1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 char * getname(const char __user * filename) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 __putname(tmp); 151 result = ERR_PTR(retval); 152 } 153 } 154 audit_getname(result); 155 return result; 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 /* 170 * This does basic POSIX ACL permission checking 171 */ 172 static int acl_permission_check(struct inode *inode, int mask, 173 int (*check_acl)(struct inode *inode, int mask)) 174 { 175 umode_t mode = inode->i_mode; 176 177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 178 179 if (current_fsuid() == inode->i_uid) 180 mode >>= 6; 181 else { 182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 183 int error = check_acl(inode, mask); 184 if (error != -EAGAIN) 185 return error; 186 } 187 188 if (in_group_p(inode->i_gid)) 189 mode >>= 3; 190 } 191 192 /* 193 * If the DACs are ok we don't need any capability check. 194 */ 195 if ((mask & ~mode) == 0) 196 return 0; 197 return -EACCES; 198 } 199 200 /** 201 * generic_permission - check for access rights on a Posix-like filesystem 202 * @inode: inode to check access rights for 203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 204 * @check_acl: optional callback to check for Posix ACLs 205 * 206 * Used to check for read/write/execute permissions on a file. 207 * We use "fsuid" for this, letting us set arbitrary permissions 208 * for filesystem access without changing the "normal" uids which 209 * are used for other things.. 210 */ 211 int generic_permission(struct inode *inode, int mask, 212 int (*check_acl)(struct inode *inode, int mask)) 213 { 214 int ret; 215 216 /* 217 * Do the basic POSIX ACL permission checks. 218 */ 219 ret = acl_permission_check(inode, mask, check_acl); 220 if (ret != -EACCES) 221 return ret; 222 223 /* 224 * Read/write DACs are always overridable. 225 * Executable DACs are overridable if at least one exec bit is set. 226 */ 227 if (!(mask & MAY_EXEC) || execute_ok(inode)) 228 if (capable(CAP_DAC_OVERRIDE)) 229 return 0; 230 231 /* 232 * Searching includes executable on directories, else just read. 233 */ 234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 236 if (capable(CAP_DAC_READ_SEARCH)) 237 return 0; 238 239 return -EACCES; 240 } 241 242 /** 243 * inode_permission - check for access rights to a given inode 244 * @inode: inode to check permission on 245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 246 * 247 * Used to check for read/write/execute permissions on an inode. 248 * We use "fsuid" for this, letting us set arbitrary permissions 249 * for filesystem access without changing the "normal" uids which 250 * are used for other things. 251 */ 252 int inode_permission(struct inode *inode, int mask) 253 { 254 int retval; 255 256 if (mask & MAY_WRITE) { 257 umode_t mode = inode->i_mode; 258 259 /* 260 * Nobody gets write access to a read-only fs. 261 */ 262 if (IS_RDONLY(inode) && 263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 264 return -EROFS; 265 266 /* 267 * Nobody gets write access to an immutable file. 268 */ 269 if (IS_IMMUTABLE(inode)) 270 return -EACCES; 271 } 272 273 if (inode->i_op->permission) 274 retval = inode->i_op->permission(inode, mask); 275 else 276 retval = generic_permission(inode, mask, inode->i_op->check_acl); 277 278 if (retval) 279 return retval; 280 281 retval = devcgroup_inode_permission(inode, mask); 282 if (retval) 283 return retval; 284 285 return security_inode_permission(inode, 286 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 287 } 288 289 /** 290 * file_permission - check for additional access rights to a given file 291 * @file: file to check access rights for 292 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 293 * 294 * Used to check for read/write/execute permissions on an already opened 295 * file. 296 * 297 * Note: 298 * Do not use this function in new code. All access checks should 299 * be done using inode_permission(). 300 */ 301 int file_permission(struct file *file, int mask) 302 { 303 return inode_permission(file->f_path.dentry->d_inode, mask); 304 } 305 306 /* 307 * get_write_access() gets write permission for a file. 308 * put_write_access() releases this write permission. 309 * This is used for regular files. 310 * We cannot support write (and maybe mmap read-write shared) accesses and 311 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 312 * can have the following values: 313 * 0: no writers, no VM_DENYWRITE mappings 314 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 315 * > 0: (i_writecount) users are writing to the file. 316 * 317 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 318 * except for the cases where we don't hold i_writecount yet. Then we need to 319 * use {get,deny}_write_access() - these functions check the sign and refuse 320 * to do the change if sign is wrong. Exclusion between them is provided by 321 * the inode->i_lock spinlock. 322 */ 323 324 int get_write_access(struct inode * inode) 325 { 326 spin_lock(&inode->i_lock); 327 if (atomic_read(&inode->i_writecount) < 0) { 328 spin_unlock(&inode->i_lock); 329 return -ETXTBSY; 330 } 331 atomic_inc(&inode->i_writecount); 332 spin_unlock(&inode->i_lock); 333 334 return 0; 335 } 336 337 int deny_write_access(struct file * file) 338 { 339 struct inode *inode = file->f_path.dentry->d_inode; 340 341 spin_lock(&inode->i_lock); 342 if (atomic_read(&inode->i_writecount) > 0) { 343 spin_unlock(&inode->i_lock); 344 return -ETXTBSY; 345 } 346 atomic_dec(&inode->i_writecount); 347 spin_unlock(&inode->i_lock); 348 349 return 0; 350 } 351 352 /** 353 * path_get - get a reference to a path 354 * @path: path to get the reference to 355 * 356 * Given a path increment the reference count to the dentry and the vfsmount. 357 */ 358 void path_get(struct path *path) 359 { 360 mntget(path->mnt); 361 dget(path->dentry); 362 } 363 EXPORT_SYMBOL(path_get); 364 365 /** 366 * path_put - put a reference to a path 367 * @path: path to put the reference to 368 * 369 * Given a path decrement the reference count to the dentry and the vfsmount. 370 */ 371 void path_put(struct path *path) 372 { 373 dput(path->dentry); 374 mntput(path->mnt); 375 } 376 EXPORT_SYMBOL(path_put); 377 378 /** 379 * release_open_intent - free up open intent resources 380 * @nd: pointer to nameidata 381 */ 382 void release_open_intent(struct nameidata *nd) 383 { 384 if (nd->intent.open.file->f_path.dentry == NULL) 385 put_filp(nd->intent.open.file); 386 else 387 fput(nd->intent.open.file); 388 } 389 390 static inline struct dentry * 391 do_revalidate(struct dentry *dentry, struct nameidata *nd) 392 { 393 int status = dentry->d_op->d_revalidate(dentry, nd); 394 if (unlikely(status <= 0)) { 395 /* 396 * The dentry failed validation. 397 * If d_revalidate returned 0 attempt to invalidate 398 * the dentry otherwise d_revalidate is asking us 399 * to return a fail status. 400 */ 401 if (!status) { 402 if (!d_invalidate(dentry)) { 403 dput(dentry); 404 dentry = NULL; 405 } 406 } else { 407 dput(dentry); 408 dentry = ERR_PTR(status); 409 } 410 } 411 return dentry; 412 } 413 414 /* 415 * force_reval_path - force revalidation of a dentry 416 * 417 * In some situations the path walking code will trust dentries without 418 * revalidating them. This causes problems for filesystems that depend on 419 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 420 * (which indicates that it's possible for the dentry to go stale), force 421 * a d_revalidate call before proceeding. 422 * 423 * Returns 0 if the revalidation was successful. If the revalidation fails, 424 * either return the error returned by d_revalidate or -ESTALE if the 425 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 426 * invalidate the dentry. It's up to the caller to handle putting references 427 * to the path if necessary. 428 */ 429 static int 430 force_reval_path(struct path *path, struct nameidata *nd) 431 { 432 int status; 433 struct dentry *dentry = path->dentry; 434 435 /* 436 * only check on filesystems where it's possible for the dentry to 437 * become stale. It's assumed that if this flag is set then the 438 * d_revalidate op will also be defined. 439 */ 440 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) 441 return 0; 442 443 status = dentry->d_op->d_revalidate(dentry, nd); 444 if (status > 0) 445 return 0; 446 447 if (!status) { 448 d_invalidate(dentry); 449 status = -ESTALE; 450 } 451 return status; 452 } 453 454 /* 455 * Short-cut version of permission(), for calling on directories 456 * during pathname resolution. Combines parts of permission() 457 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 458 * 459 * If appropriate, check DAC only. If not appropriate, or 460 * short-cut DAC fails, then call ->permission() to do more 461 * complete permission check. 