1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 static inline void initname(struct filename *name, const char __user *uptr) 129 { 130 name->uptr = uptr; 131 name->aname = NULL; 132 atomic_set(&name->refcnt, 1); 133 } 134 135 struct filename * 136 getname_flags(const char __user *filename, int flags) 137 { 138 struct filename *result; 139 char *kname; 140 int len; 141 142 result = audit_reusename(filename); 143 if (result) 144 return result; 145 146 result = __getname(); 147 if (unlikely(!result)) 148 return ERR_PTR(-ENOMEM); 149 150 /* 151 * First, try to embed the struct filename inside the names_cache 152 * allocation 153 */ 154 kname = (char *)result->iname; 155 result->name = kname; 156 157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 158 /* 159 * Handle both empty path and copy failure in one go. 160 */ 161 if (unlikely(len <= 0)) { 162 if (unlikely(len < 0)) { 163 __putname(result); 164 return ERR_PTR(len); 165 } 166 167 /* The empty path is special. */ 168 if (!(flags & LOOKUP_EMPTY)) { 169 __putname(result); 170 return ERR_PTR(-ENOENT); 171 } 172 } 173 174 /* 175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 176 * separate struct filename so we can dedicate the entire 177 * names_cache allocation for the pathname, and re-do the copy from 178 * userland. 179 */ 180 if (unlikely(len == EMBEDDED_NAME_MAX)) { 181 const size_t size = offsetof(struct filename, iname[1]); 182 kname = (char *)result; 183 184 /* 185 * size is chosen that way we to guarantee that 186 * result->iname[0] is within the same object and that 187 * kname can't be equal to result->iname, no matter what. 188 */ 189 result = kzalloc(size, GFP_KERNEL); 190 if (unlikely(!result)) { 191 __putname(kname); 192 return ERR_PTR(-ENOMEM); 193 } 194 result->name = kname; 195 len = strncpy_from_user(kname, filename, PATH_MAX); 196 if (unlikely(len < 0)) { 197 __putname(kname); 198 kfree(result); 199 return ERR_PTR(len); 200 } 201 /* The empty path is special. */ 202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 203 __putname(kname); 204 kfree(result); 205 return ERR_PTR(-ENOENT); 206 } 207 if (unlikely(len == PATH_MAX)) { 208 __putname(kname); 209 kfree(result); 210 return ERR_PTR(-ENAMETOOLONG); 211 } 212 } 213 initname(result, filename); 214 audit_getname(result); 215 return result; 216 } 217 218 struct filename *getname_uflags(const char __user *filename, int uflags) 219 { 220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 221 222 return getname_flags(filename, flags); 223 } 224 225 struct filename *__getname_maybe_null(const char __user *pathname) 226 { 227 struct filename *name; 228 char c; 229 230 /* try to save on allocations; loss on um, though */ 231 if (get_user(c, pathname)) 232 return ERR_PTR(-EFAULT); 233 if (!c) 234 return NULL; 235 236 name = getname_flags(pathname, LOOKUP_EMPTY); 237 if (!IS_ERR(name) && !(name->name[0])) { 238 putname(name); 239 name = NULL; 240 } 241 return name; 242 } 243 244 struct filename *getname_kernel(const char * filename) 245 { 246 struct filename *result; 247 int len = strlen(filename) + 1; 248 249 result = __getname(); 250 if (unlikely(!result)) 251 return ERR_PTR(-ENOMEM); 252 253 if (len <= EMBEDDED_NAME_MAX) { 254 result->name = (char *)result->iname; 255 } else if (len <= PATH_MAX) { 256 const size_t size = offsetof(struct filename, iname[1]); 257 struct filename *tmp; 258 259 tmp = kmalloc(size, GFP_KERNEL); 260 if (unlikely(!tmp)) { 261 __putname(result); 262 return ERR_PTR(-ENOMEM); 263 } 264 tmp->name = (char *)result; 265 result = tmp; 266 } else { 267 __putname(result); 268 return ERR_PTR(-ENAMETOOLONG); 269 } 270 memcpy((char *)result->name, filename, len); 271 initname(result, NULL); 272 audit_getname(result); 273 return result; 274 } 275 EXPORT_SYMBOL(getname_kernel); 276 277 void putname(struct filename *name) 278 { 279 int refcnt; 280 281 if (IS_ERR_OR_NULL(name)) 282 return; 283 284 refcnt = atomic_read(&name->refcnt); 285 if (refcnt != 1) { 286 if (WARN_ON_ONCE(!refcnt)) 287 return; 288 289 if (!atomic_dec_and_test(&name->refcnt)) 290 return; 291 } 292 293 if (name->name != name->iname) { 294 __putname(name->name); 295 kfree(name); 296 } else 297 __putname(name); 298 } 299 EXPORT_SYMBOL(putname); 300 301 /** 302 * check_acl - perform ACL permission checking 303 * @idmap: idmap of the mount the inode was found from 304 * @inode: inode to check permissions on 305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 306 * 307 * This function performs the ACL permission checking. Since this function 308 * retrieve POSIX acls it needs to know whether it is called from a blocking or 309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 310 * 311 * If the inode has been found through an idmapped mount the idmap of 312 * the vfsmount must be passed through @idmap. This function will then take 313 * care to map the inode according to @idmap before checking permissions. 314 * On non-idmapped mounts or if permission checking is to be performed on the 315 * raw inode simply pass @nop_mnt_idmap. 316 */ 317 static int check_acl(struct mnt_idmap *idmap, 318 struct inode *inode, int mask) 319 { 320 #ifdef CONFIG_FS_POSIX_ACL 321 struct posix_acl *acl; 322 323 if (mask & MAY_NOT_BLOCK) { 324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 325 if (!acl) 326 return -EAGAIN; 327 /* no ->get_inode_acl() calls in RCU mode... */ 328 if (is_uncached_acl(acl)) 329 return -ECHILD; 330 return posix_acl_permission(idmap, inode, acl, mask); 331 } 332 333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 334 if (IS_ERR(acl)) 335 return PTR_ERR(acl); 336 if (acl) { 337 int error = posix_acl_permission(idmap, inode, acl, mask); 338 posix_acl_release(acl); 339 return error; 340 } 341 #endif 342 343 return -EAGAIN; 344 } 345 346 /* 347 * Very quick optimistic "we know we have no ACL's" check. 348 * 349 * Note that this is purely for ACL_TYPE_ACCESS, and purely 350 * for the "we have cached that there are no ACLs" case. 351 * 352 * If this returns true, we know there are no ACLs. But if 353 * it returns false, we might still not have ACLs (it could 354 * be the is_uncached_acl() case). 355 */ 356 static inline bool no_acl_inode(struct inode *inode) 357 { 358 #ifdef CONFIG_FS_POSIX_ACL 359 return likely(!READ_ONCE(inode->i_acl)); 360 #else 361 return true; 362 #endif 363 } 364 365 /** 366 * acl_permission_check - perform basic UNIX permission checking 367 * @idmap: idmap of the mount the inode was found from 368 * @inode: inode to check permissions on 369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 370 * 371 * This function performs the basic UNIX permission checking. Since this 372 * function may retrieve POSIX acls it needs to know whether it is called from a 373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 374 * 375 * If the inode has been found through an idmapped mount the idmap of 376 * the vfsmount must be passed through @idmap. This function will then take 377 * care to map the inode according to @idmap before checking permissions. 378 * On non-idmapped mounts or if permission checking is to be performed on the 379 * raw inode simply pass @nop_mnt_idmap. 380 */ 381 static int acl_permission_check(struct mnt_idmap *idmap, 382 struct inode *inode, int mask) 383 { 384 unsigned int mode = inode->i_mode; 385 vfsuid_t vfsuid; 386 387 /* 388 * Common cheap case: everybody has the requested 389 * rights, and there are no ACLs to check. No need 390 * to do any owner/group checks in that case. 391 * 392 * - 'mask&7' is the requested permission bit set 393 * - multiplying by 0111 spreads them out to all of ugo 394 * - '& ~mode' looks for missing inode permission bits 395 * - the '!' is for "no missing permissions" 396 * 397 * After that, we just need to check that there are no 398 * ACL's on the inode - do the 'IS_POSIXACL()' check last 399 * because it will dereference the ->i_sb pointer and we 400 * want to avoid that if at all possible. 401 */ 402 if (!((mask & 7) * 0111 & ~mode)) { 403 if (no_acl_inode(inode)) 404 return 0; 405 if (!IS_POSIXACL(inode)) 406 return 0; 407 } 408 409 /* Are we the owner? If so, ACL's don't matter */ 410 vfsuid = i_uid_into_vfsuid(idmap, inode); 411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 412 mask &= 7; 413 mode >>= 6; 414 return (mask & ~mode) ? -EACCES : 0; 415 } 416 417 /* Do we have ACL's? */ 418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 419 int error = check_acl(idmap, inode, mask); 420 if (error != -EAGAIN) 421 return error; 422 } 423 424 /* Only RWX matters for group/other mode bits */ 425 mask &= 7; 426 427 /* 428 * Are the group permissions different from 429 * the other permissions in the bits we care 430 * about? Need to check group ownership if so. 431 */ 432 if (mask & (mode ^ (mode >> 3))) { 433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 434 if (vfsgid_in_group_p(vfsgid)) 435 mode >>= 3; 436 } 437 438 /* Bits in 'mode' clear that we require? */ 439 return (mask & ~mode) ? -EACCES : 0; 440 } 441 442 /** 443 * generic_permission - check for access rights on a Posix-like filesystem 444 * @idmap: idmap of the mount the inode was found from 445 * @inode: inode to check access rights for 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 447 * %MAY_NOT_BLOCK ...) 448 * 449 * Used to check for read/write/execute permissions on a file. 450 * We use "fsuid" for this, letting us set arbitrary permissions 451 * for filesystem access without changing the "normal" uids which 452 * are used for other things. 453 * 454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 455 * request cannot be satisfied (eg. requires blocking or too much complexity). 456 * It would then be called again in ref-walk mode. 457 * 458 * If the inode has been found through an idmapped mount the idmap of 459 * the vfsmount must be passed through @idmap. This function will then take 460 * care to map the inode according to @idmap before checking permissions. 461 * On non-idmapped mounts or if permission checking is to be performed on the 462 * raw inode simply pass @nop_mnt_idmap. 463 */ 464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 465 int mask) 466 { 467 int ret; 468 469 /* 470 * Do the basic permission checks. 471 */ 472 ret = acl_permission_check(idmap, inode, mask); 473 if (ret != -EACCES) 474 return ret; 475 476 if (S_ISDIR(inode->i_mode)) { 477 /* DACs are overridable for directories */ 478 if (!(mask & MAY_WRITE)) 479 if (capable_wrt_inode_uidgid(idmap, inode, 480 CAP_DAC_READ_SEARCH)) 481 return 0; 482 if (capable_wrt_inode_uidgid(idmap, inode, 483 CAP_DAC_OVERRIDE)) 484 return 0; 485 return -EACCES; 486 } 487 488 /* 489 * Searching includes executable on directories, else just read. 490 */ 491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 492 if (mask == MAY_READ) 493 if (capable_wrt_inode_uidgid(idmap, inode, 494 CAP_DAC_READ_SEARCH)) 495 return 0; 496 /* 497 * Read/write DACs are always overridable. 498 * Executable DACs are overridable when there is 499 * at least one exec bit set. 500 */ 501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 502 if (capable_wrt_inode_uidgid(idmap, inode, 503 CAP_DAC_OVERRIDE)) 504 return 0; 505 506 return -EACCES; 507 } 508 EXPORT_SYMBOL(generic_permission); 509 510 /** 511 * do_inode_permission - UNIX permission checking 512 * @idmap: idmap of the mount the inode was found from 513 * @inode: inode to check permissions on 514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 515 * 516 * We _really_ want to just do "generic_permission()" without 517 * even looking at the inode->i_op values. So we keep a cache 518 * flag in inode->i_opflags, that says "this has not special 519 * permission function, use the fast case". 520 */ 521 static inline int do_inode_permission(struct mnt_idmap *idmap, 522 struct inode *inode, int mask) 523 { 524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 525 if (likely(inode->i_op->permission)) 526 return inode->i_op->permission(idmap, inode, mask); 527 528 /* This gets set once for the inode lifetime */ 529 spin_lock(&inode->i_lock); 530 inode->i_opflags |= IOP_FASTPERM; 531 spin_unlock(&inode->i_lock); 532 } 533 return generic_permission(idmap, inode, mask); 534 } 535 536 /** 537 * sb_permission - Check superblock-level permissions 538 * @sb: Superblock of inode to check permission on 539 * @inode: Inode to check permission on 540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 541 * 542 * Separate out file-system wide checks from inode-specific permission checks. 543 */ 544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 545 { 546 if (unlikely(mask & MAY_WRITE)) { 547 umode_t mode = inode->i_mode; 548 549 /* Nobody gets write access to a read-only fs. */ 550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 551 return -EROFS; 552 } 553 return 0; 554 } 555 556 /** 557 * inode_permission - Check for access rights to a given inode 558 * @idmap: idmap of the mount the inode was found from 559 * @inode: Inode to check permission on 560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 561 * 562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 563 * this, letting us set arbitrary permissions for filesystem access without 564 * changing the "normal" UIDs which are used for other things. 565 * 566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 567 */ 568 int inode_permission(struct mnt_idmap *idmap, 569 struct inode *inode, int mask) 570 { 571 int retval; 572 573 retval = sb_permission(inode->i_sb, inode, mask); 574 if (unlikely(retval)) 575 return retval; 576 577 if (unlikely(mask & MAY_WRITE)) { 578 /* 579 * Nobody gets write access to an immutable file. 580 */ 581 if (unlikely(IS_IMMUTABLE(inode))) 582 return -EPERM; 583 584 /* 585 * Updating mtime will likely cause i_uid and i_gid to be 586 * written back improperly if their true value is unknown 587 * to the vfs. 588 */ 589 if (unlikely(HAS_UNMAPPED_ID(idmap, inode))) 590 return -EACCES; 591 } 592 593 retval = do_inode_permission(idmap, inode, mask); 594 if (unlikely(retval)) 595 return retval; 596 597 retval = devcgroup_inode_permission(inode, mask); 598 if (unlikely(retval)) 599 return retval; 600 601 return security_inode_permission(inode, mask); 602 } 603 EXPORT_SYMBOL(inode_permission); 604 605 /** 606 * path_get - get a reference to a path 607 * @path: path to get the reference to 608 * 609 * Given a path increment the reference count to the dentry and the vfsmount. 610 */ 611 void path_get(const struct path *path) 612 { 613 mntget(path->mnt); 614 dget(path->dentry); 615 } 616 EXPORT_SYMBOL(path_get); 617 618 /** 619 * path_put - put a reference to a path 620 * @path: path to put the reference to 621 * 622 * Given a path decrement the reference count to the dentry and the vfsmount. 623 */ 624 void path_put(const struct path *path) 625 { 626 dput(path->dentry); 627 mntput(path->mnt); 628 } 629 EXPORT_SYMBOL(path_put); 630 631 #define EMBEDDED_LEVELS 2 632 struct nameidata { 633 struct path path; 634 struct qstr last; 635 struct path root; 636 struct inode *inode; /* path.dentry.d_inode */ 637 unsigned int flags, state; 638 unsigned seq, next_seq, m_seq, r_seq; 639 int last_type; 640 unsigned depth; 641 int total_link_count; 642 struct saved { 643 struct path link; 644 struct delayed_call done; 645 const char *name; 646 unsigned seq; 647 } *stack, internal[EMBEDDED_LEVELS]; 648 struct filename *name; 649 const char *pathname; 650 struct nameidata *saved; 651 unsigned root_seq; 652 int dfd; 653 vfsuid_t dir_vfsuid; 654 umode_t dir_mode; 655 } __randomize_layout; 656 657 #define ND_ROOT_PRESET 1 658 #define ND_ROOT_GRABBED 2 659 #define ND_JUMPED 4 660 661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 662 { 663 struct nameidata *old = current->nameidata; 664 p->stack = p->internal; 665 p->depth = 0; 666 p->dfd = dfd; 667 p->name = name; 668 p->pathname = likely(name) ? name->name : ""; 669 p->path.mnt = NULL; 670 p->path.dentry = NULL; 671 p->total_link_count = old ? old->total_link_count : 0; 672 p->saved = old; 673 current->nameidata = p; 674 } 675 676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 677 const struct path *root) 678 { 679 __set_nameidata(p, dfd, name); 680 p->state = 0; 681 if (unlikely(root)) { 682 p->state = ND_ROOT_PRESET; 683 p->root = *root; 684 } 685 } 686 687 static void restore_nameidata(void) 688 { 689 struct nameidata *now = current->nameidata, *old = now->saved; 690 691 current->nameidata = old; 692 if (old) 693 old->total_link_count = now->total_link_count; 694 if (now->stack != now->internal) 695 kfree(now->stack); 696 } 697 698 static bool nd_alloc_stack(struct nameidata *nd) 699 { 700 struct saved *p; 701 702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 704 if (unlikely(!p)) 705 return false; 706 memcpy(p, nd->internal, sizeof(nd->internal)); 707 nd->stack = p; 708 return true; 709 } 710 711 /** 712 * path_connected - Verify that a dentry is below mnt.mnt_root 713 * @mnt: The mountpoint to check. 714 * @dentry: The dentry to check. 715 * 716 * Rename can sometimes move a file or directory outside of a bind 717 * mount, path_connected allows those cases to be detected. 718 */ 719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 720 { 721 struct super_block *sb = mnt->mnt_sb; 722 723 /* Bind mounts can have disconnected paths */ 724 if (mnt->mnt_root == sb->s_root) 725 return true; 726 727 return is_subdir(dentry, mnt->mnt_root); 728 } 729 730 static void drop_links(struct nameidata *nd) 731 { 732 int i = nd->depth; 733 while (i--) { 734 struct saved *last = nd->stack + i; 735 do_delayed_call(&last->done); 736 clear_delayed_call(&last->done); 737 } 738 } 739 740 static void leave_rcu(struct nameidata *nd) 741 { 742 nd->flags &= ~LOOKUP_RCU; 743 nd->seq = nd->next_seq = 0; 744 rcu_read_unlock(); 745 } 746 747 static void terminate_walk(struct nameidata *nd) 748 { 749 drop_links(nd); 750 if (!(nd->flags & LOOKUP_RCU)) { 751 int i; 752 path_put(&nd->path); 753 for (i = 0; i < nd->depth; i++) 754 path_put(&nd->stack[i].link); 755 if (nd->state & ND_ROOT_GRABBED) { 756 path_put(&nd->root); 757 nd->state &= ~ND_ROOT_GRABBED; 758 } 759 } else { 760 leave_rcu(nd); 761 } 762 nd->depth = 0; 763 nd->path.mnt = NULL; 764 nd->path.dentry = NULL; 765 } 766 767 /* path_put is needed afterwards regardless of success or failure */ 768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 769 { 770 int res = __legitimize_mnt(path->mnt, mseq); 771 if (unlikely(res)) { 772 if (res > 0) 773 path->mnt = NULL; 774 path->dentry = NULL; 775 return false; 776 } 777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 778 path->dentry = NULL; 779 return false; 780 } 781 return !read_seqcount_retry(&path->dentry->d_seq, seq); 782 } 783 784 static inline bool legitimize_path(struct nameidata *nd, 785 struct path *path, unsigned seq) 786 { 787 return __legitimize_path(path, seq, nd->m_seq); 788 } 789 790 static bool legitimize_links(struct nameidata *nd) 791 { 792 int i; 793 if (unlikely(nd->flags & LOOKUP_CACHED)) { 794 drop_links(nd); 795 nd->depth = 0; 796 return false; 797 } 798 for (i = 0; i < nd->depth; i++) { 799 struct saved *last = nd->stack + i; 800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 801 drop_links(nd); 802 nd->depth = i + 1; 803 return false; 804 } 805 } 806 return true; 807 } 808 809 static bool legitimize_root(struct nameidata *nd) 810 { 811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 813 return true; 814 nd->state |= ND_ROOT_GRABBED; 815 return legitimize_path(nd, &nd->root, nd->root_seq); 816 } 817 818 /* 819 * Path walking has 2 modes, rcu-walk and ref-walk (see 820 * Documentation/filesystems/path-lookup.txt). In situations when we can't 821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 822 * normal reference counts on dentries and vfsmounts to transition to ref-walk 823 * mode. Refcounts are grabbed at the last known good point before rcu-walk 824 * got stuck, so ref-walk may continue from there. If this is not successful 825 * (eg. a seqcount has changed), then failure is returned and it's up to caller 826 * to restart the path walk from the beginning in ref-walk mode. 827 */ 828 829 /** 830 * try_to_unlazy - try to switch to ref-walk mode. 831 * @nd: nameidata pathwalk data 832 * Returns: true on success, false on failure 833 * 834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 835 * for ref-walk mode. 836 * Must be called from rcu-walk context. 