1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/ima.h> 31 #include <linux/syscalls.h> 32 #include <linux/mount.h> 33 #include <linux/audit.h> 34 #include <linux/capability.h> 35 #include <linux/file.h> 36 #include <linux/fcntl.h> 37 #include <linux/device_cgroup.h> 38 #include <linux/fs_struct.h> 39 #include <linux/posix_acl.h> 40 #include <linux/hash.h> 41 #include <linux/bitops.h> 42 #include <linux/init_task.h> 43 #include <linux/uaccess.h> 44 45 #include "internal.h" 46 #include "mount.h" 47 48 /* [Feb-1997 T. Schoebel-Theuer] 49 * Fundamental changes in the pathname lookup mechanisms (namei) 50 * were necessary because of omirr. The reason is that omirr needs 51 * to know the _real_ pathname, not the user-supplied one, in case 52 * of symlinks (and also when transname replacements occur). 53 * 54 * The new code replaces the old recursive symlink resolution with 55 * an iterative one (in case of non-nested symlink chains). It does 56 * this with calls to <fs>_follow_link(). 57 * As a side effect, dir_namei(), _namei() and follow_link() are now 58 * replaced with a single function lookup_dentry() that can handle all 59 * the special cases of the former code. 60 * 61 * With the new dcache, the pathname is stored at each inode, at least as 62 * long as the refcount of the inode is positive. As a side effect, the 63 * size of the dcache depends on the inode cache and thus is dynamic. 64 * 65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 66 * resolution to correspond with current state of the code. 67 * 68 * Note that the symlink resolution is not *completely* iterative. 69 * There is still a significant amount of tail- and mid- recursion in 70 * the algorithm. Also, note that <fs>_readlink() is not used in 71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 72 * may return different results than <fs>_follow_link(). Many virtual 73 * filesystems (including /proc) exhibit this behavior. 74 */ 75 76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 78 * and the name already exists in form of a symlink, try to create the new 79 * name indicated by the symlink. The old code always complained that the 80 * name already exists, due to not following the symlink even if its target 81 * is nonexistent. The new semantics affects also mknod() and link() when 82 * the name is a symlink pointing to a non-existent name. 83 * 84 * I don't know which semantics is the right one, since I have no access 85 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 87 * "old" one. Personally, I think the new semantics is much more logical. 88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 89 * file does succeed in both HP-UX and SunOs, but not in Solaris 90 * and in the old Linux semantics. 91 */ 92 93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 94 * semantics. See the comments in "open_namei" and "do_link" below. 95 * 96 * [10-Sep-98 Alan Modra] Another symlink change. 97 */ 98 99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 100 * inside the path - always follow. 101 * in the last component in creation/removal/renaming - never follow. 102 * if LOOKUP_FOLLOW passed - follow. 103 * if the pathname has trailing slashes - follow. 104 * otherwise - don't follow. 105 * (applied in that order). 106 * 107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 109 * During the 2.4 we need to fix the userland stuff depending on it - 110 * hopefully we will be able to get rid of that wart in 2.5. So far only 111 * XEmacs seems to be relying on it... 112 */ 113 /* 114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 115 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 116 * any extra contention... 117 */ 118 119 /* In order to reduce some races, while at the same time doing additional 120 * checking and hopefully speeding things up, we copy filenames to the 121 * kernel data space before using them.. 122 * 123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 124 * PATH_MAX includes the nul terminator --RR. 125 */ 126 127 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 128 129 struct filename * 130 getname_flags(const char __user *filename, int flags, int *empty) 131 { 132 struct filename *result; 133 char *kname; 134 int len; 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 atomic_set(&result->refcnt, 1); 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname_uflags(const char __user *filename, int uflags) 210 { 211 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 212 213 return getname_flags(filename, flags, NULL); 214 } 215 216 struct filename * 217 getname(const char __user * filename) 218 { 219 return getname_flags(filename, 0, NULL); 220 } 221 222 struct filename * 223 getname_kernel(const char * filename) 224 { 225 struct filename *result; 226 int len = strlen(filename) + 1; 227 228 result = __getname(); 229 if (unlikely(!result)) 230 return ERR_PTR(-ENOMEM); 231 232 if (len <= EMBEDDED_NAME_MAX) { 233 result->name = (char *)result->iname; 234 } else if (len <= PATH_MAX) { 235 const size_t size = offsetof(struct filename, iname[1]); 236 struct filename *tmp; 237 238 tmp = kmalloc(size, GFP_KERNEL); 239 if (unlikely(!tmp)) { 240 __putname(result); 241 return ERR_PTR(-ENOMEM); 242 } 243 tmp->name = (char *)result; 244 result = tmp; 245 } else { 246 __putname(result); 247 return ERR_PTR(-ENAMETOOLONG); 248 } 249 memcpy((char *)result->name, filename, len); 250 result->uptr = NULL; 251 result->aname = NULL; 252 atomic_set(&result->refcnt, 1); 253 audit_getname(result); 254 255 return result; 256 } 257 EXPORT_SYMBOL(getname_kernel); 258 259 void putname(struct filename *name) 260 { 261 if (IS_ERR(name)) 262 return; 263 264 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 265 return; 266 267 if (!atomic_dec_and_test(&name->refcnt)) 268 return; 269 270 if (name->name != name->iname) { 271 __putname(name->name); 272 kfree(name); 273 } else 274 __putname(name); 275 } 276 EXPORT_SYMBOL(putname); 277 278 /** 279 * check_acl - perform ACL permission checking 280 * @idmap: idmap of the mount the inode was found from 281 * @inode: inode to check permissions on 282 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 283 * 284 * This function performs the ACL permission checking. Since this function 285 * retrieve POSIX acls it needs to know whether it is called from a blocking or 286 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 287 * 288 * If the inode has been found through an idmapped mount the idmap of 289 * the vfsmount must be passed through @idmap. This function will then take 290 * care to map the inode according to @idmap before checking permissions. 291 * On non-idmapped mounts or if permission checking is to be performed on the 292 * raw inode simply pass @nop_mnt_idmap. 293 */ 294 static int check_acl(struct mnt_idmap *idmap, 295 struct inode *inode, int mask) 296 { 297 #ifdef CONFIG_FS_POSIX_ACL 298 struct posix_acl *acl; 299 300 if (mask & MAY_NOT_BLOCK) { 301 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 302 if (!acl) 303 return -EAGAIN; 304 /* no ->get_inode_acl() calls in RCU mode... */ 305 if (is_uncached_acl(acl)) 306 return -ECHILD; 307 return posix_acl_permission(idmap, inode, acl, mask); 308 } 309 310 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 311 if (IS_ERR(acl)) 312 return PTR_ERR(acl); 313 if (acl) { 314 int error = posix_acl_permission(idmap, inode, acl, mask); 315 posix_acl_release(acl); 316 return error; 317 } 318 #endif 319 320 return -EAGAIN; 321 } 322 323 /** 324 * acl_permission_check - perform basic UNIX permission checking 325 * @idmap: idmap of the mount the inode was found from 326 * @inode: inode to check permissions on 327 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 328 * 329 * This function performs the basic UNIX permission checking. Since this 330 * function may retrieve POSIX acls it needs to know whether it is called from a 331 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 332 * 333 * If the inode has been found through an idmapped mount the idmap of 334 * the vfsmount must be passed through @idmap. This function will then take 335 * care to map the inode according to @idmap before checking permissions. 336 * On non-idmapped mounts or if permission checking is to be performed on the 337 * raw inode simply pass @nop_mnt_idmap. 338 */ 339 static int acl_permission_check(struct mnt_idmap *idmap, 340 struct inode *inode, int mask) 341 { 342 unsigned int mode = inode->i_mode; 343 vfsuid_t vfsuid; 344 345 /* Are we the owner? If so, ACL's don't matter */ 346 vfsuid = i_uid_into_vfsuid(idmap, inode); 347 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 348 mask &= 7; 349 mode >>= 6; 350 return (mask & ~mode) ? -EACCES : 0; 351 } 352 353 /* Do we have ACL's? */ 354 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 355 int error = check_acl(idmap, inode, mask); 356 if (error != -EAGAIN) 357 return error; 358 } 359 360 /* Only RWX matters for group/other mode bits */ 361 mask &= 7; 362 363 /* 364 * Are the group permissions different from 365 * the other permissions in the bits we care 366 * about? Need to check group ownership if so. 367 */ 368 if (mask & (mode ^ (mode >> 3))) { 369 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 370 if (vfsgid_in_group_p(vfsgid)) 371 mode >>= 3; 372 } 373 374 /* Bits in 'mode' clear that we require? */ 375 return (mask & ~mode) ? -EACCES : 0; 376 } 377 378 /** 379 * generic_permission - check for access rights on a Posix-like filesystem 380 * @idmap: idmap of the mount the inode was found from 381 * @inode: inode to check access rights for 382 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 383 * %MAY_NOT_BLOCK ...) 384 * 385 * Used to check for read/write/execute permissions on a file. 386 * We use "fsuid" for this, letting us set arbitrary permissions 387 * for filesystem access without changing the "normal" uids which 388 * are used for other things. 