1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #ifndef __XFS_BTREE_H__ 7 #define __XFS_BTREE_H__ 8 9 struct xfs_buf; 10 struct xfs_inode; 11 struct xfs_mount; 12 struct xfs_trans; 13 struct xfs_ifork; 14 struct xfs_perag; 15 16 /* 17 * Generic key, ptr and record wrapper structures. 18 * 19 * These are disk format structures, and are converted where necessary 20 * by the btree specific code that needs to interpret them. 21 */ 22 union xfs_btree_ptr { 23 __be32 s; /* short form ptr */ 24 __be64 l; /* long form ptr */ 25 }; 26 27 /* 28 * The in-core btree key. Overlapping btrees actually store two keys 29 * per pointer, so we reserve enough memory to hold both. The __*bigkey 30 * items should never be accessed directly. 31 */ 32 union xfs_btree_key { 33 struct xfs_bmbt_key bmbt; 34 xfs_bmdr_key_t bmbr; /* bmbt root block */ 35 xfs_alloc_key_t alloc; 36 struct xfs_inobt_key inobt; 37 struct xfs_rmap_key rmap; 38 struct xfs_rmap_key __rmap_bigkey[2]; 39 struct xfs_refcount_key refc; 40 }; 41 42 union xfs_btree_rec { 43 struct xfs_bmbt_rec bmbt; 44 xfs_bmdr_rec_t bmbr; /* bmbt root block */ 45 struct xfs_alloc_rec alloc; 46 struct xfs_inobt_rec inobt; 47 struct xfs_rmap_rec rmap; 48 struct xfs_refcount_rec refc; 49 }; 50 51 /* 52 * This nonsense is to make -wlint happy. 53 */ 54 #define XFS_LOOKUP_EQ ((xfs_lookup_t)XFS_LOOKUP_EQi) 55 #define XFS_LOOKUP_LE ((xfs_lookup_t)XFS_LOOKUP_LEi) 56 #define XFS_LOOKUP_GE ((xfs_lookup_t)XFS_LOOKUP_GEi) 57 58 struct xfs_btree_ops; 59 uint32_t xfs_btree_magic(struct xfs_mount *mp, const struct xfs_btree_ops *ops); 60 61 /* 62 * For logging record fields. 63 */ 64 #define XFS_BB_MAGIC (1u << 0) 65 #define XFS_BB_LEVEL (1u << 1) 66 #define XFS_BB_NUMRECS (1u << 2) 67 #define XFS_BB_LEFTSIB (1u << 3) 68 #define XFS_BB_RIGHTSIB (1u << 4) 69 #define XFS_BB_BLKNO (1u << 5) 70 #define XFS_BB_LSN (1u << 6) 71 #define XFS_BB_UUID (1u << 7) 72 #define XFS_BB_OWNER (1u << 8) 73 #define XFS_BB_NUM_BITS 5 74 #define XFS_BB_ALL_BITS ((1u << XFS_BB_NUM_BITS) - 1) 75 #define XFS_BB_NUM_BITS_CRC 9 76 #define XFS_BB_ALL_BITS_CRC ((1u << XFS_BB_NUM_BITS_CRC) - 1) 77 78 /* 79 * Generic stats interface 80 */ 81 #define XFS_BTREE_STATS_INC(cur, stat) \ 82 XFS_STATS_INC_OFF((cur)->bc_mp, \ 83 (cur)->bc_ops->statoff + __XBTS_ ## stat) 84 #define XFS_BTREE_STATS_ADD(cur, stat, val) \ 85 XFS_STATS_ADD_OFF((cur)->bc_mp, \ 86 (cur)->bc_ops->statoff + __XBTS_ ## stat, val) 87 88 enum xbtree_key_contig { 89 XBTREE_KEY_GAP = 0, 90 XBTREE_KEY_CONTIGUOUS, 91 XBTREE_KEY_OVERLAP, 92 }; 93 94 /* 95 * Decide if these two numeric btree key fields are contiguous, overlapping, 96 * or if there's a gap between them. @x should be the field from the high 97 * key and @y should be the field from the low key. 98 */ 99 static inline enum xbtree_key_contig xbtree_key_contig(uint64_t x, uint64_t y) 100 { 101 x++; 102 if (x < y) 103 return XBTREE_KEY_GAP; 104 if (x == y) 105 return XBTREE_KEY_CONTIGUOUS; 106 return XBTREE_KEY_OVERLAP; 107 } 108 109 #define XFS_BTREE_LONG_PTR_LEN (sizeof(__be64)) 110 #define XFS_BTREE_SHORT_PTR_LEN (sizeof(__be32)) 111 112 enum xfs_btree_type { 113 XFS_BTREE_TYPE_AG, 114 XFS_BTREE_TYPE_INODE, 115 XFS_BTREE_TYPE_MEM, 116 }; 117 118 struct xfs_btree_ops { 119 const char *name; 120 121 /* Type of btree - AG-rooted or inode-rooted */ 122 enum xfs_btree_type type; 123 124 /* XFS_BTGEO_* flags that determine the geometry of the btree */ 125 unsigned int geom_flags; 126 127 /* size of the key, pointer, and record structures */ 128 size_t key_len; 129 size_t ptr_len; 130 size_t rec_len; 131 132 /* LRU refcount to set on each btree buffer created */ 133 unsigned int lru_refs; 134 135 /* offset of btree stats array */ 136 unsigned int statoff; 137 138 /* sick mask for health reporting (not for bmap btrees) */ 139 unsigned int sick_mask; 140 141 /* cursor operations */ 142 struct xfs_btree_cur *(*dup_cursor)(struct xfs_btree_cur *); 143 void (*update_cursor)(struct xfs_btree_cur *src, 144 struct xfs_btree_cur *dst); 145 146 /* update btree root pointer */ 147 void (*set_root)(struct xfs_btree_cur *cur, 148 const union xfs_btree_ptr *nptr, int level_change); 149 150 /* block allocation / freeing */ 151 int (*alloc_block)(struct xfs_btree_cur *cur, 152 const union xfs_btree_ptr *start_bno, 153 union xfs_btree_ptr *new_bno, 154 int *stat); 155 int (*free_block)(struct xfs_btree_cur *cur, struct xfs_buf *bp); 156 157 /* records in block/level */ 158 int (*get_minrecs)(struct xfs_btree_cur *cur, int level); 159 int (*get_maxrecs)(struct xfs_btree_cur *cur, int level); 160 161 /* records on disk. Matter for the root in inode case. */ 162 int (*get_dmaxrecs)(struct xfs_btree_cur *cur, int level); 163 164 /* init values of btree structures */ 165 void (*init_key_from_rec)(union xfs_btree_key *key, 166 const union xfs_btree_rec *rec); 167 void (*init_rec_from_cur)(struct xfs_btree_cur *cur, 168 union xfs_btree_rec *rec); 169 void (*init_ptr_from_cur)(struct xfs_btree_cur *cur, 170 union xfs_btree_ptr *ptr); 171 void (*init_high_key_from_rec)(union xfs_btree_key *key, 172 const union xfs_btree_rec *rec); 173 174 /* difference between key value and cursor value */ 175 int64_t (*key_diff)(struct xfs_btree_cur *cur, 176 const union xfs_btree_key *key); 177 178 /* 179 * Difference between key2 and key1 -- positive if key1 > key2, 180 * negative if key1 < key2, and zero if equal. If the @mask parameter 181 * is non NULL, each key field to be used in the comparison must 182 * contain a nonzero value. 183 */ 184 int64_t (*diff_two_keys)(struct xfs_btree_cur *cur, 185 const union xfs_btree_key *key1, 186 const union xfs_btree_key *key2, 187 const union xfs_btree_key *mask); 188 189 const struct xfs_buf_ops *buf_ops; 190 191 /* check that k1 is lower than k2 */ 192 int (*keys_inorder)(struct xfs_btree_cur *cur, 193 const union xfs_btree_key *k1, 194 const union xfs_btree_key *k2); 195 196 /* check that r1 is lower than r2 */ 197 int (*recs_inorder)(struct xfs_btree_cur *cur, 198 const union xfs_btree_rec *r1, 199 const union xfs_btree_rec *r2); 200 201 /* 202 * Are these two btree keys immediately adjacent? 203 * 204 * Given two btree keys @key1 and @key2, decide if it is impossible for 205 * there to be a third btree key K satisfying the relationship 206 * @key1 < K < @key2. To determine if two btree records are 207 * immediately adjacent, @key1 should be the high key of the first 208 * record and @key2 should be the low key of the second record. 209 * If the @mask parameter is non NULL, each key field to be used in the 210 * comparison must contain a nonzero value. 211 */ 212 enum xbtree_key_contig (*keys_contiguous)(struct xfs_btree_cur *cur, 213 const union xfs_btree_key *key1, 214 const union xfs_btree_key *key2, 215 const union xfs_btree_key *mask); 216 217 /* 218 * Reallocate the space for if_broot to fit the number of records. 