xref: /linux/fs/namei.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask,
173 		int (*check_acl)(struct inode *inode, int mask))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission  -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  *
206  * Used to check for read/write/execute permissions on a file.
207  * We use "fsuid" for this, letting us set arbitrary permissions
208  * for filesystem access without changing the "normal" uids which
209  * are used for other things..
210  */
211 int generic_permission(struct inode *inode, int mask,
212 		int (*check_acl)(struct inode *inode, int mask))
213 {
214 	int ret;
215 
216 	/*
217 	 * Do the basic POSIX ACL permission checks.
218 	 */
219 	ret = acl_permission_check(inode, mask, check_acl);
220 	if (ret != -EACCES)
221 		return ret;
222 
223 	/*
224 	 * Read/write DACs are always overridable.
225 	 * Executable DACs are overridable if at least one exec bit is set.
226 	 */
227 	if (!(mask & MAY_EXEC) || execute_ok(inode))
228 		if (capable(CAP_DAC_OVERRIDE))
229 			return 0;
230 
231 	/*
232 	 * Searching includes executable on directories, else just read.
233 	 */
234 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 		if (capable(CAP_DAC_READ_SEARCH))
237 			return 0;
238 
239 	return -EACCES;
240 }
241 
242 /**
243  * inode_permission  -  check for access rights to a given inode
244  * @inode:	inode to check permission on
245  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246  *
247  * Used to check for read/write/execute permissions on an inode.
248  * We use "fsuid" for this, letting us set arbitrary permissions
249  * for filesystem access without changing the "normal" uids which
250  * are used for other things.
251  */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 	int retval;
255 
256 	if (mask & MAY_WRITE) {
257 		umode_t mode = inode->i_mode;
258 
259 		/*
260 		 * Nobody gets write access to a read-only fs.
261 		 */
262 		if (IS_RDONLY(inode) &&
263 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 			return -EROFS;
265 
266 		/*
267 		 * Nobody gets write access to an immutable file.
268 		 */
269 		if (IS_IMMUTABLE(inode))
270 			return -EACCES;
271 	}
272 
273 	if (inode->i_op->permission)
274 		retval = inode->i_op->permission(inode, mask);
275 	else
276 		retval = generic_permission(inode, mask, inode->i_op->check_acl);
277 
278 	if (retval)
279 		return retval;
280 
281 	retval = devcgroup_inode_permission(inode, mask);
282 	if (retval)
283 		return retval;
284 
285 	return security_inode_permission(inode,
286 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
287 }
288 
289 /**
290  * file_permission  -  check for additional access rights to a given file
291  * @file:	file to check access rights for
292  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
293  *
294  * Used to check for read/write/execute permissions on an already opened
295  * file.
296  *
297  * Note:
298  *	Do not use this function in new code.  All access checks should
299  *	be done using inode_permission().
300  */
301 int file_permission(struct file *file, int mask)
302 {
303 	return inode_permission(file->f_path.dentry->d_inode, mask);
304 }
305 
306 /*
307  * get_write_access() gets write permission for a file.
308  * put_write_access() releases this write permission.
309  * This is used for regular files.
310  * We cannot support write (and maybe mmap read-write shared) accesses and
311  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
312  * can have the following values:
313  * 0: no writers, no VM_DENYWRITE mappings
314  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
315  * > 0: (i_writecount) users are writing to the file.
316  *
317  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
318  * except for the cases where we don't hold i_writecount yet. Then we need to
319  * use {get,deny}_write_access() - these functions check the sign and refuse
320  * to do the change if sign is wrong. Exclusion between them is provided by
321  * the inode->i_lock spinlock.
322  */
323 
324 int get_write_access(struct inode * inode)
325 {
326 	spin_lock(&inode->i_lock);
327 	if (atomic_read(&inode->i_writecount) < 0) {
328 		spin_unlock(&inode->i_lock);
329 		return -ETXTBSY;
330 	}
331 	atomic_inc(&inode->i_writecount);
332 	spin_unlock(&inode->i_lock);
333 
334 	return 0;
335 }
336 
337 int deny_write_access(struct file * file)
338 {
339 	struct inode *inode = file->f_path.dentry->d_inode;
340 
341 	spin_lock(&inode->i_lock);
342 	if (atomic_read(&inode->i_writecount) > 0) {
343 		spin_unlock(&inode->i_lock);
344 		return -ETXTBSY;
345 	}
346 	atomic_dec(&inode->i_writecount);
347 	spin_unlock(&inode->i_lock);
348 
349 	return 0;
350 }
351 
352 /**
353  * path_get - get a reference to a path
354  * @path: path to get the reference to
355  *
356  * Given a path increment the reference count to the dentry and the vfsmount.
357  */
358 void path_get(struct path *path)
359 {
360 	mntget(path->mnt);
361 	dget(path->dentry);
362 }
363 EXPORT_SYMBOL(path_get);
364 
365 /**
366  * path_put - put a reference to a path
367  * @path: path to put the reference to
368  *
369  * Given a path decrement the reference count to the dentry and the vfsmount.
370  */
371 void path_put(struct path *path)
372 {
373 	dput(path->dentry);
374 	mntput(path->mnt);
375 }
376 EXPORT_SYMBOL(path_put);
377 
378 /**
379  * release_open_intent - free up open intent resources
380  * @nd: pointer to nameidata
381  */
382 void release_open_intent(struct nameidata *nd)
383 {
384 	if (nd->intent.open.file->f_path.dentry == NULL)
385 		put_filp(nd->intent.open.file);
386 	else
387 		fput(nd->intent.open.file);
388 }
389 
390 static inline struct dentry *
391 do_revalidate(struct dentry *dentry, struct nameidata *nd)
392 {
393 	int status = dentry->d_op->d_revalidate(dentry, nd);
394 	if (unlikely(status <= 0)) {
395 		/*
396 		 * The dentry failed validation.
397 		 * If d_revalidate returned 0 attempt to invalidate
398 		 * the dentry otherwise d_revalidate is asking us
399 		 * to return a fail status.
400 		 */
401 		if (!status) {
402 			if (!d_invalidate(dentry)) {
403 				dput(dentry);
404 				dentry = NULL;
405 			}
406 		} else {
407 			dput(dentry);
408 			dentry = ERR_PTR(status);
409 		}
410 	}
411 	return dentry;
412 }
413 
414 /*
415  * force_reval_path - force revalidation of a dentry
416  *
417  * In some situations the path walking code will trust dentries without
418  * revalidating them. This causes problems for filesystems that depend on
419  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
420  * (which indicates that it's possible for the dentry to go stale), force
421  * a d_revalidate call before proceeding.
422  *
423  * Returns 0 if the revalidation was successful. If the revalidation fails,
424  * either return the error returned by d_revalidate or -ESTALE if the
425  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
426  * invalidate the dentry. It's up to the caller to handle putting references
427  * to the path if necessary.
428  */
429 static int
430 force_reval_path(struct path *path, struct nameidata *nd)
431 {
432 	int status;
433 	struct dentry *dentry = path->dentry;
434 
435 	/*
436 	 * only check on filesystems where it's possible for the dentry to
437 	 * become stale. It's assumed that if this flag is set then the
438 	 * d_revalidate op will also be defined.
439 	 */
440 	if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
441 		return 0;
442 
443 	status = dentry->d_op->d_revalidate(dentry, nd);
444 	if (status > 0)
445 		return 0;
446 
447 	if (!status) {
448 		d_invalidate(dentry);
449 		status = -ESTALE;
450 	}
451 	return status;
452 }
453 
454 /*
455  * Short-cut version of permission(), for calling on directories
456  * during pathname resolution.  Combines parts of permission()
457  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
458  *
459  * If appropriate, check DAC only.  If not appropriate, or
460  * short-cut DAC fails, then call ->permission() to do more
461  * complete permission check.
462  */
463 static int exec_permission(struct inode *inode)
464 {
465 	int ret;
466 
467 	if (inode->i_op->permission) {
468 		ret = inode->i_op->permission(inode, MAY_EXEC);
469 		if (!ret)
470 			goto ok;
471 		return ret;
472 	}
473 	ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
474 	if (!ret)
475 		goto ok;
476 
477 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
478 		goto ok;
479 
480 	return ret;
481 ok:
482 	return security_inode_permission(inode, MAY_EXEC);
483 }
484 
485 static __always_inline void set_root(struct nameidata *nd)
486 {
487 	if (!nd->root.mnt) {
488 		struct fs_struct *fs = current->fs;
489 		read_lock(&fs->lock);
490 		nd->root = fs->root;
491 		path_get(&nd->root);
492 		read_unlock(&fs->lock);
493 	}
494 }
495 
496 static int link_path_walk(const char *, struct nameidata *);
497 
498 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
499 {
500 	if (IS_ERR(link))
501 		goto fail;
502 
503 	if (*link == '/') {
504 		set_root(nd);
505 		path_put(&nd->path);
506 		nd->path = nd->root;
507 		path_get(&nd->root);
508 	}
509 
510 	return link_path_walk(link, nd);
511 fail:
512 	path_put(&nd->path);
513 	return PTR_ERR(link);
514 }
515 
516 static void path_put_conditional(struct path *path, struct nameidata *nd)
517 {
518 	dput(path->dentry);
519 	if (path->mnt != nd->path.mnt)
520 		mntput(path->mnt);
521 }
522 
523 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
524 {
525 	dput(nd->path.dentry);
526 	if (nd->path.mnt != path->mnt) {
527 		mntput(nd->path.mnt);
528 		nd->path.mnt = path->mnt;
529 	}
530 	nd->path.dentry = path->dentry;
531 }
532 
533 static __always_inline int
534 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
535 {
536 	int error;
537 	struct dentry *dentry = path->dentry;
538 
539 	touch_atime(path->mnt, dentry);
540 	nd_set_link(nd, NULL);
541 
542 	if (path->mnt != nd->path.mnt) {
543 		path_to_nameidata(path, nd);
544 		dget(dentry);
545 	}
546 	mntget(path->mnt);
547 	nd->last_type = LAST_BIND;
548 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
549 	error = PTR_ERR(*p);
550 	if (!IS_ERR(*p)) {
551 		char *s = nd_get_link(nd);
552 		error = 0;
553 		if (s)
554 			error = __vfs_follow_link(nd, s);
555 		else if (nd->last_type == LAST_BIND) {
556 			error = force_reval_path(&nd->path, nd);
557 			if (error)
558 				path_put(&nd->path);
559 		}
560 	}
561 	return error;
562 }
563 
564 /*
565  * This limits recursive symlink follows to 8, while
566  * limiting consecutive symlinks to 40.
