1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_trans.h" 14 #include "xfs_buf_item.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 18 /* 19 * Check to see if a buffer matching the given parameters is already 20 * a part of the given transaction. 21 */ 22 STATIC struct xfs_buf * 23 xfs_trans_buf_item_match( 24 struct xfs_trans *tp, 25 struct xfs_buftarg *target, 26 struct xfs_buf_map *map, 27 int nmaps) 28 { 29 struct xfs_log_item *lip; 30 struct xfs_buf_log_item *blip; 31 int len = 0; 32 int i; 33 34 for (i = 0; i < nmaps; i++) 35 len += map[i].bm_len; 36 37 list_for_each_entry(lip, &tp->t_items, li_trans) { 38 blip = (struct xfs_buf_log_item *)lip; 39 if (blip->bli_item.li_type == XFS_LI_BUF && 40 blip->bli_buf->b_target == target && 41 xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn && 42 blip->bli_buf->b_length == len) { 43 ASSERT(blip->bli_buf->b_map_count == nmaps); 44 return blip->bli_buf; 45 } 46 } 47 48 return NULL; 49 } 50 51 /* 52 * Add the locked buffer to the transaction. 53 * 54 * The buffer must be locked, and it cannot be associated with any 55 * transaction. 56 * 57 * If the buffer does not yet have a buf log item associated with it, 58 * then allocate one for it. Then add the buf item to the transaction. 59 */ 60 STATIC void 61 _xfs_trans_bjoin( 62 struct xfs_trans *tp, 63 struct xfs_buf *bp, 64 int reset_recur) 65 { 66 struct xfs_buf_log_item *bip; 67 68 ASSERT(bp->b_transp == NULL); 69 70 /* 71 * The xfs_buf_log_item pointer is stored in b_log_item. If 72 * it doesn't have one yet, then allocate one and initialize it. 73 * The checks to see if one is there are in xfs_buf_item_init(). 74 */ 75 xfs_buf_item_init(bp, tp->t_mountp); 76 bip = bp->b_log_item; 77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 80 if (reset_recur) 81 bip->bli_recur = 0; 82 83 /* 84 * Take a reference for this transaction on the buf item. 85 */ 86 atomic_inc(&bip->bli_refcount); 87 88 /* 89 * Attach the item to the transaction so we can find it in 90 * xfs_trans_get_buf() and friends. 91 */ 92 xfs_trans_add_item(tp, &bip->bli_item); 93 bp->b_transp = tp; 94 95 } 96 97 void 98 xfs_trans_bjoin( 99 struct xfs_trans *tp, 100 struct xfs_buf *bp) 101 { 102 _xfs_trans_bjoin(tp, bp, 0); 103 trace_xfs_trans_bjoin(bp->b_log_item); 104 } 105 106 /* 107 * Get and lock the buffer for the caller if it is not already 108 * locked within the given transaction. If it is already locked 109 * within the transaction, just increment its lock recursion count 110 * and return a pointer to it. 111 * 112 * If the transaction pointer is NULL, make this just a normal 113 * get_buf() call. 114 */ 115 int 116 xfs_trans_get_buf_map( 117 struct xfs_trans *tp, 118 struct xfs_buftarg *target, 119 struct xfs_buf_map *map, 120 int nmaps, 121 xfs_buf_flags_t flags, 122 struct xfs_buf **bpp) 123 { 124 struct xfs_buf *bp; 125 struct xfs_buf_log_item *bip; 126 int error; 127 128 *bpp = NULL; 129 if (!tp) 130 return xfs_buf_get_map(target, map, nmaps, flags, bpp); 131 132 /* 133 * If we find the buffer in the cache with this transaction 134 * pointer in its b_fsprivate2 field, then we know we already 135 * have it locked. In this case we just increment the lock 136 * recursion count and return the buffer to the caller. 137 */ 138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 139 if (bp != NULL) { 140 ASSERT(xfs_buf_islocked(bp)); 141 if (xfs_is_shutdown(tp->t_mountp)) { 142 xfs_buf_stale(bp); 143 bp->b_flags |= XBF_DONE; 144 } 145 146 ASSERT(bp->b_transp == tp); 147 bip = bp->b_log_item; 148 ASSERT(bip != NULL); 149 ASSERT(atomic_read(&bip->bli_refcount) > 0); 150 bip->bli_recur++; 151 trace_xfs_trans_get_buf_recur(bip); 152 *bpp = bp; 153 return 0; 154 } 155 156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 157 if (error) 158 return error; 159 160 ASSERT(!bp->b_error); 161 162 _xfs_trans_bjoin(tp, bp, 1); 163 trace_xfs_trans_get_buf(bp->b_log_item); 164 *bpp = bp; 165 return 0; 166 } 167 168 /* 169 * Get and lock the superblock buffer for the given transaction. 