1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_trans.h" 14 #include "xfs_buf_item.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 18 /* 19 * Check to see if a buffer matching the given parameters is already 20 * a part of the given transaction. 21 */ 22 STATIC struct xfs_buf * 23 xfs_trans_buf_item_match( 24 struct xfs_trans *tp, 25 struct xfs_buftarg *target, 26 struct xfs_buf_map *map, 27 int nmaps) 28 { 29 struct xfs_log_item *lip; 30 struct xfs_buf_log_item *blip; 31 int len = 0; 32 int i; 33 34 for (i = 0; i < nmaps; i++) 35 len += map[i].bm_len; 36 37 list_for_each_entry(lip, &tp->t_items, li_trans) { 38 blip = (struct xfs_buf_log_item *)lip; 39 if (blip->bli_item.li_type == XFS_LI_BUF && 40 blip->bli_buf->b_target == target && 41 xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn && 42 blip->bli_buf->b_length == len) { 43 ASSERT(blip->bli_buf->b_map_count == nmaps); 44 return blip->bli_buf; 45 } 46 } 47 48 return NULL; 49 } 50 51 /* 52 * Add the locked buffer to the transaction. 53 * 54 * The buffer must be locked, and it cannot be associated with any 55 * transaction. 56 * 57 * If the buffer does not yet have a buf log item associated with it, 58 * then allocate one for it. Then add the buf item to the transaction. 59 */ 60 STATIC void 61 _xfs_trans_bjoin( 62 struct xfs_trans *tp, 63 struct xfs_buf *bp, 64 int reset_recur) 65 { 66 struct xfs_buf_log_item *bip; 67 68 ASSERT(bp->b_transp == NULL); 69 70 /* 71 * The xfs_buf_log_item pointer is stored in b_log_item. If 72 * it doesn't have one yet, then allocate one and initialize it. 73 * The checks to see if one is there are in xfs_buf_item_init(). 74 */ 75 xfs_buf_item_init(bp, tp->t_mountp); 76 bip = bp->b_log_item; 77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 80 if (reset_recur) 81 bip->bli_recur = 0; 82 83 /* 84 * Take a reference for this transaction on the buf item. 85 */ 86 atomic_inc(&bip->bli_refcount); 87 88 /* 89 * Attach the item to the transaction so we can find it in 90 * xfs_trans_get_buf() and friends. 91 */ 92 xfs_trans_add_item(tp, &bip->bli_item); 93 bp->b_transp = tp; 94 95 } 96 97 void 98 xfs_trans_bjoin( 99 struct xfs_trans *tp, 100 struct xfs_buf *bp) 101 { 102 _xfs_trans_bjoin(tp, bp, 0); 103 trace_xfs_trans_bjoin(bp->b_log_item); 104 } 105 106 /* 107 * Get and lock the buffer for the caller if it is not already 108 * locked within the given transaction. If it is already locked 109 * within the transaction, just increment its lock recursion count 110 * and return a pointer to it. 111 * 112 * If the transaction pointer is NULL, make this just a normal 113 * get_buf() call. 114 */ 115 int 116 xfs_trans_get_buf_map( 117 struct xfs_trans *tp, 118 struct xfs_buftarg *target, 119 struct xfs_buf_map *map, 120 int nmaps, 121 xfs_buf_flags_t flags, 122 struct xfs_buf **bpp) 123 { 124 struct xfs_buf *bp; 125 struct xfs_buf_log_item *bip; 126 int error; 127 128 *bpp = NULL; 129 if (!tp) 130 return xfs_buf_get_map(target, map, nmaps, flags, bpp); 131 132 /* 133 * If we find the buffer in the cache with this transaction 134 * pointer in its b_fsprivate2 field, then we know we already 135 * have it locked. In this case we just increment the lock 136 * recursion count and return the buffer to the caller. 137 */ 138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 139 if (bp != NULL) { 140 ASSERT(xfs_buf_islocked(bp)); 141 if (xfs_is_shutdown(tp->t_mountp)) { 142 xfs_buf_stale(bp); 143 bp->b_flags |= XBF_DONE; 144 } 145 146 ASSERT(bp->b_transp == tp); 147 bip = bp->b_log_item; 148 ASSERT(bip != NULL); 149 ASSERT(atomic_read(&bip->bli_refcount) > 0); 150 bip->bli_recur++; 151 trace_xfs_trans_get_buf_recur(bip); 152 *bpp = bp; 153 return 0; 154 } 155 156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 157 if (error) 158 return error; 159 160 ASSERT(!bp->b_error); 161 162 _xfs_trans_bjoin(tp, bp, 1); 163 trace_xfs_trans_get_buf(bp->b_log_item); 164 *bpp = bp; 165 return 0; 166 } 167 168 /* 169 * Get and lock the superblock buffer for the given transaction. 