389 * 390 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 391 * request cannot be satisfied (eg. requires blocking or too much complexity). 392 * It would then be called again in ref-walk mode. 393 * 394 * If the inode has been found through an idmapped mount the idmap of 395 * the vfsmount must be passed through @idmap. This function will then take 396 * care to map the inode according to @idmap before checking permissions. 397 * On non-idmapped mounts or if permission checking is to be performed on the 398 * raw inode simply pass @nop_mnt_idmap. 399 */ 400 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 401 int mask) 402 { 403 int ret; 404 405 /* 406 * Do the basic permission checks. 407 */ 408 ret = acl_permission_check(idmap, inode, mask); 409 if (ret != -EACCES) 410 return ret; 411 412 if (S_ISDIR(inode->i_mode)) { 413 /* DACs are overridable for directories */ 414 if (!(mask & MAY_WRITE)) 415 if (capable_wrt_inode_uidgid(idmap, inode, 416 CAP_DAC_READ_SEARCH)) 417 return 0; 418 if (capable_wrt_inode_uidgid(idmap, inode, 419 CAP_DAC_OVERRIDE)) 420 return 0; 421 return -EACCES; 422 } 423 424 /* 425 * Searching includes executable on directories, else just read. 426 */ 427 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 428 if (mask == MAY_READ) 429 if (capable_wrt_inode_uidgid(idmap, inode, 430 CAP_DAC_READ_SEARCH)) 431 return 0; 432 /* 433 * Read/write DACs are always overridable. 434 * Executable DACs are overridable when there is 435 * at least one exec bit set. 436 */ 437 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 438 if (capable_wrt_inode_uidgid(idmap, inode, 439 CAP_DAC_OVERRIDE)) 440 return 0; 441 442 return -EACCES; 443 } 444 EXPORT_SYMBOL(generic_permission); 445 446 /** 447 * do_inode_permission - UNIX permission checking 448 * @idmap: idmap of the mount the inode was found from 449 * @inode: inode to check permissions on 450 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 451 * 452 * We _really_ want to just do "generic_permission()" without 453 * even looking at the inode->i_op values. So we keep a cache 454 * flag in inode->i_opflags, that says "this has not special 455 * permission function, use the fast case". 456 */ 457 static inline int do_inode_permission(struct mnt_idmap *idmap, 458 struct inode *inode, int mask) 459 { 460 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 461 if (likely(inode->i_op->permission)) 462 return inode->i_op->permission(idmap, inode, mask); 463 464 /* This gets set once for the inode lifetime */ 465 spin_lock(&inode->i_lock); 466 inode->i_opflags |= IOP_FASTPERM; 467 spin_unlock(&inode->i_lock); 468 } 469 return generic_permission(idmap, inode, mask); 470 } 471 472 /** 473 * sb_permission - Check superblock-level permissions 474 * @sb: Superblock of inode to check permission on 475 * @inode: Inode to check permission on 476 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 477 * 478 * Separate out file-system wide checks from inode-specific permission checks. 479 */ 480 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 481 { 482 if (unlikely(mask & MAY_WRITE)) { 483 umode_t mode = inode->i_mode; 484 485 /* Nobody gets write access to a read-only fs. */ 486 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 487 return -EROFS; 488 } 489 return 0; 490 } 491 492 /** 493 * inode_permission - Check for access rights to a given inode 494 * @idmap: idmap of the mount the inode was found from 495 * @inode: Inode to check permission on 496 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 497 * 498 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 499 * this, letting us set arbitrary permissions for filesystem access without 500 * changing the "normal" UIDs which are used for other things. 501 * 502 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 503 */ 504 int inode_permission(struct mnt_idmap *idmap, 505 struct inode *inode, int mask) 506 { 507 int retval; 508 509 retval = sb_permission(inode->i_sb, inode, mask); 510 if (retval) 511 return retval; 512 513 if (unlikely(mask & MAY_WRITE)) { 514 /* 515 * Nobody gets write access to an immutable file. 516 */ 517 if (IS_IMMUTABLE(inode)) 518 return -EPERM; 519 520 /* 521 * Updating mtime will likely cause i_uid and i_gid to be 522 * written back improperly if their true value is unknown 523 * to the vfs. 524 */ 525 if (HAS_UNMAPPED_ID(idmap, inode)) 526 return -EACCES; 527 } 528 529 retval = do_inode_permission(idmap, inode, mask); 530 if (retval) 531 return retval; 532 533 retval = devcgroup_inode_permission(inode, mask); 534 if (retval) 535 return retval; 536 537 return security_inode_permission(inode, mask); 538 } 539 EXPORT_SYMBOL(inode_permission); 540 541 /** 542 * path_get - get a reference to a path 543 * @path: path to get the reference to 544 * 545 * Given a path increment the reference count to the dentry and the vfsmount. 546 */ 547 void path_get(const struct path *path) 548 { 549 mntget(path->mnt); 550 dget(path->dentry); 551 } 552 EXPORT_SYMBOL(path_get); 553 554 /** 555 * path_put - put a reference to a path 556 * @path: path to put the reference to 557 * 558 * Given a path decrement the reference count to the dentry and the vfsmount. 559 */ 560 void path_put(const struct path *path) 561 { 562 dput(path->dentry); 563 mntput(path->mnt); 564 } 565 EXPORT_SYMBOL(path_put); 566 567 #define EMBEDDED_LEVELS 2 568 struct nameidata { 569 struct path path; 570 struct qstr last; 571 struct path root; 572 struct inode *inode; /* path.dentry.d_inode */ 573 unsigned int flags, state; 574 unsigned seq, next_seq, m_seq, r_seq; 575 int last_type; 576 unsigned depth; 577 int total_link_count; 578 struct saved { 579 struct path link; 580 struct delayed_call done; 581 const char *name; 582 unsigned seq; 583 } *stack, internal[EMBEDDED_LEVELS]; 584 struct filename *name; 585 struct nameidata *saved; 586 unsigned root_seq; 587 int dfd; 588 vfsuid_t dir_vfsuid; 589 umode_t dir_mode; 590 } __randomize_layout; 591 592 #define ND_ROOT_PRESET 1 593 #define ND_ROOT_GRABBED 2 594 #define ND_JUMPED 4 595 596 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 597 { 598 struct nameidata *old = current->nameidata; 599 p->stack = p->internal; 600 p->depth = 0; 601 p->dfd = dfd; 602 p->name = name; 603 p->path.mnt = NULL; 604 p->path.dentry = NULL; 605 p->total_link_count = old ? old->total_link_count : 0; 606 p->saved = old; 607 current->nameidata = p; 608 } 609 610 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 611 const struct path *root) 612 { 613 __set_nameidata(p, dfd, name); 614 p->state = 0; 615 if (unlikely(root)) { 616 p->state = ND_ROOT_PRESET; 617 p->root = *root; 618 } 619 } 620 621 static void restore_nameidata(void) 622 { 623 struct nameidata *now = current->nameidata, *old = now->saved; 624 625 current->nameidata = old; 626 if (old) 627 old->total_link_count = now->total_link_count; 628 if (now->stack != now->internal) 629 kfree(now->stack); 630 } 631 632 static bool nd_alloc_stack(struct nameidata *nd) 633 { 634 struct saved *p; 635 636 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 637 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 638 if (unlikely(!p)) 639 return false; 640 memcpy(p, nd->internal, sizeof(nd->internal)); 641 nd->stack = p; 642 return true; 643 } 644 645 /** 646 * path_connected - Verify that a dentry is below mnt.mnt_root 647 * @mnt: The mountpoint to check. 648 * @dentry: The dentry to check. 649 * 650 * Rename can sometimes move a file or directory outside of a bind 651 * mount, path_connected allows those cases to be detected. 652 */ 653 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 654 { 655 struct super_block *sb = mnt->mnt_sb; 656 657 /* Bind mounts can have disconnected paths */ 658 if (mnt->mnt_root == sb->s_root) 659 return true; 660 661 return is_subdir(dentry, mnt->mnt_root); 662 } 663 664 static void drop_links(struct nameidata *nd) 665 { 666 int i = nd->depth; 667 while (i--) { 668 struct saved *last = nd->stack + i; 669 do_delayed_call(&last->done); 670 clear_delayed_call(&last->done); 671 } 672 } 673 674 static void leave_rcu(struct nameidata *nd) 675 { 676 nd->flags &= ~LOOKUP_RCU; 677 nd->seq = nd->next_seq = 0; 678 rcu_read_unlock(); 679 } 680 681 static void terminate_walk(struct nameidata *nd) 682 { 683 drop_links(nd); 684 if (!(nd->flags & LOOKUP_RCU)) { 685 int i; 686 path_put(&nd->path); 687 for (i = 0; i < nd->depth; i++) 688 path_put(&nd->stack[i].link); 689 if (nd->state & ND_ROOT_GRABBED) { 690 path_put(&nd->root); 691 nd->state &= ~ND_ROOT_GRABBED; 692 } 693 } else { 694 leave_rcu(nd); 695 } 696 nd->depth = 0; 697 nd->path.mnt = NULL; 698 nd->path.dentry = NULL; 699 } 700 701 /* path_put is needed afterwards regardless of success or failure */ 702 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 703 { 704 int res = __legitimize_mnt(path->mnt, mseq); 705 if (unlikely(res)) { 706 if (res > 0) 707 path->mnt = NULL; 708 path->dentry = NULL; 709 return false; 710 } 711 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 712 path->dentry = NULL; 713 return false; 714 } 715 return !read_seqcount_retry(&path->dentry->d_seq, seq); 716 } 717 718 static inline bool legitimize_path(struct nameidata *nd, 719 struct path *path, unsigned seq) 720 { 721 return __legitimize_path(path, seq, nd->m_seq); 722 } 723 724 static bool legitimize_links(struct nameidata *nd) 725 { 726 int i; 727 if (unlikely(nd->flags & LOOKUP_CACHED)) { 728 drop_links(nd); 729 nd->depth = 0; 730 return false; 731 } 732 for (i = 0; i < nd->depth; i++) { 733 struct saved *last = nd->stack + i; 734 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 735 drop_links(nd); 736 nd->depth = i + 1; 737 return false; 738 } 739 } 740 return true; 741 } 742 743 static bool legitimize_root(struct nameidata *nd) 744 { 745 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 746 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 747 return true; 748 nd->state |= ND_ROOT_GRABBED; 749 return legitimize_path(nd, &nd->root, nd->root_seq); 750 } 751 752 /* 753 * Path walking has 2 modes, rcu-walk and ref-walk (see 754 * Documentation/filesystems/path-lookup.txt). In situations when we can't 755 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 756 * normal reference counts on dentries and vfsmounts to transition to ref-walk 757 * mode. Refcounts are grabbed at the last known good point before rcu-walk 758 * got stuck, so ref-walk may continue from there. If this is not successful 759 * (eg. a seqcount has changed), then failure is returned and it's up to caller 760 * to restart the path walk from the beginning in ref-walk mode. 761 */ 762 763 /** 764 * try_to_unlazy - try to switch to ref-walk mode. 765 * @nd: nameidata pathwalk data 766 * Returns: true on success, false on failure 767 * 768 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 769 * for ref-walk mode. 770 * Must be called from rcu-walk context. 