567  *
568  * Without that kind of total limit, nasty chains of consecutive
569  * symlinks can cause almost arbitrarily long lookups.
570  */
571 static inline int do_follow_link(struct path *path, struct nameidata *nd)
572 {
573 	void *cookie;
574 	int err = -ELOOP;
575 	if (current->link_count >= MAX_NESTED_LINKS)
576 		goto loop;
577 	if (current->total_link_count >= 40)
578 		goto loop;
579 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
580 	cond_resched();
581 	err = security_inode_follow_link(path->dentry, nd);
582 	if (err)
583 		goto loop;
584 	current->link_count++;
585 	current->total_link_count++;
586 	nd->depth++;
587 	err = __do_follow_link(path, nd, &cookie);
588 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
589 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
590 	path_put(path);
591 	current->link_count--;
592 	nd->depth--;
593 	return err;
594 loop:
595 	path_put_conditional(path, nd);
596 	path_put(&nd->path);
597 	return err;
598 }
599 
600 int follow_up(struct path *path)
601 {
602 	struct vfsmount *parent;
603 	struct dentry *mountpoint;
604 	spin_lock(&vfsmount_lock);
605 	parent = path->mnt->mnt_parent;
606 	if (parent == path->mnt) {
607 		spin_unlock(&vfsmount_lock);
608 		return 0;
609 	}
610 	mntget(parent);
611 	mountpoint = dget(path->mnt->mnt_mountpoint);
612 	spin_unlock(&vfsmount_lock);
613 	dput(path->dentry);
614 	path->dentry = mountpoint;
615 	mntput(path->mnt);
616 	path->mnt = parent;
617 	return 1;
618 }
619 
620 /* no need for dcache_lock, as serialization is taken care in
621  * namespace.c
622  */
623 static int __follow_mount(struct path *path)
624 {
625 	int res = 0;
626 	while (d_mountpoint(path->dentry)) {
627 		struct vfsmount *mounted = lookup_mnt(path);
628 		if (!mounted)
629 			break;
630 		dput(path->dentry);
631 		if (res)
632 			mntput(path->mnt);
633 		path->mnt = mounted;
634 		path->dentry = dget(mounted->mnt_root);
635 		res = 1;
636 	}
637 	return res;
638 }
639 
640 static void follow_mount(struct path *path)
641 {
642 	while (d_mountpoint(path->dentry)) {
643 		struct vfsmount *mounted = lookup_mnt(path);
644 		if (!mounted)
645 			break;
646 		dput(path->dentry);
647 		mntput(path->mnt);
648 		path->mnt = mounted;
649 		path->dentry = dget(mounted->mnt_root);
650 	}
651 }
652 
653 /* no need for dcache_lock, as serialization is taken care in
654  * namespace.c
655  */
656 int follow_down(struct path *path)
657 {
658 	struct vfsmount *mounted;
659 
660 	mounted = lookup_mnt(path);
661 	if (mounted) {
662 		dput(path->dentry);
663 		mntput(path->mnt);
664 		path->mnt = mounted;
665 		path->dentry = dget(mounted->mnt_root);
666 		return 1;
667 	}
668 	return 0;
669 }
670 
671 static __always_inline void follow_dotdot(struct nameidata *nd)
672 {
673 	set_root(nd);
674 
675 	while(1) {
676 		struct dentry *old = nd->path.dentry;
677 
678 		if (nd->path.dentry == nd->root.dentry &&
679 		    nd->path.mnt == nd->root.mnt) {
680 			break;
681 		}
682 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
683 			/* rare case of legitimate dget_parent()... */
684 			nd->path.dentry = dget_parent(nd->path.dentry);
685 			dput(old);
686 			break;
687 		}
688 		if (!follow_up(&nd->path))
689 			break;
690 	}
691 	follow_mount(&nd->path);
692 }
693 
694 /*
695  *  It's more convoluted than I'd like it to be, but... it's still fairly
696  *  small and for now I'd prefer to have fast path as straight as possible.
697  *  It _is_ time-critical.
698  */
699 static int do_lookup(struct nameidata *nd, struct qstr *name,
700 		     struct path *path)
701 {
702 	struct vfsmount *mnt = nd->path.mnt;
703 	struct dentry *dentry, *parent;
704 	struct inode *dir;
705 	/*
706 	 * See if the low-level filesystem might want
707 	 * to use its own hash..
708 	 */
709 	if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
710 		int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
711 		if (err < 0)
712 			return err;
713 	}
714 
715 	dentry = __d_lookup(nd->path.dentry, name);
716 	if (!dentry)
717 		goto need_lookup;
718 	if (dentry->d_op && dentry->d_op->d_revalidate)
719 		goto need_revalidate;
720 done:
721 	path->mnt = mnt;
722 	path->dentry = dentry;
723 	__follow_mount(path);
724 	return 0;
725 
726 need_lookup:
727 	parent = nd->path.dentry;
728 	dir = parent->d_inode;
729 
730 	mutex_lock(&dir->i_mutex);
731 	/*
732 	 * First re-do the cached lookup just in case it was created
733 	 * while we waited for the directory semaphore..
734 	 *
735 	 * FIXME! This could use version numbering or similar to
736 	 * avoid unnecessary cache lookups.
737 	 *
738 	 * The "dcache_lock" is purely to protect the RCU list walker
739 	 * from concurrent renames at this point (we mustn't get false
740 	 * negatives from the RCU list walk here, unlike the optimistic
741 	 * fast walk).
742 	 *
743 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
744 	 */
745 	dentry = d_lookup(parent, name);
746 	if (!dentry) {
747 		struct dentry *new;
748 
749 		/* Don't create child dentry for a dead directory. */
750 		dentry = ERR_PTR(-ENOENT);
751 		if (IS_DEADDIR(dir))
752 			goto out_unlock;
753 
754 		new = d_alloc(parent, name);
755 		dentry = ERR_PTR(-ENOMEM);
756 		if (new) {
757 			dentry = dir->i_op->lookup(dir, new, nd);
758 			if (dentry)
759 				dput(new);
760 			else
761 				dentry = new;
762 		}
763 out_unlock:
764 		mutex_unlock(&dir->i_mutex);
765 		if (IS_ERR(dentry))
766 			goto fail;
767 		goto done;
768 	}
769 
770 	/*
771 	 * Uhhuh! Nasty case: the cache was re-populated while
772 	 * we waited on the semaphore. Need to revalidate.
773 	 */
774 	mutex_unlock(&dir->i_mutex);
775 	if (dentry->d_op && dentry->d_op->d_revalidate) {
776 		dentry = do_revalidate(dentry, nd);
777 		if (!dentry)
778 			dentry = ERR_PTR(-ENOENT);
779 	}
780 	if (IS_ERR(dentry))
781 		goto fail;
782 	goto done;
783 
784 need_revalidate:
785 	dentry = do_revalidate(dentry, nd);
786 	if (!dentry)
787 		goto need_lookup;
788 	if (IS_ERR(dentry))
789 		goto fail;
790 	goto done;
791 
792 fail:
793 	return PTR_ERR(dentry);
794 }
795 
796 /*
797  * This is a temporary kludge to deal with "automount" symlinks; proper
798  * solution is to trigger them on follow_mount(), so that do_lookup()
799  * would DTRT.  To be killed before 2.6.34-final.
800  */
801 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
802 {
803 	return inode && unlikely(inode->i_op->follow_link) &&
804 		((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
805 }
806 
807 /*
808  * Name resolution.
809  * This is the basic name resolution function, turning a pathname into
810  * the final dentry. We expect 'base' to be positive and a directory.
811  *
812  * Returns 0 and nd will have valid dentry and mnt on success.
813  * Returns error and drops reference to input namei data on failure.
814  */
815 static int link_path_walk(const char *name, struct nameidata *nd)
816 {
817 	struct path next;
818 	struct inode *inode;
819 	int err;
820 	unsigned int lookup_flags = nd->flags;
821 
822 	while (*name=='/')
823 		name++;
824 	if (!*name)
825 		goto return_reval;
826 
827 	inode = nd->path.dentry->d_inode;
828 	if (nd->depth)
829 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
830 
831 	/* At this point we know we have a real path component. */
832 	for(;;) {
833 		unsigned long hash;
834 		struct qstr this;
835 		unsigned int c;
836 
837 		nd->flags |= LOOKUP_CONTINUE;
838 		err = exec_permission(inode);
839  		if (err)
840 			break;
841 
842 		this.name = name;
843 		c = *(const unsigned char *)name;
844 
845 		hash = init_name_hash();
846 		do {
847 			name++;
848 			hash = partial_name_hash(c, hash);
849 			c = *(const unsigned char *)name;
850 		} while (c && (c != '/'));
851 		this.len = name - (const char *) this.name;
852 		this.hash = end_name_hash(hash);
853 
854 		/* remove trailing slashes? */
855 		if (!c)
856 			goto last_component;
857 		while (*++name == '/');
858 		if (!*name)
859 			goto last_with_slashes;
860 
861 		/*
862 		 * "." and ".." are special - ".." especially so because it has
863 		 * to be able to know about the current root directory and
864 		 * parent relationships.
865 		 */
866 		if (this.name[0] == '.') switch (this.len) {
867 			default:
868 				break;
869 			case 2:
870 				if (this.name[1] != '.')
871 					break;
872 				follow_dotdot(nd);
873 				inode = nd->path.dentry->d_inode;
874 				/* fallthrough */
875 			case 1:
876 				continue;
877 		}
878 		/* This does the actual lookups.. */
879 		err = do_lookup(nd, &this, &next);
880 		if (err)
881 			break;
882 
883 		err = -ENOENT;
884 		inode = next.dentry->d_inode;
885 		if (!inode)
886 			goto out_dput;
887 
888 		if (inode->i_op->follow_link) {
889 			err = do_follow_link(&next, nd);
890 			if (err)
891 				goto return_err;
892 			err = -ENOENT;
893 			inode = nd->path.dentry->d_inode;
894 			if (!inode)
895 				break;
896 		} else
897 			path_to_nameidata(&next, nd);
898 		err = -ENOTDIR;
899 		if (!inode->i_op->lookup)
900 			break;
901 		continue;
902 		/* here ends the main loop */
903 
904 last_with_slashes:
905 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
906 last_component:
907 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
908 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
909 		if (lookup_flags & LOOKUP_PARENT)
910 			goto lookup_parent;
911 		if (this.name[0] == '.') switch (this.len) {
912 			default:
913 				break;
914 			case 2:
915 				if (this.name[1] != '.')
