1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_buf_item.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_error.h" 18 #include "xfs_trace.h" 19 20 /* 21 * Check to see if a buffer matching the given parameters is already 22 * a part of the given transaction. 23 */ 24 STATIC struct xfs_buf * 25 xfs_trans_buf_item_match( 26 struct xfs_trans *tp, 27 struct xfs_buftarg *target, 28 struct xfs_buf_map *map, 29 int nmaps) 30 { 31 struct xfs_log_item *lip; 32 struct xfs_buf_log_item *blip; 33 int len = 0; 34 int i; 35 36 for (i = 0; i < nmaps; i++) 37 len += map[i].bm_len; 38 39 list_for_each_entry(lip, &tp->t_items, li_trans) { 40 blip = (struct xfs_buf_log_item *)lip; 41 if (blip->bli_item.li_type == XFS_LI_BUF && 42 blip->bli_buf->b_target == target && 43 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 44 blip->bli_buf->b_length == len) { 45 ASSERT(blip->bli_buf->b_map_count == nmaps); 46 return blip->bli_buf; 47 } 48 } 49 50 return NULL; 51 } 52 53 /* 54 * Add the locked buffer to the transaction. 55 * 56 * The buffer must be locked, and it cannot be associated with any 57 * transaction. 58 * 59 * If the buffer does not yet have a buf log item associated with it, 60 * then allocate one for it. Then add the buf item to the transaction. 61 */ 62 STATIC void 63 _xfs_trans_bjoin( 64 struct xfs_trans *tp, 65 struct xfs_buf *bp, 66 int reset_recur) 67 { 68 struct xfs_buf_log_item *bip; 69 70 ASSERT(bp->b_transp == NULL); 71 72 /* 73 * The xfs_buf_log_item pointer is stored in b_log_item. If 74 * it doesn't have one yet, then allocate one and initialize it. 75 * The checks to see if one is there are in xfs_buf_item_init(). 76 */ 77 xfs_buf_item_init(bp, tp->t_mountp); 78 bip = bp->b_log_item; 79 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 80 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 81 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 82 if (reset_recur) 83 bip->bli_recur = 0; 84 85 /* 86 * Take a reference for this transaction on the buf item. 87 */ 88 atomic_inc(&bip->bli_refcount); 89 90 /* 91 * Attach the item to the transaction so we can find it in 92 * xfs_trans_get_buf() and friends. 93 */ 94 xfs_trans_add_item(tp, &bip->bli_item); 95 bp->b_transp = tp; 96 97 } 98 99 void 100 xfs_trans_bjoin( 101 struct xfs_trans *tp, 102 struct xfs_buf *bp) 103 { 104 _xfs_trans_bjoin(tp, bp, 0); 105 trace_xfs_trans_bjoin(bp->b_log_item); 106 } 107 108 /* 109 * Get and lock the buffer for the caller if it is not already 110 * locked within the given transaction. If it is already locked 111 * within the transaction, just increment its lock recursion count 112 * and return a pointer to it. 113 * 114 * If the transaction pointer is NULL, make this just a normal 115 * get_buf() call. 116 */ 117 struct xfs_buf * 118 xfs_trans_get_buf_map( 119 struct xfs_trans *tp, 120 struct xfs_buftarg *target, 121 struct xfs_buf_map *map, 122 int nmaps, 123 xfs_buf_flags_t flags) 124 { 125 xfs_buf_t *bp; 126 struct xfs_buf_log_item *bip; 127 128 if (!tp) 129 return xfs_buf_get_map(target, map, nmaps, flags); 130 131 /* 132 * If we find the buffer in the cache with this transaction 133 * pointer in its b_fsprivate2 field, then we know we already 134 * have it locked. In this case we just increment the lock 135 * recursion count and return the buffer to the caller. 136 */ 137 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 138 if (bp != NULL) { 139 ASSERT(xfs_buf_islocked(bp)); 140 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 141 xfs_buf_stale(bp); 142 bp->b_flags |= XBF_DONE; 143 } 144 145 ASSERT(bp->b_transp == tp); 146 bip = bp->b_log_item; 147 ASSERT(bip != NULL); 148 ASSERT(atomic_read(&bip->bli_refcount) > 0); 149 bip->bli_recur++; 150 trace_xfs_trans_get_buf_recur(bip); 151 return bp; 152 } 153 154 bp = xfs_buf_get_map(target, map, nmaps, flags); 155 if (bp == NULL) { 156 return NULL; 157 } 158 159 ASSERT(!bp->b_error); 160 161 _xfs_trans_bjoin(tp, bp, 1); 162 trace_xfs_trans_get_buf(bp->b_log_item); 163 return bp; 164 } 165 166 /* 167 * Get and lock the superblock buffer of this file system for the 168 * given transaction. 