771 * Nothing should touch nameidata between try_to_unlazy() failure and 772 * terminate_walk(). 773 */ 774 static bool try_to_unlazy(struct nameidata *nd) 775 { 776 struct dentry *parent = nd->path.dentry; 777 778 BUG_ON(!(nd->flags & LOOKUP_RCU)); 779 780 if (unlikely(!legitimize_links(nd))) 781 goto out1; 782 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 783 goto out; 784 if (unlikely(!legitimize_root(nd))) 785 goto out; 786 leave_rcu(nd); 787 BUG_ON(nd->inode != parent->d_inode); 788 return true; 789 790 out1: 791 nd->path.mnt = NULL; 792 nd->path.dentry = NULL; 793 out: 794 leave_rcu(nd); 795 return false; 796 } 797 798 /** 799 * try_to_unlazy_next - try to switch to ref-walk mode. 800 * @nd: nameidata pathwalk data 801 * @dentry: next dentry to step into 802 * Returns: true on success, false on failure 803 * 804 * Similar to try_to_unlazy(), but here we have the next dentry already 805 * picked by rcu-walk and want to legitimize that in addition to the current 806 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 807 * Nothing should touch nameidata between try_to_unlazy_next() failure and 808 * terminate_walk(). 809 */ 810 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 811 { 812 int res; 813 BUG_ON(!(nd->flags & LOOKUP_RCU)); 814 815 if (unlikely(!legitimize_links(nd))) 816 goto out2; 817 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 818 if (unlikely(res)) { 819 if (res > 0) 820 goto out2; 821 goto out1; 822 } 823 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 824 goto out1; 825 826 /* 827 * We need to move both the parent and the dentry from the RCU domain 828 * to be properly refcounted. And the sequence number in the dentry 829 * validates *both* dentry counters, since we checked the sequence 830 * number of the parent after we got the child sequence number. So we 831 * know the parent must still be valid if the child sequence number is 832 */ 833 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 834 goto out; 835 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 836 goto out_dput; 837 /* 838 * Sequence counts matched. Now make sure that the root is 839 * still valid and get it if required. 840 */ 841 if (unlikely(!legitimize_root(nd))) 842 goto out_dput; 843 leave_rcu(nd); 844 return true; 845 846 out2: 847 nd->path.mnt = NULL; 848 out1: 849 nd->path.dentry = NULL; 850 out: 851 leave_rcu(nd); 852 return false; 853 out_dput: 854 leave_rcu(nd); 855 dput(dentry); 856 return false; 857 } 858 859 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 860 { 861 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 862 return dentry->d_op->d_revalidate(dentry, flags); 863 else 864 return 1; 865 } 866 867 /** 868 * complete_walk - successful completion of path walk 869 * @nd: pointer nameidata 870 * 871 * If we had been in RCU mode, drop out of it and legitimize nd->path. 872 * Revalidate the final result, unless we'd already done that during 873 * the path walk or the filesystem doesn't ask for it. Return 0 on 874 * success, -error on failure. In case of failure caller does not 875 * need to drop nd->path. 876 */ 877 static int complete_walk(struct nameidata *nd) 878 { 879 struct dentry *dentry = nd->path.dentry; 880 int status; 881 882 if (nd->flags & LOOKUP_RCU) { 883 /* 884 * We don't want to zero nd->root for scoped-lookups or 885 * externally-managed nd->root. 886 */ 887 if (!(nd->state & ND_ROOT_PRESET)) 888 if (!(nd->flags & LOOKUP_IS_SCOPED)) 889 nd->root.mnt = NULL; 890 nd->flags &= ~LOOKUP_CACHED; 891 if (!try_to_unlazy(nd)) 892 return -ECHILD; 893 } 894 895 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 896 /* 897 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 898 * ever step outside the root during lookup" and should already 899 * be guaranteed by the rest of namei, we want to avoid a namei 900 * BUG resulting in userspace being given a path that was not 901 * scoped within the root at some point during the lookup. 902 * 903 * So, do a final sanity-check to make sure that in the 904 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 905 * we won't silently return an fd completely outside of the 906 * requested root to userspace. 907 * 908 * Userspace could move the path outside the root after this 909 * check, but as discussed elsewhere this is not a concern (the 910 * resolved file was inside the root at some point). 911 */ 912 if (!path_is_under(&nd->path, &nd->root)) 913 return -EXDEV; 914 } 915 916 if (likely(!(nd->state & ND_JUMPED))) 917 return 0; 918 919 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 920 return 0; 921 922 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 923 if (status > 0) 924 return 0; 925 926 if (!status) 927 status = -ESTALE; 928 929 return status; 930 } 931 932 static int set_root(struct nameidata *nd) 933 { 934 struct fs_struct *fs = current->fs; 935 936 /* 937 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 938 * still have to ensure it doesn't happen because it will cause a breakout 939 * from the dirfd. 940 */ 941 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 942 return -ENOTRECOVERABLE; 943 944 if (nd->flags & LOOKUP_RCU) { 945 unsigned seq; 946 947 do { 948 seq = read_seqcount_begin(&fs->seq); 949 nd->root = fs->root; 950 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 951 } while (read_seqcount_retry(&fs->seq, seq)); 952 } else { 953 get_fs_root(fs, &nd->root); 954 nd->state |= ND_ROOT_GRABBED; 955 } 956 return 0; 957 } 958 959 static int nd_jump_root(struct nameidata *nd) 960 { 961 if (unlikely(nd->flags & LOOKUP_BENEATH)) 962 return -EXDEV; 963 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 964 /* Absolute path arguments to path_init() are allowed. */ 965 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 966 return -EXDEV; 967 } 968 if (!nd->root.mnt) { 969 int error = set_root(nd); 970 if (error) 971 return error; 972 } 973 if (nd->flags & LOOKUP_RCU) { 974 struct dentry *d; 975 nd->path = nd->root; 976 d = nd->path.dentry; 977 nd->inode = d->d_inode; 978 nd->seq = nd->root_seq; 979 if (read_seqcount_retry(&d->d_seq, nd->seq)) 980 return -ECHILD; 981 } else { 982 path_put(&nd->path); 983 nd->path = nd->root; 984 path_get(&nd->path); 985 nd->inode = nd->path.dentry->d_inode; 986 } 987 nd->state |= ND_JUMPED; 988 return 0; 989 } 990 991 /* 992 * Helper to directly jump to a known parsed path from ->get_link, 993 * caller must have taken a reference to path beforehand. 994 */ 995 int nd_jump_link(const struct path *path) 996 { 997 int error = -ELOOP; 998 struct nameidata *nd = current->nameidata; 999 1000 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1001 goto err; 1002 1003 error = -EXDEV; 1004 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1005 if (nd->path.mnt != path->mnt) 1006 goto err; 1007 } 1008 /* Not currently safe for scoped-lookups. */ 1009 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1010 goto err; 1011 1012 path_put(&nd->path); 1013 nd->path = *path; 1014 nd->inode = nd->path.dentry->d_inode; 1015 nd->state |= ND_JUMPED; 1016 return 0; 1017 1018 err: 1019 path_put(path); 1020 return error; 1021 } 1022 1023 static inline void put_link(struct nameidata *nd) 1024 { 1025 struct saved *last = nd->stack + --nd->depth; 1026 do_delayed_call(&last->done); 1027 if (!(nd->flags & LOOKUP_RCU)) 1028 path_put(&last->link); 1029 } 1030 1031 static int sysctl_protected_symlinks __read_mostly; 1032 static int sysctl_protected_hardlinks __read_mostly; 1033 static int sysctl_protected_fifos __read_mostly; 1034 static int sysctl_protected_regular __read_mostly; 1035 1036 #ifdef CONFIG_SYSCTL 1037 static struct ctl_table namei_sysctls[] = { 1038 { 1039 .procname = "protected_symlinks", 1040 .data = &sysctl_protected_symlinks, 1041 .maxlen = sizeof(int), 1042 .mode = 0644, 1043 .proc_handler = proc_dointvec_minmax, 1044 .extra1 = SYSCTL_ZERO, 1045 .extra2 = SYSCTL_ONE, 1046 }, 1047 { 1048 .procname = "protected_hardlinks", 1049 .data = &sysctl_protected_hardlinks, 1050 .maxlen = sizeof(int), 1051 .mode = 0644, 1052 .proc_handler = proc_dointvec_minmax, 1053 .extra1 = SYSCTL_ZERO, 1054 .extra2 = SYSCTL_ONE, 1055 }, 1056 { 1057 .procname = "protected_fifos", 1058 .data = &sysctl_protected_fifos, 1059 .maxlen = sizeof(int), 1060 .mode = 0644, 1061 .proc_handler = proc_dointvec_minmax, 1062 .extra1 = SYSCTL_ZERO, 1063 .extra2 = SYSCTL_TWO, 1064 }, 1065 { 1066 .procname = "protected_regular", 1067 .data = &sysctl_protected_regular, 1068 .maxlen = sizeof(int), 1069 .mode = 0644, 1070 .proc_handler = proc_dointvec_minmax, 1071 .extra1 = SYSCTL_ZERO, 1072 .extra2 = SYSCTL_TWO, 1073 }, 1074 }; 1075 1076 static int __init init_fs_namei_sysctls(void) 1077 { 1078 register_sysctl_init("fs", namei_sysctls); 1079 return 0; 1080 } 1081 fs_initcall(init_fs_namei_sysctls); 1082 1083 #endif /* CONFIG_SYSCTL */ 1084 1085 /** 1086 * may_follow_link - Check symlink following for unsafe situations 1087 * @nd: nameidata pathwalk data 1088 * @inode: Used for idmapping. 