xref: /linux/fs/xfs/xfs_trans_buf.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_ialloc_btree.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_buf_item.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 
36 /*
37  * Check to see if a buffer matching the given parameters is already
38  * a part of the given transaction.
39  */
40 STATIC struct xfs_buf *
41 xfs_trans_buf_item_match(
42 	struct xfs_trans	*tp,
43 	struct xfs_buftarg	*target,
44 	struct xfs_buf_map	*map,
45 	int			nmaps)
46 {
47 	struct xfs_log_item_desc *lidp;
48 	struct xfs_buf_log_item	*blip;
49 	int			len = 0;
50 	int			i;
51 
52 	for (i = 0; i < nmaps; i++)
53 		len += map[i].bm_len;
54 
55 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
56 		blip = (struct xfs_buf_log_item *)lidp->lid_item;
57 		if (blip->bli_item.li_type == XFS_LI_BUF &&
58 		    blip->bli_buf->b_target == target &&
59 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
60 		    blip->bli_buf->b_length == len) {
61 			ASSERT(blip->bli_buf->b_map_count == nmaps);
62 			return blip->bli_buf;
63 		}
64 	}
65 
66 	return NULL;
67 }
68 
69 /*
70  * Add the locked buffer to the transaction.
71  *
72  * The buffer must be locked, and it cannot be associated with any
73  * transaction.
74  *
75  * If the buffer does not yet have a buf log item associated with it,
76  * then allocate one for it.  Then add the buf item to the transaction.
77  */
78 STATIC void
79 _xfs_trans_bjoin(
80 	struct xfs_trans	*tp,
81 	struct xfs_buf		*bp,
82 	int			reset_recur)
83 {
84 	struct xfs_buf_log_item	*bip;
85 
86 	ASSERT(bp->b_transp == NULL);
87 
88 	/*
89 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
90 	 * it doesn't have one yet, then allocate one and initialize it.
91 	 * The checks to see if one is there are in xfs_buf_item_init().
92 	 */
93 	xfs_buf_item_init(bp, tp->t_mountp);
94 	bip = bp->b_fspriv;
95 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
96 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
97 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
98 	if (reset_recur)
99 		bip->bli_recur = 0;
100 
101 	/*
102 	 * Take a reference for this transaction on the buf item.
103 	 */
104 	atomic_inc(&bip->bli_refcount);
105 
106 	/*
107 	 * Get a log_item_desc to point at the new item.
108 	 */
109 	xfs_trans_add_item(tp, &bip->bli_item);
110 
111 	/*
112 	 * Initialize b_fsprivate2 so we can find it with incore_match()
113 	 * in xfs_trans_get_buf() and friends above.
114 	 */
115 	bp->b_transp = tp;
116 
117 }
118 
119 void
120 xfs_trans_bjoin(
121 	struct xfs_trans	*tp,
122 	struct xfs_buf		*bp)
123 {
124 	_xfs_trans_bjoin(tp, bp, 0);
125 	trace_xfs_trans_bjoin(bp->b_fspriv);
126 }
127 
128 /*
129  * Get and lock the buffer for the caller if it is not already
130  * locked within the given transaction.  If it is already locked
131  * within the transaction, just increment its lock recursion count
132  * and return a pointer to it.
133  *
134  * If the transaction pointer is NULL, make this just a normal
135  * get_buf() call.
136  */
137 struct xfs_buf *
138 xfs_trans_get_buf_map(
139 	struct xfs_trans	*tp,
140 	struct xfs_buftarg	*target,
141 	struct xfs_buf_map	*map,
142 	int			nmaps,
143 	xfs_buf_flags_t		flags)
144 {
145 	xfs_buf_t		*bp;
146 	xfs_buf_log_item_t	*bip;
147 
148 	if (!tp)
149 		return xfs_buf_get_map(target, map, nmaps, flags);
150 
151 	/*
152 	 * If we find the buffer in the cache with this transaction
153 	 * pointer in its b_fsprivate2 field, then we know we already
154 	 * have it locked.  In this case we just increment the lock
155 	 * recursion count and return the buffer to the caller.