916 					break;
917 				follow_dotdot(nd);
918 				inode = nd->path.dentry->d_inode;
919 				/* fallthrough */
920 			case 1:
921 				goto return_reval;
922 		}
923 		err = do_lookup(nd, &this, &next);
924 		if (err)
925 			break;
926 		inode = next.dentry->d_inode;
927 		if (follow_on_final(inode, lookup_flags)) {
928 			err = do_follow_link(&next, nd);
929 			if (err)
930 				goto return_err;
931 			inode = nd->path.dentry->d_inode;
932 		} else
933 			path_to_nameidata(&next, nd);
934 		err = -ENOENT;
935 		if (!inode)
936 			break;
937 		if (lookup_flags & LOOKUP_DIRECTORY) {
938 			err = -ENOTDIR;
939 			if (!inode->i_op->lookup)
940 				break;
941 		}
942 		goto return_base;
943 lookup_parent:
944 		nd->last = this;
945 		nd->last_type = LAST_NORM;
946 		if (this.name[0] != '.')
947 			goto return_base;
948 		if (this.len == 1)
949 			nd->last_type = LAST_DOT;
950 		else if (this.len == 2 && this.name[1] == '.')
951 			nd->last_type = LAST_DOTDOT;
952 		else
953 			goto return_base;
954 return_reval:
955 		/*
956 		 * We bypassed the ordinary revalidation routines.
957 		 * We may need to check the cached dentry for staleness.
958 		 */
959 		if (nd->path.dentry && nd->path.dentry->d_sb &&
960 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
961 			err = -ESTALE;
962 			/* Note: we do not d_invalidate() */
963 			if (!nd->path.dentry->d_op->d_revalidate(
964 					nd->path.dentry, nd))
965 				break;
966 		}
967 return_base:
968 		return 0;
969 out_dput:
970 		path_put_conditional(&next, nd);
971 		break;
972 	}
973 	path_put(&nd->path);
974 return_err:
975 	return err;
976 }
977 
978 static int path_walk(const char *name, struct nameidata *nd)
979 {
980 	struct path save = nd->path;
981 	int result;
982 
983 	current->total_link_count = 0;
984 
985 	/* make sure the stuff we saved doesn't go away */
986 	path_get(&save);
987 
988 	result = link_path_walk(name, nd);
989 	if (result == -ESTALE) {
990 		/* nd->path had been dropped */
991 		current->total_link_count = 0;
992 		nd->path = save;
993 		path_get(&nd->path);
994 		nd->flags |= LOOKUP_REVAL;
995 		result = link_path_walk(name, nd);
996 	}
997 
998 	path_put(&save);
999 
1000 	return result;
1001 }
1002 
1003 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1004 {
1005 	int retval = 0;
1006 	int fput_needed;
1007 	struct file *file;
1008 
1009 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1010 	nd->flags = flags;
1011 	nd->depth = 0;
1012 	nd->root.mnt = NULL;
1013 
1014 	if (*name=='/') {
1015 		set_root(nd);
1016 		nd->path = nd->root;
1017 		path_get(&nd->root);
1018 	} else if (dfd == AT_FDCWD) {
1019 		struct fs_struct *fs = current->fs;
1020 		read_lock(&fs->lock);
1021 		nd->path = fs->pwd;
1022 		path_get(&fs->pwd);
1023 		read_unlock(&fs->lock);
1024 	} else {
1025 		struct dentry *dentry;
1026 
1027 		file = fget_light(dfd, &fput_needed);
1028 		retval = -EBADF;
1029 		if (!file)
1030 			goto out_fail;
1031 
1032 		dentry = file->f_path.dentry;
1033 
1034 		retval = -ENOTDIR;
1035 		if (!S_ISDIR(dentry->d_inode->i_mode))
1036 			goto fput_fail;
1037 
1038 		retval = file_permission(file, MAY_EXEC);
1039 		if (retval)
1040 			goto fput_fail;
1041 
1042 		nd->path = file->f_path;
1043 		path_get(&file->f_path);
1044 
1045 		fput_light(file, fput_needed);
1046 	}
1047 	return 0;
1048 
1049 fput_fail:
1050 	fput_light(file, fput_needed);
1051 out_fail:
1052 	return retval;
1053 }
1054 
1055 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1056 static int do_path_lookup(int dfd, const char *name,
1057 				unsigned int flags, struct nameidata *nd)
1058 {
1059 	int retval = path_init(dfd, name, flags, nd);
1060 	if (!retval)
1061 		retval = path_walk(name, nd);
1062 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1063 				nd->path.dentry->d_inode))
1064 		audit_inode(name, nd->path.dentry);
1065 	if (nd->root.mnt) {
1066 		path_put(&nd->root);
1067 		nd->root.mnt = NULL;
1068 	}
1069 	return retval;
1070 }
1071 
1072 int path_lookup(const char *name, unsigned int flags,
1073 			struct nameidata *nd)
1074 {
1075 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1076 }
1077 
1078 int kern_path(const char *name, unsigned int flags, struct path *path)
1079 {
1080 	struct nameidata nd;
1081 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1082 	if (!res)
1083 		*path = nd.path;
1084 	return res;
1085 }
1086 
1087 /**
1088  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1089  * @dentry:  pointer to dentry of the base directory
1090  * @mnt: pointer to vfs mount of the base directory
1091  * @name: pointer to file name
1092  * @flags: lookup flags
1093  * @nd: pointer to nameidata
1094  */
1095 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1096 		    const char *name, unsigned int flags,
1097 		    struct nameidata *nd)
1098 {
1099 	int retval;
1100 
1101 	/* same as do_path_lookup */
1102 	nd->last_type = LAST_ROOT;
1103 	nd->flags = flags;
1104 	nd->depth = 0;
1105 
1106 	nd->path.dentry = dentry;
1107 	nd->path.mnt = mnt;
1108 	path_get(&nd->path);
1109 	nd->root = nd->path;
1110 	path_get(&nd->root);
1111 
1112 	retval = path_walk(name, nd);
1113 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1114 				nd->path.dentry->d_inode))
1115 		audit_inode(name, nd->path.dentry);
1116 
1117 	path_put(&nd->root);
1118 	nd->root.mnt = NULL;
1119 
1120 	return retval;
1121 }
1122 
1123 static struct dentry *__lookup_hash(struct qstr *name,
1124 		struct dentry *base, struct nameidata *nd)
1125 {
1126 	struct dentry *dentry;
1127 	struct inode *inode;
1128 	int err;
1129 
1130 	inode = base->d_inode;
1131 
1132 	/*
1133 	 * See if the low-level filesystem might want
1134 	 * to use its own hash..
1135 	 */
1136 	if (base->d_op && base->d_op->d_hash) {
1137 		err = base->d_op->d_hash(base, name);
1138 		dentry = ERR_PTR(err);
1139 		if (err < 0)
1140 			goto out;
1141 	}
1142 
1143 	dentry = __d_lookup(base, name);
1144 
1145 	/* lockess __d_lookup may fail due to concurrent d_move()
1146 	 * in some unrelated directory, so try with d_lookup
1147 	 */
1148 	if (!dentry)
1149 		dentry = d_lookup(base, name);
1150 
1151 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1152 		dentry = do_revalidate(dentry, nd);
1153 
1154 	if (!dentry) {
1155 		struct dentry *new;
1156 
1157 		/* Don't create child dentry for a dead directory. */
1158 		dentry = ERR_PTR(-ENOENT);
1159 		if (IS_DEADDIR(inode))
1160 			goto out;
1161 
1162 		new = d_alloc(base, name);
1163 		dentry = ERR_PTR(-ENOMEM);
1164 		if (!new)
1165 			goto out;
1166 		dentry = inode->i_op->lookup(inode, new, nd);
1167 		if (!dentry)
1168 			dentry = new;
1169 		else
1170 			dput(new);
1171 	}
1172 out:
1173 	return dentry;
1174 }
1175 
1176 /*
1177  * Restricted form of lookup. Doesn't follow links, single-component only,
1178  * needs parent already locked. Doesn't follow mounts.
1179  * SMP-safe.
1180  */
1181 static struct dentry *lookup_hash(struct nameidata *nd)
1182 {
1183 	int err;
1184 
1185 	err = exec_permission(nd->path.dentry->d_inode);
1186 	if (err)
1187 		return ERR_PTR(err);
1188 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1189 }
1190 
1191 static int __lookup_one_len(const char *name, struct qstr *this,
1192 		struct dentry *base, int len)
1193 {
1194 	unsigned long hash;
1195 	unsigned int c;
1196 
1197 	this->name = name;
1198 	this->len = len;
1199 	if (!len)
1200 		return -EACCES;
1201 
1202 	hash = init_name_hash();
1203 	while (len--) {
1204 		c = *(const unsigned char *)name++;
1205 		if (c == '/' || c == '\0')
1206 			return -EACCES;
1207 		hash = partial_name_hash(c, hash);
1208 	}
1209 	this->hash = end_name_hash(hash);
1210 	return 0;
1211 }
1212 
1213 /**
1214  * lookup_one_len - filesystem helper to lookup single pathname component
1215  * @name:	pathname component to lookup
1216  * @base:	base directory to lookup from
1217  * @len:	maximum length @len should be interpreted to
1218  *
1219  * Note that this routine is purely a helper for filesystem usage and should
1220  * not be called by generic code.  Also note that by using this function the
1221  * nameidata argument is passed to the filesystem methods and a filesystem
1222  * using this helper needs to be prepared for that.
1223  */
1224 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1225 {
1226 	int err;
1227 	struct qstr this;
1228 
1229 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1230 
1231 	err = __lookup_one_len(name, &this, base, len);
1232 	if (err)
1233 		return ERR_PTR(err);
1234 
1235 	err = exec_permission(base->d_inode);
1236 	if (err)
1237 		return ERR_PTR(err);
1238 	return __lookup_hash(&this, base, NULL);
1239 }
1240 
1241 int user_path_at(int dfd, const char __user *name, unsigned flags,
1242 		 struct path *path)
1243 {
1244 	struct nameidata nd;
1245 	char *tmp = getname(name);
1246 	int err = PTR_ERR(tmp);
1247 	if (!IS_ERR(tmp)) {
1248 
1249 		BUG_ON(flags & LOOKUP_PARENT);
1250 
1251 		err = do_path_lookup(dfd, tmp, flags, &nd);
1252 		putname(tmp);
1253 		if (!err)
1254 			*path = nd.path;
1255 	}
1256 	return err;
1257 }
1258 
1259 static int user_path_parent(int dfd, const char __user *path,
1260 			struct nameidata *nd, char **name)
1261 {
1262 	char *s = getname(path);
1263 	int error;
1264 
1265 	if (IS_ERR(s))
1266 		return PTR_ERR(s);
1267 
1268 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1269 	if (error)
1270 		putname(s);
1271 	else
1272 		*name = s;
1273 
1274 	return error;
1275 }
1276 
1277 /*
1278  * It's inline, so penalty for filesystems that don't use sticky bit is
1279  * minimal.