170 */ 171 static struct xfs_buf * 172 __xfs_trans_getsb( 173 struct xfs_trans *tp, 174 struct xfs_buf *bp) 175 { 176 /* 177 * Just increment the lock recursion count if the buffer is already 178 * attached to this transaction. 179 */ 180 if (bp->b_transp == tp) { 181 struct xfs_buf_log_item *bip = bp->b_log_item; 182 183 ASSERT(bip != NULL); 184 ASSERT(atomic_read(&bip->bli_refcount) > 0); 185 bip->bli_recur++; 186 187 trace_xfs_trans_getsb_recur(bip); 188 } else { 189 xfs_buf_lock(bp); 190 xfs_buf_hold(bp); 191 _xfs_trans_bjoin(tp, bp, 1); 192 193 trace_xfs_trans_getsb(bp->b_log_item); 194 } 195 196 return bp; 197 } 198 199 struct xfs_buf * 200 xfs_trans_getsb( 201 struct xfs_trans *tp) 202 { 203 return __xfs_trans_getsb(tp, tp->t_mountp->m_sb_bp); 204 } 205 206 struct xfs_buf * 207 xfs_trans_getrtsb( 208 struct xfs_trans *tp) 209 { 210 if (!tp->t_mountp->m_rtsb_bp) 211 return NULL; 212 return __xfs_trans_getsb(tp, tp->t_mountp->m_rtsb_bp); 213 } 214 215 /* 216 * Get and lock the buffer for the caller if it is not already 217 * locked within the given transaction. If it has not yet been 218 * read in, read it from disk. If it is already locked 219 * within the transaction and already read in, just increment its 220 * lock recursion count and return a pointer to it. 221 * 222 * If the transaction pointer is NULL, make this just a normal 223 * read_buf() call. 224 */ 225 int 226 xfs_trans_read_buf_map( 227 struct xfs_mount *mp, 228 struct xfs_trans *tp, 229 struct xfs_buftarg *target, 230 struct xfs_buf_map *map, 231 int nmaps, 232 xfs_buf_flags_t flags, 233 struct xfs_buf **bpp, 234 const struct xfs_buf_ops *ops) 235 { 236 struct xfs_buf *bp = NULL; 237 struct xfs_buf_log_item *bip; 238 int error; 239 240 *bpp = NULL; 241 /* 242 * If we find the buffer in the cache with this transaction 243 * pointer in its b_fsprivate2 field, then we know we already 244 * have it locked. If it is already read in we just increment 245 * the lock recursion count and return the buffer to the caller. 246 * If the buffer is not yet read in, then we read it in, increment 247 * the lock recursion count, and return it to the caller. 248 */ 249 if (tp) 250 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 251 if (bp) { 252 ASSERT(xfs_buf_islocked(bp)); 253 ASSERT(bp->b_transp == tp); 254 ASSERT(bp->b_log_item != NULL); 255 ASSERT(!bp->b_error); 256 ASSERT(bp->b_flags & XBF_DONE); 257 258 /* 259 * We never locked this buf ourselves, so we shouldn't 260 * brelse it either. Just get out. 261 */ 262 if (xfs_is_shutdown(mp)) { 263 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 264 return -EIO; 265 } 266 267 /* 268 * Check if the caller is trying to read a buffer that is 269 * already attached to the transaction yet has no buffer ops 270 * assigned. Ops are usually attached when the buffer is 271 * attached to the transaction, or by the read caller if 272 * special circumstances. That didn't happen, which is not 273 * how this is supposed to go. 274 * 275 * If the buffer passes verification we'll let this go, but if 276 * not we have to shut down. Let the transaction cleanup code 277 * release this buffer when it kills the tranaction. 278 */ 279 ASSERT(bp->b_ops != NULL); 280 error = xfs_buf_reverify(bp, ops); 281 if (error) { 282 xfs_buf_ioerror_alert(bp, __return_address); 283 284 if (tp->t_flags & XFS_TRANS_DIRTY) 285 xfs_force_shutdown(tp->t_mountp, 286 SHUTDOWN_META_IO_ERROR); 287 288 /* bad CRC means corrupted metadata */ 289 if (error == -EFSBADCRC) 290 error = -EFSCORRUPTED; 291 return error; 292 } 293 294 bip = bp->b_log_item; 295 bip->bli_recur++; 296 297 ASSERT(atomic_read(&bip->bli_refcount) > 0); 298 trace_xfs_trans_read_buf_recur(bip); 299 ASSERT(bp->b_ops != NULL || ops == NULL); 300 *bpp = bp; 301 return 0; 302 } 303 304 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops, 305 __return_address); 306 switch (error) { 307 case 0: 308 break; 309 default: 310 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 