156 	 */
157 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
158 	if (bp != NULL) {
159 		ASSERT(xfs_buf_islocked(bp));
160 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
161 			xfs_buf_stale(bp);
162 			XFS_BUF_DONE(bp);
163 		}
164 
165 		ASSERT(bp->b_transp == tp);
166 		bip = bp->b_fspriv;
167 		ASSERT(bip != NULL);
168 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
169 		bip->bli_recur++;
170 		trace_xfs_trans_get_buf_recur(bip);
171 		return (bp);
172 	}
173 
174 	bp = xfs_buf_get_map(target, map, nmaps, flags);
175 	if (bp == NULL) {
176 		return NULL;
177 	}
178 
179 	ASSERT(!bp->b_error);
180 
181 	_xfs_trans_bjoin(tp, bp, 1);
182 	trace_xfs_trans_get_buf(bp->b_fspriv);
183 	return (bp);
184 }
185 
186 /*
187  * Get and lock the superblock buffer of this file system for the
188  * given transaction.
189  *
190  * We don't need to use incore_match() here, because the superblock
191  * buffer is a private buffer which we keep a pointer to in the
192  * mount structure.
193  */
194 xfs_buf_t *
195 xfs_trans_getsb(xfs_trans_t	*tp,
196 		struct xfs_mount *mp,
197 		int		flags)
198 {
199 	xfs_buf_t		*bp;
200 	xfs_buf_log_item_t	*bip;
201 
202 	/*
203 	 * Default to just trying to lock the superblock buffer
204 	 * if tp is NULL.
205 	 */
206 	if (tp == NULL) {
207 		return (xfs_getsb(mp, flags));
208 	}
209 
210 	/*
211 	 * If the superblock buffer already has this transaction
212 	 * pointer in its b_fsprivate2 field, then we know we already
213 	 * have it locked.  In this case we just increment the lock
214 	 * recursion count and return the buffer to the caller.
215 	 */
216 	bp = mp->m_sb_bp;
217 	if (bp->b_transp == tp) {
218 		bip = bp->b_fspriv;
219 		ASSERT(bip != NULL);
220 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
221 		bip->bli_recur++;
222 		trace_xfs_trans_getsb_recur(bip);
223 		return (bp);
224 	}
225 
226 	bp = xfs_getsb(mp, flags);
227 	if (bp == NULL)
228 		return NULL;
229 
230 	_xfs_trans_bjoin(tp, bp, 1);
231 	trace_xfs_trans_getsb(bp->b_fspriv);
232 	return (bp);
233 }
234 
235 #ifdef DEBUG
236 xfs_buftarg_t *xfs_error_target;
237 int	xfs_do_error;
238 int	xfs_req_num;
239 int	xfs_error_mod = 33;
240 #endif
241 
242 /*
243  * Get and lock the buffer for the caller if it is not already
244  * locked within the given transaction.  If it has not yet been
245  * read in, read it from disk. If it is already locked
246  * within the transaction and already read in, just increment its
247  * lock recursion count and return a pointer to it.
248  *
249  * If the transaction pointer is NULL, make this just a normal
250  * read_buf() call.
251  */
252 int
253 xfs_trans_read_buf_map(
254 	struct xfs_mount	*mp,
255 	struct xfs_trans	*tp,
256 	struct xfs_buftarg	*target,
257 	struct xfs_buf_map	*map,
258 	int			nmaps,
259 	xfs_buf_flags_t		flags,
260 	struct xfs_buf		**bpp)
261 {
262 	xfs_buf_t		*bp;
263 	xfs_buf_log_item_t	*bip;
264 	int			error;
265 
266 	*bpp = NULL;
267 	if (!tp) {
268 		bp = xfs_buf_read_map(target, map, nmaps, flags);
269 		if (!bp)
270 			return (flags & XBF_TRYLOCK) ?
