xref: /linux/fs/namei.c (revision f6e0a4984c2e7244689ea87b62b433bed9d07e94)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
44 
45 #include "internal.h"
46 #include "mount.h"
47 
48 /* [Feb-1997 T. Schoebel-Theuer]
49  * Fundamental changes in the pathname lookup mechanisms (namei)
50  * were necessary because of omirr.  The reason is that omirr needs
51  * to know the _real_ pathname, not the user-supplied one, in case
52  * of symlinks (and also when transname replacements occur).
53  *
54  * The new code replaces the old recursive symlink resolution with
55  * an iterative one (in case of non-nested symlink chains).  It does
56  * this with calls to <fs>_follow_link().
57  * As a side effect, dir_namei(), _namei() and follow_link() are now
58  * replaced with a single function lookup_dentry() that can handle all
59  * the special cases of the former code.
60  *
61  * With the new dcache, the pathname is stored at each inode, at least as
62  * long as the refcount of the inode is positive.  As a side effect, the
63  * size of the dcache depends on the inode cache and thus is dynamic.
64  *
65  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66  * resolution to correspond with current state of the code.
67  *
68  * Note that the symlink resolution is not *completely* iterative.
69  * There is still a significant amount of tail- and mid- recursion in
70  * the algorithm.  Also, note that <fs>_readlink() is not used in
71  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72  * may return different results than <fs>_follow_link().  Many virtual
73  * filesystems (including /proc) exhibit this behavior.
74  */
75 
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78  * and the name already exists in form of a symlink, try to create the new
79  * name indicated by the symlink. The old code always complained that the
80  * name already exists, due to not following the symlink even if its target
81  * is nonexistent.  The new semantics affects also mknod() and link() when
82  * the name is a symlink pointing to a non-existent name.
83  *
84  * I don't know which semantics is the right one, since I have no access
85  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87  * "old" one. Personally, I think the new semantics is much more logical.
88  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89  * file does succeed in both HP-UX and SunOs, but not in Solaris
90  * and in the old Linux semantics.
91  */
92 
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94  * semantics.  See the comments in "open_namei" and "do_link" below.
95  *
96  * [10-Sep-98 Alan Modra] Another symlink change.
97  */
98 
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100  *	inside the path - always follow.
101  *	in the last component in creation/removal/renaming - never follow.
102  *	if LOOKUP_FOLLOW passed - follow.
103  *	if the pathname has trailing slashes - follow.
104  *	otherwise - don't follow.
105  * (applied in that order).
106  *
107  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109  * During the 2.4 we need to fix the userland stuff depending on it -
110  * hopefully we will be able to get rid of that wart in 2.5. So far only
111  * XEmacs seems to be relying on it...
112  */
113 /*
114  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
116  * any extra contention...
117  */
118 
119 /* In order to reduce some races, while at the same time doing additional
120  * checking and hopefully speeding things up, we copy filenames to the
121  * kernel data space before using them..
122  *
123  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124  * PATH_MAX includes the nul terminator --RR.
125  */
126 
127 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
128 
129 struct filename *
130 getname_flags(const char __user *filename, int flags, int *empty)
131 {
132 	struct filename *result;
133 	char *kname;
134 	int len;
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	atomic_set(&result->refcnt, 1);
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
209 getname_uflags(const char __user *filename, int uflags)
210 {
211 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212 
213 	return getname_flags(filename, flags, NULL);
214 }
215 
216 struct filename *
217 getname(const char __user * filename)
218 {
219 	return getname_flags(filename, 0, NULL);
220 }
221 
222 struct filename *
223 getname_kernel(const char * filename)
224 {
225 	struct filename *result;
226 	int len = strlen(filename) + 1;
227 
228 	result = __getname();
229 	if (unlikely(!result))
230 		return ERR_PTR(-ENOMEM);
231 
232 	if (len <= EMBEDDED_NAME_MAX) {
233 		result->name = (char *)result->iname;
234 	} else if (len <= PATH_MAX) {
235 		const size_t size = offsetof(struct filename, iname[1]);
236 		struct filename *tmp;
237 
238 		tmp = kmalloc(size, GFP_KERNEL);
239 		if (unlikely(!tmp)) {
240 			__putname(result);
241 			return ERR_PTR(-ENOMEM);
242 		}
243 		tmp->name = (char *)result;
244 		result = tmp;
245 	} else {
246 		__putname(result);
247 		return ERR_PTR(-ENAMETOOLONG);
248 	}
249 	memcpy((char *)result->name, filename, len);
250 	result->uptr = NULL;
251 	result->aname = NULL;
252 	atomic_set(&result->refcnt, 1);
253 	audit_getname(result);
254 
255 	return result;
256 }
257 EXPORT_SYMBOL(getname_kernel);
258 
259 void putname(struct filename *name)
260 {
261 	if (IS_ERR(name))
262 		return;
263 
264 	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
265 		return;
266 
267 	if (!atomic_dec_and_test(&name->refcnt))
268 		return;
269 
270 	if (name->name != name->iname) {
271 		__putname(name->name);
272 		kfree(name);
273 	} else
274 		__putname(name);
275 }
276 EXPORT_SYMBOL(putname);
277 
278 /**
279  * check_acl - perform ACL permission checking
280  * @idmap:	idmap of the mount the inode was found from
281  * @inode:	inode to check permissions on
282  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
283  *
284  * This function performs the ACL permission checking. Since this function
285  * retrieve POSIX acls it needs to know whether it is called from a blocking or
286  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
287  *
288  * If the inode has been found through an idmapped mount the idmap of
289  * the vfsmount must be passed through @idmap. This function will then take
290  * care to map the inode according to @idmap before checking permissions.
291  * On non-idmapped mounts or if permission checking is to be performed on the
292  * raw inode simply pass @nop_mnt_idmap.
293  */
294 static int check_acl(struct mnt_idmap *idmap,
295 		     struct inode *inode, int mask)
296 {
297 #ifdef CONFIG_FS_POSIX_ACL
298 	struct posix_acl *acl;
299 
300 	if (mask & MAY_NOT_BLOCK) {
301 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
302 	        if (!acl)
303 	                return -EAGAIN;
304 		/* no ->get_inode_acl() calls in RCU mode... */
305 		if (is_uncached_acl(acl))
306 			return -ECHILD;
307 	        return posix_acl_permission(idmap, inode, acl, mask);
308 	}
309 
310 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
311 	if (IS_ERR(acl))
312 		return PTR_ERR(acl);
313 	if (acl) {
314 	        int error = posix_acl_permission(idmap, inode, acl, mask);
315 	        posix_acl_release(acl);
316 	        return error;
317 	}
318 #endif
319 
320 	return -EAGAIN;
321 }
322 
323 /**
324  * acl_permission_check - perform basic UNIX permission checking
325  * @idmap:	idmap of the mount the inode was found from
326  * @inode:	inode to check permissions on
327  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
328  *
329  * This function performs the basic UNIX permission checking. Since this
330  * function may retrieve POSIX acls it needs to know whether it is called from a
331  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
332  *
333  * If the inode has been found through an idmapped mount the idmap of
334  * the vfsmount must be passed through @idmap. This function will then take
335  * care to map the inode according to @idmap before checking permissions.
336  * On non-idmapped mounts or if permission checking is to be performed on the
337  * raw inode simply pass @nop_mnt_idmap.
338  */
339 static int acl_permission_check(struct mnt_idmap *idmap,
340 				struct inode *inode, int mask)
341 {
342 	unsigned int mode = inode->i_mode;
343 	vfsuid_t vfsuid;
344 
345 	/* Are we the owner? If so, ACL's don't matter */
346 	vfsuid = i_uid_into_vfsuid(idmap, inode);
347 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
348 		mask &= 7;
349 		mode >>= 6;
350 		return (mask & ~mode) ? -EACCES : 0;
351 	}
352 
353 	/* Do we have ACL's? */
354 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
355 		int error = check_acl(idmap, inode, mask);
356 		if (error != -EAGAIN)
357 			return error;
358 	}
359 
360 	/* Only RWX matters for group/other mode bits */
361 	mask &= 7;
362 
363 	/*
364 	 * Are the group permissions different from
365 	 * the other permissions in the bits we care
366 	 * about? Need to check group ownership if so.
367 	 */
368 	if (mask & (mode ^ (mode >> 3))) {
369 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
370 		if (vfsgid_in_group_p(vfsgid))
371 			mode >>= 3;
372 	}
373 
374 	/* Bits in 'mode' clear that we require? */
375 	return (mask & ~mode) ? -EACCES : 0;
376 }
377 
378 /**
379  * generic_permission -  check for access rights on a Posix-like filesystem
380  * @idmap:	idmap of the mount the inode was found from
381  * @inode:	inode to check access rights for
382  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
383  *		%MAY_NOT_BLOCK ...)
384  *
385  * Used to check for read/write/execute permissions on a file.
386  * We use "fsuid" for this, letting us set arbitrary permissions
387  * for filesystem access without changing the "normal" uids which
388  * are used for other things.
389  *
390  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
391  * request cannot be satisfied (eg. requires blocking or too much complexity).
392  * It would then be called again in ref-walk mode.
393  *
394  * If the inode has been found through an idmapped mount the idmap of
395  * the vfsmount must be passed through @idmap. This function will then take
396  * care to map the inode according to @idmap before checking permissions.
397  * On non-idmapped mounts or if permission checking is to be performed on the
398  * raw inode simply pass @nop_mnt_idmap.
399  */
400 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
401 		       int mask)
402 {
403 	int ret;
404 
405 	/*
406 	 * Do the basic permission checks.
407 	 */
408 	ret = acl_permission_check(idmap, inode, mask);
409 	if (ret != -EACCES)
410 		return ret;
411 
412 	if (S_ISDIR(inode->i_mode)) {
413 		/* DACs are overridable for directories */
414 		if (!(mask & MAY_WRITE))
415 			if (capable_wrt_inode_uidgid(idmap, inode,
416 						     CAP_DAC_READ_SEARCH))
417 				return 0;
418 		if (capable_wrt_inode_uidgid(idmap, inode,
419 					     CAP_DAC_OVERRIDE))
420 			return 0;
421 		return -EACCES;
422 	}
423 
424 	/*
425 	 * Searching includes executable on directories, else just read.
426 	 */
427 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
428 	if (mask == MAY_READ)
429 		if (capable_wrt_inode_uidgid(idmap, inode,
430 					     CAP_DAC_READ_SEARCH))
431 			return 0;
432 	/*
433 	 * Read/write DACs are always overridable.
434 	 * Executable DACs are overridable when there is
435 	 * at least one exec bit set.
436 	 */
437 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
438 		if (capable_wrt_inode_uidgid(idmap, inode,
439 					     CAP_DAC_OVERRIDE))
440 			return 0;
441 
442 	return -EACCES;
443 }
444 EXPORT_SYMBOL(generic_permission);
445 
446 /**
447  * do_inode_permission - UNIX permission checking
448  * @idmap:	idmap of the mount the inode was found from
449  * @inode:	inode to check permissions on
450  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
451  *
452  * We _really_ want to just do "generic_permission()" without
453  * even looking at the inode->i_op values. So we keep a cache
454  * flag in inode->i_opflags, that says "this has not special
455  * permission function, use the fast case".
456  */
457 static inline int do_inode_permission(struct mnt_idmap *idmap,
458 				      struct inode *inode, int mask)
459 {
460 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
461 		if (likely(inode->i_op->permission))
462 			return inode->i_op->permission(idmap, inode, mask);
463 
464 		/* This gets set once for the inode lifetime */
465 		spin_lock(&inode->i_lock);
466 		inode->i_opflags |= IOP_FASTPERM;
467 		spin_unlock(&inode->i_lock);
468 	}
469 	return generic_permission(idmap, inode, mask);
470 }
471 
472 /**
473  * sb_permission - Check superblock-level permissions
474  * @sb: Superblock of inode to check permission on
475  * @inode: Inode to check permission on
476  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
477  *
478  * Separate out file-system wide checks from inode-specific permission checks.
479  */
480 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
481 {
482 	if (unlikely(mask & MAY_WRITE)) {
483 		umode_t mode = inode->i_mode;
484 
485 		/* Nobody gets write access to a read-only fs. */
486 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
487 			return -EROFS;
488 	}
489 	return 0;
490 }
491 
492 /**
493  * inode_permission - Check for access rights to a given inode
494  * @idmap:	idmap of the mount the inode was found from
495  * @inode:	Inode to check permission on
496  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
497  *
498  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
499  * this, letting us set arbitrary permissions for filesystem access without
500  * changing the "normal" UIDs which are used for other things.
501  *
502  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
503  */
504 int inode_permission(struct mnt_idmap *idmap,
505 		     struct inode *inode, int mask)
506 {
507 	int retval;
508 
509 	retval = sb_permission(inode->i_sb, inode, mask);
510 	if (retval)
511 		return retval;
512 
513 	if (unlikely(mask & MAY_WRITE)) {
514 		/*
515 		 * Nobody gets write access to an immutable file.
516 		 */
517 		if (IS_IMMUTABLE(inode))
518 			return -EPERM;
519 
520 		/*
521 		 * Updating mtime will likely cause i_uid and i_gid to be
522 		 * written back improperly if their true value is unknown
523 		 * to the vfs.
524 		 */
525 		if (HAS_UNMAPPED_ID(idmap, inode))
526 			return -EACCES;
527 	}
528 
529 	retval = do_inode_permission(idmap, inode, mask);
530 	if (retval)
531 		return retval;
532 
533 	retval = devcgroup_inode_permission(inode, mask);
534 	if (retval)
535 		return retval;
536 
537 	return security_inode_permission(inode, mask);
538 }
539 EXPORT_SYMBOL(inode_permission);
540 
541 /**
542  * path_get - get a reference to a path
543  * @path: path to get the reference to
544  *
545  * Given a path increment the reference count to the dentry and the vfsmount.
546  */
547 void path_get(const struct path *path)
548 {
549 	mntget(path->mnt);
550 	dget(path->dentry);
551 }
552 EXPORT_SYMBOL(path_get);
553 
554 /**
555  * path_put - put a reference to a path
556  * @path: path to put the reference to
557  *
558  * Given a path decrement the reference count to the dentry and the vfsmount.
559  */
560 void path_put(const struct path *path)
561 {
562 	dput(path->dentry);
563 	mntput(path->mnt);
564 }
565 EXPORT_SYMBOL(path_put);
566 
567 #define EMBEDDED_LEVELS 2
568 struct nameidata {
569 	struct path	path;
570 	struct qstr	last;
571 	struct path	root;
572 	struct inode	*inode; /* path.dentry.d_inode */
573 	unsigned int	flags, state;
574 	unsigned	seq, next_seq, m_seq, r_seq;
575 	int		last_type;
576 	unsigned	depth;
577 	int		total_link_count;
578 	struct saved {
579 		struct path link;
580 		struct delayed_call done;
581 		const char *name;
582 		unsigned seq;
583 	} *stack, internal[EMBEDDED_LEVELS];
584 	struct filename	*name;
585 	struct nameidata *saved;
586 	unsigned	root_seq;
587 	int		dfd;
588 	vfsuid_t	dir_vfsuid;
589 	umode_t		dir_mode;
590 } __randomize_layout;
591 
592 #define ND_ROOT_PRESET 1
593 #define ND_ROOT_GRABBED 2
594 #define ND_JUMPED 4
595 
596 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
597 {
598 	struct nameidata *old = current->nameidata;
599 	p->stack = p->internal;
600 	p->depth = 0;
601 	p->dfd = dfd;
602 	p->name = name;
603 	p->path.mnt = NULL;
604 	p->path.dentry = NULL;
605 	p->total_link_count = old ? old->total_link_count : 0;
606 	p->saved = old;
607 	current->nameidata = p;
608 }
609 
610 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
611 			  const struct path *root)
612 {
613 	__set_nameidata(p, dfd, name);
614 	p->state = 0;
615 	if (unlikely(root)) {
616 		p->state = ND_ROOT_PRESET;
617 		p->root = *root;
618 	}
619 }
620 
621 static void restore_nameidata(void)
622 {
623 	struct nameidata *now = current->nameidata, *old = now->saved;
624 
625 	current->nameidata = old;
626 	if (old)
627 		old->total_link_count = now->total_link_count;
628 	if (now->stack != now->internal)
629 		kfree(now->stack);
630 }
631 
632 static bool nd_alloc_stack(struct nameidata *nd)
633 {
634 	struct saved *p;
635 
636 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
637 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
638 	if (unlikely(!p))
639 		return false;
640 	memcpy(p, nd->internal, sizeof(nd->internal));
641 	nd->stack = p;
642 	return true;
643 }
644 
645 /**
646  * path_connected - Verify that a dentry is below mnt.mnt_root
647  * @mnt: The mountpoint to check.
648  * @dentry: The dentry to check.
649  *
650  * Rename can sometimes move a file or directory outside of a bind
651  * mount, path_connected allows those cases to be detected.
652  */
653 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
654 {
655 	struct super_block *sb = mnt->mnt_sb;
656 
657 	/* Bind mounts can have disconnected paths */
658 	if (mnt->mnt_root == sb->s_root)
659 		return true;
660 
661 	return is_subdir(dentry, mnt->mnt_root);
662 }
663 
664 static void drop_links(struct nameidata *nd)
665 {
666 	int i = nd->depth;
667 	while (i--) {
668 		struct saved *last = nd->stack + i;
669 		do_delayed_call(&last->done);
670 		clear_delayed_call(&last->done);
671 	}
672 }
673 
674 static void leave_rcu(struct nameidata *nd)
675 {
676 	nd->flags &= ~LOOKUP_RCU;
677 	nd->seq = nd->next_seq = 0;
678 	rcu_read_unlock();
679 }
680 
681 static void terminate_walk(struct nameidata *nd)
682 {
683 	drop_links(nd);
684 	if (!(nd->flags & LOOKUP_RCU)) {
685 		int i;
686 		path_put(&nd->path);
687 		for (i = 0; i < nd->depth; i++)
688 			path_put(&nd->stack[i].link);
689 		if (nd->state & ND_ROOT_GRABBED) {
690 			path_put(&nd->root);
691 			nd->state &= ~ND_ROOT_GRABBED;
692 		}
693 	} else {
694 		leave_rcu(nd);
695 	}
696 	nd->depth = 0;
697 	nd->path.mnt = NULL;
698 	nd->path.dentry = NULL;
699 }
700 
701 /* path_put is needed afterwards regardless of success or failure */
702 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
703 {
704 	int res = __legitimize_mnt(path->mnt, mseq);
705 	if (unlikely(res)) {
706 		if (res > 0)
707 			path->mnt = NULL;
708 		path->dentry = NULL;
709 		return false;
710 	}
711 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
712 		path->dentry = NULL;
713 		return false;
714 	}
715 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
716 }
717 
718 static inline bool legitimize_path(struct nameidata *nd,
719 			    struct path *path, unsigned seq)
720 {
721 	return __legitimize_path(path, seq, nd->m_seq);
722 }
723 
724 static bool legitimize_links(struct nameidata *nd)
725 {
726 	int i;
727 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
728 		drop_links(nd);
729 		nd->depth = 0;
730 		return false;
731 	}
732 	for (i = 0; i < nd->depth; i++) {
733 		struct saved *last = nd->stack + i;
734 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
735 			drop_links(nd);
736 			nd->depth = i + 1;
737 			return false;
738 		}
739 	}
740 	return true;
741 }
742 
743 static bool legitimize_root(struct nameidata *nd)
744 {
745 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
746 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
747 		return true;
748 	nd->state |= ND_ROOT_GRABBED;
749 	return legitimize_path(nd, &nd->root, nd->root_seq);
750 }
751 
752 /*
753  * Path walking has 2 modes, rcu-walk and ref-walk (see
754  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
755  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
756  * normal reference counts on dentries and vfsmounts to transition to ref-walk
757  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
758  * got stuck, so ref-walk may continue from there. If this is not successful
759  * (eg. a seqcount has changed), then failure is returned and it's up to caller
760  * to restart the path walk from the beginning in ref-walk mode.
761  */
762 
763 /**
764  * try_to_unlazy - try to switch to ref-walk mode.
765  * @nd: nameidata pathwalk data
766  * Returns: true on success, false on failure
767  *
768  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
769  * for ref-walk mode.
770  * Must be called from rcu-walk context.
