1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #ifndef __XFS_BTREE_H__ 7 #define __XFS_BTREE_H__ 8 9 struct xfs_buf; 10 struct xfs_inode; 11 struct xfs_mount; 12 struct xfs_trans; 13 struct xfs_ifork; 14 struct xfs_perag; 15 16 /* 17 * Generic key, ptr and record wrapper structures. 18 * 19 * These are disk format structures, and are converted where necessary 20 * by the btree specific code that needs to interpret them. 21 */ 22 union xfs_btree_ptr { 23 __be32 s; /* short form ptr */ 24 __be64 l; /* long form ptr */ 25 }; 26 27 /* 28 * The in-core btree key. Overlapping btrees actually store two keys 29 * per pointer, so we reserve enough memory to hold both. The __*bigkey 30 * items should never be accessed directly. 31 */ 32 union xfs_btree_key { 33 struct xfs_bmbt_key bmbt; 34 xfs_bmdr_key_t bmbr; /* bmbt root block */ 35 xfs_alloc_key_t alloc; 36 struct xfs_inobt_key inobt; 37 struct xfs_rmap_key rmap; 38 struct xfs_rmap_key __rmap_bigkey[2]; 39 struct xfs_refcount_key refc; 40 }; 41 42 union xfs_btree_rec { 43 struct xfs_bmbt_rec bmbt; 44 xfs_bmdr_rec_t bmbr; /* bmbt root block */ 45 struct xfs_alloc_rec alloc; 46 struct xfs_inobt_rec inobt; 47 struct xfs_rmap_rec rmap; 48 struct xfs_refcount_rec refc; 49 }; 50 51 /* 52 * This nonsense is to make -wlint happy. 53 */ 54 #define XFS_LOOKUP_EQ ((xfs_lookup_t)XFS_LOOKUP_EQi) 55 #define XFS_LOOKUP_LE ((xfs_lookup_t)XFS_LOOKUP_LEi) 56 #define XFS_LOOKUP_GE ((xfs_lookup_t)XFS_LOOKUP_GEi) 57 58 struct xfs_btree_ops; 59 uint32_t xfs_btree_magic(struct xfs_mount *mp, const struct xfs_btree_ops *ops); 60 61 /* 62 * For logging record fields. 63 */ 64 #define XFS_BB_MAGIC (1u << 0) 65 #define XFS_BB_LEVEL (1u << 1) 66 #define XFS_BB_NUMRECS (1u << 2) 67 #define XFS_BB_LEFTSIB (1u << 3) 68 #define XFS_BB_RIGHTSIB (1u << 4) 69 #define XFS_BB_BLKNO (1u << 5) 70 #define XFS_BB_LSN (1u << 6) 71 #define XFS_BB_UUID (1u << 7) 72 #define XFS_BB_OWNER (1u << 8) 73 #define XFS_BB_NUM_BITS 5 74 #define XFS_BB_ALL_BITS ((1u << XFS_BB_NUM_BITS) - 1) 75 #define XFS_BB_NUM_BITS_CRC 9 76 #define XFS_BB_ALL_BITS_CRC ((1u << XFS_BB_NUM_BITS_CRC) - 1) 77 78 /* 79 * Generic stats interface 80 */ 81 #define XFS_BTREE_STATS_INC(cur, stat) \ 82 XFS_STATS_INC_OFF((cur)->bc_mp, \ 83 (cur)->bc_ops->statoff + __XBTS_ ## stat) 84 #define XFS_BTREE_STATS_ADD(cur, stat, val) \ 85 XFS_STATS_ADD_OFF((cur)->bc_mp, \ 86 (cur)->bc_ops->statoff + __XBTS_ ## stat, val) 87 88 enum xbtree_key_contig { 89 XBTREE_KEY_GAP = 0, 90 XBTREE_KEY_CONTIGUOUS, 91 XBTREE_KEY_OVERLAP, 92 }; 93 94 /* 95 * Decide if these two numeric btree key fields are contiguous, overlapping, 96 * or if there's a gap between them. @x should be the field from the high 97 * key and @y should be the field from the low key. 98 */ 99 static inline enum xbtree_key_contig xbtree_key_contig(uint64_t x, uint64_t y) 100 { 101 x++; 102 if (x < y) 103 return XBTREE_KEY_GAP; 104 if (x == y) 105 return XBTREE_KEY_CONTIGUOUS; 106 return XBTREE_KEY_OVERLAP; 107 } 108 109 #define XFS_BTREE_LONG_PTR_LEN (sizeof(__be64)) 110 #define XFS_BTREE_SHORT_PTR_LEN (sizeof(__be32)) 111 112 enum xfs_btree_type { 113 XFS_BTREE_TYPE_AG, 114 XFS_BTREE_TYPE_INODE, 115 XFS_BTREE_TYPE_MEM, 116 }; 117 118 struct xfs_btree_ops { 119 const char *name; 120 121 /* Type of btree - AG-rooted or