1280  */
1281 static inline int check_sticky(struct inode *dir, struct inode *inode)
1282 {
1283 	uid_t fsuid = current_fsuid();
1284 
1285 	if (!(dir->i_mode & S_ISVTX))
1286 		return 0;
1287 	if (inode->i_uid == fsuid)
1288 		return 0;
1289 	if (dir->i_uid == fsuid)
1290 		return 0;
1291 	return !capable(CAP_FOWNER);
1292 }
1293 
1294 /*
1295  *	Check whether we can remove a link victim from directory dir, check
1296  *  whether the type of victim is right.
1297  *  1. We can't do it if dir is read-only (done in permission())
1298  *  2. We should have write and exec permissions on dir
1299  *  3. We can't remove anything from append-only dir
1300  *  4. We can't do anything with immutable dir (done in permission())
1301  *  5. If the sticky bit on dir is set we should either
1302  *	a. be owner of dir, or
1303  *	b. be owner of victim, or
1304  *	c. have CAP_FOWNER capability
1305  *  6. If the victim is append-only or immutable we can't do antyhing with
1306  *     links pointing to it.
1307  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1308  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1309  *  9. We can't remove a root or mountpoint.
1310  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1311  *     nfs_async_unlink().
1312  */
1313 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1314 {
1315 	int error;
1316 
1317 	if (!victim->d_inode)
1318 		return -ENOENT;
1319 
1320 	BUG_ON(victim->d_parent->d_inode != dir);
1321 	audit_inode_child(victim, dir);
1322 
1323 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1324 	if (error)
1325 		return error;
1326 	if (IS_APPEND(dir))
1327 		return -EPERM;
1328 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1329 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1330 		return -EPERM;
1331 	if (isdir) {
1332 		if (!S_ISDIR(victim->d_inode->i_mode))
1333 			return -ENOTDIR;
1334 		if (IS_ROOT(victim))
1335 			return -EBUSY;
1336 	} else if (S_ISDIR(victim->d_inode->i_mode))
1337 		return -EISDIR;
1338 	if (IS_DEADDIR(dir))
1339 		return -ENOENT;
1340 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1341 		return -EBUSY;
1342 	return 0;
1343 }
1344 
1345 /*	Check whether we can create an object with dentry child in directory
1346  *  dir.
1347  *  1. We can't do it if child already exists (open has special treatment for
1348  *     this case, but since we are inlined it's OK)
1349  *  2. We can't do it if dir is read-only (done in permission())
1350  *  3. We should have write and exec permissions on dir
1351  *  4. We can't do it if dir is immutable (done in permission())
1352  */
1353 static inline int may_create(struct inode *dir, struct dentry *child)
1354 {
1355 	if (child->d_inode)
1356 		return -EEXIST;
1357 	if (IS_DEADDIR(dir))
1358 		return -ENOENT;
1359 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1360 }
1361 
1362 /*
1363  * p1 and p2 should be directories on the same fs.
1364  */
1365 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1366 {
1367 	struct dentry *p;
1368 
1369 	if (p1 == p2) {
1370 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1371 		return NULL;
1372 	}
1373 
1374 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1375 
1376 	p = d_ancestor(p2, p1);
1377 	if (p) {
1378 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1379 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1380 		return p;
1381 	}
1382 
1383 	p = d_ancestor(p1, p2);
1384 	if (p) {
1385 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1386 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1387 		return p;
1388 	}
1389 
1390 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1391 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1392 	return NULL;
1393 }
1394 
1395 void unlock_rename(struct dentry *p1, struct dentry *p2)
1396 {
1397 	mutex_unlock(&p1->d_inode->i_mutex);
1398 	if (p1 != p2) {
1399 		mutex_unlock(&p2->d_inode->i_mutex);
1400 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1401 	}
1402 }
1403 
1404 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1405 		struct nameidata *nd)
1406 {
1407 	int error = may_create(dir, dentry);
1408 
1409 	if (error)
1410 		return error;
1411 
1412 	if (!dir->i_op->create)
1413 		return -EACCES;	/* shouldn't it be ENOSYS? */
1414 	mode &= S_IALLUGO;
1415 	mode |= S_IFREG;
1416 	error = security_inode_create(dir, dentry, mode);
1417 	if (error)
1418 		return error;
1419 	error = dir->i_op->create(dir, dentry, mode, nd);
1420 	if (!error)
1421 		fsnotify_create(dir, dentry);
1422 	return error;
1423 }
1424 
1425 int may_open(struct path *path, int acc_mode, int flag)
1426 {
1427 	struct dentry *dentry = path->dentry;
1428 	struct inode *inode = dentry->d_inode;
1429 	int error;
1430 
1431 	if (!inode)
1432 		return -ENOENT;
1433 
1434 	switch (inode->i_mode & S_IFMT) {
1435 	case S_IFLNK:
1436 		return -ELOOP;
1437 	case S_IFDIR:
1438 		if (acc_mode & MAY_WRITE)
1439 			return -EISDIR;
1440 		break;
1441 	case S_IFBLK:
1442 	case S_IFCHR:
1443 		if (path->mnt->mnt_flags & MNT_NODEV)
1444 			return -EACCES;
1445 		/*FALLTHRU*/
1446 	case S_IFIFO:
1447 	case S_IFSOCK:
1448 		flag &= ~O_TRUNC;
1449 		break;
1450 	}
1451 
1452 	error = inode_permission(inode, acc_mode);
1453 	if (error)
1454 		return error;
1455 
1456 	/*
1457 	 * An append-only file must be opened in append mode for writing.
1458 	 */
1459 	if (IS_APPEND(inode)) {
1460 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1461 			return -EPERM;
1462 		if (flag & O_TRUNC)
1463 			return -EPERM;
1464 	}
1465 
1466 	/* O_NOATIME can only be set by the owner or superuser */
1467 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
1468 		return -EPERM;
1469 
1470 	/*
1471 	 * Ensure there are no outstanding leases on the file.
1472 	 */
1473 	return break_lease(inode, flag);
1474 }
1475 
1476 static int handle_truncate(struct path *path)
1477 {
1478 	struct inode *inode = path->dentry->d_inode;
1479 	int error = get_write_access(inode);
1480 	if (error)
1481 		return error;
1482 	/*
1483 	 * Refuse to truncate files with mandatory locks held on them.
1484 	 */
1485 	error = locks_verify_locked(inode);
1486 	if (!error)
1487 		error = security_path_truncate(path, 0,
1488 				       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1489 	if (!error) {
1490 		error = do_truncate(path->dentry, 0,
1491 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1492 				    NULL);
1493 	}
1494 	put_write_access(inode);
1495 	return error;
1496 }
1497 
1498 /*
1499  * Be careful about ever adding any more callers of this
1500  * function.  Its flags must be in the namei format, not
1501  * what get passed to sys_open().
1502  */
1503 static int __open_namei_create(struct nameidata *nd, struct path *path,
1504 				int open_flag, int mode)
1505 {
1506 	int error;
1507 	struct dentry *dir = nd->path.dentry;
1508 
1509 	if (!IS_POSIXACL(dir->d_inode))
1510 		mode &= ~current_umask();
1511 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1512 	if (error)
1513 		goto out_unlock;
1514 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1515 out_unlock:
1516 	mutex_unlock(&dir->d_inode->i_mutex);
1517 	dput(nd->path.dentry);
1518 	nd->path.dentry = path->dentry;
1519 	if (error)
1520 		return error;
1521 	/* Don't check for write permission, don't truncate */
1522 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1523 }
1524 
1525 /*
1526  * Note that while the flag value (low two bits) for sys_open means:
1527  *	00 - read-only
1528  *	01 - write-only
1529  *	10 - read-write
1530  *	11 - special
1531  * it is changed into
1532  *	00 - no permissions needed
1533  *	01 - read-permission
1534  *	10 - write-permission
1535  *	11 - read-write
1536  * for the internal routines (ie open_namei()/follow_link() etc)
1537  * This is more logical, and also allows the 00 "no perm needed"
1538  * to be used for symlinks (where the permissions are checked
1539  * later).
1540  *
1541 */
1542 static inline int open_to_namei_flags(int flag)
1543 {
1544 	if ((flag+1) & O_ACCMODE)
1545 		flag++;
1546 	return flag;
1547 }
1548 
1549 static int open_will_truncate(int flag, struct inode *inode)
1550 {
1551 	/*
1552 	 * We'll never write to the fs underlying
1553 	 * a device file.
1554 	 */
1555 	if (special_file(inode->i_mode))
1556 		return 0;
1557 	return (flag & O_TRUNC);
1558 }
1559 
1560 static struct file *finish_open(struct nameidata *nd,
1561 				int open_flag, int acc_mode)
1562 {
1563 	struct file *filp;
1564 	int will_truncate;
1565 	int error;
1566 
1567 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1568 	if (will_truncate) {
1569 		error = mnt_want_write(nd->path.mnt);
1570 		if (error)
1571 			goto exit;
1572 	}
1573 	error = may_open(&nd->path, acc_mode, open_flag);
1574 	if (error) {
1575 		if (will_truncate)
1576 			mnt_drop_write(nd->path.mnt);
1577 		goto exit;
1578 	}
1579 	filp = nameidata_to_filp(nd);
1580 	if (!IS_ERR(filp)) {
1581 		error = ima_file_check(filp, acc_mode);
1582 		if (error) {
1583 			fput(filp);
1584 			filp = ERR_PTR(error);
1585 		}
1586 	}
1587 	if (!IS_ERR(filp)) {
1588 		if (will_truncate) {
1589 			error = handle_truncate(&nd->path);
1590 			if (error) {
1591 				fput(filp);
1592 				filp = ERR_PTR(error);
1593 			}
1594 		}
1595 	}
1596 	/*
1597 	 * It is now safe to drop the mnt write
1598 	 * because the filp has had a write taken
1599 	 * on its behalf.