1089 * 1090 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1091 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1092 * in a sticky world-writable directory. This is to protect privileged 1093 * processes from failing races against path names that may change out 1094 * from under them by way of other users creating malicious symlinks. 1095 * It will permit symlinks to be followed only when outside a sticky 1096 * world-writable directory, or when the uid of the symlink and follower 1097 * match, or when the directory owner matches the symlink's owner. 1098 * 1099 * Returns 0 if following the symlink is allowed, -ve on error. 1100 */ 1101 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1102 { 1103 struct mnt_idmap *idmap; 1104 vfsuid_t vfsuid; 1105 1106 if (!sysctl_protected_symlinks) 1107 return 0; 1108 1109 idmap = mnt_idmap(nd->path.mnt); 1110 vfsuid = i_uid_into_vfsuid(idmap, inode); 1111 /* Allowed if owner and follower match. */ 1112 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1113 return 0; 1114 1115 /* Allowed if parent directory not sticky and world-writable. */ 1116 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1117 return 0; 1118 1119 /* Allowed if parent directory and link owner match. */ 1120 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1121 return 0; 1122 1123 if (nd->flags & LOOKUP_RCU) 1124 return -ECHILD; 1125 1126 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1127 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1128 return -EACCES; 1129 } 1130 1131 /** 1132 * safe_hardlink_source - Check for safe hardlink conditions 1133 * @idmap: idmap of the mount the inode was found from 1134 * @inode: the source inode to hardlink from 1135 * 1136 * Return false if at least one of the following conditions: 1137 * - inode is not a regular file 1138 * - inode is setuid 1139 * - inode is setgid and group-exec 1140 * - access failure for read and write 1141 * 1142 * Otherwise returns true. 1143 */ 1144 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1145 struct inode *inode) 1146 { 1147 umode_t mode = inode->i_mode; 1148 1149 /* Special files should not get pinned to the filesystem. */ 1150 if (!S_ISREG(mode)) 1151 return false; 1152 1153 /* Setuid files should not get pinned to the filesystem. */ 1154 if (mode & S_ISUID) 1155 return false; 1156 1157 /* Executable setgid files should not get pinned to the filesystem. */ 1158 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1159 return false; 1160 1161 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1162 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1163 return false; 1164 1165 return true; 1166 } 1167 1168 /** 1169 * may_linkat - Check permissions for creating a hardlink 1170 * @idmap: idmap of the mount the inode was found from 1171 * @link: the source to hardlink from 1172 * 1173 * Block hardlink when all of: 1174 * - sysctl_protected_hardlinks enabled 1175 * - fsuid does not match inode 1176 * - hardlink source is unsafe (see safe_hardlink_source() above) 1177 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1178 * 1179 * If the inode has been found through an idmapped mount the idmap of 1180 * the vfsmount must be passed through @idmap. This function will then take 1181 * care to map the inode according to @idmap before checking permissions. 1182 * On non-idmapped mounts or if permission checking is to be performed on the 1183 * raw inode simply pass @nop_mnt_idmap. 1184 * 1185 * Returns 0 if successful, -ve on error. 1186 */ 1187 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1188 { 1189 struct inode *inode = link->dentry->d_inode; 1190 1191 /* Inode writeback is not safe when the uid or gid are invalid. */ 1192 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1193 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1194 return -EOVERFLOW; 1195 1196 if (!sysctl_protected_hardlinks) 1197 return 0; 1198 1199 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1200 * otherwise, it must be a safe source. 1201 */ 1202 if (safe_hardlink_source(idmap, inode) || 1203 inode_owner_or_capable(idmap, inode)) 1204 return 0; 1205 1206 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1207 return -EPERM; 1208 } 1209 1210 /** 1211 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1212 * should be allowed, or not, on files that already 1213 * exist. 1214 * @idmap: idmap of the mount the inode was found from 1215 * @nd: nameidata pathwalk data 1216 * @inode: the inode of the file to open 1217 * 1218 * Block an O_CREAT open of a FIFO (or a regular file) when: 1219 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1220 * - the file already exists 1221 * - we are in a sticky directory 1222 * - we don't own the file 1223 * - the owner of the directory doesn't own the file 1224 * - the directory is world writable 1225 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1226 * the directory doesn't have to be world writable: being group writable will 1227 * be enough. 1228 * 1229 * If the inode has been found through an idmapped mount the idmap of 1230 * the vfsmount must be passed through @idmap. This function will then take 1231 * care to map the inode according to @idmap before checking permissions. 1232 * On non-idmapped mounts or if permission checking is to be performed on the 1233 * raw inode simply pass @nop_mnt_idmap. 1234 * 1235 * Returns 0 if the open is allowed, -ve on error. 1236 */ 1237 static int may_create_in_sticky(struct mnt_idmap *idmap, 1238 struct nameidata *nd, struct inode *const inode) 1239 { 1240 umode_t dir_mode = nd->dir_mode; 1241 vfsuid_t dir_vfsuid = nd->dir_vfsuid; 1242 1243 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1244 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1245 likely(!(dir_mode & S_ISVTX)) || 1246 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) || 1247 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) 1248 return 0; 1249 1250 if (likely(dir_mode & 0002) || 1251 (dir_mode & 0020 && 1252 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1253 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1254 const char *operation = S_ISFIFO(inode->i_mode) ? 1255 "sticky_create_fifo" : 1256 "sticky_create_regular"; 1257 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1258 return -EACCES; 1259 } 1260 return 0; 1261 } 1262 1263 /* 1264 * follow_up - Find the mountpoint of path's vfsmount 1265 * 1266 * Given a path, find the mountpoint of its source file system. 1267 * Replace @path with the path of the mountpoint in the parent mount. 1268 * Up is towards /. 1269 * 1270 * Return 1 if we went up a level and 0 if we were already at the 1271 * root. 1272 */ 1273 int follow_up(struct path *path) 1274 { 1275 struct mount *mnt = real_mount(path->mnt); 1276 struct mount *parent; 1277 struct dentry *mountpoint; 1278 1279 read_seqlock_excl(&mount_lock); 1280 parent = mnt->mnt_parent; 1281 if (parent == mnt) { 1282 read_sequnlock_excl(&mount_lock); 1283 return 0; 1284 } 1285 mntget(&parent->mnt); 1286 mountpoint = dget(mnt->mnt_mountpoint); 1287 read_sequnlock_excl(&mount_lock); 1288 dput(path->dentry); 1289 path->dentry = mountpoint; 1290 mntput(path->mnt); 1291 path->mnt = &parent->mnt; 1292 return 1; 1293 } 1294 EXPORT_SYMBOL(follow_up); 1295 1296 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1297 struct path *path, unsigned *seqp) 1298 { 1299 while (mnt_has_parent(m)) { 1300 struct dentry *mountpoint = m->mnt_mountpoint; 1301 1302 m = m->mnt_parent; 1303 if (unlikely(root->dentry == mountpoint && 1304 root->mnt == &m->mnt)) 1305 break; 1306 if (mountpoint != m->mnt.mnt_root) { 1307 path->mnt = &m->mnt; 1308 path->dentry = mountpoint; 1309 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1310 return true; 1311 } 1312 } 1313 return false; 1314 } 1315 1316 static bool choose_mountpoint(struct mount *m, const struct path *root, 1317 struct path *path) 1318 { 1319 bool found; 1320 1321 rcu_read_lock(); 1322 while (1) { 1323 unsigned seq, mseq = read_seqbegin(&mount_lock); 1324 1325 found = choose_mountpoint_rcu(m, root, path, &seq); 1326 if (unlikely(!found)) { 1327 if (!read_seqretry(&mount_lock, mseq)) 1328 break; 1329 } else { 1330 if (likely(__legitimize_path(path, seq, mseq))) 1331 break; 1332 rcu_read_unlock(); 1333 path_put(path); 1334 rcu_read_lock(); 1335 } 1336 } 1337 rcu_read_unlock(); 1338 return found; 1339 } 1340 1341 /* 1342 * Perform an automount 1343 * - return -EISDIR to tell follow_managed() to stop and return the path we 1344 * were called with. 1345 */ 1346 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1347 { 1348 struct dentry *dentry = path->dentry; 1349 1350 /* We don't want to mount if someone's just doing a stat - 1351 * unless they're stat'ing a directory and appended a '/' to 1352 * the name. 1353 * 1354 * We do, however, want to mount if someone wants to open or 1355 * create a file of any type under the mountpoint, wants to 1356 * traverse through the mountpoint or wants to open the 1357 * mounted directory. Also, autofs may mark negative dentries 1358 * as being automount points. These will need the attentions 1359 * of the daemon to instantiate them before they can be used. 1360 */ 1361 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1362 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1363 dentry->d_inode) 1364 return -EISDIR; 1365 1366 if (count && (*count)++ >= MAXSYMLINKS) 1367 return -ELOOP; 1368 1369 return finish_automount(dentry->d_op->d_automount(path), path); 1370 } 1371 1372 /* 1373 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1374 * dentries are pinned but not locked here, so negative dentry can go 1375 * positive right under us. Use of smp_load_acquire() provides a barrier 1376 * sufficient for ->d_inode and ->d_flags consistency. 