inode-rooted */ 122 enum xfs_btree_type type; 123 124 /* XFS_BTGEO_* flags that determine the geometry of the btree */ 125 unsigned int geom_flags; 126 127 /* size of the key, pointer, and record structures */ 128 size_t key_len; 129 size_t ptr_len; 130 size_t rec_len; 131 132 /* LRU refcount to set on each btree buffer created */ 133 unsigned int lru_refs; 134 135 /* offset of btree stats array */ 136 unsigned int statoff; 137 138 /* sick mask for health reporting (only for XFS_BTREE_TYPE_AG) */ 139 unsigned int sick_mask; 140 141 /* cursor operations */ 142 struct xfs_btree_cur *(*dup_cursor)(struct xfs_btree_cur *); 143 void (*update_cursor)(struct xfs_btree_cur *src, 144 struct xfs_btree_cur *dst); 145 146 /* update btree root pointer */ 147 void (*set_root)(struct xfs_btree_cur *cur, 148 const union xfs_btree_ptr *nptr, int level_change); 149 150 /* block allocation / freeing */ 151 int (*alloc_block)(struct xfs_btree_cur *cur, 152 const union xfs_btree_ptr *start_bno, 153 union xfs_btree_ptr *new_bno, 154 int *stat); 155 int (*free_block)(struct xfs_btree_cur *cur, struct xfs_buf *bp); 156 157 /* records in block/level */ 158 int (*get_minrecs)(struct xfs_btree_cur *cur, int level); 159 int (*get_maxrecs)(struct xfs_btree_cur *cur, int level); 160 161 /* records on disk. Matter for the root in inode case. */ 162 int (*get_dmaxrecs)(struct xfs_btree_cur *cur, int level); 163 164 /* init values of btree structures */ 165 void (*init_key_from_rec)(union xfs_btree_key *key, 166 const union xfs_btree_rec *rec); 167 void (*init_rec_from_cur)(struct xfs_btree_cur *cur, 168 union xfs_btree_rec *rec); 169 void (*init_ptr_from_cur)(struct xfs_btree_cur *cur, 170 union xfs_btree_ptr *ptr); 171 void (*init_high_key_from_rec)(union xfs_btree_key *key, 172 const union xfs_btree_rec *rec); 173 174 /* difference between key value and cursor value */ 175 int64_t (*key_diff)(struct xfs_btree_cur *cur, 176 const union xfs_btree_key *key); 177 178 /* 179 * Difference between key2 and key1 -- positive if key1 > key2, 180 * negative if key1 < key2, and zero if equal. If the @mask parameter 181 * is non NULL, each key field to be used in the comparison must 182 * contain a nonzero value. 183 */ 184 int64_t (*diff_two_keys)(struct xfs_btree_cur *cur, 185 const union xfs_btree_key *key1, 186 const union xfs_btree_key *key2, 187 const union xfs_btree_key *mask); 188 189 const struct xfs_buf_ops *buf_ops; 190 191 /* check that k1 is lower than k2 */ 192 int (*keys_inorder)(struct xfs_btree_cur *cur, 193 const union xfs_btree_key *k1, 194 const union xfs_btree_key *k2); 195 196 /* check that r1 is lower than r2 */ 197 int (*recs_inorder)(struct xfs_btree_cur *cur, 198 const union xfs_btree_rec *r1, 199 const union xfs_btree_rec *r2); 200 201 /* 202 * Are these two btree keys immediately adjacent? 203 * 204 * Given two btree keys @key1 and @key2, decide if it is impossible for 205 * there to be a third btree key K satisfying the relationship 206 * @key1 < K < @key2. To determine if two btree records are 207 * immediately adjacent, @key1 should be the high key of the first 208 * record and @key2 should be the low key of the second record. 209 * If the @mask parameter is non NULL, each key field to be used in the 210 * comparison must contain a nonzero value. 