1600 	 */
1601 	if (will_truncate)
1602 		mnt_drop_write(nd->path.mnt);
1603 	return filp;
1604 
1605 exit:
1606 	if (!IS_ERR(nd->intent.open.file))
1607 		release_open_intent(nd);
1608 	path_put(&nd->path);
1609 	return ERR_PTR(error);
1610 }
1611 
1612 static struct file *do_last(struct nameidata *nd, struct path *path,
1613 			    int open_flag, int acc_mode,
1614 			    int mode, const char *pathname)
1615 {
1616 	struct dentry *dir = nd->path.dentry;
1617 	struct file *filp;
1618 	int error = -EISDIR;
1619 
1620 	switch (nd->last_type) {
1621 	case LAST_DOTDOT:
1622 		follow_dotdot(nd);
1623 		dir = nd->path.dentry;
1624 	case LAST_DOT:
1625 		if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1626 			if (!dir->d_op->d_revalidate(dir, nd)) {
1627 				error = -ESTALE;
1628 				goto exit;
1629 			}
1630 		}
1631 		/* fallthrough */
1632 	case LAST_ROOT:
1633 		if (open_flag & O_CREAT)
1634 			goto exit;
1635 		/* fallthrough */
1636 	case LAST_BIND:
1637 		audit_inode(pathname, dir);
1638 		goto ok;
1639 	}
1640 
1641 	/* trailing slashes? */
1642 	if (nd->last.name[nd->last.len]) {
1643 		if (open_flag & O_CREAT)
1644 			goto exit;
1645 		nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1646 	}
1647 
1648 	/* just plain open? */
1649 	if (!(open_flag & O_CREAT)) {
1650 		error = do_lookup(nd, &nd->last, path);
1651 		if (error)
1652 			goto exit;
1653 		error = -ENOENT;
1654 		if (!path->dentry->d_inode)
1655 			goto exit_dput;
1656 		if (path->dentry->d_inode->i_op->follow_link)
1657 			return NULL;
1658 		error = -ENOTDIR;
1659 		if (nd->flags & LOOKUP_DIRECTORY) {
1660 			if (!path->dentry->d_inode->i_op->lookup)
1661 				goto exit_dput;
1662 		}
1663 		path_to_nameidata(path, nd);
1664 		audit_inode(pathname, nd->path.dentry);
1665 		goto ok;
1666 	}
1667 
1668 	/* OK, it's O_CREAT */
1669 	mutex_lock(&dir->d_inode->i_mutex);
1670 
1671 	path->dentry = lookup_hash(nd);
1672 	path->mnt = nd->path.mnt;
1673 
1674 	error = PTR_ERR(path->dentry);
1675 	if (IS_ERR(path->dentry)) {
1676 		mutex_unlock(&dir->d_inode->i_mutex);
1677 		goto exit;
1678 	}
1679 
1680 	if (IS_ERR(nd->intent.open.file)) {
1681 		error = PTR_ERR(nd->intent.open.file);
1682 		goto exit_mutex_unlock;
1683 	}
1684 
1685 	/* Negative dentry, just create the file */
1686 	if (!path->dentry->d_inode) {
1687 		/*
1688 		 * This write is needed to ensure that a
1689 		 * ro->rw transition does not occur between
1690 		 * the time when the file is created and when
1691 		 * a permanent write count is taken through
1692 		 * the 'struct file' in nameidata_to_filp().
1693 		 */
1694 		error = mnt_want_write(nd->path.mnt);
1695 		if (error)
1696 			goto exit_mutex_unlock;
1697 		error = __open_namei_create(nd, path, open_flag, mode);
1698 		if (error) {
1699 			mnt_drop_write(nd->path.mnt);
1700 			goto exit;
1701 		}
1702 		filp = nameidata_to_filp(nd);
1703 		mnt_drop_write(nd->path.mnt);
1704 		if (!IS_ERR(filp)) {
1705 			error = ima_file_check(filp, acc_mode);
1706 			if (error) {
1707 				fput(filp);
1708 				filp = ERR_PTR(error);
1709 			}
1710 		}
1711 		return filp;
1712 	}
1713 
1714 	/*
1715 	 * It already exists.
1716 	 */
1717 	mutex_unlock(&dir->d_inode->i_mutex);
1718 	audit_inode(pathname, path->dentry);
1719 
1720 	error = -EEXIST;
1721 	if (open_flag & O_EXCL)
1722 		goto exit_dput;
1723 
1724 	if (__follow_mount(path)) {
1725 		error = -ELOOP;
1726 		if (open_flag & O_NOFOLLOW)
1727 			goto exit_dput;
1728 	}
1729 
1730 	error = -ENOENT;
1731 	if (!path->dentry->d_inode)
1732 		goto exit_dput;
1733 
1734 	if (path->dentry->d_inode->i_op->follow_link)
1735 		return NULL;
1736 
1737 	path_to_nameidata(path, nd);
1738 	error = -EISDIR;
1739 	if (S_ISDIR(path->dentry->d_inode->i_mode))
1740 		goto exit;
1741 ok:
1742 	filp = finish_open(nd, open_flag, acc_mode);
1743 	return filp;
1744 
1745 exit_mutex_unlock:
1746 	mutex_unlock(&dir->d_inode->i_mutex);
1747 exit_dput:
1748 	path_put_conditional(path, nd);
1749 exit:
1750 	if (!IS_ERR(nd->intent.open.file))
1751 		release_open_intent(nd);
1752 	path_put(&nd->path);
1753 	return ERR_PTR(error);
1754 }
1755 
1756 /*
1757  * Note that the low bits of the passed in "open_flag"
1758  * are not the same as in the local variable "flag". See
1759  * open_to_namei_flags() for more details.
1760  */
1761 struct file *do_filp_open(int dfd, const char *pathname,
1762 		int open_flag, int mode, int acc_mode)
1763 {
1764 	struct file *filp;
1765 	struct nameidata nd;
1766 	int error;
1767 	struct path path;
1768 	int count = 0;
1769 	int flag = open_to_namei_flags(open_flag);
1770 	int force_reval = 0;
1771 
1772 	if (!(open_flag & O_CREAT))
1773 		mode = 0;
1774 
1775 	/*
1776 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
1777 	 * check for O_DSYNC if the need any syncing at all we enforce it's
1778 	 * always set instead of having to deal with possibly weird behaviour
1779 	 * for malicious applications setting only __O_SYNC.
1780 	 */
1781 	if (open_flag & __O_SYNC)
1782 		open_flag |= O_DSYNC;
1783 
1784 	if (!acc_mode)
1785 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1786 
1787 	/* O_TRUNC implies we need access checks for write permissions */
1788 	if (open_flag & O_TRUNC)
1789 		acc_mode |= MAY_WRITE;
1790 
1791 	/* Allow the LSM permission hook to distinguish append
1792 	   access from general write access. */
1793 	if (open_flag & O_APPEND)
1794 		acc_mode |= MAY_APPEND;
1795 
1796 	/* find the parent */
1797 reval:
1798 	error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1799 	if (error)
1800 		return ERR_PTR(error);
1801 	if (force_reval)
1802 		nd.flags |= LOOKUP_REVAL;
1803 
1804 	current->total_link_count = 0;
1805 	error = link_path_walk(pathname, &nd);
1806 	if (error) {
1807 		filp = ERR_PTR(error);
1808 		goto out;
1809 	}
1810 	if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1811 		audit_inode(pathname, nd.path.dentry);
1812 
1813 	/*
1814 	 * We have the parent and last component.
1815 	 */
1816 
1817 	error = -ENFILE;
1818 	filp = get_empty_filp();
1819 	if (filp == NULL)
1820 		goto exit_parent;
1821 	nd.intent.open.file = filp;
1822 	filp->f_flags = open_flag;
1823 	nd.intent.open.flags = flag;
1824 	nd.intent.open.create_mode = mode;
1825 	nd.flags &= ~LOOKUP_PARENT;
1826 	nd.flags |= LOOKUP_OPEN;
1827 	if (open_flag & O_CREAT) {
1828 		nd.flags |= LOOKUP_CREATE;
1829 		if (open_flag & O_EXCL)
1830 			nd.flags |= LOOKUP_EXCL;
1831 	}
1832 	if (open_flag & O_DIRECTORY)
1833 		nd.flags |= LOOKUP_DIRECTORY;
1834 	if (!(open_flag & O_NOFOLLOW))
1835 		nd.flags |= LOOKUP_FOLLOW;
1836 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1837 	while (unlikely(!filp)) { /* trailing symlink */
1838 		struct path holder;
1839 		struct inode *inode = path.dentry->d_inode;
1840 		void *cookie;
1841 		error = -ELOOP;
1842 		/* S_ISDIR part is a temporary automount kludge */
1843 		if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1844 			goto exit_dput;
1845 		if (count++ == 32)
1846 			goto exit_dput;
1847 		/*
1848 		 * This is subtle. Instead of calling do_follow_link() we do
1849 		 * the thing by hands. The reason is that this way we have zero
1850 		 * link_count and path_walk() (called from ->follow_link)
1851 		 * honoring LOOKUP_PARENT.  After that we have the parent and
1852 		 * last component, i.e. we are in the same situation as after
1853 		 * the first path_walk().  Well, almost - if the last component
1854 		 * is normal we get its copy stored in nd->last.name and we will
1855 		 * have to putname() it when we are done. Procfs-like symlinks
1856 		 * just set LAST_BIND.
1857 		 */
1858 		nd.flags |= LOOKUP_PARENT;
1859 		error = security_inode_follow_link(path.dentry, &nd);
1860 		if (error)
1861 			goto exit_dput;
1862 		error = __do_follow_link(&path, &nd, &cookie);
1863 		if (unlikely(error)) {
1864 			/* nd.path had been dropped */
1865 			if (!IS_ERR(cookie) && inode->i_op->put_link)
1866 				inode->i_op->put_link(path.dentry, &nd, cookie);
1867 			path_put(&path);
1868 			release_open_intent(&nd);
1869 			filp = ERR_PTR(error);
1870 			goto out;
1871 		}
1872 		holder = path;
1873 		nd.flags &= ~LOOKUP_PARENT;
1874 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1875 		if (inode->i_op->put_link)
1876 			inode->i_op->put_link(holder.dentry, &nd, cookie);
1877 		path_put(&holder);
1878 	}
1879 out:
1880 	if (nd.root.mnt)
1881 		path_put(&nd.root);
1882 	if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1883 		force_reval = 1;
1884 		goto reval;
1885 	}
1886 	return filp;
1887 
1888 exit_dput:
1889 	path_put_conditional(&path, &nd);
1890 	if (!IS_ERR(nd.intent.open.file))
1891 		release_open_intent(&nd);
1892 exit_parent:
1893 	path_put(&nd.path);
1894 	filp = ERR_PTR(error);
1895 	goto out;
1896 }
1897 
1898 /**
1899  * filp_open - open file and return file pointer
1900  *
1901  * @filename:	path to open
1902  * @flags:	open flags as per the open(2) second argument
1903  * @mode:	mode for the new file if O_CREAT is set, else ignored
1904  *
1905  * This is the helper to open a file from kernelspace if you really
1906  * have to.  But in generally you should not do this, so please move
1907  * along, nothing to see here..