169 * 170 * We don't need to use incore_match() here, because the superblock 171 * buffer is a private buffer which we keep a pointer to in the 172 * mount structure. 173 */ 174 xfs_buf_t * 175 xfs_trans_getsb( 176 xfs_trans_t *tp, 177 struct xfs_mount *mp, 178 int flags) 179 { 180 xfs_buf_t *bp; 181 struct xfs_buf_log_item *bip; 182 183 /* 184 * Default to just trying to lock the superblock buffer 185 * if tp is NULL. 186 */ 187 if (tp == NULL) 188 return xfs_getsb(mp, flags); 189 190 /* 191 * If the superblock buffer already has this transaction 192 * pointer in its b_fsprivate2 field, then we know we already 193 * have it locked. In this case we just increment the lock 194 * recursion count and return the buffer to the caller. 195 */ 196 bp = mp->m_sb_bp; 197 if (bp->b_transp == tp) { 198 bip = bp->b_log_item; 199 ASSERT(bip != NULL); 200 ASSERT(atomic_read(&bip->bli_refcount) > 0); 201 bip->bli_recur++; 202 trace_xfs_trans_getsb_recur(bip); 203 return bp; 204 } 205 206 bp = xfs_getsb(mp, flags); 207 if (bp == NULL) 208 return NULL; 209 210 _xfs_trans_bjoin(tp, bp, 1); 211 trace_xfs_trans_getsb(bp->b_log_item); 212 return bp; 213 } 214 215 /* 216 * Get and lock the buffer for the caller if it is not already 217 * locked within the given transaction. If it has not yet been 218 * read in, read it from disk. If it is already locked 219 * within the transaction and already read in, just increment its 220 * lock recursion count and return a pointer to it. 221 * 222 * If the transaction pointer is NULL, make this just a normal 223 * read_buf() call. 224 */ 225 int 226 xfs_trans_read_buf_map( 227 struct xfs_mount *mp, 228 struct xfs_trans *tp, 229 struct xfs_buftarg *target, 230 struct xfs_buf_map *map, 231 int nmaps, 232 xfs_buf_flags_t flags, 233 struct xfs_buf **bpp, 234 const struct xfs_buf_ops *ops) 235 { 236 struct xfs_buf *bp = NULL; 237 struct xfs_buf_log_item *bip; 238 int error; 239 240 *bpp = NULL; 241 /* 242 * If we find the buffer in the cache with this transaction 243 * pointer in its b_fsprivate2 field, then we know we already 244 * have it locked. If it is already read in we just increment 245 * the lock recursion count and return the buffer to the caller. 246 * If the buffer is not yet read in, then we read it in, increment 247 * the lock recursion count, and return it to the caller. 248 */ 249 if (tp) 250 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 251 if (bp) { 252 ASSERT(xfs_buf_islocked(bp)); 253 ASSERT(bp->b_transp == tp); 254 ASSERT(bp->b_log_item != NULL); 255 ASSERT(!bp->b_error); 256 ASSERT(bp->b_flags & XBF_DONE); 257 258 /* 259 * We never locked this buf ourselves, so we shouldn't 260 * brelse it either. Just get out. 261 */ 262 if (XFS_FORCED_SHUTDOWN(mp)) { 263 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 264 return -EIO; 265 } 266 267 bip = bp->b_log_item; 268 bip->bli_recur++; 269 270 ASSERT(atomic_read(&bip->bli_refcount) > 0); 271 trace_xfs_trans_read_buf_recur(bip); 272 *bpp = bp; 273 return 0; 274 } 275 276 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 277 if (!bp) { 278 if (!(flags & XBF_TRYLOCK)) 279 return -ENOMEM; 280 return tp ? 0 : -EAGAIN; 281 } 282 283 /* 284 * If we've had a read error, then the contents of the buffer are 285 * invalid and should not be used. To ensure that a followup read tries 286 * to pull the buffer from disk again, we clear the XBF_DONE flag and 287 * mark the buffer stale. This ensures that anyone who has a current 288 * reference to the buffer will interpret it's contents correctly and 289 * future cache lookups will also treat it as an empty, uninitialised 290 * buffer. 