211 */ 212 enum xbtree_key_contig (*keys_contiguous)(struct xfs_btree_cur *cur, 213 const union xfs_btree_key *key1, 214 const union xfs_btree_key *key2, 215 const union xfs_btree_key *mask); 216 }; 217 218 /* btree geometry flags */ 219 #define XFS_BTGEO_OVERLAPPING (1U << 0) /* overlapping intervals */ 220 221 222 union xfs_btree_irec { 223 struct xfs_alloc_rec_incore a; 224 struct xfs_bmbt_irec b; 225 struct xfs_inobt_rec_incore i; 226 struct xfs_rmap_irec r; 227 struct xfs_refcount_irec rc; 228 }; 229 230 struct xfs_btree_level { 231 /* buffer pointer */ 232 struct xfs_buf *bp; 233 234 /* key/record number */ 235 uint16_t ptr; 236 237 /* readahead info */ 238 #define XFS_BTCUR_LEFTRA (1 << 0) /* left sibling has been read-ahead */ 239 #define XFS_BTCUR_RIGHTRA (1 << 1) /* right sibling has been read-ahead */ 240 uint16_t ra; 241 }; 242 243 /* 244 * Btree cursor structure. 245 * This collects all information needed by the btree code in one place. 246 */ 247 struct xfs_btree_cur 248 { 249 struct xfs_trans *bc_tp; /* transaction we're in, if any */ 250 struct xfs_mount *bc_mp; /* file system mount struct */ 251 const struct xfs_btree_ops *bc_ops; 252 struct kmem_cache *bc_cache; /* cursor cache */ 253 unsigned int bc_flags; /* btree features - below */ 254 union xfs_btree_irec bc_rec; /* current insert/search record value */ 255 uint8_t bc_nlevels; /* number of levels in the tree */ 256 uint8_t bc_maxlevels; /* maximum levels for this btree type */ 257 258 /* per-type information */ 259 union { 260 struct { 261 struct xfs_inode *ip; 262 short forksize; 263 char whichfork; 264 struct xbtree_ifakeroot *ifake; /* for staging cursor */ 265 } bc_ino; 266 struct { 267 struct xfs_perag *pag; 268 struct xfs_buf *agbp; 269 struct xbtree_afakeroot *afake; /* for staging cursor */ 270 } bc_ag; 271 struct { 272 struct xfbtree *xfbtree; 273 struct xfs_perag *pag; 274 } bc_mem; 275 }; 276 277 /* per-format private data */ 278 union { 279 struct { 280 int allocated; 281 } bc_bmap; /* bmapbt */ 282 struct { 283 unsigned int nr_ops; /* # record updates */ 284 unsigned int shape_changes; /* # of extent splits */ 285 } bc_refc; /* refcountbt */ 286 }; 287 288 /* Must be at the end of the struct! */ 289 struct xfs_btree_level bc_levels[]; 290 }; 291 292 /* 293 * Compute the size of a btree cursor that can handle a btree of a given 294 * height. The bc_levels array handles node and leaf blocks, so its size 295 * is exactly nlevels. 296 */ 297 static inline size_t 298 xfs_btree_cur_sizeof(unsigned int nlevels) 299 { 300 return struct_size_t(struct xfs_btree_cur, bc_levels, nlevels); 301 } 302 303 /* cursor state flags */ 304 /* 305 * The root of this btree is a fakeroot structure so that we can stage a btree 306 * rebuild without leaving it accessible via primary metadata. The ops struct 307 * is dynamically allocated and must be freed when the cursor is deleted. 308 */ 309 #define XFS_BTREE_STAGING (1U << 0) 310 311 /* We are converting a delalloc reservation (only for bmbt btrees) */ 312 #define XFS_BTREE_BMBT_WASDEL (1U << 1) 313 314 /* For extent swap, ignore owner check in verifier (only for bmbt btrees) */ 315 #define XFS_BTREE_BMBT_INVALID_OWNER (1U << 2) 316 317 /* Cursor is active (only for allocbt btrees) */ 318 #define XFS_BTREE_ALLOCBT_ACTIVE (1U << 3) 319 320 #define XFS_BTREE_NOERROR 0 321 #define XFS_BTREE_ERROR 1 322 323 /* 324 * Convert from buffer to btree block header. 