771  * Nothing should touch nameidata between try_to_unlazy() failure and
772  * terminate_walk().
773  */
774 static bool try_to_unlazy(struct nameidata *nd)
775 {
776 	struct dentry *parent = nd->path.dentry;
777 
778 	BUG_ON(!(nd->flags & LOOKUP_RCU));
779 
780 	if (unlikely(!legitimize_links(nd)))
781 		goto out1;
782 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
783 		goto out;
784 	if (unlikely(!legitimize_root(nd)))
785 		goto out;
786 	leave_rcu(nd);
787 	BUG_ON(nd->inode != parent->d_inode);
788 	return true;
789 
790 out1:
791 	nd->path.mnt = NULL;
792 	nd->path.dentry = NULL;
793 out:
794 	leave_rcu(nd);
795 	return false;
796 }
797 
798 /**
799  * try_to_unlazy_next - try to switch to ref-walk mode.
800  * @nd: nameidata pathwalk data
801  * @dentry: next dentry to step into
802  * Returns: true on success, false on failure
803  *
804  * Similar to try_to_unlazy(), but here we have the next dentry already
805  * picked by rcu-walk and want to legitimize that in addition to the current
806  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
807  * Nothing should touch nameidata between try_to_unlazy_next() failure and
808  * terminate_walk().
809  */
810 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
811 {
812 	int res;
813 	BUG_ON(!(nd->flags & LOOKUP_RCU));
814 
815 	if (unlikely(!legitimize_links(nd)))
816 		goto out2;
817 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
818 	if (unlikely(res)) {
819 		if (res > 0)
820 			goto out2;
821 		goto out1;
822 	}
823 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
824 		goto out1;
825 
826 	/*
827 	 * We need to move both the parent and the dentry from the RCU domain
828 	 * to be properly refcounted. And the sequence number in the dentry
829 	 * validates *both* dentry counters, since we checked the sequence
830 	 * number of the parent after we got the child sequence number. So we
831 	 * know the parent must still be valid if the child sequence number is
832 	 */
833 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
834 		goto out;
835 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
836 		goto out_dput;
837 	/*
838 	 * Sequence counts matched. Now make sure that the root is
839 	 * still valid and get it if required.
840 	 */
841 	if (unlikely(!legitimize_root(nd)))
842 		goto out_dput;
843 	leave_rcu(nd);
844 	return true;
845 
846 out2:
847 	nd->path.mnt = NULL;
848 out1:
849 	nd->path.dentry = NULL;
850 out:
851 	leave_rcu(nd);
852 	return false;
853 out_dput:
854 	leave_rcu(nd);
855 	dput(dentry);
856 	return false;
857 }
858 
859 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
860 {
861 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
862 		return dentry->d_op->d_revalidate(dentry, flags);
863 	else
864 		return 1;
865 }
866 
867 /**
868  * complete_walk - successful completion of path walk
869  * @nd:  pointer nameidata
870  *
871  * If we had been in RCU mode, drop out of it and legitimize nd->path.
872  * Revalidate the final result, unless we'd already done that during
873  * the path walk or the filesystem doesn't ask for it.  Return 0 on
874  * success, -error on failure.  In case of failure caller does not
875  * need to drop nd->path.
876  */
877 static int complete_walk(struct nameidata *nd)
878 {
879 	struct dentry *dentry = nd->path.dentry;
880 	int status;
881 
882 	if (nd->flags & LOOKUP_RCU) {
883 		/*
884 		 * We don't want to zero nd->root for scoped-lookups or
885 		 * externally-managed nd->root.
886 		 */
887 		if (!(nd->state & ND_ROOT_PRESET))
888 			if (!(nd->flags & LOOKUP_IS_SCOPED))
889 				nd->root.mnt = NULL;
890 		nd->flags &= ~LOOKUP_CACHED;
891 		if (!try_to_unlazy(nd))
892 			return -ECHILD;
893 	}
894 
895 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
896 		/*
897 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
898 		 * ever step outside the root during lookup" and should already
899 		 * be guaranteed by the rest of namei, we want to avoid a namei
900 		 * BUG resulting in userspace being given a path that was not
901 		 * scoped within the root at some point during the lookup.
902 		 *
903 		 * So, do a final sanity-check to make sure that in the
904 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
905 		 * we won't silently return an fd completely outside of the
906 		 * requested root to userspace.
907 		 *
908 		 * Userspace could move the path outside the root after this
909 		 * check, but as discussed elsewhere this is not a concern (the
910 		 * resolved file was inside the root at some point).
911 		 */
912 		if (!path_is_under(&nd->path, &nd->root))
913 			return -EXDEV;
914 	}
915 
916 	if (likely(!(nd->state & ND_JUMPED)))
917 		return 0;
918 
919 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
920 		return 0;
921 
922 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
923 	if (status > 0)
924 		return 0;
925 
926 	if (!status)
927 		status = -ESTALE;
928 
929 	return status;
930 }
931 
932 static int set_root(struct nameidata *nd)
933 {
934 	struct fs_struct *fs = current->fs;
935 
936 	/*
937 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
938 	 * still have to ensure it doesn't happen because it will cause a breakout
939 	 * from the dirfd.
940 	 */
941 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
942 		return -ENOTRECOVERABLE;
943 
944 	if (nd->flags & LOOKUP_RCU) {
945 		unsigned seq;
946 
947 		do {
948 			seq = read_seqcount_begin(&fs->seq);
949 			nd->root = fs->root;
950 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
951 		} while (read_seqcount_retry(&fs->seq, seq));
952 	} else {
953 		get_fs_root(fs, &nd->root);
954 		nd->state |= ND_ROOT_GRABBED;
955 	}
956 	return 0;
957 }
958 
959 static int nd_jump_root(struct nameidata *nd)
960 {
961 	if (unlikely(nd->flags & LOOKUP_BENEATH))
962 		return -EXDEV;
963 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
964 		/* Absolute path arguments to path_init() are allowed. */
965 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
966 			return -EXDEV;
967 	}
968 	if (!nd->root.mnt) {
969 		int error = set_root(nd);
970 		if (error)
971 			return error;
972 	}
973 	if (nd->flags & LOOKUP_RCU) {
974 		struct dentry *d;
975 		nd->path = nd->root;
976 		d = nd->path.dentry;
977 		nd->inode = d->d_inode;
978 		nd->seq = nd->root_seq;
979 		if (read_seqcount_retry(&d->d_seq, nd->seq))
980 			return -ECHILD;
981 	} else {
982 		path_put(&nd->path);
983 		nd->path = nd->root;
984 		path_get(&nd->path);
985 		nd->inode = nd->path.dentry->d_inode;
986 	}
987 	nd->state |= ND_JUMPED;
988 	return 0;
989 }
990 
991 /*
992  * Helper to directly jump to a known parsed path from ->get_link,
993  * caller must have taken a reference to path beforehand.
994  */
995 int nd_jump_link(const struct path *path)
996 {
997 	int error = -ELOOP;
998 	struct nameidata *nd = current->nameidata;
999 
1000 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1001 		goto err;
1002 
1003 	error = -EXDEV;
1004 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1005 		if (nd->path.mnt != path->mnt)
1006 			goto err;
1007 	}
1008 	/* Not currently safe for scoped-lookups. */
1009 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1010 		goto err;
1011 
1012 	path_put(&nd->path);
1013 	nd->path = *path;
1014 	nd->inode = nd->path.dentry->d_inode;
1015 	nd->state |= ND_JUMPED;
1016 	return 0;
1017 
1018 err:
1019 	path_put(path);
1020 	return error;
1021 }
1022 
1023 static inline void put_link(struct nameidata *nd)
1024 {
1025 	struct saved *last = nd->stack + --nd->depth;
1026 	do_delayed_call(&last->done);
1027 	if (!(nd->flags & LOOKUP_RCU))
1028 		path_put(&last->link);
1029 }
1030 
1031 static int sysctl_protected_symlinks __read_mostly;
1032 static int sysctl_protected_hardlinks __read_mostly;
1033 static int sysctl_protected_fifos __read_mostly;
1034 static int sysctl_protected_regular __read_mostly;
1035 
1036 #ifdef CONFIG_SYSCTL
1037 static struct ctl_table namei_sysctls[] = {
1038 	{
1039 		.procname	= "protected_symlinks",
1040 		.data		= &sysctl_protected_symlinks,
1041 		.maxlen		= sizeof(int),
1042 		.mode		= 0644,
1043 		.proc_handler	= proc_dointvec_minmax,
1044 		.extra1		= SYSCTL_ZERO,
1045 		.extra2		= SYSCTL_ONE,
1046 	},
1047 	{
1048 		.procname	= "protected_hardlinks",
1049 		.data		= &sysctl_protected_hardlinks,
1050 		.maxlen		= sizeof(int),
1051 		.mode		= 0644,
1052 		.proc_handler	= proc_dointvec_minmax,
1053 		.extra1		= SYSCTL_ZERO,
1054 		.extra2		= SYSCTL_ONE,
1055 	},
1056 	{
1057 		.procname	= "protected_fifos",
1058 		.data		= &sysctl_protected_fifos,
1059 		.maxlen		= sizeof(int),
1060 		.mode		= 0644,
1061 		.proc_handler	= proc_dointvec_minmax,
1062 		.extra1		= SYSCTL_ZERO,
1063 		.extra2		= SYSCTL_TWO,
1064 	},
1065 	{
1066 		.procname	= "protected_regular",
1067 		.data		= &sysctl_protected_regular,
1068 		.maxlen		= sizeof(int),
1069 		.mode		= 0644,
1070 		.proc_handler	= proc_dointvec_minmax,
1071 		.extra1		= SYSCTL_ZERO,
1072 		.extra2		= SYSCTL_TWO,
1073 	},
1074 };
1075 
1076 static int __init init_fs_namei_sysctls(void)
1077 {
1078 	register_sysctl_init("fs", namei_sysctls);
1079 	return 0;
1080 }
1081 fs_initcall(init_fs_namei_sysctls);
1082 
1083 #endif /* CONFIG_SYSCTL */
1084 
1085 /**
1086  * may_follow_link - Check symlink following for unsafe situations
1087  * @nd: nameidata pathwalk data
1088  * @inode: Used for idmapping.
1089  *
1090  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1091  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1092  * in a sticky world-writable directory. This is to protect privileged
1093  * processes from failing races against path names that may change out
1094  * from under them by way of other users creating malicious symlinks.
1095  * It will permit symlinks to be followed only when outside a sticky
1096  * world-writable directory, or when the uid of the symlink and follower
1097  * match, or when the directory owner matches the symlink's owner.
1098  *
1099  * Returns 0 if following the symlink is allowed, -ve on error.
1100  */
1101 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1102 {
1103 	struct mnt_idmap *idmap;
1104 	vfsuid_t vfsuid;
1105 
1106 	if (!sysctl_protected_symlinks)
1107 		return 0;
1108 
1109 	idmap = mnt_idmap(nd->path.mnt);
1110 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1111 	/* Allowed if owner and follower match. */
1112 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1113 		return 0;
1114 
1115 	/* Allowed if parent directory not sticky and world-writable. */
1116 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1117 		return 0;
1118 
1119 	/* Allowed if parent directory and link owner match. */
1120 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1121 		return 0;
1122 
1123 	if (nd->flags & LOOKUP_RCU)
1124 		return -ECHILD;
1125 
1126 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1127 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1128 	return -EACCES;
1129 }
1130 
1131 /**
1132  * safe_hardlink_source - Check for safe hardlink conditions
1133  * @idmap: idmap of the mount the inode was found from
1134  * @inode: the source inode to hardlink from
1135  *
1136  * Return false if at least one of the following conditions:
1137  *    - inode is not a regular file
1138  *    - inode is setuid
1139  *    - inode is setgid and group-exec
1140  *    - access failure for read and write
1141  *
1142  * Otherwise returns true.
1143  */
1144 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1145 				 struct inode *inode)
1146 {
1147 	umode_t mode = inode->i_mode;
1148 
1149 	/* Special files should not get pinned to the filesystem. */
1150 	if (!S_ISREG(mode))
1151 		return false;
1152 
1153 	/* Setuid files should not get pinned to the filesystem. */
1154 	if (mode & S_ISUID)
1155 		return false;
1156 
1157 	/* Executable setgid files should not get pinned to the filesystem. */
1158 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1159 		return false;
1160 
1161 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1162 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1163 		return false;
1164 
1165 	return true;
1166 }
1167 
1168 /**
1169  * may_linkat - Check permissions for creating a hardlink
1170  * @idmap: idmap of the mount the inode was found from
1171  * @link:  the source to hardlink from
1172  *
1173  * Block hardlink when all of:
1174  *  - sysctl_protected_hardlinks enabled
1175  *  - fsuid does not match inode
1176  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1177  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1178  *
1179  * If the inode has been found through an idmapped mount the idmap of
1180  * the vfsmount must be passed through @idmap. This function will then take
1181  * care to map the inode according to @idmap before checking permissions.
1182  * On non-idmapped mounts or if permission checking is to be performed on the
1183  * raw inode simply pass @nop_mnt_idmap.
1184  *
1185  * Returns 0 if successful, -ve on error.
1186  */
1187 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1188 {
1189 	struct inode *inode = link->dentry->d_inode;
1190 
1191 	/* Inode writeback is not safe when the uid or gid are invalid. */
1192 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1193 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1194 		return -EOVERFLOW;
1195 
1196 	if (!sysctl_protected_hardlinks)
1197 		return 0;
1198 
1199 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1200 	 * otherwise, it must be a safe source.
1201 	 */
1202 	if (safe_hardlink_source(idmap, inode) ||
1203 	    inode_owner_or_capable(idmap, inode))
1204 		return 0;
1205 
1206 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1207 	return -EPERM;
1208 }
1209 
1210 /**
1211  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1212  *			  should be allowed, or not, on files that already
1213  *			  exist.
1214  * @idmap: idmap of the mount the inode was found from
1215  * @nd: nameidata pathwalk data
1216  * @inode: the inode of the file to open
1217  *
1218  * Block an O_CREAT open of a FIFO (or a regular file) when:
1219  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1220  *   - the file already exists
1221  *   - we are in a sticky directory
1222  *   - we don't own the file
1223  *   - the owner of the directory doesn't own the file
1224  *   - the directory is world writable
1225  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1226  * the directory doesn't have to be world writable: being group writable will
1227  * be enough.
1228  *
1229  * If the inode has been found through an idmapped mount the idmap of
1230  * the vfsmount must be passed through @idmap. This function will then take
1231  * care to map the inode according to @idmap before checking permissions.
1232  * On non-idmapped mounts or if permission checking is to be performed on the
1233  * raw inode simply pass @nop_mnt_idmap.
1234  *
1235  * Returns 0 if the open is allowed, -ve on error.
1236  */
1237 static int may_create_in_sticky(struct mnt_idmap *idmap,
1238 				struct nameidata *nd, struct inode *const inode)
1239 {
1240 	umode_t dir_mode = nd->dir_mode;
1241 	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1242 
1243 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1244 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1245 	    likely(!(dir_mode & S_ISVTX)) ||
1246 	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1247 	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1248 		return 0;
1249 
1250 	if (likely(dir_mode & 0002) ||
1251 	    (dir_mode & 0020 &&
1252 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1253 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1254 		const char *operation = S_ISFIFO(inode->i_mode) ?
1255 					"sticky_create_fifo" :
1256 					"sticky_create_regular";
1257 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1258 		return -EACCES;
1259 	}
1260 	return 0;
1261 }
1262 
1263 /*
1264  * follow_up - Find the mountpoint of path's vfsmount
1265  *
1266  * Given a path, find the mountpoint of its source file system.
1267  * Replace @path with the path of the mountpoint in the parent mount.
1268  * Up is towards /.
1269  *
1270  * Return 1 if we went up a level and 0 if we were already at the
1271  * root.
1272  */
1273 int follow_up(struct path *path)
1274 {
1275 	struct mount *mnt = real_mount(path->mnt);
1276 	struct mount *parent;
1277 	struct dentry *mountpoint;
1278 
1279 	read_seqlock_excl(&mount_lock);
1280 	parent = mnt->mnt_parent;
1281 	if (parent == mnt) {
1282 		read_sequnlock_excl(&mount_lock);
1283 		return 0;
1284 	}
1285 	mntget(&parent->mnt);
1286 	mountpoint = dget(mnt->mnt_mountpoint);
1287 	read_sequnlock_excl(&mount_lock);
1288 	dput(path->dentry);
1289 	path->dentry = mountpoint;
1290 	mntput(path->mnt);
1291 	path->mnt = &parent->mnt;
1292 	return 1;
1293 }
1294 EXPORT_SYMBOL(follow_up);
1295 
1296 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1297 				  struct path *path, unsigned *seqp)
1298 {
1299 	while (mnt_has_parent(m)) {
1300 		struct dentry *mountpoint = m->mnt_mountpoint;
1301 
1302 		m = m->mnt_parent;
1303 		if (unlikely(root->dentry == mountpoint &&
1304 			     root->mnt == &m->mnt))
1305 			break;
1306 		if (mountpoint != m->mnt.mnt_root) {
1307 			path->mnt = &m->mnt;
1308 			path->dentry = mountpoint;
1309 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1310 			return true;
1311 		}
1312 	}
1313 	return false;
1314 }
1315 
1316 static bool choose_mountpoint(struct mount *m, const struct path *root,
1317 			      struct path *path)
1318 {
1319 	bool found;
1320 
1321 	rcu_read_lock();
1322 	while (1) {
1323 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1324 
1325 		found = choose_mountpoint_rcu(m, root, path, &seq);
1326 		if (unlikely(!found)) {
1327 			if (!read_seqretry(&mount_lock, mseq))
1328 				break;
1329 		} else {
1330 			if (likely(__legitimize_path(path, seq, mseq)))
1331 				break;
1332 			rcu_read_unlock();
1333 			path_put(path);
1334 			rcu_read_lock();
1335 		}
1336 	}
1337 	rcu_read_unlock();
1338 	return found;
1339 }
1340 
1341 /*
1342  * Perform an automount
1343  * - return -EISDIR to tell follow_managed() to stop and return the path we
1344  *   were called with.
1345  */
1346 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1347 {
1348 	struct dentry *dentry = path->dentry;
1349 
1350 	/* We don't want to mount if someone's just doing a stat -
1351 	 * unless they're stat'ing a directory and appended a '/' to
1352 	 * the name.
1353 	 *
1354 	 * We do, however, want to mount if someone wants to open or
1355 	 * create a file of any type under the mountpoint, wants to
1356 	 * traverse through the mountpoint or wants to open the
1357 	 * mounted directory.  Also, autofs may mark negative dentries
1358 	 * as being automount points.  These will need the attentions
1359 	 * of the daemon to instantiate them before they can be used.
1360 	 */
1361 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1362 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1363 	    dentry->d_inode)
1364 		return -EISDIR;
1365 
1366 	if (count && (*count)++ >= MAXSYMLINKS)
1367 		return -ELOOP;
1368 
1369 	return finish_automount(dentry->d_op->d_automount(path), path);
1370 }
1371 
1372 /*
1373  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1374  * dentries are pinned but not locked here, so negative dentry can go
1375  * positive right under us.  Use of smp_load_acquire() provides a barrier
1376  * sufficient for ->d_inode and ->d_flags consistency.