291 */ 292 if (bp->b_error) { 293 error = bp->b_error; 294 if (!XFS_FORCED_SHUTDOWN(mp)) 295 xfs_buf_ioerror_alert(bp, __func__); 296 bp->b_flags &= ~XBF_DONE; 297 xfs_buf_stale(bp); 298 299 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 300 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 301 xfs_buf_relse(bp); 302 303 /* bad CRC means corrupted metadata */ 304 if (error == -EFSBADCRC) 305 error = -EFSCORRUPTED; 306 return error; 307 } 308 309 if (XFS_FORCED_SHUTDOWN(mp)) { 310 xfs_buf_relse(bp); 311 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 312 return -EIO; 313 } 314 315 if (tp) { 316 _xfs_trans_bjoin(tp, bp, 1); 317 trace_xfs_trans_read_buf(bp->b_log_item); 318 } 319 *bpp = bp; 320 return 0; 321 322 } 323 324 /* 325 * Release the buffer bp which was previously acquired with one of the 326 * xfs_trans_... buffer allocation routines if the buffer has not 327 * been modified within this transaction. If the buffer is modified 328 * within this transaction, do decrement the recursion count but do 329 * not release the buffer even if the count goes to 0. If the buffer is not 330 * modified within the transaction, decrement the recursion count and 331 * release the buffer if the recursion count goes to 0. 332 * 333 * If the buffer is to be released and it was not modified before 334 * this transaction began, then free the buf_log_item associated with it. 335 * 336 * If the transaction pointer is NULL, make this just a normal 337 * brelse() call. 338 */ 339 void 340 xfs_trans_brelse( 341 xfs_trans_t *tp, 342 xfs_buf_t *bp) 343 { 344 struct xfs_buf_log_item *bip; 345 int freed; 346 347 /* 348 * Default to a normal brelse() call if the tp is NULL. 349 */ 350 if (tp == NULL) { 351 ASSERT(bp->b_transp == NULL); 352 xfs_buf_relse(bp); 353 return; 354 } 355 356 ASSERT(bp->b_transp == tp); 357 bip = bp->b_log_item; 358 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 359 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 360 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 361 ASSERT(atomic_read(&bip->bli_refcount) > 0); 362 363 trace_xfs_trans_brelse(bip); 364 365 /* 366 * If the release is just for a recursive lock, 367 * then decrement the count and return. 368 */ 369 if (bip->bli_recur > 0) { 370 bip->bli_recur--; 371 return; 372 } 373 374 /* 375 * If the buffer is dirty within this transaction, we can't 376 * release it until we commit. 377 */ 378 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 379 return; 380 381 /* 382 * If the buffer has been invalidated, then we can't release 383 * it until the transaction commits to disk unless it is re-dirtied 384 * as part of this transaction. This prevents us from pulling 385 * the item from the AIL before we should. 386 */ 387 if (bip->bli_flags & XFS_BLI_STALE) 388 return; 389 390 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 391 392 /* 393 * Free up the log item descriptor tracking the released item. 394 */ 395 xfs_trans_del_item(&bip->bli_item); 396 397 /* 398 * Clear the hold flag in the buf log item if it is set. 399 * We wouldn't want the next user of the buffer to 400 * get confused. 401 */ 402 if (bip->bli_flags & XFS_BLI_HOLD) { 403 bip->bli_flags &= ~XFS_BLI_HOLD; 404 } 405 406 /* 407 * Drop our reference to the buf log item. 408 */ 409 freed = atomic_dec_and_test(&bip->bli_refcount); 410 411 /* 412 * If the buf item is not tracking data in the log, then we must free it 413 * before releasing the buffer back to the free pool. 414 * 415 * If the fs has shutdown and we dropped the last reference, it may fall 416 * on us to release a (possibly dirty) bli if it never made it to the 417 * AIL (e.g., the aborted unpin already happened and didn't release it 418 * due to our reference). Since we're already shutdown and need 419 * ail_lock, just force remove from the AIL and release the bli here. 420 */ 421 if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) { 422 xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR); 423 xfs_buf_item_relse(bp); 424 } else if (!(bip->bli_flags & XFS_BLI_DIRTY)) { 425 /*** 426 ASSERT(bp->b_pincount == 0); 427 ***/ 428 ASSERT(atomic_read(&bip->bli_refcount) == 0); 429 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); 430 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 431 xfs_buf_item_relse(bp); 432 } 433 434 bp->b_transp = NULL; 435 xfs_buf_relse(bp); 436 } 437 438 /* 439 * Mark the buffer as not needing to be unlocked when the buf item's 440 * iop_unlock() routine is called. The buffer must already be locked 441 * and associated with the given transaction. 