311 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 312 fallthrough; 313 case -ENOMEM: 314 case -EAGAIN: 315 return error; 316 } 317 318 if (xfs_is_shutdown(mp)) { 319 xfs_buf_relse(bp); 320 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 321 return -EIO; 322 } 323 324 if (tp) { 325 _xfs_trans_bjoin(tp, bp, 1); 326 trace_xfs_trans_read_buf(bp->b_log_item); 327 } 328 ASSERT(bp->b_ops != NULL || ops == NULL); 329 *bpp = bp; 330 return 0; 331 332 } 333 334 /* Has this buffer been dirtied by anyone? */ 335 bool 336 xfs_trans_buf_is_dirty( 337 struct xfs_buf *bp) 338 { 339 struct xfs_buf_log_item *bip = bp->b_log_item; 340 341 if (!bip) 342 return false; 343 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 344 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 345 } 346 347 /* 348 * Release a buffer previously joined to the transaction. If the buffer is 349 * modified within this transaction, decrement the recursion count but do not 350 * release the buffer even if the count goes to 0. If the buffer is not modified 351 * within the transaction, decrement the recursion count and release the buffer 352 * if the recursion count goes to 0. 353 * 354 * If the buffer is to be released and it was not already dirty before this 355 * transaction began, then also free the buf_log_item associated with it. 356 * 357 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call. 358 */ 359 void 360 xfs_trans_brelse( 361 struct xfs_trans *tp, 362 struct xfs_buf *bp) 363 { 364 struct xfs_buf_log_item *bip = bp->b_log_item; 365 366 ASSERT(bp->b_transp == tp); 367 368 if (!tp) { 369 xfs_buf_relse(bp); 370 return; 371 } 372 373 trace_xfs_trans_brelse(bip); 374 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 375 ASSERT(atomic_read(&bip->bli_refcount) > 0); 376 377 /* 378 * If the release is for a recursive lookup, then decrement the count 379 * and return. 380 */ 381 if (bip->bli_recur > 0) { 382 bip->bli_recur--; 383 return; 384 } 385 386 /* 387 * If the buffer is invalidated or dirty in this transaction, we can't 388 * release it until we commit. 389 */ 390 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 391 return; 392 if (bip->bli_flags & XFS_BLI_STALE) 393 return; 394 395 /* 396 * Unlink the log item from the transaction and clear the hold flag, if 397 * set. We wouldn't want the next user of the buffer to get confused. 398 */ 399 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 400 xfs_trans_del_item(&bip->bli_item); 401 bip->bli_flags &= ~XFS_BLI_HOLD; 402 403 /* drop the reference to the bli */ 404 xfs_buf_item_put(bip); 405 406 bp->b_transp = NULL; 407 xfs_buf_relse(bp); 408 } 409 410 /* 411 * Forcibly detach a buffer previously joined to the transaction. The caller 412 * will retain its locked reference to the buffer after this function returns. 413 * The buffer must be completely clean and must not be held to the transaction. 414 */ 415 void 416 xfs_trans_bdetach( 417 struct xfs_trans *tp, 418 struct xfs_buf *bp) 419 { 420 struct xfs_buf_log_item *bip = bp->b_log_item; 421 422 ASSERT(tp != NULL); 423 ASSERT(bp->b_transp == tp); 424 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 425 ASSERT(atomic_read(&bip->bli_refcount) > 0); 426 427 trace_xfs_trans_bdetach(bip); 428 429 /* 430 * Erase all recursion count, since we're removing this buffer from the 431 * transaction. 432 */ 433 bip->bli_recur = 0; 434 435 /* 436 * The buffer must be completely clean. Specifically, it had better 437 * not be dirty, stale, logged, ordered, or held to the transaction. 438 */ 439 ASSERT(!test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 440 ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY)); 441 ASSERT(!(bip->bli_flags & XFS_BLI_HOLD)); 442 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 443 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 444 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 445 446 /* Unlink the log item from the transaction and drop the log item. */ 447 xfs_trans_del_item(&bip->bli_item); 448 xfs_buf_item_put(bip); 449 bp->b_transp = NULL; 450 } 451 452 /* 453 * Mark the buffer as not needing to be unlocked when the buf item's 454 * iop_committing() routine is called. The buffer must already be locked 455 * and associated with the given transaction. 