1377  */
1378 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1379 			     int *count, unsigned lookup_flags)
1380 {
1381 	struct vfsmount *mnt = path->mnt;
1382 	bool need_mntput = false;
1383 	int ret = 0;
1384 
1385 	while (flags & DCACHE_MANAGED_DENTRY) {
1386 		/* Allow the filesystem to manage the transit without i_mutex
1387 		 * being held. */
1388 		if (flags & DCACHE_MANAGE_TRANSIT) {
1389 			ret = path->dentry->d_op->d_manage(path, false);
1390 			flags = smp_load_acquire(&path->dentry->d_flags);
1391 			if (ret < 0)
1392 				break;
1393 		}
1394 
1395 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1396 			struct vfsmount *mounted = lookup_mnt(path);
1397 			if (mounted) {		// ... in our namespace
1398 				dput(path->dentry);
1399 				if (need_mntput)
1400 					mntput(path->mnt);
1401 				path->mnt = mounted;
1402 				path->dentry = dget(mounted->mnt_root);
1403 				// here we know it's positive
1404 				flags = path->dentry->d_flags;
1405 				need_mntput = true;
1406 				continue;
1407 			}
1408 		}
1409 
1410 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1411 			break;
1412 
1413 		// uncovered automount point
1414 		ret = follow_automount(path, count, lookup_flags);
1415 		flags = smp_load_acquire(&path->dentry->d_flags);
1416 		if (ret < 0)
1417 			break;
1418 	}
1419 
1420 	if (ret == -EISDIR)
1421 		ret = 0;
1422 	// possible if you race with several mount --move
1423 	if (need_mntput && path->mnt == mnt)
1424 		mntput(path->mnt);
1425 	if (!ret && unlikely(d_flags_negative(flags)))
1426 		ret = -ENOENT;
1427 	*jumped = need_mntput;
1428 	return ret;
1429 }
1430 
1431 static inline int traverse_mounts(struct path *path, bool *jumped,
1432 				  int *count, unsigned lookup_flags)
1433 {
1434 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1435 
1436 	/* fastpath */
1437 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1438 		*jumped = false;
1439 		if (unlikely(d_flags_negative(flags)))
1440 			return -ENOENT;
1441 		return 0;
1442 	}
1443 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1444 }
1445 
1446 int follow_down_one(struct path *path)
1447 {
1448 	struct vfsmount *mounted;
1449 
1450 	mounted = lookup_mnt(path);
1451 	if (mounted) {
1452 		dput(path->dentry);
1453 		mntput(path->mnt);
1454 		path->mnt = mounted;
1455 		path->dentry = dget(mounted->mnt_root);
1456 		return 1;
1457 	}
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(follow_down_one);
1461 
1462 /*
1463  * Follow down to the covering mount currently visible to userspace.  At each
1464  * point, the filesystem owning that dentry may be queried as to whether the
1465  * caller is permitted to proceed or not.
1466  */
1467 int follow_down(struct path *path, unsigned int flags)
1468 {
1469 	struct vfsmount *mnt = path->mnt;
1470 	bool jumped;
1471 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1472 
1473 	if (path->mnt != mnt)
1474 		mntput(mnt);
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL(follow_down);
1478 
1479 /*
1480  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1481  * we meet a managed dentry that would need blocking.
1482  */
1483 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1484 {
1485 	struct dentry *dentry = path->dentry;
1486 	unsigned int flags = dentry->d_flags;
1487 
1488 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1489 		return true;
1490 
1491 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1492 		return false;
1493 
1494 	for (;;) {
1495 		/*
1496 		 * Don't forget we might have a non-mountpoint managed dentry
1497 		 * that wants to block transit.
1498 		 */
1499 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1500 			int res = dentry->d_op->d_manage(path, true);
1501 			if (res)
1502 				return res == -EISDIR;
1503 			flags = dentry->d_flags;
1504 		}
1505 
1506 		if (flags & DCACHE_MOUNTED) {
1507 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1508 			if (mounted) {
1509 				path->mnt = &mounted->mnt;
1510 				dentry = path->dentry = mounted->mnt.mnt_root;
1511 				nd->state |= ND_JUMPED;
1512 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1513 				flags = dentry->d_flags;
1514 				// makes sure that non-RCU pathwalk could reach
1515 				// this state.
1516 				if (read_seqretry(&mount_lock, nd->m_seq))
1517 					return false;
1518 				continue;
1519 			}
1520 			if (read_seqretry(&mount_lock, nd->m_seq))
1521 				return false;
1522 		}
1523 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1524 	}
1525 }
1526 
1527 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1528 			  struct path *path)
1529 {
1530 	bool jumped;
1531 	int ret;
1532 
1533 	path->mnt = nd->path.mnt;
1534 	path->dentry = dentry;
1535 	if (nd->flags & LOOKUP_RCU) {
1536 		unsigned int seq = nd->next_seq;
1537 		if (likely(__follow_mount_rcu(nd, path)))
1538 			return 0;
1539 		// *path and nd->next_seq might've been clobbered
1540 		path->mnt = nd->path.mnt;
1541 		path->dentry = dentry;
1542 		nd->next_seq = seq;
1543 		if (!try_to_unlazy_next(nd, dentry))
1544 			return -ECHILD;
1545 	}
1546 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1547 	if (jumped) {
1548 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1549 			ret = -EXDEV;
1550 		else
1551 			nd->state |= ND_JUMPED;
1552 	}
1553 	if (unlikely(ret)) {
1554 		dput(path->dentry);
1555 		if (path->mnt != nd->path.mnt)
1556 			mntput(path->mnt);
1557 	}
1558 	return ret;
1559 }
1560 
1561 /*
1562  * This looks up the name in dcache and possibly revalidates the found dentry.
1563  * NULL is returned if the dentry does not exist in the cache.
1564  */
1565 static struct dentry *lookup_dcache(const struct qstr *name,
1566 				    struct dentry *dir,
1567 				    unsigned int flags)
1568 {
1569 	struct dentry *dentry = d_lookup(dir, name);
1570 	if (dentry) {
1571 		int error = d_revalidate(dentry, flags);
1572 		if (unlikely(error <= 0)) {
1573 			if (!error)
1574 				d_invalidate(dentry);
1575 			dput(dentry);
1576 			return ERR_PTR(error);
1577 		}
1578 	}
1579 	return dentry;
1580 }
1581 
1582 /*
1583  * Parent directory has inode locked exclusive.  This is one
1584  * and only case when ->lookup() gets called on non in-lookup
1585  * dentries - as the matter of fact, this only gets called
1586  * when directory is guaranteed to have no in-lookup children
1587  * at all.
1588  */
1589 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1590 				    struct dentry *base,
1591 				    unsigned int flags)
1592 {
1593 	struct dentry *dentry = lookup_dcache(name, base, flags);
1594 	struct dentry *old;
1595 	struct inode *dir = base->d_inode;
1596 
1597 	if (dentry)
1598 		return dentry;
1599 
1600 	/* Don't create child dentry for a dead directory. */
1601 	if (unlikely(IS_DEADDIR(dir)))
1602 		return ERR_PTR(-ENOENT);
1603 
1604 	dentry = d_alloc(base, name);
1605 	if (unlikely(!dentry))
1606 		return ERR_PTR(-ENOMEM);
1607 
1608 	old = dir->i_op->lookup(dir, dentry, flags);
1609 	if (unlikely(old)) {
1610 		dput(dentry);
1611 		dentry = old;
1612 	}
1613 	return dentry;
1614 }
1615 EXPORT_SYMBOL(lookup_one_qstr_excl);
1616 
1617 static struct dentry *lookup_fast(struct nameidata *nd)
1618 {
1619 	struct dentry *dentry, *parent = nd->path.dentry;
1620 	int status = 1;
1621 
1622 	/*
1623 	 * Rename seqlock is not required here because in the off chance
1624 	 * of a false negative due to a concurrent rename, the caller is
1625 	 * going to fall back to non-racy lookup.
1626 	 */
1627 	if (nd->flags & LOOKUP_RCU) {
1628 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1629 		if (unlikely(!dentry)) {
1630 			if (!try_to_unlazy(nd))
1631 				return ERR_PTR(-ECHILD);
1632 			return NULL;
1633 		}
1634 
1635 		/*
1636 		 * This sequence count validates that the parent had no
1637 		 * changes while we did the lookup of the dentry above.
1638 		 */
1639 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1640 			return ERR_PTR(-ECHILD);
1641 
1642 		status = d_revalidate(dentry, nd->flags);
1643 		if (likely(status > 0))
1644 			return dentry;
1645 		if (!try_to_unlazy_next(nd, dentry))
1646 			return ERR_PTR(-ECHILD);
1647 		if (status == -ECHILD)
1648 			/* we'd been told to redo it in non-rcu mode */
1649 			status = d_revalidate(dentry, nd->flags);
1650 	} else {
1651 		dentry = __d_lookup(parent, &nd->last);
1652 		if (unlikely(!dentry))
1653 			return NULL;
1654 		status = d_revalidate(dentry, nd->flags);
1655 	}
1656 	if (unlikely(status <= 0)) {
1657 		if (!status)
1658 			d_invalidate(dentry);
1659 		dput(dentry);
1660 		return ERR_PTR(status);
1661 	}
1662 	return dentry;
1663 }
1664 
1665 /* Fast lookup failed, do it the slow way */
1666 static struct dentry *__lookup_slow(const struct qstr *name,
1667 				    struct dentry *dir,
1668 				    unsigned int flags)
1669 {
1670 	struct dentry *dentry, *old;
1671 	struct inode *inode = dir->d_inode;
1672 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1673 
1674 	/* Don't go there if it's already dead */
1675 	if (unlikely(IS_DEADDIR(inode)))
1676 		return ERR_PTR(-ENOENT);
1677 again:
1678 	dentry = d_alloc_parallel(dir, name, &wq);
1679 	if (IS_ERR(dentry))
1680 		return dentry;
1681 	if (unlikely(!d_in_lookup(dentry))) {
1682 		int error = d_revalidate(dentry, flags);
1683 		if (unlikely(error <= 0)) {
1684 			if (!error) {
1685 				d_invalidate(dentry);
1686 				dput(dentry);
1687 				goto again;
1688 			}
1689 			dput(dentry);
1690 			dentry = ERR_PTR(error);
1691 		}
1692 	} else {
1693 		old = inode->i_op->lookup(inode, dentry, flags);
1694 		d_lookup_done(dentry);
1695 		if (unlikely(old)) {
1696 			dput(dentry);
1697 			dentry = old;
1698 		}
1699 	}
1700 	return dentry;
1701 }
1702 
1703 static struct dentry *lookup_slow(const struct qstr *name,
1704 				  struct dentry *dir,
1705 				  unsigned int flags)
1706 {
1707 	struct inode *inode = dir->d_inode;
1708 	struct dentry *res;
1709 	inode_lock_shared(inode);
1710 	res = __lookup_slow(name, dir, flags);
1711 	inode_unlock_shared(inode);
1712 	return res;
1713 }
1714 
1715 static inline int may_lookup(struct mnt_idmap *idmap,
1716 			     struct nameidata *nd)
1717 {
1718 	if (nd->flags & LOOKUP_RCU) {
1719 		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1720 		if (!err)		// success, keep going
1721 			return 0;
1722 		if (!try_to_unlazy(nd))
1723 			return -ECHILD;	// redo it all non-lazy
1724 		if (err != -ECHILD)	// hard error
1725 			return err;
1726 	}
1727 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1728 }
1729 
1730 static int reserve_stack(struct nameidata *nd, struct path *link)
1731 {
1732 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1733 		return -ELOOP;
1734 
1735 	if (likely(nd->depth != EMBEDDED_LEVELS))
1736 		return 0;
1737 	if (likely(nd->stack != nd->internal))
1738 		return 0;
1739 	if (likely(nd_alloc_stack(nd)))
1740 		return 0;
1741 
1742 	if (nd->flags & LOOKUP_RCU) {
1743 		// we need to grab link before we do unlazy.  And we can't skip
1744 		// unlazy even if we fail to grab the link - cleanup needs it
1745 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1746 
1747 		if (!try_to_unlazy(nd) || !grabbed_link)
1748 			return -ECHILD;
1749 
1750 		if (nd_alloc_stack(nd))
1751 			return 0;
1752 	}
1753 	return -ENOMEM;
1754 }
1755 
1756 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1757 
1758 static const char *pick_link(struct nameidata *nd, struct path *link,
1759 		     struct inode *inode, int flags)
1760 {
1761 	struct saved *last;
1762 	const char *res;
1763 	int error = reserve_stack(nd, link);
1764 
1765 	if (unlikely(error)) {
1766 		if (!(nd->flags & LOOKUP_RCU))
1767 			path_put(link);
1768 		return ERR_PTR(error);
1769 	}
1770 	last = nd->stack + nd->depth++;
1771 	last->link = *link;
1772 	clear_delayed_call(&last->done);
1773 	last->seq = nd->next_seq;
1774 
1775 	if (flags & WALK_TRAILING) {
1776 		error = may_follow_link(nd, inode);
1777 		if (unlikely(error))
1778 			return ERR_PTR(error);
1779 	}
1780 
1781 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1782 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1783 		return ERR_PTR(-ELOOP);
1784 
1785 	if (!(nd->flags & LOOKUP_RCU)) {
1786 		touch_atime(&last->link);
1787 		cond_resched();
1788 	} else if (atime_needs_update(&last->link, inode)) {
1789 		if (!try_to_unlazy(nd))
1790 			return ERR_PTR(-ECHILD);
1791 		touch_atime(&last->link);
1792 	}
1793 
1794 	error = security_inode_follow_link(link->dentry, inode,
1795 					   nd->flags & LOOKUP_RCU);
1796 	if (unlikely(error))
1797 		return ERR_PTR(error);
1798 
1799 	res = READ_ONCE(inode->i_link);
1800 	if (!res) {
1801 		const char * (*get)(struct dentry *, struct inode *,
1802 				struct delayed_call *);
1803 		get = inode->i_op->get_link;
1804 		if (nd->flags & LOOKUP_RCU) {
1805 			res = get(NULL, inode, &last->done);
1806 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1807 				res = get(link->dentry, inode, &last->done);
1808 		} else {
1809 			res = get(link->dentry, inode, &last->done);
1810 		}
1811 		if (!res)
1812 			goto all_done;
1813 		if (IS_ERR(res))
1814 			return res;
1815 	}
1816 	if (*res == '/') {
1817 		error = nd_jump_root(nd);
1818 		if (unlikely(error))
1819 			return ERR_PTR(error);
1820 		while (unlikely(*++res == '/'))
1821 			;
1822 	}
1823 	if (*res)
1824 		return res;
1825 all_done: // pure jump
1826 	put_link(nd);
1827 	return NULL;
1828 }
1829 
1830 /*
1831  * Do we need to follow links? We _really_ want to be able
1832  * to do this check without having to look at inode->i_op,
1833  * so we keep a cache of "no, this doesn't need follow_link"
1834  * for the common case.
1835  *
1836  * NOTE: dentry must be what nd->next_seq had been sampled from.
1837  */
1838 static const char *step_into(struct nameidata *nd, int flags,
1839 		     struct dentry *dentry)
1840 {
1841 	struct path path;
1842 	struct inode *inode;
1843 	int err = handle_mounts(nd, dentry, &path);
1844 
1845 	if (err < 0)
1846 		return ERR_PTR(err);
1847 	inode = path.dentry->d_inode;
1848 	if (likely(!d_is_symlink(path.dentry)) ||
1849 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1850 	   (flags & WALK_NOFOLLOW)) {
1851 		/* not a symlink or should not follow */
1852 		if (nd->flags & LOOKUP_RCU) {
1853 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1854 				return ERR_PTR(-ECHILD);
1855 			if (unlikely(!inode))
1856 				return ERR_PTR(-ENOENT);
1857 		} else {
1858 			dput(nd->path.dentry);
1859 			if (nd->path.mnt != path.mnt)
1860 				mntput(nd->path.mnt);
1861 		}
1862 		nd->path = path;
1863 		nd->inode = inode;
1864 		nd->seq = nd->next_seq;
1865 		return NULL;
1866 	}
1867 	if (nd->flags & LOOKUP_RCU) {
1868 		/* make sure that d_is_symlink above matches inode */
1869 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1870 			return ERR_PTR(-ECHILD);
1871 	} else {
1872 		if (path.mnt == nd->path.mnt)
1873 			mntget(path.mnt);
1874 	}
1875 	return pick_link(nd, &path, inode, flags);
1876 }
1877 
1878 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1879 {
1880 	struct dentry *parent, *old;
1881 
1882 	if (path_equal(&nd->path, &nd->root))
1883 		goto in_root;
1884 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1885 		struct path path;
1886 		unsigned seq;
1887 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1888 					   &nd->root, &path, &seq))
1889 			goto in_root;
1890 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1891 			return ERR_PTR(-ECHILD);
1892 		nd->path = path;
1893 		nd->inode = path.dentry->d_inode;
1894 		nd->seq = seq;
1895 		// makes sure that non-RCU pathwalk could reach this state
1896 		if (read_seqretry(&mount_lock, nd->m_seq))
1897 			return ERR_PTR(-ECHILD);
1898 		/* we know that mountpoint was pinned */
1899 	}
1900 	old = nd->path.dentry;
1901 	parent = old->d_parent;
1902 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1903 	// makes sure that non-RCU pathwalk could reach this state
1904 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1905 		return ERR_PTR(-ECHILD);
1906 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1907 		return ERR_PTR(-ECHILD);
1908 	return parent;
1909 in_root:
1910 	if (read_seqretry(&mount_lock, nd->m_seq))
1911 		return ERR_PTR(-ECHILD);
1912 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1913 		return ERR_PTR(-ECHILD);
1914 	nd->next_seq = nd->seq;
1915 	return nd->path.dentry;
1916 }
1917 
1918 static struct dentry *follow_dotdot(struct nameidata *nd)
1919 {
1920 	struct dentry *parent;
1921 
1922 	if (path_equal(&nd->path, &nd->root))
1923 		goto in_root;
1924 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1925 		struct path path;
1926 
1927 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1928 				       &nd->root, &path))
1929 			goto in_root;
1930 		path_put(&nd->path);
1931 		nd->path = path;
1932 		nd->inode = path.dentry->d_inode;
1933 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1934 			return ERR_PTR(-EXDEV);
1935 	}
1936 	/* rare case of legitimate dget_parent()... */
1937 	parent = dget_parent(nd->path.dentry);
1938 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1939 		dput(parent);
1940 		return ERR_PTR(-ENOENT);
1941 	}
1942 	return parent;
1943 
1944 in_root:
1945 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1946 		return ERR_PTR(-EXDEV);
1947 	return dget(nd->path.dentry);
1948 }
1949 
1950 static const char *handle_dots(struct nameidata *nd, int type)
1951 {
1952 	if (type == LAST_DOTDOT) {
1953 		const char *error = NULL;
1954 		struct dentry *parent;
1955 
1956 		if (!nd->root.mnt) {
1957 			error = ERR_PTR(set_root(nd));
1958 			if (error)
1959 				return error;
1960 		}
1961 		if (nd->flags & LOOKUP_RCU)
1962 			parent = follow_dotdot_rcu(nd);
1963 		else
1964 			parent = follow_dotdot(nd);
1965 		if (IS_ERR(parent))
1966 			return ERR_CAST(parent);
1967 		error = step_into(nd, WALK_NOFOLLOW, parent);
1968 		if (unlikely(error))
1969 			return error;
1970 
1971 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1972 			/*
1973 			 * If there was a racing rename or mount along our
1974 			 * path, then we can't be sure that ".." hasn't jumped
1975 			 * above nd->root (and so userspace should retry or use
1976 			 * some fallback).
1977 			 */
1978 			smp_rmb();
1979 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1980 				return ERR_PTR(-EAGAIN);
1981 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1982 				return ERR_PTR(-EAGAIN);
1983 		}
1984 	}
1985 	return NULL;
1986 }
1987 
1988 static const char *walk_component(struct nameidata *nd, int flags)
1989 {
1990 	struct dentry *dentry;
1991 	/*
1992 	 * "." and ".." are special - ".." especially so because it has
1993 	 * to be able to know about the current root directory and
1994 	 * parent relationships.
1995 	 */
1996 	if (unlikely(nd->last_type != LAST_NORM)) {
1997 		if (!(flags & WALK_MORE) && nd->depth)
1998 			put_link(nd);
1999 		return handle_dots(nd, nd->last_type);
2000 	}
2001 	dentry = lookup_fast(nd);
2002 	if (IS_ERR(dentry))
2003 		return ERR_CAST(dentry);
2004 	if (unlikely(!dentry)) {
2005 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2006 		if (IS_ERR(dentry))
2007 			return ERR_CAST(dentry);
2008 	}
2009 	if (!(flags & WALK_MORE) && nd->depth)
2010 		put_link(nd);
2011 	return step_into(nd, flags, dentry);
2012 }
2013 
2014 /*
2015  * We can do the critical dentry name comparison and hashing
2016  * operations one word at a time, but we are limited to:
2017  *
2018  * - Architectures with fast unaligned word accesses. We could
2019  *   do a "get_unaligned()" if this helps and is sufficiently
2020  *   fast.
2021  *
2022  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2023  *   do not trap on the (extremely unlikely) case of a page
2024  *   crossing operation.