170 */ 171 struct xfs_buf * 172 xfs_trans_getsb( 173 struct xfs_trans *tp) 174 { 175 struct xfs_buf *bp = tp->t_mountp->m_sb_bp; 176 177 /* 178 * Just increment the lock recursion count if the buffer is already 179 * attached to this transaction. 180 */ 181 if (bp->b_transp == tp) { 182 struct xfs_buf_log_item *bip = bp->b_log_item; 183 184 ASSERT(bip != NULL); 185 ASSERT(atomic_read(&bip->bli_refcount) > 0); 186 bip->bli_recur++; 187 188 trace_xfs_trans_getsb_recur(bip); 189 } else { 190 xfs_buf_lock(bp); 191 xfs_buf_hold(bp); 192 _xfs_trans_bjoin(tp, bp, 1); 193 194 trace_xfs_trans_getsb(bp->b_log_item); 195 } 196 197 return bp; 198 } 199 200 /* 201 * Get and lock the buffer for the caller if it is not already 202 * locked within the given transaction. If it has not yet been 203 * read in, read it from disk. If it is already locked 204 * within the transaction and already read in, just increment its 205 * lock recursion count and return a pointer to it. 206 * 207 * If the transaction pointer is NULL, make this just a normal 208 * read_buf() call. 209 */ 210 int 211 xfs_trans_read_buf_map( 212 struct xfs_mount *mp, 213 struct xfs_trans *tp, 214 struct xfs_buftarg *target, 215 struct xfs_buf_map *map, 216 int nmaps, 217 xfs_buf_flags_t flags, 218 struct xfs_buf **bpp, 219 const struct xfs_buf_ops *ops) 220 { 221 struct xfs_buf *bp = NULL; 222 struct xfs_buf_log_item *bip; 223 int error; 224 225 *bpp = NULL; 226 /* 227 * If we find the buffer in the cache with this transaction 228 * pointer in its b_fsprivate2 field, then we know we already 229 * have it locked. If it is already read in we just increment 230 * the lock recursion count and return the buffer to the caller. 231 * If the buffer is not yet read in, then we read it in, increment 232 * the lock recursion count, and return it to the caller. 233 */ 234 if (tp) 235 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 236 if (bp) { 237 ASSERT(xfs_buf_islocked(bp)); 238 ASSERT(bp->b_transp == tp); 239 ASSERT(bp->b_log_item != NULL); 240 ASSERT(!bp->b_error); 241 ASSERT(bp->b_flags & XBF_DONE); 242 243 /* 244 * We never locked this buf ourselves, so we shouldn't 245 * brelse it either. Just get out. 246 */ 247 if (xfs_is_shutdown(mp)) { 248 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 249 return -EIO; 250 } 251 252 /* 253 * Check if the caller is trying to read a buffer that is 254 * already attached to the transaction yet has no buffer ops 255 * assigned. Ops are usually attached when the buffer is 256 * attached to the transaction, or by the read caller if 257 * special circumstances. That didn't happen, which is not 258 * how this is supposed to go. 259 * 260 * If the buffer passes verification we'll let this go, but if 261 * not we have to shut down. Let the transaction cleanup code 262 * release this buffer when it kills the tranaction. 263 */ 264 ASSERT(bp->b_ops != NULL); 265 error = xfs_buf_reverify(bp, ops); 266 if (error) { 267 xfs_buf_ioerror_alert(bp, __return_address); 268 269 if (tp->t_flags & XFS_TRANS_DIRTY) 270 xfs_force_shutdown(tp->t_mountp, 271 SHUTDOWN_META_IO_ERROR); 272 273 /* bad CRC means corrupted metadata */ 274 if (error == -EFSBADCRC) 275 error = -EFSCORRUPTED; 276 return error; 277 } 278 279 bip = bp->b_log_item; 280 bip->bli_recur++; 281 282 ASSERT(atomic_read(&bip->bli_refcount) > 0); 283 trace_xfs_trans_read_buf_recur(bip); 284 ASSERT(bp->b_ops != NULL || ops == NULL); 285 *bpp = bp; 286 return 0; 287 } 288 289 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops, 290 __return_address); 291 switch (error) { 292 case 0: 293 break; 294 default: 295 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 296 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 297 fallthrough; 298 case -ENOMEM: 299 case -EAGAIN: 300 return error; 301 } 302 303 if (xfs_is_shutdown(mp)) { 304 xfs_buf_relse(bp); 305 