462 */ 463 static int exec_permission(struct inode *inode) 464 { 465 int ret; 466 467 if (inode->i_op->permission) { 468 ret = inode->i_op->permission(inode, MAY_EXEC); 469 if (!ret) 470 goto ok; 471 return ret; 472 } 473 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl); 474 if (!ret) 475 goto ok; 476 477 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 478 goto ok; 479 480 return ret; 481 ok: 482 return security_inode_permission(inode, MAY_EXEC); 483 } 484 485 static __always_inline void set_root(struct nameidata *nd) 486 { 487 if (!nd->root.mnt) { 488 struct fs_struct *fs = current->fs; 489 read_lock(&fs->lock); 490 nd->root = fs->root; 491 path_get(&nd->root); 492 read_unlock(&fs->lock); 493 } 494 } 495 496 static int link_path_walk(const char *, struct nameidata *); 497 498 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 499 { 500 if (IS_ERR(link)) 501 goto fail; 502 503 if (*link == '/') { 504 set_root(nd); 505 path_put(&nd->path); 506 nd->path = nd->root; 507 path_get(&nd->root); 508 } 509 510 return link_path_walk(link, nd); 511 fail: 512 path_put(&nd->path); 513 return PTR_ERR(link); 514 } 515 516 static void path_put_conditional(struct path *path, struct nameidata *nd) 517 { 518 dput(path->dentry); 519 if (path->mnt != nd->path.mnt) 520 mntput(path->mnt); 521 } 522 523 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 524 { 525 dput(nd->path.dentry); 526 if (nd->path.mnt != path->mnt) { 527 mntput(nd->path.mnt); 528 nd->path.mnt = path->mnt; 529 } 530 nd->path.dentry = path->dentry; 531 } 532 533 static __always_inline int 534 __do_follow_link(struct path *path, struct nameidata *nd, void **p) 535 { 536 int error; 537 struct dentry *dentry = path->dentry; 538 539 touch_atime(path->mnt, dentry); 540 nd_set_link(nd, NULL); 541 542 if (path->mnt != nd->path.mnt) { 543 path_to_nameidata(path, nd); 544 dget(dentry); 545 } 546 mntget(path->mnt); 547 nd->last_type = LAST_BIND; 548 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 549 error = PTR_ERR(*p); 550 if (!IS_ERR(*p)) { 551 char *s = nd_get_link(nd); 552 error = 0; 553 if (s) 554 error = __vfs_follow_link(nd, s); 555 else if (nd->last_type == LAST_BIND) { 556 error = force_reval_path(&nd->path, nd); 557 if (error) 558 path_put(&nd->path); 559 } 560 } 561 return error; 562 } 563 564 /* 565 * This limits recursive symlink follows to 8, while 566 * limiting consecutive symlinks to 40. 567 * 568 * Without that kind of total limit, nasty chains of consecutive 569 * symlinks can cause almost arbitrarily long lookups. 570 */ 571 static inline int do_follow_link(struct path *path, struct nameidata *nd) 572 { 573 void *cookie; 574 int err = -ELOOP; 575 if (current->link_count >= MAX_NESTED_LINKS) 576 goto loop; 577 if (current->total_link_count >= 40) 578 goto loop; 579 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 580 cond_resched(); 581 err = security_inode_follow_link(path->dentry, nd); 582 if (err) 583 goto loop; 584 current->link_count++; 585 current->total_link_count++; 586 nd->depth++; 587 err = __do_follow_link(path, nd, &cookie); 588 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link) 589 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie); 590 path_put(path); 591 current->link_count--; 592 nd->depth--; 593 return err; 594 loop: 595 path_put_conditional(path, nd); 596 path_put(&nd->path); 597 return err; 598 } 599 600 int follow_up(struct path *path) 601 { 602 struct vfsmount *parent; 603 struct dentry *mountpoint; 604 spin_lock(&vfsmount_lock); 605 parent = path->mnt->mnt_parent; 606 if (parent == path->mnt) { 607 spin_unlock(&vfsmount_lock); 608 return 0; 609 } 610 mntget(parent); 611 mountpoint = dget(path->mnt->mnt_mountpoint); 612 spin_unlock(&vfsmount_lock); 613 dput(path->dentry); 614 path->dentry = mountpoint; 615 mntput(path->mnt); 616 path->mnt = parent; 617 return 1; 618 } 619 620 /* no need for dcache_lock, as serialization is taken care in 621 * namespace.c 622 */ 623 static int __follow_mount(struct path *path) 624 { 625 int res = 0; 626 while (d_mountpoint(path->dentry)) { 627 struct vfsmount *mounted = lookup_mnt(path); 628 if (!mounted) 629 break; 630 dput(path->dentry); 631 if (res) 632 mntput(path->mnt); 633 path->mnt = mounted; 634 path->dentry = dget(mounted->mnt_root); 635 res = 1; 636 } 637 return res; 638 } 639 640 static void follow_mount(struct path *path) 641 { 642 while (d_mountpoint(path->dentry)) { 643 struct vfsmount *mounted = lookup_mnt(path); 644 if (!mounted) 645 break; 646 dput(path->dentry); 647 mntput(path->mnt); 648 path->mnt = mounted; 649 path->dentry = dget(mounted->mnt_root); 650 } 651 } 652 653 /* no need for dcache_lock, as serialization is taken care in 654 * namespace.c 655 */ 656 int follow_down(struct path *path) 657 { 658 struct vfsmount *mounted; 659 660 mounted = lookup_mnt(path); 661 if (mounted) { 662 dput(path->dentry); 663 mntput(path->mnt); 664 path->mnt = mounted; 665 path->dentry = dget(mounted->mnt_root); 666 return 1; 667 } 668 return 0; 669 } 670 671 static __always_inline void follow_dotdot(struct nameidata *nd) 672 { 673 set_root(nd); 674 675 while(1) { 676 struct dentry *old = nd->path.dentry; 677 678 if (nd->path.dentry == nd->root.dentry && 679 nd->path.mnt == nd->root.mnt) { 680 break; 681 } 682 if (nd->path.dentry != nd->path.mnt->mnt_root) { 683 /* rare case of legitimate dget_parent()... */ 684 nd->path.dentry = dget_parent(nd->path.dentry); 685 dput(old); 686 break; 687 } 688 if (!follow_up(&nd->path)) 689 break; 690 } 691 follow_mount(&nd->path); 692 } 693 694 /* 695 * It's more convoluted than I'd like it to be, but... it's still fairly 696 * small and for now I'd prefer to have fast path as straight as possible. 697 * It _is_ time-critical. 698 */ 699 static int do_lookup(struct nameidata *nd, struct qstr *name, 700 struct path *path) 701 { 702 struct vfsmount *mnt = nd->path.mnt; 703 struct dentry *dentry, *parent; 704 struct inode *dir; 705 /* 706 * See if the low-level filesystem might want 707 * to use its own hash.. 708 */ 709 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 710 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name); 711 if (err < 0) 712 return err; 713 } 714 715 dentry = __d_lookup(nd->path.dentry, name); 716 if (!dentry) 717 goto need_lookup; 718 if (dentry->d_op && dentry->d_op->d_revalidate) 719 goto need_revalidate; 720 done: 721 path->mnt = mnt; 722 path->dentry = dentry; 723 __follow_mount(path); 724 return 0; 725 726 need_lookup: 727 parent = nd->path.dentry; 728 dir = parent->d_inode; 729 730 mutex_lock(&dir->i_mutex); 731 /* 732 * First re-do the cached lookup just in case it was created 733 * while we waited for the directory semaphore.. 734 * 735 * FIXME! This could use version numbering or similar to 736 * avoid unnecessary cache lookups. 737 * 738 * The "dcache_lock" is purely to protect the RCU list walker 739 * from concurrent renames at this point (we mustn't get false 740 * negatives from the RCU list walk here, unlike the optimistic 741 * fast walk). 742 * 743 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 744 */ 745 dentry = d_lookup(parent, name); 746 if (!dentry) { 747 struct dentry *new; 748 749 /* Don't create child dentry for a dead directory. */ 750 dentry = ERR_PTR(-ENOENT); 751 if (IS_DEADDIR(dir)) 752 goto out_unlock; 753 754 new = d_alloc(parent, name); 755 dentry = ERR_PTR(-ENOMEM); 756 if (new) { 757 dentry = dir->i_op->lookup(dir, new, nd); 758 if (dentry) 759 dput(new); 760 else 761 dentry = new; 762 } 763 out_unlock: 764 mutex_unlock(&dir->i_mutex); 765 if (IS_ERR(dentry)) 766 goto fail; 767 goto done; 768 } 769 770 /* 771 * Uhhuh! Nasty case: the cache was re-populated while 772 * we waited on the semaphore. Need to revalidate. 773 */ 774 mutex_unlock(&dir->i_mutex); 775 if (dentry->d_op && dentry->d_op->d_revalidate) { 776 dentry = do_revalidate(dentry, nd); 777 if (!dentry) 778 dentry = ERR_PTR(-ENOENT); 779 } 780 if (IS_ERR(dentry)) 781 goto fail; 782 goto done; 783 784 need_revalidate: 785 dentry = do_revalidate(dentry, nd); 786 if (!dentry) 787 goto need_lookup; 788 if (IS_ERR(dentry)) 789 goto fail; 790 goto done; 791 792 fail: 793 return PTR_ERR(dentry); 794 } 795 796 /* 797 * This is a temporary kludge to deal with "automount" symlinks; proper 798 * solution is to trigger them on follow_mount(), so that do_lookup() 799 * would DTRT. To be killed before 2.6.34-final. 800 */ 801 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags) 802 { 803 return inode && unlikely(inode->i_op->follow_link) && 804 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode)); 805 } 806 807 /* 808 * Name resolution. 809 * This is the basic name resolution function, turning a pathname into 810 * the final dentry. We expect 'base' to be positive and a directory. 811 * 812 * Returns 0 and nd will have valid dentry and mnt on success. 813 * Returns error and drops reference to input namei data on failure. 814 */ 815 static int link_path_walk(const char *name, struct nameidata *nd) 816 { 817 struct path next; 818 struct inode *inode; 819 int err; 820 unsigned int lookup_flags = nd->flags; 821 822 while (*name=='/') 823 name++; 824 if (!*name) 825 goto return_reval; 826 827 inode = nd->path.dentry->d_inode; 828 if (nd->depth) 829 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 830 831 /* At this point we know we have a real path component. */ 832 for(;;) { 833 unsigned long hash; 834 struct qstr this; 835 unsigned int c; 836 837 nd->flags |= LOOKUP_CONTINUE; 838 err = exec_permission(inode); 839 if (err) 840 break; 841 842 this.name = name; 843 c = *(const unsigned char *)name; 844 845 hash = init_name_hash(); 846 do { 847 name++; 848 hash = partial_name_hash(c, hash); 849 c = *(const unsigned char *)name; 850 } while (c && (c != '/')); 851 this.len = name - (const char *) this.name; 852 this.hash = end_name_hash(hash); 853 854 /* remove trailing slashes? */ 855 if (!c) 856 goto last_component; 857 while (*++name == '/'); 858 if (!