2025  *
2026  * - Furthermore, we need an efficient 64-bit compile for the
2027  *   64-bit case in order to generate the "number of bytes in
2028  *   the final mask". Again, that could be replaced with a
2029  *   efficient population count instruction or similar.
2030  */
2031 #ifdef CONFIG_DCACHE_WORD_ACCESS
2032 
2033 #include <asm/word-at-a-time.h>
2034 
2035 #ifdef HASH_MIX
2036 
2037 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2038 
2039 #elif defined(CONFIG_64BIT)
2040 /*
2041  * Register pressure in the mixing function is an issue, particularly
2042  * on 32-bit x86, but almost any function requires one state value and
2043  * one temporary.  Instead, use a function designed for two state values
2044  * and no temporaries.
2045  *
2046  * This function cannot create a collision in only two iterations, so
2047  * we have two iterations to achieve avalanche.  In those two iterations,
2048  * we have six layers of mixing, which is enough to spread one bit's
2049  * influence out to 2^6 = 64 state bits.
2050  *
2051  * Rotate constants are scored by considering either 64 one-bit input
2052  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2053  * probability of that delta causing a change to each of the 128 output
2054  * bits, using a sample of random initial states.
2055  *
2056  * The Shannon entropy of the computed probabilities is then summed
2057  * to produce a score.  Ideally, any input change has a 50% chance of
2058  * toggling any given output bit.
2059  *
2060  * Mixing scores (in bits) for (12,45):
2061  * Input delta: 1-bit      2-bit
2062  * 1 round:     713.3    42542.6
2063  * 2 rounds:   2753.7   140389.8
2064  * 3 rounds:   5954.1   233458.2
2065  * 4 rounds:   7862.6   256672.2
2066  * Perfect:    8192     258048
2067  *            (64*128) (64*63/2 * 128)
2068  */
2069 #define HASH_MIX(x, y, a)	\
2070 	(	x ^= (a),	\
2071 	y ^= x,	x = rol64(x,12),\
2072 	x += y,	y = rol64(y,45),\
2073 	y *= 9			)
2074 
2075 /*
2076  * Fold two longs into one 32-bit hash value.  This must be fast, but
2077  * latency isn't quite as critical, as there is a fair bit of additional
2078  * work done before the hash value is used.
2079  */
2080 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2081 {
2082 	y ^= x * GOLDEN_RATIO_64;
2083 	y *= GOLDEN_RATIO_64;
2084 	return y >> 32;
2085 }
2086 
2087 #else	/* 32-bit case */
2088 
2089 /*
2090  * Mixing scores (in bits) for (7,20):
2091  * Input delta: 1-bit      2-bit
2092  * 1 round:     330.3     9201.6
2093  * 2 rounds:   1246.4    25475.4
2094  * 3 rounds:   1907.1    31295.1
2095  * 4 rounds:   2042.3    31718.6
2096  * Perfect:    2048      31744
2097  *            (32*64)   (32*31/2 * 64)
2098  */
2099 #define HASH_MIX(x, y, a)	\
2100 	(	x ^= (a),	\
2101 	y ^= x,	x = rol32(x, 7),\
2102 	x += y,	y = rol32(y,20),\
2103 	y *= 9			)
2104 
2105 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2106 {
2107 	/* Use arch-optimized multiply if one exists */
2108 	return __hash_32(y ^ __hash_32(x));
2109 }
2110 
2111 #endif
2112 
2113 /*
2114  * Return the hash of a string of known length.  This is carfully
2115  * designed to match hash_name(), which is the more critical function.
2116  * In particular, we must end by hashing a final word containing 0..7
2117  * payload bytes, to match the way that hash_name() iterates until it
2118  * finds the delimiter after the name.
2119  */
2120 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2121 {
2122 	unsigned long a, x = 0, y = (unsigned long)salt;
2123 
2124 	for (;;) {
2125 		if (!len)
2126 			goto done;
2127 		a = load_unaligned_zeropad(name);
2128 		if (len < sizeof(unsigned long))
2129 			break;
2130 		HASH_MIX(x, y, a);
2131 		name += sizeof(unsigned long);
2132 		len -= sizeof(unsigned long);
2133 	}
2134 	x ^= a & bytemask_from_count(len);
2135 done:
2136 	return fold_hash(x, y);
2137 }
2138 EXPORT_SYMBOL(full_name_hash);
2139 
2140 /* Return the "hash_len" (hash and length) of a null-terminated string */
2141 u64 hashlen_string(const void *salt, const char *name)
2142 {
2143 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2144 	unsigned long adata, mask, len;
2145 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2146 
2147 	len = 0;
2148 	goto inside;
2149 
2150 	do {
2151 		HASH_MIX(x, y, a);
2152 		len += sizeof(unsigned long);
2153 inside:
2154 		a = load_unaligned_zeropad(name+len);
2155 	} while (!has_zero(a, &adata, &constants));
2156 
2157 	adata = prep_zero_mask(a, adata, &constants);
2158 	mask = create_zero_mask(adata);
2159 	x ^= a & zero_bytemask(mask);
2160 
2161 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2162 }
2163 EXPORT_SYMBOL(hashlen_string);
2164 
2165 /*
2166  * Calculate the length and hash of the path component, and
2167  * return the "hash_len" as the result.
2168  */
2169 static inline u64 hash_name(const void *salt, const char *name)
2170 {
2171 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2172 	unsigned long adata, bdata, mask, len;
2173 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2174 
2175 	len = 0;
2176 	goto inside;
2177 
2178 	do {
2179 		HASH_MIX(x, y, a);
2180 		len += sizeof(unsigned long);
2181 inside:
2182 		a = load_unaligned_zeropad(name+len);
2183 		b = a ^ REPEAT_BYTE('/');
2184 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2185 
2186 	adata = prep_zero_mask(a, adata, &constants);
2187 	bdata = prep_zero_mask(b, bdata, &constants);
2188 	mask = create_zero_mask(adata | bdata);
2189 	x ^= a & zero_bytemask(mask);
2190 
2191 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2192 }
2193 
2194 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2195 
2196 /* Return the hash of a string of known length */
2197 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2198 {
2199 	unsigned long hash = init_name_hash(salt);
2200 	while (len--)
2201 		hash = partial_name_hash((unsigned char)*name++, hash);
2202 	return end_name_hash(hash);
2203 }
2204 EXPORT_SYMBOL(full_name_hash);
2205 
2206 /* Return the "hash_len" (hash and length) of a null-terminated string */
2207 u64 hashlen_string(const void *salt, const char *name)
2208 {
2209 	unsigned long hash = init_name_hash(salt);
2210 	unsigned long len = 0, c;
2211 
2212 	c = (unsigned char)*name;
2213 	while (c) {
2214 		len++;
2215 		hash = partial_name_hash(c, hash);
2216 		c = (unsigned char)name[len];
2217 	}
2218 	return hashlen_create(end_name_hash(hash), len);
2219 }
2220 EXPORT_SYMBOL(hashlen_string);
2221 
2222 /*
2223  * We know there's a real path component here of at least
2224  * one character.
2225  */
2226 static inline u64 hash_name(const void *salt, const char *name)
2227 {
2228 	unsigned long hash = init_name_hash(salt);
2229 	unsigned long len = 0, c;
2230 
2231 	c = (unsigned char)*name;
2232 	do {
2233 		len++;
2234 		hash = partial_name_hash(c, hash);
2235 		c = (unsigned char)name[len];
2236 	} while (c && c != '/');
2237 	return hashlen_create(end_name_hash(hash), len);
2238 }
2239 
2240 #endif
2241 
2242 /*
2243  * Name resolution.
2244  * This is the basic name resolution function, turning a pathname into
2245  * the final dentry. We expect 'base' to be positive and a directory.
2246  *
2247  * Returns 0 and nd will have valid dentry and mnt on success.
2248  * Returns error and drops reference to input namei data on failure.
2249  */
2250 static int link_path_walk(const char *name, struct nameidata *nd)
2251 {
2252 	int depth = 0; // depth <= nd->depth
2253 	int err;
2254 
2255 	nd->last_type = LAST_ROOT;
2256 	nd->flags |= LOOKUP_PARENT;
2257 	if (IS_ERR(name))
2258 		return PTR_ERR(name);
2259 	while (*name=='/')
2260 		name++;
2261 	if (!*name) {
2262 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2263 		return 0;
2264 	}
2265 
2266 	/* At this point we know we have a real path component. */
2267 	for(;;) {
2268 		struct mnt_idmap *idmap;
2269 		const char *link;
2270 		u64 hash_len;
2271 		int type;
2272 
2273 		idmap = mnt_idmap(nd->path.mnt);
2274 		err = may_lookup(idmap, nd);
2275 		if (err)
2276 			return err;
2277 
2278 		hash_len = hash_name(nd->path.dentry, name);
2279 
2280 		type = LAST_NORM;
2281 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2282 			case 2:
2283 				if (name[1] == '.') {
2284 					type = LAST_DOTDOT;
2285 					nd->state |= ND_JUMPED;
2286 				}
2287 				break;
2288 			case 1:
2289 				type = LAST_DOT;
2290 		}
2291 		if (likely(type == LAST_NORM)) {
2292 			struct dentry *parent = nd->path.dentry;
2293 			nd->state &= ~ND_JUMPED;
2294 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2295 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2296 				err = parent->d_op->d_hash(parent, &this);
2297 				if (err < 0)
2298 					return err;
2299 				hash_len = this.hash_len;
2300 				name = this.name;
2301 			}
2302 		}
2303 
2304 		nd->last.hash_len = hash_len;
2305 		nd->last.name = name;
2306 		nd->last_type = type;
2307 
2308 		name += hashlen_len(hash_len);
2309 		if (!*name)
2310 			goto OK;
2311 		/*
2312 		 * If it wasn't NUL, we know it was '/'. Skip that
2313 		 * slash, and continue until no more slashes.
2314 		 */
2315 		do {
2316 			name++;
2317 		} while (unlikely(*name == '/'));
2318 		if (unlikely(!*name)) {
2319 OK:
2320 			/* pathname or trailing symlink, done */
2321 			if (!depth) {
2322 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2323 				nd->dir_mode = nd->inode->i_mode;
2324 				nd->flags &= ~LOOKUP_PARENT;
2325 				return 0;
2326 			}
2327 			/* last component of nested symlink */
2328 			name = nd->stack[--depth].name;
2329 			link = walk_component(nd, 0);
2330 		} else {
2331 			/* not the last component */
2332 			link = walk_component(nd, WALK_MORE);
2333 		}
2334 		if (unlikely(link)) {
2335 			if (IS_ERR(link))
2336 				return PTR_ERR(link);
2337 			/* a symlink to follow */
2338 			nd->stack[depth++].name = name;
2339 			name = link;
2340 			continue;
2341 		}
2342 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2343 			if (nd->flags & LOOKUP_RCU) {
2344 				if (!try_to_unlazy(nd))
2345 					return -ECHILD;
2346 			}
2347 			return -ENOTDIR;
2348 		}
2349 	}
2350 }
2351 
2352 /* must be paired with terminate_walk() */
2353 static const char *path_init(struct nameidata *nd, unsigned flags)
2354 {
2355 	int error;
2356 	const char *s = nd->name->name;
2357 
2358 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2359 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2360 		return ERR_PTR(-EAGAIN);
2361 
2362 	if (!*s)
2363 		flags &= ~LOOKUP_RCU;
2364 	if (flags & LOOKUP_RCU)
2365 		rcu_read_lock();
2366 	else
2367 		nd->seq = nd->next_seq = 0;
2368 
2369 	nd->flags = flags;
2370 	nd->state |= ND_JUMPED;
2371 
2372 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2373 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2374 	smp_rmb();
2375 
2376 	if (nd->state & ND_ROOT_PRESET) {
2377 		struct dentry *root = nd->root.dentry;
2378 		struct inode *inode = root->d_inode;
2379 		if (*s && unlikely(!d_can_lookup(root)))
2380 			return ERR_PTR(-ENOTDIR);
2381 		nd->path = nd->root;
2382 		nd->inode = inode;
2383 		if (flags & LOOKUP_RCU) {
2384 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2385 			nd->root_seq = nd->seq;
2386 		} else {
2387 			path_get(&nd->path);
2388 		}
2389 		return s;
2390 	}
2391 
2392 	nd->root.mnt = NULL;
2393 
2394 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2395 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2396 		error = nd_jump_root(nd);
2397 		if (unlikely(error))
2398 			return ERR_PTR(error);
2399 		return s;
2400 	}
2401 
2402 	/* Relative pathname -- get the starting-point it is relative to. */
2403 	if (nd->dfd == AT_FDCWD) {
2404 		if (flags & LOOKUP_RCU) {
2405 			struct fs_struct *fs = current->fs;
2406 			unsigned seq;
2407 
2408 			do {
2409 				seq = read_seqcount_begin(&fs->seq);
2410 				nd->path = fs->pwd;
2411 				nd->inode = nd->path.dentry->d_inode;
2412 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2413 			} while (read_seqcount_retry(&fs->seq, seq));
2414 		} else {
2415 			get_fs_pwd(current->fs, &nd->path);
2416 			nd->inode = nd->path.dentry->d_inode;
2417 		}
2418 	} else {
2419 		/* Caller must check execute permissions on the starting path component */
2420 		struct fd f = fdget_raw(nd->dfd);
2421 		struct dentry *dentry;
2422 
2423 		if (!f.file)
2424 			return ERR_PTR(-EBADF);
2425 
2426 		dentry = f.file->f_path.dentry;
2427 
2428 		if (*s && unlikely(!d_can_lookup(dentry))) {
2429 			fdput(f);
2430 			return ERR_PTR(-ENOTDIR);
2431 		}
2432 
2433 		nd->path = f.file->f_path;
2434 		if (flags & LOOKUP_RCU) {
2435 			nd->inode = nd->path.dentry->d_inode;
2436 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2437 		} else {
2438 			path_get(&nd->path);
2439 			nd->inode = nd->path.dentry->d_inode;
2440 		}
2441 		fdput(f);
2442 	}
2443 
2444 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2445 	if (flags & LOOKUP_IS_SCOPED) {
2446 		nd->root = nd->path;
2447 		if (flags & LOOKUP_RCU) {
2448 			nd->root_seq = nd->seq;
2449 		} else {
2450 			path_get(&nd->root);
2451 			nd->state |= ND_ROOT_GRABBED;
2452 		}
2453 	}
2454 	return s;
2455 }
2456 
2457 static inline const char *lookup_last(struct nameidata *nd)
2458 {
2459 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2460 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2461 
2462 	return walk_component(nd, WALK_TRAILING);
2463 }
2464 
2465 static int handle_lookup_down(struct nameidata *nd)
2466 {
2467 	if (!(nd->flags & LOOKUP_RCU))
2468 		dget(nd->path.dentry);
2469 	nd->next_seq = nd->seq;
2470 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2471 }
2472 
2473 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2474 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2475 {
2476 	const char *s = path_init(nd, flags);
2477 	int err;
2478 
2479 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2480 		err = handle_lookup_down(nd);
2481 		if (unlikely(err < 0))
2482 			s = ERR_PTR(err);
2483 	}
2484 
2485 	while (!(err = link_path_walk(s, nd)) &&
2486 	       (s = lookup_last(nd)) != NULL)
2487 		;
2488 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2489 		err = handle_lookup_down(nd);
2490 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2491 	}
2492 	if (!err)
2493 		err = complete_walk(nd);
2494 
2495 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2496 		if (!d_can_lookup(nd->path.dentry))
2497 			err = -ENOTDIR;
2498 	if (!err) {
2499 		*path = nd->path;
2500 		nd->path.mnt = NULL;
2501 		nd->path.dentry = NULL;
2502 	}
2503 	terminate_walk(nd);
2504 	return err;
2505 }
2506 
2507 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2508 		    struct path *path, struct path *root)
2509 {
2510 	int retval;
2511 	struct nameidata nd;
2512 	if (IS_ERR(name))
2513 		return PTR_ERR(name);
2514 	set_nameidata(&nd, dfd, name, root);
2515 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2516 	if (unlikely(retval == -ECHILD))
2517 		retval = path_lookupat(&nd, flags, path);
2518 	if (unlikely(retval == -ESTALE))
2519 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2520 
2521 	if (likely(!retval))
2522 		audit_inode(name, path->dentry,
2523 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2524 	restore_nameidata();
2525 	return retval;
2526 }
2527 
2528 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2529 static int path_parentat(struct nameidata *nd, unsigned flags,
2530 				struct path *parent)
2531 {
2532 	const char *s = path_init(nd, flags);
2533 	int err = link_path_walk(s, nd);
2534 	if (!err)
2535 		err = complete_walk(nd);
2536 	if (!err) {
2537 		*parent = nd->path;
2538 		nd->path.mnt = NULL;
2539 		nd->path.dentry = NULL;
2540 	}
2541 	terminate_walk(nd);
2542 	return err;
2543 }
2544 
2545 /* Note: this does not consume "name" */
2546 static int __filename_parentat(int dfd, struct filename *name,
2547 			       unsigned int flags, struct path *parent,
2548 			       struct qstr *last, int *type,
2549 			       const struct path *root)
2550 {
2551 	int retval;
2552 	struct nameidata nd;
2553 
2554 	if (IS_ERR(name))
2555 		return PTR_ERR(name);
2556 	set_nameidata(&nd, dfd, name, root);
2557 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2558 	if (unlikely(retval == -ECHILD))
2559 		retval = path_parentat(&nd, flags, parent);
2560 	if (unlikely(retval == -ESTALE))
2561 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2562 	if (likely(!retval)) {
2563 		*last = nd.last;
2564 		*type = nd.last_type;
2565 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2566 	}
2567 	restore_nameidata();
2568 	return retval;
2569 }
2570 
2571 static int filename_parentat(int dfd, struct filename *name,
2572 			     unsigned int flags, struct path *parent,
2573 			     struct qstr *last, int *type)
2574 {
2575 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2576 }
2577 
2578 /* does lookup, returns the object with parent locked */
2579 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2580 {
2581 	struct dentry *d;
2582 	struct qstr last;
2583 	int type, error;
2584 
2585 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2586 	if (error)
2587 		return ERR_PTR(error);
2588 	if (unlikely(type != LAST_NORM)) {
2589 		path_put(path);
2590 		return ERR_PTR(-EINVAL);
2591 	}
2592 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2593 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2594 	if (IS_ERR(d)) {
2595 		inode_unlock(path->dentry->d_inode);
2596 		path_put(path);
2597 	}
2598 	return d;
2599 }
2600 
2601 struct dentry *kern_path_locked(const char *name, struct path *path)
2602 {
2603 	struct filename *filename = getname_kernel(name);
2604 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2605 
2606 	putname(filename);
2607 	return res;
2608 }
2609 
2610 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2611 {
2612 	struct filename *filename = getname(name);
2613 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2614 
2615 	putname(filename);
2616 	return res;
2617 }
2618 EXPORT_SYMBOL(user_path_locked_at);
2619 
2620 int kern_path(const char *name, unsigned int flags, struct path *path)
2621 {
2622 	struct filename *filename = getname_kernel(name);
2623 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2624 
2625 	putname(filename);
2626 	return ret;
2627 
2628 }
2629 EXPORT_SYMBOL(kern_path);
2630 
2631 /**
2632  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2633  * @filename: filename structure
2634  * @flags: lookup flags
2635  * @parent: pointer to struct path to fill
2636  * @last: last component
2637  * @type: type of the last component
2638  * @root: pointer to struct path of the base directory
2639  */
2640 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2641 			   struct path *parent, struct qstr *last, int *type,
2642 			   const struct path *root)
2643 {
2644 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2645 				    type, root);
2646 }
2647 EXPORT_SYMBOL(vfs_path_parent_lookup);
2648 
2649 /**
2650  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2651  * @dentry:  pointer to dentry of the base directory
2652  * @mnt: pointer to vfs mount of the base directory
2653  * @name: pointer to file name
2654  * @flags: lookup flags
2655  * @path: pointer to struct path to fill
2656  */
2657 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2658 		    const char *name, unsigned int flags,
2659 		    struct path *path)
2660 {
2661 	struct filename *filename;
2662 	struct path root = {.mnt = mnt, .dentry = dentry};
2663 	int ret;
2664 
2665 	filename = getname_kernel(name);
2666 	/* the first argument of filename_lookup() is ignored with root */
2667 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2668 	putname(filename);
2669 	return ret;
2670 }
2671 EXPORT_SYMBOL(vfs_path_lookup);
2672 
2673 static int lookup_one_common(struct mnt_idmap *idmap,
2674 			     const char *name, struct dentry *base, int len,
2675 			     struct qstr *this)
2676 {
2677 	this->name = name;
2678 	this->len = len;
2679 	this->hash = full_name_hash(base, name, len);
2680 	if (!len)
2681 		return -EACCES;
2682 
2683 	if (is_dot_dotdot(name, len))
2684 		return -EACCES;
2685 
2686 	while (len--) {
2687 		unsigned int c = *(const unsigned char *)name++;
2688 		if (c == '/' || c == '\0')
2689 			return -EACCES;
2690 	}
2691 	/*
2692 	 * See if the low-level filesystem might want
2693 	 * to use its own hash..