219 * Move the records and pointers in if_broot to fit the new size. When 220 * shrinking this will eliminate holes between the records and pointers 221 * created by the caller. When growing this will create holes to be 222 * filled in by the caller. 223 * 224 * The caller must not request to add more records than would fit in 225 * the on-disk inode root. If the if_broot is currently NULL, then if 226 * we are adding records, one will be allocated. The caller must also 227 * not request that the number of records go below zero, although it 228 * can go to zero. 229 */ 230 struct xfs_btree_block *(*broot_realloc)(struct xfs_btree_cur *cur, 231 unsigned int new_numrecs); 232 }; 233 234 /* btree geometry flags */ 235 #define XFS_BTGEO_OVERLAPPING (1U << 0) /* overlapping intervals */ 236 #define XFS_BTGEO_IROOT_RECORDS (1U << 1) /* iroot can store records */ 237 238 union xfs_btree_irec { 239 struct xfs_alloc_rec_incore a; 240 struct xfs_bmbt_irec b; 241 struct xfs_inobt_rec_incore i; 242 struct xfs_rmap_irec r; 243 struct xfs_refcount_irec rc; 244 }; 245 246 struct xfs_btree_level { 247 /* buffer pointer */ 248 struct xfs_buf *bp; 249 250 /* key/record number */ 251 uint16_t ptr; 252 253 /* readahead info */ 254 #define XFS_BTCUR_LEFTRA (1 << 0) /* left sibling has been read-ahead */ 255 #define XFS_BTCUR_RIGHTRA (1 << 1) /* right sibling has been read-ahead */ 256 uint16_t ra; 257 }; 258 259 /* 260 * Btree cursor structure. 261 * This collects all information needed by the btree code in one place. 262 */ 263 struct xfs_btree_cur 264 { 265 struct xfs_trans *bc_tp; /* transaction we're in, if any */ 266 struct xfs_mount *bc_mp; /* file system mount struct */ 267 const struct xfs_btree_ops *bc_ops; 268 struct kmem_cache *bc_cache; /* cursor cache */ 269 unsigned int bc_flags; /* btree features - below */ 270 union xfs_btree_irec bc_rec; /* current insert/search record value */ 271 uint8_t bc_nlevels; /* number of levels in the tree */ 272 uint8_t bc_maxlevels; /* maximum levels for this btree type */ 273 struct xfs_group *bc_group; 274 275 /* per-type information */ 276 union { 277 struct { 278 struct xfs_inode *ip; 279 short forksize; 280 char whichfork; 281 struct xbtree_ifakeroot *ifake; /* for staging cursor */ 282 } bc_ino; 283 struct { 284 struct xfs_buf *agbp; 285 struct xbtree_afakeroot *afake; /* for staging cursor */ 286 } bc_ag; 287 struct { 288 struct xfbtree *xfbtree; 289 } bc_mem; 290 }; 291 292 /* per-format private data */ 293 union { 294 struct { 295 int allocated; 296 } bc_bmap; /* bmapbt */ 297 struct { 298 unsigned int nr_ops; /* # record updates */ 299 unsigned int shape_changes; /* # of extent splits */ 300 } bc_refc; /* refcountbt/rtrefcountbt */ 301 }; 302 303 /* Must be at the end of the struct! */ 304 struct xfs_btree_level bc_levels[]; 305 }; 306 307 /* 308 * Compute the size of a btree cursor that can handle a btree of a given 309 * height. The bc_levels array handles node and leaf blocks, so its size 310 * is exactly nlevels. 311 */ 312 static inline size_t 313 xfs_btree_cur_sizeof(unsigned int nlevels) 314 { 315 return struct_size_t(struct xfs_btree_cur, bc_levels, nlevels); 316 } 317 318 /* cursor state flags */ 319 /* 320 * The root of this btree is a fakeroot structure so that we can stage a btree 321 * rebuild without leaving it accessible via primary metadata. The ops struct 322 * is dynamically allocated and must be freed when the cursor is deleted. 