1908  */
1909 struct file *filp_open(const char *filename, int flags, int mode)
1910 {
1911 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1912 }
1913 EXPORT_SYMBOL(filp_open);
1914 
1915 /**
1916  * lookup_create - lookup a dentry, creating it if it doesn't exist
1917  * @nd: nameidata info
1918  * @is_dir: directory flag
1919  *
1920  * Simple function to lookup and return a dentry and create it
1921  * if it doesn't exist.  Is SMP-safe.
1922  *
1923  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1924  */
1925 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1926 {
1927 	struct dentry *dentry = ERR_PTR(-EEXIST);
1928 
1929 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1930 	/*
1931 	 * Yucky last component or no last component at all?
1932 	 * (foo/., foo/.., /////)
1933 	 */
1934 	if (nd->last_type != LAST_NORM)
1935 		goto fail;
1936 	nd->flags &= ~LOOKUP_PARENT;
1937 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1938 	nd->intent.open.flags = O_EXCL;
1939 
1940 	/*
1941 	 * Do the final lookup.
1942 	 */
1943 	dentry = lookup_hash(nd);
1944 	if (IS_ERR(dentry))
1945 		goto fail;
1946 
1947 	if (dentry->d_inode)
1948 		goto eexist;
1949 	/*
1950 	 * Special case - lookup gave negative, but... we had foo/bar/
1951 	 * From the vfs_mknod() POV we just have a negative dentry -
1952 	 * all is fine. Let's be bastards - you had / on the end, you've
1953 	 * been asking for (non-existent) directory. -ENOENT for you.
1954 	 */
1955 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1956 		dput(dentry);
1957 		dentry = ERR_PTR(-ENOENT);
1958 	}
1959 	return dentry;
1960 eexist:
1961 	dput(dentry);
1962 	dentry = ERR_PTR(-EEXIST);
1963 fail:
1964 	return dentry;
1965 }
1966 EXPORT_SYMBOL_GPL(lookup_create);
1967 
1968 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1969 {
1970 	int error = may_create(dir, dentry);
1971 
1972 	if (error)
1973 		return error;
1974 
1975 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1976 		return -EPERM;
1977 
1978 	if (!dir->i_op->mknod)
1979 		return -EPERM;
1980 
1981 	error = devcgroup_inode_mknod(mode, dev);
1982 	if (error)
1983 		return error;
1984 
1985 	error = security_inode_mknod(dir, dentry, mode, dev);
1986 	if (error)
1987 		return error;
1988 
1989 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1990 	if (!error)
1991 		fsnotify_create(dir, dentry);
1992 	return error;
1993 }
1994 
1995 static int may_mknod(mode_t mode)
1996 {
1997 	switch (mode & S_IFMT) {
1998 	case S_IFREG:
1999 	case S_IFCHR:
2000 	case S_IFBLK:
2001 	case S_IFIFO:
2002 	case S_IFSOCK:
2003 	case 0: /* zero mode translates to S_IFREG */
2004 		return 0;
2005 	case S_IFDIR:
2006 		return -EPERM;
2007 	default:
2008 		return -EINVAL;
2009 	}
2010 }
2011 
2012 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2013 		unsigned, dev)
2014 {
2015 	int error;
2016 	char *tmp;
2017 	struct dentry *dentry;
2018 	struct nameidata nd;
2019 
2020 	if (S_ISDIR(mode))
2021 		return -EPERM;
2022 
2023 	error = user_path_parent(dfd, filename, &nd, &tmp);
2024 	if (error)
2025 		return error;
2026 
2027 	dentry = lookup_create(&nd, 0);
2028 	if (IS_ERR(dentry)) {
2029 		error = PTR_ERR(dentry);
2030 		goto out_unlock;
2031 	}
2032 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2033 		mode &= ~current_umask();
2034 	error = may_mknod(mode);
2035 	if (error)
2036 		goto out_dput;
2037 	error = mnt_want_write(nd.path.mnt);
2038 	if (error)
2039 		goto out_dput;
2040 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2041 	if (error)
2042 		goto out_drop_write;
2043 	switch (mode & S_IFMT) {
2044 		case 0: case S_IFREG:
2045 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2046 			break;
2047 		case S_IFCHR: case S_IFBLK:
2048 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2049 					new_decode_dev(dev));
2050 			break;
2051 		case S_IFIFO: case S_IFSOCK:
2052 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2053 			break;
2054 	}
2055 out_drop_write:
2056 	mnt_drop_write(nd.path.mnt);
2057 out_dput:
2058 	dput(dentry);
2059 out_unlock:
2060 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2061 	path_put(&nd.path);
2062 	putname(tmp);
2063 
2064 	return error;
2065 }
2066 
2067 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2068 {
2069 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2070 }
2071 
2072 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2073 {
2074 	int error = may_create(dir, dentry);
2075 
2076 	if (error)
2077 		return error;
2078 
2079 	if (!dir->i_op->mkdir)
2080 		return -EPERM;
2081 
2082 	mode &= (S_IRWXUGO|S_ISVTX);
2083 	error = security_inode_mkdir(dir, dentry, mode);
2084 	if (error)
2085 		return error;
2086 
2087 	error = dir->i_op->mkdir(dir, dentry, mode);
2088 	if (!error)
2089 		fsnotify_mkdir(dir, dentry);
2090 	return error;
2091 }
2092 
2093 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2094 {
2095 	int error = 0;
2096 	char * tmp;
2097 	struct dentry *dentry;
2098 	struct nameidata nd;
2099 
2100 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2101 	if (error)
2102 		goto out_err;
2103 
2104 	dentry = lookup_create(&nd, 1);
2105 	error = PTR_ERR(dentry);
2106 	if (IS_ERR(dentry))
2107 		goto out_unlock;
2108 
2109 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2110 		mode &= ~current_umask();
2111 	error = mnt_want_write(nd.path.mnt);
2112 	if (error)
2113 		goto out_dput;
2114 	error = security_path_mkdir(&nd.path, dentry, mode);
2115 	if (error)
2116 		goto out_drop_write;
2117 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2118 out_drop_write:
2119 	mnt_drop_write(nd.path.mnt);
2120 out_dput:
2121 	dput(dentry);
2122 out_unlock:
2123 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2124 	path_put(&nd.path);
2125 	putname(tmp);
2126 out_err:
2127 	return error;
2128 }
2129 
2130 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2131 {
2132 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2133 }
2134 
2135 /*
2136  * We try to drop the dentry early: we should have
2137  * a usage count of 2 if we're the only user of this
2138  * dentry, and if that is true (possibly after pruning
2139  * the dcache), then we drop the dentry now.
2140  *
2141  * A low-level filesystem can, if it choses, legally
2142  * do a
2143  *
2144  *	if (!d_unhashed(dentry))
2145  *		return -EBUSY;
2146  *
2147  * if it cannot handle the case of removing a directory
2148  * that is still in use by something else..
2149  */
2150 void dentry_unhash(struct dentry *dentry)
2151 {
2152 	dget(dentry);
2153 	shrink_dcache_parent(dentry);
2154 	spin_lock(&dcache_lock);
2155 	spin_lock(&dentry->d_lock);
2156 	if (atomic_read(&dentry->d_count) == 2)
2157 		__d_drop(dentry);
2158 	spin_unlock(&dentry->d_lock);
2159 	spin_unlock(&dcache_lock);
2160 }
2161 
2162 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2163 {
2164 	int error = may_delete(dir, dentry, 1);
2165 
2166 	if (error)
2167 		return error;
2168 
2169 	if (!dir->i_op->rmdir)
2170 		return -EPERM;
2171 
2172 	mutex_lock(&dentry->d_inode->i_mutex);
2173 	dentry_unhash(dentry);
2174 	if (d_mountpoint(dentry))
2175 		error = -EBUSY;
2176 	else {
2177 		error = security_inode_rmdir(dir, dentry);
2178 		if (!error) {
2179 			error = dir->i_op->rmdir(dir, dentry);
2180 			if (!error) {
2181 				dentry->d_inode->i_flags |= S_DEAD;
2182 				dont_mount(dentry);
2183 			}
2184 		}
2185 	}
2186 	mutex_unlock(&dentry->d_inode->i_mutex);
2187 	if (!error) {
2188 		d_delete(dentry);
2189 	}
2190 	dput(dentry);
2191 
2192 	return error;
2193 }
2194 
2195 static long do_rmdir(int dfd, const char __user *pathname)
2196 {
2197 	int error = 0;
2198 	char * name;
2199 	struct dentry *dentry;
2200 	struct nameidata nd;
2201 
2202 	error = user_path_parent(dfd, pathname, &nd, &name);
2203 	if (error)
2204 		return error;
2205 
2206 	switch(nd.last_type) {
2207 	case LAST_DOTDOT:
2208 		error = -ENOTEMPTY;
2209 		goto exit1;
2210 	case LAST_DOT:
2211 		error = -EINVAL;
2212 		goto exit1;
2213 	case LAST_ROOT:
2214 		error = -EBUSY;
2215 		goto exit1;
2216 	}
2217 
2218 	nd.flags &= ~LOOKUP_PARENT;
2219 
2220 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2221 	dentry = lookup_hash(&nd);
2222 	error = PTR_ERR(dentry);
2223 	if (IS_ERR(dentry))
2224 		goto exit2;
2225 	error = mnt_want_write(nd.path.mnt);
2226 	if (error)
2227 		goto exit3;
2228 	error = security_path_rmdir(&nd.path, dentry);
2229 	if (error)
2230 		goto exit4;
2231 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2232 exit4:
2233 	mnt_drop_write(nd.path.mnt);
2234 exit3:
2235 	dput(dentry);
2236 exit2:
2237 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2238 exit1:
2239 	path_put(&nd.path);
2240 	putname(name);
2241 	return error;
2242 }
2243 
2244 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2245 {
2246 	return do_rmdir(AT_FDCWD, pathname);
2247 }
2248 
2249 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2250 {
2251 	int error = may_delete(dir, dentry, 0);
2252 
2253 	if (error)
2254 		return error;
2255 
2256 	if (!dir->i_op->unlink)
2257 		return -EPERM;
2258 
2259 	mutex_lock(&dentry->d_inode->i_mutex);
2260 	if (d_mountpoint(dentry))
2261 		error = -EBUSY;
2262 	else {
2263 		error = security_inode_unlink(dir, dentry);
2264 		if (!error) {
2265 			error = dir->i_op->unlink(dir, dentry);
2266 			if (!error)
2267 				dont_mount(dentry);
2268 		}
2269 	}
2270 	mutex_unlock(&dentry->d_inode->i_mutex);
2271 
2272 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2273 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2274 		fsnotify_link_count(dentry->d_inode);
2275 		d_delete(dentry);
2276 	}
2277 
2278 	return error;
2279 }
2280 
2281 /*
2282  * Make sure that the actual truncation of the file will occur outside its
2283  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2284  * writeout happening, and we don't want to prevent access to the directory
2285  * while waiting on the I/O.