2694 	 */
2695 	if (base->d_flags & DCACHE_OP_HASH) {
2696 		int err = base->d_op->d_hash(base, this);
2697 		if (err < 0)
2698 			return err;
2699 	}
2700 
2701 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2702 }
2703 
2704 /**
2705  * try_lookup_one_len - filesystem helper to lookup single pathname component
2706  * @name:	pathname component to lookup
2707  * @base:	base directory to lookup from
2708  * @len:	maximum length @len should be interpreted to
2709  *
2710  * Look up a dentry by name in the dcache, returning NULL if it does not
2711  * currently exist.  The function does not try to create a dentry.
2712  *
2713  * Note that this routine is purely a helper for filesystem usage and should
2714  * not be called by generic code.
2715  *
2716  * The caller must hold base->i_mutex.
2717  */
2718 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2719 {
2720 	struct qstr this;
2721 	int err;
2722 
2723 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2724 
2725 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2726 	if (err)
2727 		return ERR_PTR(err);
2728 
2729 	return lookup_dcache(&this, base, 0);
2730 }
2731 EXPORT_SYMBOL(try_lookup_one_len);
2732 
2733 /**
2734  * lookup_one_len - filesystem helper to lookup single pathname component
2735  * @name:	pathname component to lookup
2736  * @base:	base directory to lookup from
2737  * @len:	maximum length @len should be interpreted to
2738  *
2739  * Note that this routine is purely a helper for filesystem usage and should
2740  * not be called by generic code.
2741  *
2742  * The caller must hold base->i_mutex.
2743  */
2744 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2745 {
2746 	struct dentry *dentry;
2747 	struct qstr this;
2748 	int err;
2749 
2750 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2751 
2752 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2753 	if (err)
2754 		return ERR_PTR(err);
2755 
2756 	dentry = lookup_dcache(&this, base, 0);
2757 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2758 }
2759 EXPORT_SYMBOL(lookup_one_len);
2760 
2761 /**
2762  * lookup_one - filesystem helper to lookup single pathname component
2763  * @idmap:	idmap of the mount the lookup is performed from
2764  * @name:	pathname component to lookup
2765  * @base:	base directory to lookup from
2766  * @len:	maximum length @len should be interpreted to
2767  *
2768  * Note that this routine is purely a helper for filesystem usage and should
2769  * not be called by generic code.
2770  *
2771  * The caller must hold base->i_mutex.
2772  */
2773 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2774 			  struct dentry *base, int len)
2775 {
2776 	struct dentry *dentry;
2777 	struct qstr this;
2778 	int err;
2779 
2780 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2781 
2782 	err = lookup_one_common(idmap, name, base, len, &this);
2783 	if (err)
2784 		return ERR_PTR(err);
2785 
2786 	dentry = lookup_dcache(&this, base, 0);
2787 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2788 }
2789 EXPORT_SYMBOL(lookup_one);
2790 
2791 /**
2792  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2793  * @idmap:	idmap of the mount the lookup is performed from
2794  * @name:	pathname component to lookup
2795  * @base:	base directory to lookup from
2796  * @len:	maximum length @len should be interpreted to
2797  *
2798  * Note that this routine is purely a helper for filesystem usage and should
2799  * not be called by generic code.
2800  *
2801  * Unlike lookup_one_len, it should be called without the parent
2802  * i_mutex held, and will take the i_mutex itself if necessary.
2803  */
2804 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2805 				   const char *name, struct dentry *base,
2806 				   int len)
2807 {
2808 	struct qstr this;
2809 	int err;
2810 	struct dentry *ret;
2811 
2812 	err = lookup_one_common(idmap, name, base, len, &this);
2813 	if (err)
2814 		return ERR_PTR(err);
2815 
2816 	ret = lookup_dcache(&this, base, 0);
2817 	if (!ret)
2818 		ret = lookup_slow(&this, base, 0);
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL(lookup_one_unlocked);
2822 
2823 /**
2824  * lookup_one_positive_unlocked - filesystem helper to lookup single
2825  *				  pathname component
2826  * @idmap:	idmap of the mount the lookup is performed from
2827  * @name:	pathname component to lookup
2828  * @base:	base directory to lookup from
2829  * @len:	maximum length @len should be interpreted to
2830  *
2831  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2832  * known positive or ERR_PTR(). This is what most of the users want.
2833  *
2834  * Note that pinned negative with unlocked parent _can_ become positive at any
2835  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2836  * positives have >d_inode stable, so this one avoids such problems.
2837  *
2838  * Note that this routine is purely a helper for filesystem usage and should
2839  * not be called by generic code.
2840  *
2841  * The helper should be called without i_mutex held.
2842  */
2843 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2844 					    const char *name,
2845 					    struct dentry *base, int len)
2846 {
2847 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2848 
2849 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2850 		dput(ret);
2851 		ret = ERR_PTR(-ENOENT);
2852 	}
2853 	return ret;
2854 }
2855 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2856 
2857 /**
2858  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2859  * @name:	pathname component to lookup
2860  * @base:	base directory to lookup from
2861  * @len:	maximum length @len should be interpreted to
2862  *
2863  * Note that this routine is purely a helper for filesystem usage and should
2864  * not be called by generic code.
2865  *
2866  * Unlike lookup_one_len, it should be called without the parent
2867  * i_mutex held, and will take the i_mutex itself if necessary.
2868  */
2869 struct dentry *lookup_one_len_unlocked(const char *name,
2870 				       struct dentry *base, int len)
2871 {
2872 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2873 }
2874 EXPORT_SYMBOL(lookup_one_len_unlocked);
2875 
2876 /*
2877  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2878  * on negatives.  Returns known positive or ERR_PTR(); that's what
2879  * most of the users want.  Note that pinned negative with unlocked parent
2880  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2881  * need to be very careful; pinned positives have ->d_inode stable, so
2882  * this one avoids such problems.
2883  */
2884 struct dentry *lookup_positive_unlocked(const char *name,
2885 				       struct dentry *base, int len)
2886 {
2887 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2888 }
2889 EXPORT_SYMBOL(lookup_positive_unlocked);
2890 
2891 #ifdef CONFIG_UNIX98_PTYS
2892 int path_pts(struct path *path)
2893 {
2894 	/* Find something mounted on "pts" in the same directory as
2895 	 * the input path.
2896 	 */
2897 	struct dentry *parent = dget_parent(path->dentry);
2898 	struct dentry *child;
2899 	struct qstr this = QSTR_INIT("pts", 3);
2900 
2901 	if (unlikely(!path_connected(path->mnt, parent))) {
2902 		dput(parent);
2903 		return -ENOENT;
2904 	}
2905 	dput(path->dentry);
2906 	path->dentry = parent;
2907 	child = d_hash_and_lookup(parent, &this);
2908 	if (IS_ERR_OR_NULL(child))
2909 		return -ENOENT;
2910 
2911 	path->dentry = child;
2912 	dput(parent);
2913 	follow_down(path, 0);
2914 	return 0;
2915 }
2916 #endif
2917 
2918 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2919 		 struct path *path, int *empty)
2920 {
2921 	struct filename *filename = getname_flags(name, flags, empty);
2922 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2923 
2924 	putname(filename);
2925 	return ret;
2926 }
2927 EXPORT_SYMBOL(user_path_at_empty);
2928 
2929 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2930 		   struct inode *inode)
2931 {
2932 	kuid_t fsuid = current_fsuid();
2933 
2934 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2935 		return 0;
2936 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2937 		return 0;
2938 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2939 }
2940 EXPORT_SYMBOL(__check_sticky);
2941 
2942 /*
2943  *	Check whether we can remove a link victim from directory dir, check
2944  *  whether the type of victim is right.
2945  *  1. We can't do it if dir is read-only (done in permission())
2946  *  2. We should have write and exec permissions on dir
2947  *  3. We can't remove anything from append-only dir
2948  *  4. We can't do anything with immutable dir (done in permission())
2949  *  5. If the sticky bit on dir is set we should either
2950  *	a. be owner of dir, or
2951  *	b. be owner of victim, or
2952  *	c. have CAP_FOWNER capability
2953  *  6. If the victim is append-only or immutable we can't do antyhing with
2954  *     links pointing to it.
2955  *  7. If the victim has an unknown uid or gid we can't change the inode.
2956  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2957  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2958  * 10. We can't remove a root or mountpoint.
2959  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2960  *     nfs_async_unlink().
2961  */
2962 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2963 		      struct dentry *victim, bool isdir)
2964 {
2965 	struct inode *inode = d_backing_inode(victim);
2966 	int error;
2967 
2968 	if (d_is_negative(victim))
2969 		return -ENOENT;
2970 	BUG_ON(!inode);
2971 
2972 	BUG_ON(victim->d_parent->d_inode != dir);
2973 
2974 	/* Inode writeback is not safe when the uid or gid are invalid. */
2975 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2976 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2977 		return -EOVERFLOW;
2978 
2979 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2980 
2981 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2982 	if (error)
2983 		return error;
2984 	if (IS_APPEND(dir))
2985 		return -EPERM;
2986 
2987 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2988 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2989 	    HAS_UNMAPPED_ID(idmap, inode))
2990 		return -EPERM;
2991 	if (isdir) {
2992 		if (!d_is_dir(victim))
2993 			return -ENOTDIR;
2994 		if (IS_ROOT(victim))
2995 			return -EBUSY;
2996 	} else if (d_is_dir(victim))
2997 		return -EISDIR;
2998 	if (IS_DEADDIR(dir))
2999 		return -ENOENT;
3000 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3001 		return -EBUSY;
3002 	return 0;
3003 }
3004 
3005 /*	Check whether we can create an object with dentry child in directory
3006  *  dir.
3007  *  1. We can't do it if child already exists (open has special treatment for
3008  *     this case, but since we are inlined it's OK)
3009  *  2. We can't do it if dir is read-only (done in permission())
3010  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3011  *  4. We should have write and exec permissions on dir
3012  *  5. We can't do it if dir is immutable (done in permission())
3013  */
3014 static inline int may_create(struct mnt_idmap *idmap,
3015 			     struct inode *dir, struct dentry *child)
3016 {
3017 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3018 	if (child->d_inode)
3019 		return -EEXIST;
3020 	if (IS_DEADDIR(dir))
3021 		return -ENOENT;
3022 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3023 		return -EOVERFLOW;
3024 
3025 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3026 }
3027 
3028 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3029 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3030 {
3031 	struct dentry *p = p1, *q = p2, *r;
3032 
3033 	while ((r = p->d_parent) != p2 && r != p)
3034 		p = r;
3035 	if (r == p2) {
3036 		// p is a child of p2 and an ancestor of p1 or p1 itself
3037 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3038 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3039 		return p;
3040 	}
3041 	// p is the root of connected component that contains p1
3042 	// p2 does not occur on the path from p to p1
3043 	while ((r = q->d_parent) != p1 && r != p && r != q)
3044 		q = r;
3045 	if (r == p1) {
3046 		// q is a child of p1 and an ancestor of p2 or p2 itself
3047 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3048 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3049 		return q;
3050 	} else if (likely(r == p)) {
3051 		// both p2 and p1 are descendents of p
3052 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3053 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3054 		return NULL;
3055 	} else { // no common ancestor at the time we'd been called
3056 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3057 		return ERR_PTR(-EXDEV);
3058 	}
3059 }
3060 
3061 /*
3062  * p1 and p2 should be directories on the same fs.
3063  */
3064 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3065 {
3066 	if (p1 == p2) {
3067 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3068 		return NULL;
3069 	}
3070 
3071 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3072 	return lock_two_directories(p1, p2);
3073 }
3074 EXPORT_SYMBOL(lock_rename);
3075 
3076 /*
3077  * c1 and p2 should be on the same fs.
3078  */
3079 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3080 {
3081 	if (READ_ONCE(c1->d_parent) == p2) {
3082 		/*
3083 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3084 		 */
3085 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3086 		/*
3087 		 * now that p2 is locked, nobody can move in or out of it,
3088 		 * so the test below is safe.
3089 		 */
3090 		if (likely(c1->d_parent == p2))
3091 			return NULL;
3092 
3093 		/*
3094 		 * c1 got moved out of p2 while we'd been taking locks;
3095 		 * unlock and fall back to slow case.
3096 		 */
3097 		inode_unlock(p2->d_inode);
3098 	}
3099 
3100 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3101 	/*
3102 	 * nobody can move out of any directories on this fs.
3103 	 */
3104 	if (likely(c1->d_parent != p2))
3105 		return lock_two_directories(c1->d_parent, p2);
3106 
3107 	/*
3108 	 * c1 got moved into p2 while we were taking locks;
3109 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3110 	 * for consistency with lock_rename().
3111 	 */
3112 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3113 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3114 	return NULL;
3115 }
3116 EXPORT_SYMBOL(lock_rename_child);
3117 
3118 void unlock_rename(struct dentry *p1, struct dentry *p2)
3119 {
3120 	inode_unlock(p1->d_inode);
3121 	if (p1 != p2) {
3122 		inode_unlock(p2->d_inode);
3123 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3124 	}
3125 }
3126 EXPORT_SYMBOL(unlock_rename);
3127 
3128 /**
3129  * vfs_prepare_mode - prepare the mode to be used for a new inode
3130  * @idmap:	idmap of the mount the inode was found from
3131  * @dir:	parent directory of the new inode
3132  * @mode:	mode of the new inode
3133  * @mask_perms:	allowed permission by the vfs
3134  * @type:	type of file to be created
3135  *
3136  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3137  * object to be created.
3138  *
3139  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3140  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3141  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3142  * POSIX ACL supporting filesystems.
3143  *
3144  * Note that it's currently valid for @type to be 0 if a directory is created.
3145  * Filesystems raise that flag individually and we need to check whether each
3146  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3147  * non-zero type.
3148  *
3149  * Returns: mode to be passed to the filesystem
3150  */
3151 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3152 				       const struct inode *dir, umode_t mode,
3153 				       umode_t mask_perms, umode_t type)
3154 {
3155 	mode = mode_strip_sgid(idmap, dir, mode);
3156 	mode = mode_strip_umask(dir, mode);
3157 
3158 	/*
3159 	 * Apply the vfs mandated allowed permission mask and set the type of
3160 	 * file to be created before we call into the filesystem.
3161 	 */
3162 	mode &= (mask_perms & ~S_IFMT);
3163 	mode |= (type & S_IFMT);
3164 
3165 	return mode;
3166 }
3167 
3168 /**
3169  * vfs_create - create new file
3170  * @idmap:	idmap of the mount the inode was found from
3171  * @dir:	inode of @dentry
3172  * @dentry:	pointer to dentry of the base directory
3173  * @mode:	mode of the new file
3174  * @want_excl:	whether the file must not yet exist
3175  *
3176  * Create a new file.
3177  *
3178  * If the inode has been found through an idmapped mount the idmap of
3179  * the vfsmount must be passed through @idmap. This function will then take
3180  * care to map the inode according to @idmap before checking permissions.
3181  * On non-idmapped mounts or if permission checking is to be performed on the
3182  * raw inode simply pass @nop_mnt_idmap.
3183  */
3184 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3185 	       struct dentry *dentry, umode_t mode, bool want_excl)
3186 {
3187 	int error;
3188 
3189 	error = may_create(idmap, dir, dentry);
3190 	if (error)
3191 		return error;
3192 
3193 	if (!dir->i_op->create)
3194 		return -EACCES;	/* shouldn't it be ENOSYS? */
3195 
3196 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3197 	error = security_inode_create(dir, dentry, mode);
3198 	if (error)
3199 		return error;
3200 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3201 	if (!error)
3202 		fsnotify_create(dir, dentry);
3203 	return error;
3204 }
3205 EXPORT_SYMBOL(vfs_create);
3206 
3207 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3208 		int (*f)(struct dentry *, umode_t, void *),
3209 		void *arg)
3210 {
3211 	struct inode *dir = dentry->d_parent->d_inode;
3212 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3213 	if (error)
3214 		return error;
3215 
3216 	mode &= S_IALLUGO;
3217 	mode |= S_IFREG;
3218 	error = security_inode_create(dir, dentry, mode);
3219 	if (error)
3220 		return error;
3221 	error = f(dentry, mode, arg);
3222 	if (!error)
3223 		fsnotify_create(dir, dentry);
3224 	return error;
3225 }
3226 EXPORT_SYMBOL(vfs_mkobj);
3227 
3228 bool may_open_dev(const struct path *path)
3229 {
3230 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3231 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3232 }
3233 
3234 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3235 		    int acc_mode, int flag)
3236 {
3237 	struct dentry *dentry = path->dentry;
3238 	struct inode *inode = dentry->d_inode;
3239 	int error;
3240 
3241 	if (!inode)
3242 		return -ENOENT;
3243 
3244 	switch (inode->i_mode & S_IFMT) {
3245 	case S_IFLNK:
3246 		return -ELOOP;
3247 	case S_IFDIR:
3248 		if (acc_mode & MAY_WRITE)
3249 			return -EISDIR;
3250 		if (acc_mode & MAY_EXEC)
3251 			return -EACCES;
3252 		break;
3253 	case S_IFBLK:
3254 	case S_IFCHR:
3255 		if (!may_open_dev(path))
3256 			return -EACCES;
3257 		fallthrough;
3258 	case S_IFIFO:
3259 	case S_IFSOCK:
3260 		if (acc_mode & MAY_EXEC)
3261 			return -EACCES;
3262 		flag &= ~O_TRUNC;
3263 		break;
3264 	case S_IFREG:
3265 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3266 			return -EACCES;
3267 		break;
3268 	}
3269 
3270 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3271 	if (error)
3272 		return error;
3273 
3274 	/*
3275 	 * An append-only file must be opened in append mode for writing.
3276 	 */
3277 	if (IS_APPEND(inode)) {
3278 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3279 			return -EPERM;
3280 		if (flag & O_TRUNC)
3281 			return -EPERM;
3282 	}
3283 
3284 	/* O_NOATIME can only be set by the owner or superuser */
3285 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3286 		return -EPERM;
3287 
3288 	return 0;
3289 }
3290 
3291 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3292 {
3293 	const struct path *path = &filp->f_path;
3294 	struct inode *inode = path->dentry->d_inode;
3295 	int error = get_write_access(inode);
3296 	if (error)
3297 		return error;
3298 
3299 	error = security_file_truncate(filp);
3300 	if (!error) {
3301 		error = do_truncate(idmap, path->dentry, 0,
3302 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3303 				    filp);
3304 	}
3305 	put_write_access(inode);
3306 	return error;
3307 }
3308 
3309 static inline int open_to_namei_flags(int flag)
3310 {
3311 	if ((flag & O_ACCMODE) == 3)
3312 		flag--;
3313 	return flag;
3314 }
3315 
3316 static int may_o_create(struct mnt_idmap *idmap,
3317 			const struct path *dir, struct dentry *dentry,
3318 			umode_t mode)
3319 {
3320 	int error = security_path_mknod(dir, dentry, mode, 0);
3321 	if (error)
3322 		return error;
3323 
3324 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3325 		return -EOVERFLOW;
3326 
3327 	error = inode_permission(idmap, dir->dentry->d_inode,
3328 				 MAY_WRITE | MAY_EXEC);
3329 	if (error)
3330 		return error;
3331 
3332 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3333 }
3334 
3335 /*
3336  * Attempt to atomically look up, create and open a file from a negative
3337  * dentry.
3338  *
3339  * Returns 0 if successful.  The file will have been created and attached to
3340  * @file by the filesystem calling finish_open().