325 */ 326 #define XFS_BUF_TO_BLOCK(bp) ((struct xfs_btree_block *)((bp)->b_addr)) 327 328 xfs_failaddr_t __xfs_btree_check_block(struct xfs_btree_cur *cur, 329 struct xfs_btree_block *block, int level, struct xfs_buf *bp); 330 int __xfs_btree_check_ptr(struct xfs_btree_cur *cur, 331 const union xfs_btree_ptr *ptr, int index, int level); 332 333 /* 334 * Check that block header is ok. 335 */ 336 int 337 xfs_btree_check_block( 338 struct xfs_btree_cur *cur, /* btree cursor */ 339 struct xfs_btree_block *block, /* generic btree block pointer */ 340 int level, /* level of the btree block */ 341 struct xfs_buf *bp); /* buffer containing block, if any */ 342 343 /* 344 * Delete the btree cursor. 345 */ 346 void 347 xfs_btree_del_cursor( 348 struct xfs_btree_cur *cur, /* btree cursor */ 349 int error); /* del because of error */ 350 351 /* 352 * Duplicate the btree cursor. 353 * Allocate a new one, copy the record, re-get the buffers. 354 */ 355 int /* error */ 356 xfs_btree_dup_cursor( 357 struct xfs_btree_cur *cur, /* input cursor */ 358 struct xfs_btree_cur **ncur);/* output cursor */ 359 360 /* 361 * Compute first and last byte offsets for the fields given. 362 * Interprets the offsets table, which contains struct field offsets. 363 */ 364 void 365 xfs_btree_offsets( 366 uint32_t fields, /* bitmask of fields */ 367 const short *offsets,/* table of field offsets */ 368 int nbits, /* number of bits to inspect */ 369 int *first, /* output: first byte offset */ 370 int *last); /* output: last byte offset */ 371 372 /* 373 * Initialise a new btree block header 374 */ 375 void xfs_btree_init_buf(struct xfs_mount *mp, struct xfs_buf *bp, 376 const struct xfs_btree_ops *ops, __u16 level, __u16 numrecs, 377 __u64 owner); 378 void xfs_btree_init_block(struct xfs_mount *mp, 379 struct xfs_btree_block *buf, const struct xfs_btree_ops *ops, 380 __u16 level, __u16 numrecs, __u64 owner); 381 382 /* 383 * Common btree core entry points. 384 */ 385 int xfs_btree_increment(struct xfs_btree_cur *, int, int *); 386 int xfs_btree_decrement(struct xfs_btree_cur *, int, int *); 387 int xfs_btree_lookup(struct xfs_btree_cur *, xfs_lookup_t, int *); 388 int xfs_btree_update(struct xfs_btree_cur *, union xfs_btree_rec *); 389 int xfs_btree_new_iroot(struct xfs_btree_cur *, int *, int *); 390 int xfs_btree_insert(struct xfs_btree_cur *, int *); 391 int xfs_btree_delete(struct xfs_btree_cur *, int *); 392 int xfs_btree_get_rec(struct xfs_btree_cur *, union xfs_btree_rec **, int *); 393 int xfs_btree_change_owner(struct xfs_btree_cur *cur, uint64_t new_owner, 394 struct list_head *buffer_list); 395 396 /* 397 * btree block CRC helpers 398 */ 399 void xfs_btree_fsblock_calc_crc(struct xfs_buf *); 400 bool xfs_btree_fsblock_verify_crc(struct xfs_buf *); 401 void xfs_btree_agblock_calc_crc(struct xfs_buf *); 402 bool xfs_btree_agblock_verify_crc(struct xfs_buf *); 403 404 /* 405 * Internal btree helpers also used by xfs_bmap.c. 406 */ 407 void xfs_btree_log_block(struct xfs_btree_cur *, struct xfs_buf *, uint32_t); 408 void xfs_btree_log_recs(struct xfs_btree_cur *, struct xfs_buf *, int, int); 409 410 /* 411 * Helpers. 