323 */ 324 #define XFS_BTREE_STAGING (1U << 0) 325 326 /* We are converting a delalloc reservation (only for bmbt btrees) */ 327 #define XFS_BTREE_BMBT_WASDEL (1U << 1) 328 329 /* For extent swap, ignore owner check in verifier (only for bmbt btrees) */ 330 #define XFS_BTREE_BMBT_INVALID_OWNER (1U << 2) 331 332 /* Cursor is active (only for allocbt btrees) */ 333 #define XFS_BTREE_ALLOCBT_ACTIVE (1U << 3) 334 335 #define XFS_BTREE_NOERROR 0 336 #define XFS_BTREE_ERROR 1 337 338 /* 339 * Convert from buffer to btree block header. 340 */ 341 #define XFS_BUF_TO_BLOCK(bp) ((struct xfs_btree_block *)((bp)->b_addr)) 342 343 xfs_failaddr_t __xfs_btree_check_block(struct xfs_btree_cur *cur, 344 struct xfs_btree_block *block, int level, struct xfs_buf *bp); 345 int __xfs_btree_check_ptr(struct xfs_btree_cur *cur, 346 const union xfs_btree_ptr *ptr, int index, int level); 347 348 /* 349 * Check that block header is ok. 350 */ 351 int 352 xfs_btree_check_block( 353 struct xfs_btree_cur *cur, /* btree cursor */ 354 struct xfs_btree_block *block, /* generic btree block pointer */ 355 int level, /* level of the btree block */ 356 struct xfs_buf *bp); /* buffer containing block, if any */ 357 358 /* 359 * Delete the btree cursor. 360 */ 361 void 362 xfs_btree_del_cursor( 363 struct xfs_btree_cur *cur, /* btree cursor */ 364 int error); /* del because of error */ 365 366 /* 367 * Duplicate the btree cursor. 368 * Allocate a new one, copy the record, re-get the buffers. 369 */ 370 int /* error */ 371 xfs_btree_dup_cursor( 372 struct xfs_btree_cur *cur, /* input cursor */ 373 struct xfs_btree_cur **ncur);/* output cursor */ 374 375 /* 376 * Compute first and last byte offsets for the fields given. 377 * Interprets the offsets table, which contains struct field offsets. 378 */ 379 void 380 xfs_btree_offsets( 381 uint32_t fields, /* bitmask of fields */ 382 const short *offsets,/* table of field offsets */ 383 int nbits, /* number of bits to inspect */ 384 int *first, /* output: first byte offset */ 385 int *last); /* output: last byte offset */ 386 387 /* 388 * Initialise a new btree block header 389 */ 390 void xfs_btree_init_buf(struct xfs_mount *mp, struct xfs_buf *bp, 391 const struct xfs_btree_ops *ops, __u16 level, __u16 numrecs, 392 __u64 owner); 393 void xfs_btree_init_block(struct xfs_mount *mp, 394 struct xfs_btree_block *buf, const struct xfs_btree_ops *ops, 395 __u16 level, __u16 numrecs, __u64 owner); 396 397 /* 398 * Common btree core entry points. 399 */ 400 int xfs_btree_increment(struct xfs_btree_cur *, int, int *); 401 int xfs_btree_decrement(struct xfs_btree_cur *, int, int *); 402 int xfs_btree_lookup(struct xfs_btree_cur *, xfs_lookup_t, int *); 403 int xfs_btree_update(struct xfs_btree_cur *, union xfs_btree_rec *); 404 int xfs_btree_new_iroot(struct xfs_btree_cur *, int *, int *); 405 int xfs_btree_insert(struct xfs_btree_cur *, int *); 406 int xfs_btree_delete(struct xfs_btree_cur *, int *); 407 int xfs_btree_get_rec(struct xfs_btree_cur *, union xfs_btree_rec **, int *); 408 int xfs_btree_change_owner(struct xfs_btree_cur *cur, uint64_t new_owner, 409 struct list_head *buffer_list); 410 411 /* 412 * btree block CRC helpers 413 */ 414 void xfs_btree_fsblock_calc_crc(struct xfs_buf *); 415 bool xfs_btree_fsblock_verify_crc(struct xfs_buf *); 416 void xfs_btree_agblock_calc_crc(struct xfs_buf *); 417 bool xfs_btree_agblock_verify_crc(struct xfs_buf *); 418 419 /* 420 * Internal btree helpers also used by xfs_bmap.c. 421 */ 422 void xfs_btree_log_block(struct xfs_btree_cur *, struct xfs_buf *, uint32_t); 423 void xfs_btree_log_recs(struct xfs_btree_cur *, struct xfs_buf *, int, int); 424 425 /* 426 * Helpers. 