456 */ 457 /* ARGSUSED */ 458 void 459 xfs_trans_bhold( 460 xfs_trans_t *tp, 461 struct xfs_buf *bp) 462 { 463 struct xfs_buf_log_item *bip = bp->b_log_item; 464 465 ASSERT(bp->b_transp == tp); 466 ASSERT(bip != NULL); 467 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 468 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 469 ASSERT(atomic_read(&bip->bli_refcount) > 0); 470 471 bip->bli_flags |= XFS_BLI_HOLD; 472 trace_xfs_trans_bhold(bip); 473 } 474 475 /* 476 * Cancel the previous buffer hold request made on this buffer 477 * for this transaction. 478 */ 479 void 480 xfs_trans_bhold_release( 481 xfs_trans_t *tp, 482 struct xfs_buf *bp) 483 { 484 struct xfs_buf_log_item *bip = bp->b_log_item; 485 486 ASSERT(bp->b_transp == tp); 487 ASSERT(bip != NULL); 488 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 489 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 490 ASSERT(atomic_read(&bip->bli_refcount) > 0); 491 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 492 493 bip->bli_flags &= ~XFS_BLI_HOLD; 494 trace_xfs_trans_bhold_release(bip); 495 } 496 497 /* 498 * Mark a buffer dirty in the transaction. 499 */ 500 void 501 xfs_trans_dirty_buf( 502 struct xfs_trans *tp, 503 struct xfs_buf *bp) 504 { 505 struct xfs_buf_log_item *bip = bp->b_log_item; 506 507 ASSERT(bp->b_transp == tp); 508 ASSERT(bip != NULL); 509 510 /* 511 * Mark the buffer as needing to be written out eventually, 512 * and set its iodone function to remove the buffer's buf log 513 * item from the AIL and free it when the buffer is flushed 514 * to disk. 515 */ 516 bp->b_flags |= XBF_DONE; 517 518 ASSERT(atomic_read(&bip->bli_refcount) > 0); 519 520 /* 521 * If we invalidated the buffer within this transaction, then 522 * cancel the invalidation now that we're dirtying the buffer 523 * again. There are no races with the code in xfs_buf_item_unpin(), 524 * because we have a reference to the buffer this entire time. 525 */ 526 if (bip->bli_flags & XFS_BLI_STALE) { 527 bip->bli_flags &= ~XFS_BLI_STALE; 528 ASSERT(bp->b_flags & XBF_STALE); 529 bp->b_flags &= ~XBF_STALE; 530 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 531 } 532 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 533 534 tp->t_flags |= XFS_TRANS_DIRTY; 535 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 536 } 537 538 /* 539 * This is called to mark bytes first through last inclusive of the given 540 * buffer as needing to be logged when the transaction is committed. 541 * The buffer must already be associated with the given transaction. 542 * 543 * First and last are numbers relative to the beginning of this buffer, 544 * so the first byte in the buffer is numbered 0 regardless of the 545 * value of b_blkno. 546 */ 547 void 548 xfs_trans_log_buf( 549 struct xfs_trans *tp, 550 struct xfs_buf *bp, 551 uint first, 552 uint last) 553 { 554 struct xfs_buf_log_item *bip = bp->b_log_item; 555 556 ASSERT(first <= last && last < BBTOB(bp->b_length)); 557 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 558 559 xfs_trans_dirty_buf(tp, bp); 560 561 trace_xfs_trans_log_buf(bip); 562 xfs_buf_item_log(bip, first, last); 563 } 564 565 566 /* 567 * Invalidate a buffer that is being used within a transaction. 568 * 569 * Typically this is because the blocks in the buffer are being freed, so we 570 * need to prevent it from being written out when we're done. Allowing it 571 * to be written again might overwrite data in the free blocks if they are 572 * reallocated to a file. 573 * 574 * We prevent the buffer from being written out by marking it stale. We can't 575 * get rid of the buf log item at this point because the buffer may still be 576 * pinned by another transaction. If that is the case, then we'll wait until 577 * the buffer is committed to disk for the last time (we can tell by the ref 578 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 579 * keep the buffer locked so that the buffer and buf log item are not reused. 