1377 */ 1378 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1379 int *count, unsigned lookup_flags) 1380 { 1381 struct vfsmount *mnt = path->mnt; 1382 bool need_mntput = false; 1383 int ret = 0; 1384 1385 while (flags & DCACHE_MANAGED_DENTRY) { 1386 /* Allow the filesystem to manage the transit without i_mutex 1387 * being held. */ 1388 if (flags & DCACHE_MANAGE_TRANSIT) { 1389 ret = path->dentry->d_op->d_manage(path, false); 1390 flags = smp_load_acquire(&path->dentry->d_flags); 1391 if (ret < 0) 1392 break; 1393 } 1394 1395 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1396 struct vfsmount *mounted = lookup_mnt(path); 1397 if (mounted) { // ... in our namespace 1398 dput(path->dentry); 1399 if (need_mntput) 1400 mntput(path->mnt); 1401 path->mnt = mounted; 1402 path->dentry = dget(mounted->mnt_root); 1403 // here we know it's positive 1404 flags = path->dentry->d_flags; 1405 need_mntput = true; 1406 continue; 1407 } 1408 } 1409 1410 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1411 break; 1412 1413 // uncovered automount point 1414 ret = follow_automount(path, count, lookup_flags); 1415 flags = smp_load_acquire(&path->dentry->d_flags); 1416 if (ret < 0) 1417 break; 1418 } 1419 1420 if (ret == -EISDIR) 1421 ret = 0; 1422 // possible if you race with several mount --move 1423 if (need_mntput && path->mnt == mnt) 1424 mntput(path->mnt); 1425 if (!ret && unlikely(d_flags_negative(flags))) 1426 ret = -ENOENT; 1427 *jumped = need_mntput; 1428 return ret; 1429 } 1430 1431 static inline int traverse_mounts(struct path *path, bool *jumped, 1432 int *count, unsigned lookup_flags) 1433 { 1434 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1435 1436 /* fastpath */ 1437 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1438 *jumped = false; 1439 if (unlikely(d_flags_negative(flags))) 1440 return -ENOENT; 1441 return 0; 1442 } 1443 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1444 } 1445 1446 int follow_down_one(struct path *path) 1447 { 1448 struct vfsmount *mounted; 1449 1450 mounted = lookup_mnt(path); 1451 if (mounted) { 1452 dput(path->dentry); 1453 mntput(path->mnt); 1454 path->mnt = mounted; 1455 path->dentry = dget(mounted->mnt_root); 1456 return 1; 1457 } 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(follow_down_one); 1461 1462 /* 1463 * Follow down to the covering mount currently visible to userspace. At each 1464 * point, the filesystem owning that dentry may be queried as to whether the 1465 * caller is permitted to proceed or not. 1466 */ 1467 int follow_down(struct path *path, unsigned int flags) 1468 { 1469 struct vfsmount *mnt = path->mnt; 1470 bool jumped; 1471 int ret = traverse_mounts(path, &jumped, NULL, flags); 1472 1473 if (path->mnt != mnt) 1474 mntput(mnt); 1475 return ret; 1476 } 1477 EXPORT_SYMBOL(follow_down); 1478 1479 /* 1480 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1481 * we meet a managed dentry that would need blocking. 1482 */ 1483 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1484 { 1485 struct dentry *dentry = path->dentry; 1486 unsigned int flags = dentry->d_flags; 1487 1488 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1489 return true; 1490 1491 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1492 return false; 1493 1494 for (;;) { 1495 /* 1496 * Don't forget we might have a non-mountpoint managed dentry 1497 * that wants to block transit. 1498 */ 1499 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1500 int res = dentry->d_op->d_manage(path, true); 1501 if (res) 1502 return res == -EISDIR; 1503 flags = dentry->d_flags; 1504 } 1505 1506 if (flags & DCACHE_MOUNTED) { 1507 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1508 if (mounted) { 1509 path->mnt = &mounted->mnt; 1510 dentry = path->dentry = mounted->mnt.mnt_root; 1511 nd->state |= ND_JUMPED; 1512 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1513 flags = dentry->d_flags; 1514 // makes sure that non-RCU pathwalk could reach 1515 // this state. 1516 if (read_seqretry(&mount_lock, nd->m_seq)) 1517 return false; 1518 continue; 1519 } 1520 if (read_seqretry(&mount_lock, nd->m_seq)) 1521 return false; 1522 } 1523 return !(flags & DCACHE_NEED_AUTOMOUNT); 1524 } 1525 } 1526 1527 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1528 struct path *path) 1529 { 1530 bool jumped; 1531 int ret; 1532 1533 path->mnt = nd->path.mnt; 1534 path->dentry = dentry; 1535 if (nd->flags & LOOKUP_RCU) { 1536 unsigned int seq = nd->next_seq; 1537 if (likely(__follow_mount_rcu(nd, path))) 1538 return 0; 1539 // *path and nd->next_seq might've been clobbered 1540 path->mnt = nd->path.mnt; 1541 path->dentry = dentry; 1542 nd->next_seq = seq; 1543 if (!try_to_unlazy_next(nd, dentry)) 1544 return -ECHILD; 1545 } 1546 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1547 if (jumped) { 1548 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1549 ret = -EXDEV; 1550 else 1551 nd->state |= ND_JUMPED; 1552 } 1553 if (unlikely(ret)) { 1554 dput(path->dentry); 1555 if (path->mnt != nd->path.mnt) 1556 mntput(path->mnt); 1557 } 1558 return ret; 1559 } 1560 1561 /* 1562 * This looks up the name in dcache and possibly revalidates the found dentry. 1563 * NULL is returned if the dentry does not exist in the cache. 1564 */ 1565 static struct dentry *lookup_dcache(const struct qstr *name, 1566 struct dentry *dir, 1567 unsigned int flags) 1568 { 1569 struct dentry *dentry = d_lookup(dir, name); 1570 if (dentry) { 1571 int error = d_revalidate(dentry, flags); 1572 if (unlikely(error <= 0)) { 1573 if (!error) 1574 d_invalidate(dentry); 1575 dput(dentry); 1576 return ERR_PTR(error); 1577 } 1578 } 1579 return dentry; 1580 } 1581 1582 /* 1583 * Parent directory has inode locked exclusive. This is one 1584 * and only case when ->lookup() gets called on non in-lookup 1585 * dentries - as the matter of fact, this only gets called 1586 * when directory is guaranteed to have no in-lookup children 1587 * at all. 1588 */ 1589 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1590 struct dentry *base, 1591 unsigned int flags) 1592 { 1593 struct dentry *dentry = lookup_dcache(name, base, flags); 1594 struct dentry *old; 1595 struct inode *dir = base->d_inode; 1596 1597 if (dentry) 1598 return dentry; 1599 1600 /* Don't create child dentry for a dead directory. */ 1601 if (unlikely(IS_DEADDIR(dir))) 1602 return ERR_PTR(-ENOENT); 1603 1604 dentry = d_alloc(base, name); 1605 if (unlikely(!dentry)) 1606 return ERR_PTR(-ENOMEM); 1607 1608 old = dir->i_op->lookup(dir, dentry, flags); 1609 if (unlikely(old)) { 1610 dput(dentry); 1611 dentry = old; 1612 } 1613 return dentry; 1614 } 1615 EXPORT_SYMBOL(lookup_one_qstr_excl); 1616 1617 static struct dentry *lookup_fast(struct nameidata *nd) 1618 { 1619 struct dentry *dentry, *parent = nd->path.dentry; 1620 int status = 1; 1621 1622 /* 1623 * Rename seqlock is not required here because in the off chance 1624 * of a false negative due to a concurrent rename, the caller is 1625 * going to fall back to non-racy lookup. 1626 */ 1627 if (nd->flags & LOOKUP_RCU) { 1628 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1629 if (unlikely(!dentry)) { 1630 if (!try_to_unlazy(nd)) 1631 return ERR_PTR(-ECHILD); 1632 return NULL; 1633 } 1634 1635 /* 1636 * This sequence count validates that the parent had no 1637 * changes while we did the lookup of the dentry above. 1638 */ 1639 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1640 return ERR_PTR(-ECHILD); 1641 1642 status = d_revalidate(dentry, nd->flags); 1643 if (likely(status > 0)) 1644 return dentry; 1645 if (!try_to_unlazy_next(nd, dentry)) 1646 return ERR_PTR(-ECHILD); 1647 if (status == -ECHILD) 1648 /* we'd been told to redo it in non-rcu mode */ 1649 status = d_revalidate(dentry, nd->flags); 1650 } else { 1651 dentry = __d_lookup(parent, &nd->last); 1652 if (unlikely(!dentry)) 1653 return NULL; 1654 status = d_revalidate(dentry, nd->flags); 1655 } 1656 if (unlikely(status <= 0)) { 1657 if (!status) 1658 d_invalidate(dentry); 1659 dput(dentry); 1660 return ERR_PTR(status); 1661 } 1662 return dentry; 1663 } 1664 1665 /* Fast lookup failed, do it the slow way */ 1666 static struct dentry *__lookup_slow(const struct qstr *name, 1667 struct dentry *dir, 1668 unsigned int flags) 1669 { 1670 struct dentry *dentry, *old; 1671 struct inode *inode = dir->d_inode; 1672 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1673 1674 /* Don't go there if it's already dead */ 1675 if (unlikely(IS_DEADDIR(inode))) 1676 return ERR_PTR(-ENOENT); 1677 again: 1678 dentry = d_alloc_parallel(dir, name, &wq); 1679 if (IS_ERR(dentry)) 1680 return dentry; 1681 if (unlikely(!d_in_lookup(dentry))) { 1682 int error = d_revalidate(dentry, flags); 1683 if (unlikely(error <= 0)) { 1684 if (!error) { 1685 d_invalidate(dentry); 1686 dput(dentry); 1687 goto again; 1688 } 1689 dput(dentry); 1690 dentry = ERR_PTR(error); 1691 } 1692 } else { 1693 old = inode->i_op->lookup(inode, dentry, flags); 1694 d_lookup_done(dentry); 1695 if (unlikely(old)) { 1696 dput(dentry); 1697 dentry = old; 1698 } 1699 } 1700 return dentry; 1701 } 1702 1703 static struct dentry *lookup_slow(const struct qstr *name, 1704 struct dentry *dir, 1705 unsigned int flags) 1706 { 1707 struct inode *inode = dir->d_inode; 1708 struct dentry *res; 1709 inode_lock_shared(inode); 1710 res = __lookup_slow(name, dir, flags); 1711 inode_unlock_shared(inode); 1712 return res; 1713 } 1714 1715 static inline int may_lookup(struct mnt_idmap *idmap, 1716 struct nameidata *nd) 1717 { 1718 if (nd->flags & LOOKUP_RCU) { 1719 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1720 if (!err) // success, keep going 1721 return 0; 1722 if (!try_to_unlazy(nd)) 1723 return -ECHILD; // redo it all non-lazy 1724 if (err != -ECHILD) // hard error 1725 return err; 1726 } 1727 return inode_permission(idmap, nd->inode, MAY_EXEC); 1728 } 1729 1730 static int reserve_stack(struct nameidata *nd, struct path *link) 1731 { 1732 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1733 return -ELOOP; 1734 1735 if (likely(nd->depth != EMBEDDED_LEVELS)) 1736 return 0; 1737 if (likely(nd->stack != nd->internal)) 1738 return 0; 1739 if (likely(nd_alloc_stack(nd))) 1740 return 0; 1741 1742 if (nd->flags & LOOKUP_RCU) { 1743 // we need to grab link before we do unlazy. And we can't skip 1744 // unlazy even if we fail to grab the link - cleanup needs it 1745 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1746 1747 if (!try_to_unlazy(nd) || !grabbed_link) 1748 return -ECHILD; 1749 1750 if (nd_alloc_stack(nd)) 1751 return 0; 1752 } 1753 return -ENOMEM; 1754 } 1755 1756 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1757 1758 static const char *pick_link(struct nameidata *nd, struct path *link, 1759 struct inode *inode, int flags) 1760 { 1761 struct saved *last; 1762 const char *res; 1763 int error = reserve_stack(nd, link); 1764 1765 if (unlikely(error)) { 1766 if (!