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 306 return -EIO; 307 } 308 309 if (tp) { 310 _xfs_trans_bjoin(tp, bp, 1); 311 trace_xfs_trans_read_buf(bp->b_log_item); 312 } 313 ASSERT(bp->b_ops != NULL || ops == NULL); 314 *bpp = bp; 315 return 0; 316 317 } 318 319 /* Has this buffer been dirtied by anyone? */ 320 bool 321 xfs_trans_buf_is_dirty( 322 struct xfs_buf *bp) 323 { 324 struct xfs_buf_log_item *bip = bp->b_log_item; 325 326 if (!bip) 327 return false; 328 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 329 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 330 } 331 332 /* 333 * Release a buffer previously joined to the transaction. If the buffer is 334 * modified within this transaction, decrement the recursion count but do not 335 * release the buffer even if the count goes to 0. If the buffer is not modified 336 * within the transaction, decrement the recursion count and release the buffer 337 * if the recursion count goes to 0. 338 * 339 * If the buffer is to be released and it was not already dirty before this 340 * transaction began, then also free the buf_log_item associated with it. 341 * 342 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call. 343 */ 344 void 345 xfs_trans_brelse( 346 struct xfs_trans *tp, 347 struct xfs_buf *bp) 348 { 349 struct xfs_buf_log_item *bip = bp->b_log_item; 350 351 ASSERT(bp->b_transp == tp); 352 353 if (!tp) { 354 xfs_buf_relse(bp); 355 return; 356 } 357 358 trace_xfs_trans_brelse(bip); 359 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 360 ASSERT(atomic_read(&bip->bli_refcount) > 0); 361 362 /* 363 * If the release is for a recursive lookup, then decrement the count 364 * and return. 365 */ 366 if (bip->bli_recur > 0) { 367 bip->bli_recur--; 368 return; 369 } 370 371 /* 372 * If the buffer is invalidated or dirty in this transaction, we can't 373 * release it until we commit. 374 */ 375 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 376 return; 377 if (bip->bli_flags & XFS_BLI_STALE) 378 return; 379 380 /* 381 * Unlink the log item from the transaction and clear the hold flag, if 382 * set. We wouldn't want the next user of the buffer to get confused. 383 */ 384 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 385 xfs_trans_del_item(&bip->bli_item); 386 bip->bli_flags &= ~XFS_BLI_HOLD; 387 388 /* drop the reference to the bli */ 389 xfs_buf_item_put(bip); 390 391 bp->b_transp = NULL; 392 xfs_buf_relse(bp); 393 } 394 395 /* 396 * Forcibly detach a buffer previously joined to the transaction. The caller 397 * will retain its locked reference to the buffer after this function returns. 398 * The buffer must be completely clean and must not be held to the transaction. 399 */ 400 void 401 xfs_trans_bdetach( 402 struct xfs_trans *tp, 403 struct xfs_buf *bp) 404 { 405 struct xfs_buf_log_item *bip = bp->b_log_item; 406 407 ASSERT(tp != NULL); 408 ASSERT(bp->b_transp == tp); 409 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 410 ASSERT(atomic_read(&bip->bli_refcount) > 0); 411 412 trace_xfs_trans_bdetach(bip); 413 414 /* 415 * Erase all recursion count, since we're removing this buffer from the 416 * transaction. 417 */ 418 bip->bli_recur = 0; 419 420 /* 421 * The buffer must be completely clean. Specifically, it had better 422 * not be dirty, stale, logged, ordered, or held to the transaction. 423 */ 424 ASSERT(!test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 425 ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY)); 426 ASSERT(!(bip->bli_flags & XFS_BLI_HOLD)); 427 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 428 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 429 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 430 431 /* Unlink the log item from the transaction and drop the log item. */ 432 xfs_trans_del_item(&bip->bli_item); 433 xfs_buf_item_put(bip); 434 bp->b_transp = NULL; 435 } 436 437 /* 438 * Mark the buffer as not needing to be unlocked when the buf item's 439 * iop_committing() routine is called. The buffer must already be locked 440 * and associated with the given transaction. 