*name) 859 goto last_with_slashes; 860 861 /* 862 * "." and ".." are special - ".." especially so because it has 863 * to be able to know about the current root directory and 864 * parent relationships. 865 */ 866 if (this.name[0] == '.') switch (this.len) { 867 default: 868 break; 869 case 2: 870 if (this.name[1] != '.') 871 break; 872 follow_dotdot(nd); 873 inode = nd->path.dentry->d_inode; 874 /* fallthrough */ 875 case 1: 876 continue; 877 } 878 /* This does the actual lookups.. */ 879 err = do_lookup(nd, &this, &next); 880 if (err) 881 break; 882 883 err = -ENOENT; 884 inode = next.dentry->d_inode; 885 if (!inode) 886 goto out_dput; 887 888 if (inode->i_op->follow_link) { 889 err = do_follow_link(&next, nd); 890 if (err) 891 goto return_err; 892 err = -ENOENT; 893 inode = nd->path.dentry->d_inode; 894 if (!inode) 895 break; 896 } else 897 path_to_nameidata(&next, nd); 898 err = -ENOTDIR; 899 if (!inode->i_op->lookup) 900 break; 901 continue; 902 /* here ends the main loop */ 903 904 last_with_slashes: 905 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 906 last_component: 907 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 908 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 909 if (lookup_flags & LOOKUP_PARENT) 910 goto lookup_parent; 911 if (this.name[0] == '.') switch (this.len) { 912 default: 913 break; 914 case 2: 915 if (this.name[1] != '.') 916 break; 917 follow_dotdot(nd); 918 inode = nd->path.dentry->d_inode; 919 /* fallthrough */ 920 case 1: 921 goto return_reval; 922 } 923 err = do_lookup(nd, &this, &next); 924 if (err) 925 break; 926 inode = next.dentry->d_inode; 927 if (follow_on_final(inode, lookup_flags)) { 928 err = do_follow_link(&next, nd); 929 if (err) 930 goto return_err; 931 inode = nd->path.dentry->d_inode; 932 } else 933 path_to_nameidata(&next, nd); 934 err = -ENOENT; 935 if (!inode) 936 break; 937 if (lookup_flags & LOOKUP_DIRECTORY) { 938 err = -ENOTDIR; 939 if (!inode->i_op->lookup) 940 break; 941 } 942 goto return_base; 943 lookup_parent: 944 nd->last = this; 945 nd->last_type = LAST_NORM; 946 if (this.name[0] != '.') 947 goto return_base; 948 if (this.len == 1) 949 nd->last_type = LAST_DOT; 950 else if (this.len == 2 && this.name[1] == '.') 951 nd->last_type = LAST_DOTDOT; 952 else 953 goto return_base; 954 return_reval: 955 /* 956 * We bypassed the ordinary revalidation routines. 957 * We may need to check the cached dentry for staleness. 958 */ 959 if (nd->path.dentry && nd->path.dentry->d_sb && 960 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 961 err = -ESTALE; 962 /* Note: we do not d_invalidate() */ 963 if (!nd->path.dentry->d_op->d_revalidate( 964 nd->path.dentry, nd)) 965 break; 966 } 967 return_base: 968 return 0; 969 out_dput: 970 path_put_conditional(&next, nd); 971 break; 972 } 973 path_put(&nd->path); 974 return_err: 975 return err; 976 } 977 978 static int path_walk(const char *name, struct nameidata *nd) 979 { 980 struct path save = nd->path; 981 int result; 982 983 current->total_link_count = 0; 984 985 /* make sure the stuff we saved doesn't go away */ 986 path_get(&save); 987 988 result = link_path_walk(name, nd); 989 if (result == -ESTALE) { 990 /* nd->path had been dropped */ 991 current->total_link_count = 0; 992 nd->path = save; 993 path_get(&nd->path); 994 nd->flags |= LOOKUP_REVAL; 995 result = link_path_walk(name, nd); 996 } 997 998 path_put(&save); 999 1000 return result; 1001 } 1002 1003 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1004 { 1005 int retval = 0; 1006 int fput_needed; 1007 struct file *file; 1008 1009 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1010 nd->flags = flags; 1011 nd->depth = 0; 1012 nd->root.mnt = NULL; 1013 1014 if (*name=='/') { 1015 set_root(nd); 1016 nd->path = nd->root; 1017 path_get(&nd->root); 1018 } else if (dfd == AT_FDCWD) { 1019 struct fs_struct *fs = current->fs; 1020 read_lock(&fs->lock); 1021 nd->path = fs->pwd; 1022 path_get(&fs->pwd); 1023 read_unlock(&fs->lock); 1024 } else { 1025 struct dentry *dentry; 1026 1027 file = fget_light(dfd, &fput_needed); 1028 retval = -EBADF; 1029 if (!file) 1030 goto out_fail; 1031 1032 dentry = file->f_path.dentry; 1033 1034 retval = -ENOTDIR; 1035 if (!S_ISDIR(dentry->d_inode->i_mode)) 1036 goto fput_fail; 1037 1038 retval = file_permission(file, MAY_EXEC); 1039 if (retval) 1040 goto fput_fail; 1041 1042 nd->path = file->f_path; 1043 path_get(&file->f_path); 1044 1045 fput_light(file, fput_needed); 1046 } 1047 return 0; 1048 1049 fput_fail: 1050 fput_light(file, fput_needed); 1051 out_fail: 1052 return retval; 1053 } 1054 1055 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1056 static int do_path_lookup(int dfd, const char *name, 1057 unsigned int flags, struct nameidata *nd) 1058 { 1059 int retval = path_init(dfd, name, flags, nd); 1060 if (!retval) 1061 retval = path_walk(name, nd); 1062 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1063 nd->path.dentry->d_inode)) 1064 audit_inode(name, nd->path.dentry); 1065 if (nd->root.mnt) { 1066 path_put(&nd->root); 1067 nd->root.mnt = NULL; 1068 } 1069 return retval; 1070 } 1071 1072 int path_lookup(const char *name, unsigned int flags, 1073 struct nameidata *nd) 1074 { 1075 return do_path_lookup(AT_FDCWD, name, flags, nd); 1076 } 1077 1078 int kern_path(const char *name, unsigned int flags, struct path *path) 1079 { 1080 struct nameidata nd; 1081 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1082 if (!res) 1083 *path = nd.path; 1084 return res; 1085 } 1086 1087 /** 1088 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1089 * @dentry: pointer to dentry of the base directory 1090 * @mnt: pointer to vfs mount of the base directory 1091 * @name: pointer to file name 1092 * @flags: lookup flags 1093 * @nd: pointer to nameidata 1094 */ 1095 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1096 const char *name, unsigned int flags, 1097 struct nameidata *nd) 1098 { 1099 int retval; 1100 1101 /* same as do_path_lookup */ 1102 nd->last_type = LAST_ROOT; 1103 nd->flags = flags; 1104 nd->depth = 0; 1105 1106 nd->path.dentry = dentry; 1107 nd->path.mnt = mnt; 1108 path_get(&nd->path); 1109 nd->root = nd->path; 1110 path_get(&nd->root); 1111 1112 retval = path_walk(name, nd); 1113 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1114 nd->path.dentry->d_inode)) 1115 audit_inode(name, nd->path.dentry); 1116 1117 path_put(&nd->root); 1118 nd->root.mnt = NULL; 1119 1120 return retval; 1121 } 1122 1123 static struct dentry *__lookup_hash(struct qstr *name, 1124 struct dentry *base, struct nameidata *nd) 1125 { 1126 struct dentry *dentry; 1127 struct inode *inode; 1128 int err; 1129 1130 inode = base->d_inode; 1131 1132 /* 1133 * See if the low-level filesystem might want 1134 * to use its own hash.. 1135 */ 1136 if (base->d_op && base->d_op->d_hash) { 1137 err = base->d_op->d_hash(base, name); 1138 dentry = ERR_PTR(err); 1139 if (err < 0) 1140 goto out; 1141 } 1142 1143 dentry = __d_lookup(base, name); 1144 1145 /* lockess __d_lookup may fail due to concurrent d_move() 1146 * in some unrelated directory, so try with d_lookup 1147 */ 1148 if (!dentry) 1149 dentry = d_lookup(base, name); 1150 1151 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 1152 dentry = do_revalidate(dentry, nd); 1153 1154 if (!dentry) { 1155 struct dentry *new; 1156 1157 /* Don't create child dentry for a dead directory. */ 1158 dentry = ERR_PTR(-ENOENT); 1159 if (IS_DEADDIR(inode)) 1160 goto out; 1161 1162 new = d_alloc(base, name); 1163 dentry = ERR_PTR(-ENOMEM); 1164 if (!new) 1165 goto out; 1166 dentry = inode->i_op->lookup(inode, new, nd); 1167 if (!dentry) 1168 dentry = new; 1169 else 1170 dput(new); 1171 } 1172 out: 1173 return dentry; 1174 } 1175 1176 /* 1177 * Restricted form of lookup. Doesn't follow links, single-component only, 1178 * needs parent already locked. Doesn't follow mounts. 1179 * SMP-safe. 1180 */ 1181 static struct dentry *lookup_hash(struct nameidata *nd) 1182 { 1183 int err; 1184 1185 err = exec_permission(nd->path.dentry->d_inode); 1186 if (err) 1187 return ERR_PTR(err); 1188 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1189 } 1190 1191 static int __lookup_one_len(const char *name, struct qstr *this, 1192 struct dentry *base, int len) 1193 { 1194 unsigned long hash; 1195 unsigned int c; 1196 1197 this->name = name; 1198 this->len = len; 1199 if (!len) 1200 return -EACCES; 1201 1202 hash = init_name_hash(); 1203 while (len--) { 1204 c = *(const unsigned char *)name++; 1205 if (c == '/' || c == '\0') 1206 return -EACCES; 1207 hash = partial_name_hash(c, hash); 1208 } 1209 this->hash = end_name_hash(hash); 1210 return 0; 1211 } 1212 1213 /** 1214 * lookup_one_len - filesystem helper to lookup single pathname component 1215 * @name: pathname component to lookup 1216 * @base: base directory to lookup from 1217 * @len: maximum length @len should be interpreted to 1218 * 1219 * Note that this routine is purely a helper for filesystem usage and should 1220 * not be called by generic code. Also note that by using this function the 1221 * nameidata argument is passed to the filesystem methods and a filesystem 1222 * using this helper needs to be prepared for that. 1223 */ 1224 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1225 { 1226 int err; 1227 struct qstr this; 1228 1229 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1230 1231 err = __lookup_one_len(name, &this, base, len); 1232 if (err) 1233 return ERR_PTR(err); 1234 1235 err = exec_permission(base->d_inode); 1236 if (err) 1237 return ERR_PTR(err); 1238 return __lookup_hash(&this, base, NULL); 1239 } 1240 1241 int user_path_at(int dfd, const char __user *name, unsigned flags, 1242 struct path *path) 1243 { 1244 struct nameidata nd; 1245 char *tmp = getname(name); 1246 int err = PTR_ERR(tmp); 1247 if (!IS_ERR(tmp)) { 1248 1249 BUG_ON(flags & LOOKUP_PARENT); 1250 1251 err = do_path_lookup(dfd, tmp, flags, &nd); 1252 putname(tmp); 1253 if (!err) 1254 *path = nd.path; 1255 } 1256 return err; 1257 } 1258 1259 static int user_path_parent(int dfd, const char __user *path, 1260 struct nameidata *nd, char **name) 1261 { 1262 char *s = getname(path); 1263 int error; 1264 1265 if (IS_ERR(s)) 1266 return PTR_ERR(s); 1267 1268 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1269 if (error) 1270 putname(s); 1271 else 1272 *name = s; 1273 1274 return error; 1275 } 1276 1277 /* 1278 * It's inline, so penalty for filesystems that don't use sticky bit is 1279 * minimal. 