580 * 581 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 582 * the buf item. This will be used at recovery time to determine that copies 583 * of the buffer in the log before this should not be replayed. 584 * 585 * We mark the item descriptor and the transaction dirty so that we'll hold 586 * the buffer until after the commit. 587 * 588 * Since we're invalidating the buffer, we also clear the state about which 589 * parts of the buffer have been logged. We also clear the flag indicating 590 * that this is an inode buffer since the data in the buffer will no longer 591 * be valid. 592 * 593 * We set the stale bit in the buffer as well since we're getting rid of it. 594 */ 595 void 596 xfs_trans_binval( 597 xfs_trans_t *tp, 598 struct xfs_buf *bp) 599 { 600 struct xfs_buf_log_item *bip = bp->b_log_item; 601 int i; 602 603 ASSERT(bp->b_transp == tp); 604 ASSERT(bip != NULL); 605 ASSERT(atomic_read(&bip->bli_refcount) > 0); 606 607 trace_xfs_trans_binval(bip); 608 609 if (bip->bli_flags & XFS_BLI_STALE) { 610 /* 611 * If the buffer is already invalidated, then 612 * just return. 613 */ 614 ASSERT(bp->b_flags & XBF_STALE); 615 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 616 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 617 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 618 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 619 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 620 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 621 return; 622 } 623 624 xfs_buf_stale(bp); 625 626 bip->bli_flags |= XFS_BLI_STALE; 627 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 628 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 629 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 630 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 631 for (i = 0; i < bip->bli_format_count; i++) { 632 memset(bip->bli_formats[i].blf_data_map, 0, 633 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 634 } 635 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 636 tp->t_flags |= XFS_TRANS_DIRTY; 637 } 638 639 /* 640 * This call is used to indicate that the buffer contains on-disk inodes which 641 * must be handled specially during recovery. They require special handling 642 * because only the di_next_unlinked from the inodes in the buffer should be 643 * recovered. The rest of the data in the buffer is logged via the inodes 644 * themselves. 645 * 646 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 647 * transferred to the buffer's log format structure so that we'll know what to 648 * do at recovery time. 649 */ 650 void 651 xfs_trans_inode_buf( 652 xfs_trans_t *tp, 653 struct xfs_buf *bp) 654 { 655 struct xfs_buf_log_item *bip = bp->b_log_item; 656 657 ASSERT(bp->b_transp == tp); 658 ASSERT(bip != NULL); 659 ASSERT(atomic_read(&bip->bli_refcount) > 0); 660 661 bip->bli_flags |= XFS_BLI_INODE_BUF; 662 bp->b_flags |= _XBF_INODES; 663 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 664 } 665 666 /* 667 * This call is used to indicate that the buffer is going to 668 * be staled and was an inode buffer. This means it gets 669 * special processing during unpin - where any inodes 670 * associated with the buffer should be removed from ail. 671 * There is also special processing during recovery, 672 * any replay of the inodes in the buffer needs to be 673 * prevented as the buffer may have been reused. 