441 */ 442 /* ARGSUSED */ 443 void 444 xfs_trans_bhold( 445 xfs_trans_t *tp, 446 struct xfs_buf *bp) 447 { 448 struct xfs_buf_log_item *bip = bp->b_log_item; 449 450 ASSERT(bp->b_transp == tp); 451 ASSERT(bip != NULL); 452 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 453 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 454 ASSERT(atomic_read(&bip->bli_refcount) > 0); 455 456 bip->bli_flags |= XFS_BLI_HOLD; 457 trace_xfs_trans_bhold(bip); 458 } 459 460 /* 461 * Cancel the previous buffer hold request made on this buffer 462 * for this transaction. 463 */ 464 void 465 xfs_trans_bhold_release( 466 xfs_trans_t *tp, 467 struct xfs_buf *bp) 468 { 469 struct xfs_buf_log_item *bip = bp->b_log_item; 470 471 ASSERT(bp->b_transp == tp); 472 ASSERT(bip != NULL); 473 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 474 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 475 ASSERT(atomic_read(&bip->bli_refcount) > 0); 476 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 477 478 bip->bli_flags &= ~XFS_BLI_HOLD; 479 trace_xfs_trans_bhold_release(bip); 480 } 481 482 /* 483 * Mark a buffer dirty in the transaction. 484 */ 485 void 486 xfs_trans_dirty_buf( 487 struct xfs_trans *tp, 488 struct xfs_buf *bp) 489 { 490 struct xfs_buf_log_item *bip = bp->b_log_item; 491 492 ASSERT(bp->b_transp == tp); 493 ASSERT(bip != NULL); 494 495 /* 496 * Mark the buffer as needing to be written out eventually, 497 * and set its iodone function to remove the buffer's buf log 498 * item from the AIL and free it when the buffer is flushed 499 * to disk. 500 */ 501 bp->b_flags |= XBF_DONE; 502 503 ASSERT(atomic_read(&bip->bli_refcount) > 0); 504 505 /* 506 * If we invalidated the buffer within this transaction, then 507 * cancel the invalidation now that we're dirtying the buffer 508 * again. There are no races with the code in xfs_buf_item_unpin(), 509 * because we have a reference to the buffer this entire time. 510 */ 511 if (bip->bli_flags & XFS_BLI_STALE) { 512 bip->bli_flags &= ~XFS_BLI_STALE; 513 ASSERT(bp->b_flags & XBF_STALE); 514 bp->b_flags &= ~XBF_STALE; 515 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 516 } 517 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 518 519 tp->t_flags |= XFS_TRANS_DIRTY; 520 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 521 } 522 523 /* 524 * This is called to mark bytes first through last inclusive of the given 525 * buffer as needing to be logged when the transaction is committed. 526 * The buffer must already be associated with the given transaction. 527 * 528 * First and last are numbers relative to the beginning of this buffer, 529 * so the first byte in the buffer is numbered 0 regardless of the 530 * value of b_blkno. 531 */ 532 void 533 xfs_trans_log_buf( 534 struct xfs_trans *tp, 535 struct xfs_buf *bp, 536 uint first, 537 uint last) 538 { 539 struct xfs_buf_log_item *bip = bp->b_log_item; 540 541 ASSERT(first <= last && last < BBTOB(bp->b_length)); 542 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 543 544 xfs_trans_dirty_buf(tp, bp); 545 546 trace_xfs_trans_log_buf(bip); 547 xfs_buf_item_log(bip, first, last); 548 } 549 550 551 /* 552 * Invalidate a buffer that is being used within a transaction. 553 * 554 * Typically this is because the blocks in the buffer are being freed, so we 555 * need to prevent it from being written out when we're done. Allowing it 556 * to be written again might overwrite data in the free blocks if they are 557 * reallocated to a file. 558 * 559 * We prevent the buffer from being written out by marking it stale. We can't 560 * get rid of the buf log item at this point because the buffer may still be 561 * pinned by another transaction. If that is the case, then we'll wait until 562 * the buffer is committed to disk for the last time (we can tell by the ref 563 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 564 * keep the buffer locked so that the buffer and buf log item are not reused. 