271 					EAGAIN : XFS_ERROR(ENOMEM);
272 
273 		if (bp->b_error) {
274 			error = bp->b_error;
275 			xfs_buf_ioerror_alert(bp, __func__);
276 			XFS_BUF_UNDONE(bp);
277 			xfs_buf_stale(bp);
278 			xfs_buf_relse(bp);
279 			return error;
280 		}
281 #ifdef DEBUG
282 		if (xfs_do_error) {
283 			if (xfs_error_target == target) {
284 				if (((xfs_req_num++) % xfs_error_mod) == 0) {
285 					xfs_buf_relse(bp);
286 					xfs_debug(mp, "Returning error!");
287 					return XFS_ERROR(EIO);
288 				}
289 			}
290 		}
291 #endif
292 		if (XFS_FORCED_SHUTDOWN(mp))
293 			goto shutdown_abort;
294 		*bpp = bp;
295 		return 0;
296 	}
297 
298 	/*
299 	 * If we find the buffer in the cache with this transaction
300 	 * pointer in its b_fsprivate2 field, then we know we already
301 	 * have it locked.  If it is already read in we just increment
302 	 * the lock recursion count and return the buffer to the caller.
303 	 * If the buffer is not yet read in, then we read it in, increment
304 	 * the lock recursion count, and return it to the caller.
305 	 */
306 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
307 	if (bp != NULL) {
308 		ASSERT(xfs_buf_islocked(bp));
309 		ASSERT(bp->b_transp == tp);
310 		ASSERT(bp->b_fspriv != NULL);
311 		ASSERT(!bp->b_error);
312 		if (!(XFS_BUF_ISDONE(bp))) {
313 			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
314 			ASSERT(!XFS_BUF_ISASYNC(bp));
315 			XFS_BUF_READ(bp);
316 			xfsbdstrat(tp->t_mountp, bp);
317 			error = xfs_buf_iowait(bp);
318 			if (error) {
319 				xfs_buf_ioerror_alert(bp, __func__);
320 				xfs_buf_relse(bp);
321 				/*
322 				 * We can gracefully recover from most read
323 				 * errors. Ones we can't are those that happen
324 				 * after the transaction's already dirty.
325 				 */
326 				if (tp->t_flags & XFS_TRANS_DIRTY)
327 					xfs_force_shutdown(tp->t_mountp,
328 							SHUTDOWN_META_IO_ERROR);
329 				return error;
330 			}
331 		}
332 		/*
333 		 * We never locked this buf ourselves, so we shouldn't
334 		 * brelse it either. Just get out.
335 		 */
336 		if (XFS_FORCED_SHUTDOWN(mp)) {
337 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
338 			*bpp = NULL;
339 			return XFS_ERROR(EIO);
340 		}
341 
342 
343 		bip = bp->b_fspriv;
344 		bip->bli_recur++;
345 
346 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
347 		trace_xfs_trans_read_buf_recur(bip);
348 		*bpp = bp;
349 		return 0;
350 	}
351 
352 	bp = xfs_buf_read_map(target, map, nmaps, flags);
353 	if (bp == NULL) {
354 		*bpp = NULL;
355 		return (flags & XBF_TRYLOCK) ?
356 					0 : XFS_ERROR(ENOMEM);
357 	}
358 	if (bp->b_error) {
359 		error = bp->b_error;
360 		xfs_buf_stale(bp);
361 		XFS_BUF_DONE(bp);
362 		xfs_buf_ioerror_alert(bp, __func__);
363 		if (tp->t_flags & XFS_TRANS_DIRTY)
364 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
365 		xfs_buf_relse(bp);
366 		return error;
367 	}
368 #ifdef DEBUG
369 	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
370 		if (xfs_error_target == target) {
371 			if (((xfs_req_num++) % xfs_error_mod) == 0) {
372 				xfs_force_shutdown(tp->t_mountp,
373 						   SHUTDOWN_META_IO_ERROR);
374 				xfs_buf_relse(bp);
375 				xfs_debug(mp, "Returning trans error!");
376 				return XFS_ERROR(EIO);
377 			}
378 		}
379 	}
380 #endif
381 	if (XFS_FORCED_SHUTDOWN(mp))
382 		goto shutdown_abort;
383 
384 	_xfs_trans_bjoin(tp, bp, 1);
385 	trace_xfs_trans_read_buf(bp->b_fspriv);
386 
387 	*bpp = bp;
388 	return 0;
389 
390 shutdown_abort:
391 	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
392 	xfs_buf_relse(bp);
393 	*bpp = NULL;
394 	return XFS_ERROR(EIO);
395 }
396 
397 
398 /*
399  * Release the buffer bp which was previously acquired with one of the
400  * xfs_trans_... buffer allocation routines if the buffer has not
401  * been modified within this transaction.  If the buffer is modified
402  * within this transaction, do decrement the recursion count but do
403  * not release the buffer even if the count goes to 0.  If the buffer is not
404  * modified within the transaction, decrement the recursion count and
405  * release the buffer if the recursion count goes to 0.