2286  */
2287 static long do_unlinkat(int dfd, const char __user *pathname)
2288 {
2289 	int error;
2290 	char *name;
2291 	struct dentry *dentry;
2292 	struct nameidata nd;
2293 	struct inode *inode = NULL;
2294 
2295 	error = user_path_parent(dfd, pathname, &nd, &name);
2296 	if (error)
2297 		return error;
2298 
2299 	error = -EISDIR;
2300 	if (nd.last_type != LAST_NORM)
2301 		goto exit1;
2302 
2303 	nd.flags &= ~LOOKUP_PARENT;
2304 
2305 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2306 	dentry = lookup_hash(&nd);
2307 	error = PTR_ERR(dentry);
2308 	if (!IS_ERR(dentry)) {
2309 		/* Why not before? Because we want correct error value */
2310 		if (nd.last.name[nd.last.len])
2311 			goto slashes;
2312 		inode = dentry->d_inode;
2313 		if (inode)
2314 			atomic_inc(&inode->i_count);
2315 		error = mnt_want_write(nd.path.mnt);
2316 		if (error)
2317 			goto exit2;
2318 		error = security_path_unlink(&nd.path, dentry);
2319 		if (error)
2320 			goto exit3;
2321 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2322 exit3:
2323 		mnt_drop_write(nd.path.mnt);
2324 	exit2:
2325 		dput(dentry);
2326 	}
2327 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2328 	if (inode)
2329 		iput(inode);	/* truncate the inode here */
2330 exit1:
2331 	path_put(&nd.path);
2332 	putname(name);
2333 	return error;
2334 
2335 slashes:
2336 	error = !dentry->d_inode ? -ENOENT :
2337 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2338 	goto exit2;
2339 }
2340 
2341 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2342 {
2343 	if ((flag & ~AT_REMOVEDIR) != 0)
2344 		return -EINVAL;
2345 
2346 	if (flag & AT_REMOVEDIR)
2347 		return do_rmdir(dfd, pathname);
2348 
2349 	return do_unlinkat(dfd, pathname);
2350 }
2351 
2352 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2353 {
2354 	return do_unlinkat(AT_FDCWD, pathname);
2355 }
2356 
2357 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2358 {
2359 	int error = may_create(dir, dentry);
2360 
2361 	if (error)
2362 		return error;
2363 
2364 	if (!dir->i_op->symlink)
2365 		return -EPERM;
2366 
2367 	error = security_inode_symlink(dir, dentry, oldname);
2368 	if (error)
2369 		return error;
2370 
2371 	error = dir->i_op->symlink(dir, dentry, oldname);
2372 	if (!error)
2373 		fsnotify_create(dir, dentry);
2374 	return error;
2375 }
2376 
2377 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2378 		int, newdfd, const char __user *, newname)
2379 {
2380 	int error;
2381 	char *from;
2382 	char *to;
2383 	struct dentry *dentry;
2384 	struct nameidata nd;
2385 
2386 	from = getname(oldname);
2387 	if (IS_ERR(from))
2388 		return PTR_ERR(from);
2389 
2390 	error = user_path_parent(newdfd, newname, &nd, &to);
2391 	if (error)
2392 		goto out_putname;
2393 
2394 	dentry = lookup_create(&nd, 0);
2395 	error = PTR_ERR(dentry);
2396 	if (IS_ERR(dentry))
2397 		goto out_unlock;
2398 
2399 	error = mnt_want_write(nd.path.mnt);
2400 	if (error)
2401 		goto out_dput;
2402 	error = security_path_symlink(&nd.path, dentry, from);
2403 	if (error)
2404 		goto out_drop_write;
2405 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2406 out_drop_write:
2407 	mnt_drop_write(nd.path.mnt);
2408 out_dput:
2409 	dput(dentry);
2410 out_unlock:
2411 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2412 	path_put(&nd.path);
2413 	putname(to);
2414 out_putname:
2415 	putname(from);
2416 	return error;
2417 }
2418 
2419 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2420 {
2421 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2422 }
2423 
2424 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2425 {
2426 	struct inode *inode = old_dentry->d_inode;
2427 	int error;
2428 
2429 	if (!inode)
2430 		return -ENOENT;
2431 
2432 	error = may_create(dir, new_dentry);
2433 	if (error)
2434 		return error;
2435 
2436 	if (dir->i_sb != inode->i_sb)
2437 		return -EXDEV;
2438 
2439 	/*
2440 	 * A link to an append-only or immutable file cannot be created.
2441 	 */
2442 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2443 		return -EPERM;
2444 	if (!dir->i_op->link)
2445 		return -EPERM;
2446 	if (S_ISDIR(inode->i_mode))
2447 		return -EPERM;
2448 
2449 	error = security_inode_link(old_dentry, dir, new_dentry);
2450 	if (error)
2451 		return error;
2452 
2453 	mutex_lock(&inode->i_mutex);
2454 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2455 	mutex_unlock(&inode->i_mutex);
2456 	if (!error)
2457 		fsnotify_link(dir, inode, new_dentry);
2458 	return error;
2459 }
2460 
2461 /*
2462  * Hardlinks are often used in delicate situations.  We avoid
2463  * security-related surprises by not following symlinks on the
2464  * newname.  --KAB
2465  *
2466  * We don't follow them on the oldname either to be compatible
2467  * with linux 2.0, and to avoid hard-linking to directories
2468  * and other special files.  --ADM
2469  */
2470 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2471 		int, newdfd, const char __user *, newname, int, flags)
2472 {
2473 	struct dentry *new_dentry;
2474 	struct nameidata nd;
2475 	struct path old_path;
2476 	int error;
2477 	char *to;
2478 
2479 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2480 		return -EINVAL;
2481 
2482 	error = user_path_at(olddfd, oldname,
2483 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2484 			     &old_path);
2485 	if (error)
2486 		return error;
2487 
2488 	error = user_path_parent(newdfd, newname, &nd, &to);
2489 	if (error)
2490 		goto out;
2491 	error = -EXDEV;
2492 	if (old_path.mnt != nd.path.mnt)
2493 		goto out_release;
2494 	new_dentry = lookup_create(&nd, 0);
2495 	error = PTR_ERR(new_dentry);
2496 	if (IS_ERR(new_dentry))
2497 		goto out_unlock;
2498 	error = mnt_want_write(nd.path.mnt);
2499 	if (error)
2500 		goto out_dput;
2501 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2502 	if (error)
2503 		goto out_drop_write;
2504 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2505 out_drop_write:
2506 	mnt_drop_write(nd.path.mnt);
2507 out_dput:
2508 	dput(new_dentry);
2509 out_unlock:
2510 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2511 out_release:
2512 	path_put(&nd.path);
2513 	putname(to);
2514 out:
2515 	path_put(&old_path);
2516 
2517 	return error;
2518 }
2519 
2520 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2521 {
2522 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2523 }
2524 
2525 /*
2526  * The worst of all namespace operations - renaming directory. "Perverted"
2527  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2528  * Problems:
2529  *	a) we can get into loop creation. Check is done in is_subdir().
2530  *	b) race potential - two innocent renames can create a loop together.
2531  *	   That's where 4.4 screws up. Current fix: serialization on
2532  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2533  *	   story.
2534  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2535  *	   And that - after we got ->i_mutex on parents (until then we don't know
2536  *	   whether the target exists).  Solution: try to be smart with locking
2537  *	   order for inodes.  We rely on the fact that tree topology may change
2538  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2539  *	   move will be locked.  Thus we can rank directories by the tree
2540  *	   (ancestors first) and rank all non-directories after them.
2541  *	   That works since everybody except rename does "lock parent, lookup,
2542  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2543  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2544  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2545  *	   we'd better make sure that there's no link(2) for them.
2546  *	d) some filesystems don't support opened-but-unlinked directories,
2547  *	   either because of layout or because they are not ready to deal with
2548  *	   all cases correctly. The latter will be fixed (taking this sort of
2549  *	   stuff into VFS), but the former is not going away. Solution: the same
2550  *	   trick as in rmdir().
2551  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2552  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2553  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2554  *	   ->i_mutex on parents, which works but leads to some truly excessive
2555  *	   locking].
2556  */
2557 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2558 			  struct inode *new_dir, struct dentry *new_dentry)
2559 {
2560 	int error = 0;
2561 	struct inode *target;
2562 
2563 	/*
2564 	 * If we are going to change the parent - check write permissions,
2565 	 * we'll need to flip '..'.