565 * 566 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 567 * the buf item. This will be used at recovery time to determine that copies 568 * of the buffer in the log before this should not be replayed. 569 * 570 * We mark the item descriptor and the transaction dirty so that we'll hold 571 * the buffer until after the commit. 572 * 573 * Since we're invalidating the buffer, we also clear the state about which 574 * parts of the buffer have been logged. We also clear the flag indicating 575 * that this is an inode buffer since the data in the buffer will no longer 576 * be valid. 577 * 578 * We set the stale bit in the buffer as well since we're getting rid of it. 579 */ 580 void 581 xfs_trans_binval( 582 xfs_trans_t *tp, 583 struct xfs_buf *bp) 584 { 585 struct xfs_buf_log_item *bip = bp->b_log_item; 586 int i; 587 588 ASSERT(bp->b_transp == tp); 589 ASSERT(bip != NULL); 590 ASSERT(atomic_read(&bip->bli_refcount) > 0); 591 592 trace_xfs_trans_binval(bip); 593 594 if (bip->bli_flags & XFS_BLI_STALE) { 595 /* 596 * If the buffer is already invalidated, then 597 * just return. 598 */ 599 ASSERT(bp->b_flags & XBF_STALE); 600 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 601 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 602 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 603 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 604 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 605 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 606 return; 607 } 608 609 xfs_buf_stale(bp); 610 611 bip->bli_flags |= XFS_BLI_STALE; 612 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 613 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 614 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 615 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 616 for (i = 0; i < bip->bli_format_count; i++) { 617 memset(bip->bli_formats[i].blf_data_map, 0, 618 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 619 } 620 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 621 tp->t_flags |= XFS_TRANS_DIRTY; 622 } 623 624 /* 625 * This call is used to indicate that the buffer contains on-disk inodes which 626 * must be handled specially during recovery. They require special handling 627 * because only the di_next_unlinked from the inodes in the buffer should be 628 * recovered. The rest of the data in the buffer is logged via the inodes 629 * themselves. 630 * 631 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 632 * transferred to the buffer's log format structure so that we'll know what to 633 * do at recovery time. 634 */ 635 void 636 xfs_trans_inode_buf( 637 xfs_trans_t *tp, 638 struct xfs_buf *bp) 639 { 640 struct xfs_buf_log_item *bip = bp->b_log_item; 641 642 ASSERT(bp->b_transp == tp); 643 ASSERT(bip != NULL); 644 ASSERT(atomic_read(&bip->bli_refcount) > 0); 645 646 bip->bli_flags |= XFS_BLI_INODE_BUF; 647 bp->b_flags |= _XBF_INODES; 648 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 649 } 650 651 /* 652 * This call is used to indicate that the buffer is going to 653 * be staled and was an inode buffer. This means it gets 654 * special processing during unpin - where any inodes 655 * associated with the buffer should be removed from ail. 656 * There is also special processing during recovery, 657 * any replay of the inodes in the buffer needs to be 658 * prevented as the buffer may have been reused. 659 */ 660 void 661 xfs_trans_stale_inode_buf( 662 xfs_trans_t *tp, 663 struct xfs_buf *bp) 664 { 665 struct xfs_buf_log_item *bip = bp->b_log_item; 666 667 ASSERT(bp->b_transp == tp); 668 ASSERT(bip != NULL); 669 ASSERT(atomic_read(&bip->bli_refcount) > 0); 670 671 bip->bli_flags |= XFS_BLI_STALE_INODE; 672 bp->b_flags |= _XBF_INODES; 673 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 674 } 675 676 /* 677 * Mark the buffer as being one which contains newly allocated 678 * inodes. We need to make sure that even if this buffer is 679 * relogged as an 'inode buf' we still recover all of the inode 680 * images in the face of a crash. This works in coordination with 681 * xfs_buf_item_committed() to ensure that the buffer remains in the 682 * AIL at its original location even after it has been relogged. 