837 * Nothing should touch nameidata between try_to_unlazy() failure and 838 * terminate_walk(). 839 */ 840 static bool try_to_unlazy(struct nameidata *nd) 841 { 842 struct dentry *parent = nd->path.dentry; 843 844 BUG_ON(!(nd->flags & LOOKUP_RCU)); 845 846 if (unlikely(!legitimize_links(nd))) 847 goto out1; 848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 849 goto out; 850 if (unlikely(!legitimize_root(nd))) 851 goto out; 852 leave_rcu(nd); 853 BUG_ON(nd->inode != parent->d_inode); 854 return true; 855 856 out1: 857 nd->path.mnt = NULL; 858 nd->path.dentry = NULL; 859 out: 860 leave_rcu(nd); 861 return false; 862 } 863 864 /** 865 * try_to_unlazy_next - try to switch to ref-walk mode. 866 * @nd: nameidata pathwalk data 867 * @dentry: next dentry to step into 868 * Returns: true on success, false on failure 869 * 870 * Similar to try_to_unlazy(), but here we have the next dentry already 871 * picked by rcu-walk and want to legitimize that in addition to the current 872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 873 * Nothing should touch nameidata between try_to_unlazy_next() failure and 874 * terminate_walk(). 875 */ 876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 877 { 878 int res; 879 BUG_ON(!(nd->flags & LOOKUP_RCU)); 880 881 if (unlikely(!legitimize_links(nd))) 882 goto out2; 883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 884 if (unlikely(res)) { 885 if (res > 0) 886 goto out2; 887 goto out1; 888 } 889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 890 goto out1; 891 892 /* 893 * We need to move both the parent and the dentry from the RCU domain 894 * to be properly refcounted. And the sequence number in the dentry 895 * validates *both* dentry counters, since we checked the sequence 896 * number of the parent after we got the child sequence number. So we 897 * know the parent must still be valid if the child sequence number is 898 */ 899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 900 goto out; 901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 902 goto out_dput; 903 /* 904 * Sequence counts matched. Now make sure that the root is 905 * still valid and get it if required. 906 */ 907 if (unlikely(!legitimize_root(nd))) 908 goto out_dput; 909 leave_rcu(nd); 910 return true; 911 912 out2: 913 nd->path.mnt = NULL; 914 out1: 915 nd->path.dentry = NULL; 916 out: 917 leave_rcu(nd); 918 return false; 919 out_dput: 920 leave_rcu(nd); 921 dput(dentry); 922 return false; 923 } 924 925 static inline int d_revalidate(struct inode *dir, const struct qstr *name, 926 struct dentry *dentry, unsigned int flags) 927 { 928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 929 return dentry->d_op->d_revalidate(dir, name, dentry, flags); 930 else 931 return 1; 932 } 933 934 /** 935 * complete_walk - successful completion of path walk 936 * @nd: pointer nameidata 937 * 938 * If we had been in RCU mode, drop out of it and legitimize nd->path. 939 * Revalidate the final result, unless we'd already done that during 940 * the path walk or the filesystem doesn't ask for it. Return 0 on 941 * success, -error on failure. In case of failure caller does not 942 * need to drop nd->path. 943 */ 944 static int complete_walk(struct nameidata *nd) 945 { 946 struct dentry *dentry = nd->path.dentry; 947 int status; 948 949 if (nd->flags & LOOKUP_RCU) { 950 /* 951 * We don't want to zero nd->root for scoped-lookups or 952 * externally-managed nd->root. 953 */ 954 if (!(nd->state & ND_ROOT_PRESET)) 955 if (!(nd->flags & LOOKUP_IS_SCOPED)) 956 nd->root.mnt = NULL; 957 nd->flags &= ~LOOKUP_CACHED; 958 if (!try_to_unlazy(nd)) 959 return -ECHILD; 960 } 961 962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 963 /* 964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 965 * ever step outside the root during lookup" and should already 966 * be guaranteed by the rest of namei, we want to avoid a namei 967 * BUG resulting in userspace being given a path that was not 968 * scoped within the root at some point during the lookup. 969 * 970 * So, do a final sanity-check to make sure that in the 971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 972 * we won't silently return an fd completely outside of the 973 * requested root to userspace. 974 * 975 * Userspace could move the path outside the root after this 976 * check, but as discussed elsewhere this is not a concern (the 977 * resolved file was inside the root at some point). 978 */ 979 if (!path_is_under(&nd->path, &nd->root)) 980 return -EXDEV; 981 } 982 983 if (likely(!(nd->state & ND_JUMPED))) 984 return 0; 985 986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 987 return 0; 988 989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 990 if (status > 0) 991 return 0; 992 993 if (!status) 994 status = -ESTALE; 995 996 return status; 997 } 998 999 static int set_root(struct nameidata *nd) 1000 { 1001 struct fs_struct *fs = current->fs; 1002 1003 /* 1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 1005 * still have to ensure it doesn't happen because it will cause a breakout 1006 * from the dirfd. 1007 */ 1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 1009 return -ENOTRECOVERABLE; 1010 1011 if (nd->flags & LOOKUP_RCU) { 1012 unsigned seq; 1013 1014 do { 1015 seq = read_seqbegin(&fs->seq); 1016 nd->root = fs->root; 1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 1018 } while (read_seqretry(&fs->seq, seq)); 1019 } else { 1020 get_fs_root(fs, &nd->root); 1021 nd->state |= ND_ROOT_GRABBED; 1022 } 1023 return 0; 1024 } 1025 1026 static int nd_jump_root(struct nameidata *nd) 1027 { 1028 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1029 return -EXDEV; 1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1031 /* Absolute path arguments to path_init() are allowed. */ 1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 1033 return -EXDEV; 1034 } 1035 if (!nd->root.mnt) { 1036 int error = set_root(nd); 1037 if (error) 1038 return error; 1039 } 1040 if (nd->flags & LOOKUP_RCU) { 1041 struct dentry *d; 1042 nd->path = nd->root; 1043 d = nd->path.dentry; 1044 nd->inode = d->d_inode; 1045 nd->seq = nd->root_seq; 1046 if (read_seqcount_retry(&d->d_seq, nd->seq)) 1047 return -ECHILD; 1048 } else { 1049 path_put(&nd->path); 1050 nd->path = nd->root; 1051 path_get(&nd->path); 1052 nd->inode = nd->path.dentry->d_inode; 1053 } 1054 nd->state |= ND_JUMPED; 1055 return 0; 1056 } 1057 1058 /* 1059 * Helper to directly jump to a known parsed path from ->get_link, 1060 * caller must have taken a reference to path beforehand. 1061 */ 1062 int nd_jump_link(const struct path *path) 1063 { 1064 int error = -ELOOP; 1065 struct nameidata *nd = current->nameidata; 1066 1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1068 goto err; 1069 1070 error = -EXDEV; 1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1072 if (nd->path.mnt != path->mnt) 1073 goto err; 1074 } 1075 /* Not currently safe for scoped-lookups. */ 1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1077 goto err; 1078 1079 path_put(&nd->path); 1080 nd->path = *path; 1081 nd->inode = nd->path.dentry->d_inode; 1082 nd->state |= ND_JUMPED; 1083 return 0; 1084 1085 err: 1086 path_put(path); 1087 return error; 1088 } 1089 1090 static inline void put_link(struct nameidata *nd) 1091 { 1092 struct saved *last = nd->stack + --nd->depth; 1093 do_delayed_call(&last->done); 1094 if (!(nd->flags & LOOKUP_RCU)) 1095 path_put(&last->link); 1096 } 1097 1098 static int sysctl_protected_symlinks __read_mostly; 1099 static int sysctl_protected_hardlinks __read_mostly; 1100 static int sysctl_protected_fifos __read_mostly; 1101 static int sysctl_protected_regular __read_mostly; 1102 1103 #ifdef CONFIG_SYSCTL 1104 static const struct ctl_table namei_sysctls[] = { 1105 { 1106 .procname = "protected_symlinks", 1107 .data = &sysctl_protected_symlinks, 1108 .maxlen = sizeof(int), 1109 .mode = 0644, 1110 .proc_handler = proc_dointvec_minmax, 1111 .extra1 = SYSCTL_ZERO, 1112 .extra2 = SYSCTL_ONE, 1113 }, 1114 { 1115 .procname = "protected_hardlinks", 1116 .data = &sysctl_protected_hardlinks, 1117 .maxlen = sizeof(int), 1118 .mode = 0644, 1119 .proc_handler = proc_dointvec_minmax, 1120 .extra1 = SYSCTL_ZERO, 1121 .extra2 = SYSCTL_ONE, 1122 }, 1123 { 1124 .procname = "protected_fifos", 1125 .data = &sysctl_protected_fifos, 1126 .maxlen = sizeof(int), 1127 .mode = 0644, 1128 .proc_handler = proc_dointvec_minmax, 1129 .extra1 = SYSCTL_ZERO, 1130 .extra2 = SYSCTL_TWO, 1131 }, 1132 { 1133 .procname = "protected_regular", 1134 .data = &sysctl_protected_regular, 1135 .maxlen = sizeof(int), 1136 .mode = 0644, 1137 .proc_handler = proc_dointvec_minmax, 1138 .extra1 = SYSCTL_ZERO, 1139 .extra2 = SYSCTL_TWO, 1140 }, 1141 }; 1142 1143 static int __init init_fs_namei_sysctls(void) 1144 { 1145 register_sysctl_init("fs", namei_sysctls); 1146 return 0; 1147 } 1148 fs_initcall(init_fs_namei_sysctls); 1149 1150 #endif /* CONFIG_SYSCTL */ 1151 1152 /** 1153 * may_follow_link - Check symlink following for unsafe situations 1154 * @nd: nameidata pathwalk data 1155 * @inode: Used for idmapping. 1156 * 1157 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1159 * in a sticky world-writable directory. This is to protect privileged 1160 * processes from failing races against path names that may change out 1161 * from under them by way of other users creating malicious symlinks. 1162 * It will permit symlinks to be followed only when outside a sticky 1163 * world-writable directory, or when the uid of the symlink and follower 1164 * match, or when the directory owner matches the symlink's owner. 1165 * 1166 * Returns 0 if following the symlink is allowed, -ve on error. 1167 */ 1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1169 { 1170 struct mnt_idmap *idmap; 1171 vfsuid_t vfsuid; 1172 1173 if (!sysctl_protected_symlinks) 1174 return 0; 1175 1176 idmap = mnt_idmap(nd->path.mnt); 1177 vfsuid = i_uid_into_vfsuid(idmap, inode); 1178 /* Allowed if owner and follower match. */ 1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1180 return 0; 1181 1182 /* Allowed if parent directory not sticky and world-writable. */ 1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1184 return 0; 1185 1186 /* Allowed if parent directory and link owner match. */ 1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1188 return 0; 1189 1190 if (nd->flags & LOOKUP_RCU) 1191 return -ECHILD; 1192 1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1195 return -EACCES; 1196 } 1197 1198 /** 1199 * safe_hardlink_source - Check for safe hardlink conditions 1200 * @idmap: idmap of the mount the inode was found from 1201 * @inode: the source inode to hardlink from 1202 * 1203 * Return false if at least one of the following conditions: 1204 * - inode is not a regular file 1205 * - inode is setuid 1206 * - inode is setgid and group-exec 1207 * - access failure for read and write 1208 * 1209 * Otherwise returns true. 1210 */ 1211 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1212 struct inode *inode) 1213 { 1214 umode_t mode = inode->i_mode; 1215 1216 /* Special files should not get pinned to the filesystem. */ 1217 if (!S_ISREG(mode)) 1218 return false; 1219 1220 /* Setuid files should not get pinned to the filesystem. */ 1221 if (mode & S_ISUID) 1222 return false; 1223 1224 /* Executable setgid files should not get pinned to the filesystem. */ 1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1226 return false; 1227 1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1230 return false; 1231 1232 return true; 1233 } 1234 1235 /** 1236 * may_linkat - Check permissions for creating a hardlink 1237 * @idmap: idmap of the mount the inode was found from 1238 * @link: the source to hardlink from 1239 * 1240 * Block hardlink when all of: 1241 * - sysctl_protected_hardlinks enabled 1242 * - fsuid does not match inode 1243 * - hardlink source is unsafe (see safe_hardlink_source() above) 1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1245 * 1246 * If the inode has been found through an idmapped mount the idmap of 1247 * the vfsmount must be passed through @idmap. This function will then take 1248 * care to map the inode according to @idmap before checking permissions. 1249 * On non-idmapped mounts or if permission checking is to be performed on the 1250 * raw inode simply pass @nop_mnt_idmap. 1251 * 1252 * Returns 0 if successful, -ve on error. 1253 */ 1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1255 { 1256 struct inode *inode = link->dentry->d_inode; 1257 1258 /* Inode writeback is not safe when the uid or gid are invalid. */ 1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1261 return -EOVERFLOW; 1262 1263 if (!sysctl_protected_hardlinks) 1264 return 0; 1265 1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1267 * otherwise, it must be a safe source. 1268 */ 1269 if (safe_hardlink_source(idmap, inode) || 1270 inode_owner_or_capable(idmap, inode)) 1271 return 0; 1272 1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1274 return -EPERM; 1275 } 1276 1277 /** 1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1279 * should be allowed, or not, on files that already 1280 * exist. 1281 * @idmap: idmap of the mount the inode was found from 1282 * @nd: nameidata pathwalk data 1283 * @inode: the inode of the file to open 1284 * 1285 * Block an O_CREAT open of a FIFO (or a regular file) when: 1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1287 * - the file already exists 1288 * - we are in a sticky directory 1289 * - we don't own the file 1290 * - the owner of the directory doesn't own the file 1291 * - the directory is world writable 1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1293 * the directory doesn't have to be world writable: being group writable will 1294 * be enough. 1295 * 1296 * If the inode has been found through an idmapped mount the idmap of 1297 * the vfsmount must be passed through @idmap. This function will then take 1298 * care to map the inode according to @idmap before checking permissions. 1299 * On non-idmapped mounts or if permission checking is to be performed on the 1300 * raw inode simply pass @nop_mnt_idmap. 1301 * 1302 * Returns 0 if the open is allowed, -ve on error. 1303 */ 1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1305 struct inode *const inode) 1306 { 1307 umode_t dir_mode = nd->dir_mode; 1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1309 1310 if (likely(!(dir_mode & S_ISVTX))) 1311 return 0; 1312 1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1314 return 0; 1315 1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1317 return 0; 1318 1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1320 1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1322 return 0; 1323 1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1325 return 0; 1326 1327 if (likely(dir_mode & 0002)) { 1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1329 return -EACCES; 1330 } 1331 1332 if (dir_mode & 0020) { 1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1334 audit_log_path_denied(AUDIT_ANOM_CREAT, 1335 "sticky_create_fifo"); 1336 return -EACCES; 1337 } 1338 1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1340 audit_log_path_denied(AUDIT_ANOM_CREAT, 1341 "sticky_create_regular"); 1342 return -EACCES; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 /* 1350 * follow_up - Find the mountpoint of path's vfsmount 1351 * 1352 * Given a path, find the mountpoint of its source file system. 1353 * Replace @path with the path of the mountpoint in the parent mount. 1354 * Up is towards /. 1355 * 1356 * Return 1 if we went up a level and 0 if we were already at the 1357 * root. 1358 */ 1359 int follow_up(struct path *path) 1360 { 1361 struct mount *mnt = real_mount(path->mnt); 1362 struct mount *parent; 1363 struct dentry *mountpoint; 1364 1365 read_seqlock_excl(&mount_lock); 1366 parent = mnt->mnt_parent; 1367 if (parent == mnt) { 1368 read_sequnlock_excl(&mount_lock); 1369 return 0; 1370 } 1371 mntget(&parent->mnt); 1372 mountpoint = dget(mnt->mnt_mountpoint); 1373 read_sequnlock_excl(&mount_lock); 1374 dput(path->dentry); 1375 path->dentry = mountpoint; 1376 mntput(path->mnt); 1377 path->mnt = &parent->mnt; 1378 return 1; 1379 } 1380 EXPORT_SYMBOL(follow_up); 1381 1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1383 struct path *path, unsigned *seqp) 1384 { 1385 while (mnt_has_parent(m)) { 1386 struct dentry *mountpoint = m->mnt_mountpoint; 1387 1388 m = m->mnt_parent; 1389 if (unlikely(root->dentry == mountpoint && 1390 root->mnt == &m->mnt)) 1391 break; 1392 if (mountpoint != m->mnt.mnt_root) { 1393 path->mnt = &m->mnt; 1394 path->dentry = mountpoint; 1395 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1396 return true; 1397 } 1398 } 1399 return false; 1400 } 1401 1402 static bool choose_mountpoint(struct mount *m, const struct path *root, 1403 struct path *path) 1404 { 1405 bool found; 1406 1407 rcu_read_lock(); 1408 while (1) { 1409 unsigned seq, mseq = read_seqbegin(&mount_lock); 1410 1411 found = choose_mountpoint_rcu(m, root, path, &seq); 1412 if (unlikely(!found)) { 1413 if (!read_seqretry(&mount_lock, mseq)) 1414 break; 1415 } else { 1416 if (likely(__legitimize_path(path, seq, mseq))) 1417 break; 1418 rcu_read_unlock(); 1419 path_put(path); 1420 rcu_read_lock(); 1421 } 1422 } 1423 rcu_read_unlock(); 1424 return found; 1425 } 1426 1427 /* 1428 * Perform an automount 1429 * - return -EISDIR to tell follow_managed() to stop and return the path we 1430 * were called with. 1431 */ 1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1433 { 1434 struct dentry *dentry = path->dentry; 1435 1436 /* We don't want to mount if someone's just doing a stat - 1437 * unless they're stat'ing a directory and appended a '/' to 1438 * the name. 1439 * 1440 * We do, however, want to mount if someone wants to open or 1441 * create a file of any type under the mountpoint, wants to 1442 * traverse through the mountpoint or wants to open the 1443 * mounted directory. Also, autofs may mark negative dentries 1444 * as being automount points. These will need the attentions 1445 * of the daemon to instantiate them before they can be used. 1446 */ 1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1449 dentry->d_inode) 1450 return -EISDIR; 1451 1452 /* No need to trigger automounts if mountpoint crossing is disabled. */ 1453 if (lookup_flags & LOOKUP_NO_XDEV) 1454 return -EXDEV; 1455 1456 if (count && (*count)++ >= MAXSYMLINKS) 1457 return -ELOOP; 1458 1459 return finish_automount(dentry->d_op->d_automount(path), path); 1460 } 1461 1462 /* 1463 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1464 * dentries are pinned but not locked here, so negative dentry can go 1465 * positive right under us. Use of smp_load_acquire() provides a barrier 1466 * sufficient for ->d_inode and ->d_flags consistency. 