406  *
407  * If the buffer is to be released and it was not modified before
408  * this transaction began, then free the buf_log_item associated with it.
409  *
410  * If the transaction pointer is NULL, make this just a normal
411  * brelse() call.
412  */
413 void
414 xfs_trans_brelse(xfs_trans_t	*tp,
415 		 xfs_buf_t	*bp)
416 {
417 	xfs_buf_log_item_t	*bip;
418 
419 	/*
420 	 * Default to a normal brelse() call if the tp is NULL.
421 	 */
422 	if (tp == NULL) {
423 		ASSERT(bp->b_transp == NULL);
424 		xfs_buf_relse(bp);
425 		return;
426 	}
427 
428 	ASSERT(bp->b_transp == tp);
429 	bip = bp->b_fspriv;
430 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
431 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
433 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
434 
435 	trace_xfs_trans_brelse(bip);
436 
437 	/*
438 	 * If the release is just for a recursive lock,
439 	 * then decrement the count and return.
440 	 */
441 	if (bip->bli_recur > 0) {
442 		bip->bli_recur--;
443 		return;
444 	}
445 
446 	/*
447 	 * If the buffer is dirty within this transaction, we can't
448 	 * release it until we commit.
449 	 */
450 	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
451 		return;
452 
453 	/*
454 	 * If the buffer has been invalidated, then we can't release
455 	 * it until the transaction commits to disk unless it is re-dirtied
456 	 * as part of this transaction.  This prevents us from pulling
457 	 * the item from the AIL before we should.
458 	 */
459 	if (bip->bli_flags & XFS_BLI_STALE)
460 		return;
461 
462 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
463 
464 	/*
465 	 * Free up the log item descriptor tracking the released item.
466 	 */
467 	xfs_trans_del_item(&bip->bli_item);
468 
469 	/*
470 	 * Clear the hold flag in the buf log item if it is set.
471 	 * We wouldn't want the next user of the buffer to
472 	 * get confused.
473 	 */
474 	if (bip->bli_flags & XFS_BLI_HOLD) {
475 		bip->bli_flags &= ~XFS_BLI_HOLD;
476 	}
477 
478 	/*
479 	 * Drop our reference to the buf log item.
480 	 */
481 	atomic_dec(&bip->bli_refcount);
482 
483 	/*
484 	 * If the buf item is not tracking data in the log, then
485 	 * we must free it before releasing the buffer back to the
486 	 * free pool.  Before releasing the buffer to the free pool,
487 	 * clear the transaction pointer in b_fsprivate2 to dissolve
488 	 * its relation to this transaction.
489 	 */
490 	if (!xfs_buf_item_dirty(bip)) {
491 /***
492 		ASSERT(bp->b_pincount == 0);
493 ***/
494 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
495 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
496 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
497 		xfs_buf_item_relse(bp);
498 	}
499 
500 	bp->b_transp = NULL;
501 	xfs_buf_relse(bp);
502 }
503 
504 /*
505  * Mark the buffer as not needing to be unlocked when the buf item's
506  * IOP_UNLOCK() routine is called.  The buffer must already be locked
507  * and associated with the given transaction.
508  */
509 /* ARGSUSED */
510 void
511 xfs_trans_bhold(xfs_trans_t	*tp,
512 		xfs_buf_t	*bp)
513 {
514 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
515 
516 	ASSERT(bp->b_transp == tp);
517 	ASSERT(bip != NULL);
518 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
519 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
520 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
521 
522 	bip->bli_flags |= XFS_BLI_HOLD;
523 	trace_xfs_trans_bhold(bip);
524 }
525 
526 /*
527  * Cancel the previous buffer hold request made on this buffer
528  * for this transaction.