1280 */ 1281 static inline int check_sticky(struct inode *dir, struct inode *inode) 1282 { 1283 uid_t fsuid = current_fsuid(); 1284 1285 if (!(dir->i_mode & S_ISVTX)) 1286 return 0; 1287 if (inode->i_uid == fsuid) 1288 return 0; 1289 if (dir->i_uid == fsuid) 1290 return 0; 1291 return !capable(CAP_FOWNER); 1292 } 1293 1294 /* 1295 * Check whether we can remove a link victim from directory dir, check 1296 * whether the type of victim is right. 1297 * 1. We can't do it if dir is read-only (done in permission()) 1298 * 2. We should have write and exec permissions on dir 1299 * 3. We can't remove anything from append-only dir 1300 * 4. We can't do anything with immutable dir (done in permission()) 1301 * 5. If the sticky bit on dir is set we should either 1302 * a. be owner of dir, or 1303 * b. be owner of victim, or 1304 * c. have CAP_FOWNER capability 1305 * 6. If the victim is append-only or immutable we can't do antyhing with 1306 * links pointing to it. 1307 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1308 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1309 * 9. We can't remove a root or mountpoint. 1310 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1311 * nfs_async_unlink(). 1312 */ 1313 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1314 { 1315 int error; 1316 1317 if (!victim->d_inode) 1318 return -ENOENT; 1319 1320 BUG_ON(victim->d_parent->d_inode != dir); 1321 audit_inode_child(victim, dir); 1322 1323 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1324 if (error) 1325 return error; 1326 if (IS_APPEND(dir)) 1327 return -EPERM; 1328 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1329 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1330 return -EPERM; 1331 if (isdir) { 1332 if (!S_ISDIR(victim->d_inode->i_mode)) 1333 return -ENOTDIR; 1334 if (IS_ROOT(victim)) 1335 return -EBUSY; 1336 } else if (S_ISDIR(victim->d_inode->i_mode)) 1337 return -EISDIR; 1338 if (IS_DEADDIR(dir)) 1339 return -ENOENT; 1340 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1341 return -EBUSY; 1342 return 0; 1343 } 1344 1345 /* Check whether we can create an object with dentry child in directory 1346 * dir. 1347 * 1. We can't do it if child already exists (open has special treatment for 1348 * this case, but since we are inlined it's OK) 1349 * 2. We can't do it if dir is read-only (done in permission()) 1350 * 3. We should have write and exec permissions on dir 1351 * 4. We can't do it if dir is immutable (done in permission()) 1352 */ 1353 static inline int may_create(struct inode *dir, struct dentry *child) 1354 { 1355 if (child->d_inode) 1356 return -EEXIST; 1357 if (IS_DEADDIR(dir)) 1358 return -ENOENT; 1359 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1360 } 1361 1362 /* 1363 * p1 and p2 should be directories on the same fs. 1364 */ 1365 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1366 { 1367 struct dentry *p; 1368 1369 if (p1 == p2) { 1370 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1371 return NULL; 1372 } 1373 1374 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1375 1376 p = d_ancestor(p2, p1); 1377 if (p) { 1378 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1379 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1380 return p; 1381 } 1382 1383 p = d_ancestor(p1, p2); 1384 if (p) { 1385 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1386 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1387 return p; 1388 } 1389 1390 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1391 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1392 return NULL; 1393 } 1394 1395 void unlock_rename(struct dentry *p1, struct dentry *p2) 1396 { 1397 mutex_unlock(&p1->d_inode->i_mutex); 1398 if (p1 != p2) { 1399 mutex_unlock(&p2->d_inode->i_mutex); 1400 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1401 } 1402 } 1403 1404 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1405 struct nameidata *nd) 1406 { 1407 int error = may_create(dir, dentry); 1408 1409 if (error) 1410 return error; 1411 1412 if (!dir->i_op->create) 1413 return -EACCES; /* shouldn't it be ENOSYS? */ 1414 mode &= S_IALLUGO; 1415 mode |= S_IFREG; 1416 error = security_inode_create(dir, dentry, mode); 1417 if (error) 1418 return error; 1419 error = dir->i_op->create(dir, dentry, mode, nd); 1420 if (!error) 1421 fsnotify_create(dir, dentry); 1422 return error; 1423 } 1424 1425 int may_open(struct path *path, int acc_mode, int flag) 1426 { 1427 struct dentry *dentry = path->dentry; 1428 struct inode *inode = dentry->d_inode; 1429 int error; 1430 1431 if (!inode) 1432 return -ENOENT; 1433 1434 switch (inode->i_mode & S_IFMT) { 1435 case S_IFLNK: 1436 return -ELOOP; 1437 case S_IFDIR: 1438 if (acc_mode & MAY_WRITE) 1439 return -EISDIR; 1440 break; 1441 case S_IFBLK: 1442 case S_IFCHR: 1443 if (path->mnt->mnt_flags & MNT_NODEV) 1444 return -EACCES; 1445 /*FALLTHRU*/ 1446 case S_IFIFO: 1447 case S_IFSOCK: 1448 flag &= ~O_TRUNC; 1449 break; 1450 } 1451 1452 error = inode_permission(inode, acc_mode); 1453 if (error) 1454 return error; 1455 1456 /* 1457 * An append-only file must be opened in append mode for writing. 1458 */ 1459 if (IS_APPEND(inode)) { 1460 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 1461 return -EPERM; 1462 if (flag & O_TRUNC) 1463 return -EPERM; 1464 } 1465 1466 /* O_NOATIME can only be set by the owner or superuser */ 1467 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 1468 return -EPERM; 1469 1470 /* 1471 * Ensure there are no outstanding leases on the file. 1472 */ 1473 return break_lease(inode, flag); 1474 } 1475 1476 static int handle_truncate(struct path *path) 1477 { 1478 struct inode *inode = path->dentry->d_inode; 1479 int error = get_write_access(inode); 1480 if (error) 1481 return error; 1482 /* 1483 * Refuse to truncate files with mandatory locks held on them. 1484 */ 1485 error = locks_verify_locked(inode); 1486 if (!error) 1487 error = security_path_truncate(path, 0, 1488 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); 1489 if (!error) { 1490 error = do_truncate(path->dentry, 0, 1491 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1492 NULL); 1493 } 1494 put_write_access(inode); 1495 return error; 1496 } 1497 1498 /* 1499 * Be careful about ever adding any more callers of this 1500 * function. Its flags must be in the namei format, not 1501 * what get passed to sys_open(). 1502 */ 1503 static int __open_namei_create(struct nameidata *nd, struct path *path, 1504 int open_flag, int mode) 1505 { 1506 int error; 1507 struct dentry *dir = nd->path.dentry; 1508 1509 if (!IS_POSIXACL(dir->d_inode)) 1510 mode &= ~current_umask(); 1511 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1512 if (error) 1513 goto out_unlock; 1514 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1515 out_unlock: 1516 mutex_unlock(&dir->d_inode->i_mutex); 1517 dput(nd->path.dentry); 1518 nd->path.dentry = path->dentry; 1519 if (error) 1520 return error; 1521 /* Don't check for write permission, don't truncate */ 1522 return may_open(&nd->path, 0, open_flag & ~O_TRUNC); 1523 } 1524 1525 /* 1526 * Note that while the flag value (low two bits) for sys_open means: 1527 * 00 - read-only 1528 * 01 - write-only 1529 * 10 - read-write 1530 * 11 - special 1531 * it is changed into 1532 * 00 - no permissions needed 1533 * 01 - read-permission 1534 * 10 - write-permission 1535 * 11 - read-write 1536 * for the internal routines (ie open_namei()/follow_link() etc) 1537 * This is more logical, and also allows the 00 "no perm needed" 1538 * to be used for symlinks (where the permissions are checked 1539 * later). 