2566 	 */
2567 	if (new_dir != old_dir) {
2568 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2569 		if (error)
2570 			return error;
2571 	}
2572 
2573 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2574 	if (error)
2575 		return error;
2576 
2577 	target = new_dentry->d_inode;
2578 	if (target)
2579 		mutex_lock(&target->i_mutex);
2580 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2581 		error = -EBUSY;
2582 	else {
2583 		if (target)
2584 			dentry_unhash(new_dentry);
2585 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2586 	}
2587 	if (target) {
2588 		if (!error) {
2589 			target->i_flags |= S_DEAD;
2590 			dont_mount(new_dentry);
2591 		}
2592 		mutex_unlock(&target->i_mutex);
2593 		if (d_unhashed(new_dentry))
2594 			d_rehash(new_dentry);
2595 		dput(new_dentry);
2596 	}
2597 	if (!error)
2598 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2599 			d_move(old_dentry,new_dentry);
2600 	return error;
2601 }
2602 
2603 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2604 			    struct inode *new_dir, struct dentry *new_dentry)
2605 {
2606 	struct inode *target;
2607 	int error;
2608 
2609 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2610 	if (error)
2611 		return error;
2612 
2613 	dget(new_dentry);
2614 	target = new_dentry->d_inode;
2615 	if (target)
2616 		mutex_lock(&target->i_mutex);
2617 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2618 		error = -EBUSY;
2619 	else
2620 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2621 	if (!error) {
2622 		if (target)
2623 			dont_mount(new_dentry);
2624 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2625 			d_move(old_dentry, new_dentry);
2626 	}
2627 	if (target)
2628 		mutex_unlock(&target->i_mutex);
2629 	dput(new_dentry);
2630 	return error;
2631 }
2632 
2633 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2634 	       struct inode *new_dir, struct dentry *new_dentry)
2635 {
2636 	int error;
2637 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2638 	const char *old_name;
2639 
2640 	if (old_dentry->d_inode == new_dentry->d_inode)
2641  		return 0;
2642 
2643 	error = may_delete(old_dir, old_dentry, is_dir);
2644 	if (error)
2645 		return error;
2646 
2647 	if (!new_dentry->d_inode)
2648 		error = may_create(new_dir, new_dentry);
2649 	else
2650 		error = may_delete(new_dir, new_dentry, is_dir);
2651 	if (error)
2652 		return error;
2653 
2654 	if (!old_dir->i_op->rename)
2655 		return -EPERM;
2656 
2657 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2658 
2659 	if (is_dir)
2660 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2661 	else
2662 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2663 	if (!error)
2664 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
2665 			      new_dentry->d_inode, old_dentry);
2666 	fsnotify_oldname_free(old_name);
2667 
2668 	return error;
2669 }
2670 
2671 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2672 		int, newdfd, const char __user *, newname)
2673 {
2674 	struct dentry *old_dir, *new_dir;
2675 	struct dentry *old_dentry, *new_dentry;
2676 	struct dentry *trap;
2677 	struct nameidata oldnd, newnd;
2678 	char *from;
2679 	char *to;
2680 	int error;
2681 
2682 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2683 	if (error)
2684 		goto exit;
2685 
2686 	error = user_path_parent(newdfd, newname, &newnd, &to);
2687 	if (error)
2688 		goto exit1;
2689 
2690 	error = -EXDEV;
2691 	if (oldnd.path.mnt != newnd.path.mnt)
2692 		goto exit2;
2693 
2694 	old_dir = oldnd.path.dentry;
2695 	error = -EBUSY;
2696 	if (oldnd.last_type != LAST_NORM)
2697 		goto exit2;
2698 
2699 	new_dir = newnd.path.dentry;
2700 	if (newnd.last_type != LAST_NORM)
2701 		goto exit2;
2702 
2703 	oldnd.flags &= ~LOOKUP_PARENT;
2704 	newnd.flags &= ~LOOKUP_PARENT;
2705 	newnd.flags |= LOOKUP_RENAME_TARGET;
2706 
2707 	trap = lock_rename(new_dir, old_dir);
2708 
2709 	old_dentry = lookup_hash(&oldnd);
2710 	error = PTR_ERR(old_dentry);
2711 	if (IS_ERR(old_dentry))
2712 		goto exit3;
2713 	/* source must exist */
2714 	error = -ENOENT;
2715 	if (!old_dentry->d_inode)
2716 		goto exit4;
2717 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2718 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2719 		error = -ENOTDIR;
2720 		if (oldnd.last.name[oldnd.last.len])
2721 			goto exit4;
2722 		if (newnd.last.name[newnd.last.len])
2723 			goto exit4;
2724 	}
2725 	/* source should not be ancestor of target */
2726 	error = -EINVAL;
2727 	if (old_dentry == trap)
2728 		goto exit4;
2729 	new_dentry = lookup_hash(&newnd);
2730 	error = PTR_ERR(new_dentry);
2731 	if (IS_ERR(new_dentry))
2732 		goto exit4;
2733 	/* target should not be an ancestor of source */
2734 	error = -ENOTEMPTY;
2735 	if (new_dentry == trap)
2736 		goto exit5;
2737 
2738 	error = mnt_want_write(oldnd.path.mnt);
2739 	if (error)
2740 		goto exit5;
2741 	error = security_path_rename(&oldnd.path, old_dentry,
2742 				     &newnd.path, new_dentry);
2743 	if (error)
2744 		goto exit6;
2745 	error = vfs_rename(old_dir->d_inode, old_dentry,
2746 				   new_dir->d_inode, new_dentry);
2747 exit6:
2748 	mnt_drop_write(oldnd.path.mnt);
2749 exit5:
2750 	dput(new_dentry);
2751 exit4:
2752 	dput(old_dentry);
2753 exit3:
2754 	unlock_rename(new_dir, old_dir);
2755 exit2:
2756 	path_put(&newnd.path);
2757 	putname(to);
2758 exit1:
2759 	path_put(&oldnd.path);
2760 	putname(from);
2761 exit:
2762 	return error;
2763 }
2764 
2765 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2766 {
2767 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2768 }
2769 
2770 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2771 {
2772 	int len;
2773 
2774 	len = PTR_ERR(link);
2775 	if (IS_ERR(link))
2776 		goto out;
2777 
2778 	len = strlen(link);
2779 	if (len > (unsigned) buflen)
2780 		len = buflen;
2781 	if (copy_to_user(buffer, link, len))
2782 		len = -EFAULT;
2783 out:
2784 	return len;
2785 }
2786 
2787 /*
2788  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2789  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2790  * using) it for any given inode is up to filesystem.
2791  */
2792 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2793 {
2794 	struct nameidata nd;
2795 	void *cookie;
2796 	int res;
2797 
2798 	nd.depth = 0;
2799 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2800 	if (IS_ERR(cookie))
2801 		return PTR_ERR(cookie);
2802 
2803 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2804 	if (dentry->d_inode->i_op->put_link)
2805 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2806 	return res;
2807 }
2808 
2809 int vfs_follow_link(struct nameidata *nd, const char *link)
2810 {
2811 	return __vfs_follow_link(nd, link);
2812 }
2813 
2814 /* get the link contents into pagecache */
2815 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2816 {
2817 	char *kaddr;
2818 	struct page *page;
2819 	struct address_space *mapping = dentry->d_inode->i_mapping;
2820 	page = read_mapping_page(mapping, 0, NULL);
2821 	if (IS_ERR(page))
2822 		return (char*)page;
2823 	*ppage = page;
2824 	kaddr = kmap(page);
2825 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2826 	return kaddr;
2827 }
2828 
2829 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2830 {
2831 	struct page *page = NULL;
2832 	char *s = page_getlink(dentry, &page);
2833 	int res = vfs_readlink(dentry,buffer,buflen,s);
2834 	if (page) {
2835 		kunmap(page);
2836 		page_cache_release(page);
2837 	}
2838 	return res;
2839 }
2840 
2841 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2842 {
2843 	struct page *page = NULL;
2844 	nd_set_link(nd, page_getlink(dentry, &page));
2845 	return page;
2846 }
2847 
2848 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2849 {
2850 	struct page *page = cookie;
2851 
2852 	if (page) {
2853 		kunmap(page);
2854 		page_cache_release(page);
2855 	}
2856 }
2857 
2858 /*
2859  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2860  */
2861 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2862 {
2863 	struct address_space *mapping = inode->i_mapping;
2864 	struct page *page;
2865 	void *fsdata;
2866 	int err;
2867 	char *kaddr;
2868 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2869 	if (nofs)
2870 		flags |= AOP_FLAG_NOFS;
2871 
2872 retry:
2873 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2874 				flags, &page, &fsdata);
2875 	if (err)
2876 		goto fail;
2877 
2878 	kaddr = kmap_atomic(page, KM_USER0);
2879 	memcpy(kaddr, symname, len-1);
2880 	kunmap_atomic(kaddr, KM_USER0);
2881 
2882 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2883 							page, fsdata);
2884 	if (err < 0)
2885 		goto fail;
2886 	if (err < len-1)
2887 		goto retry;
2888 
2889 	mark_inode_dirty(inode);
2890 	return 0;
2891 fail:
2892 	return err;
2893 }
2894 
2895 int page_symlink(struct inode *inode, const char *symname, int len)
2896 {
2897 	return __page_symlink(inode, symname, len,
2898 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2899 }
2900 
2901 const struct inode_operations page_symlink_inode_operations = {
2902 	.readlink	= generic_readlink,
2903 	.follow_link	= page_follow_link_light,
2904 	.put_link	= page_put_link,
2905 };
2906 
2907 EXPORT_SYMBOL(user_path_at);
2908 EXPORT_SYMBOL(follow_down);
2909 EXPORT_SYMBOL(follow_up);
2910 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2911 EXPORT_SYMBOL(getname);
2912 EXPORT_SYMBOL(lock_rename);
2913 EXPORT_SYMBOL(lookup_one_len);
2914 EXPORT_SYMBOL(page_follow_link_light);
2915 EXPORT_SYMBOL(page_put_link);
2916 EXPORT_SYMBOL(page_readlink);
2917 EXPORT_SYMBOL(__page_symlink);
2918 EXPORT_SYMBOL(page_symlink);
2919 EXPORT_SYMBOL(page_symlink_inode_operations);
2920 EXPORT_SYMBOL(path_lookup);
2921 EXPORT_SYMBOL(kern_path);
2922 EXPORT_SYMBOL(vfs_path_lookup);
2923 EXPORT_SYMBOL(inode_permission);
2924 EXPORT_SYMBOL(file_permission);
2925 EXPORT_SYMBOL(unlock_rename);
2926 EXPORT_SYMBOL(vfs_create);
2927 EXPORT_SYMBOL(vfs_follow_link);
2928 EXPORT_SYMBOL(vfs_link);
2929 EXPORT_SYMBOL(vfs_mkdir);
2930 EXPORT_SYMBOL(vfs_mknod);
2931 EXPORT_SYMBOL(generic_permission);
2932 EXPORT_SYMBOL(vfs_readlink);
2933 EXPORT_SYMBOL(vfs_rename);
2934 EXPORT_SYMBOL(vfs_rmdir);
2935 EXPORT_SYMBOL(vfs_symlink);
2936 EXPORT_SYMBOL(vfs_unlink);
2937 EXPORT_SYMBOL(dentry_unhash);
2938 EXPORT_SYMBOL(generic_readlink);
2939