1467 */ 1468 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1469 int *count, unsigned lookup_flags) 1470 { 1471 struct vfsmount *mnt = path->mnt; 1472 bool need_mntput = false; 1473 int ret = 0; 1474 1475 while (flags & DCACHE_MANAGED_DENTRY) { 1476 /* Allow the filesystem to manage the transit without i_rwsem 1477 * being held. */ 1478 if (flags & DCACHE_MANAGE_TRANSIT) { 1479 if (lookup_flags & LOOKUP_NO_XDEV) { 1480 ret = -EXDEV; 1481 break; 1482 } 1483 ret = path->dentry->d_op->d_manage(path, false); 1484 flags = smp_load_acquire(&path->dentry->d_flags); 1485 if (ret < 0) 1486 break; 1487 } 1488 1489 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1490 struct vfsmount *mounted = lookup_mnt(path); 1491 if (mounted) { // ... in our namespace 1492 dput(path->dentry); 1493 if (need_mntput) 1494 mntput(path->mnt); 1495 path->mnt = mounted; 1496 path->dentry = dget(mounted->mnt_root); 1497 // here we know it's positive 1498 flags = path->dentry->d_flags; 1499 need_mntput = true; 1500 if (unlikely(lookup_flags & LOOKUP_NO_XDEV)) { 1501 ret = -EXDEV; 1502 break; 1503 } 1504 continue; 1505 } 1506 } 1507 1508 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1509 break; 1510 1511 // uncovered automount point 1512 ret = follow_automount(path, count, lookup_flags); 1513 flags = smp_load_acquire(&path->dentry->d_flags); 1514 if (ret < 0) 1515 break; 1516 } 1517 1518 if (ret == -EISDIR) 1519 ret = 0; 1520 // possible if you race with several mount --move 1521 if (need_mntput && path->mnt == mnt) 1522 mntput(path->mnt); 1523 if (!ret && unlikely(d_flags_negative(flags))) 1524 ret = -ENOENT; 1525 *jumped = need_mntput; 1526 return ret; 1527 } 1528 1529 static inline int traverse_mounts(struct path *path, bool *jumped, 1530 int *count, unsigned lookup_flags) 1531 { 1532 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1533 1534 /* fastpath */ 1535 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1536 *jumped = false; 1537 if (unlikely(d_flags_negative(flags))) 1538 return -ENOENT; 1539 return 0; 1540 } 1541 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1542 } 1543 1544 int follow_down_one(struct path *path) 1545 { 1546 struct vfsmount *mounted; 1547 1548 mounted = lookup_mnt(path); 1549 if (mounted) { 1550 dput(path->dentry); 1551 mntput(path->mnt); 1552 path->mnt = mounted; 1553 path->dentry = dget(mounted->mnt_root); 1554 return 1; 1555 } 1556 return 0; 1557 } 1558 EXPORT_SYMBOL(follow_down_one); 1559 1560 /* 1561 * Follow down to the covering mount currently visible to userspace. At each 1562 * point, the filesystem owning that dentry may be queried as to whether the 1563 * caller is permitted to proceed or not. 1564 */ 1565 int follow_down(struct path *path, unsigned int flags) 1566 { 1567 struct vfsmount *mnt = path->mnt; 1568 bool jumped; 1569 int ret = traverse_mounts(path, &jumped, NULL, flags); 1570 1571 if (path->mnt != mnt) 1572 mntput(mnt); 1573 return ret; 1574 } 1575 EXPORT_SYMBOL(follow_down); 1576 1577 /* 1578 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1579 * we meet a managed dentry that would need blocking. 1580 */ 1581 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1582 { 1583 struct dentry *dentry = path->dentry; 1584 unsigned int flags = dentry->d_flags; 1585 1586 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1587 return true; 1588 1589 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1590 return false; 1591 1592 for (;;) { 1593 /* 1594 * Don't forget we might have a non-mountpoint managed dentry 1595 * that wants to block transit. 1596 */ 1597 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1598 int res = dentry->d_op->d_manage(path, true); 1599 if (res) 1600 return res == -EISDIR; 1601 flags = dentry->d_flags; 1602 } 1603 1604 if (flags & DCACHE_MOUNTED) { 1605 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1606 if (mounted) { 1607 path->mnt = &mounted->mnt; 1608 dentry = path->dentry = mounted->mnt.mnt_root; 1609 nd->state |= ND_JUMPED; 1610 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1611 flags = dentry->d_flags; 1612 // makes sure that non-RCU pathwalk could reach 1613 // this state. 1614 if (read_seqretry(&mount_lock, nd->m_seq)) 1615 return false; 1616 continue; 1617 } 1618 if (read_seqretry(&mount_lock, nd->m_seq)) 1619 return false; 1620 } 1621 return !(flags & DCACHE_NEED_AUTOMOUNT); 1622 } 1623 } 1624 1625 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1626 struct path *path) 1627 { 1628 bool jumped; 1629 int ret; 1630 1631 path->mnt = nd->path.mnt; 1632 path->dentry = dentry; 1633 if (nd->flags & LOOKUP_RCU) { 1634 unsigned int seq = nd->next_seq; 1635 if (likely(__follow_mount_rcu(nd, path))) 1636 return 0; 1637 // *path and nd->next_seq might've been clobbered 1638 path->mnt = nd->path.mnt; 1639 path->dentry = dentry; 1640 nd->next_seq = seq; 1641 if (!try_to_unlazy_next(nd, dentry)) 1642 return -ECHILD; 1643 } 1644 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1645 if (jumped) 1646 nd->state |= ND_JUMPED; 1647 if (unlikely(ret)) { 1648 dput(path->dentry); 1649 if (path->mnt != nd->path.mnt) 1650 mntput(path->mnt); 1651 } 1652 return ret; 1653 } 1654 1655 /* 1656 * This looks up the name in dcache and possibly revalidates the found dentry. 1657 * NULL is returned if the dentry does not exist in the cache. 1658 */ 1659 static struct dentry *lookup_dcache(const struct qstr *name, 1660 struct dentry *dir, 1661 unsigned int flags) 1662 { 1663 struct dentry *dentry = d_lookup(dir, name); 1664 if (dentry) { 1665 int error = d_revalidate(dir->d_inode, name, dentry, flags); 1666 if (unlikely(error <= 0)) { 1667 if (!error) 1668 d_invalidate(dentry); 1669 dput(dentry); 1670 return ERR_PTR(error); 1671 } 1672 } 1673 return dentry; 1674 } 1675 1676 /* 1677 * Parent directory has inode locked exclusive. This is one 1678 * and only case when ->lookup() gets called on non in-lookup 1679 * dentries - as the matter of fact, this only gets called 1680 * when directory is guaranteed to have no in-lookup children 1681 * at all. 1682 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed. 1683 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed. 1684 */ 1685 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1686 struct dentry *base, unsigned int flags) 1687 { 1688 struct dentry *dentry; 1689 struct dentry *old; 1690 struct inode *dir; 1691 1692 dentry = lookup_dcache(name, base, flags); 1693 if (dentry) 1694 goto found; 1695 1696 /* Don't create child dentry for a dead directory. */ 1697 dir = base->d_inode; 1698 if (unlikely(IS_DEADDIR(dir))) 1699 return ERR_PTR(-ENOENT); 1700 1701 dentry = d_alloc(base, name); 1702 if (unlikely(!dentry)) 1703 return ERR_PTR(-ENOMEM); 1704 1705 old = dir->i_op->lookup(dir, dentry, flags); 1706 if (unlikely(old)) { 1707 dput(dentry); 1708 dentry = old; 1709 } 1710 found: 1711 if (IS_ERR(dentry)) 1712 return dentry; 1713 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) { 1714 dput(dentry); 1715 return ERR_PTR(-ENOENT); 1716 } 1717 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) { 1718 dput(dentry); 1719 return ERR_PTR(-EEXIST); 1720 } 1721 return dentry; 1722 } 1723 EXPORT_SYMBOL(lookup_one_qstr_excl); 1724 1725 /** 1726 * lookup_fast - do fast lockless (but racy) lookup of a dentry 1727 * @nd: current nameidata 1728 * 1729 * Do a fast, but racy lookup in the dcache for the given dentry, and 1730 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't 1731 * found. On error, an ERR_PTR will be returned. 1732 * 1733 * If this function returns a valid dentry and the walk is no longer 1734 * lazy, the dentry will carry a reference that must later be put. If 1735 * RCU mode is still in force, then this is not the case and the dentry 1736 * must be legitimized before use. If this returns NULL, then the walk 1737 * will no longer be in RCU mode. 1738 */ 1739 static struct dentry *lookup_fast(struct nameidata *nd) 1740 { 1741 struct dentry *dentry, *parent = nd->path.dentry; 1742 int status = 1; 1743 1744 /* 1745 * Rename seqlock is not required here because in the off chance 1746 * of a false negative due to a concurrent rename, the caller is 1747 * going to fall back to non-racy lookup. 1748 */ 1749 if (nd->flags & LOOKUP_RCU) { 1750 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1751 if (unlikely(!dentry)) { 1752 if (!try_to_unlazy(nd)) 1753 return ERR_PTR(-ECHILD); 1754 return NULL; 1755 } 1756 1757 /* 1758 * This sequence count validates that the parent had no 1759 * changes while we did the lookup of the dentry above. 1760 */ 1761 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1762 return ERR_PTR(-ECHILD); 1763 1764 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1765 if (likely(status > 0)) 1766 return dentry; 1767 if (!try_to_unlazy_next(nd, dentry)) 1768 return ERR_PTR(-ECHILD); 1769 if (status == -ECHILD) 1770 /* we'd been told to redo it in non-rcu mode */ 1771 status = d_revalidate(nd->inode, &nd->last, 1772 dentry, nd->flags); 1773 } else { 1774 dentry = __d_lookup(parent, &nd->last); 1775 if (unlikely(!dentry)) 1776 return NULL; 1777 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1778 } 1779 if (unlikely(status <= 0)) { 1780 if (!status) 1781 d_invalidate(dentry); 1782 dput(dentry); 1783 return ERR_PTR(status); 1784 } 1785 return dentry; 1786 } 1787 1788 /* Fast lookup failed, do it the slow way */ 1789 static struct dentry *__lookup_slow(const struct qstr *name, 1790 struct dentry *dir, 1791 unsigned int flags) 1792 { 1793 struct dentry *dentry, *old; 1794 struct inode *inode = dir->d_inode; 1795 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1796 1797 /* Don't go there if it's already dead */ 1798 if (unlikely(IS_DEADDIR(inode))) 1799 return ERR_PTR(-ENOENT); 1800 again: 1801 dentry = d_alloc_parallel(dir, name, &wq); 1802 if (IS_ERR(dentry)) 1803 return dentry; 1804 if (unlikely(!d_in_lookup(dentry))) { 1805 int error = d_revalidate(inode, name, dentry, flags); 1806 if (unlikely(error <= 0)) { 1807 if (!error) { 1808 d_invalidate(dentry); 1809 dput(dentry); 1810 goto again; 1811 } 1812 dput(dentry); 1813 dentry = ERR_PTR(error); 1814 } 1815 } else { 1816 old = inode->i_op->lookup(inode, dentry, flags); 1817 d_lookup_done(dentry); 1818 if (unlikely(old)) { 1819 dput(dentry); 1820 dentry = old; 1821 } 1822 } 1823 return dentry; 1824 } 1825 1826 static struct dentry *lookup_slow(const struct qstr *name, 1827 struct dentry *dir, 1828 unsigned int flags) 1829 { 1830 struct inode *inode = dir->d_inode; 1831 struct dentry *res; 1832 inode_lock_shared(inode); 1833 res = __lookup_slow(name, dir, flags); 1834 inode_unlock_shared(inode); 1835 return res; 1836 } 1837 1838 static inline int may_lookup(struct mnt_idmap *idmap, 1839 struct nameidata *restrict nd) 1840 { 1841 int err, mask; 1842 1843 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1844 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1845 if (likely(!err)) 1846 return 0; 1847 1848 // If we failed, and we weren't in LOOKUP_RCU, it's final 1849 if (!(nd->flags & LOOKUP_RCU)) 1850 return err; 1851 1852 // Drop out of RCU mode to make sure it wasn't transient 1853 if (!try_to_unlazy(nd)) 1854 return -ECHILD; // redo it all non-lazy 1855 1856 if (err != -ECHILD) // hard error 1857 return err; 1858 1859 return inode_permission(idmap, nd->inode, MAY_EXEC); 1860 } 1861 1862 static int reserve_stack(struct nameidata *nd, struct path *link) 1863 { 1864 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1865 return -ELOOP; 1866 1867 if (likely(nd->depth != EMBEDDED_LEVELS)) 1868 return 0; 1869 if (likely(nd->stack != nd->internal)) 1870 return 0; 1871 if (likely(nd_alloc_stack(nd))) 1872 return 0; 1873 1874 if (nd->flags & LOOKUP_RCU) { 1875 // we need to grab link before we do unlazy. And we can't skip 1876 // unlazy even if we fail to grab the link - cleanup needs it 1877 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1878 1879 if (!try_to_unlazy(nd) || !grabbed_link) 1880 return -ECHILD; 1881 1882 if (nd_alloc_stack(nd)) 1883 return 0; 1884 } 1885 return -ENOMEM; 1886 } 1887 1888 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1889 1890 static const char *pick_link(struct nameidata *nd, struct path *link, 1891 struct inode *inode, int flags) 1892 { 1893 struct saved *last; 1894 const char *res; 1895 int error = reserve_stack(nd, link); 1896 1897 if (unlikely(error)) { 1898 if (!(nd->flags & LOOKUP_RCU)) 1899 path_put(link); 1900 return ERR_PTR(error); 1901 } 1902 last = nd->stack + nd->depth++; 1903 last->link = *link; 1904 clear_delayed_call(&last->done); 1905 last->seq = nd->next_seq; 1906 1907 if (flags & WALK_TRAILING) { 1908 error = may_follow_link(nd, inode); 1909 if (unlikely(error)) 1910 return ERR_PTR(error); 1911 } 1912 1913 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1914 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1915 return ERR_PTR(-ELOOP); 1916 1917 if (unlikely(atime_needs_update(&last->link, inode))) { 1918 if (nd->flags & LOOKUP_RCU) { 1919 if (!try_to_unlazy(nd)) 1920 return ERR_PTR(-ECHILD); 1921 } 1922 touch_atime(&last->link); 1923 cond_resched(); 1924 } 1925 1926 error = security_inode_follow_link(link->dentry, inode, 1927 nd->flags & LOOKUP_RCU); 1928 if (unlikely(error)) 1929 return ERR_PTR(error); 1930 1931 res = READ_ONCE(inode->i_link); 1932 if (!res) { 1933 const char * (*get)(struct dentry *, struct inode *, 1934 struct delayed_call *); 1935 get = inode->i_op->get_link; 1936 if (nd->flags & LOOKUP_RCU) { 1937 res = get(NULL, inode, &last->done); 1938 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1939 res = get(link->dentry, inode, &last->done); 1940 } else { 1941 res = get(link->dentry, inode, &last->done); 1942 } 1943 if (!res) 1944 goto all_done; 1945 if (IS_ERR(res)) 1946 return res; 1947 } 1948 if (*res == '/') { 1949 error = nd_jump_root(nd); 1950 if (unlikely(error)) 1951 return ERR_PTR(error); 1952 while (unlikely(*++res == '/')) 1953 ; 1954 } 1955 if (*res) 1956 return res; 1957 all_done: // pure jump 1958 put_link(nd); 1959 return NULL; 1960 } 1961 1962 /* 1963 * Do we need to follow links? We _really_ want to be able 1964 * to do this check without having to look at inode->i_op, 1965 * so we keep a cache of "no, this doesn't need follow_link" 1966 * for the common case. 1967 * 1968 * NOTE: dentry must be what nd->next_seq had been sampled from. 1969 */ 1970 static const char *step_into(struct nameidata *nd, int flags, 1971 struct dentry *dentry) 1972 { 1973 struct path path; 1974 struct inode *inode; 1975 int err = handle_mounts(nd, dentry, &path); 1976 1977 if (err < 0) 1978 return ERR_PTR(err); 1979 inode = path.dentry->d_inode; 1980 if (likely(!d_is_symlink(path.dentry)) || 1981 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1982 (flags & WALK_NOFOLLOW)) { 1983 /* not a symlink or should not follow */ 1984 if (nd->flags & LOOKUP_RCU) { 1985 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1986 return ERR_PTR(-ECHILD); 1987 if (unlikely(!inode)) 1988 return ERR_PTR(-ENOENT); 1989 } else { 1990 dput(nd->path.dentry); 1991 if (nd->path.mnt != path.mnt) 1992 mntput(nd->path.mnt); 1993 } 1994 nd->path = path; 1995 nd->inode = inode; 1996 nd->seq = nd->next_seq; 1997 return NULL; 1998 } 1999 if (nd->flags & LOOKUP_RCU) { 2000 /* make sure that d_is_symlink above matches inode */ 2001 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 2002 return ERR_PTR(-ECHILD); 2003 } else { 2004 if (path.mnt == nd->path.mnt) 2005 mntget(path.mnt); 2006 } 2007 return pick_link(nd, &path, inode, flags); 2008 } 2009 2010 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 2011 { 2012 struct dentry *parent, *old; 2013 2014 if (path_equal(&nd->path, &nd->root)) 2015 goto in_root; 2016 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2017 struct path path; 2018 unsigned seq; 2019 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 2020 &nd->root, &path, &seq)) 2021 goto in_root; 2022 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2023 return ERR_PTR(-ECHILD); 2024 nd->path = path; 2025 nd->inode = path.dentry->d_inode; 2026 nd->seq = seq; 2027 // makes sure that non-RCU pathwalk could reach this state 2028 if (read_seqretry(&mount_lock, nd->m_seq)) 2029 return ERR_PTR(-ECHILD); 2030 /* we know that mountpoint was pinned */ 2031 } 2032 old = nd->path.dentry; 2033 parent = old->d_parent; 2034 nd->next_seq = read_seqcount_begin(&parent->d_seq); 2035 // makes sure that non-RCU pathwalk could reach this state 2036 if (read_seqcount_retry(&old->d_seq, nd->seq)) 2037 return ERR_PTR(-ECHILD); 2038 if (unlikely(!path_connected(nd->path.mnt, parent))) 2039 return ERR_PTR(-ECHILD); 2040 return parent; 2041 in_root: 2042 if (read_seqretry(&mount_lock, nd->m_seq)) 2043 return ERR_PTR(-ECHILD); 2044 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2045 return ERR_PTR(-ECHILD); 2046 nd->next_seq = nd->seq; 2047 return nd->path.dentry; 2048 } 2049 2050 static struct dentry *follow_dotdot(struct nameidata *nd) 2051 { 2052 struct dentry *parent; 2053 2054 if (path_equal(&nd->path, &nd->root)) 2055 goto in_root; 2056 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2057 struct path path; 2058 2059 if (!choose_mountpoint(real_mount(nd->path.mnt), 2060 &nd->root, &path)) 2061 goto in_root; 2062 path_put(&nd->path); 2063 nd->path = path; 2064 nd->inode = path.dentry->d_inode; 2065 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2066 return ERR_PTR(-EXDEV); 2067 } 2068 /* rare case of legitimate dget_parent()... */ 2069 parent = dget_parent(nd->path.dentry); 2070 if (unlikely(!path_connected(nd->path.mnt, parent))) { 2071 dput(parent); 2072 return ERR_PTR(-ENOENT); 2073 } 2074 return parent; 2075 2076 in_root: 2077 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2078 return ERR_PTR(-EXDEV); 2079 return dget(nd->path.dentry); 2080 } 2081 2082 static const char *handle_dots(struct nameidata *nd, int type) 2083 { 2084 if (type == LAST_DOTDOT) { 2085 const char *error = NULL; 2086 struct dentry *parent; 2087 2088 if (!nd->root.mnt) { 2089 error = ERR_PTR(set_root(nd)); 2090 if (error) 2091 return error; 2092 } 2093 if (nd->flags & LOOKUP_RCU) 2094 parent = follow_dotdot_rcu(nd); 2095 else 2096 parent = follow_dotdot(nd); 2097 if (IS_ERR(parent)) 2098 return ERR_CAST(parent); 2099 error = step_into(nd, WALK_NOFOLLOW, parent); 2100 if (unlikely(error)) 2101 return error; 2102 2103 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2104 /* 2105 * If there was a racing rename or mount along our 2106 * path, then we can't be sure that ".." hasn't jumped 2107 * above nd->root (and so userspace should retry or use 2108 * some fallback). 2109 */ 2110 smp_rmb(); 2111 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2112 return ERR_PTR(-EAGAIN); 2113 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2114 return ERR_PTR(-EAGAIN); 2115 } 2116 } 2117 return NULL; 2118 } 2119 2120 static const char *walk_component(struct nameidata *nd, int flags) 2121 { 2122 struct dentry *dentry; 2123 /* 2124 * "." and ".." are special - ".." especially so because it has 2125 * to be able to know about the current root directory and 2126 * parent relationships. 2127 */ 2128 if (unlikely(nd->last_type != LAST_NORM)) { 2129 if (!(flags & WALK_MORE) && nd->depth) 2130 put_link(nd); 2131 return handle_dots(nd, nd->last_type); 2132 } 2133 dentry = lookup_fast(nd); 2134 if (IS_ERR(dentry)) 2135 return ERR_CAST(dentry); 2136 if (unlikely(!dentry)) { 2137 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2138 if (IS_ERR(dentry)) 2139 return ERR_CAST(dentry); 2140 } 2141 if (!(flags & WALK_MORE) && nd->depth) 2142 put_link(nd); 2143 return step_into(nd, flags, dentry); 2144 } 2145 2146 /* 2147 * We can do the critical dentry name comparison and hashing 2148 * operations one word at a time, but we are limited to: 2149 * 2150 * - Architectures with fast unaligned word accesses. We could 2151 * do a "get_unaligned()" if this helps and is sufficiently 2152 * fast. 2153 * 2154 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2155 * do not trap on the (extremely unlikely) case of a page 2156 * crossing operation. 2157 * 2158 * - Furthermore, we need an efficient 64-bit compile for the 2159 * 64-bit case in order to generate the "number of bytes in 2160 * the final mask". Again, that could be replaced with a 2161 * efficient population count instruction or similar. 2162 */ 2163 #ifdef CONFIG_DCACHE_WORD_ACCESS 2164 2165 #include <asm/word-at-a-time.h> 2166 2167 #ifdef HASH_MIX 2168 2169 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2170 2171 #elif defined(CONFIG_64BIT) 2172 /* 2173 * Register pressure in the mixing function is an issue, particularly 2174 * on 32-bit x86, but almost any function requires one state value and 2175 * one temporary. Instead, use a function designed for two state values 2176 * and no temporaries. 