427 */ 428 static inline int xfs_btree_get_numrecs(const struct xfs_btree_block *block) 429 { 430 return be16_to_cpu(block->bb_numrecs); 431 } 432 433 static inline void xfs_btree_set_numrecs(struct xfs_btree_block *block, 434 uint16_t numrecs) 435 { 436 block->bb_numrecs = cpu_to_be16(numrecs); 437 } 438 439 static inline int xfs_btree_get_level(const struct xfs_btree_block *block) 440 { 441 return be16_to_cpu(block->bb_level); 442 } 443 444 445 /* 446 * Min and max functions for extlen, agblock, fileoff, and filblks types. 447 */ 448 #define XFS_EXTLEN_MIN(a,b) min_t(xfs_extlen_t, (a), (b)) 449 #define XFS_EXTLEN_MAX(a,b) max_t(xfs_extlen_t, (a), (b)) 450 #define XFS_AGBLOCK_MIN(a,b) min_t(xfs_agblock_t, (a), (b)) 451 #define XFS_AGBLOCK_MAX(a,b) max_t(xfs_agblock_t, (a), (b)) 452 #define XFS_FILEOFF_MIN(a,b) min_t(xfs_fileoff_t, (a), (b)) 453 #define XFS_FILEOFF_MAX(a,b) max_t(xfs_fileoff_t, (a), (b)) 454 #define XFS_FILBLKS_MIN(a,b) min_t(xfs_filblks_t, (a), (b)) 455 #define XFS_FILBLKS_MAX(a,b) max_t(xfs_filblks_t, (a), (b)) 456 457 xfs_failaddr_t xfs_btree_agblock_v5hdr_verify(struct xfs_buf *bp); 458 xfs_failaddr_t xfs_btree_agblock_verify(struct xfs_buf *bp, 459 unsigned int max_recs); 460 xfs_failaddr_t xfs_btree_fsblock_v5hdr_verify(struct xfs_buf *bp, 461 uint64_t owner); 462 xfs_failaddr_t xfs_btree_fsblock_verify(struct xfs_buf *bp, 463 unsigned int max_recs); 464 xfs_failaddr_t xfs_btree_memblock_verify(struct xfs_buf *bp, 465 unsigned int max_recs); 466 467 unsigned int xfs_btree_compute_maxlevels(const unsigned int *limits, 468 unsigned long long records); 469 unsigned long long xfs_btree_calc_size(const unsigned int *limits, 470 unsigned long long records); 471 unsigned int xfs_btree_space_to_height(const unsigned int *limits, 472 unsigned long long blocks); 473 474 /* 475 * Return codes for the query range iterator function are 0 to continue 476 * iterating, and non-zero to stop iterating. Any non-zero value will be 477 * passed up to the _query_range caller. The special value -ECANCELED can be 478 * used to stop iteration, because _query_range never generates that error 479 * code on its own. 480 */ 481 typedef int (*xfs_btree_query_range_fn)(struct xfs_btree_cur *cur, 482 const union xfs_btree_rec *rec, void *priv); 483 484 int xfs_btree_query_range(struct xfs_btree_cur *cur, 485 const union xfs_btree_irec *low_rec, 486 const union xfs_btree_irec *high_rec, 487 xfs_btree_query_range_fn fn, void *priv); 488 int xfs_btree_query_all(struct xfs_btree_cur *cur, xfs_btree_query_range_fn fn, 489 void *priv); 490 491 typedef int (*xfs_btree_visit_blocks_fn)(struct xfs_btree_cur *cur, int level, 492 void *data); 493 /* Visit record blocks. */ 494 #define XFS_BTREE_VISIT_RECORDS (1 << 0) 495 /* Visit leaf blocks. */ 496 #define XFS_BTREE_VISIT_LEAVES (1 << 1) 497 /* Visit all blocks. */ 498 #define XFS_BTREE_VISIT_ALL (XFS_BTREE_VISIT_RECORDS | \ 499 XFS_BTREE_VISIT_LEAVES) 500 int xfs_btree_visit_blocks(struct xfs_btree_cur *cur, 501 xfs_btree_visit_blocks_fn fn, unsigned int flags, void *data); 502 503 int xfs_btree_count_blocks(struct xfs_btree_cur *cur, xfs_filblks_t *blocks); 504 505 union xfs_btree_rec *xfs_btree_rec_addr(struct xfs_btree_cur *cur, int n, 506 struct xfs_btree_block *block); 507 union