3341  *
3342  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3343  * be set.  The caller will need to perform the open themselves.  @path will
3344  * have been updated to point to the new dentry.  This may be negative.
3345  *
3346  * Returns an error code otherwise.
3347  */
3348 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3349 				  struct file *file,
3350 				  int open_flag, umode_t mode)
3351 {
3352 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3353 	struct inode *dir =  nd->path.dentry->d_inode;
3354 	int error;
3355 
3356 	if (nd->flags & LOOKUP_DIRECTORY)
3357 		open_flag |= O_DIRECTORY;
3358 
3359 	file->f_path.dentry = DENTRY_NOT_SET;
3360 	file->f_path.mnt = nd->path.mnt;
3361 	error = dir->i_op->atomic_open(dir, dentry, file,
3362 				       open_to_namei_flags(open_flag), mode);
3363 	d_lookup_done(dentry);
3364 	if (!error) {
3365 		if (file->f_mode & FMODE_OPENED) {
3366 			if (unlikely(dentry != file->f_path.dentry)) {
3367 				dput(dentry);
3368 				dentry = dget(file->f_path.dentry);
3369 			}
3370 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3371 			error = -EIO;
3372 		} else {
3373 			if (file->f_path.dentry) {
3374 				dput(dentry);
3375 				dentry = file->f_path.dentry;
3376 			}
3377 			if (unlikely(d_is_negative(dentry)))
3378 				error = -ENOENT;
3379 		}
3380 	}
3381 	if (error) {
3382 		dput(dentry);
3383 		dentry = ERR_PTR(error);
3384 	}
3385 	return dentry;
3386 }
3387 
3388 /*
3389  * Look up and maybe create and open the last component.
3390  *
3391  * Must be called with parent locked (exclusive in O_CREAT case).
3392  *
3393  * Returns 0 on success, that is, if
3394  *  the file was successfully atomically created (if necessary) and opened, or
3395  *  the file was not completely opened at this time, though lookups and
3396  *  creations were performed.
3397  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3398  * In the latter case dentry returned in @path might be negative if O_CREAT
3399  * hadn't been specified.
3400  *
3401  * An error code is returned on failure.
3402  */
3403 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3404 				  const struct open_flags *op,
3405 				  bool got_write)
3406 {
3407 	struct mnt_idmap *idmap;
3408 	struct dentry *dir = nd->path.dentry;
3409 	struct inode *dir_inode = dir->d_inode;
3410 	int open_flag = op->open_flag;
3411 	struct dentry *dentry;
3412 	int error, create_error = 0;
3413 	umode_t mode = op->mode;
3414 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3415 
3416 	if (unlikely(IS_DEADDIR(dir_inode)))
3417 		return ERR_PTR(-ENOENT);
3418 
3419 	file->f_mode &= ~FMODE_CREATED;
3420 	dentry = d_lookup(dir, &nd->last);
3421 	for (;;) {
3422 		if (!dentry) {
3423 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3424 			if (IS_ERR(dentry))
3425 				return dentry;
3426 		}
3427 		if (d_in_lookup(dentry))
3428 			break;
3429 
3430 		error = d_revalidate(dentry, nd->flags);
3431 		if (likely(error > 0))
3432 			break;
3433 		if (error)
3434 			goto out_dput;
3435 		d_invalidate(dentry);
3436 		dput(dentry);
3437 		dentry = NULL;
3438 	}
3439 	if (dentry->d_inode) {
3440 		/* Cached positive dentry: will open in f_op->open */
3441 		return dentry;
3442 	}
3443 
3444 	/*
3445 	 * Checking write permission is tricky, bacuse we don't know if we are
3446 	 * going to actually need it: O_CREAT opens should work as long as the
3447 	 * file exists.  But checking existence breaks atomicity.  The trick is
3448 	 * to check access and if not granted clear O_CREAT from the flags.
3449 	 *
3450 	 * Another problem is returing the "right" error value (e.g. for an
3451 	 * O_EXCL open we want to return EEXIST not EROFS).
3452 	 */
3453 	if (unlikely(!got_write))
3454 		open_flag &= ~O_TRUNC;
3455 	idmap = mnt_idmap(nd->path.mnt);
3456 	if (open_flag & O_CREAT) {
3457 		if (open_flag & O_EXCL)
3458 			open_flag &= ~O_TRUNC;
3459 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3460 		if (likely(got_write))
3461 			create_error = may_o_create(idmap, &nd->path,
3462 						    dentry, mode);
3463 		else
3464 			create_error = -EROFS;
3465 	}
3466 	if (create_error)
3467 		open_flag &= ~O_CREAT;
3468 	if (dir_inode->i_op->atomic_open) {
3469 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3470 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3471 			dentry = ERR_PTR(create_error);
3472 		return dentry;
3473 	}
3474 
3475 	if (d_in_lookup(dentry)) {
3476 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3477 							     nd->flags);
3478 		d_lookup_done(dentry);
3479 		if (unlikely(res)) {
3480 			if (IS_ERR(res)) {
3481 				error = PTR_ERR(res);
3482 				goto out_dput;
3483 			}
3484 			dput(dentry);
3485 			dentry = res;
3486 		}
3487 	}
3488 
3489 	/* Negative dentry, just create the file */
3490 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3491 		file->f_mode |= FMODE_CREATED;
3492 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3493 		if (!dir_inode->i_op->create) {
3494 			error = -EACCES;
3495 			goto out_dput;
3496 		}
3497 
3498 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3499 						mode, open_flag & O_EXCL);
3500 		if (error)
3501 			goto out_dput;
3502 	}
3503 	if (unlikely(create_error) && !dentry->d_inode) {
3504 		error = create_error;
3505 		goto out_dput;
3506 	}
3507 	return dentry;
3508 
3509 out_dput:
3510 	dput(dentry);
3511 	return ERR_PTR(error);
3512 }
3513 
3514 static const char *open_last_lookups(struct nameidata *nd,
3515 		   struct file *file, const struct open_flags *op)
3516 {
3517 	struct dentry *dir = nd->path.dentry;
3518 	int open_flag = op->open_flag;
3519 	bool got_write = false;
3520 	struct dentry *dentry;
3521 	const char *res;
3522 
3523 	nd->flags |= op->intent;
3524 
3525 	if (nd->last_type != LAST_NORM) {
3526 		if (nd->depth)
3527 			put_link(nd);
3528 		return handle_dots(nd, nd->last_type);
3529 	}
3530 
3531 	if (!(open_flag & O_CREAT)) {
3532 		if (nd->last.name[nd->last.len])
3533 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3534 		/* we _can_ be in RCU mode here */
3535 		dentry = lookup_fast(nd);
3536 		if (IS_ERR(dentry))
3537 			return ERR_CAST(dentry);
3538 		if (likely(dentry))
3539 			goto finish_lookup;
3540 
3541 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3542 			return ERR_PTR(-ECHILD);
3543 	} else {
3544 		/* create side of things */
3545 		if (nd->flags & LOOKUP_RCU) {
3546 			if (!try_to_unlazy(nd))
3547 				return ERR_PTR(-ECHILD);
3548 		}
3549 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3550 		/* trailing slashes? */
3551 		if (unlikely(nd->last.name[nd->last.len]))
3552 			return ERR_PTR(-EISDIR);
3553 	}
3554 
3555 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3556 		got_write = !mnt_want_write(nd->path.mnt);
3557 		/*
3558 		 * do _not_ fail yet - we might not need that or fail with
3559 		 * a different error; let lookup_open() decide; we'll be
3560 		 * dropping this one anyway.
3561 		 */
3562 	}
3563 	if (open_flag & O_CREAT)
3564 		inode_lock(dir->d_inode);
3565 	else
3566 		inode_lock_shared(dir->d_inode);
3567 	dentry = lookup_open(nd, file, op, got_write);
3568 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3569 		fsnotify_create(dir->d_inode, dentry);
3570 	if (open_flag & O_CREAT)
3571 		inode_unlock(dir->d_inode);
3572 	else
3573 		inode_unlock_shared(dir->d_inode);
3574 
3575 	if (got_write)
3576 		mnt_drop_write(nd->path.mnt);
3577 
3578 	if (IS_ERR(dentry))
3579 		return ERR_CAST(dentry);
3580 
3581 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3582 		dput(nd->path.dentry);
3583 		nd->path.dentry = dentry;
3584 		return NULL;
3585 	}
3586 
3587 finish_lookup:
3588 	if (nd->depth)
3589 		put_link(nd);
3590 	res = step_into(nd, WALK_TRAILING, dentry);
3591 	if (unlikely(res))
3592 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3593 	return res;
3594 }
3595 
3596 /*
3597  * Handle the last step of open()
3598  */
3599 static int do_open(struct nameidata *nd,
3600 		   struct file *file, const struct open_flags *op)
3601 {
3602 	struct mnt_idmap *idmap;
3603 	int open_flag = op->open_flag;
3604 	bool do_truncate;
3605 	int acc_mode;
3606 	int error;
3607 
3608 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3609 		error = complete_walk(nd);
3610 		if (error)
3611 			return error;
3612 	}
3613 	if (!(file->f_mode & FMODE_CREATED))
3614 		audit_inode(nd->name, nd->path.dentry, 0);
3615 	idmap = mnt_idmap(nd->path.mnt);
3616 	if (open_flag & O_CREAT) {
3617 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3618 			return -EEXIST;
3619 		if (d_is_dir(nd->path.dentry))
3620 			return -EISDIR;
3621 		error = may_create_in_sticky(idmap, nd,
3622 					     d_backing_inode(nd->path.dentry));
3623 		if (unlikely(error))
3624 			return error;
3625 	}
3626 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3627 		return -ENOTDIR;
3628 
3629 	do_truncate = false;
3630 	acc_mode = op->acc_mode;
3631 	if (file->f_mode & FMODE_CREATED) {
3632 		/* Don't check for write permission, don't truncate */
3633 		open_flag &= ~O_TRUNC;
3634 		acc_mode = 0;
3635 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3636 		error = mnt_want_write(nd->path.mnt);
3637 		if (error)
3638 			return error;
3639 		do_truncate = true;
3640 	}
3641 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3642 	if (!error && !(file->f_mode & FMODE_OPENED))
3643 		error = vfs_open(&nd->path, file);
3644 	if (!error)
3645 		error = ima_file_check(file, op->acc_mode);
3646 	if (!error && do_truncate)
3647 		error = handle_truncate(idmap, file);
3648 	if (unlikely(error > 0)) {
3649 		WARN_ON(1);
3650 		error = -EINVAL;
3651 	}
3652 	if (do_truncate)
3653 		mnt_drop_write(nd->path.mnt);
3654 	return error;
3655 }
3656 
3657 /**
3658  * vfs_tmpfile - create tmpfile
3659  * @idmap:	idmap of the mount the inode was found from
3660  * @parentpath:	pointer to the path of the base directory
3661  * @file:	file descriptor of the new tmpfile
3662  * @mode:	mode of the new tmpfile
3663  *
3664  * Create a temporary file.
3665  *
3666  * If the inode has been found through an idmapped mount the idmap of
3667  * the vfsmount must be passed through @idmap. This function will then take
3668  * care to map the inode according to @idmap before checking permissions.
3669  * On non-idmapped mounts or if permission checking is to be performed on the
3670  * raw inode simply pass @nop_mnt_idmap.
3671  */
3672 static int vfs_tmpfile(struct mnt_idmap *idmap,
3673 		       const struct path *parentpath,
3674 		       struct file *file, umode_t mode)
3675 {
3676 	struct dentry *child;
3677 	struct inode *dir = d_inode(parentpath->dentry);
3678 	struct inode *inode;
3679 	int error;
3680 	int open_flag = file->f_flags;
3681 
3682 	/* we want directory to be writable */
3683 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3684 	if (error)
3685 		return error;
3686 	if (!dir->i_op->tmpfile)
3687 		return -EOPNOTSUPP;
3688 	child = d_alloc(parentpath->dentry, &slash_name);
3689 	if (unlikely(!child))
3690 		return -ENOMEM;
3691 	file->f_path.mnt = parentpath->mnt;
3692 	file->f_path.dentry = child;
3693 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3694 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3695 	dput(child);
3696 	if (error)
3697 		return error;
3698 	/* Don't check for other permissions, the inode was just created */
3699 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3700 	if (error)
3701 		return error;
3702 	inode = file_inode(file);
3703 	if (!(open_flag & O_EXCL)) {
3704 		spin_lock(&inode->i_lock);
3705 		inode->i_state |= I_LINKABLE;
3706 		spin_unlock(&inode->i_lock);
3707 	}
3708 	ima_post_create_tmpfile(idmap, inode);
3709 	return 0;
3710 }
3711 
3712 /**
3713  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3714  * @idmap:	idmap of the mount the inode was found from
3715  * @parentpath:	path of the base directory
3716  * @mode:	mode of the new tmpfile
3717  * @open_flag:	flags
3718  * @cred:	credentials for open
3719  *
3720  * Create and open a temporary file.  The file is not accounted in nr_files,
3721  * hence this is only for kernel internal use, and must not be installed into
3722  * file tables or such.
3723  */
3724 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3725 				 const struct path *parentpath,
3726 				 umode_t mode, int open_flag,
3727 				 const struct cred *cred)
3728 {
3729 	struct file *file;
3730 	int error;
3731 
3732 	file = alloc_empty_file_noaccount(open_flag, cred);
3733 	if (IS_ERR(file))
3734 		return file;
3735 
3736 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3737 	if (error) {
3738 		fput(file);
3739 		file = ERR_PTR(error);
3740 	}
3741 	return file;
3742 }
3743 EXPORT_SYMBOL(kernel_tmpfile_open);
3744 
3745 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3746 		const struct open_flags *op,
3747 		struct file *file)
3748 {
3749 	struct path path;
3750 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3751 
3752 	if (unlikely(error))
3753 		return error;
3754 	error = mnt_want_write(path.mnt);
3755 	if (unlikely(error))
3756 		goto out;
3757 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3758 	if (error)
3759 		goto out2;
3760 	audit_inode(nd->name, file->f_path.dentry, 0);
3761 out2:
3762 	mnt_drop_write(path.mnt);
3763 out:
3764 	path_put(&path);
3765 	return error;
3766 }
3767 
3768 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3769 {
3770 	struct path path;
3771 	int error = path_lookupat(nd, flags, &path);
3772 	if (!error) {
3773 		audit_inode(nd->name, path.dentry, 0);
3774 		error = vfs_open(&path, file);
3775 		path_put(&path);
3776 	}
3777 	return error;
3778 }
3779 
3780 static struct file *path_openat(struct nameidata *nd,
3781 			const struct open_flags *op, unsigned flags)
3782 {
3783 	struct file *file;
3784 	int error;
3785 
3786 	file = alloc_empty_file(op->open_flag, current_cred());
3787 	if (IS_ERR(file))
3788 		return file;
3789 
3790 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3791 		error = do_tmpfile(nd, flags, op, file);
3792 	} else if (unlikely(file->f_flags & O_PATH)) {
3793 		error = do_o_path(nd, flags, file);
3794 	} else {
3795 		const char *s = path_init(nd, flags);
3796 		while (!(error = link_path_walk(s, nd)) &&
3797 		       (s = open_last_lookups(nd, file, op)) != NULL)
3798 			;
3799 		if (!error)
3800 			error = do_open(nd, file, op);
3801 		terminate_walk(nd);
3802 	}
3803 	if (likely(!error)) {
3804 		if (likely(file->f_mode & FMODE_OPENED))
3805 			return file;
3806 		WARN_ON(1);
3807 		error = -EINVAL;
3808 	}
3809 	fput(file);
3810 	if (error == -EOPENSTALE) {
3811 		if (flags & LOOKUP_RCU)
3812 			error = -ECHILD;
3813 		else
3814 			error = -ESTALE;
3815 	}
3816 	return ERR_PTR(error);
3817 }
3818 
3819 struct file *do_filp_open(int dfd, struct filename *pathname,
3820 		const struct open_flags *op)
3821 {
3822 	struct nameidata nd;
3823 	int flags = op->lookup_flags;
3824 	struct file *filp;
3825 
3826 	set_nameidata(&nd, dfd, pathname, NULL);
3827 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3828 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3829 		filp = path_openat(&nd, op, flags);
3830 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3831 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3832 	restore_nameidata();
3833 	return filp;
3834 }
3835 
3836 struct file *do_file_open_root(const struct path *root,
3837 		const char *name, const struct open_flags *op)
3838 {
3839 	struct nameidata nd;
3840 	struct file *file;
3841 	struct filename *filename;
3842 	int flags = op->lookup_flags;
3843 
3844 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3845 		return ERR_PTR(-ELOOP);
3846 
3847 	filename = getname_kernel(name);
3848 	if (IS_ERR(filename))
3849 		return ERR_CAST(filename);
3850 
3851 	set_nameidata(&nd, -1, filename, root);
3852 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3853 	if (unlikely(file == ERR_PTR(-ECHILD)))
3854 		file = path_openat(&nd, op, flags);
3855 	if (unlikely(file == ERR_PTR(-ESTALE)))
3856 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3857 	restore_nameidata();
3858 	putname(filename);
3859 	return file;
3860 }
3861 
3862 static struct dentry *filename_create(int dfd, struct filename *name,
3863 				      struct path *path, unsigned int lookup_flags)
3864 {
3865 	struct dentry *dentry = ERR_PTR(-EEXIST);
3866 	struct qstr last;
3867 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3868 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3869 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3870 	int type;
3871 	int err2;
3872 	int error;
3873 
3874 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3875 	if (error)
3876 		return ERR_PTR(error);
3877 
3878 	/*
3879 	 * Yucky last component or no last component at all?
3880 	 * (foo/., foo/.., /////)
3881 	 */
3882 	if (unlikely(type != LAST_NORM))
3883 		goto out;
3884 
3885 	/* don't fail immediately if it's r/o, at least try to report other errors */
3886 	err2 = mnt_want_write(path->mnt);
3887 	/*
3888 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3889 	 * '/', and a directory wasn't requested.
3890 	 */
3891 	if (last.name[last.len] && !want_dir)
3892 		create_flags = 0;
3893 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3894 	dentry = lookup_one_qstr_excl(&last, path->dentry,
3895 				      reval_flag | create_flags);
3896 	if (IS_ERR(dentry))
3897 		goto unlock;
3898 
3899 	error = -EEXIST;
3900 	if (d_is_positive(dentry))
3901 		goto fail;
3902 
3903 	/*
3904 	 * Special case - lookup gave negative, but... we had foo/bar/
3905 	 * From the vfs_mknod() POV we just have a negative dentry -
3906 	 * all is fine. Let's be bastards - you had / on the end, you've
3907 	 * been asking for (non-existent) directory. -ENOENT for you.
3908 	 */
3909 	if (unlikely(!create_flags)) {
3910 		error = -ENOENT;
3911 		goto fail;
3912 	}
3913 	if (unlikely(err2)) {
3914 		error = err2;
3915 		goto fail;
3916 	}
3917 	return dentry;
3918 fail:
3919 	dput(dentry);
3920 	dentry = ERR_PTR(error);
3921 unlock:
3922 	inode_unlock(path->dentry->d_inode);
3923 	if (!err2)
3924 		mnt_drop_write(path->mnt);
3925 out:
3926 	path_put(path);
3927 	return dentry;
3928 }
3929 
3930 struct dentry *kern_path_create(int dfd, const char *pathname,
3931 				struct path *path, unsigned int lookup_flags)
3932 {
3933 	struct filename *filename = getname_kernel(pathname);
3934 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3935 
3936 	putname(filename);
3937 	return res;
3938 }
3939 EXPORT_SYMBOL(kern_path_create);
3940 
3941 void done_path_create(struct path *path, struct dentry *dentry)
3942 {
3943 	dput(dentry);
3944 	inode_unlock(path->dentry->d_inode);
3945 	mnt_drop_write(path->mnt);
3946 	path_put(path);
3947 }
3948 EXPORT_SYMBOL(done_path_create);
3949 
3950 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3951 				struct path *path, unsigned int lookup_flags)
3952 {
3953 	struct filename *filename = getname(pathname);
3954 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3955 
3956 	putname(filename);
3957 	return res;
3958 }
3959 EXPORT_SYMBOL(user_path_create);
3960 
3961 /**
3962  * vfs_mknod - create device node or file
3963  * @idmap:	idmap of the mount the inode was found from
3964  * @dir:	inode of @dentry
3965  * @dentry:	pointer to dentry of the base directory
3966  * @mode:	mode of the new device node or file
3967  * @dev:	device number of device to create
3968  *
3969  * Create a device node or file.