2177 * 2178 * This function cannot create a collision in only two iterations, so 2179 * we have two iterations to achieve avalanche. In those two iterations, 2180 * we have six layers of mixing, which is enough to spread one bit's 2181 * influence out to 2^6 = 64 state bits. 2182 * 2183 * Rotate constants are scored by considering either 64 one-bit input 2184 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2185 * probability of that delta causing a change to each of the 128 output 2186 * bits, using a sample of random initial states. 2187 * 2188 * The Shannon entropy of the computed probabilities is then summed 2189 * to produce a score. Ideally, any input change has a 50% chance of 2190 * toggling any given output bit. 2191 * 2192 * Mixing scores (in bits) for (12,45): 2193 * Input delta: 1-bit 2-bit 2194 * 1 round: 713.3 42542.6 2195 * 2 rounds: 2753.7 140389.8 2196 * 3 rounds: 5954.1 233458.2 2197 * 4 rounds: 7862.6 256672.2 2198 * Perfect: 8192 258048 2199 * (64*128) (64*63/2 * 128) 2200 */ 2201 #define HASH_MIX(x, y, a) \ 2202 ( x ^= (a), \ 2203 y ^= x, x = rol64(x,12),\ 2204 x += y, y = rol64(y,45),\ 2205 y *= 9 ) 2206 2207 /* 2208 * Fold two longs into one 32-bit hash value. This must be fast, but 2209 * latency isn't quite as critical, as there is a fair bit of additional 2210 * work done before the hash value is used. 2211 */ 2212 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2213 { 2214 y ^= x * GOLDEN_RATIO_64; 2215 y *= GOLDEN_RATIO_64; 2216 return y >> 32; 2217 } 2218 2219 #else /* 32-bit case */ 2220 2221 /* 2222 * Mixing scores (in bits) for (7,20): 2223 * Input delta: 1-bit 2-bit 2224 * 1 round: 330.3 9201.6 2225 * 2 rounds: 1246.4 25475.4 2226 * 3 rounds: 1907.1 31295.1 2227 * 4 rounds: 2042.3 31718.6 2228 * Perfect: 2048 31744 2229 * (32*64) (32*31/2 * 64) 2230 */ 2231 #define HASH_MIX(x, y, a) \ 2232 ( x ^= (a), \ 2233 y ^= x, x = rol32(x, 7),\ 2234 x += y, y = rol32(y,20),\ 2235 y *= 9 ) 2236 2237 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2238 { 2239 /* Use arch-optimized multiply if one exists */ 2240 return __hash_32(y ^ __hash_32(x)); 2241 } 2242 2243 #endif 2244 2245 /* 2246 * Return the hash of a string of known length. This is carfully 2247 * designed to match hash_name(), which is the more critical function. 2248 * In particular, we must end by hashing a final word containing 0..7 2249 * payload bytes, to match the way that hash_name() iterates until it 2250 * finds the delimiter after the name. 2251 */ 2252 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2253 { 2254 unsigned long a, x = 0, y = (unsigned long)salt; 2255 2256 for (;;) { 2257 if (!len) 2258 goto done; 2259 a = load_unaligned_zeropad(name); 2260 if (len < sizeof(unsigned long)) 2261 break; 2262 HASH_MIX(x, y, a); 2263 name += sizeof(unsigned long); 2264 len -= sizeof(unsigned long); 2265 } 2266 x ^= a & bytemask_from_count(len); 2267 done: 2268 return fold_hash(x, y); 2269 } 2270 EXPORT_SYMBOL(full_name_hash); 2271 2272 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2273 u64 hashlen_string(const void *salt, const char *name) 2274 { 2275 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2276 unsigned long adata, mask, len; 2277 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2278 2279 len = 0; 2280 goto inside; 2281 2282 do { 2283 HASH_MIX(x, y, a); 2284 len += sizeof(unsigned long); 2285 inside: 2286 a = load_unaligned_zeropad(name+len); 2287 } while (!has_zero(a, &adata, &constants)); 2288 2289 adata = prep_zero_mask(a, adata, &constants); 2290 mask = create_zero_mask(adata); 2291 x ^= a & zero_bytemask(mask); 2292 2293 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2294 } 2295 EXPORT_SYMBOL(hashlen_string); 2296 2297 /* 2298 * Calculate the length and hash of the path component, and 2299 * return the length as the result. 2300 */ 2301 static inline const char *hash_name(struct nameidata *nd, 2302 const char *name, 2303 unsigned long *lastword) 2304 { 2305 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2306 unsigned long adata, bdata, mask, len; 2307 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2308 2309 /* 2310 * The first iteration is special, because it can result in 2311 * '.' and '..' and has no mixing other than the final fold. 2312 */ 2313 a = load_unaligned_zeropad(name); 2314 b = a ^ REPEAT_BYTE('/'); 2315 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2316 adata = prep_zero_mask(a, adata, &constants); 2317 bdata = prep_zero_mask(b, bdata, &constants); 2318 mask = create_zero_mask(adata | bdata); 2319 a &= zero_bytemask(mask); 2320 *lastword = a; 2321 len = find_zero(mask); 2322 nd->last.hash = fold_hash(a, y); 2323 nd->last.len = len; 2324 return name + len; 2325 } 2326 2327 len = 0; 2328 x = 0; 2329 do { 2330 HASH_MIX(x, y, a); 2331 len += sizeof(unsigned long); 2332 a = load_unaligned_zeropad(name+len); 2333 b = a ^ REPEAT_BYTE('/'); 2334 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2335 2336 adata = prep_zero_mask(a, adata, &constants); 2337 bdata = prep_zero_mask(b, bdata, &constants); 2338 mask = create_zero_mask(adata | bdata); 2339 a &= zero_bytemask(mask); 2340 x ^= a; 2341 len += find_zero(mask); 2342 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2343 2344 nd->last.hash = fold_hash(x, y); 2345 nd->last.len = len; 2346 return name + len; 2347 } 2348 2349 /* 2350 * Note that the 'last' word is always zero-masked, but 2351 * was loaded as a possibly big-endian word. 2352 */ 2353 #ifdef __BIG_ENDIAN 2354 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2355 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2356 #endif 2357 2358 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2359 2360 /* Return the hash of a string of known length */ 2361 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2362 { 2363 unsigned long hash = init_name_hash(salt); 2364 while (len--) 2365 hash = partial_name_hash((unsigned char)*name++, hash); 2366 return end_name_hash(hash); 2367 } 2368 EXPORT_SYMBOL(full_name_hash); 2369 2370 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2371 u64 hashlen_string(const void *salt, const char *name) 2372 { 2373 unsigned long hash = init_name_hash(salt); 2374 unsigned long len = 0, c; 2375 2376 c = (unsigned char)*name; 2377 while (c) { 2378 len++; 2379 hash = partial_name_hash(c, hash); 2380 c = (unsigned char)name[len]; 2381 } 2382 return hashlen_create(end_name_hash(hash), len); 2383 } 2384 EXPORT_SYMBOL(hashlen_string); 2385 2386 /* 2387 * We know there's a real path component here of at least 2388 * one character. 2389 */ 2390 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2391 { 2392 unsigned long hash = init_name_hash(nd->path.dentry); 2393 unsigned long len = 0, c, last = 0; 2394 2395 c = (unsigned char)*name; 2396 do { 2397 last = (last << 8) + c; 2398 len++; 2399 hash = partial_name_hash(c, hash); 2400 c = (unsigned char)name[len]; 2401 } while (c && c != '/'); 2402 2403 // This is reliable for DOT or DOTDOT, since the component 2404 // cannot contain NUL characters - top bits being zero means 2405 // we cannot have had any other pathnames. 2406 *lastword = last; 2407 nd->last.hash = end_name_hash(hash); 2408 nd->last.len = len; 2409 return name + len; 2410 } 2411 2412 #endif 2413 2414 #ifndef LAST_WORD_IS_DOT 2415 #define LAST_WORD_IS_DOT 0x2e 2416 #define LAST_WORD_IS_DOTDOT 0x2e2e 2417 #endif 2418 2419 /* 2420 * Name resolution. 2421 * This is the basic name resolution function, turning a pathname into 2422 * the final dentry. We expect 'base' to be positive and a directory. 2423 * 2424 * Returns 0 and nd will have valid dentry and mnt on success. 2425 * Returns error and drops reference to input namei data on failure. 2426 */ 2427 static int link_path_walk(const char *name, struct nameidata *nd) 2428 { 2429 int depth = 0; // depth <= nd->depth 2430 int err; 2431 2432 nd->last_type = LAST_ROOT; 2433 nd->flags |= LOOKUP_PARENT; 2434 if (IS_ERR(name)) 2435 return PTR_ERR(name); 2436 if (*name == '/') { 2437 do { 2438 name++; 2439 } while (unlikely(*name == '/')); 2440 } 2441 if (unlikely(!*name)) { 2442 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2443 return 0; 2444 } 2445 2446 /* At this point we know we have a real path component. */ 2447 for(;;) { 2448 struct mnt_idmap *idmap; 2449 const char *link; 2450 unsigned long lastword; 2451 2452 idmap = mnt_idmap(nd->path.mnt); 2453 err = may_lookup(idmap, nd); 2454 if (unlikely(err)) 2455 return err; 2456 2457 nd->last.name = name; 2458 name = hash_name(nd, name, &lastword); 2459 2460 switch(lastword) { 2461 case LAST_WORD_IS_DOTDOT: 2462 nd->last_type = LAST_DOTDOT; 2463 nd->state |= ND_JUMPED; 2464 break; 2465 2466 case LAST_WORD_IS_DOT: 2467 nd->last_type = LAST_DOT; 2468 break; 2469 2470 default: 2471 nd->last_type = LAST_NORM; 2472 nd->state &= ~ND_JUMPED; 2473 2474 struct dentry *parent = nd->path.dentry; 2475 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2476 err = parent->d_op->d_hash(parent, &nd->last); 2477 if (err < 0) 2478 return err; 2479 } 2480 } 2481 2482 if (!*name) 2483 goto OK; 2484 /* 2485 * If it wasn't NUL, we know it was '/'. Skip that 2486 * slash, and continue until no more slashes. 2487 */ 2488 do { 2489 name++; 2490 } while (unlikely(*name == '/')); 2491 if (unlikely(!*name)) { 2492 OK: 2493 /* pathname or trailing symlink, done */ 2494 if (!depth) { 2495 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2496 nd->dir_mode = nd->inode->i_mode; 2497 nd->flags &= ~LOOKUP_PARENT; 2498 return 0; 2499 } 2500 /* last component of nested symlink */ 2501 name = nd->stack[--depth].name; 2502 link = walk_component(nd, 0); 2503 } else { 2504 /* not the last component */ 2505 link = walk_component(nd, WALK_MORE); 2506 } 2507 if (unlikely(link)) { 2508 if (IS_ERR(link)) 2509 return PTR_ERR(link); 2510 /* a symlink to follow */ 2511 nd->stack[depth++].name = name; 2512 name = link; 2513 continue; 2514 } 2515 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2516 if (nd->flags & LOOKUP_RCU) { 2517 if (!try_to_unlazy(nd)) 2518 return -ECHILD; 2519 } 2520 return -ENOTDIR; 2521 } 2522 } 2523 } 2524 2525 /* must be paired with terminate_walk() */ 2526 static const char *path_init(struct nameidata *nd, unsigned flags) 2527 { 2528 int error; 2529 const char *s = nd->pathname; 2530 2531 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2532 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2533 return ERR_PTR(-EAGAIN); 2534 2535 if (!*s) 2536 flags &= ~LOOKUP_RCU; 2537 if (flags & LOOKUP_RCU) 2538 rcu_read_lock(); 2539 else 2540 nd->seq = nd->next_seq = 0; 2541 2542 nd->flags = flags; 2543 nd->state |= ND_JUMPED; 2544 2545 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2546 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2547 smp_rmb(); 2548 2549 if (nd->state & ND_ROOT_PRESET) { 2550 struct dentry *root = nd->root.dentry; 2551 struct inode *inode = root->d_inode; 2552 if (*s && unlikely(!d_can_lookup(root))) 2553 return ERR_PTR(-ENOTDIR); 2554 nd->path = nd->root; 2555 nd->inode = inode; 2556 if (flags & LOOKUP_RCU) { 2557 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2558 nd->root_seq = nd->seq; 2559 } else { 2560 path_get(&nd->path); 2561 } 2562 return s; 2563 } 2564 2565 nd->root.mnt = NULL; 2566 2567 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2568 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2569 error = nd_jump_root(nd); 2570 if (unlikely(error)) 2571 return ERR_PTR(error); 2572 return s; 2573 } 2574 2575 /* Relative pathname -- get the starting-point it is relative to. */ 2576 if (nd->dfd == AT_FDCWD) { 2577 if (flags & LOOKUP_RCU) { 2578 struct fs_struct *fs = current->fs; 2579 unsigned seq; 2580 2581 do { 2582 seq = read_seqbegin(&fs->seq); 2583 nd->path = fs->pwd; 2584 nd->inode = nd->path.dentry->d_inode; 2585 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2586 } while (read_seqretry(&fs->seq, seq)); 2587 } else { 2588 get_fs_pwd(current->fs, &nd->path); 2589 nd->inode = nd->path.dentry->d_inode; 2590 } 2591 } else { 2592 /* Caller must check execute permissions on the starting path component */ 2593 CLASS(fd_raw, f)(nd->dfd); 2594 struct dentry *dentry; 2595 2596 if (fd_empty(f)) 2597 return ERR_PTR(-EBADF); 2598 2599 if (flags & LOOKUP_LINKAT_EMPTY) { 2600 if (fd_file(f)->f_cred != current_cred() && 2601 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) 2602 return ERR_PTR(-ENOENT); 2603 } 2604 2605 dentry = fd_file(f)->f_path.dentry; 2606 2607 if (*s && unlikely(!d_can_lookup(dentry))) 2608 return ERR_PTR(-ENOTDIR); 2609 2610 nd->path = fd_file(f)->f_path; 2611 if (flags & LOOKUP_RCU) { 2612 nd->inode = nd->path.dentry->d_inode; 2613 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2614 } else { 2615 path_get(&nd->path); 2616 nd->inode = nd->path.dentry->d_inode; 2617 } 2618 } 2619 2620 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2621 if (flags & LOOKUP_IS_SCOPED) { 2622 nd->root = nd->path; 2623 if (flags & LOOKUP_RCU) { 2624 nd->root_seq = nd->seq; 2625 } else { 2626 path_get(&nd->root); 2627 nd->state |= ND_ROOT_GRABBED; 2628 } 2629 } 2630 return s; 2631 } 2632 2633 static inline const char *lookup_last(struct nameidata *nd) 2634 { 2635 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2636 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2637 2638 return walk_component(nd, WALK_TRAILING); 2639 } 2640 2641 static int handle_lookup_down(struct nameidata *nd) 2642 { 2643 if (!(nd->flags & LOOKUP_RCU)) 2644 dget(nd->path.dentry); 2645 nd->next_seq = nd->seq; 2646 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2647 } 2648 2649 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2650 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2651 { 2652 const char *s = path_init(nd, flags); 2653 int err; 2654 2655 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2656 err = handle_lookup_down(nd); 2657 if (unlikely(err < 0)) 2658 s = ERR_PTR(err); 2659 } 2660 2661 while (!(err = link_path_walk(s, nd)) && 2662 (s = lookup_last(nd)) != NULL) 2663 ; 2664 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2665 err = handle_lookup_down(nd); 2666 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2667 } 2668 if (!err) 2669 err = complete_walk(nd); 2670 2671 if (!err && nd->flags & LOOKUP_DIRECTORY) 2672 if (!d_can_lookup(nd->path.dentry)) 2673 err = -ENOTDIR; 2674 if (!err) { 2675 *path = nd->path; 2676 nd->path.mnt = NULL; 2677 nd->path.dentry = NULL; 2678 } 2679 terminate_walk(nd); 2680 return err; 2681 } 2682 2683 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2684 struct path *path, struct path *root) 2685 { 2686 int retval; 2687 struct nameidata nd; 2688 if (IS_ERR(name)) 2689 return PTR_ERR(name); 2690 set_nameidata(&nd, dfd, name, root); 2691 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2692 if (unlikely(retval == -ECHILD)) 2693 retval = path_lookupat(&nd, flags, path); 2694 if (unlikely(retval == -ESTALE)) 2695 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2696 2697 if (likely(!retval)) 2698 audit_inode(name, path->dentry, 2699 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2700 restore_nameidata(); 2701 return retval; 2702 } 2703 2704 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2705 static int path_parentat(struct nameidata *nd, unsigned flags, 2706 struct path *parent) 2707 { 2708 const char *s = path_init(nd, flags); 2709 int err = link_path_walk(s, nd); 2710 if (!err) 2711 err = complete_walk(nd); 2712 if (!err) { 2713 *parent = nd->path; 2714 nd->path.mnt = NULL; 2715 nd->path.dentry = NULL; 2716 } 2717 terminate_walk(nd); 2718 return err; 2719 } 2720 2721 /* Note: this does not consume "name" */ 2722 static int __filename_parentat(int dfd, struct filename *name, 2723 unsigned int flags, struct path *parent, 2724 struct qstr *last, int *type, 2725 const struct path *root) 2726 { 2727 int retval; 2728 struct nameidata nd; 2729 2730 if (IS_ERR(name)) 2731 return PTR_ERR(name); 2732 set_nameidata(&nd, dfd, name, root); 2733 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2734 if (unlikely(retval == -ECHILD)) 2735 retval = path_parentat(&nd, flags, parent); 2736 if (unlikely(retval == -ESTALE)) 2737 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2738 if (likely(!retval)) { 2739 *last = nd.last; 2740 *type = nd.last_type; 2741 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2742 } 2743 restore_nameidata(); 2744 return retval; 2745 } 2746 2747 static int filename_parentat(int dfd, struct filename *name, 2748 unsigned int flags, struct path *parent, 2749 struct qstr *last, int *type) 2750 { 2751 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2752 } 2753 2754 /* does lookup, returns the object with parent locked */ 2755 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2756 { 2757 struct path parent_path __free(path_put) = {}; 2758 struct dentry *d; 2759 struct qstr last; 2760 int type, error; 2761 2762 error = filename_parentat(dfd, name, 0, &parent_path, &last, &type); 2763 if (error) 2764 return ERR_PTR(error); 2765 if (unlikely(type != LAST_NORM)) 2766 return ERR_PTR(-EINVAL); 2767 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); 2768 d = lookup_one_qstr_excl(&last, parent_path.dentry, 0); 2769 if (IS_ERR(d)) { 2770 inode_unlock(parent_path.dentry->d_inode); 2771 return d; 2772 } 2773 path->dentry = no_free_ptr(parent_path.dentry); 2774 path->mnt = no_free_ptr(parent_path.mnt); 2775 return d; 2776 } 2777 2778 struct dentry *kern_path_locked_negative(const char *name, struct path *path) 2779 { 2780 struct path parent_path __free(path_put) = {}; 2781 struct filename *filename __free(putname) = getname_kernel(name); 2782 struct dentry *d; 2783 struct qstr last; 2784 int type, error; 2785 2786 error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type); 2787 if (error) 2788 return ERR_PTR(error); 2789 if (unlikely(type != LAST_NORM)) 2790 return ERR_PTR(-EINVAL); 2791 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT); 2792 d = lookup_one_qstr_excl(&last, parent_path.dentry, LOOKUP_CREATE); 2793 if (IS_ERR(d)) { 2794 inode_unlock(parent_path.dentry->d_inode); 2795 return d; 2796 } 2797 path->dentry = no_free_ptr(parent_path.dentry); 2798 path->mnt = no_free_ptr(parent_path.mnt); 2799 return d; 2800 } 2801 2802 struct dentry *kern_path_locked(const char *name, struct path *path) 2803 { 2804 struct filename *filename = getname_kernel(name); 2805 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2806 2807 putname(filename); 2808 return res; 2809 } 2810 2811 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2812 { 2813 struct filename *filename = getname(name); 2814 struct dentry *res = __kern_path_locked(dfd, filename, path); 2815 2816 putname(filename); 2817 return res; 2818 } 2819 EXPORT_SYMBOL(user_path_locked_at); 2820 2821 int kern_path(const char *name, unsigned int flags, struct path *path) 2822 { 2823 struct filename *filename = getname_kernel(name); 2824 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2825 2826 putname(filename); 2827 return ret; 2828 2829 } 2830 EXPORT_SYMBOL(kern_path); 2831 2832 /** 2833 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2834 * @filename: filename structure 2835 * @flags: lookup flags 2836 * @parent: pointer to struct path to fill 2837 * @last: last component 2838 * @type: type of the last component 2839 * @root: pointer to struct path of the base directory 2840 */ 2841 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2842 struct path *parent, struct qstr *last, int *type, 2843 const struct path *root) 2844 { 2845 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2846 type, root); 2847 } 2848 EXPORT_SYMBOL(vfs_path_parent_lookup); 2849 2850 /** 2851 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2852 * @dentry: pointer to dentry of the base directory 2853 * @mnt: pointer to vfs mount of the base directory 2854 * @name: pointer to file name 2855 * @flags: lookup flags 2856 * @path: pointer to struct path to fill 2857 */ 2858 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2859 const char *name, unsigned int flags, 2860 struct path *path) 2861 { 2862 struct filename *filename; 2863 struct path root = {.mnt = mnt, .dentry = dentry}; 2864 int ret; 2865 2866 filename = getname_kernel(name); 2867 /* the first argument of filename_lookup() is ignored with root */ 2868 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2869 putname(filename); 2870 return ret; 2871 } 2872 EXPORT_SYMBOL(vfs_path_lookup); 2873 2874 static int lookup_noperm_common(struct qstr *qname, struct dentry *base) 2875 { 2876 const char *name = qname->name; 2877 u32 len = qname->len; 2878 2879 qname->hash = full_name_hash(base, name, len); 2880 if (!len) 2881 return -EACCES; 2882 2883 if (is_dot_dotdot(name, len)) 2884 return -EACCES; 2885 2886 while (len--) { 2887 unsigned int c = *(const unsigned char *)name++; 2888 if (c == '/' || c == '\0') 2889 return -EACCES; 2890 } 2891 /* 2892 * See if the low-level filesystem might want 2893 * to use its own hash.. 2894 */ 2895 if (base->d_flags & DCACHE_OP_HASH) { 2896 int err = base->d_op->d_hash(base, qname); 2897 if (err < 0) 2898 return err; 2899 } 2900 return 0; 2901 } 2902 2903 static int lookup_one_common(struct mnt_idmap *idmap, 2904 struct qstr *qname, struct dentry *base) 2905 { 2906 int err; 2907 err = lookup_noperm_common(qname, base); 2908 if (err < 0) 2909 return err; 2910 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2911 } 2912 2913 /** 2914 * try_lookup_noperm - filesystem helper to lookup single pathname component 2915 * @name: qstr storing pathname component to lookup 2916 * @base: base directory to lookup from 2917 * 2918 * Look up a dentry by name in the dcache, returning NULL if it does not 2919 * currently exist. The function does not try to create a dentry and if one 2920 * is found it doesn't try to revalidate it. 2921 * 2922 * Note that this routine is purely a helper for filesystem usage and should 2923 * not be called by generic code. It does no permission checking. 