442 */ 443 /* ARGSUSED */ 444 void 445 xfs_trans_bhold( 446 xfs_trans_t *tp, 447 xfs_buf_t *bp) 448 { 449 struct xfs_buf_log_item *bip = bp->b_log_item; 450 451 ASSERT(bp->b_transp == tp); 452 ASSERT(bip != NULL); 453 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 454 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 455 ASSERT(atomic_read(&bip->bli_refcount) > 0); 456 457 bip->bli_flags |= XFS_BLI_HOLD; 458 trace_xfs_trans_bhold(bip); 459 } 460 461 /* 462 * Cancel the previous buffer hold request made on this buffer 463 * for this transaction. 464 */ 465 void 466 xfs_trans_bhold_release( 467 xfs_trans_t *tp, 468 xfs_buf_t *bp) 469 { 470 struct xfs_buf_log_item *bip = bp->b_log_item; 471 472 ASSERT(bp->b_transp == tp); 473 ASSERT(bip != NULL); 474 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 475 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 476 ASSERT(atomic_read(&bip->bli_refcount) > 0); 477 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 478 479 bip->bli_flags &= ~XFS_BLI_HOLD; 480 trace_xfs_trans_bhold_release(bip); 481 } 482 483 /* 484 * Mark a buffer dirty in the transaction. 485 */ 486 void 487 xfs_trans_dirty_buf( 488 struct xfs_trans *tp, 489 struct xfs_buf *bp) 490 { 491 struct xfs_buf_log_item *bip = bp->b_log_item; 492 493 ASSERT(bp->b_transp == tp); 494 ASSERT(bip != NULL); 495 ASSERT(bp->b_iodone == NULL || 496 bp->b_iodone == xfs_buf_iodone_callbacks); 497 498 /* 499 * Mark the buffer as needing to be written out eventually, 500 * and set its iodone function to remove the buffer's buf log 501 * item from the AIL and free it when the buffer is flushed 502 * to disk. See xfs_buf_attach_iodone() for more details 503 * on li_cb and xfs_buf_iodone_callbacks(). 504 * If we end up aborting this transaction, we trap this buffer 505 * inside the b_bdstrat callback so that this won't get written to 506 * disk. 507 */ 508 bp->b_flags |= XBF_DONE; 509 510 ASSERT(atomic_read(&bip->bli_refcount) > 0); 511 bp->b_iodone = xfs_buf_iodone_callbacks; 512 bip->bli_item.li_cb = xfs_buf_iodone; 513 514 /* 515 * If we invalidated the buffer within this transaction, then 516 * cancel the invalidation now that we're dirtying the buffer 517 * again. There are no races with the code in xfs_buf_item_unpin(), 518 * because we have a reference to the buffer this entire time. 519 */ 520 if (bip->bli_flags & XFS_BLI_STALE) { 521 bip->bli_flags &= ~XFS_BLI_STALE; 522 ASSERT(bp->b_flags & XBF_STALE); 523 bp->b_flags &= ~XBF_STALE; 524 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 525 } 526 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 527 528 tp->t_flags |= XFS_TRANS_DIRTY; 529 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 530 } 531 532 /* 533 * This is called to mark bytes first through last inclusive of the given 534 * buffer as needing to be logged when the transaction is committed. 535 * The buffer must already be associated with the given transaction. 536 * 537 * First and last are numbers relative to the beginning of this buffer, 538 * so the first byte in the buffer is numbered 0 regardless of the 539 * value of b_blkno. 540 */ 541 void 542 xfs_trans_log_buf( 543 struct xfs_trans *tp, 544 struct xfs_buf *bp, 545 uint first, 546 uint last) 547 { 548 struct xfs_buf_log_item *bip = bp->b_log_item; 549 550 ASSERT(first <= last && last < BBTOB(bp->b_length)); 551 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 552 553 xfs_trans_dirty_buf(tp, bp); 554 555 trace_xfs_trans_log_buf(bip); 556 xfs_buf_item_log(bip, first, last); 557 } 558 559 560 /* 561 * Invalidate a buffer that is being used within a transaction. 