3970  *
3971  * If the inode has been found through an idmapped mount the idmap of
3972  * the vfsmount must be passed through @idmap. This function will then take
3973  * care to map the inode according to @idmap before checking permissions.
3974  * On non-idmapped mounts or if permission checking is to be performed on the
3975  * raw inode simply pass @nop_mnt_idmap.
3976  */
3977 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3978 	      struct dentry *dentry, umode_t mode, dev_t dev)
3979 {
3980 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3981 	int error = may_create(idmap, dir, dentry);
3982 
3983 	if (error)
3984 		return error;
3985 
3986 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3987 	    !capable(CAP_MKNOD))
3988 		return -EPERM;
3989 
3990 	if (!dir->i_op->mknod)
3991 		return -EPERM;
3992 
3993 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3994 	error = devcgroup_inode_mknod(mode, dev);
3995 	if (error)
3996 		return error;
3997 
3998 	error = security_inode_mknod(dir, dentry, mode, dev);
3999 	if (error)
4000 		return error;
4001 
4002 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4003 	if (!error)
4004 		fsnotify_create(dir, dentry);
4005 	return error;
4006 }
4007 EXPORT_SYMBOL(vfs_mknod);
4008 
4009 static int may_mknod(umode_t mode)
4010 {
4011 	switch (mode & S_IFMT) {
4012 	case S_IFREG:
4013 	case S_IFCHR:
4014 	case S_IFBLK:
4015 	case S_IFIFO:
4016 	case S_IFSOCK:
4017 	case 0: /* zero mode translates to S_IFREG */
4018 		return 0;
4019 	case S_IFDIR:
4020 		return -EPERM;
4021 	default:
4022 		return -EINVAL;
4023 	}
4024 }
4025 
4026 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4027 		unsigned int dev)
4028 {
4029 	struct mnt_idmap *idmap;
4030 	struct dentry *dentry;
4031 	struct path path;
4032 	int error;
4033 	unsigned int lookup_flags = 0;
4034 
4035 	error = may_mknod(mode);
4036 	if (error)
4037 		goto out1;
4038 retry:
4039 	dentry = filename_create(dfd, name, &path, lookup_flags);
4040 	error = PTR_ERR(dentry);
4041 	if (IS_ERR(dentry))
4042 		goto out1;
4043 
4044 	error = security_path_mknod(&path, dentry,
4045 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4046 	if (error)
4047 		goto out2;
4048 
4049 	idmap = mnt_idmap(path.mnt);
4050 	switch (mode & S_IFMT) {
4051 		case 0: case S_IFREG:
4052 			error = vfs_create(idmap, path.dentry->d_inode,
4053 					   dentry, mode, true);
4054 			if (!error)
4055 				ima_post_path_mknod(idmap, dentry);
4056 			break;
4057 		case S_IFCHR: case S_IFBLK:
4058 			error = vfs_mknod(idmap, path.dentry->d_inode,
4059 					  dentry, mode, new_decode_dev(dev));
4060 			break;
4061 		case S_IFIFO: case S_IFSOCK:
4062 			error = vfs_mknod(idmap, path.dentry->d_inode,
4063 					  dentry, mode, 0);
4064 			break;
4065 	}
4066 out2:
4067 	done_path_create(&path, dentry);
4068 	if (retry_estale(error, lookup_flags)) {
4069 		lookup_flags |= LOOKUP_REVAL;
4070 		goto retry;
4071 	}
4072 out1:
4073 	putname(name);
4074 	return error;
4075 }
4076 
4077 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4078 		unsigned int, dev)
4079 {
4080 	return do_mknodat(dfd, getname(filename), mode, dev);
4081 }
4082 
4083 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4084 {
4085 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4086 }
4087 
4088 /**
4089  * vfs_mkdir - create directory
4090  * @idmap:	idmap of the mount the inode was found from
4091  * @dir:	inode of @dentry
4092  * @dentry:	pointer to dentry of the base directory
4093  * @mode:	mode of the new directory
4094  *
4095  * Create a directory.
4096  *
4097  * If the inode has been found through an idmapped mount the idmap of
4098  * the vfsmount must be passed through @idmap. This function will then take
4099  * care to map the inode according to @idmap before checking permissions.
4100  * On non-idmapped mounts or if permission checking is to be performed on the
4101  * raw inode simply pass @nop_mnt_idmap.
4102  */
4103 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4104 	      struct dentry *dentry, umode_t mode)
4105 {
4106 	int error;
4107 	unsigned max_links = dir->i_sb->s_max_links;
4108 
4109 	error = may_create(idmap, dir, dentry);
4110 	if (error)
4111 		return error;
4112 
4113 	if (!dir->i_op->mkdir)
4114 		return -EPERM;
4115 
4116 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4117 	error = security_inode_mkdir(dir, dentry, mode);
4118 	if (error)
4119 		return error;
4120 
4121 	if (max_links && dir->i_nlink >= max_links)
4122 		return -EMLINK;
4123 
4124 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4125 	if (!error)
4126 		fsnotify_mkdir(dir, dentry);
4127 	return error;
4128 }
4129 EXPORT_SYMBOL(vfs_mkdir);
4130 
4131 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4132 {
4133 	struct dentry *dentry;
4134 	struct path path;
4135 	int error;
4136 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4137 
4138 retry:
4139 	dentry = filename_create(dfd, name, &path, lookup_flags);
4140 	error = PTR_ERR(dentry);
4141 	if (IS_ERR(dentry))
4142 		goto out_putname;
4143 
4144 	error = security_path_mkdir(&path, dentry,
4145 			mode_strip_umask(path.dentry->d_inode, mode));
4146 	if (!error) {
4147 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4148 				  dentry, mode);
4149 	}
4150 	done_path_create(&path, dentry);
4151 	if (retry_estale(error, lookup_flags)) {
4152 		lookup_flags |= LOOKUP_REVAL;
4153 		goto retry;
4154 	}
4155 out_putname:
4156 	putname(name);
4157 	return error;
4158 }
4159 
4160 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4161 {
4162 	return do_mkdirat(dfd, getname(pathname), mode);
4163 }
4164 
4165 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4166 {
4167 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4168 }
4169 
4170 /**
4171  * vfs_rmdir - remove directory
4172  * @idmap:	idmap of the mount the inode was found from
4173  * @dir:	inode of @dentry
4174  * @dentry:	pointer to dentry of the base directory
4175  *
4176  * Remove a directory.
4177  *
4178  * If the inode has been found through an idmapped mount the idmap of
4179  * the vfsmount must be passed through @idmap. This function will then take
4180  * care to map the inode according to @idmap before checking permissions.
4181  * On non-idmapped mounts or if permission checking is to be performed on the
4182  * raw inode simply pass @nop_mnt_idmap.
4183  */
4184 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4185 		     struct dentry *dentry)
4186 {
4187 	int error = may_delete(idmap, dir, dentry, 1);
4188 
4189 	if (error)
4190 		return error;
4191 
4192 	if (!dir->i_op->rmdir)
4193 		return -EPERM;
4194 
4195 	dget(dentry);
4196 	inode_lock(dentry->d_inode);
4197 
4198 	error = -EBUSY;
4199 	if (is_local_mountpoint(dentry) ||
4200 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4201 		goto out;
4202 
4203 	error = security_inode_rmdir(dir, dentry);
4204 	if (error)
4205 		goto out;
4206 
4207 	error = dir->i_op->rmdir(dir, dentry);
4208 	if (error)
4209 		goto out;
4210 
4211 	shrink_dcache_parent(dentry);
4212 	dentry->d_inode->i_flags |= S_DEAD;
4213 	dont_mount(dentry);
4214 	detach_mounts(dentry);
4215 
4216 out:
4217 	inode_unlock(dentry->d_inode);
4218 	dput(dentry);
4219 	if (!error)
4220 		d_delete_notify(dir, dentry);
4221 	return error;
4222 }
4223 EXPORT_SYMBOL(vfs_rmdir);
4224 
4225 int do_rmdir(int dfd, struct filename *name)
4226 {
4227 	int error;
4228 	struct dentry *dentry;
4229 	struct path path;
4230 	struct qstr last;
4231 	int type;
4232 	unsigned int lookup_flags = 0;
4233 retry:
4234 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4235 	if (error)
4236 		goto exit1;
4237 
4238 	switch (type) {
4239 	case LAST_DOTDOT:
4240 		error = -ENOTEMPTY;
4241 		goto exit2;
4242 	case LAST_DOT:
4243 		error = -EINVAL;
4244 		goto exit2;
4245 	case LAST_ROOT:
4246 		error = -EBUSY;
4247 		goto exit2;
4248 	}
4249 
4250 	error = mnt_want_write(path.mnt);
4251 	if (error)
4252 		goto exit2;
4253 
4254 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4255 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4256 	error = PTR_ERR(dentry);
4257 	if (IS_ERR(dentry))
4258 		goto exit3;
4259 	if (!dentry->d_inode) {
4260 		error = -ENOENT;
4261 		goto exit4;
4262 	}
4263 	error = security_path_rmdir(&path, dentry);
4264 	if (error)
4265 		goto exit4;
4266 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4267 exit4:
4268 	dput(dentry);
4269 exit3:
4270 	inode_unlock(path.dentry->d_inode);
4271 	mnt_drop_write(path.mnt);
4272 exit2:
4273 	path_put(&path);
4274 	if (retry_estale(error, lookup_flags)) {
4275 		lookup_flags |= LOOKUP_REVAL;
4276 		goto retry;
4277 	}
4278 exit1:
4279 	putname(name);
4280 	return error;
4281 }
4282 
4283 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4284 {
4285 	return do_rmdir(AT_FDCWD, getname(pathname));
4286 }
4287 
4288 /**
4289  * vfs_unlink - unlink a filesystem object
4290  * @idmap:	idmap of the mount the inode was found from
4291  * @dir:	parent directory
4292  * @dentry:	victim
4293  * @delegated_inode: returns victim inode, if the inode is delegated.
4294  *
4295  * The caller must hold dir->i_mutex.
4296  *
4297  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4298  * return a reference to the inode in delegated_inode.  The caller
4299  * should then break the delegation on that inode and retry.  Because
4300  * breaking a delegation may take a long time, the caller should drop
4301  * dir->i_mutex before doing so.
4302  *
4303  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4304  * be appropriate for callers that expect the underlying filesystem not
4305  * to be NFS exported.
4306  *
4307  * If the inode has been found through an idmapped mount the idmap of
4308  * the vfsmount must be passed through @idmap. This function will then take
4309  * care to map the inode according to @idmap before checking permissions.
4310  * On non-idmapped mounts or if permission checking is to be performed on the
4311  * raw inode simply pass @nop_mnt_idmap.
4312  */
4313 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4314 	       struct dentry *dentry, struct inode **delegated_inode)
4315 {
4316 	struct inode *target = dentry->d_inode;
4317 	int error = may_delete(idmap, dir, dentry, 0);
4318 
4319 	if (error)
4320 		return error;
4321 
4322 	if (!dir->i_op->unlink)
4323 		return -EPERM;
4324 
4325 	inode_lock(target);
4326 	if (IS_SWAPFILE(target))
4327 		error = -EPERM;
4328 	else if (is_local_mountpoint(dentry))
4329 		error = -EBUSY;
4330 	else {
4331 		error = security_inode_unlink(dir, dentry);
4332 		if (!error) {
4333 			error = try_break_deleg(target, delegated_inode);
4334 			if (error)
4335 				goto out;
4336 			error = dir->i_op->unlink(dir, dentry);
4337 			if (!error) {
4338 				dont_mount(dentry);
4339 				detach_mounts(dentry);
4340 			}
4341 		}
4342 	}
4343 out:
4344 	inode_unlock(target);
4345 
4346 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4347 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4348 		fsnotify_unlink(dir, dentry);
4349 	} else if (!error) {
4350 		fsnotify_link_count(target);
4351 		d_delete_notify(dir, dentry);
4352 	}
4353 
4354 	return error;
4355 }
4356 EXPORT_SYMBOL(vfs_unlink);
4357 
4358 /*
4359  * Make sure that the actual truncation of the file will occur outside its
4360  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4361  * writeout happening, and we don't want to prevent access to the directory
4362  * while waiting on the I/O.
4363  */
4364 int do_unlinkat(int dfd, struct filename *name)
4365 {
4366 	int error;
4367 	struct dentry *dentry;
4368 	struct path path;
4369 	struct qstr last;
4370 	int type;
4371 	struct inode *inode = NULL;
4372 	struct inode *delegated_inode = NULL;
4373 	unsigned int lookup_flags = 0;
4374 retry:
4375 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4376 	if (error)
4377 		goto exit1;
4378 
4379 	error = -EISDIR;
4380 	if (type != LAST_NORM)
4381 		goto exit2;
4382 
4383 	error = mnt_want_write(path.mnt);
4384 	if (error)
4385 		goto exit2;
4386 retry_deleg:
4387 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4388 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4389 	error = PTR_ERR(dentry);
4390 	if (!IS_ERR(dentry)) {
4391 
4392 		/* Why not before? Because we want correct error value */
4393 		if (last.name[last.len] || d_is_negative(dentry))
4394 			goto slashes;
4395 		inode = dentry->d_inode;
4396 		ihold(inode);
4397 		error = security_path_unlink(&path, dentry);
4398 		if (error)
4399 			goto exit3;
4400 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4401 				   dentry, &delegated_inode);
4402 exit3:
4403 		dput(dentry);
4404 	}
4405 	inode_unlock(path.dentry->d_inode);
4406 	if (inode)
4407 		iput(inode);	/* truncate the inode here */
4408 	inode = NULL;
4409 	if (delegated_inode) {
4410 		error = break_deleg_wait(&delegated_inode);
4411 		if (!error)
4412 			goto retry_deleg;
4413 	}
4414 	mnt_drop_write(path.mnt);
4415 exit2:
4416 	path_put(&path);
4417 	if (retry_estale(error, lookup_flags)) {
4418 		lookup_flags |= LOOKUP_REVAL;
4419 		inode = NULL;
4420 		goto retry;
4421 	}
4422 exit1:
4423 	putname(name);
4424 	return error;
4425 
4426 slashes:
4427 	if (d_is_negative(dentry))
4428 		error = -ENOENT;
4429 	else if (d_is_dir(dentry))
4430 		error = -EISDIR;
4431 	else
4432 		error = -ENOTDIR;
4433 	goto exit3;
4434 }
4435 
4436 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4437 {
4438 	if ((flag & ~AT_REMOVEDIR) != 0)
4439 		return -EINVAL;
4440 
4441 	if (flag & AT_REMOVEDIR)
4442 		return do_rmdir(dfd, getname(pathname));
4443 	return do_unlinkat(dfd, getname(pathname));
4444 }
4445 
4446 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4447 {
4448 	return do_unlinkat(AT_FDCWD, getname(pathname));
4449 }
4450 
4451 /**
4452  * vfs_symlink - create symlink
4453  * @idmap:	idmap of the mount the inode was found from
4454  * @dir:	inode of @dentry
4455  * @dentry:	pointer to dentry of the base directory
4456  * @oldname:	name of the file to link to
4457  *
4458  * Create a symlink.
4459  *
4460  * If the inode has been found through an idmapped mount the idmap of
4461  * the vfsmount must be passed through @idmap. This function will then take
4462  * care to map the inode according to @idmap before checking permissions.
4463  * On non-idmapped mounts or if permission checking is to be performed on the
4464  * raw inode simply pass @nop_mnt_idmap.
4465  */
4466 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4467 		struct dentry *dentry, const char *oldname)
4468 {
4469 	int error;
4470 
4471 	error = may_create(idmap, dir, dentry);
4472 	if (error)
4473 		return error;
4474 
4475 	if (!dir->i_op->symlink)
4476 		return -EPERM;
4477 
4478 	error = security_inode_symlink(dir, dentry, oldname);
4479 	if (error)
4480 		return error;
4481 
4482 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4483 	if (!error)
4484 		fsnotify_create(dir, dentry);
4485 	return error;
4486 }
4487 EXPORT_SYMBOL(vfs_symlink);
4488 
4489 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4490 {
4491 	int error;
4492 	struct dentry *dentry;
4493 	struct path path;
4494 	unsigned int lookup_flags = 0;
4495 
4496 	if (IS_ERR(from)) {
4497 		error = PTR_ERR(from);
4498 		goto out_putnames;
4499 	}
4500 retry:
4501 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4502 	error = PTR_ERR(dentry);
4503 	if (IS_ERR(dentry))
4504 		goto out_putnames;
4505 
4506 	error = security_path_symlink(&path, dentry, from->name);
4507 	if (!error)
4508 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4509 				    dentry, from->name);
4510 	done_path_create(&path, dentry);
4511 	if (retry_estale(error, lookup_flags)) {
4512 		lookup_flags |= LOOKUP_REVAL;
4513 		goto retry;
4514 	}
4515 out_putnames:
4516 	putname(to);
4517 	putname(from);
4518 	return error;
4519 }
4520 
4521 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4522 		int, newdfd, const char __user *, newname)
4523 {
4524 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4525 }
4526 
4527 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4528 {
4529 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4530 }
4531 
4532 /**
4533  * vfs_link - create a new link
4534  * @old_dentry:	object to be linked
4535  * @idmap:	idmap of the mount
4536  * @dir:	new parent
4537  * @new_dentry:	where to create the new link
4538  * @delegated_inode: returns inode needing a delegation break
4539  *
4540  * The caller must hold dir->i_mutex
4541  *
4542  * If vfs_link discovers a delegation on the to-be-linked file in need
4543  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4544  * inode in delegated_inode.  The caller should then break the delegation
4545  * and retry.  Because breaking a delegation may take a long time, the
4546  * caller should drop the i_mutex before doing so.
4547  *
4548  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4549  * be appropriate for callers that expect the underlying filesystem not
4550  * to be NFS exported.
4551  *
4552  * If the inode has been found through an idmapped mount the idmap of
4553  * the vfsmount must be passed through @idmap. This function will then take
4554  * care to map the inode according to @idmap before checking permissions.
4555  * On non-idmapped mounts or if permission checking is to be performed on the
4556  * raw inode simply pass @nop_mnt_idmap.
4557  */
4558 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4559 	     struct inode *dir, struct dentry *new_dentry,
4560 	     struct inode **delegated_inode)
4561 {
4562 	struct inode *inode = old_dentry->d_inode;
4563 	unsigned max_links = dir->i_sb->s_max_links;
4564 	int error;
4565 
4566 	if (!inode)
4567 		return -ENOENT;
4568 
4569 	error = may_create(idmap, dir, new_dentry);
4570 	if (error)
4571 		return error;
4572 
4573 	if (dir->i_sb != inode->i_sb)
4574 		return -EXDEV;
4575 
4576 	/*
4577 	 * A link to an append-only or immutable file cannot be created.
4578 	 */
4579 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4580 		return -EPERM;
4581 	/*
4582 	 * Updating the link count will likely cause i_uid and i_gid to
4583 	 * be writen back improperly if their true value is unknown to
4584 	 * the vfs.