xfs_btree_key *xfs_btree_key_addr(struct xfs_btree_cur *cur, int n, 508 struct xfs_btree_block *block); 509 union xfs_btree_key *xfs_btree_high_key_addr(struct xfs_btree_cur *cur, int n, 510 struct xfs_btree_block *block); 511 union xfs_btree_ptr *xfs_btree_ptr_addr(struct xfs_btree_cur *cur, int n, 512 struct xfs_btree_block *block); 513 int xfs_btree_lookup_get_block(struct xfs_btree_cur *cur, int level, 514 const union xfs_btree_ptr *pp, struct xfs_btree_block **blkp); 515 struct xfs_btree_block *xfs_btree_get_block(struct xfs_btree_cur *cur, 516 int level, struct xfs_buf **bpp); 517 bool xfs_btree_ptr_is_null(struct xfs_btree_cur *cur, 518 const union xfs_btree_ptr *ptr); 519 int64_t xfs_btree_diff_two_ptrs(struct xfs_btree_cur *cur, 520 const union xfs_btree_ptr *a, 521 const union xfs_btree_ptr *b); 522 void xfs_btree_get_sibling(struct xfs_btree_cur *cur, 523 struct xfs_btree_block *block, 524 union xfs_btree_ptr *ptr, int lr); 525 void xfs_btree_get_keys(struct xfs_btree_cur *cur, 526 struct xfs_btree_block *block, union xfs_btree_key *key); 527 union xfs_btree_key *xfs_btree_high_key_from_key(struct xfs_btree_cur *cur, 528 union xfs_btree_key *key); 529 typedef bool (*xfs_btree_key_gap_fn)(struct xfs_btree_cur *cur, 530 const union xfs_btree_key *key1, 531 const union xfs_btree_key *key2); 532 533 int xfs_btree_has_records(struct xfs_btree_cur *cur, 534 const union xfs_btree_irec *low, 535 const union xfs_btree_irec *high, 536 const union xfs_btree_key *mask, 537 enum xbtree_recpacking *outcome); 538 539 bool xfs_btree_has_more_records(struct xfs_btree_cur *cur); 540 struct xfs_ifork *xfs_btree_ifork_ptr(struct xfs_btree_cur *cur); 541 542 /* Key comparison helpers */ 543 static inline bool 544 xfs_btree_keycmp_lt( 545 struct xfs_btree_cur *cur, 546 const union xfs_btree_key *key1, 547 const union xfs_btree_key *key2) 548 { 549 return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) < 0; 550 } 551 552 static inline bool 553 xfs_btree_keycmp_gt( 554 struct xfs_btree_cur *cur, 555 const union xfs_btree_key *key1, 556 const union xfs_btree_key *key2) 557 { 558 return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) > 0; 559 } 560 561 static inline bool 562 xfs_btree_keycmp_eq( 563 struct xfs_btree_cur *cur, 564 const union xfs_btree_key *key1, 565 const union xfs_btree_key *key2) 566 { 567 return cur->bc_ops->diff_two_keys(cur, key1, key2, NULL) == 0; 568 } 569 570 static inline bool 571 xfs_btree_keycmp_le( 572 struct xfs_btree_cur *cur, 573 const union xfs_btree_key *key1, 574 const union xfs_btree_key *key2) 575 { 576 return !xfs_btree_keycmp_gt(cur, key1, key2); 577 } 578 579 static inline bool 580 xfs_btree_keycmp_ge( 581 struct xfs_btree_cur *cur, 582 const union xfs_btree_key *key1, 583 const union xfs_btree_key *key2) 584 { 585 return !xfs_btree_keycmp_lt(cur, key1, key2); 586 } 587 588 static inline bool 589 xfs_btree_keycmp_ne( 590 struct xfs_btree_cur *cur, 591 const union xfs_btree_key *key1, 592 const union xfs_btree_key *key2) 593 { 594 return !xfs_btree_keycmp_eq(cur, key1, key2); 595 } 596 597 /* Masked key comparison helpers */ 598 static inline bool 599 xfs_btree_masked_keycmp_lt( 600 struct xfs_btree_cur *cur, 601 const union xfs_btree_key *key1, 602 const union xfs_btree_key *key2, 603 const union xfs_btree_key *mask) 604 { 605 return cur->bc_ops->diff_two_keys(cur, key1, key2, mask) < 0; 606 } 607 608 static inline bool 609 xfs_btree_masked_keycmp_gt( 