562 * 563 * Typically this is because the blocks in the buffer are being freed, so we 564 * need to prevent it from being written out when we're done. Allowing it 565 * to be written again might overwrite data in the free blocks if they are 566 * reallocated to a file. 567 * 568 * We prevent the buffer from being written out by marking it stale. We can't 569 * get rid of the buf log item at this point because the buffer may still be 570 * pinned by another transaction. If that is the case, then we'll wait until 571 * the buffer is committed to disk for the last time (we can tell by the ref 572 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 573 * keep the buffer locked so that the buffer and buf log item are not reused. 574 * 575 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 576 * the buf item. This will be used at recovery time to determine that copies 577 * of the buffer in the log before this should not be replayed. 578 * 579 * We mark the item descriptor and the transaction dirty so that we'll hold 580 * the buffer until after the commit. 581 * 582 * Since we're invalidating the buffer, we also clear the state about which 583 * parts of the buffer have been logged. We also clear the flag indicating 584 * that this is an inode buffer since the data in the buffer will no longer 585 * be valid. 586 * 587 * We set the stale bit in the buffer as well since we're getting rid of it. 588 */ 589 void 590 xfs_trans_binval( 591 xfs_trans_t *tp, 592 xfs_buf_t *bp) 593 { 594 struct xfs_buf_log_item *bip = bp->b_log_item; 595 int i; 596 597 ASSERT(bp->b_transp == tp); 598 ASSERT(bip != NULL); 599 ASSERT(atomic_read(&bip->bli_refcount) > 0); 600 601 trace_xfs_trans_binval(bip); 602 603 if (bip->bli_flags & XFS_BLI_STALE) { 604 /* 605 * If the buffer is already invalidated, then 606 * just return. 607 */ 608 ASSERT(bp->b_flags & XBF_STALE); 609 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 610 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 611 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 612 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 613 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 614 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 615 return; 616 } 617 618 xfs_buf_stale(bp); 619 620 bip->bli_flags |= XFS_BLI_STALE; 621 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 622 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 623 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 624 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 625 for (i = 0; i < bip->bli_format_count; i++) { 626 memset(bip->bli_formats[i].blf_data_map, 0, 627 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 628 } 629 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 630 tp->t_flags |= XFS_TRANS_DIRTY; 631 } 632 633 /* 634 * This call is used to indicate that the buffer contains on-disk inodes which 635 * must be handled specially during recovery. They require special handling 636 * because only the di_next_unlinked from the inodes in the buffer should be 637 * recovered. The rest of the data in the buffer is logged via the inodes 638 * themselves. 639 * 640 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 641 * transferred to the buffer's log format structure so that we'll know what to 642 * do at recovery time. 643 */ 644 void 645 xfs_trans_inode_buf( 646 xfs_trans_t *tp, 647 xfs_buf_t *bp) 648 { 649 struct xfs_buf_log_item *bip = bp->b_log_item; 650 651 ASSERT(bp->b_transp == tp); 652 ASSERT(bip != NULL); 653 ASSERT(atomic_read(&bip->bli_refcount) > 0); 654 655 bip->bli_flags |= XFS_BLI_INODE_BUF; 656 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 657 } 658 659 /* 660 * This call is used to indicate that the buffer is going to 661 * be staled and was an inode buffer. This means it gets 662 * special processing during unpin - where any inodes 663 * associated with the buffer should be removed from ail. 664 * There is also special processing during recovery, 665 * any replay of the inodes in the buffer needs to be 666 * prevented as the buffer may have been reused. 