1540 * 1541 */ 1542 static inline int open_to_namei_flags(int flag) 1543 { 1544 if ((flag+1) & O_ACCMODE) 1545 flag++; 1546 return flag; 1547 } 1548 1549 static int open_will_truncate(int flag, struct inode *inode) 1550 { 1551 /* 1552 * We'll never write to the fs underlying 1553 * a device file. 1554 */ 1555 if (special_file(inode->i_mode)) 1556 return 0; 1557 return (flag & O_TRUNC); 1558 } 1559 1560 static struct file *finish_open(struct nameidata *nd, 1561 int open_flag, int acc_mode) 1562 { 1563 struct file *filp; 1564 int will_truncate; 1565 int error; 1566 1567 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode); 1568 if (will_truncate) { 1569 error = mnt_want_write(nd->path.mnt); 1570 if (error) 1571 goto exit; 1572 } 1573 error = may_open(&nd->path, acc_mode, open_flag); 1574 if (error) { 1575 if (will_truncate) 1576 mnt_drop_write(nd->path.mnt); 1577 goto exit; 1578 } 1579 filp = nameidata_to_filp(nd); 1580 if (!IS_ERR(filp)) { 1581 error = ima_file_check(filp, acc_mode); 1582 if (error) { 1583 fput(filp); 1584 filp = ERR_PTR(error); 1585 } 1586 } 1587 if (!IS_ERR(filp)) { 1588 if (will_truncate) { 1589 error = handle_truncate(&nd->path); 1590 if (error) { 1591 fput(filp); 1592 filp = ERR_PTR(error); 1593 } 1594 } 1595 } 1596 /* 1597 * It is now safe to drop the mnt write 1598 * because the filp has had a write taken 1599 * on its behalf. 1600 */ 1601 if (will_truncate) 1602 mnt_drop_write(nd->path.mnt); 1603 return filp; 1604 1605 exit: 1606 if (!IS_ERR(nd->intent.open.file)) 1607 release_open_intent(nd); 1608 path_put(&nd->path); 1609 return ERR_PTR(error); 1610 } 1611 1612 static struct file *do_last(struct nameidata *nd, struct path *path, 1613 int open_flag, int acc_mode, 1614 int mode, const char *pathname) 1615 { 1616 struct dentry *dir = nd->path.dentry; 1617 struct file *filp; 1618 int error = -EISDIR; 1619 1620 switch (nd->last_type) { 1621 case LAST_DOTDOT: 1622 follow_dotdot(nd); 1623 dir = nd->path.dentry; 1624 case LAST_DOT: 1625 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) { 1626 if (!dir->d_op->d_revalidate(dir, nd)) { 1627 error = -ESTALE; 1628 goto exit; 1629 } 1630 } 1631 /* fallthrough */ 1632 case LAST_ROOT: 1633 if (open_flag & O_CREAT) 1634 goto exit; 1635 /* fallthrough */ 1636 case LAST_BIND: 1637 audit_inode(pathname, dir); 1638 goto ok; 1639 } 1640 1641 /* trailing slashes? */ 1642 if (nd->last.name[nd->last.len]) { 1643 if (open_flag & O_CREAT) 1644 goto exit; 1645 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW; 1646 } 1647 1648 /* just plain open? */ 1649 if (!(open_flag & O_CREAT)) { 1650 error = do_lookup(nd, &nd->last, path); 1651 if (error) 1652 goto exit; 1653 error = -ENOENT; 1654 if (!path->dentry->d_inode) 1655 goto exit_dput; 1656 if (path->dentry->d_inode->i_op->follow_link) 1657 return NULL; 1658 error = -ENOTDIR; 1659 if (nd->flags & LOOKUP_DIRECTORY) { 1660 if (!path->dentry->d_inode->i_op->lookup) 1661 goto exit_dput; 1662 } 1663 path_to_nameidata(path, nd); 1664 audit_inode(pathname, nd->path.dentry); 1665 goto ok; 1666 } 1667 1668 /* OK, it's O_CREAT */ 1669 mutex_lock(&dir->d_inode->i_mutex); 1670 1671 path->dentry = lookup_hash(nd); 1672 path->mnt = nd->path.mnt; 1673 1674 error = PTR_ERR(path->dentry); 1675 if (IS_ERR(path->dentry)) { 1676 mutex_unlock(&dir->d_inode->i_mutex); 1677 goto exit; 1678 } 1679 1680 if (IS_ERR(nd->intent.open.file)) { 1681 error = PTR_ERR(nd->intent.open.file); 1682 goto exit_mutex_unlock; 1683 } 1684 1685 /* Negative dentry, just create the file */ 1686 if (!path->dentry->d_inode) { 1687 /* 1688 * This write is needed to ensure that a 1689 * ro->rw transition does not occur between 1690 * the time when the file is created and when 1691 * a permanent write count is taken through 1692 * the 'struct file' in nameidata_to_filp(). 1693 */ 1694 error = mnt_want_write(nd->path.mnt); 1695 if (error) 1696 goto exit_mutex_unlock; 1697 error = __open_namei_create(nd, path, open_flag, mode); 1698 if (error) { 1699 mnt_drop_write(nd->path.mnt); 1700 goto exit; 1701 } 1702 filp = nameidata_to_filp(nd); 1703 mnt_drop_write(nd->path.mnt); 1704 if (!IS_ERR(filp)) { 1705 error = ima_file_check(filp, acc_mode); 1706 if (error) { 1707 fput(filp); 1708 filp = ERR_PTR(error); 1709 } 1710 } 1711 return filp; 1712 } 1713 1714 /* 1715 * It already exists. 1716 */ 1717 mutex_unlock(&dir->d_inode->i_mutex); 1718 audit_inode(pathname, path->dentry); 1719 1720 error = -EEXIST; 1721 if (open_flag & O_EXCL) 1722 goto exit_dput; 1723 1724 if (__follow_mount(path)) { 1725 error = -ELOOP; 1726 if (open_flag & O_NOFOLLOW) 1727 goto exit_dput; 1728 } 1729 1730 error = -ENOENT; 1731 if (!path->dentry->d_inode) 1732 goto exit_dput; 1733 1734 if (path->dentry->d_inode->i_op->follow_link) 1735 return NULL; 1736 1737 path_to_nameidata(path, nd); 1738 error = -EISDIR; 1739 if (S_ISDIR(path->dentry->d_inode->i_mode)) 1740 goto exit; 1741 ok: 1742 filp = finish_open(nd, open_flag, acc_mode); 1743 return filp; 1744 1745 exit_mutex_unlock: 1746 mutex_unlock(&dir->d_inode->i_mutex); 1747 exit_dput: 1748 path_put_conditional(path, nd); 1749 exit: 1750 if (!IS_ERR(nd->intent.open.file)) 1751 release_open_intent(nd); 1752 path_put(&nd->path); 1753 return ERR_PTR(error); 1754 } 1755 1756 /* 1757 * Note that the low bits of the passed in "open_flag" 1758 * are not the same as in the local variable "flag". See 1759 * open_to_namei_flags() for more details. 1760 */ 1761 struct file *do_filp_open(int dfd, const char *pathname, 1762 int open_flag, int mode, int acc_mode) 1763 { 1764 struct file *filp; 1765 struct nameidata nd; 1766 int error; 1767 struct path path; 1768 int count = 0; 1769 int flag = open_to_namei_flags(open_flag); 1770 int force_reval = 0; 1771 1772 if (!(open_flag & O_CREAT)) 1773 mode = 0; 1774 1775 /* 1776 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 1777 * check for O_DSYNC if the need any syncing at all we enforce it's 1778 * always set instead of having to deal with possibly weird behaviour 1779 * for malicious applications setting only __O_SYNC. 1780 */ 1781 if (open_flag & __O_SYNC) 1782 open_flag |= O_DSYNC; 1783 1784 if (!acc_mode) 1785 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 1786 1787 /* O_TRUNC implies we need access checks for write permissions */ 1788 if (open_flag & O_TRUNC) 1789 acc_mode |= MAY_WRITE; 1790 1791 /* Allow the LSM permission hook to distinguish append 1792 access from general write access. */ 1793 if (open_flag & O_APPEND) 1794 acc_mode |= MAY_APPEND; 1795 1796 /* find the parent */ 1797 reval: 1798 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1799 if (error) 1800 return ERR_PTR(error); 1801 if (force_reval) 1802 nd.flags |= LOOKUP_REVAL; 1803 1804 current->total_link_count = 0; 1805 error = link_path_walk(pathname, &nd); 1806 if (error) { 1807 filp = ERR_PTR(error); 1808 goto out; 1809 } 1810 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT)) 1811 audit_inode(pathname, nd.path.dentry); 1812 1813 /* 1814 * We have the parent and last component. 1815 */ 1816 1817 error = -ENFILE; 1818 filp = get_empty_filp(); 1819 if (filp == NULL) 1820 goto exit_parent; 1821 nd.intent.open.file = filp; 1822 filp->f_flags = open_flag; 1823 nd.intent.open.flags = flag; 1824 nd.intent.open.create_mode = mode; 1825 nd.flags &= ~LOOKUP_PARENT; 1826 nd.flags |= LOOKUP_OPEN; 1827 if (open_flag & O_CREAT) { 1828 nd.flags |= LOOKUP_CREATE; 1829 if (open_flag & O_EXCL) 1830 nd.flags |= LOOKUP_EXCL; 1831 } 1832 if (open_flag & O_DIRECTORY) 1833 nd.flags |= LOOKUP_DIRECTORY; 1834 if (!(open_flag & O_NOFOLLOW)) 1835 nd.flags |= LOOKUP_FOLLOW; 1836 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1837 while (unlikely(!filp)) { /* trailing symlink */ 1838 struct path holder; 1839 struct inode *inode = path.dentry->d_inode; 1840 void *cookie; 1841 error = -ELOOP; 1842 /* S_ISDIR part is a temporary automount kludge */ 1843 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode)) 1844 goto exit_dput; 1845 if (count++ == 32) 1846 goto exit_dput; 1847 /* 1848 * This is subtle. Instead of calling do_follow_link() we do 1849 * the thing by hands. The reason is that this way we have zero 1850 * link_count and path_walk() (called from ->follow_link) 1851 * honoring LOOKUP_PARENT. After that we have the parent and 1852 * last component, i.e. we are in the same situation as after 1853 * the first path_walk(). Well, almost - if the last component 1854 * is normal we get its copy stored in nd->last.name and we will 1855 * have to putname() it when we are done. Procfs-like symlinks 1856 * just set LAST_BIND. 1857 */ 1858 nd.flags |= LOOKUP_PARENT; 1859 error = security_inode_follow_link(path.dentry, &nd); 1860 if (error) 1861 goto exit_dput; 1862 error = __do_follow_link(&path, &nd, &cookie); 1863 if (unlikely(error)) { 1864 /* nd.path had been dropped */ 1865 if (!IS_ERR(cookie) && inode->i_op->put_link) 1866 inode->i_op->put_link(path.dentry, &nd, cookie); 1867 path_put(&path); 1868 release_open_intent(&nd); 1869 filp = ERR_PTR(error); 1870 goto out; 1871 } 1872 holder = path; 1873 nd.flags &= ~LOOKUP_PARENT; 1874 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 1875 if (inode->i_op->put_link) 1876 inode->i_op->put_link(holder.dentry, &nd, cookie); 1877 path_put(&holder); 1878 } 1879 out: 1880 if (nd.root.mnt) 1881 path_put(&nd.root); 1882 if (filp == ERR_PTR(-ESTALE) && !force_reval) { 1883 force_reval = 1; 1884 goto reval; 1885 } 1886 return filp; 1887 1888 exit_dput: 1889 path_put_conditional(&path, &nd); 1890 if (!IS_ERR(nd.intent.open.file)) 1891 release_open_intent(&nd); 1892 exit_parent: 1893 path_put(&nd.path); 1894 filp = ERR_PTR(error); 1895 goto out; 1896 } 1897 1898 /** 1899 * filp_open - open file and return file pointer 1900 * 1901 * @filename: path to open 1902 * @flags: open flags as per the open(2) second argument 1903 * @mode: mode for the new file if O_CREAT is set, else ignored 1904 * 1905 * This is the helper to open a file from kernelspace if you really 1906 * have to. But in generally you should not do this, so please move 1907 * along, nothing to see here.. 1908 */ 1909 struct file *filp_open(const char *filename, int flags, int mode) 1910 { 1911 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1912 } 1913 EXPORT_SYMBOL(filp_open); 1914 1915 /** 1916 * lookup_create - lookup a dentry, creating it if it doesn't exist 1917 * @nd: nameidata info 1918 * @is_dir: directory flag 1919 * 1920 * Simple function to lookup and return a dentry and create it 1921 * if it doesn't exist. Is SMP-safe. 1922 * 1923 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1924 */ 1925 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1926 { 1927 struct dentry *dentry = ERR_PTR(-EEXIST); 1928 1929 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1930 /* 1931 * Yucky last component or no last component at all? 1932 * (foo/., foo/.., /////) 1933 */ 1934 if (nd->last_type != LAST_NORM) 1935 goto fail; 1936 nd->flags &= ~LOOKUP_PARENT; 1937 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1938 nd->intent.open.flags = O_EXCL; 1939 1940 /* 1941 * Do the final lookup. 