674 */ 675 void 676 xfs_trans_stale_inode_buf( 677 xfs_trans_t *tp, 678 struct xfs_buf *bp) 679 { 680 struct xfs_buf_log_item *bip = bp->b_log_item; 681 682 ASSERT(bp->b_transp == tp); 683 ASSERT(bip != NULL); 684 ASSERT(atomic_read(&bip->bli_refcount) > 0); 685 686 bip->bli_flags |= XFS_BLI_STALE_INODE; 687 bp->b_flags |= _XBF_INODES; 688 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 689 } 690 691 /* 692 * Mark the buffer as being one which contains newly allocated 693 * inodes. We need to make sure that even if this buffer is 694 * relogged as an 'inode buf' we still recover all of the inode 695 * images in the face of a crash. This works in coordination with 696 * xfs_buf_item_committed() to ensure that the buffer remains in the 697 * AIL at its original location even after it has been relogged. 698 */ 699 /* ARGSUSED */ 700 void 701 xfs_trans_inode_alloc_buf( 702 xfs_trans_t *tp, 703 struct xfs_buf *bp) 704 { 705 struct xfs_buf_log_item *bip = bp->b_log_item; 706 707 ASSERT(bp->b_transp == tp); 708 ASSERT(bip != NULL); 709 ASSERT(atomic_read(&bip->bli_refcount) > 0); 710 711 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 712 bp->b_flags |= _XBF_INODES; 713 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 714 } 715 716 /* 717 * Mark the buffer as ordered for this transaction. This means that the contents 718 * of the buffer are not recorded in the transaction but it is tracked in the 719 * AIL as though it was. This allows us to record logical changes in 720 * transactions rather than the physical changes we make to the buffer without 721 * changing writeback ordering constraints of metadata buffers. 722 */ 723 bool 724 xfs_trans_ordered_buf( 725 struct xfs_trans *tp, 726 struct xfs_buf *bp) 727 { 728 struct xfs_buf_log_item *bip = bp->b_log_item; 729 730 ASSERT(bp->b_transp == tp); 731 ASSERT(bip != NULL); 732 ASSERT(atomic_read(&bip->bli_refcount) > 0); 733 734 if (xfs_buf_item_dirty_format(bip)) 735 return false; 736 737 bip->bli_flags |= XFS_BLI_ORDERED; 738 trace_xfs_buf_item_ordered(bip); 739 740 /* 741 * We don't log a dirty range of an ordered buffer but it still needs 742 * to be marked dirty and that it has been logged. 743 */ 744 xfs_trans_dirty_buf(tp, bp); 745 return true; 746 } 747 748 /* 749 * Set the type of the buffer for log recovery so that it can correctly identify 750 * and hence attach the correct buffer ops to the buffer after replay. 751 */ 752 void 753 xfs_trans_buf_set_type( 754 struct xfs_trans *tp, 755 struct xfs_buf *bp, 756 enum xfs_blft type) 757 { 758 struct xfs_buf_log_item *bip = bp->b_log_item; 759 760 if (!tp) 761 return; 762 763 ASSERT(bp->b_transp == tp); 764 ASSERT(bip != NULL); 765 ASSERT(atomic_read(&bip->bli_refcount) > 0); 766 767 xfs_blft_to_flags(&bip->__bli_format, type); 768 } 769 770 void 771 xfs_trans_buf_copy_type( 772 struct xfs_buf *dst_bp, 773 struct xfs_buf *src_bp) 774 { 775 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 776 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 777 enum xfs_blft type; 778 779 type = xfs_blft_from_flags(&sbip->__bli_format); 780 xfs_blft_to_flags(&dbip->__bli_format, type); 781 } 782 783 /* 784 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 785 * dquots. However, unlike in inode buffer recovery, dquot buffers get 786 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 787 * The only thing that makes dquot buffers different from regular 788 * buffers is that we must not replay dquot bufs when recovering 789 * if a _corresponding_ quotaoff has happened. We also have to distinguish 790 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 791 * can be turned off independently. 792 */ 793 /* ARGSUSED */ 794 void 795 xfs_trans_dquot_buf( 796 xfs_trans_t *tp, 797 struct xfs_buf *bp, 798 uint type) 799 { 800 struct xfs_buf_log_item *bip = bp->b_log_item; 801 802 ASSERT(type == XFS_BLF_UDQUOT_BUF || 803 type == XFS_BLF_PDQUOT_BUF || 804 type == XFS_BLF_GDQUOT_BUF); 805 806 bip->__bli_format.blf_flags |= type; 807 808 switch (type) { 809 case XFS_BLF_UDQUOT_BUF: 810 type = XFS_BLFT_UDQUOT_BUF; 811 break; 812 case XFS_BLF_PDQUOT_BUF: 813 type = XFS_BLFT_PDQUOT_BUF; 814 break; 815 case XFS_BLF_GDQUOT_BUF: 816 type = XFS_BLFT_GDQUOT_BUF; 817 break; 818 default: 819 type = XFS_BLFT_UNKNOWN_BUF; 820 break; 821 } 822 823 bp->b_flags |= _XBF_DQUOTS; 824 xfs_trans_buf_set_type(tp, bp, type); 825 } 826