667 */ 668 void 669 xfs_trans_stale_inode_buf( 670 xfs_trans_t *tp, 671 xfs_buf_t *bp) 672 { 673 struct xfs_buf_log_item *bip = bp->b_log_item; 674 675 ASSERT(bp->b_transp == tp); 676 ASSERT(bip != NULL); 677 ASSERT(atomic_read(&bip->bli_refcount) > 0); 678 679 bip->bli_flags |= XFS_BLI_STALE_INODE; 680 bip->bli_item.li_cb = xfs_buf_iodone; 681 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 682 } 683 684 /* 685 * Mark the buffer as being one which contains newly allocated 686 * inodes. We need to make sure that even if this buffer is 687 * relogged as an 'inode buf' we still recover all of the inode 688 * images in the face of a crash. This works in coordination with 689 * xfs_buf_item_committed() to ensure that the buffer remains in the 690 * AIL at its original location even after it has been relogged. 691 */ 692 /* ARGSUSED */ 693 void 694 xfs_trans_inode_alloc_buf( 695 xfs_trans_t *tp, 696 xfs_buf_t *bp) 697 { 698 struct xfs_buf_log_item *bip = bp->b_log_item; 699 700 ASSERT(bp->b_transp == tp); 701 ASSERT(bip != NULL); 702 ASSERT(atomic_read(&bip->bli_refcount) > 0); 703 704 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 705 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 706 } 707 708 /* 709 * Mark the buffer as ordered for this transaction. This means that the contents 710 * of the buffer are not recorded in the transaction but it is tracked in the 711 * AIL as though it was. This allows us to record logical changes in 712 * transactions rather than the physical changes we make to the buffer without 713 * changing writeback ordering constraints of metadata buffers. 714 */ 715 bool 716 xfs_trans_ordered_buf( 717 struct xfs_trans *tp, 718 struct xfs_buf *bp) 719 { 720 struct xfs_buf_log_item *bip = bp->b_log_item; 721 722 ASSERT(bp->b_transp == tp); 723 ASSERT(bip != NULL); 724 ASSERT(atomic_read(&bip->bli_refcount) > 0); 725 726 if (xfs_buf_item_dirty_format(bip)) 727 return false; 728 729 bip->bli_flags |= XFS_BLI_ORDERED; 730 trace_xfs_buf_item_ordered(bip); 731 732 /* 733 * We don't log a dirty range of an ordered buffer but it still needs 734 * to be marked dirty and that it has been logged. 735 */ 736 xfs_trans_dirty_buf(tp, bp); 737 return true; 738 } 739 740 /* 741 * Set the type of the buffer for log recovery so that it can correctly identify 742 * and hence attach the correct buffer ops to the buffer after replay. 743 */ 744 void 745 xfs_trans_buf_set_type( 746 struct xfs_trans *tp, 747 struct xfs_buf *bp, 748 enum xfs_blft type) 749 { 750 struct xfs_buf_log_item *bip = bp->b_log_item; 751 752 if (!tp) 753 return; 754 755 ASSERT(bp->b_transp == tp); 756 ASSERT(bip != NULL); 757 ASSERT(atomic_read(&bip->bli_refcount) > 0); 758 759 xfs_blft_to_flags(&bip->__bli_format, type); 760 } 761 762 void 763 xfs_trans_buf_copy_type( 764 struct xfs_buf *dst_bp, 765 struct xfs_buf *src_bp) 766 { 767 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 768 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 769 enum xfs_blft type; 770 771 type = xfs_blft_from_flags(&sbip->__bli_format); 772 xfs_blft_to_flags(&dbip->__bli_format, type); 773 } 774 775 /* 776 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 777 * dquots. However, unlike in inode buffer recovery, dquot buffers get 778 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 779 * The only thing that makes dquot buffers different from regular 780 * buffers is that we must not replay dquot bufs when recovering 781 * if a _corresponding_ quotaoff has happened. We also have to distinguish 782 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 783 * can be turned off independently. 784 */ 785 /* ARGSUSED */ 786 void 787 xfs_trans_dquot_buf( 788 xfs_trans_t *tp, 789 xfs_buf_t *bp, 790 uint type) 791 { 792 struct xfs_buf_log_item *bip = bp->b_log_item; 793 794 ASSERT(type == XFS_BLF_UDQUOT_BUF || 795 type == XFS_BLF_PDQUOT_BUF || 796 type == XFS_BLF_GDQUOT_BUF); 797 798 bip->__bli_format.blf_flags |= type; 799 800 switch (type) { 801 case XFS_BLF_UDQUOT_BUF: 802 type = XFS_BLFT_UDQUOT_BUF; 803 break; 804 case XFS_BLF_PDQUOT_BUF: 805 type = XFS_BLFT_PDQUOT_BUF; 806 break; 807 case XFS_BLF_GDQUOT_BUF: 808 type = XFS_BLFT_GDQUOT_BUF; 809 break; 810 default: 811 type = XFS_BLFT_UNKNOWN_BUF; 812 break; 813 } 814 815 xfs_trans_buf_set_type(tp, bp, type); 816 } 817