2924 * 2925 * No locks need be held - only a counted reference to @base is needed. 2926 * 2927 */ 2928 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base) 2929 { 2930 int err; 2931 2932 err = lookup_noperm_common(name, base); 2933 if (err) 2934 return ERR_PTR(err); 2935 2936 return d_lookup(base, name); 2937 } 2938 EXPORT_SYMBOL(try_lookup_noperm); 2939 2940 /** 2941 * lookup_noperm - filesystem helper to lookup single pathname component 2942 * @name: qstr storing pathname component to lookup 2943 * @base: base directory to lookup from 2944 * 2945 * Note that this routine is purely a helper for filesystem usage and should 2946 * not be called by generic code. It does no permission checking. 2947 * 2948 * The caller must hold base->i_rwsem. 2949 */ 2950 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base) 2951 { 2952 struct dentry *dentry; 2953 int err; 2954 2955 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2956 2957 err = lookup_noperm_common(name, base); 2958 if (err) 2959 return ERR_PTR(err); 2960 2961 dentry = lookup_dcache(name, base, 0); 2962 return dentry ? dentry : __lookup_slow(name, base, 0); 2963 } 2964 EXPORT_SYMBOL(lookup_noperm); 2965 2966 /** 2967 * lookup_one - lookup single pathname component 2968 * @idmap: idmap of the mount the lookup is performed from 2969 * @name: qstr holding pathname component to lookup 2970 * @base: base directory to lookup from 2971 * 2972 * This can be used for in-kernel filesystem clients such as file servers. 2973 * 2974 * The caller must hold base->i_rwsem. 2975 */ 2976 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name, 2977 struct dentry *base) 2978 { 2979 struct dentry *dentry; 2980 int err; 2981 2982 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2983 2984 err = lookup_one_common(idmap, name, base); 2985 if (err) 2986 return ERR_PTR(err); 2987 2988 dentry = lookup_dcache(name, base, 0); 2989 return dentry ? dentry : __lookup_slow(name, base, 0); 2990 } 2991 EXPORT_SYMBOL(lookup_one); 2992 2993 /** 2994 * lookup_one_unlocked - lookup single pathname component 2995 * @idmap: idmap of the mount the lookup is performed from 2996 * @name: qstr olding pathname component to lookup 2997 * @base: base directory to lookup from 2998 * 2999 * This can be used for in-kernel filesystem clients such as file servers. 3000 * 3001 * Unlike lookup_one, it should be called without the parent 3002 * i_rwsem held, and will take the i_rwsem itself if necessary. 3003 */ 3004 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name, 3005 struct dentry *base) 3006 { 3007 int err; 3008 struct dentry *ret; 3009 3010 err = lookup_one_common(idmap, name, base); 3011 if (err) 3012 return ERR_PTR(err); 3013 3014 ret = lookup_dcache(name, base, 0); 3015 if (!ret) 3016 ret = lookup_slow(name, base, 0); 3017 return ret; 3018 } 3019 EXPORT_SYMBOL(lookup_one_unlocked); 3020 3021 /** 3022 * lookup_one_positive_unlocked - lookup single pathname component 3023 * @idmap: idmap of the mount the lookup is performed from 3024 * @name: qstr holding pathname component to lookup 3025 * @base: base directory to lookup from 3026 * 3027 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 3028 * known positive or ERR_PTR(). This is what most of the users want. 3029 * 3030 * Note that pinned negative with unlocked parent _can_ become positive at any 3031 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 3032 * positives have >d_inode stable, so this one avoids such problems. 3033 * 3034 * This can be used for in-kernel filesystem clients such as file servers. 3035 * 3036 * The helper should be called without i_rwsem held. 3037 */ 3038 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 3039 struct qstr *name, 3040 struct dentry *base) 3041 { 3042 struct dentry *ret = lookup_one_unlocked(idmap, name, base); 3043 3044 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3045 dput(ret); 3046 ret = ERR_PTR(-ENOENT); 3047 } 3048 return ret; 3049 } 3050 EXPORT_SYMBOL(lookup_one_positive_unlocked); 3051 3052 /** 3053 * lookup_noperm_unlocked - filesystem helper to lookup single pathname component 3054 * @name: pathname component to lookup 3055 * @base: base directory to lookup from 3056 * 3057 * Note that this routine is purely a helper for filesystem usage and should 3058 * not be called by generic code. It does no permission checking. 3059 * 3060 * Unlike lookup_noperm(), it should be called without the parent 3061 * i_rwsem held, and will take the i_rwsem itself if necessary. 3062 * 3063 * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already 3064 * existed. 3065 */ 3066 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base) 3067 { 3068 struct dentry *ret; 3069 int err; 3070 3071 err = lookup_noperm_common(name, base); 3072 if (err) 3073 return ERR_PTR(err); 3074 3075 ret = lookup_dcache(name, base, 0); 3076 if (!ret) 3077 ret = lookup_slow(name, base, 0); 3078 return ret; 3079 } 3080 EXPORT_SYMBOL(lookup_noperm_unlocked); 3081 3082 /* 3083 * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT) 3084 * on negatives. Returns known positive or ERR_PTR(); that's what 3085 * most of the users want. Note that pinned negative with unlocked parent 3086 * _can_ become positive at any time, so callers of lookup_noperm_unlocked() 3087 * need to be very careful; pinned positives have ->d_inode stable, so 3088 * this one avoids such problems. 3089 */ 3090 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name, 3091 struct dentry *base) 3092 { 3093 struct dentry *ret; 3094 3095 ret = lookup_noperm_unlocked(name, base); 3096 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3097 dput(ret); 3098 ret = ERR_PTR(-ENOENT); 3099 } 3100 return ret; 3101 } 3102 EXPORT_SYMBOL(lookup_noperm_positive_unlocked); 3103 3104 #ifdef CONFIG_UNIX98_PTYS 3105 int path_pts(struct path *path) 3106 { 3107 /* Find something mounted on "pts" in the same directory as 3108 * the input path. 3109 */ 3110 struct dentry *parent = dget_parent(path->dentry); 3111 struct dentry *child; 3112 struct qstr this = QSTR_INIT("pts", 3); 3113 3114 if (unlikely(!path_connected(path->mnt, parent))) { 3115 dput(parent); 3116 return -ENOENT; 3117 } 3118 dput(path->dentry); 3119 path->dentry = parent; 3120 child = d_hash_and_lookup(parent, &this); 3121 if (IS_ERR_OR_NULL(child)) 3122 return -ENOENT; 3123 3124 path->dentry = child; 3125 dput(parent); 3126 follow_down(path, 0); 3127 return 0; 3128 } 3129 #endif 3130 3131 int user_path_at(int dfd, const char __user *name, unsigned flags, 3132 struct path *path) 3133 { 3134 struct filename *filename = getname_flags(name, flags); 3135 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3136 3137 putname(filename); 3138 return ret; 3139 } 3140 EXPORT_SYMBOL(user_path_at); 3141 3142 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3143 struct inode *inode) 3144 { 3145 kuid_t fsuid = current_fsuid(); 3146 3147 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3148 return 0; 3149 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3150 return 0; 3151 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3152 } 3153 EXPORT_SYMBOL(__check_sticky); 3154 3155 /* 3156 * Check whether we can remove a link victim from directory dir, check 3157 * whether the type of victim is right. 3158 * 1. We can't do it if dir is read-only (done in permission()) 3159 * 2. We should have write and exec permissions on dir 3160 * 3. We can't remove anything from append-only dir 3161 * 4. We can't do anything with immutable dir (done in permission()) 3162 * 5. If the sticky bit on dir is set we should either 3163 * a. be owner of dir, or 3164 * b. be owner of victim, or 3165 * c. have CAP_FOWNER capability 3166 * 6. If the victim is append-only or immutable we can't do antyhing with 3167 * links pointing to it. 3168 * 7. If the victim has an unknown uid or gid we can't change the inode. 3169 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3170 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3171 * 10. We can't remove a root or mountpoint. 3172 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3173 * nfs_async_unlink(). 3174 */ 3175 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3176 struct dentry *victim, bool isdir) 3177 { 3178 struct inode *inode = d_backing_inode(victim); 3179 int error; 3180 3181 if (d_is_negative(victim)) 3182 return -ENOENT; 3183 BUG_ON(!inode); 3184 3185 BUG_ON(victim->d_parent->d_inode != dir); 3186 3187 /* Inode writeback is not safe when the uid or gid are invalid. */ 3188 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3189 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3190 return -EOVERFLOW; 3191 3192 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3193 3194 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3195 if (error) 3196 return error; 3197 if (IS_APPEND(dir)) 3198 return -EPERM; 3199 3200 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3201 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3202 HAS_UNMAPPED_ID(idmap, inode)) 3203 return -EPERM; 3204 if (isdir) { 3205 if (!d_is_dir(victim)) 3206 return -ENOTDIR; 3207 if (IS_ROOT(victim)) 3208 return -EBUSY; 3209 } else if (d_is_dir(victim)) 3210 return -EISDIR; 3211 if (IS_DEADDIR(dir)) 3212 return -ENOENT; 3213 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3214 return -EBUSY; 3215 return 0; 3216 } 3217 3218 /* Check whether we can create an object with dentry child in directory 3219 * dir. 3220 * 1. We can't do it if child already exists (open has special treatment for 3221 * this case, but since we are inlined it's OK) 3222 * 2. We can't do it if dir is read-only (done in permission()) 3223 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3224 * 4. We should have write and exec permissions on dir 3225 * 5. We can't do it if dir is immutable (done in permission()) 3226 */ 3227 static inline int may_create(struct mnt_idmap *idmap, 3228 struct inode *dir, struct dentry *child) 3229 { 3230 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3231 if (child->d_inode) 3232 return -EEXIST; 3233 if (IS_DEADDIR(dir)) 3234 return -ENOENT; 3235 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3236 return -EOVERFLOW; 3237 3238 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3239 } 3240 3241 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3242 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3243 { 3244 struct dentry *p = p1, *q = p2, *r; 3245 3246 while ((r = p->d_parent) != p2 && r != p) 3247 p = r; 3248 if (r == p2) { 3249 // p is a child of p2 and an ancestor of p1 or p1 itself 3250 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3251 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3252 return p; 3253 } 3254 // p is the root of connected component that contains p1 3255 // p2 does not occur on the path from p to p1 3256 while ((r = q->d_parent) != p1 && r != p && r != q) 3257 q = r; 3258 if (r == p1) { 3259 // q is a child of p1 and an ancestor of p2 or p2 itself 3260 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3261 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3262 return q; 3263 } else if (likely(r == p)) { 3264 // both p2 and p1 are descendents of p 3265 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3266 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3267 return NULL; 3268 } else { // no common ancestor at the time we'd been called 3269 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3270 return ERR_PTR(-EXDEV); 3271 } 3272 } 3273 3274 /* 3275 * p1 and p2 should be directories on the same fs. 3276 */ 3277 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3278 { 3279 if (p1 == p2) { 3280 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3281 return NULL; 3282 } 3283 3284 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3285 return lock_two_directories(p1, p2); 3286 } 3287 EXPORT_SYMBOL(lock_rename); 3288 3289 /* 3290 * c1 and p2 should be on the same fs. 3291 */ 3292 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3293 { 3294 if (READ_ONCE(c1->d_parent) == p2) { 3295 /* 3296 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3297 */ 3298 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3299 /* 3300 * now that p2 is locked, nobody can move in or out of it, 3301 * so the test below is safe. 3302 */ 3303 if (likely(c1->d_parent == p2)) 3304 return NULL; 3305 3306 /* 3307 * c1 got moved out of p2 while we'd been taking locks; 3308 * unlock and fall back to slow case. 3309 */ 3310 inode_unlock(p2->d_inode); 3311 } 3312 3313 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3314 /* 3315 * nobody can move out of any directories on this fs. 3316 */ 3317 if (likely(c1->d_parent != p2)) 3318 return lock_two_directories(c1->d_parent, p2); 3319 3320 /* 3321 * c1 got moved into p2 while we were taking locks; 3322 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3323 * for consistency with lock_rename(). 3324 */ 3325 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3326 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3327 return NULL; 3328 } 3329 EXPORT_SYMBOL(lock_rename_child); 3330 3331 void unlock_rename(struct dentry *p1, struct dentry *p2) 3332 { 3333 inode_unlock(p1->d_inode); 3334 if (p1 != p2) { 3335 inode_unlock(p2->d_inode); 3336 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3337 } 3338 } 3339 EXPORT_SYMBOL(unlock_rename); 3340 3341 /** 3342 * vfs_prepare_mode - prepare the mode to be used for a new inode 3343 * @idmap: idmap of the mount the inode was found from 3344 * @dir: parent directory of the new inode 3345 * @mode: mode of the new inode 3346 * @mask_perms: allowed permission by the vfs 3347 * @type: type of file to be created 3348 * 3349 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3350 * object to be created. 3351 * 3352 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3353 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3354 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3355 * POSIX ACL supporting filesystems. 3356 * 3357 * Note that it's currently valid for @type to be 0 if a directory is created. 3358 * Filesystems raise that flag individually and we need to check whether each 3359 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3360 * non-zero type. 3361 * 3362 * Returns: mode to be passed to the filesystem 3363 */ 3364 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3365 const struct inode *dir, umode_t mode, 3366 umode_t mask_perms, umode_t type) 3367 { 3368 mode = mode_strip_sgid(idmap, dir, mode); 3369 mode = mode_strip_umask(dir, mode); 3370 3371 /* 3372 * Apply the vfs mandated allowed permission mask and set the type of 3373 * file to be created before we call into the filesystem. 3374 */ 3375 mode &= (mask_perms & ~S_IFMT); 3376 mode |= (type & S_IFMT); 3377 3378 return mode; 3379 } 3380 3381 /** 3382 * vfs_create - create new file 3383 * @idmap: idmap of the mount the inode was found from 3384 * @dir: inode of the parent directory 3385 * @dentry: dentry of the child file 3386 * @mode: mode of the child file 3387 * @want_excl: whether the file must not yet exist 3388 * 3389 * Create a new file. 3390 * 3391 * If the inode has been found through an idmapped mount the idmap of 3392 * the vfsmount must be passed through @idmap. This function will then take 3393 * care to map the inode according to @idmap before checking permissions. 3394 * On non-idmapped mounts or if permission checking is to be performed on the 3395 * raw inode simply pass @nop_mnt_idmap. 3396 */ 3397 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3398 struct dentry *dentry, umode_t mode, bool want_excl) 3399 { 3400 int error; 3401 3402 error = may_create(idmap, dir, dentry); 3403 if (error) 3404 return error; 3405 3406 if (!dir->i_op->create) 3407 return -EACCES; /* shouldn't it be ENOSYS? */ 3408 3409 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3410 error = security_inode_create(dir, dentry, mode); 3411 if (error) 3412 return error; 3413 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3414 if (!error) 3415 fsnotify_create(dir, dentry); 3416 return error; 3417 } 3418 EXPORT_SYMBOL(vfs_create); 3419 3420 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3421 int (*f)(struct dentry *, umode_t, void *), 3422 void *arg) 3423 { 3424 struct inode *dir = dentry->d_parent->d_inode; 3425 int error = may_create(&nop_mnt_idmap, dir, dentry); 3426 if (error) 3427 return error; 3428 3429 mode &= S_IALLUGO; 3430 mode |= S_IFREG; 3431 error = security_inode_create(dir, dentry, mode); 3432 if (error) 3433 return error; 3434 error = f(dentry, mode, arg); 3435 if (!error) 3436 fsnotify_create(dir, dentry); 3437 return error; 3438 } 3439 EXPORT_SYMBOL(vfs_mkobj); 3440 3441 bool may_open_dev(const struct path *path) 3442 { 3443 return !(path->mnt->mnt_flags & MNT_NODEV) && 3444 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3445 } 3446 3447 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3448 int acc_mode, int flag) 3449 { 3450 struct dentry *dentry = path->dentry; 3451 struct inode *inode = dentry->d_inode; 3452 int error; 3453 3454 if (!inode) 3455 return -ENOENT; 3456 3457 switch (inode->i_mode & S_IFMT) { 3458 case S_IFLNK: 3459 return -ELOOP; 3460 case S_IFDIR: 3461 if (acc_mode & MAY_WRITE) 3462 return -EISDIR; 3463 if (acc_mode & MAY_EXEC) 3464 return -EACCES; 3465 break; 3466 case S_IFBLK: 3467 case S_IFCHR: 3468 if (!may_open_dev(path)) 3469 return -EACCES; 3470 fallthrough; 3471 case S_IFIFO: 3472 case S_IFSOCK: 3473 if (acc_mode & MAY_EXEC) 3474 return -EACCES; 3475 flag &= ~O_TRUNC; 3476 break; 3477 case S_IFREG: 3478 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3479 return -EACCES; 3480 break; 3481 default: 3482 VFS_BUG_ON_INODE(!IS_ANON_FILE(inode), inode); 3483 } 3484 3485 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3486 if (error) 3487 return error; 3488 3489 /* 3490 * An append-only file must be opened in append mode for writing. 