSERT(bip != NULL); 668 ASSERT(atomic_read(&bip->bli_refcount) > 0); 669 670 bip->bli_flags |= XFS_BLI_STALE_INODE; 671 bip->bli_item.li_cb = xfs_buf_iodone; 672 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 673 } 674 675 /* 676 * Mark the buffer as being one which contains newly allocated 677 * inodes. We need to make sure that even if this buffer is 678 * relogged as an 'inode buf' we still recover all of the inode 679 * images in the face of a crash. This works in coordination with 680 * xfs_buf_item_committed() to ensure that the buffer remains in the 681 * AIL at its original location even after it has been relogged. 682 */ 683 /* ARGSUSED */ 684 void 685 xfs_trans_inode_alloc_buf( 686 xfs_trans_t *tp, 687 xfs_buf_t *bp) 688 { 689 struct xfs_buf_log_item *bip = bp->b_log_item; 690 691 ASSERT(bp->b_transp == tp); 692 ASSERT(bip != NULL); 693 ASSERT(atomic_read(&bip->bli_refcount) > 0); 694 695 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 696 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 697 } 698 699 /* 700 * Mark the buffer as ordered for this transaction. This means that the contents 701 * of the buffer are not recorded in the transaction but it is tracked in the 702 * AIL as though it was. This allows us to record logical changes in 703 * transactions rather than the physical changes we make to the buffer without 704 * changing writeback ordering constraints of metadata buffers. 705 */ 706 bool 707 xfs_trans_ordered_buf( 708 struct xfs_trans *tp, 709 struct xfs_buf *bp) 710 { 711 struct xfs_buf_log_item *bip = bp->b_log_item; 712 713 ASSERT(bp->b_transp == tp); 714 ASSERT(bip != NULL); 715 ASSERT(atomic_read(&bip->bli_refcount) > 0); 716 717 if (xfs_buf_item_dirty_format(bip)) 718 return false; 719 720 bip->bli_flags |= XFS_BLI_ORDERED; 721 trace_xfs_buf_item_ordered(bip); 722 723 /* 724 * We don't log a dirty range of an ordered buffer but it still needs 725 * to be marked dirty and that it has been logged. 726 */ 727 xfs_trans_dirty_buf(tp, bp); 728 return true; 729 } 730 731 /* 732 * Set the type of the buffer for log recovery so that it can correctly identify 733 * and hence attach the correct buffer ops to the buffer after replay. 734 */ 735 void 736 xfs_trans_buf_set_type( 737 struct xfs_trans *tp, 738 struct xfs_buf *bp, 739 enum xfs_blft type) 740 { 741 struct xfs_buf_log_item *bip = bp->b_log_item; 742 743 if (!tp) 744 return; 745 746 ASSERT(bp->b_transp == tp); 747 ASSERT(bip != NULL); 748 ASSERT(atomic_read(&bip->bli_refcount) > 0); 749 750 xfs_blft_to_flags(&bip->__bli_format, type); 751 } 752 753 void 754 xfs_trans_buf_copy_type( 755 struct xfs_buf *dst_bp, 756 struct xfs_buf *src_bp) 757 { 758 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 759 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 760 enum xfs_blft type; 761 762 type = xfs_blft_from_flags(&sbip->__bli_format); 763 xfs_blft_to_flags(&dbip->__bli_format, type); 764 } 765 766 /* 767 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 768 * dquots. However, unlike in inode buffer recovery, dquot buffers get 769 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 770 * The only thing that makes dquot buffers different from regular 771 * buffers is that we must not replay dquot bufs when recovering 772 * if a _corresponding_ quotaoff has happened. We also have to distinguish 773 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 774 * can be turned off independently. 775 */ 776 /* ARGSUSED */ 777 void 778 xfs_trans_dquot_buf( 779 xfs_trans_t *tp, 780 xfs_buf_t *bp, 781 uint type) 782 { 783 struct xfs_buf_log_item *bip = bp->b_log_item; 784 785 ASSERT(type == XFS_BLF_UDQUOT_BUF || 786 type == XFS_BLF_PDQUOT_BUF || 787 type == XFS_BLF_GDQUOT_BUF); 788 789 bip->__bli_format.blf_flags |= type; 790 791 switch (type) { 792 case XFS_BLF_UDQUOT_BUF: 793 type = XFS_BLFT_UDQUOT_BUF; 794 break; 795 case XFS_BLF_PDQUOT_BUF: 796 type = XFS_BLFT_PDQUOT_BUF; 797 break; 798 case XFS_BLF_GDQUOT_BUF: 799 type = XFS_BLFT_GDQUOT_BUF; 800 break; 801 default: 802 type = XFS_BLFT_UNKNOWN_BUF; 803 break; 804 } 805 806 xfs_trans_buf_set_type(tp, bp, type); 807 } 808