610 struct xfs_btree_cur *cur, 611 const union xfs_btree_key *key1, 612 const union xfs_btree_key *key2, 613 const union xfs_btree_key *mask) 614 { 615 return cur->bc_ops->diff_two_keys(cur, key1, key2, mask) > 0; 616 } 617 618 static inline bool 619 xfs_btree_masked_keycmp_ge( 620 struct xfs_btree_cur *cur, 621 const union xfs_btree_key *key1, 622 const union xfs_btree_key *key2, 623 const union xfs_btree_key *mask) 624 { 625 return !xfs_btree_masked_keycmp_lt(cur, key1, key2, mask); 626 } 627 628 /* Does this cursor point to the last block in the given level? */ 629 static inline bool 630 xfs_btree_islastblock( 631 struct xfs_btree_cur *cur, 632 int level) 633 { 634 struct xfs_btree_block *block; 635 struct xfs_buf *bp; 636 637 block = xfs_btree_get_block(cur, level, &bp); 638 639 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) 640 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK); 641 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK); 642 } 643 644 void xfs_btree_set_ptr_null(struct xfs_btree_cur *cur, 645 union xfs_btree_ptr *ptr); 646 int xfs_btree_get_buf_block(struct xfs_btree_cur *cur, 647 const union xfs_btree_ptr *ptr, struct xfs_btree_block **block, 648 struct xfs_buf **bpp); 649 int xfs_btree_read_buf_block(struct xfs_btree_cur *cur, 650 const union xfs_btree_ptr *ptr, int flags, 651 struct xfs_btree_block **block, struct xfs_buf **bpp); 652 void xfs_btree_set_sibling(struct xfs_btree_cur *cur, 653 struct xfs_btree_block *block, const union xfs_btree_ptr *ptr, 654 int lr); 655 void xfs_btree_init_block_cur(struct xfs_btree_cur *cur, 656 struct xfs_buf *bp, int level, int numrecs); 657 void xfs_btree_copy_ptrs(struct xfs_btree_cur *cur, 658 union xfs_btree_ptr *dst_ptr, 659 const union xfs_btree_ptr *src_ptr, int numptrs); 660 void xfs_btree_copy_keys(struct xfs_btree_cur *cur, 661 union xfs_btree_key *dst_key, 662 const union xfs_btree_key *src_key, int numkeys); 663 void xfs_btree_init_ptr_from_cur(struct xfs_btree_cur *cur, 664 union xfs_btree_ptr *ptr); 665 666 static inline struct xfs_btree_cur * 667 xfs_btree_alloc_cursor( 668 struct xfs_mount *mp, 669 struct xfs_trans *tp, 670 const struct xfs_btree_ops *ops, 671 uint8_t maxlevels, 672 struct kmem_cache *cache) 673 { 674 struct xfs_btree_cur *cur; 675 676 ASSERT(ops->ptr_len == XFS_BTREE_LONG_PTR_LEN || 677 ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN); 678 679 /* BMBT allocations can come through from non-transactional context. */ 680 cur = kmem_cache_zalloc(cache, 681 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 682 cur->bc_ops = ops; 683 cur->bc_tp = tp; 684 cur->bc_mp = mp; 685 cur->bc_maxlevels = maxlevels; 686 cur->bc_cache = cache; 687 688 return cur; 689 } 690 691 int __init xfs_btree_init_cur_caches(void); 692 void xfs_btree_destroy_cur_caches(void); 693 694 int xfs_btree_goto_left_edge(struct xfs_btree_cur *cur); 695 696 /* Does this level of the cursor point to the inode root (and not a block)? */ 697 static inline bool 698 xfs_btree_at_iroot( 699 const struct xfs_btree_cur *cur, 700 int level) 701 { 702 return cur->bc_ops->type == XFS_BTREE_TYPE_INODE && 703 level == cur->bc_nlevels - 1; 704 } 705 706 int xfs_btree_alloc_metafile_block(struct xfs_btree_cur *cur, 707 const union xfs_btree_ptr *start, union xfs_btree_ptr *newp, 708 int *stat); 709 int xfs_btree_free_metafile_block(struct xfs_btree_cur *cur, 710 struct xfs_buf *bp); 711 712 #endif /* __XFS_BTREE_H__ */ 713