3491 */ 3492 if (IS_APPEND(inode)) { 3493 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3494 return -EPERM; 3495 if (flag & O_TRUNC) 3496 return -EPERM; 3497 } 3498 3499 /* O_NOATIME can only be set by the owner or superuser */ 3500 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3501 return -EPERM; 3502 3503 return 0; 3504 } 3505 3506 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3507 { 3508 const struct path *path = &filp->f_path; 3509 struct inode *inode = path->dentry->d_inode; 3510 int error = get_write_access(inode); 3511 if (error) 3512 return error; 3513 3514 error = security_file_truncate(filp); 3515 if (!error) { 3516 error = do_truncate(idmap, path->dentry, 0, 3517 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3518 filp); 3519 } 3520 put_write_access(inode); 3521 return error; 3522 } 3523 3524 static inline int open_to_namei_flags(int flag) 3525 { 3526 if ((flag & O_ACCMODE) == 3) 3527 flag--; 3528 return flag; 3529 } 3530 3531 static int may_o_create(struct mnt_idmap *idmap, 3532 const struct path *dir, struct dentry *dentry, 3533 umode_t mode) 3534 { 3535 int error = security_path_mknod(dir, dentry, mode, 0); 3536 if (error) 3537 return error; 3538 3539 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3540 return -EOVERFLOW; 3541 3542 error = inode_permission(idmap, dir->dentry->d_inode, 3543 MAY_WRITE | MAY_EXEC); 3544 if (error) 3545 return error; 3546 3547 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3548 } 3549 3550 /* 3551 * Attempt to atomically look up, create and open a file from a negative 3552 * dentry. 3553 * 3554 * Returns 0 if successful. The file will have been created and attached to 3555 * @file by the filesystem calling finish_open(). 3556 * 3557 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3558 * be set. The caller will need to perform the open themselves. @path will 3559 * have been updated to point to the new dentry. This may be negative. 3560 * 3561 * Returns an error code otherwise. 3562 */ 3563 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3564 struct file *file, 3565 int open_flag, umode_t mode) 3566 { 3567 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3568 struct inode *dir = nd->path.dentry->d_inode; 3569 int error; 3570 3571 if (nd->flags & LOOKUP_DIRECTORY) 3572 open_flag |= O_DIRECTORY; 3573 3574 file->f_path.dentry = DENTRY_NOT_SET; 3575 file->f_path.mnt = nd->path.mnt; 3576 error = dir->i_op->atomic_open(dir, dentry, file, 3577 open_to_namei_flags(open_flag), mode); 3578 d_lookup_done(dentry); 3579 if (!error) { 3580 if (file->f_mode & FMODE_OPENED) { 3581 if (unlikely(dentry != file->f_path.dentry)) { 3582 dput(dentry); 3583 dentry = dget(file->f_path.dentry); 3584 } 3585 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3586 error = -EIO; 3587 } else { 3588 if (file->f_path.dentry) { 3589 dput(dentry); 3590 dentry = file->f_path.dentry; 3591 } 3592 if (unlikely(d_is_negative(dentry))) 3593 error = -ENOENT; 3594 } 3595 } 3596 if (error) { 3597 dput(dentry); 3598 dentry = ERR_PTR(error); 3599 } 3600 return dentry; 3601 } 3602 3603 /* 3604 * Look up and maybe create and open the last component. 3605 * 3606 * Must be called with parent locked (exclusive in O_CREAT case). 3607 * 3608 * Returns 0 on success, that is, if 3609 * the file was successfully atomically created (if necessary) and opened, or 3610 * the file was not completely opened at this time, though lookups and 3611 * creations were performed. 3612 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3613 * In the latter case dentry returned in @path might be negative if O_CREAT 3614 * hadn't been specified. 3615 * 3616 * An error code is returned on failure. 3617 */ 3618 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3619 const struct open_flags *op, 3620 bool got_write) 3621 { 3622 struct mnt_idmap *idmap; 3623 struct dentry *dir = nd->path.dentry; 3624 struct inode *dir_inode = dir->d_inode; 3625 int open_flag = op->open_flag; 3626 struct dentry *dentry; 3627 int error, create_error = 0; 3628 umode_t mode = op->mode; 3629 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3630 3631 if (unlikely(IS_DEADDIR(dir_inode))) 3632 return ERR_PTR(-ENOENT); 3633 3634 file->f_mode &= ~FMODE_CREATED; 3635 dentry = d_lookup(dir, &nd->last); 3636 for (;;) { 3637 if (!dentry) { 3638 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3639 if (IS_ERR(dentry)) 3640 return dentry; 3641 } 3642 if (d_in_lookup(dentry)) 3643 break; 3644 3645 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags); 3646 if (likely(error > 0)) 3647 break; 3648 if (error) 3649 goto out_dput; 3650 d_invalidate(dentry); 3651 dput(dentry); 3652 dentry = NULL; 3653 } 3654 if (dentry->d_inode) { 3655 /* Cached positive dentry: will open in f_op->open */ 3656 return dentry; 3657 } 3658 3659 if (open_flag & O_CREAT) 3660 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3661 3662 /* 3663 * Checking write permission is tricky, bacuse we don't know if we are 3664 * going to actually need it: O_CREAT opens should work as long as the 3665 * file exists. But checking existence breaks atomicity. The trick is 3666 * to check access and if not granted clear O_CREAT from the flags. 3667 * 3668 * Another problem is returing the "right" error value (e.g. for an 3669 * O_EXCL open we want to return EEXIST not EROFS). 3670 */ 3671 if (unlikely(!got_write)) 3672 open_flag &= ~O_TRUNC; 3673 idmap = mnt_idmap(nd->path.mnt); 3674 if (open_flag & O_CREAT) { 3675 if (open_flag & O_EXCL) 3676 open_flag &= ~O_TRUNC; 3677 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3678 if (likely(got_write)) 3679 create_error = may_o_create(idmap, &nd->path, 3680 dentry, mode); 3681 else 3682 create_error = -EROFS; 3683 } 3684 if (create_error) 3685 open_flag &= ~O_CREAT; 3686 if (dir_inode->i_op->atomic_open) { 3687 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3688 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3689 dentry = ERR_PTR(create_error); 3690 return dentry; 3691 } 3692 3693 if (d_in_lookup(dentry)) { 3694 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3695 nd->flags); 3696 d_lookup_done(dentry); 3697 if (unlikely(res)) { 3698 if (IS_ERR(res)) { 3699 error = PTR_ERR(res); 3700 goto out_dput; 3701 } 3702 dput(dentry); 3703 dentry = res; 3704 } 3705 } 3706 3707 /* Negative dentry, just create the file */ 3708 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3709 file->f_mode |= FMODE_CREATED; 3710 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3711 if (!dir_inode->i_op->create) { 3712 error = -EACCES; 3713 goto out_dput; 3714 } 3715 3716 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3717 mode, open_flag & O_EXCL); 3718 if (error) 3719 goto out_dput; 3720 } 3721 if (unlikely(create_error) && !dentry->d_inode) { 3722 error = create_error; 3723 goto out_dput; 3724 } 3725 return dentry; 3726 3727 out_dput: 3728 dput(dentry); 3729 return ERR_PTR(error); 3730 } 3731 3732 static inline bool trailing_slashes(struct nameidata *nd) 3733 { 3734 return (bool)nd->last.name[nd->last.len]; 3735 } 3736 3737 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) 3738 { 3739 struct dentry *dentry; 3740 3741 if (open_flag & O_CREAT) { 3742 if (trailing_slashes(nd)) 3743 return ERR_PTR(-EISDIR); 3744 3745 /* Don't bother on an O_EXCL create */ 3746 if (open_flag & O_EXCL) 3747 return NULL; 3748 } 3749 3750 if (trailing_slashes(nd)) 3751 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3752 3753 dentry = lookup_fast(nd); 3754 if (IS_ERR_OR_NULL(dentry)) 3755 return dentry; 3756 3757 if (open_flag & O_CREAT) { 3758 /* Discard negative dentries. Need inode_lock to do the create */ 3759 if (!dentry->d_inode) { 3760 if (!(nd->flags & LOOKUP_RCU)) 3761 dput(dentry); 3762 dentry = NULL; 3763 } 3764 } 3765 return dentry; 3766 } 3767 3768 static const char *open_last_lookups(struct nameidata *nd, 3769 struct file *file, const struct open_flags *op) 3770 { 3771 struct dentry *dir = nd->path.dentry; 3772 int open_flag = op->open_flag; 3773 bool got_write = false; 3774 struct dentry *dentry; 3775 const char *res; 3776 3777 nd->flags |= op->intent; 3778 3779 if (nd->last_type != LAST_NORM) { 3780 if (nd->depth) 3781 put_link(nd); 3782 return handle_dots(nd, nd->last_type); 3783 } 3784 3785 /* We _can_ be in RCU mode here */ 3786 dentry = lookup_fast_for_open(nd, open_flag); 3787 if (IS_ERR(dentry)) 3788 return ERR_CAST(dentry); 3789 3790 if (likely(dentry)) 3791 goto finish_lookup; 3792 3793 if (!(open_flag & O_CREAT)) { 3794 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3795 return ERR_PTR(-ECHILD); 3796 } else { 3797 if (nd->flags & LOOKUP_RCU) { 3798 if (!try_to_unlazy(nd)) 3799 return ERR_PTR(-ECHILD); 3800 } 3801 } 3802 3803 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3804 got_write = !mnt_want_write(nd->path.mnt); 3805 /* 3806 * do _not_ fail yet - we might not need that or fail with 3807 * a different error; let lookup_open() decide; we'll be 3808 * dropping this one anyway. 3809 */ 3810 } 3811 if (open_flag & O_CREAT) 3812 inode_lock(dir->d_inode); 3813 else 3814 inode_lock_shared(dir->d_inode); 3815 dentry = lookup_open(nd, file, op, got_write); 3816 if (!IS_ERR(dentry)) { 3817 if (file->f_mode & FMODE_CREATED) 3818 fsnotify_create(dir->d_inode, dentry); 3819 if (file->f_mode & FMODE_OPENED) 3820 fsnotify_open(file); 3821 } 3822 if (open_flag & O_CREAT) 3823 inode_unlock(dir->d_inode); 3824 else 3825 inode_unlock_shared(dir->d_inode); 3826 3827 if (got_write) 3828 mnt_drop_write(nd->path.mnt); 3829 3830 if (IS_ERR(dentry)) 3831 return ERR_CAST(dentry); 3832 3833 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3834 dput(nd->path.dentry); 3835 nd->path.dentry = dentry; 3836 return NULL; 3837 } 3838 3839 finish_lookup: 3840 if (nd->depth) 3841 put_link(nd); 3842 res = step_into(nd, WALK_TRAILING, dentry); 3843 if (unlikely(res)) 3844 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3845 return res; 3846 } 3847 3848 /* 3849 * Handle the last step of open() 3850 */ 3851 static int do_open(struct nameidata *nd, 3852 struct file *file, const struct open_flags *op) 3853 { 3854 struct mnt_idmap *idmap; 3855 int open_flag = op->open_flag; 3856 bool do_truncate; 3857 int acc_mode; 3858 int error; 3859 3860 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3861 error = complete_walk(nd); 3862 if (error) 3863 return error; 3864 } 3865 if (!(file->f_mode & FMODE_CREATED)) 3866 audit_inode(nd->name, nd->path.dentry, 0); 3867 idmap = mnt_idmap(nd->path.mnt); 3868 if (open_flag & O_CREAT) { 3869 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3870 return -EEXIST; 3871 if (d_is_dir(nd->path.dentry)) 3872 return -EISDIR; 3873 error = may_create_in_sticky(idmap, nd, 3874 d_backing_inode(nd->path.dentry)); 3875 if (unlikely(error)) 3876 return error; 3877 } 3878 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3879 return -ENOTDIR; 3880 3881 do_truncate = false; 3882 acc_mode = op->acc_mode; 3883 if (file->f_mode & FMODE_CREATED) { 3884 /* Don't check for write permission, don't truncate */ 3885 open_flag &= ~O_TRUNC; 3886 acc_mode = 0; 3887 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3888 error = mnt_want_write(nd->path.mnt); 3889 if (error) 3890 return error; 3891 do_truncate = true; 3892 } 3893 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3894 if (!error && !(file->f_mode & FMODE_OPENED)) 3895 error = vfs_open(&nd->path, file); 3896 if (!error) 3897 error = security_file_post_open(file, op->acc_mode); 3898 if (!error && do_truncate) 3899 error = handle_truncate(idmap, file); 3900 if (unlikely(error > 0)) { 3901 WARN_ON(1); 3902 error = -EINVAL; 3903 } 3904 if (do_truncate) 3905 mnt_drop_write(nd->path.mnt); 3906 return error; 3907 } 3908 3909 /** 3910 * vfs_tmpfile - create tmpfile 3911 * @idmap: idmap of the mount the inode was found from 3912 * @parentpath: pointer to the path of the base directory 3913 * @file: file descriptor of the new tmpfile 3914 * @mode: mode of the new tmpfile 3915 * 3916 * Create a temporary file. 3917 * 3918 * If the inode has been found through an idmapped mount the idmap of 3919 * the vfsmount must be passed through @idmap. This function will then take 3920 * care to map the inode according to @idmap before checking permissions. 3921 * On non-idmapped mounts or if permission checking is to be performed on the 3922 * raw inode simply pass @nop_mnt_idmap. 3923 */ 3924 int vfs_tmpfile(struct mnt_idmap *idmap, 3925 const struct path *parentpath, 3926 struct file *file, umode_t mode) 3927 { 3928 struct dentry *child; 3929 struct inode *dir = d_inode(parentpath->dentry); 3930 struct inode *inode; 3931 int error; 3932 int open_flag = file->f_flags; 3933 3934 /* we want directory to be writable */ 3935 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3936 if (error) 3937 return error; 3938 if (!dir->i_op->tmpfile) 3939 return -EOPNOTSUPP; 3940 child = d_alloc(parentpath->dentry, &slash_name); 3941 if (unlikely(!child)) 3942 return -ENOMEM; 3943 file->f_path.mnt = parentpath->mnt; 3944 file->f_path.dentry = child; 3945 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3946 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3947 dput(child); 3948 if (file->f_mode & FMODE_OPENED) 3949 fsnotify_open(file); 3950 if (error) 3951 return error; 3952 /* Don't check for other permissions, the inode was just created */ 3953 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3954 if (error) 3955 return error; 3956 inode = file_inode(file); 3957 if (!(open_flag & O_EXCL)) { 3958 spin_lock(&inode->i_lock); 3959 inode->i_state |= I_LINKABLE; 3960 spin_unlock(&inode->i_lock); 3961 } 3962 security_inode_post_create_tmpfile(idmap, inode); 3963 return 0; 3964 } 3965 3966 /** 3967 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3968 * @idmap: idmap of the mount the inode was found from 3969 * @parentpath: path of the base directory 3970 * @mode: mode of the new tmpfile 3971 * @open_flag: flags 3972 * @cred: credentials for open 3973 * 3974 * Create and open a temporary file. The file is not accounted in nr_files, 3975 * hence this is only for kernel internal use, and must not be installed into 3976 * file tables or such. 3977 */ 3978 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3979 const struct path *parentpath, 3980 umode_t mode, int open_flag, 3981 const struct cred *cred) 3982 { 3983 struct file *file; 3984 int error; 3985 3986 file = alloc_empty_file_noaccount(open_flag, cred); 3987 if (IS_ERR(file)) 3988 return file; 3989 3990 error = vfs_tmpfile(idmap, parentpath, file, mode); 3991 if (error) { 3992 fput(file); 3993 file = ERR_PTR(error); 3994 } 3995 return file; 3996 } 3997 EXPORT_SYMBOL(kernel_tmpfile_open); 3998 3999 static int do_tmpfile(struct nameidata *nd, unsigned flags, 4000 const struct open_flags *op, 4001 struct file *file) 4002 { 4003 struct path path; 4004 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 4005 4006 if (unlikely(error)) 4007 return error; 4008 error = mnt_want_write(path.mnt); 4009 if (unlikely(error)) 4010 goto out; 4011 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 4012 if (error) 4013 goto out2; 4014 audit_inode(nd->name, file->f_path.dentry, 0); 4015 out2: 4016 mnt_drop_write(path.mnt); 4017 out: 4018 path_put(&path); 4019 return error; 4020 } 4021 4022 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 4023 { 4024 struct path path; 4025 int error = path_lookupat(nd, flags, &path); 4026 if (!error) { 4027 audit_inode(nd->name, path.dentry, 0); 4028 error = vfs_open(&path, file); 4029 path_put(&path); 4030 } 4031 return error; 4032 } 4033 4034 static struct file *path_openat(struct nameidata *nd, 4035 const struct open_flags *op, unsigned flags) 4036 { 4037 struct file *file; 4038 int error; 4039 4040 file = alloc_empty_file(op->open_flag, current_cred()); 4041 if (IS_ERR(file)) 4042 return file; 4043 4044 if (unlikely(file->f_flags & __O_TMPFILE)) { 4045 error = do_tmpfile(nd, flags, op, file); 4046 } else if (unlikely(file->f_flags & O_PATH)) { 4047 error = do_o_path(nd, flags, file); 4048 } else { 4049 const char *s = path_init(nd, flags); 4050 while (!(error = link_path_walk(s, nd)) && 4051 (s = open_last_lookups(nd, file, op)) != NULL) 4052 ; 4053 if (!error) 4054 error = do_open(nd, file, op); 4055 terminate_walk(nd); 4056 } 4057 if (likely(!error)) { 4058 if (likely(file->f_mode & FMODE_OPENED)) 4059 return file; 4060 WARN_ON(1); 4061 error = -EINVAL; 4062 } 4063 fput_close(file); 4064 if (error == -EOPENSTALE) { 4065 if (flags & LOOKUP_RCU) 4066 error = -ECHILD; 4067 else 4068 error = -ESTALE; 4069 } 4070 return ERR_PTR(error); 4071 } 4072 4073 struct file *do_filp_open(int dfd, struct filename *pathname, 4074 const struct open_flags *op) 4075 { 4076 struct nameidata nd; 4077 int flags = op->lookup_flags; 4078 struct file *filp; 4079 4080 set_nameidata(&nd, dfd, pathname, NULL); 4081 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 4082 if (unlikely(filp == ERR_PTR(-ECHILD))) 4083 filp = path_openat(&nd, op, flags); 4084 if (unlikely(filp == ERR_PTR(-ESTALE))) 4085 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 4086 restore_nameidata(); 4087 return filp; 4088 } 4089 4090 struct file *do_file_open_root(const struct path *root, 4091 const char *name, const struct open_flags *op) 4092 { 4093 struct nameidata nd; 4094 struct file *file; 4095 struct filename *filename; 4096 int flags = op->lookup_flags; 4097 4098 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 4099 return ERR_PTR(-ELOOP); 4100 4101 filename = getname_kernel(name); 4102 if (IS_ERR(filename)) 4103 return ERR_CAST(filename); 4104 4105 set_nameidata(&nd, -1, filename, root); 4106 file = path_openat(&nd, op, flags | LOOKUP_RCU); 4107 if (unlikely(file == ERR_PTR(-ECHILD))) 4108 file = path_openat(&nd, op, flags); 4109 if (unlikely(file == ERR_PTR(-ESTALE))) 4110 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 4111 restore_nameidata(); 4112 putname(filename); 4113 return file; 4114 } 4115 4116 static struct dentry *filename_create(int dfd, struct filename *name, 4117 struct path *path, unsigned int lookup_flags) 4118 { 4119 struct dentry *dentry = ERR_PTR(-EEXIST); 4120 struct qstr last; 4121 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 4122 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 4123 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 4124 int type; 4125 int err2; 4126 int error; 4127 4128 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 4129 if (error) 4130 return ERR_PTR(error); 4131 4132 /* 4133 * Yucky last component or no last component at all? 4134 * (foo/., foo/.., /////) 4135 */ 4136 if (unlikely(type != LAST_NORM)) 4137 goto out; 4138 4139 /* don't fail immediately if it's r/o, at least try to report other errors */ 4140 err2 = mnt_want_write(path->mnt); 4141 /* 4142 * Do the final lookup. Suppress 'create' if there is a trailing 4143 * '/', and a directory wasn't requested. 4144 */ 4145 if (last.name[last.len] && !want_dir) 4146 create_flags &= ~LOOKUP_CREATE; 4147 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 4148 dentry = lookup_one_qstr_excl(&last, path->dentry, 4149 reval_flag | create_flags); 4150 if (IS_ERR(dentry)) 4151 goto unlock; 4152 4153 if (unlikely(err2)) { 4154 error = err2; 4155 goto fail; 4156 } 4157 return dentry; 4158 fail: 4159 dput(dentry); 4160 dentry = ERR_PTR(error); 4161 unlock: 4162 inode_unlock(path->dentry->d_inode); 4163 if (!err2) 4164 mnt_drop_write(path->mnt); 4165 out: 4166 path_put(path); 4167 return dentry; 4168 } 4169 4170 struct dentry *kern_path_create(int dfd, const char *pathname, 4171 struct path *path, unsigned int lookup_flags) 4172 { 4173 struct filename *filename = getname_kernel(pathname); 4174 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4175 4176 putname(filename); 4177 return res; 4178 } 4179 EXPORT_SYMBOL(kern_path_create); 4180 4181 void done_path_create(struct path *path, struct dentry *dentry) 4182 { 4183 if (!IS_ERR(dentry)) 4184 dput(dentry); 4185 inode_unlock(path->dentry->d_inode); 4186 mnt_drop_write(path->mnt); 4187 path_put(path); 4188 } 4189 EXPORT_SYMBOL(done_path_create); 4190 4191 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4192 struct path *path, unsigned int lookup_flags) 4193 { 4194 struct filename *filename = getname(pathname); 4195 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4196 4197 putname(filename); 4198 return res; 4199 } 4200 EXPORT_SYMBOL(user_path_create); 4201 4202 /** 4203 * vfs_mknod - create device node or file 4204 * @idmap: idmap of the mount the inode was found from 4205 * @dir: inode of the parent directory 4206 * @dentry: dentry of the child device node 4207 * @mode: mode of the child device node 4208 * @dev: device number of device to create 4209 * 4210 * Create a device node or file. 4211 * 4212 * If the inode has been found through an idmapped mount the idmap of 4213 * the vfsmount must be passed through @idmap. This function will then take 4214 * care to map the inode according to @idmap before checking permissions. 