(nd->flags & LOOKUP_RCU)) 1767 path_put(link); 1768 return ERR_PTR(error); 1769 } 1770 last = nd->stack + nd->depth++; 1771 last->link = *link; 1772 clear_delayed_call(&last->done); 1773 last->seq = nd->next_seq; 1774 1775 if (flags & WALK_TRAILING) { 1776 error = may_follow_link(nd, inode); 1777 if (unlikely(error)) 1778 return ERR_PTR(error); 1779 } 1780 1781 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1782 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1783 return ERR_PTR(-ELOOP); 1784 1785 if (!(nd->flags & LOOKUP_RCU)) { 1786 touch_atime(&last->link); 1787 cond_resched(); 1788 } else if (atime_needs_update(&last->link, inode)) { 1789 if (!try_to_unlazy(nd)) 1790 return ERR_PTR(-ECHILD); 1791 touch_atime(&last->link); 1792 } 1793 1794 error = security_inode_follow_link(link->dentry, inode, 1795 nd->flags & LOOKUP_RCU); 1796 if (unlikely(error)) 1797 return ERR_PTR(error); 1798 1799 res = READ_ONCE(inode->i_link); 1800 if (!res) { 1801 const char * (*get)(struct dentry *, struct inode *, 1802 struct delayed_call *); 1803 get = inode->i_op->get_link; 1804 if (nd->flags & LOOKUP_RCU) { 1805 res = get(NULL, inode, &last->done); 1806 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1807 res = get(link->dentry, inode, &last->done); 1808 } else { 1809 res = get(link->dentry, inode, &last->done); 1810 } 1811 if (!res) 1812 goto all_done; 1813 if (IS_ERR(res)) 1814 return res; 1815 } 1816 if (*res == '/') { 1817 error = nd_jump_root(nd); 1818 if (unlikely(error)) 1819 return ERR_PTR(error); 1820 while (unlikely(*++res == '/')) 1821 ; 1822 } 1823 if (*res) 1824 return res; 1825 all_done: // pure jump 1826 put_link(nd); 1827 return NULL; 1828 } 1829 1830 /* 1831 * Do we need to follow links? We _really_ want to be able 1832 * to do this check without having to look at inode->i_op, 1833 * so we keep a cache of "no, this doesn't need follow_link" 1834 * for the common case. 1835 * 1836 * NOTE: dentry must be what nd->next_seq had been sampled from. 1837 */ 1838 static const char *step_into(struct nameidata *nd, int flags, 1839 struct dentry *dentry) 1840 { 1841 struct path path; 1842 struct inode *inode; 1843 int err = handle_mounts(nd, dentry, &path); 1844 1845 if (err < 0) 1846 return ERR_PTR(err); 1847 inode = path.dentry->d_inode; 1848 if (likely(!d_is_symlink(path.dentry)) || 1849 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1850 (flags & WALK_NOFOLLOW)) { 1851 /* not a symlink or should not follow */ 1852 if (nd->flags & LOOKUP_RCU) { 1853 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1854 return ERR_PTR(-ECHILD); 1855 if (unlikely(!inode)) 1856 return ERR_PTR(-ENOENT); 1857 } else { 1858 dput(nd->path.dentry); 1859 if (nd->path.mnt != path.mnt) 1860 mntput(nd->path.mnt); 1861 } 1862 nd->path = path; 1863 nd->inode = inode; 1864 nd->seq = nd->next_seq; 1865 return NULL; 1866 } 1867 if (nd->flags & LOOKUP_RCU) { 1868 /* make sure that d_is_symlink above matches inode */ 1869 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1870 return ERR_PTR(-ECHILD); 1871 } else { 1872 if (path.mnt == nd->path.mnt) 1873 mntget(path.mnt); 1874 } 1875 return pick_link(nd, &path, inode, flags); 1876 } 1877 1878 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1879 { 1880 struct dentry *parent, *old; 1881 1882 if (path_equal(&nd->path, &nd->root)) 1883 goto in_root; 1884 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1885 struct path path; 1886 unsigned seq; 1887 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1888 &nd->root, &path, &seq)) 1889 goto in_root; 1890 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1891 return ERR_PTR(-ECHILD); 1892 nd->path = path; 1893 nd->inode = path.dentry->d_inode; 1894 nd->seq = seq; 1895 // makes sure that non-RCU pathwalk could reach this state 1896 if (read_seqretry(&mount_lock, nd->m_seq)) 1897 return ERR_PTR(-ECHILD); 1898 /* we know that mountpoint was pinned */ 1899 } 1900 old = nd->path.dentry; 1901 parent = old->d_parent; 1902 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1903 // makes sure that non-RCU pathwalk could reach this state 1904 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1905 return ERR_PTR(-ECHILD); 1906 if (unlikely(!path_connected(nd->path.mnt, parent))) 1907 return ERR_PTR(-ECHILD); 1908 return parent; 1909 in_root: 1910 if (read_seqretry(&mount_lock, nd->m_seq)) 1911 return ERR_PTR(-ECHILD); 1912 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1913 return ERR_PTR(-ECHILD); 1914 nd->next_seq = nd->seq; 1915 return nd->path.dentry; 1916 } 1917 1918 static struct dentry *follow_dotdot(struct nameidata *nd) 1919 { 1920 struct dentry *parent; 1921 1922 if (path_equal(&nd->path, &nd->root)) 1923 goto in_root; 1924 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1925 struct path path; 1926 1927 if (!choose_mountpoint(real_mount(nd->path.mnt), 1928 &nd->root, &path)) 1929 goto in_root; 1930 path_put(&nd->path); 1931 nd->path = path; 1932 nd->inode = path.dentry->d_inode; 1933 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1934 return ERR_PTR(-EXDEV); 1935 } 1936 /* rare case of legitimate dget_parent()... */ 1937 parent = dget_parent(nd->path.dentry); 1938 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1939 dput(parent); 1940 return ERR_PTR(-ENOENT); 1941 } 1942 return parent; 1943 1944 in_root: 1945 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1946 return ERR_PTR(-EXDEV); 1947 return dget(nd->path.dentry); 1948 } 1949 1950 static const char *handle_dots(struct nameidata *nd, int type) 1951 { 1952 if (type == LAST_DOTDOT) { 1953 const char *error = NULL; 1954 struct dentry *parent; 1955 1956 if (!nd->root.mnt) { 1957 error = ERR_PTR(set_root(nd)); 1958 if (error) 1959 return error; 1960 } 1961 if (nd->flags & LOOKUP_RCU) 1962 parent = follow_dotdot_rcu(nd); 1963 else 1964 parent = follow_dotdot(nd); 1965 if (IS_ERR(parent)) 1966 return ERR_CAST(parent); 1967 error = step_into(nd, WALK_NOFOLLOW, parent); 1968 if (unlikely(error)) 1969 return error; 1970 1971 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1972 /* 1973 * If there was a racing rename or mount along our 1974 * path, then we can't be sure that ".." hasn't jumped 1975 * above nd->root (and so userspace should retry or use 1976 * some fallback). 1977 */ 1978 smp_rmb(); 1979 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 1980 return ERR_PTR(-EAGAIN); 1981 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 1982 return ERR_PTR(-EAGAIN); 1983 } 1984 } 1985 return NULL; 1986 } 1987 1988 static const char *walk_component(struct nameidata *nd, int flags) 1989 { 1990 struct dentry *dentry; 1991 /* 1992 * "." and ".." are special - ".." especially so because it has 1993 * to be able to know about the current root directory and 1994 * parent relationships. 1995 */ 1996 if (unlikely(nd->last_type != LAST_NORM)) { 1997 if (!(flags & WALK_MORE) && nd->depth) 1998 put_link(nd); 1999 return handle_dots(nd, nd->last_type); 2000 } 2001 dentry = lookup_fast(nd); 2002 if (IS_ERR(dentry)) 2003 return ERR_CAST(dentry); 2004 if (unlikely(!dentry)) { 2005 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2006 if (IS_ERR(dentry)) 2007 return ERR_CAST(dentry); 2008 } 2009 if (!(flags & WALK_MORE) && nd->depth) 2010 put_link(nd); 2011 return step_into(nd, flags, dentry); 2012 } 2013 2014 /* 2015 * We can do the critical dentry name comparison and hashing 2016 * operations one word at a time, but we are limited to: 2017 * 2018 * - Architectures with fast unaligned word accesses. We could 2019 * do a "get_unaligned()" if this helps and is sufficiently 2020 * fast. 2021 * 2022 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2023 * do not trap on the (extremely unlikely) case of a page 2024 * crossing operation. 2025 * 2026 * - Furthermore, we need an efficient 64-bit compile for the 2027 * 64-bit case in order to generate the "number of bytes in 2028 * the final mask". Again, that could be replaced with a 2029 * efficient population count instruction or similar. 2030 */ 2031 #ifdef CONFIG_DCACHE_WORD_ACCESS 2032 2033 #include <asm/word-at-a-time.h> 2034 2035 #ifdef HASH_MIX 2036 2037 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2038 2039 #elif defined(CONFIG_64BIT) 2040 /* 2041 * Register pressure in the mixing function is an issue, particularly 2042 * on 32-bit x86, but almost any function requires one state value and 2043 * one temporary. Instead, use a function designed for two state values 2044 * and no temporaries. 2045 * 2046 * This function cannot create a collision in only two iterations, so 2047 * we have two iterations to achieve avalanche. In those two iterations, 2048 * we have six layers of mixing, which is enough to spread one bit's 2049 * influence out to 2^6 = 64 state bits. 2050 * 2051 * Rotate constants are scored by considering either 64 one-bit input 2052 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2053 * probability of that delta causing a change to each of the 128 output 2054 * bits, using a sample of random initial states. 