1942 */ 1943 dentry = lookup_hash(nd); 1944 if (IS_ERR(dentry)) 1945 goto fail; 1946 1947 if (dentry->d_inode) 1948 goto eexist; 1949 /* 1950 * Special case - lookup gave negative, but... we had foo/bar/ 1951 * From the vfs_mknod() POV we just have a negative dentry - 1952 * all is fine. Let's be bastards - you had / on the end, you've 1953 * been asking for (non-existent) directory. -ENOENT for you. 1954 */ 1955 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1956 dput(dentry); 1957 dentry = ERR_PTR(-ENOENT); 1958 } 1959 return dentry; 1960 eexist: 1961 dput(dentry); 1962 dentry = ERR_PTR(-EEXIST); 1963 fail: 1964 return dentry; 1965 } 1966 EXPORT_SYMBOL_GPL(lookup_create); 1967 1968 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1969 { 1970 int error = may_create(dir, dentry); 1971 1972 if (error) 1973 return error; 1974 1975 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1976 return -EPERM; 1977 1978 if (!dir->i_op->mknod) 1979 return -EPERM; 1980 1981 error = devcgroup_inode_mknod(mode, dev); 1982 if (error) 1983 return error; 1984 1985 error = security_inode_mknod(dir, dentry, mode, dev); 1986 if (error) 1987 return error; 1988 1989 error = dir->i_op->mknod(dir, dentry, mode, dev); 1990 if (!error) 1991 fsnotify_create(dir, dentry); 1992 return error; 1993 } 1994 1995 static int may_mknod(mode_t mode) 1996 { 1997 switch (mode & S_IFMT) { 1998 case S_IFREG: 1999 case S_IFCHR: 2000 case S_IFBLK: 2001 case S_IFIFO: 2002 case S_IFSOCK: 2003 case 0: /* zero mode translates to S_IFREG */ 2004 return 0; 2005 case S_IFDIR: 2006 return -EPERM; 2007 default: 2008 return -EINVAL; 2009 } 2010 } 2011 2012 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2013 unsigned, dev) 2014 { 2015 int error; 2016 char *tmp; 2017 struct dentry *dentry; 2018 struct nameidata nd; 2019 2020 if (S_ISDIR(mode)) 2021 return -EPERM; 2022 2023 error = user_path_parent(dfd, filename, &nd, &tmp); 2024 if (error) 2025 return error; 2026 2027 dentry = lookup_create(&nd, 0); 2028 if (IS_ERR(dentry)) { 2029 error = PTR_ERR(dentry); 2030 goto out_unlock; 2031 } 2032 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2033 mode &= ~current_umask(); 2034 error = may_mknod(mode); 2035 if (error) 2036 goto out_dput; 2037 error = mnt_want_write(nd.path.mnt); 2038 if (error) 2039 goto out_dput; 2040 error = security_path_mknod(&nd.path, dentry, mode, dev); 2041 if (error) 2042 goto out_drop_write; 2043 switch (mode & S_IFMT) { 2044 case 0: case S_IFREG: 2045 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2046 break; 2047 case S_IFCHR: case S_IFBLK: 2048 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2049 new_decode_dev(dev)); 2050 break; 2051 case S_IFIFO: case S_IFSOCK: 2052 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2053 break; 2054 } 2055 out_drop_write: 2056 mnt_drop_write(nd.path.mnt); 2057 out_dput: 2058 dput(dentry); 2059 out_unlock: 2060 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2061 path_put(&nd.path); 2062 putname(tmp); 2063 2064 return error; 2065 } 2066 2067 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2068 { 2069 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2070 } 2071 2072 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2073 { 2074 int error = may_create(dir, dentry); 2075 2076 if (error) 2077 return error; 2078 2079 if (!dir->i_op->mkdir) 2080 return -EPERM; 2081 2082 mode &= (S_IRWXUGO|S_ISVTX); 2083 error = security_inode_mkdir(dir, dentry, mode); 2084 if (error) 2085 return error; 2086 2087 error = dir->i_op->mkdir(dir, dentry, mode); 2088 if (!error) 2089 fsnotify_mkdir(dir, dentry); 2090 return error; 2091 } 2092 2093 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2094 { 2095 int error = 0; 2096 char * tmp; 2097 struct dentry *dentry; 2098 struct nameidata nd; 2099 2100 error = user_path_parent(dfd, pathname, &nd, &tmp); 2101 if (error) 2102 goto out_err; 2103 2104 dentry = lookup_create(&nd, 1); 2105 error = PTR_ERR(dentry); 2106 if (IS_ERR(dentry)) 2107 goto out_unlock; 2108 2109 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2110 mode &= ~current_umask(); 2111 error = mnt_want_write(nd.path.mnt); 2112 if (error) 2113 goto out_dput; 2114 error = security_path_mkdir(&nd.path, dentry, mode); 2115 if (error) 2116 goto out_drop_write; 2117 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2118 out_drop_write: 2119 mnt_drop_write(nd.path.mnt); 2120 out_dput: 2121 dput(dentry); 2122 out_unlock: 2123 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2124 path_put(&nd.path); 2125 putname(tmp); 2126 out_err: 2127 return error; 2128 } 2129 2130 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2131 { 2132 return sys_mkdirat(AT_FDCWD, pathname, mode); 2133 } 2134 2135 /* 2136 * We try to drop the dentry early: we should have 2137 * a usage count of 2 if we're the only user of this 2138 * dentry, and if that is true (possibly after pruning 2139 * the dcache), then we drop the dentry now. 2140 * 2141 * A low-level filesystem can, if it choses, legally 2142 * do a 2143 * 2144 * if (!d_unhashed(dentry)) 2145 * return -EBUSY; 2146 * 2147 * if it cannot handle the case of removing a directory 2148 * that is still in use by something else.. 2149 */ 2150 void dentry_unhash(struct dentry *dentry) 2151 { 2152 dget(dentry); 2153 shrink_dcache_parent(dentry); 2154 spin_lock(&dcache_lock); 2155 spin_lock(&dentry->d_lock); 2156 if (atomic_read(&dentry->d_count) == 2) 2157 __d_drop(dentry); 2158 spin_unlock(&dentry->d_lock); 2159 spin_unlock(&dcache_lock); 2160 } 2161 2162 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2163 { 2164 int error = may_delete(dir, dentry, 1); 2165 2166 if (error) 2167 return error; 2168 2169 if (!dir->i_op->rmdir) 2170 return -EPERM; 2171 2172 mutex_lock(&dentry->d_inode->i_mutex); 2173 dentry_unhash(dentry); 2174 if (d_mountpoint(dentry)) 2175 error = -EBUSY; 2176 else { 2177 error = security_inode_rmdir(dir, dentry); 2178 if (!error) { 2179 error = dir->i_op->rmdir(dir, dentry); 2180 if (!error) { 2181 dentry->d_inode->i_flags |= S_DEAD; 2182 dont_mount(dentry); 2183 } 2184 } 2185 } 2186 mutex_unlock(&dentry->d_inode->i_mutex); 2187 if (!error) { 2188 d_delete(dentry); 2189 } 2190 dput(dentry); 2191 2192 return error; 2193 } 2194 2195 static long do_rmdir(int dfd, const char __user *pathname) 2196 { 2197 int error = 0; 2198 char * name; 2199 struct dentry *dentry; 2200 struct nameidata nd; 2201 2202 error = user_path_parent(dfd, pathname, &nd, &name); 2203 if (error) 2204 return error; 2205 2206 switch(nd.last_type) { 2207 case LAST_DOTDOT: 2208 error = -ENOTEMPTY; 2209 goto exit1; 2210 case LAST_DOT: 2211 error = -EINVAL; 2212 goto exit1; 2213 case LAST_ROOT: 2214 error = -EBUSY; 2215 goto exit1; 2216 } 2217 2218 nd.flags &= ~LOOKUP_PARENT; 2219 2220 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2221 dentry = lookup_hash(&nd); 2222 error = PTR_ERR(dentry); 2223 if (IS_ERR(dentry)) 2224 goto exit2; 2225 error = mnt_want_write(nd.path.mnt); 2226 if (error) 2227 goto exit3; 2228 error = security_path_rmdir(&nd.path, dentry); 2229 if (error) 2230 goto exit4; 2231 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2232 exit4: 2233 mnt_drop_write(nd.path.mnt); 2234 exit3: 2235 dput(dentry); 2236 exit2: 2237 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2238 exit1: 2239 path_put(&nd.path); 2240 putname(name); 2241 return error; 2242 } 2243 2244 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2245 { 2246 return do_rmdir(AT_FDCWD, pathname); 2247 } 2248 2249 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2250 { 2251 int error = may_delete(dir, dentry, 0); 2252 2253 if (error) 2254 return error; 2255 2256 if (!dir->i_op->unlink) 2257 return -EPERM; 2258 2259 mutex_lock(&dentry->d_inode->i_mutex); 2260 if (d_mountpoint(dentry)) 2261 error = -EBUSY; 2262 else { 2263 error = security_inode_unlink(dir, dentry); 2264 if (!error) { 2265 error = dir->i_op->unlink(dir, dentry); 2266 if (!error) 2267 dont_mount(dentry); 2268 } 2269 } 2270 mutex_unlock(&dentry->d_inode->i_mutex); 2271 2272 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2273 