683 */ 684 /* ARGSUSED */ 685 void 686 xfs_trans_inode_alloc_buf( 687 xfs_trans_t *tp, 688 struct xfs_buf *bp) 689 { 690 struct xfs_buf_log_item *bip = bp->b_log_item; 691 692 ASSERT(bp->b_transp == tp); 693 ASSERT(bip != NULL); 694 ASSERT(atomic_read(&bip->bli_refcount) > 0); 695 696 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 697 bp->b_flags |= _XBF_INODES; 698 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 699 } 700 701 /* 702 * Mark the buffer as ordered for this transaction. This means that the contents 703 * of the buffer are not recorded in the transaction but it is tracked in the 704 * AIL as though it was. This allows us to record logical changes in 705 * transactions rather than the physical changes we make to the buffer without 706 * changing writeback ordering constraints of metadata buffers. 707 */ 708 bool 709 xfs_trans_ordered_buf( 710 struct xfs_trans *tp, 711 struct xfs_buf *bp) 712 { 713 struct xfs_buf_log_item *bip = bp->b_log_item; 714 715 ASSERT(bp->b_transp == tp); 716 ASSERT(bip != NULL); 717 ASSERT(atomic_read(&bip->bli_refcount) > 0); 718 719 if (xfs_buf_item_dirty_format(bip)) 720 return false; 721 722 bip->bli_flags |= XFS_BLI_ORDERED; 723 trace_xfs_buf_item_ordered(bip); 724 725 /* 726 * We don't log a dirty range of an ordered buffer but it still needs 727 * to be marked dirty and that it has been logged. 728 */ 729 xfs_trans_dirty_buf(tp, bp); 730 return true; 731 } 732 733 /* 734 * Set the type of the buffer for log recovery so that it can correctly identify 735 * and hence attach the correct buffer ops to the buffer after replay. 736 */ 737 void 738 xfs_trans_buf_set_type( 739 struct xfs_trans *tp, 740 struct xfs_buf *bp, 741 enum xfs_blft type) 742 { 743 struct xfs_buf_log_item *bip = bp->b_log_item; 744 745 if (!tp) 746 return; 747 748 ASSERT(bp->b_transp == tp); 749 ASSERT(bip != NULL); 750 ASSERT(atomic_read(&bip->bli_refcount) > 0); 751 752 xfs_blft_to_flags(&bip->__bli_format, type); 753 } 754 755 void 756 xfs_trans_buf_copy_type( 757 struct xfs_buf *dst_bp, 758 struct xfs_buf *src_bp) 759 { 760 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 761 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 762 enum xfs_blft type; 763 764 type = xfs_blft_from_flags(&sbip->__bli_format); 765 xfs_blft_to_flags(&dbip->__bli_format, type); 766 } 767 768 /* 769 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 770 * dquots. However, unlike in inode buffer recovery, dquot buffers get 771 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 772 * The only thing that makes dquot buffers different from regular 773 * buffers is that we must not replay dquot bufs when recovering 774 * if a _corresponding_ quotaoff has happened. We also have to distinguish 775 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 776 * can be turned off independently. 777 */ 778 /* ARGSUSED */ 779 void 780 xfs_trans_dquot_buf( 781 xfs_trans_t *tp, 782 struct xfs_buf *bp, 783 uint type) 784 { 785 struct xfs_buf_log_item *bip = bp->b_log_item; 786 787 ASSERT(type == XFS_BLF_UDQUOT_BUF || 788 type == XFS_BLF_PDQUOT_BUF || 789 type == XFS_BLF_GDQUOT_BUF); 790 791 bip->__bli_format.blf_flags |= type; 792 793 switch (type) { 794 case XFS_BLF_UDQUOT_BUF: 795 type = XFS_BLFT_UDQUOT_BUF; 796 break; 797 case XFS_BLF_PDQUOT_BUF: 798 type = XFS_BLFT_PDQUOT_BUF; 799 break; 800 case XFS_BLF_GDQUOT_BUF: 801 type = XFS_BLFT_GDQUOT_BUF; 802 break; 803 default: 804 type = XFS_BLFT_UNKNOWN_BUF; 805 break; 806 } 807 808 bp->b_flags |= _XBF_DQUOTS; 809 xfs_trans_buf_set_type(tp, bp, type); 810 } 811