4585 	 */
4586 	if (HAS_UNMAPPED_ID(idmap, inode))
4587 		return -EPERM;
4588 	if (!dir->i_op->link)
4589 		return -EPERM;
4590 	if (S_ISDIR(inode->i_mode))
4591 		return -EPERM;
4592 
4593 	error = security_inode_link(old_dentry, dir, new_dentry);
4594 	if (error)
4595 		return error;
4596 
4597 	inode_lock(inode);
4598 	/* Make sure we don't allow creating hardlink to an unlinked file */
4599 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4600 		error =  -ENOENT;
4601 	else if (max_links && inode->i_nlink >= max_links)
4602 		error = -EMLINK;
4603 	else {
4604 		error = try_break_deleg(inode, delegated_inode);
4605 		if (!error)
4606 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4607 	}
4608 
4609 	if (!error && (inode->i_state & I_LINKABLE)) {
4610 		spin_lock(&inode->i_lock);
4611 		inode->i_state &= ~I_LINKABLE;
4612 		spin_unlock(&inode->i_lock);
4613 	}
4614 	inode_unlock(inode);
4615 	if (!error)
4616 		fsnotify_link(dir, inode, new_dentry);
4617 	return error;
4618 }
4619 EXPORT_SYMBOL(vfs_link);
4620 
4621 /*
4622  * Hardlinks are often used in delicate situations.  We avoid
4623  * security-related surprises by not following symlinks on the
4624  * newname.  --KAB
4625  *
4626  * We don't follow them on the oldname either to be compatible
4627  * with linux 2.0, and to avoid hard-linking to directories
4628  * and other special files.  --ADM
4629  */
4630 int do_linkat(int olddfd, struct filename *old, int newdfd,
4631 	      struct filename *new, int flags)
4632 {
4633 	struct mnt_idmap *idmap;
4634 	struct dentry *new_dentry;
4635 	struct path old_path, new_path;
4636 	struct inode *delegated_inode = NULL;
4637 	int how = 0;
4638 	int error;
4639 
4640 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4641 		error = -EINVAL;
4642 		goto out_putnames;
4643 	}
4644 	/*
4645 	 * To use null names we require CAP_DAC_READ_SEARCH
4646 	 * This ensures that not everyone will be able to create
4647 	 * handlink using the passed filedescriptor.
4648 	 */
4649 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4650 		error = -ENOENT;
4651 		goto out_putnames;
4652 	}
4653 
4654 	if (flags & AT_SYMLINK_FOLLOW)
4655 		how |= LOOKUP_FOLLOW;
4656 retry:
4657 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4658 	if (error)
4659 		goto out_putnames;
4660 
4661 	new_dentry = filename_create(newdfd, new, &new_path,
4662 					(how & LOOKUP_REVAL));
4663 	error = PTR_ERR(new_dentry);
4664 	if (IS_ERR(new_dentry))
4665 		goto out_putpath;
4666 
4667 	error = -EXDEV;
4668 	if (old_path.mnt != new_path.mnt)
4669 		goto out_dput;
4670 	idmap = mnt_idmap(new_path.mnt);
4671 	error = may_linkat(idmap, &old_path);
4672 	if (unlikely(error))
4673 		goto out_dput;
4674 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4675 	if (error)
4676 		goto out_dput;
4677 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4678 			 new_dentry, &delegated_inode);
4679 out_dput:
4680 	done_path_create(&new_path, new_dentry);
4681 	if (delegated_inode) {
4682 		error = break_deleg_wait(&delegated_inode);
4683 		if (!error) {
4684 			path_put(&old_path);
4685 			goto retry;
4686 		}
4687 	}
4688 	if (retry_estale(error, how)) {
4689 		path_put(&old_path);
4690 		how |= LOOKUP_REVAL;
4691 		goto retry;
4692 	}
4693 out_putpath:
4694 	path_put(&old_path);
4695 out_putnames:
4696 	putname(old);
4697 	putname(new);
4698 
4699 	return error;
4700 }
4701 
4702 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4703 		int, newdfd, const char __user *, newname, int, flags)
4704 {
4705 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4706 		newdfd, getname(newname), flags);
4707 }
4708 
4709 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4710 {
4711 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4712 }
4713 
4714 /**
4715  * vfs_rename - rename a filesystem object
4716  * @rd:		pointer to &struct renamedata info
4717  *
4718  * The caller must hold multiple mutexes--see lock_rename()).
4719  *
4720  * If vfs_rename discovers a delegation in need of breaking at either
4721  * the source or destination, it will return -EWOULDBLOCK and return a
4722  * reference to the inode in delegated_inode.  The caller should then
4723  * break the delegation and retry.  Because breaking a delegation may
4724  * take a long time, the caller should drop all locks before doing
4725  * so.
4726  *
4727  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4728  * be appropriate for callers that expect the underlying filesystem not
4729  * to be NFS exported.
4730  *
4731  * The worst of all namespace operations - renaming directory. "Perverted"
4732  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4733  * Problems:
4734  *
4735  *	a) we can get into loop creation.
4736  *	b) race potential - two innocent renames can create a loop together.
4737  *	   That's where 4.4BSD screws up. Current fix: serialization on
4738  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4739  *	   story.
4740  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4741  *	   and source (if it's a non-directory or a subdirectory that moves to
4742  *	   different parent).
4743  *	   And that - after we got ->i_mutex on parents (until then we don't know
4744  *	   whether the target exists).  Solution: try to be smart with locking
4745  *	   order for inodes.  We rely on the fact that tree topology may change
4746  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4747  *	   move will be locked.  Thus we can rank directories by the tree
4748  *	   (ancestors first) and rank all non-directories after them.
4749  *	   That works since everybody except rename does "lock parent, lookup,
4750  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4751  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4752  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4753  *	   we'd better make sure that there's no link(2) for them.
4754  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4755  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4756  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4757  *	   ->i_mutex on parents, which works but leads to some truly excessive
4758  *	   locking].
4759  */
4760 int vfs_rename(struct renamedata *rd)
4761 {
4762 	int error;
4763 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4764 	struct dentry *old_dentry = rd->old_dentry;
4765 	struct dentry *new_dentry = rd->new_dentry;
4766 	struct inode **delegated_inode = rd->delegated_inode;
4767 	unsigned int flags = rd->flags;
4768 	bool is_dir = d_is_dir(old_dentry);
4769 	struct inode *source = old_dentry->d_inode;
4770 	struct inode *target = new_dentry->d_inode;
4771 	bool new_is_dir = false;
4772 	unsigned max_links = new_dir->i_sb->s_max_links;
4773 	struct name_snapshot old_name;
4774 	bool lock_old_subdir, lock_new_subdir;
4775 
4776 	if (source == target)
4777 		return 0;
4778 
4779 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4780 	if (error)
4781 		return error;
4782 
4783 	if (!target) {
4784 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4785 	} else {
4786 		new_is_dir = d_is_dir(new_dentry);
4787 
4788 		if (!(flags & RENAME_EXCHANGE))
4789 			error = may_delete(rd->new_mnt_idmap, new_dir,
4790 					   new_dentry, is_dir);
4791 		else
4792 			error = may_delete(rd->new_mnt_idmap, new_dir,
4793 					   new_dentry, new_is_dir);
4794 	}
4795 	if (error)
4796 		return error;
4797 
4798 	if (!old_dir->i_op->rename)
4799 		return -EPERM;
4800 
4801 	/*
4802 	 * If we are going to change the parent - check write permissions,
4803 	 * we'll need to flip '..'.
4804 	 */
4805 	if (new_dir != old_dir) {
4806 		if (is_dir) {
4807 			error = inode_permission(rd->old_mnt_idmap, source,
4808 						 MAY_WRITE);
4809 			if (error)
4810 				return error;
4811 		}
4812 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4813 			error = inode_permission(rd->new_mnt_idmap, target,
4814 						 MAY_WRITE);
4815 			if (error)
4816 				return error;
4817 		}
4818 	}
4819 
4820 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4821 				      flags);
4822 	if (error)
4823 		return error;
4824 
4825 	take_dentry_name_snapshot(&old_name, old_dentry);
4826 	dget(new_dentry);
4827 	/*
4828 	 * Lock children.
4829 	 * The source subdirectory needs to be locked on cross-directory
4830 	 * rename or cross-directory exchange since its parent changes.
4831 	 * The target subdirectory needs to be locked on cross-directory
4832 	 * exchange due to parent change and on any rename due to becoming
4833 	 * a victim.
4834 	 * Non-directories need locking in all cases (for NFS reasons);
4835 	 * they get locked after any subdirectories (in inode address order).
4836 	 *
4837 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4838 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4839 	 */
4840 	lock_old_subdir = new_dir != old_dir;
4841 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4842 	if (is_dir) {
4843 		if (lock_old_subdir)
4844 			inode_lock_nested(source, I_MUTEX_CHILD);
4845 		if (target && (!new_is_dir || lock_new_subdir))
4846 			inode_lock(target);
4847 	} else if (new_is_dir) {
4848 		if (lock_new_subdir)
4849 			inode_lock_nested(target, I_MUTEX_CHILD);
4850 		inode_lock(source);
4851 	} else {
4852 		lock_two_nondirectories(source, target);
4853 	}
4854 
4855 	error = -EPERM;
4856 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4857 		goto out;
4858 
4859 	error = -EBUSY;
4860 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4861 		goto out;
4862 
4863 	if (max_links && new_dir != old_dir) {
4864 		error = -EMLINK;
4865 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4866 			goto out;
4867 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4868 		    old_dir->i_nlink >= max_links)
4869 			goto out;
4870 	}
4871 	if (!is_dir) {
4872 		error = try_break_deleg(source, delegated_inode);
4873 		if (error)
4874 			goto out;
4875 	}
4876 	if (target && !new_is_dir) {
4877 		error = try_break_deleg(target, delegated_inode);
4878 		if (error)
4879 			goto out;
4880 	}
4881 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4882 				      new_dir, new_dentry, flags);
4883 	if (error)
4884 		goto out;
4885 
4886 	if (!(flags & RENAME_EXCHANGE) && target) {
4887 		if (is_dir) {
4888 			shrink_dcache_parent(new_dentry);
4889 			target->i_flags |= S_DEAD;
4890 		}
4891 		dont_mount(new_dentry);
4892 		detach_mounts(new_dentry);
4893 	}
4894 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4895 		if (!(flags & RENAME_EXCHANGE))
4896 			d_move(old_dentry, new_dentry);
4897 		else
4898 			d_exchange(old_dentry, new_dentry);
4899 	}
4900 out:
4901 	if (!is_dir || lock_old_subdir)
4902 		inode_unlock(source);
4903 	if (target && (!new_is_dir || lock_new_subdir))
4904 		inode_unlock(target);
4905 	dput(new_dentry);
4906 	if (!error) {
4907 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4908 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4909 		if (flags & RENAME_EXCHANGE) {
4910 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4911 				      new_is_dir, NULL, new_dentry);
4912 		}
4913 	}
4914 	release_dentry_name_snapshot(&old_name);
4915 
4916 	return error;
4917 }
4918 EXPORT_SYMBOL(vfs_rename);
4919 
4920 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4921 		 struct filename *to, unsigned int flags)
4922 {
4923 	struct renamedata rd;
4924 	struct dentry *old_dentry, *new_dentry;
4925 	struct dentry *trap;
4926 	struct path old_path, new_path;
4927 	struct qstr old_last, new_last;
4928 	int old_type, new_type;
4929 	struct inode *delegated_inode = NULL;
4930 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4931 	bool should_retry = false;
4932 	int error = -EINVAL;
4933 
4934 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4935 		goto put_names;
4936 
4937 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4938 	    (flags & RENAME_EXCHANGE))
4939 		goto put_names;
4940 
4941 	if (flags & RENAME_EXCHANGE)
4942 		target_flags = 0;
4943 
4944 retry:
4945 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4946 				  &old_last, &old_type);
4947 	if (error)
4948 		goto put_names;
4949 
4950 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4951 				  &new_type);
4952 	if (error)
4953 		goto exit1;
4954 
4955 	error = -EXDEV;
4956 	if (old_path.mnt != new_path.mnt)
4957 		goto exit2;
4958 
4959 	error = -EBUSY;
4960 	if (old_type != LAST_NORM)
4961 		goto exit2;
4962 
4963 	if (flags & RENAME_NOREPLACE)
4964 		error = -EEXIST;
4965 	if (new_type != LAST_NORM)
4966 		goto exit2;
4967 
4968 	error = mnt_want_write(old_path.mnt);
4969 	if (error)
4970 		goto exit2;
4971 
4972 retry_deleg:
4973 	trap = lock_rename(new_path.dentry, old_path.dentry);
4974 	if (IS_ERR(trap)) {
4975 		error = PTR_ERR(trap);
4976 		goto exit_lock_rename;
4977 	}
4978 
4979 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4980 					  lookup_flags);
4981 	error = PTR_ERR(old_dentry);
4982 	if (IS_ERR(old_dentry))
4983 		goto exit3;
4984 	/* source must exist */
4985 	error = -ENOENT;
4986 	if (d_is_negative(old_dentry))
4987 		goto exit4;
4988 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4989 					  lookup_flags | target_flags);
4990 	error = PTR_ERR(new_dentry);
4991 	if (IS_ERR(new_dentry))
4992 		goto exit4;
4993 	error = -EEXIST;
4994 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4995 		goto exit5;
4996 	if (flags & RENAME_EXCHANGE) {
4997 		error = -ENOENT;
4998 		if (d_is_negative(new_dentry))
4999 			goto exit5;
5000 
5001 		if (!d_is_dir(new_dentry)) {
5002 			error = -ENOTDIR;
5003 			if (new_last.name[new_last.len])
5004 				goto exit5;
5005 		}
5006 	}
5007 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5008 	if (!d_is_dir(old_dentry)) {
5009 		error = -ENOTDIR;
5010 		if (old_last.name[old_last.len])
5011 			goto exit5;
5012 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5013 			goto exit5;
5014 	}
5015 	/* source should not be ancestor of target */
5016 	error = -EINVAL;
5017 	if (old_dentry == trap)
5018 		goto exit5;
5019 	/* target should not be an ancestor of source */
5020 	if (!(flags & RENAME_EXCHANGE))
5021 		error = -ENOTEMPTY;
5022 	if (new_dentry == trap)
5023 		goto exit5;
5024 
5025 	error = security_path_rename(&old_path, old_dentry,
5026 				     &new_path, new_dentry, flags);
5027 	if (error)
5028 		goto exit5;
5029 
5030 	rd.old_dir	   = old_path.dentry->d_inode;
5031 	rd.old_dentry	   = old_dentry;
5032 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5033 	rd.new_dir	   = new_path.dentry->d_inode;
5034 	rd.new_dentry	   = new_dentry;
5035 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5036 	rd.delegated_inode = &delegated_inode;
5037 	rd.flags	   = flags;
5038 	error = vfs_rename(&rd);
5039 exit5:
5040 	dput(new_dentry);
5041 exit4:
5042 	dput(old_dentry);
5043 exit3:
5044 	unlock_rename(new_path.dentry, old_path.dentry);
5045 exit_lock_rename:
5046 	if (delegated_inode) {
5047 		error = break_deleg_wait(&delegated_inode);
5048 		if (!error)
5049 			goto retry_deleg;
5050 	}
5051 	mnt_drop_write(old_path.mnt);
5052 exit2:
5053 	if (retry_estale(error, lookup_flags))
5054 		should_retry = true;
5055 	path_put(&new_path);
5056 exit1:
5057 	path_put(&old_path);
5058 	if (should_retry) {
5059 		should_retry = false;
5060 		lookup_flags |= LOOKUP_REVAL;
5061 		goto retry;
5062 	}
5063 put_names:
5064 	putname(from);
5065 	putname(to);
5066 	return error;
5067 }
5068 
5069 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5070 		int, newdfd, const char __user *, newname, unsigned int, flags)
5071 {
5072 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5073 				flags);
5074 }
5075 
5076 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5077 		int, newdfd, const char __user *, newname)
5078 {
5079 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5080 				0);
5081 }
5082 
5083 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5084 {
5085 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5086 				getname(newname), 0);
5087 }
5088 
5089 int readlink_copy(char __user *buffer, int buflen, const char *link)
5090 {
5091 	int len = PTR_ERR(link);
5092 	if (IS_ERR(link))
5093 		goto out;
5094 
5095 	len = strlen(link);
5096 	if (len > (unsigned) buflen)
5097 		len = buflen;
5098 	if (copy_to_user(buffer, link, len))
5099 		len = -EFAULT;
5100 out:
5101 	return len;
5102 }
5103 
5104 /**
5105  * vfs_readlink - copy symlink body into userspace buffer
5106  * @dentry: dentry on which to get symbolic link
5107  * @buffer: user memory pointer
5108  * @buflen: size of buffer
5109  *
5110  * Does not touch atime.  That's up to the caller if necessary
5111  *
5112  * Does not call security hook.
5113  */
5114 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5115 {
5116 	struct inode *inode = d_inode(dentry);
5117 	DEFINE_DELAYED_CALL(done);
5118 	const char *link;
5119 	int res;
5120 
5121 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5122 		if (unlikely(inode->i_op->readlink))
5123 			return inode->i_op->readlink(dentry, buffer, buflen);
5124 
5125 		if (!d_is_symlink(dentry))
5126 			return -EINVAL;
5127 
5128 		spin_lock(&inode->i_lock);
5129 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5130 		spin_unlock(&inode->i_lock);
5131 	}
5132 
5133 	link = READ_ONCE(inode->i_link);
5134 	if (!link) {
5135 		link = inode->i_op->get_link(dentry, inode, &done);
5136 		if (IS_ERR(link))
5137 			return PTR_ERR(link);
5138 	}
5139 	res = readlink_copy(buffer, buflen, link);
5140 	do_delayed_call(&done);
5141 	return res;
5142 }
5143 EXPORT_SYMBOL(vfs_readlink);
5144 
5145 /**
5146  * vfs_get_link - get symlink body
5147  * @dentry: dentry on which to get symbolic link
5148  * @done: caller needs to free returned data with this
5149  *
5150  * Calls security hook and i_op->get_link() on the supplied inode.
5151  *
5152  * It does not touch atime.  That's up to the caller if necessary.
5153  *
5154  * Does not work on "special" symlinks like /proc/$$/fd/N
5155  */
5156 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5157 {
5158 	const char *res = ERR_PTR(-EINVAL);
5159 	struct inode *inode = d_inode(dentry);
5160 
5161 	if (d_is_symlink(dentry)) {
5162 		res = ERR_PTR(security_inode_readlink(dentry));
5163 		if (!res)
5164 			res = inode->i_op->get_link(dentry, inode, done);
5165 	}
5166 	return res;
5167 }
5168 EXPORT_SYMBOL(vfs_get_link);
5169 
5170 /* get the link contents into pagecache */
5171 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5172 			  struct delayed_call *callback)
5173 {
5174 	char *kaddr;
5175 	struct page *page;
5176 	struct address_space *mapping = inode->i_mapping;
5177 
5178 	if (!dentry) {
5179 		page = find_get_page(mapping, 0);
5180 		if (!page)
5181 			return ERR_PTR(-ECHILD);
5182 		if (!PageUptodate(page)) {
5183 			put_page(page);
5184 			return ERR_PTR(-ECHILD);
5185 		}
5186 	} else {
5187 		page = read_mapping_page(mapping, 0, NULL);
5188 		if (IS_ERR(page))
5189 			return (char*)page;
5190 	}
5191 	set_delayed_call(callback, page_put_link, page);
5192 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5193 	kaddr = page_address(page);
5194 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5195 	return kaddr;
5196 }
5197 
5198 EXPORT_SYMBOL(page_get_link);
5199 
5200 void page_put_link(void *arg)
5201 {
5202 	put_page(arg);
5203 }
5204 EXPORT_SYMBOL(page_put_link);
5205 
5206 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5207 {
5208 	DEFINE_DELAYED_CALL(done);
5209 	int res = readlink_copy(buffer, buflen,
5210 				page_get_link(dentry, d_inode(dentry),
5211 					      &done));
5212 	do_delayed_call(&done);
5213 	return res;
5214 }
5215 EXPORT_SYMBOL(page_readlink);
5216 
5217 int page_symlink(struct inode *inode, const char *symname, int len)
5218 {
5219 	struct address_space *mapping = inode->i_mapping;
5220 	const struct address_space_operations *aops = mapping->a_ops;
5221 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5222 	struct page *page;
5223 	void *fsdata = NULL;
5224 	int err;
5225 	unsigned int flags;
5226 
5227 retry:
5228 	if (nofs)
5229 		flags = memalloc_nofs_save();
5230 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5231 	if (nofs)
5232 		memalloc_nofs_restore(flags);
5233 	if (err)
5234 		goto fail;
5235 
5236 	memcpy(page_address(page), symname, len-1);
5237 
5238 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5239 							page, fsdata);
5240 	if (err < 0)
5241 		goto fail;
5242 	if (err < len-1)
5243 		goto retry;
5244 
5245 	mark_inode_dirty(inode);
5246 	return 0;
5247 fail:
5248 	return err;
5249 }
5250 EXPORT_SYMBOL(page_symlink);
5251 
5252 const struct inode_operations page_symlink_inode_operations = {
5253 	.get_link	= page_get_link,
5254 };
5255 EXPORT_SYMBOL(page_symlink_inode_operations);
5256