412 */ 413 static inline int xfs_btree_get_numrecs(const struct xfs_btree_block *block) 414 { 415 return be16_to_cpu(block->bb_numrecs); 416 } 417 418 static inline void xfs_btree_set_numrecs(struct xfs_btree_block *block, 419 uint16_t numrecs) 420 { 421 block->bb_numrecs = cpu_to_be16(numrecs); 422 } 423 424 static inline int xfs_btree_get_level(const struct xfs_btree_block *block) 425 { 426 return be16_to_cpu(block->bb_level); 427 } 428 429 430 /* 431 * Min and max functions for extlen, agblock, fileoff, and filblks types. 432 */ 433 #define XFS_EXTLEN_MIN(a,b) min_t(xfs_extlen_t, (a), (b)) 434 #define XFS_EXTLEN_MAX(a,b) max_t(xfs_extlen_t, (a), (b)) 435 #define XFS_AGBLOCK_MIN(a,b) min_t(xfs_agblock_t, (a), (b)) 436 #define XFS_AGBLOCK_MAX(a,b) max_t(xfs_agblock_t, (a), (b)) 437 #define XFS_FILEOFF_MIN(a,b) min_t(xfs_fileoff_t, (a), (b)) 438 #define XFS_FILEOFF_MAX(a,b) max_t(xfs_fileoff_t, (a), (b)) 439 #define XFS_FILBLKS_MIN(a,b) min_t(xfs_filblks_t, (a), (b)) 440 #define XFS_FILBLKS_MAX(a,b) max_t(xfs_filblks_t, (a), (b)) 441 442 xfs_failaddr_t xfs_btree_agblock_v5hdr_verify(struct xfs_buf *bp); 443 xfs_failaddr_t xfs_btree_agblock_verify(struct xfs_buf *bp, 444 unsigned int max_recs); 445 xfs_failaddr_t xfs_btree_fsblock_v5hdr_verify(struct xfs_buf *bp, 446 uint64_t owner); 447 xfs_failaddr_t xfs_btree_fsblock_verify(struct xfs_buf *bp, 448 unsigned int max_recs); 449 xfs_failaddr_t xfs_btree_memblock_verify(struct xfs_buf *bp, 450 unsigned int max_recs); 451 452 unsigned int xfs_btree_compute_maxlevels(const unsigned int *limits, 453 unsigned long long records); 454 unsigned long long xfs_btree_calc_size(const unsigned int *limits, 455 unsigned long long records); 456 unsigned int xfs_btree_space_to_height(const unsigned int *limits, 457 unsigned long long blocks); 458 459 /* 460 * Return codes for the query range iterator function are 0 to continue 461 * iterating, and non-zero to stop iterating. Any non-zero value will be 462 * passed up to the _query_range caller. The special value -ECANCELED can be 463 * used to stop iteration, because _query_range never generates that error 464 * code on its own. 465 */ 466 typedef int (*xfs_btree_query_range_fn)(struct xfs_btree_cur *cur, 467 const union xfs_btree_rec *rec, void *priv); 468 469 int xfs_btree_query_range(struct xfs_btree_cur *cur, 470 const union xfs_btree_irec *low_rec, 471 const union xfs_btree_irec *high_rec, 472 xfs_btree_query_range_fn fn, void *priv); 473 int xfs_btree_query_all(struct xfs_btree_cur *cur, xfs_btree_query_range_fn fn, 474 void *priv); 475 476 typedef int (*xfs_btree_visit_blocks_fn)(struct xfs_btree_cur *cur, int level, 477 void *data); 478 /* Visit record blocks. */ 479 #define XFS_BTREE_VISIT_RECORDS (1 << 0) 480 /* Visit leaf blocks. */ 481 #define XFS_BTREE_VISIT_LEAVES (1 << 1) 482 /* Visit all blocks. */ 483 #define XFS_BTREE_VISIT_ALL (XFS_BTREE_VISIT_RECORDS | \ 484 XFS_BTREE_VISIT_LEAVES) 485 int xfs_btree_visit_blocks(struct xfs_btree_cur *cur, 486 xfs_btree_visit_blocks_fn fn, unsigned int flags, void *data); 487 488 int xfs_btree_count_blocks(struct xfs_btree_cur *cur, xfs_extlen_t *blocks); 489 490 union xfs_btree_rec *xfs_btree_rec_addr(struct xfs_btree_cur *cur, int n, 491 struct xfs_btree_block *block); 492 union xfs_btree_key *xfs_btree_key_addr(struct xfs_btree_cur *cur, int