4215 * On non-idmapped mounts or if permission checking is to be performed on the 4216 * raw inode simply pass @nop_mnt_idmap. 4217 */ 4218 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4219 struct dentry *dentry, umode_t mode, dev_t dev) 4220 { 4221 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4222 int error = may_create(idmap, dir, dentry); 4223 4224 if (error) 4225 return error; 4226 4227 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4228 !capable(CAP_MKNOD)) 4229 return -EPERM; 4230 4231 if (!dir->i_op->mknod) 4232 return -EPERM; 4233 4234 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4235 error = devcgroup_inode_mknod(mode, dev); 4236 if (error) 4237 return error; 4238 4239 error = security_inode_mknod(dir, dentry, mode, dev); 4240 if (error) 4241 return error; 4242 4243 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4244 if (!error) 4245 fsnotify_create(dir, dentry); 4246 return error; 4247 } 4248 EXPORT_SYMBOL(vfs_mknod); 4249 4250 static int may_mknod(umode_t mode) 4251 { 4252 switch (mode & S_IFMT) { 4253 case S_IFREG: 4254 case S_IFCHR: 4255 case S_IFBLK: 4256 case S_IFIFO: 4257 case S_IFSOCK: 4258 case 0: /* zero mode translates to S_IFREG */ 4259 return 0; 4260 case S_IFDIR: 4261 return -EPERM; 4262 default: 4263 return -EINVAL; 4264 } 4265 } 4266 4267 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4268 unsigned int dev) 4269 { 4270 struct mnt_idmap *idmap; 4271 struct dentry *dentry; 4272 struct path path; 4273 int error; 4274 unsigned int lookup_flags = 0; 4275 4276 error = may_mknod(mode); 4277 if (error) 4278 goto out1; 4279 retry: 4280 dentry = filename_create(dfd, name, &path, lookup_flags); 4281 error = PTR_ERR(dentry); 4282 if (IS_ERR(dentry)) 4283 goto out1; 4284 4285 error = security_path_mknod(&path, dentry, 4286 mode_strip_umask(path.dentry->d_inode, mode), dev); 4287 if (error) 4288 goto out2; 4289 4290 idmap = mnt_idmap(path.mnt); 4291 switch (mode & S_IFMT) { 4292 case 0: case S_IFREG: 4293 error = vfs_create(idmap, path.dentry->d_inode, 4294 dentry, mode, true); 4295 if (!error) 4296 security_path_post_mknod(idmap, dentry); 4297 break; 4298 case S_IFCHR: case S_IFBLK: 4299 error = vfs_mknod(idmap, path.dentry->d_inode, 4300 dentry, mode, new_decode_dev(dev)); 4301 break; 4302 case S_IFIFO: case S_IFSOCK: 4303 error = vfs_mknod(idmap, path.dentry->d_inode, 4304 dentry, mode, 0); 4305 break; 4306 } 4307 out2: 4308 done_path_create(&path, dentry); 4309 if (retry_estale(error, lookup_flags)) { 4310 lookup_flags |= LOOKUP_REVAL; 4311 goto retry; 4312 } 4313 out1: 4314 putname(name); 4315 return error; 4316 } 4317 4318 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4319 unsigned int, dev) 4320 { 4321 return do_mknodat(dfd, getname(filename), mode, dev); 4322 } 4323 4324 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4325 { 4326 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4327 } 4328 4329 /** 4330 * vfs_mkdir - create directory returning correct dentry if possible 4331 * @idmap: idmap of the mount the inode was found from 4332 * @dir: inode of the parent directory 4333 * @dentry: dentry of the child directory 4334 * @mode: mode of the child directory 4335 * 4336 * Create a directory. 4337 * 4338 * If the inode has been found through an idmapped mount the idmap of 4339 * the vfsmount must be passed through @idmap. This function will then take 4340 * care to map the inode according to @idmap before checking permissions. 4341 * On non-idmapped mounts or if permission checking is to be performed on the 4342 * raw inode simply pass @nop_mnt_idmap. 4343 * 4344 * In the event that the filesystem does not use the *@dentry but leaves it 4345 * negative or unhashes it and possibly splices a different one returning it, 4346 * the original dentry is dput() and the alternate is returned. 4347 * 4348 * In case of an error the dentry is dput() and an ERR_PTR() is returned. 4349 */ 4350 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4351 struct dentry *dentry, umode_t mode) 4352 { 4353 int error; 4354 unsigned max_links = dir->i_sb->s_max_links; 4355 struct dentry *de; 4356 4357 error = may_create(idmap, dir, dentry); 4358 if (error) 4359 goto err; 4360 4361 error = -EPERM; 4362 if (!dir->i_op->mkdir) 4363 goto err; 4364 4365 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4366 error = security_inode_mkdir(dir, dentry, mode); 4367 if (error) 4368 goto err; 4369 4370 error = -EMLINK; 4371 if (max_links && dir->i_nlink >= max_links) 4372 goto err; 4373 4374 de = dir->i_op->mkdir(idmap, dir, dentry, mode); 4375 error = PTR_ERR(de); 4376 if (IS_ERR(de)) 4377 goto err; 4378 if (de) { 4379 dput(dentry); 4380 dentry = de; 4381 } 4382 fsnotify_mkdir(dir, dentry); 4383 return dentry; 4384 4385 err: 4386 dput(dentry); 4387 return ERR_PTR(error); 4388 } 4389 EXPORT_SYMBOL(vfs_mkdir); 4390 4391 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4392 { 4393 struct dentry *dentry; 4394 struct path path; 4395 int error; 4396 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4397 4398 retry: 4399 dentry = filename_create(dfd, name, &path, lookup_flags); 4400 error = PTR_ERR(dentry); 4401 if (IS_ERR(dentry)) 4402 goto out_putname; 4403 4404 error = security_path_mkdir(&path, dentry, 4405 mode_strip_umask(path.dentry->d_inode, mode)); 4406 if (!error) { 4407 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4408 dentry, mode); 4409 if (IS_ERR(dentry)) 4410 error = PTR_ERR(dentry); 4411 } 4412 done_path_create(&path, dentry); 4413 if (retry_estale(error, lookup_flags)) { 4414 lookup_flags |= LOOKUP_REVAL; 4415 goto retry; 4416 } 4417 out_putname: 4418 putname(name); 4419 return error; 4420 } 4421 4422 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4423 { 4424 return do_mkdirat(dfd, getname(pathname), mode); 4425 } 4426 4427 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4428 { 4429 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4430 } 4431 4432 /** 4433 * vfs_rmdir - remove directory 4434 * @idmap: idmap of the mount the inode was found from 4435 * @dir: inode of the parent directory 4436 * @dentry: dentry of the child directory 4437 * 4438 * Remove a directory. 4439 * 4440 * If the inode has been found through an idmapped mount the idmap of 4441 * the vfsmount must be passed through @idmap. This function will then take 4442 * care to map the inode according to @idmap before checking permissions. 4443 * On non-idmapped mounts or if permission checking is to be performed on the 4444 * raw inode simply pass @nop_mnt_idmap. 4445 */ 4446 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4447 struct dentry *dentry) 4448 { 4449 int error = may_delete(idmap, dir, dentry, 1); 4450 4451 if (error) 4452 return error; 4453 4454 if (!dir->i_op->rmdir) 4455 return -EPERM; 4456 4457 dget(dentry); 4458 inode_lock(dentry->d_inode); 4459 4460 error = -EBUSY; 4461 if (is_local_mountpoint(dentry) || 4462 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4463 goto out; 4464 4465 error = security_inode_rmdir(dir, dentry); 4466 if (error) 4467 goto out; 4468 4469 error = dir->i_op->rmdir(dir, dentry); 4470 if (error) 4471 goto out; 4472 4473 shrink_dcache_parent(dentry); 4474 dentry->d_inode->i_flags |= S_DEAD; 4475 dont_mount(dentry); 4476 detach_mounts(dentry); 4477 4478 out: 4479 inode_unlock(dentry->d_inode); 4480 dput(dentry); 4481 if (!error) 4482 d_delete_notify(dir, dentry); 4483 return error; 4484 } 4485 EXPORT_SYMBOL(vfs_rmdir); 4486 4487 int do_rmdir(int dfd, struct filename *name) 4488 { 4489 int error; 4490 struct dentry *dentry; 4491 struct path path; 4492 struct qstr last; 4493 int type; 4494 unsigned int lookup_flags = 0; 4495 retry: 4496 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4497 if (error) 4498 goto exit1; 4499 4500 switch (type) { 4501 case LAST_DOTDOT: 4502 error = -ENOTEMPTY; 4503 goto exit2; 4504 case LAST_DOT: 4505 error = -EINVAL; 4506 goto exit2; 4507 case LAST_ROOT: 4508 error = -EBUSY; 4509 goto exit2; 4510 } 4511 4512 error = mnt_want_write(path.mnt); 4513 if (error) 4514 goto exit2; 4515 4516 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4517 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4518 error = PTR_ERR(dentry); 4519 if (IS_ERR(dentry)) 4520 goto exit3; 4521 error = security_path_rmdir(&path, dentry); 4522 if (error) 4523 goto exit4; 4524 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4525 exit4: 4526 dput(dentry); 4527 exit3: 4528 inode_unlock(path.dentry->d_inode); 4529 mnt_drop_write(path.mnt); 4530 exit2: 4531 path_put(&path); 4532 if (retry_estale(error, lookup_flags)) { 4533 lookup_flags |= LOOKUP_REVAL; 4534 goto retry; 4535 } 4536 exit1: 4537 putname(name); 4538 return error; 4539 } 4540 4541 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4542 { 4543 return do_rmdir(AT_FDCWD, getname(pathname)); 4544 } 4545 4546 /** 4547 * vfs_unlink - unlink a filesystem object 4548 * @idmap: idmap of the mount the inode was found from 4549 * @dir: parent directory 4550 * @dentry: victim 4551 * @delegated_inode: returns victim inode, if the inode is delegated. 4552 * 4553 * The caller must hold dir->i_rwsem exclusively. 4554 * 4555 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4556 * return a reference to the inode in delegated_inode. The caller 4557 * should then break the delegation on that inode and retry. Because 4558 * breaking a delegation may take a long time, the caller should drop 4559 * dir->i_rwsem before doing so. 4560 * 4561 * Alternatively, a caller may pass NULL for delegated_inode. This may 4562 * be appropriate for callers that expect the underlying filesystem not 4563 * to be NFS exported. 4564 * 4565 * If the inode has been found through an idmapped mount the idmap of 4566 * the vfsmount must be passed through @idmap. This function will then take 4567 * care to map the inode according to @idmap before checking permissions. 4568 * On non-idmapped mounts or if permission checking is to be performed on the 4569 * raw inode simply pass @nop_mnt_idmap. 4570 */ 4571 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4572 struct dentry *dentry, struct inode **delegated_inode) 4573 { 4574 struct inode *target = dentry->d_inode; 4575 int error = may_delete(idmap, dir, dentry, 0); 4576 4577 if (error) 4578 return error; 4579 4580 if (!dir->i_op->unlink) 4581 return -EPERM; 4582 4583 inode_lock(target); 4584 if (IS_SWAPFILE(target)) 4585 error = -EPERM; 4586 else if (is_local_mountpoint(dentry)) 4587 error = -EBUSY; 4588 else { 4589 error = security_inode_unlink(dir, dentry); 4590 if (!error) { 4591 error = try_break_deleg(target, delegated_inode); 4592 if (error) 4593 goto out; 4594 error = dir->i_op->unlink(dir, dentry); 4595 if (!error) { 4596 dont_mount(dentry); 4597 detach_mounts(dentry); 4598 } 4599 } 4600 } 4601 out: 4602 inode_unlock(target); 4603 4604 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4605 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4606 fsnotify_unlink(dir, dentry); 4607 } else if (!error) { 4608 fsnotify_link_count(target); 4609 d_delete_notify(dir, dentry); 4610 } 4611 4612 return error; 4613 } 4614 EXPORT_SYMBOL(vfs_unlink); 4615 4616 /* 4617 * Make sure that the actual truncation of the file will occur outside its 4618 * directory's i_rwsem. Truncate can take a long time if there is a lot of 4619 * writeout happening, and we don't want to prevent access to the directory 4620 * while waiting on the I/O. 4621 */ 4622 int do_unlinkat(int dfd, struct filename *name) 4623 { 4624 int error; 4625 struct dentry *dentry; 4626 struct path path; 4627 struct qstr last; 4628 int type; 4629 struct inode *inode = NULL; 4630 struct inode *delegated_inode = NULL; 4631 unsigned int lookup_flags = 0; 4632 retry: 4633 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4634 if (error) 4635 goto exit1; 4636 4637 error = -EISDIR; 4638 if (type != LAST_NORM) 4639 goto exit2; 4640 4641 error = mnt_want_write(path.mnt); 4642 if (error) 4643 goto exit2; 4644 retry_deleg: 4645 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4646 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4647 error = PTR_ERR(dentry); 4648 if (!IS_ERR(dentry)) { 4649 4650 /* Why not before? Because we want correct error value */ 4651 if (last.name[last.len]) 4652 goto slashes; 4653 inode = dentry->d_inode; 4654 ihold(inode); 4655 error = security_path_unlink(&path, dentry); 4656 if (error) 4657 goto exit3; 4658 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4659 dentry, &delegated_inode); 4660 exit3: 4661 dput(dentry); 4662 } 4663 inode_unlock(path.dentry->d_inode); 4664 if (inode) 4665 iput(inode); /* truncate the inode here */ 4666 inode = NULL; 4667 if (delegated_inode) { 4668 error = break_deleg_wait(&delegated_inode); 4669 if (!error) 4670 goto retry_deleg; 4671 } 4672 mnt_drop_write(path.mnt); 4673 exit2: 4674 path_put(&path); 4675 if (retry_estale(error, lookup_flags)) { 4676 lookup_flags |= LOOKUP_REVAL; 4677 inode = NULL; 4678 goto retry; 4679 } 4680 exit1: 4681 putname(name); 4682 return error; 4683 4684 slashes: 4685 if (d_is_dir(dentry)) 4686 error = -EISDIR; 4687 else 4688 error = -ENOTDIR; 4689 goto exit3; 4690 } 4691 4692 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4693 { 4694 if ((flag & ~AT_REMOVEDIR) != 0) 4695 return -EINVAL; 4696 4697 if (flag & AT_REMOVEDIR) 4698 return do_rmdir(dfd, getname(pathname)); 4699 return do_unlinkat(dfd, getname(pathname)); 4700 } 4701 4702 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4703 { 4704 return do_unlinkat(AT_FDCWD, getname(pathname)); 4705 } 4706 4707 /** 4708 * vfs_symlink - create symlink 4709 * @idmap: idmap of the mount the inode was found from 4710 * @dir: inode of the parent directory 4711 * @dentry: dentry of the child symlink file 4712 * @oldname: name of the file to link to 4713 * 4714 * Create a symlink. 4715 * 4716 * If the inode has been found through an idmapped mount the idmap of 4717 * the vfsmount must be passed through @idmap. This function will then take 4718 * care to map the inode according to @idmap before checking permissions. 4719 * On non-idmapped mounts or if permission checking is to be performed on the 4720 * raw inode simply pass @nop_mnt_idmap. 4721 */ 4722 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4723 struct dentry *dentry, const char *oldname) 4724 { 4725 int error; 4726 4727 error = may_create(idmap, dir, dentry); 4728 if (error) 4729 return error; 4730 4731 if (!dir->i_op->symlink) 4732 return -EPERM; 4733 4734 error = security_inode_symlink(dir, dentry, oldname); 4735 if (error) 4736 return error; 4737 4738 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4739 if (!error) 4740 fsnotify_create(dir, dentry); 4741 return error; 4742 } 4743 EXPORT_SYMBOL(vfs_symlink); 4744 4745 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4746 { 4747 int error; 4748 struct dentry *dentry; 4749 struct path path; 4750 unsigned int lookup_flags = 0; 4751 4752 if (IS_ERR(from)) { 4753 error = PTR_ERR(from); 4754 goto out_putnames; 4755 } 4756 retry: 4757 dentry = filename_create(newdfd, to, &path, lookup_flags); 4758 error = PTR_ERR(dentry); 4759 if (IS_ERR(dentry)) 4760 goto out_putnames; 4761 4762 error = security_path_symlink(&path, dentry, from->name); 4763 if (!error) 4764 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4765 dentry, from->name); 4766 done_path_create(&path, dentry); 4767 if (retry_estale(error, lookup_flags)) { 4768 lookup_flags |= LOOKUP_REVAL; 4769 goto retry; 4770 } 4771 out_putnames: 4772 putname(to); 4773 putname(from); 4774 return error; 4775 } 4776 4777 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4778 int, newdfd, const char __user *, newname) 4779 { 4780 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4781 } 4782 4783 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4784 { 4785 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4786 } 4787 4788 /** 4789 * vfs_link - create a new link 4790 * @old_dentry: object to be linked 4791 * @idmap: idmap of the mount 4792 * @dir: new parent 4793 * @new_dentry: where to create the new link 4794 * @delegated_inode: returns inode needing a delegation break 4795 * 4796 * The caller must hold dir->i_rwsem exclusively. 4797 * 4798 * If vfs_link discovers a delegation on the to-be-linked file in need 4799 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4800 * inode in delegated_inode. The caller should then break the delegation 4801 * and retry. Because breaking a delegation may take a long time, the 4802 * caller should drop the i_rwsem before doing so. 4803 * 4804 * Alternatively, a caller may pass NULL for delegated_inode. This may 4805 * be appropriate for callers that expect the underlying filesystem not 4806 * to be NFS exported. 4807 * 4808 * If the inode has been found through an idmapped mount the idmap of 4809 * the vfsmount must be passed through @idmap. This function will then take 4810 * care to map the inode according to @idmap before checking permissions. 4811 * On non-idmapped mounts or if permission checking is to be performed on the 4812 * raw inode simply pass @nop_mnt_idmap. 4813 */ 4814 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4815 struct inode *dir, struct dentry *new_dentry, 4816 struct inode **delegated_inode) 4817 { 4818 struct inode *inode = old_dentry->d_inode; 4819 unsigned max_links = dir->i_sb->s_max_links; 4820 int error; 4821 4822 if (!inode) 4823 return -ENOENT; 4824 4825 error = may_create(idmap, dir, new_dentry); 4826 if (error) 4827 return error; 4828 4829 if (dir->i_sb != inode->i_sb) 4830 return -EXDEV; 4831 4832 /* 4833 * A link to an append-only or immutable file cannot be created. 4834 */ 4835 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4836 return -EPERM; 4837 /* 4838 * Updating the link count will likely cause i_uid and i_gid to 4839 * be written back improperly if their true value is unknown to 4840 * the vfs. 4841 */ 4842 if (HAS_UNMAPPED_ID(idmap, inode)) 4843 return -EPERM; 4844 if (!dir->i_op->link) 4845 return -EPERM; 4846 if (S_ISDIR(inode->i_mode)) 4847 return -EPERM; 4848 4849 error = security_inode_link(old_dentry, dir, new_dentry); 4850 if (error) 4851 return error; 4852 4853 inode_lock(inode); 4854 /* Make sure we don't allow creating hardlink to an unlinked file */ 4855 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4856 error = -ENOENT; 4857 else if (max_links && inode->i_nlink >= max_links) 4858 error = -EMLINK; 4859 else { 4860 error = try_break_deleg(inode, delegated_inode); 4861 if (!error) 4862 error = dir->i_op->link(old_dentry, dir, new_dentry); 4863 } 4864 4865 if (!error && (inode->i_state & I_LINKABLE)) { 4866 spin_lock(&inode->i_lock); 4867 inode->i_state &= ~I_LINKABLE; 4868 spin_unlock(&inode->i_lock); 4869 } 4870 inode_unlock(inode); 4871 if (!error) 4872 fsnotify_link(dir, inode, new_dentry); 4873 return error; 4874 } 4875 EXPORT_SYMBOL(vfs_link); 4876 4877 /* 4878 * Hardlinks are often used in delicate situations. We avoid 4879 * security-related surprises by not following symlinks on the 4880 * newname. --KAB 4881 * 4882 * We don't follow them on the oldname either to be compatible 4883 * with linux 2.0, and to avoid hard-linking to directories 4884 * and other special files. --ADM 4885 */ 4886 int do_linkat(int olddfd, struct filename *old, int newdfd, 4887 struct filename *new, int flags) 4888 { 4889 struct mnt_idmap *idmap; 4890 struct dentry *new_dentry; 4891 struct path old_path, new_path; 4892 struct inode *delegated_inode = NULL; 4893 int how = 0; 4894 int error; 4895 4896 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4897 error = -EINVAL; 4898 goto out_putnames; 4899 } 4900 /* 4901 * To use null names we require CAP_DAC_READ_SEARCH or 4902 * that the open-time creds of the dfd matches current. 