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2274 fsnotify_link_count(dentry->d_inode); 2275 d_delete(dentry); 2276 } 2277 2278 return error; 2279 } 2280 2281 /* 2282 * Make sure that the actual truncation of the file will occur outside its 2283 * directory's i_mutex. Truncate can take a long time if there is a lot of 2284 * writeout happening, and we don't want to prevent access to the directory 2285 * while waiting on the I/O. 2286 */ 2287 static long do_unlinkat(int dfd, const char __user *pathname) 2288 { 2289 int error; 2290 char *name; 2291 struct dentry *dentry; 2292 struct nameidata nd; 2293 struct inode *inode = NULL; 2294 2295 error = user_path_parent(dfd, pathname, &nd, &name); 2296 if (error) 2297 return error; 2298 2299 error = -EISDIR; 2300 if (nd.last_type != LAST_NORM) 2301 goto exit1; 2302 2303 nd.flags &= ~LOOKUP_PARENT; 2304 2305 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2306 dentry = lookup_hash(&nd); 2307 error = PTR_ERR(dentry); 2308 if (!IS_ERR(dentry)) { 2309 /* Why not before? Because we want correct error value */ 2310 if (nd.last.name[nd.last.len]) 2311 goto slashes; 2312 inode = dentry->d_inode; 2313 if (inode) 2314 atomic_inc(&inode->i_count); 2315 error = mnt_want_write(nd.path.mnt); 2316 if (error) 2317 goto exit2; 2318 error = security_path_unlink(&nd.path, dentry); 2319 if (error) 2320 goto exit3; 2321 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2322 exit3: 2323 mnt_drop_write(nd.path.mnt); 2324 exit2: 2325 dput(dentry); 2326 } 2327 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2328 if (inode) 2329 iput(inode); /* truncate the inode here */ 2330 exit1: 2331 path_put(&nd.path); 2332 putname(name); 2333 return error; 2334 2335 slashes: 2336 error = !dentry->d_inode ? -ENOENT : 2337 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2338 goto exit2; 2339 } 2340 2341 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2342 { 2343 if ((flag & ~AT_REMOVEDIR) != 0) 2344 return -EINVAL; 2345 2346 if (flag & AT_REMOVEDIR) 2347 return do_rmdir(dfd, pathname); 2348 2349 return do_unlinkat(dfd, pathname); 2350 } 2351 2352 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2353 { 2354 return do_unlinkat(AT_FDCWD, pathname); 2355 } 2356 2357 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2358 { 2359 int error = may_create(dir, dentry); 2360 2361 if (error) 2362 return error; 2363 2364 if (!dir->i_op->symlink) 2365 return -EPERM; 2366 2367 error = security_inode_symlink(dir, dentry, oldname); 2368 if (error) 2369 return error; 2370 2371 error = dir->i_op->symlink(dir, dentry, oldname); 2372 if (!error) 2373 fsnotify_create(dir, dentry); 2374 return error; 2375 } 2376 2377 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2378 int, newdfd, const char __user *, newname) 2379 { 2380 int error; 2381 char *from; 2382 char *to; 2383 struct dentry *dentry; 2384 struct nameidata nd; 2385 2386 from = getname(oldname); 2387 if (IS_ERR(from)) 2388 return PTR_ERR(from); 2389 2390 error = user_path_parent(newdfd, newname, &nd, &to); 2391 if (error) 2392 goto out_putname; 2393 2394 dentry = lookup_create(&nd, 0); 2395 error = PTR_ERR(dentry); 2396 if (IS_ERR(dentry)) 2397 goto out_unlock; 2398 2399 error = mnt_want_write(nd.path.mnt); 2400 if (error) 2401 goto out_dput; 2402 error = security_path_symlink(&nd.path, dentry, from); 2403 if (error) 2404 goto out_drop_write; 2405 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2406 out_drop_write: 2407 mnt_drop_write(nd.path.mnt); 2408 out_dput: 2409 dput(dentry); 2410 out_unlock: 2411 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2412 path_put(&nd.path); 2413 putname(to); 2414 out_putname: 2415 putname(from); 2416 return error; 2417 } 2418 2419 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2420 { 2421 return sys_symlinkat(oldname, AT_FDCWD, newname); 2422 } 2423 2424 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2425 { 2426 struct inode *inode = old_dentry->d_inode; 2427 int error; 2428 2429 if (!inode) 2430 return -ENOENT; 2431 2432 error = may_create(dir, new_dentry); 2433 if (error) 2434 return error; 2435 2436 if (dir->i_sb != inode->i_sb) 2437 return -EXDEV; 2438 2439 /* 2440 * A link to an append-only or immutable file cannot be created. 2441 */ 2442 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2443 return -EPERM; 2444 if (!dir->i_op->link) 2445 return -EPERM; 2446 if (S_ISDIR(inode->i_mode)) 2447 return -EPERM; 2448 2449 error = security_inode_link(old_dentry, dir, new_dentry); 2450 if (error) 2451 return error; 2452 2453 mutex_lock(&inode->i_mutex); 2454 error = dir->i_op->link(old_dentry, dir, new_dentry); 2455 mutex_unlock(&inode->i_mutex); 2456 if (!error) 2457 fsnotify_link(dir, inode, new_dentry); 2458 return error; 2459 } 2460 2461 /* 2462 * Hardlinks are often used in delicate situations. We avoid 2463 * security-related surprises by not following symlinks on the 2464 * newname. --KAB 2465 * 2466 * We don't follow them on the oldname either to be compatible 2467 * with linux 2.0, and to avoid hard-linking to directories 2468 * and other special files. --ADM 2469 */ 2470 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2471 int, newdfd, const char __user *, newname, int, flags) 2472 { 2473 struct dentry *new_dentry; 2474 struct nameidata nd; 2475 struct path old_path; 2476 int error; 2477 char *to; 2478 2479 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2480 return -EINVAL; 2481 2482 error = user_path_at(olddfd, oldname, 2483 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2484 &old_path); 2485 if (error) 2486 return error; 2487 2488 error = user_path_parent(newdfd, newname, &nd, &to); 2489 if (error) 2490 goto out; 2491 error = -EXDEV; 2492 if (old_path.mnt != nd.path.mnt) 2493 goto out_release; 2494 new_dentry = lookup_create(&nd, 0); 2495 error = PTR_ERR(new_dentry); 2496 if (IS_ERR(new_dentry)) 2497 goto out_unlock; 2498 error = mnt_want_write(nd.path.mnt); 2499 if (error) 2500 goto out_dput; 2501 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2502 if (error) 2503 goto out_drop_write; 2504 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2505 out_drop_write: 2506 mnt_drop_write(nd.path.mnt); 2507 out_dput: 2508 dput(new_dentry); 2509 out_unlock: 2510 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2511 out_release: 2512 path_put(&nd.path); 2513 putname(to); 2514 out: 2515 path_put(&old_path); 2516 2517 return error; 2518 } 2519 2520 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2521 { 2522 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2523 } 2524 2525 /* 2526 * The worst of all namespace operations - renaming directory. "Perverted" 2527 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2528 * Problems: 2529 * a) we can get into loop creation. Check is done in is_subdir(). 2530 * b) race potential - two innocent renames can create a loop together. 2531 * That's where 4.4 screws up. Current fix: serialization on 2532 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2533 * story. 2534 * c) we have to lock _three_ objects - parents and victim (if it exists). 2535 * And that - after we got ->i_mutex on parents (until then we don't know 2536 * whether the target exists). Solution: try to be smart with locking 2537 * order for inodes. We rely on the fact that tree topology may change 2538 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2539 * move will be locked. Thus we can rank directories by the tree 2540 * (ancestors first) and rank all non-directories after them. 2541 * That works since everybody except rename does "lock parent, lookup, 2542 * lock child" and rename is under ->s_vfs_rename_mutex. 2543 * HOWEVER, it relies on the assumption that any object with ->lookup() 2544 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2545 * we'd better make sure that there's no link(2) for them. 2546 * d) some filesystems don't support opened-but-unlinked directories, 2547 * either because of layout or because they are not ready to deal with 2548 * all cases correctly. The latter will be fixed (taking this sort of 2549 * stuff into VFS), but the former is not going away. Solution: the same 2550 * trick as in rmdir(). 2551 * e) conversion from fhandle to dentry may come in the wrong moment - when 2552 * we are removing the target. Solution: we will have to grab ->i_mutex 2553 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2554 * ->i_mutex on parents, which works but leads to some truly excessive 2555 * locking]. 2556 */ 2557 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2558 struct inode *new_dir, struct dentry *new_dentry) 2559 { 2560 int error = 0; 2561 struct inode *target; 2562 2563 /* 2564 * If we are going to change the parent - check write permissions, 2565 * we'll need to flip '..'. 