n, 493 struct xfs_btree_block *block); 494 union xfs_btree_key *xfs_btree_high_key_addr(struct xfs_btree_cur *cur, int n, 495 struct xfs_btree_block *block); 496 union xfs_btree_ptr *xfs_btree_ptr_addr(struct xfs_btree_cur *cur, int n, 497 struct xfs_btree_block *block); 498 int xfs_btree_lookup_get_block(struct xfs_btree_cur *cur, int level, 499 const union xfs_btree_ptr *pp, struct xfs_btree_block **blkp); 500 struct xfs_btree_block *xfs_btree_get_block(struct xfs_btree_cur *cur, 501 int level, struct xfs_buf **bpp); 502 bool xfs_btree_ptr_is_null(struct xfs_btree_cur *cur, 503 const union xfs_btree_ptr *ptr); 504 int64_t xfs_btree_diff_two_ptrs(struct xfs_btree_cur *cur, 505 const union xfs_btree_ptr *a, 506 const union xfs_btree_ptr *b); 507 void xfs_btree_get_sibling(struct xfs_btree_cur *cur, 508 struct xfs_btree_block *block, 509 union xfs_btree_ptr *ptr, int lr); 510 void xfs_btree_get_keys(struct xfs_btree_cur *cur, 511 struct xfs_btree_block *block, union xfs_btree_key *key); 512 union xfs_btree_key *xfs_btree_high_key_from_key(struct xfs_btree_cur *cur, 513 union xfs_btree_key *key); 514 typedef bool (*xfs_btree_key_gap_fn)(struct xfs_btree_cur *cur, 515 const union xfs_btree_key *key1, 516 const union xfs_btree_key *key2); 517 518 int xfs_btree_has_records(struct xfs_btree_cur *cur, 519 const union xfs_btree_irec *low, 520 const union xfs_btree_irec *high, 521 const union xfs_btree_key *mask, 522 enum xbtree_recpacking *outcome); 523 524 bool xfs_btree_has_more_records(struct xfs_btree_cur *cur); 525 struct xfs_ifork *xfs_btree_ifork_ptr(struct xfs_btree_cur *cur); 526 527 /* Key comparison helpers */ 528 static inline bool 529 xfs_btree_keycmp_lt( 530 struct xfs_btree_cur *cur, 531 const union xfs_btree_key *key1, 532 const union xfs_btree_key *key2) 533 { 534 return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) < 0; 535 } 536 537 static inline bool 538 xfs_btree_keycmp_gt( 539 struct xfs_btree_cur *cur, 540 const union xfs_btree_key *key1, 541 const union xfs_btree_key *key2) 542 { 543 return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) > 0; 544 } 545 546 static inline bool 547 xfs_btree_keycmp_eq( 548 struct xfs_btree_cur *cur, 549 const union xfs_btree_key *key1, 550 const union xfs_btree_key *key2) 551 { 552 return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) == 0; 553 } 554 555 static inline bool 556 xfs_btree_keycmp_le( 557 struct xfs_btree_cur *cur, 558 const union xfs_btree_key *key1, 559 const union xfs_btree_key *key2) 560 { 561 return !xfs_btree_keycmp_gt(cur, key1, key2); 562 } 563 564 static inline bool 565 xfs_btree_keycmp_ge( 566 struct xfs_btree_cur *cur, 567 const union xfs_btree_key *key1, 568 const union xfs_btree_key *key2) 569 { 570 return !xfs_btree_keycmp_lt(cur, key1, key2); 571 } 572 573 static inline bool 574 xfs_btree_keycmp_ne( 575 struct xfs_btree_cur *cur, 576 const union xfs_btree_key *key1, 577 const union xfs_btree_key *key2) 578 { 579 return !xfs_btree_keycmp_eq(cur, key1, key2); 580 } 581 582 /* Masked key comparison helpers */ 583 static inline bool 584 xfs_btree_masked_keycmp_lt( 585 struct xfs_btree_cur *cur, 586 const union xfs_btree_key *key1, 587 const union xfs_btree_key *key2, 588 const union xfs_btree_key *mask) 589 { 590 return cur->bc_ops->diff_two_keys(cur, key1, key2, mask) < 