2055 * 2056 * The Shannon entropy of the computed probabilities is then summed 2057 * to produce a score. Ideally, any input change has a 50% chance of 2058 * toggling any given output bit. 2059 * 2060 * Mixing scores (in bits) for (12,45): 2061 * Input delta: 1-bit 2-bit 2062 * 1 round: 713.3 42542.6 2063 * 2 rounds: 2753.7 140389.8 2064 * 3 rounds: 5954.1 233458.2 2065 * 4 rounds: 7862.6 256672.2 2066 * Perfect: 8192 258048 2067 * (64*128) (64*63/2 * 128) 2068 */ 2069 #define HASH_MIX(x, y, a) \ 2070 ( x ^= (a), \ 2071 y ^= x, x = rol64(x,12),\ 2072 x += y, y = rol64(y,45),\ 2073 y *= 9 ) 2074 2075 /* 2076 * Fold two longs into one 32-bit hash value. This must be fast, but 2077 * latency isn't quite as critical, as there is a fair bit of additional 2078 * work done before the hash value is used. 2079 */ 2080 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2081 { 2082 y ^= x * GOLDEN_RATIO_64; 2083 y *= GOLDEN_RATIO_64; 2084 return y >> 32; 2085 } 2086 2087 #else /* 32-bit case */ 2088 2089 /* 2090 * Mixing scores (in bits) for (7,20): 2091 * Input delta: 1-bit 2-bit 2092 * 1 round: 330.3 9201.6 2093 * 2 rounds: 1246.4 25475.4 2094 * 3 rounds: 1907.1 31295.1 2095 * 4 rounds: 2042.3 31718.6 2096 * Perfect: 2048 31744 2097 * (32*64) (32*31/2 * 64) 2098 */ 2099 #define HASH_MIX(x, y, a) \ 2100 ( x ^= (a), \ 2101 y ^= x, x = rol32(x, 7),\ 2102 x += y, y = rol32(y,20),\ 2103 y *= 9 ) 2104 2105 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2106 { 2107 /* Use arch-optimized multiply if one exists */ 2108 return __hash_32(y ^ __hash_32(x)); 2109 } 2110 2111 #endif 2112 2113 /* 2114 * Return the hash of a string of known length. This is carfully 2115 * designed to match hash_name(), which is the more critical function. 2116 * In particular, we must end by hashing a final word containing 0..7 2117 * payload bytes, to match the way that hash_name() iterates until it 2118 * finds the delimiter after the name. 2119 */ 2120 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2121 { 2122 unsigned long a, x = 0, y = (unsigned long)salt; 2123 2124 for (;;) { 2125 if (!len) 2126 goto done; 2127 a = load_unaligned_zeropad(name); 2128 if (len < sizeof(unsigned long)) 2129 break; 2130 HASH_MIX(x, y, a); 2131 name += sizeof(unsigned long); 2132 len -= sizeof(unsigned long); 2133 } 2134 x ^= a & bytemask_from_count(len); 2135 done: 2136 return fold_hash(x, y); 2137 } 2138 EXPORT_SYMBOL(full_name_hash); 2139 2140 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2141 u64 hashlen_string(const void *salt, const char *name) 2142 { 2143 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2144 unsigned long adata, mask, len; 2145 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2146 2147 len = 0; 2148 goto inside; 2149 2150 do { 2151 HASH_MIX(x, y, a); 2152 len += sizeof(unsigned long); 2153 inside: 2154 a = load_unaligned_zeropad(name+len); 2155 } while (!has_zero(a, &adata, &constants)); 2156 2157 adata = prep_zero_mask(a, adata, &constants); 2158 mask = create_zero_mask(adata); 2159 x ^= a & zero_bytemask(mask); 2160 2161 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2162 } 2163 EXPORT_SYMBOL(hashlen_string); 2164 2165 /* 2166 * Calculate the length and hash of the path component, and 2167 * return the "hash_len" as the result. 2168 */ 2169 static inline u64 hash_name(const void *salt, const char *name) 2170 { 2171 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2172 unsigned long adata, bdata, mask, len; 2173 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2174 2175 len = 0; 2176 goto inside; 2177 2178 do { 2179 HASH_MIX(x, y, a); 2180 len += sizeof(unsigned long); 2181 inside: 2182 a = load_unaligned_zeropad(name+len); 2183 b = a ^ REPEAT_BYTE('/'); 2184 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2185 2186 adata = prep_zero_mask(a, adata, &constants); 2187 bdata = prep_zero_mask(b, bdata, &constants); 2188 mask = create_zero_mask(adata | bdata); 2189 x ^= a & zero_bytemask(mask); 2190 2191 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2192 } 2193 2194 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2195 2196 /* Return the hash of a string of known length */ 2197 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2198 { 2199 unsigned long hash = init_name_hash(salt); 2200 while (len--) 2201 hash = partial_name_hash((unsigned char)*name++, hash); 2202 return end_name_hash(hash); 2203 } 2204 EXPORT_SYMBOL(full_name_hash); 2205 2206 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2207 u64 hashlen_string(const void *salt, const char *name) 2208 { 2209 unsigned long hash = init_name_hash(salt); 2210 unsigned long len = 0, c; 2211 2212 c = (unsigned char)*name; 2213 while (c) { 2214 len++; 2215 hash = partial_name_hash(c, hash); 2216 c = (unsigned char)name[len]; 2217 } 2218 return hashlen_create(end_name_hash(hash), len); 2219 } 2220 EXPORT_SYMBOL(hashlen_string); 2221 2222 /* 2223 * We know there's a real path component here of at least 2224 * one character. 2225 */ 2226 static inline u64 hash_name(const void *salt, const char *name) 2227 { 2228 unsigned long hash = init_name_hash(salt); 2229 unsigned long len = 0, c; 2230 2231 c = (unsigned char)*name; 2232 do { 2233 len++; 2234 hash = partial_name_hash(c, hash); 2235 c = (unsigned char)name[len]; 2236 } while (c && c != '/'); 2237 return hashlen_create(end_name_hash(hash), len); 2238 } 2239 2240 #endif 2241 2242 /* 2243 * Name resolution. 2244 * This is the basic name resolution function, turning a pathname into 2245 * the final dentry. We expect 'base' to be positive and a directory. 2246 * 2247 * Returns 0 and nd will have valid dentry and mnt on success. 2248 * Returns error and drops reference to input namei data on failure. 2249 */ 2250 static int link_path_walk(const char *name, struct nameidata *nd) 2251 { 2252 int depth = 0; // depth <= nd->depth 2253 int err; 2254 2255 nd->last_type = LAST_ROOT; 2256 nd->flags |= LOOKUP_PARENT; 2257 if (IS_ERR(name)) 2258 return PTR_ERR(name); 2259 while (*name=='/') 2260 name++; 2261 if (!*name) { 2262 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2263 return 0; 2264 } 2265 2266 /* At this point we know we have a real path component. */ 2267 for(;;) { 2268 struct mnt_idmap *idmap; 2269 const char *link; 2270 u64 hash_len; 2271 int type; 2272 2273 idmap = mnt_idmap(nd->path.mnt); 2274 err = may_lookup(idmap, nd); 2275 if (err) 2276 return err; 2277 2278 hash_len = hash_name(nd->path.dentry, name); 2279 2280 type = LAST_NORM; 2281 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2282 case 2: 2283 if (name[1] == '.') { 2284 type = LAST_DOTDOT; 2285 nd->state |= ND_JUMPED; 2286 } 2287 break; 2288 case 1: 2289 type = LAST_DOT; 2290 } 2291 if (likely(type == LAST_NORM)) { 2292 struct dentry *parent = nd->path.dentry; 2293 nd->state &= ~ND_JUMPED; 2294 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2295 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2296 err = parent->d_op->d_hash(parent, &this); 2297 if (err < 0) 2298 return err; 2299 hash_len = this.hash_len; 2300 name = this.name; 2301 } 2302 } 2303 2304 nd->last.hash_len = hash_len; 2305 nd->last.name = name; 2306 nd->last_type = type; 2307 2308 name += hashlen_len(hash_len); 2309 if (!*name) 2310 goto OK; 2311 /* 2312 * If it wasn't NUL, we know it was '/'. Skip that 2313 * slash, and continue until no more slashes. 2314 */ 2315 do { 2316 name++; 2317 } while (unlikely(*name == '/')); 2318 if (unlikely(!*name)) { 2319 OK: 2320 /* pathname or trailing symlink, done */ 2321 if (!depth) { 2322 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2323 nd->dir_mode = nd->inode->i_mode; 2324 nd->flags &= ~LOOKUP_PARENT; 2325 return 0; 2326 } 2327 /* last component of nested symlink */ 2328 name = nd->stack[--depth].name; 2329 link = walk_component(nd, 0); 2330 } else { 2331 /* not the last component */ 2332 link = walk_component(nd, WALK_MORE); 2333 } 2334 if (unlikely(link)) { 2335 if (IS_ERR(link)) 2336 return PTR_ERR(link); 2337 /* a symlink to follow */ 2338 nd->stack[depth++].name = name; 2339 name = link; 2340 continue; 2341 } 2342 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2343 if (nd->flags & LOOKUP_RCU) { 2344 if (!try_to_unlazy(nd)) 2345 return -ECHILD; 2346 } 2347 return -ENOTDIR; 2348 } 2349 } 2350 } 2351 2352 /* must be paired with terminate_walk() */ 2353 static const char *path_init(struct nameidata *nd, unsigned flags) 2354 { 2355 int error; 2356 const char *s = nd->name->name; 2357 2358 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2359 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2360 return ERR_PTR(-EAGAIN); 2361 2362 if (!