2566 */ 2567 if (new_dir != old_dir) { 2568 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2569 if (error) 2570 return error; 2571 } 2572 2573 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2574 if (error) 2575 return error; 2576 2577 target = new_dentry->d_inode; 2578 if (target) 2579 mutex_lock(&target->i_mutex); 2580 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2581 error = -EBUSY; 2582 else { 2583 if (target) 2584 dentry_unhash(new_dentry); 2585 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2586 } 2587 if (target) { 2588 if (!error) { 2589 target->i_flags |= S_DEAD; 2590 dont_mount(new_dentry); 2591 } 2592 mutex_unlock(&target->i_mutex); 2593 if (d_unhashed(new_dentry)) 2594 d_rehash(new_dentry); 2595 dput(new_dentry); 2596 } 2597 if (!error) 2598 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2599 d_move(old_dentry,new_dentry); 2600 return error; 2601 } 2602 2603 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2604 struct inode *new_dir, struct dentry *new_dentry) 2605 { 2606 struct inode *target; 2607 int error; 2608 2609 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2610 if (error) 2611 return error; 2612 2613 dget(new_dentry); 2614 target = new_dentry->d_inode; 2615 if (target) 2616 mutex_lock(&target->i_mutex); 2617 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2618 error = -EBUSY; 2619 else 2620 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2621 if (!error) { 2622 if (target) 2623 dont_mount(new_dentry); 2624 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2625 d_move(old_dentry, new_dentry); 2626 } 2627 if (target) 2628 mutex_unlock(&target->i_mutex); 2629 dput(new_dentry); 2630 return error; 2631 } 2632 2633 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2634 struct inode *new_dir, struct dentry *new_dentry) 2635 { 2636 int error; 2637 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2638 const char *old_name; 2639 2640 if (old_dentry->d_inode == new_dentry->d_inode) 2641 return 0; 2642 2643 error = may_delete(old_dir, old_dentry, is_dir); 2644 if (error) 2645 return error; 2646 2647 if (!new_dentry->d_inode) 2648 error = may_create(new_dir, new_dentry); 2649 else 2650 error = may_delete(new_dir, new_dentry, is_dir); 2651 if (error) 2652 return error; 2653 2654 if (!old_dir->i_op->rename) 2655 return -EPERM; 2656 2657 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2658 2659 if (is_dir) 2660 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2661 else 2662 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2663 if (!error) 2664 fsnotify_move(old_dir, new_dir, old_name, is_dir, 2665 new_dentry->d_inode, old_dentry); 2666 fsnotify_oldname_free(old_name); 2667 2668 return error; 2669 } 2670 2671 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2672 int, newdfd, const char __user *, newname) 2673 { 2674 struct dentry *old_dir, *new_dir; 2675 struct dentry *old_dentry, *new_dentry; 2676 struct dentry *trap; 2677 struct nameidata oldnd, newnd; 2678 char *from; 2679 char *to; 2680 int error; 2681 2682 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2683 if (error) 2684 goto exit; 2685 2686 error = user_path_parent(newdfd, newname, &newnd, &to); 2687 if (error) 2688 goto exit1; 2689 2690 error = -EXDEV; 2691 if (oldnd.path.mnt != newnd.path.mnt) 2692 goto exit2; 2693 2694 old_dir = oldnd.path.dentry; 2695 error = -EBUSY; 2696 if (oldnd.last_type != LAST_NORM) 2697 goto exit2; 2698 2699 new_dir = newnd.path.dentry; 2700 if (newnd.last_type != LAST_NORM) 2701 goto exit2; 2702 2703 oldnd.flags &= ~LOOKUP_PARENT; 2704 newnd.flags &= ~LOOKUP_PARENT; 2705 newnd.flags |= LOOKUP_RENAME_TARGET; 2706 2707 trap = lock_rename(new_dir, old_dir); 2708 2709 old_dentry = lookup_hash(&oldnd); 2710 error = PTR_ERR(old_dentry); 2711 if (IS_ERR(old_dentry)) 2712 goto exit3; 2713 /* source must exist */ 2714 error = -ENOENT; 2715 if (!old_dentry->d_inode) 2716 goto exit4; 2717 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2718 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2719 error = -ENOTDIR; 2720 if (oldnd.last.name[oldnd.last.len]) 2721 goto exit4; 2722 if (newnd.last.name[newnd.last.len]) 2723 goto exit4; 2724 } 2725 /* source should not be ancestor of target */ 2726 error = -EINVAL; 2727 if (old_dentry == trap) 2728 goto exit4; 2729 new_dentry = lookup_hash(&newnd); 2730 error = PTR_ERR(new_dentry); 2731 if (IS_ERR(new_dentry)) 2732 goto exit4; 2733 /* target should not be an ancestor of source */ 2734 error = -ENOTEMPTY; 2735 if (new_dentry == trap) 2736 goto exit5; 2737 2738 error = mnt_want_write(oldnd.path.mnt); 2739 if (error) 2740 goto exit5; 2741 error = security_path_rename(&oldnd.path, old_dentry, 2742 &newnd.path, new_dentry); 2743 if (error) 2744 goto exit6; 2745 error = vfs_rename(old_dir->d_inode, old_dentry, 2746 new_dir->d_inode, new_dentry); 2747 exit6: 2748 mnt_drop_write(oldnd.path.mnt); 2749 exit5: 2750 dput(new_dentry); 2751 exit4: 2752 dput(old_dentry); 2753 exit3: 2754 unlock_rename(new_dir, old_dir); 2755 exit2: 2756 path_put(&newnd.path); 2757 putname(to); 2758 exit1: 2759 path_put(&oldnd.path); 2760 putname(from); 2761 exit: 2762 return error; 2763 } 2764 2765 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2766 { 2767 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2768 } 2769 2770 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2771 { 2772 int len; 2773 2774 len = PTR_ERR(link); 2775 if (IS_ERR(link)) 2776 goto out; 2777 2778 len = strlen(link); 2779 if (len > (unsigned) buflen) 2780 len = buflen; 2781 if (copy_to_user(buffer, link, len)) 2782 len = -EFAULT; 2783 out: 2784 return len; 2785 } 2786 2787 /* 2788 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2789 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2790 * using) it for any given inode is up to filesystem. 2791 */ 2792 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2793 { 2794 struct nameidata nd; 2795 void *cookie; 2796 int res; 2797 2798 nd.depth = 0; 2799 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2800 if (IS_ERR(cookie)) 2801 return PTR_ERR(cookie); 2802 2803 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2804 if (dentry->d_inode->i_op->put_link) 2805 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2806 return res; 2807 } 2808 2809 int vfs_follow_link(struct nameidata *nd, const char *link) 2810 { 2811 return __vfs_follow_link(nd, link); 2812 } 2813 2814 /* get the link contents into pagecache */ 2815 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2816 { 2817 char *kaddr; 2818 struct page *page; 2819 struct address_space *mapping = dentry->d_inode->i_mapping; 2820 page = read_mapping_page(mapping, 0, NULL); 2821 if (IS_ERR(page)) 2822 return (char*)page; 2823 *ppage = page; 2824 kaddr = kmap(page); 2825 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2826 return kaddr; 2827 } 2828 2829 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2830 { 2831 struct page *page = NULL; 2832 char *s = page_getlink(dentry, &page); 2833 int res = vfs_readlink(dentry,buffer,buflen,s); 2834 if (page) { 2835 kunmap(page); 2836 page_cache_release(page); 2837 } 2838 return res; 2839 } 2840 2841 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2842 { 2843 struct page *page = NULL; 2844 nd_set_link(nd, page_getlink(dentry, &page)); 2845 return page; 2846 } 2847 2848 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2849 { 2850 struct page *page = cookie; 2851 2852 if (page) { 2853 kunmap(page); 2854 page_cache_release(page); 2855 } 2856 } 2857 2858 /* 2859 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2860 */ 2861 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2862 { 2863 struct address_space *mapping = inode->i_mapping; 2864 struct page *page; 2865 void *fsdata; 2866 int err; 2867 char *kaddr; 2868 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2869 if (nofs) 2870 flags |= AOP_FLAG_NOFS; 2871 2872 retry: 2873 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2874 flags, &page, &fsdata); 2875 if (err) 2876 goto fail; 2877 2878 kaddr = kmap_atomic(page, KM_USER0); 2879 memcpy(kaddr, symname, len-1); 2880 kunmap_atomic(kaddr, KM_USER0); 2881 2882 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2883 page, fsdata); 2884 if (err < 0) 2885 goto fail; 2886 if (err < len-1) 2887 goto retry; 2888 2889 mark_inode_dirty(inode); 2890 return 0; 2891 fail: 2892 return err; 2893 } 2894 2895 int page_symlink(struct inode *inode, const char *symname, int len) 2896 { 2897 return __page_symlink(inode, symname, len, 2898 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2899 } 2900 2901 const struct inode_operations page_symlink_inode_operations = { 2902 .readlink = generic_readlink, 2903 .follow_link = page_follow_link_light, 2904 .put_link = page_put_link, 2905 }; 2906 2907 EXPORT_SYMBOL(user_path_at); 2908 EXPORT_SYMBOL(follow_down); 2909 EXPORT_SYMBOL(follow_up); 2910 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2911 EXPORT_SYMBOL(getname); 2912 EXPORT_SYMBOL(lock_rename); 2913 EXPORT_SYMBOL(lookup_one_len); 2914 EXPORT_SYMBOL(page_follow_link_light); 2915 EXPORT_SYMBOL(page_put_link); 2916 EXPORT_SYMBOL(page_readlink); 2917 EXPORT_SYMBOL(__page_symlink); 2918 EXPORT_SYMBOL(page_symlink); 2919 EXPORT_SYMBOL(page_symlink_inode_operations); 2920 EXPORT_SYMBOL(path_lookup); 2921 EXPORT_SYMBOL(kern_path); 2922 EXPORT_SYMBOL(vfs_path_lookup); 2923 EXPORT_SYMBOL(inode_permission); 2924 EXPORT_SYMBOL(file_permission); 2925 EXPORT_SYMBOL(unlock_rename); 2926 EXPORT_SYMBOL(vfs_create); 2927 EXPORT_SYMBOL(vfs_follow_link); 2928 EXPORT_SYMBOL(vfs_link); 2929 EXPORT_SYMBOL(vfs_mkdir); 2930 EXPORT_SYMBOL(vfs_mknod); 2931 EXPORT_SYMBOL(generic_permission); 2932 EXPORT_SYMBOL(vfs_readlink); 2933 EXPORT_SYMBOL(vfs_rename); 2934 EXPORT_SYMBOL(vfs_rmdir); 2935 EXPORT_SYMBOL(vfs_symlink); 2936 EXPORT_SYMBOL(vfs_unlink); 2937 EXPORT_SYMBOL(dentry_unhash); 2938 EXPORT_SYMBOL(generic_readlink); 2939