0; 591 } 592 593 static inline bool 594 xfs_btree_masked_keycmp_gt( 595 struct xfs_btree_cur *cur, 596 const union xfs_btree_key *key1, 597 const union xfs_btree_key *key2, 598 const union xfs_btree_key *mask) 599 { 600 return cur->bc_ops->diff_two_keys(cur, key1, key2, mask) > 0; 601 } 602 603 static inline bool 604 xfs_btree_masked_keycmp_ge( 605 struct xfs_btree_cur *cur, 606 const union xfs_btree_key *key1, 607 const union xfs_btree_key *key2, 608 const union xfs_btree_key *mask) 609 { 610 return !xfs_btree_masked_keycmp_lt(cur, key1, key2, mask); 611 } 612 613 /* Does this cursor point to the last block in the given level? */ 614 static inline bool 615 xfs_btree_islastblock( 616 struct xfs_btree_cur *cur, 617 int level) 618 { 619 struct xfs_btree_block *block; 620 struct xfs_buf *bp; 621 622 block = xfs_btree_get_block(cur, level, &bp); 623 624 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 625 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK); 626 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK); 627 } 628 629 void xfs_btree_set_ptr_null(struct xfs_btree_cur *cur, 630 union xfs_btree_ptr *ptr); 631 int xfs_btree_get_buf_block(struct xfs_btree_cur *cur, 632 const union xfs_btree_ptr *ptr, struct xfs_btree_block **block, 633 struct xfs_buf **bpp); 634 int xfs_btree_read_buf_block(struct xfs_btree_cur *cur, 635 const union xfs_btree_ptr *ptr, int flags, 636 struct xfs_btree_block **block, struct xfs_buf **bpp); 637 void xfs_btree_set_sibling(struct xfs_btree_cur *cur, 638 struct xfs_btree_block *block, const union xfs_btree_ptr *ptr, 639 int lr); 640 void xfs_btree_init_block_cur(struct xfs_btree_cur *cur, 641 struct xfs_buf *bp, int level, int numrecs); 642 void xfs_btree_copy_ptrs(struct xfs_btree_cur *cur, 643 union xfs_btree_ptr *dst_ptr, 644 const union xfs_btree_ptr *src_ptr, int numptrs); 645 void xfs_btree_copy_keys(struct xfs_btree_cur *cur, 646 union xfs_btree_key *dst_key, 647 const union xfs_btree_key *src_key, int numkeys); 648 void xfs_btree_init_ptr_from_cur(struct xfs_btree_cur *cur, 649 union xfs_btree_ptr *ptr); 650 651 static inline struct xfs_btree_cur * 652 xfs_btree_alloc_cursor( 653 struct xfs_mount *mp, 654 struct xfs_trans *tp, 655 const struct xfs_btree_ops *ops, 656 uint8_t maxlevels, 657 struct kmem_cache *cache) 658 { 659 struct xfs_btree_cur *cur; 660 661 ASSERT(ops->ptr_len == XFS_BTREE_LONG_PTR_LEN || 662 ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN); 663 664 /* BMBT allocations can come through from non-transactional context. */ 665 cur = kmem_cache_zalloc(cache, 666 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 667 cur->bc_ops = ops; 668 cur->bc_tp = tp; 669 cur->bc_mp = mp; 670 cur->bc_maxlevels = maxlevels; 671 cur->bc_cache = cache; 672 673 return cur; 674 } 675 676 int __init xfs_btree_init_cur_caches(void); 677 void xfs_btree_destroy_cur_caches(void); 678 679 int xfs_btree_goto_left_edge(struct xfs_btree_cur *cur); 680 681 /* Does this level of the cursor point to the inode root (and not a block)? */ 682 static inline bool 683 xfs_btree_at_iroot( 684 const struct xfs_btree_cur *cur, 685 int level) 686 { 687 return cur->bc_ops->type == XFS_BTREE_TYPE_INODE && 688 level == cur->bc_nlevels - 1; 689 } 690 691 #endif /* __XFS_BTREE_H__ */ 692