4903 * This ensures that not everyone will be able to create 4904 * a hardlink using the passed file descriptor. 4905 */ 4906 if (flags & AT_EMPTY_PATH) 4907 how |= LOOKUP_LINKAT_EMPTY; 4908 4909 if (flags & AT_SYMLINK_FOLLOW) 4910 how |= LOOKUP_FOLLOW; 4911 retry: 4912 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4913 if (error) 4914 goto out_putnames; 4915 4916 new_dentry = filename_create(newdfd, new, &new_path, 4917 (how & LOOKUP_REVAL)); 4918 error = PTR_ERR(new_dentry); 4919 if (IS_ERR(new_dentry)) 4920 goto out_putpath; 4921 4922 error = -EXDEV; 4923 if (old_path.mnt != new_path.mnt) 4924 goto out_dput; 4925 idmap = mnt_idmap(new_path.mnt); 4926 error = may_linkat(idmap, &old_path); 4927 if (unlikely(error)) 4928 goto out_dput; 4929 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4930 if (error) 4931 goto out_dput; 4932 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4933 new_dentry, &delegated_inode); 4934 out_dput: 4935 done_path_create(&new_path, new_dentry); 4936 if (delegated_inode) { 4937 error = break_deleg_wait(&delegated_inode); 4938 if (!error) { 4939 path_put(&old_path); 4940 goto retry; 4941 } 4942 } 4943 if (retry_estale(error, how)) { 4944 path_put(&old_path); 4945 how |= LOOKUP_REVAL; 4946 goto retry; 4947 } 4948 out_putpath: 4949 path_put(&old_path); 4950 out_putnames: 4951 putname(old); 4952 putname(new); 4953 4954 return error; 4955 } 4956 4957 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4958 int, newdfd, const char __user *, newname, int, flags) 4959 { 4960 return do_linkat(olddfd, getname_uflags(oldname, flags), 4961 newdfd, getname(newname), flags); 4962 } 4963 4964 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4965 { 4966 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4967 } 4968 4969 /** 4970 * vfs_rename - rename a filesystem object 4971 * @rd: pointer to &struct renamedata info 4972 * 4973 * The caller must hold multiple mutexes--see lock_rename()). 4974 * 4975 * If vfs_rename discovers a delegation in need of breaking at either 4976 * the source or destination, it will return -EWOULDBLOCK and return a 4977 * reference to the inode in delegated_inode. The caller should then 4978 * break the delegation and retry. Because breaking a delegation may 4979 * take a long time, the caller should drop all locks before doing 4980 * so. 4981 * 4982 * Alternatively, a caller may pass NULL for delegated_inode. This may 4983 * be appropriate for callers that expect the underlying filesystem not 4984 * to be NFS exported. 4985 * 4986 * The worst of all namespace operations - renaming directory. "Perverted" 4987 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4988 * Problems: 4989 * 4990 * a) we can get into loop creation. 4991 * b) race potential - two innocent renames can create a loop together. 4992 * That's where 4.4BSD screws up. Current fix: serialization on 4993 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4994 * story. 4995 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4996 * and source (if it's a non-directory or a subdirectory that moves to 4997 * different parent). 4998 * And that - after we got ->i_rwsem on parents (until then we don't know 4999 * whether the target exists). Solution: try to be smart with locking 5000 * order for inodes. We rely on the fact that tree topology may change 5001 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 5002 * move will be locked. Thus we can rank directories by the tree 5003 * (ancestors first) and rank all non-directories after them. 5004 * That works since everybody except rename does "lock parent, lookup, 5005 * lock child" and rename is under ->s_vfs_rename_mutex. 5006 * HOWEVER, it relies on the assumption that any object with ->lookup() 5007 * has no more than 1 dentry. If "hybrid" objects will ever appear, 5008 * we'd better make sure that there's no link(2) for them. 5009 * d) conversion from fhandle to dentry may come in the wrong moment - when 5010 * we are removing the target. Solution: we will have to grab ->i_rwsem 5011 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 5012 * ->i_rwsem on parents, which works but leads to some truly excessive 5013 * locking]. 5014 */ 5015 int vfs_rename(struct renamedata *rd) 5016 { 5017 int error; 5018 struct inode *old_dir = d_inode(rd->old_parent); 5019 struct inode *new_dir = d_inode(rd->new_parent); 5020 struct dentry *old_dentry = rd->old_dentry; 5021 struct dentry *new_dentry = rd->new_dentry; 5022 struct inode **delegated_inode = rd->delegated_inode; 5023 unsigned int flags = rd->flags; 5024 bool is_dir = d_is_dir(old_dentry); 5025 struct inode *source = old_dentry->d_inode; 5026 struct inode *target = new_dentry->d_inode; 5027 bool new_is_dir = false; 5028 unsigned max_links = new_dir->i_sb->s_max_links; 5029 struct name_snapshot old_name; 5030 bool lock_old_subdir, lock_new_subdir; 5031 5032 if (source == target) 5033 return 0; 5034 5035 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 5036 if (error) 5037 return error; 5038 5039 if (!target) { 5040 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 5041 } else { 5042 new_is_dir = d_is_dir(new_dentry); 5043 5044 if (!(flags & RENAME_EXCHANGE)) 5045 error = may_delete(rd->new_mnt_idmap, new_dir, 5046 new_dentry, is_dir); 5047 else 5048 error = may_delete(rd->new_mnt_idmap, new_dir, 5049 new_dentry, new_is_dir); 5050 } 5051 if (error) 5052 return error; 5053 5054 if (!old_dir->i_op->rename) 5055 return -EPERM; 5056 5057 /* 5058 * If we are going to change the parent - check write permissions, 5059 * we'll need to flip '..'. 5060 */ 5061 if (new_dir != old_dir) { 5062 if (is_dir) { 5063 error = inode_permission(rd->old_mnt_idmap, source, 5064 MAY_WRITE); 5065 if (error) 5066 return error; 5067 } 5068 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 5069 error = inode_permission(rd->new_mnt_idmap, target, 5070 MAY_WRITE); 5071 if (error) 5072 return error; 5073 } 5074 } 5075 5076 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 5077 flags); 5078 if (error) 5079 return error; 5080 5081 take_dentry_name_snapshot(&old_name, old_dentry); 5082 dget(new_dentry); 5083 /* 5084 * Lock children. 5085 * The source subdirectory needs to be locked on cross-directory 5086 * rename or cross-directory exchange since its parent changes. 5087 * The target subdirectory needs to be locked on cross-directory 5088 * exchange due to parent change and on any rename due to becoming 5089 * a victim. 5090 * Non-directories need locking in all cases (for NFS reasons); 5091 * they get locked after any subdirectories (in inode address order). 5092 * 5093 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 5094 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 5095 */ 5096 lock_old_subdir = new_dir != old_dir; 5097 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 5098 if (is_dir) { 5099 if (lock_old_subdir) 5100 inode_lock_nested(source, I_MUTEX_CHILD); 5101 if (target && (!new_is_dir || lock_new_subdir)) 5102 inode_lock(target); 5103 } else if (new_is_dir) { 5104 if (lock_new_subdir) 5105 inode_lock_nested(target, I_MUTEX_CHILD); 5106 inode_lock(source); 5107 } else { 5108 lock_two_nondirectories(source, target); 5109 } 5110 5111 error = -EPERM; 5112 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 5113 goto out; 5114 5115 error = -EBUSY; 5116 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 5117 goto out; 5118 5119 if (max_links && new_dir != old_dir) { 5120 error = -EMLINK; 5121 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 5122 goto out; 5123 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 5124 old_dir->i_nlink >= max_links) 5125 goto out; 5126 } 5127 if (!is_dir) { 5128 error = try_break_deleg(source, delegated_inode); 5129 if (error) 5130 goto out; 5131 } 5132 if (target && !new_is_dir) { 5133 error = try_break_deleg(target, delegated_inode); 5134 if (error) 5135 goto out; 5136 } 5137 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 5138 new_dir, new_dentry, flags); 5139 if (error) 5140 goto out; 5141 5142 if (!(flags & RENAME_EXCHANGE) && target) { 5143 if (is_dir) { 5144 shrink_dcache_parent(new_dentry); 5145 target->i_flags |= S_DEAD; 5146 } 5147 dont_mount(new_dentry); 5148 detach_mounts(new_dentry); 5149 } 5150 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 5151 if (!(flags & RENAME_EXCHANGE)) 5152 d_move(old_dentry, new_dentry); 5153 else 5154 d_exchange(old_dentry, new_dentry); 5155 } 5156 out: 5157 if (!is_dir || lock_old_subdir) 5158 inode_unlock(source); 5159 if (target && (!new_is_dir || lock_new_subdir)) 5160 inode_unlock(target); 5161 dput(new_dentry); 5162 if (!error) { 5163 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 5164 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 5165 if (flags & RENAME_EXCHANGE) { 5166 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 5167 new_is_dir, NULL, new_dentry); 5168 } 5169 } 5170 release_dentry_name_snapshot(&old_name); 5171 5172 return error; 5173 } 5174 EXPORT_SYMBOL(vfs_rename); 5175 5176 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5177 struct filename *to, unsigned int flags) 5178 { 5179 struct renamedata rd; 5180 struct dentry *old_dentry, *new_dentry; 5181 struct dentry *trap; 5182 struct path old_path, new_path; 5183 struct qstr old_last, new_last; 5184 int old_type, new_type; 5185 struct inode *delegated_inode = NULL; 5186 unsigned int lookup_flags = 0, target_flags = 5187 LOOKUP_RENAME_TARGET | LOOKUP_CREATE; 5188 bool should_retry = false; 5189 int error = -EINVAL; 5190 5191 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5192 goto put_names; 5193 5194 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5195 (flags & RENAME_EXCHANGE)) 5196 goto put_names; 5197 5198 if (flags & RENAME_EXCHANGE) 5199 target_flags = 0; 5200 if (flags & RENAME_NOREPLACE) 5201 target_flags |= LOOKUP_EXCL; 5202 5203 retry: 5204 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5205 &old_last, &old_type); 5206 if (error) 5207 goto put_names; 5208 5209 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5210 &new_type); 5211 if (error) 5212 goto exit1; 5213 5214 error = -EXDEV; 5215 if (old_path.mnt != new_path.mnt) 5216 goto exit2; 5217 5218 error = -EBUSY; 5219 if (old_type != LAST_NORM) 5220 goto exit2; 5221 5222 if (flags & RENAME_NOREPLACE) 5223 error = -EEXIST; 5224 if (new_type != LAST_NORM) 5225 goto exit2; 5226 5227 error = mnt_want_write(old_path.mnt); 5228 if (error) 5229 goto exit2; 5230 5231 retry_deleg: 5232 trap = lock_rename(new_path.dentry, old_path.dentry); 5233 if (IS_ERR(trap)) { 5234 error = PTR_ERR(trap); 5235 goto exit_lock_rename; 5236 } 5237 5238 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5239 lookup_flags); 5240 error = PTR_ERR(old_dentry); 5241 if (IS_ERR(old_dentry)) 5242 goto exit3; 5243 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5244 lookup_flags | target_flags); 5245 error = PTR_ERR(new_dentry); 5246 if (IS_ERR(new_dentry)) 5247 goto exit4; 5248 if (flags & RENAME_EXCHANGE) { 5249 if (!d_is_dir(new_dentry)) { 5250 error = -ENOTDIR; 5251 if (new_last.name[new_last.len]) 5252 goto exit5; 5253 } 5254 } 5255 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5256 if (!d_is_dir(old_dentry)) { 5257 error = -ENOTDIR; 5258 if (old_last.name[old_last.len]) 5259 goto exit5; 5260 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5261 goto exit5; 5262 } 5263 /* source should not be ancestor of target */ 5264 error = -EINVAL; 5265 if (old_dentry == trap) 5266 goto exit5; 5267 /* target should not be an ancestor of source */ 5268 if (!(flags & RENAME_EXCHANGE)) 5269 error = -ENOTEMPTY; 5270 if (new_dentry == trap) 5271 goto exit5; 5272 5273 error = security_path_rename(&old_path, old_dentry, 5274 &new_path, new_dentry, flags); 5275 if (error) 5276 goto exit5; 5277 5278 rd.old_parent = old_path.dentry; 5279 rd.old_dentry = old_dentry; 5280 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5281 rd.new_parent = new_path.dentry; 5282 rd.new_dentry = new_dentry; 5283 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5284 rd.delegated_inode = &delegated_inode; 5285 rd.flags = flags; 5286 error = vfs_rename(&rd); 5287 exit5: 5288 dput(new_dentry); 5289 exit4: 5290 dput(old_dentry); 5291 exit3: 5292 unlock_rename(new_path.dentry, old_path.dentry); 5293 exit_lock_rename: 5294 if (delegated_inode) { 5295 error = break_deleg_wait(&delegated_inode); 5296 if (!error) 5297 goto retry_deleg; 5298 } 5299 mnt_drop_write(old_path.mnt); 5300 exit2: 5301 if (retry_estale(error, lookup_flags)) 5302 should_retry = true; 5303 path_put(&new_path); 5304 exit1: 5305 path_put(&old_path); 5306 if (should_retry) { 5307 should_retry = false; 5308 lookup_flags |= LOOKUP_REVAL; 5309 goto retry; 5310 } 5311 put_names: 5312 putname(from); 5313 putname(to); 5314 return error; 5315 } 5316 5317 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5318 int, newdfd, const char __user *, newname, unsigned int, flags) 5319 { 5320 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5321 flags); 5322 } 5323 5324 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5325 int, newdfd, const char __user *, newname) 5326 { 5327 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5328 0); 5329 } 5330 5331 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5332 { 5333 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5334 getname(newname), 0); 5335 } 5336 5337 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen) 5338 { 5339 int copylen; 5340 5341 copylen = linklen; 5342 if (unlikely(copylen > (unsigned) buflen)) 5343 copylen = buflen; 5344 if (copy_to_user(buffer, link, copylen)) 5345 copylen = -EFAULT; 5346 return copylen; 5347 } 5348 5349 /** 5350 * vfs_readlink - copy symlink body into userspace buffer 5351 * @dentry: dentry on which to get symbolic link 5352 * @buffer: user memory pointer 5353 * @buflen: size of buffer 5354 * 5355 * Does not touch atime. That's up to the caller if necessary 5356 * 5357 * Does not call security hook. 5358 */ 5359 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5360 { 5361 struct inode *inode = d_inode(dentry); 5362 DEFINE_DELAYED_CALL(done); 5363 const char *link; 5364 int res; 5365 5366 if (inode->i_opflags & IOP_CACHED_LINK) 5367 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen); 5368 5369 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5370 if (unlikely(inode->i_op->readlink)) 5371 return inode->i_op->readlink(dentry, buffer, buflen); 5372 5373 if (!d_is_symlink(dentry)) 5374 return -EINVAL; 5375 5376 spin_lock(&inode->i_lock); 5377 inode->i_opflags |= IOP_DEFAULT_READLINK; 5378 spin_unlock(&inode->i_lock); 5379 } 5380 5381 link = READ_ONCE(inode->i_link); 5382 if (!link) { 5383 link = inode->i_op->get_link(dentry, inode, &done); 5384 if (IS_ERR(link)) 5385 return PTR_ERR(link); 5386 } 5387 res = readlink_copy(buffer, buflen, link, strlen(link)); 5388 do_delayed_call(&done); 5389 return res; 5390 } 5391 EXPORT_SYMBOL(vfs_readlink); 5392 5393 /** 5394 * vfs_get_link - get symlink body 5395 * @dentry: dentry on which to get symbolic link 5396 * @done: caller needs to free returned data with this 5397 * 5398 * Calls security hook and i_op->get_link() on the supplied inode. 5399 * 5400 * It does not touch atime. That's up to the caller if necessary. 5401 * 5402 * Does not work on "special" symlinks like /proc/$$/fd/N 5403 */ 5404 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5405 { 5406 const char *res = ERR_PTR(-EINVAL); 5407 struct inode *inode = d_inode(dentry); 5408 5409 if (d_is_symlink(dentry)) { 5410 res = ERR_PTR(security_inode_readlink(dentry)); 5411 if (!res) 5412 res = inode->i_op->get_link(dentry, inode, done); 5413 } 5414 return res; 5415 } 5416 EXPORT_SYMBOL(vfs_get_link); 5417 5418 /* get the link contents into pagecache */ 5419 static char *__page_get_link(struct dentry *dentry, struct inode *inode, 5420 struct delayed_call *callback) 5421 { 5422 struct folio *folio; 5423 struct address_space *mapping = inode->i_mapping; 5424 5425 if (!dentry) { 5426 folio = filemap_get_folio(mapping, 0); 5427 if (IS_ERR(folio)) 5428 return ERR_PTR(-ECHILD); 5429 if (!folio_test_uptodate(folio)) { 5430 folio_put(folio); 5431 return ERR_PTR(-ECHILD); 5432 } 5433 } else { 5434 folio = read_mapping_folio(mapping, 0, NULL); 5435 if (IS_ERR(folio)) 5436 return ERR_CAST(folio); 5437 } 5438 set_delayed_call(callback, page_put_link, folio); 5439 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5440 return folio_address(folio); 5441 } 5442 5443 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode, 5444 struct delayed_call *callback) 5445 { 5446 return __page_get_link(dentry, inode, callback); 5447 } 5448 EXPORT_SYMBOL_GPL(page_get_link_raw); 5449 5450 /** 5451 * page_get_link() - An implementation of the get_link inode_operation. 5452 * @dentry: The directory entry which is the symlink. 5453 * @inode: The inode for the symlink. 5454 * @callback: Used to drop the reference to the symlink. 5455 * 5456 * Filesystems which store their symlinks in the page cache should use 5457 * this to implement the get_link() member of their inode_operations. 5458 * 5459 * Return: A pointer to the NUL-terminated symlink. 5460 */ 5461 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5462 struct delayed_call *callback) 5463 { 5464 char *kaddr = __page_get_link(dentry, inode, callback); 5465 5466 if (!IS_ERR(kaddr)) 5467 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5468 return kaddr; 5469 } 5470 EXPORT_SYMBOL(page_get_link); 5471 5472 /** 5473 * page_put_link() - Drop the reference to the symlink. 5474 * @arg: The folio which contains the symlink. 5475 * 5476 * This is used internally by page_get_link(). It is exported for use 5477 * by filesystems which need to implement a variant of page_get_link() 5478 * themselves. Despite the apparent symmetry, filesystems which use 5479 * page_get_link() do not need to call page_put_link(). 5480 * 5481 * The argument, while it has a void pointer type, must be a pointer to 5482 * the folio which was retrieved from the page cache. The delayed_call 5483 * infrastructure is used to drop the reference count once the caller 5484 * is done with the symlink. 5485 */ 5486 void page_put_link(void *arg) 5487 { 5488 folio_put(arg); 5489 } 5490 EXPORT_SYMBOL(page_put_link); 5491 5492 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5493 { 5494 const char *link; 5495 int res; 5496 5497 DEFINE_DELAYED_CALL(done); 5498 link = page_get_link(dentry, d_inode(dentry), &done); 5499 res = PTR_ERR(link); 5500 if (!IS_ERR(link)) 5501 res = readlink_copy(buffer, buflen, link, strlen(link)); 5502 do_delayed_call(&done); 5503 return res; 5504 } 5505 EXPORT_SYMBOL(page_readlink); 5506 5507 int page_symlink(struct inode *inode, const char *symname, int len) 5508 { 5509 struct address_space *mapping = inode->i_mapping; 5510 const struct address_space_operations *aops = mapping->a_ops; 5511 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5512 struct folio *folio; 5513 void *fsdata = NULL; 5514 int err; 5515 unsigned int flags; 5516 5517 retry: 5518 if (nofs) 5519 flags = memalloc_nofs_save(); 5520 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); 5521 if (nofs) 5522 memalloc_nofs_restore(flags); 5523 if (err) 5524 goto fail; 5525 5526 memcpy(folio_address(folio), symname, len - 1); 5527 5528 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, 5529 folio, fsdata); 5530 if (err < 0) 5531 goto fail; 5532 if (err < len-1) 5533 goto retry; 5534 5535 mark_inode_dirty(inode); 5536 return 0; 5537 fail: 5538 return err; 5539 } 5540 EXPORT_SYMBOL(page_symlink); 5541 5542 const struct inode_operations page_symlink_inode_operations = { 5543 .get_link = page_get_link, 5544 }; 5545 EXPORT_SYMBOL(page_symlink_inode_operations); 5546