529  */
530 void
531 xfs_trans_bhold_release(xfs_trans_t	*tp,
532 			xfs_buf_t	*bp)
533 {
534 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
535 
536 	ASSERT(bp->b_transp == tp);
537 	ASSERT(bip != NULL);
538 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
539 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
540 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
541 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
542 
543 	bip->bli_flags &= ~XFS_BLI_HOLD;
544 	trace_xfs_trans_bhold_release(bip);
545 }
546 
547 /*
548  * This is called to mark bytes first through last inclusive of the given
549  * buffer as needing to be logged when the transaction is committed.
550  * The buffer must already be associated with the given transaction.
551  *
552  * First and last are numbers relative to the beginning of this buffer,
553  * so the first byte in the buffer is numbered 0 regardless of the
554  * value of b_blkno.
555  */
556 void
557 xfs_trans_log_buf(xfs_trans_t	*tp,
558 		  xfs_buf_t	*bp,
559 		  uint		first,
560 		  uint		last)
561 {
562 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
563 
564 	ASSERT(bp->b_transp == tp);
565 	ASSERT(bip != NULL);
566 	ASSERT(first <= last && last < BBTOB(bp->b_length));
567 	ASSERT(bp->b_iodone == NULL ||
568 	       bp->b_iodone == xfs_buf_iodone_callbacks);
569 
570 	/*
571 	 * Mark the buffer as needing to be written out eventually,
572 	 * and set its iodone function to remove the buffer's buf log
573 	 * item from the AIL and free it when the buffer is flushed
574 	 * to disk.  See xfs_buf_attach_iodone() for more details
575 	 * on li_cb and xfs_buf_iodone_callbacks().
576 	 * If we end up aborting this transaction, we trap this buffer
577 	 * inside the b_bdstrat callback so that this won't get written to
578 	 * disk.
579 	 */
580 	XFS_BUF_DONE(bp);
581 
582 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
583 	bp->b_iodone = xfs_buf_iodone_callbacks;
584 	bip->bli_item.li_cb = xfs_buf_iodone;
585 
586 	trace_xfs_trans_log_buf(bip);
587 
588 	/*
589 	 * If we invalidated the buffer within this transaction, then
590 	 * cancel the invalidation now that we're dirtying the buffer
591 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
592 	 * because we have a reference to the buffer this entire time.
593 	 */
594 	if (bip->bli_flags & XFS_BLI_STALE) {
595 		bip->bli_flags &= ~XFS_BLI_STALE;
596 		ASSERT(XFS_BUF_ISSTALE(bp));
597 		XFS_BUF_UNSTALE(bp);
598 		bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
599 	}
600 
601 	tp->t_flags |= XFS_TRANS_DIRTY;
602 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
603 	bip->bli_flags |= XFS_BLI_LOGGED;
604 	xfs_buf_item_log(bip, first, last);
605 }
606 
607 
608 /*
609  * Invalidate a buffer that is being used within a transaction.
610  *
611  * Typically this is because the blocks in the buffer are being freed, so we
612  * need to prevent it from being written out when we're done.  Allowing it
613  * to be written again might overwrite data in the free blocks if they are
614  * reallocated to a file.
615  *
616  * We prevent the buffer from being written out by marking it stale.  We can't
617  * get rid of the buf log item at this point because the buffer may still be
618  * pinned by another transaction.  If that is the case, then we'll wait until
619  * the buffer is committed to disk for the last time (we can tell by the ref
620  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
621  * keep the buffer locked so that the buffer and buf log item are not reused.
622  *
623  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
624  * the buf item.  This will be used at recovery time to determine that copies
625  * of the buffer in the log before this should not be replayed.
626  *
627  * We mark the item descriptor and the transaction dirty so that we'll hold
628  * the buffer until after the commit.
629  *
630  * Since we're invalidating the buffer, we also clear the state about which
631  * parts of the buffer have been logged.  We also clear the flag indicating
632  * that this is an inode buffer since the data in the buffer will no longer
633  * be valid.
634  *
635  * We set the stale bit in the buffer as well since we're getting rid of it.
636  */
637 void
638 xfs_trans_binval(
639 	xfs_trans_t	*tp,
640 	xfs_buf_t	*bp)
641 {
642 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
643 
644 	ASSERT(bp->b_transp == tp);
645 	ASSERT(bip != NULL);
646 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
647 
648 	trace_xfs_trans_binval(bip);
649 
650 	if (bip->bli_flags & XFS_BLI_STALE) {
651 		/*
652 		 * If the buffer is already invalidated, then
653 		 * just return.
654 		 */
655 		ASSERT(XFS_BUF_ISSTALE(bp));
656 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
657 		ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
658 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
659 		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
660 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
661 		return;
662 	}
663 
664 	xfs_buf_stale(bp);
665 
666 	bip->bli_flags |= XFS_BLI_STALE;
667 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
668 	bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
669 	bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
670 	memset((char *)(bip->bli_format.blf_data_map), 0,
671 	      (bip->bli_format.blf_map_size * sizeof(uint)));
672 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
673 	tp->t_flags |= XFS_TRANS_DIRTY;
674 }
675 
676 /*
677  * This call is used to indicate that the buffer contains on-disk inodes which
678  * must be handled specially during recovery.  They require special handling
679  * because only the di_next_unlinked from the inodes in the buffer should be
680  * recovered.  The rest of the data in the buffer is logged via the inodes
681  * themselves.
682  *
683  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
684  * transferred to the buffer's log format structure so that we'll know what to
685  * do at recovery time.
686  */
687 void
688 xfs_trans_inode_buf(
689 	xfs_trans_t	*tp,
690 	xfs_buf_t	*bp)
691 {
692 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
693 
694 	ASSERT(bp->b_transp == tp);
695 	ASSERT(bip != NULL);
696 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
697 
698 	bip->bli_flags |= XFS_BLI_INODE_BUF;
699 }
700 
701 /*
702  * This call is used to indicate that the buffer is going to
703  * be staled and was an inode buffer. This means it gets
704  * special processing during unpin - where any inodes
705  * associated with the buffer should be removed from ail.
706  * There is also special processing during recovery,
707  * any replay of the inodes in the buffer needs to be
708  * prevented as the buffer may have been reused.
709  */
710 void
711 xfs_trans_stale_inode_buf(
712 	xfs_trans_t	*tp,
713 	xfs_buf_t	*bp)
714 {
715 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
716 
717 	ASSERT(bp->b_transp == tp);
718 	ASSERT(bip != NULL);
719 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
720 
721 	bip->bli_flags |= XFS_BLI_STALE_INODE;
722 	bip->bli_item.li_cb = xfs_buf_iodone;
723 }
724 
725 /*
726  * Mark the buffer as being one which contains newly allocated
727  * inodes.  We need to make sure that even if this buffer is
728  * relogged as an 'inode buf' we still recover all of the inode
729  * images in the face of a crash.  This works in coordination with
730  * xfs_buf_item_committed() to ensure that the buffer remains in the
731  * AIL at its original location even after it has been relogged.
732  */
733 /* ARGSUSED */
734 void
735 xfs_trans_inode_alloc_buf(
736 	xfs_trans_t	*tp,
737 	xfs_buf_t	*bp)
738 {
739 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
740 
741 	ASSERT(bp->b_transp == tp);
742 	ASSERT(bip != NULL);
743 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
744 
745 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
746 }
747 
748 
749 /*
750  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
751  * dquots. However, unlike in inode buffer recovery, dquot buffers get
752  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
753  * The only thing that makes dquot buffers different from regular
754  * buffers is that we must not replay dquot bufs when recovering
755  * if a _corresponding_ quotaoff has happened. We also have to distinguish
756  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
757  * can be turned off independently.
758  */
759 /* ARGSUSED */
760 void
761 xfs_trans_dquot_buf(
762 	xfs_trans_t	*tp,
763 	xfs_buf_t	*bp,
764 	uint		type)
765 {
766 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
767 
768 	ASSERT(bp->b_transp == tp);
769 	ASSERT(bip != NULL);
770 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
771 	       type == XFS_BLF_PDQUOT_BUF ||
772 	       type == XFS_BLF_GDQUOT_BUF);
773 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
774 
775 	bip->bli_format.blf_flags |= type;
776 }
777