*s) 2363 flags &= ~LOOKUP_RCU; 2364 if (flags & LOOKUP_RCU) 2365 rcu_read_lock(); 2366 else 2367 nd->seq = nd->next_seq = 0; 2368 2369 nd->flags = flags; 2370 nd->state |= ND_JUMPED; 2371 2372 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2373 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2374 smp_rmb(); 2375 2376 if (nd->state & ND_ROOT_PRESET) { 2377 struct dentry *root = nd->root.dentry; 2378 struct inode *inode = root->d_inode; 2379 if (*s && unlikely(!d_can_lookup(root))) 2380 return ERR_PTR(-ENOTDIR); 2381 nd->path = nd->root; 2382 nd->inode = inode; 2383 if (flags & LOOKUP_RCU) { 2384 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2385 nd->root_seq = nd->seq; 2386 } else { 2387 path_get(&nd->path); 2388 } 2389 return s; 2390 } 2391 2392 nd->root.mnt = NULL; 2393 2394 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2395 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2396 error = nd_jump_root(nd); 2397 if (unlikely(error)) 2398 return ERR_PTR(error); 2399 return s; 2400 } 2401 2402 /* Relative pathname -- get the starting-point it is relative to. */ 2403 if (nd->dfd == AT_FDCWD) { 2404 if (flags & LOOKUP_RCU) { 2405 struct fs_struct *fs = current->fs; 2406 unsigned seq; 2407 2408 do { 2409 seq = read_seqcount_begin(&fs->seq); 2410 nd->path = fs->pwd; 2411 nd->inode = nd->path.dentry->d_inode; 2412 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2413 } while (read_seqcount_retry(&fs->seq, seq)); 2414 } else { 2415 get_fs_pwd(current->fs, &nd->path); 2416 nd->inode = nd->path.dentry->d_inode; 2417 } 2418 } else { 2419 /* Caller must check execute permissions on the starting path component */ 2420 struct fd f = fdget_raw(nd->dfd); 2421 struct dentry *dentry; 2422 2423 if (!f.file) 2424 return ERR_PTR(-EBADF); 2425 2426 dentry = f.file->f_path.dentry; 2427 2428 if (*s && unlikely(!d_can_lookup(dentry))) { 2429 fdput(f); 2430 return ERR_PTR(-ENOTDIR); 2431 } 2432 2433 nd->path = f.file->f_path; 2434 if (flags & LOOKUP_RCU) { 2435 nd->inode = nd->path.dentry->d_inode; 2436 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2437 } else { 2438 path_get(&nd->path); 2439 nd->inode = nd->path.dentry->d_inode; 2440 } 2441 fdput(f); 2442 } 2443 2444 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2445 if (flags & LOOKUP_IS_SCOPED) { 2446 nd->root = nd->path; 2447 if (flags & LOOKUP_RCU) { 2448 nd->root_seq = nd->seq; 2449 } else { 2450 path_get(&nd->root); 2451 nd->state |= ND_ROOT_GRABBED; 2452 } 2453 } 2454 return s; 2455 } 2456 2457 static inline const char *lookup_last(struct nameidata *nd) 2458 { 2459 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2460 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2461 2462 return walk_component(nd, WALK_TRAILING); 2463 } 2464 2465 static int handle_lookup_down(struct nameidata *nd) 2466 { 2467 if (!(nd->flags & LOOKUP_RCU)) 2468 dget(nd->path.dentry); 2469 nd->next_seq = nd->seq; 2470 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2471 } 2472 2473 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2474 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2475 { 2476 const char *s = path_init(nd, flags); 2477 int err; 2478 2479 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2480 err = handle_lookup_down(nd); 2481 if (unlikely(err < 0)) 2482 s = ERR_PTR(err); 2483 } 2484 2485 while (!(err = link_path_walk(s, nd)) && 2486 (s = lookup_last(nd)) != NULL) 2487 ; 2488 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2489 err = handle_lookup_down(nd); 2490 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2491 } 2492 if (!err) 2493 err = complete_walk(nd); 2494 2495 if (!err && nd->flags & LOOKUP_DIRECTORY) 2496 if (!d_can_lookup(nd->path.dentry)) 2497 err = -ENOTDIR; 2498 if (!err) { 2499 *path = nd->path; 2500 nd->path.mnt = NULL; 2501 nd->path.dentry = NULL; 2502 } 2503 terminate_walk(nd); 2504 return err; 2505 } 2506 2507 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2508 struct path *path, struct path *root) 2509 { 2510 int retval; 2511 struct nameidata nd; 2512 if (IS_ERR(name)) 2513 return PTR_ERR(name); 2514 set_nameidata(&nd, dfd, name, root); 2515 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2516 if (unlikely(retval == -ECHILD)) 2517 retval = path_lookupat(&nd, flags, path); 2518 if (unlikely(retval == -ESTALE)) 2519 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2520 2521 if (likely(!retval)) 2522 audit_inode(name, path->dentry, 2523 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2524 restore_nameidata(); 2525 return retval; 2526 } 2527 2528 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2529 static int path_parentat(struct nameidata *nd, unsigned flags, 2530 struct path *parent) 2531 { 2532 const char *s = path_init(nd, flags); 2533 int err = link_path_walk(s, nd); 2534 if (!err) 2535 err = complete_walk(nd); 2536 if (!err) { 2537 *parent = nd->path; 2538 nd->path.mnt = NULL; 2539 nd->path.dentry = NULL; 2540 } 2541 terminate_walk(nd); 2542 return err; 2543 } 2544 2545 /* Note: this does not consume "name" */ 2546 static int __filename_parentat(int dfd, struct filename *name, 2547 unsigned int flags, struct path *parent, 2548 struct qstr *last, int *type, 2549 const struct path *root) 2550 { 2551 int retval; 2552 struct nameidata nd; 2553 2554 if (IS_ERR(name)) 2555 return PTR_ERR(name); 2556 set_nameidata(&nd, dfd, name, root); 2557 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2558 if (unlikely(retval == -ECHILD)) 2559 retval = path_parentat(&nd, flags, parent); 2560 if (unlikely(retval == -ESTALE)) 2561 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2562 if (likely(!retval)) { 2563 *last = nd.last; 2564 *type = nd.last_type; 2565 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2566 } 2567 restore_nameidata(); 2568 return retval; 2569 } 2570 2571 static int filename_parentat(int dfd, struct filename *name, 2572 unsigned int flags, struct path *parent, 2573 struct qstr *last, int *type) 2574 { 2575 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2576 } 2577 2578 /* does lookup, returns the object with parent locked */ 2579 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2580 { 2581 struct dentry *d; 2582 struct qstr last; 2583 int type, error; 2584 2585 error = filename_parentat(dfd, name, 0, path, &last, &type); 2586 if (error) 2587 return ERR_PTR(error); 2588 if (unlikely(type != LAST_NORM)) { 2589 path_put(path); 2590 return ERR_PTR(-EINVAL); 2591 } 2592 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2593 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2594 if (IS_ERR(d)) { 2595 inode_unlock(path->dentry->d_inode); 2596 path_put(path); 2597 } 2598 return d; 2599 } 2600 2601 struct dentry *kern_path_locked(const char *name, struct path *path) 2602 { 2603 struct filename *filename = getname_kernel(name); 2604 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2605 2606 putname(filename); 2607 return res; 2608 } 2609 2610 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2611 { 2612 struct filename *filename = getname(name); 2613 struct dentry *res = __kern_path_locked(dfd, filename, path); 2614 2615 putname(filename); 2616 return res; 2617 } 2618 EXPORT_SYMBOL(user_path_locked_at); 2619 2620 int kern_path(const char *name, unsigned int flags, struct path *path) 2621 { 2622 struct filename *filename = getname_kernel(name); 2623 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2624 2625 putname(filename); 2626 return ret; 2627 2628 } 2629 EXPORT_SYMBOL(kern_path); 2630 2631 /** 2632 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2633 * @filename: filename structure 2634 * @flags: lookup flags 2635 * @parent: pointer to struct path to fill 2636 * @last: last component 2637 * @type: type of the last component 2638 * @root: pointer to struct path of the base directory 2639 */ 2640 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2641 struct path *parent, struct qstr *last, int *type, 2642 const struct path *root) 2643 { 2644 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2645 type, root); 2646 } 2647 EXPORT_SYMBOL(vfs_path_parent_lookup); 2648 2649 /** 2650 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2651 * @dentry: pointer to dentry of the base directory 2652 * @mnt: pointer to vfs mount of the base directory 2653 * @name: pointer to file name 2654 * @flags: lookup flags 2655 * @path: pointer to struct path to fill 2656 */ 2657 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2658 const char *name, unsigned int flags, 2659 struct path *path) 2660 { 2661 struct filename *filename; 2662 struct path root = {.mnt = mnt, .dentry = dentry}; 2663 int ret; 2664 2665 filename = getname_kernel(name); 2666 /* the first argument of filename_lookup() is ignored with root */ 2667 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2668 putname(filename); 2669 return ret; 2670 } 2671 EXPORT_SYMBOL(vfs_path_lookup); 2672 2673 static int lookup_one_common(struct mnt_idmap *idmap, 2674 const char *name, struct dentry *base, int len, 2675 struct qstr *this) 2676 { 2677 this->name = name; 2678 this->len = len; 2679 this->hash = full_name_hash(base, name, len); 2680 if (!len) 2681 return -EACCES; 2682 2683 if (is_dot_dotdot(name, len)) 2684 return -EACCES; 2685 2686 while (len--) { 2687 unsigned int c = *(const unsigned char *)name++; 2688 if (c == '/' || c == '\0') 2689 return -EACCES; 2690 } 2691 /* 2692 * See if the low-level filesystem might want 2693 * to use its own hash.. 2694 */ 2695 if (base->d_flags & DCACHE_OP_HASH) { 2696 int err = base->d_op->d_hash(base, this); 2697 if (err < 0) 2698 return err; 2699 } 2700 2701 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2702 } 2703 2704 /** 2705 * try_lookup_one_len - filesystem helper to lookup single pathname component 2706 * @name: pathname component to lookup 2707 * @base: base directory to lookup from 2708 * @len: maximum length @len should be interpreted to 2709 * 2710 * Look up a dentry by name in the dcache, returning NULL if it does not 2711 * currently exist. The function does not try to create a dentry. 2712 * 2713 * Note that this routine is purely a helper for filesystem usage and should 2714 * not be called by generic code. 2715 * 2716 * The caller must hold base->i_mutex. 2717 */ 2718 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2719 { 2720 struct qstr this; 2721 int err; 2722 2723 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2724 2725 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2726 if (err) 2727 return ERR_PTR(err); 2728 2729 return lookup_dcache(&this, base, 0); 2730 } 2731 EXPORT_SYMBOL(try_lookup_one_len); 2732 2733 /** 2734 * lookup_one_len - filesystem helper to lookup single pathname component 2735 * @name: pathname component to lookup 2736 * @base: base directory to lookup from 2737 * @len: maximum length @len should be interpreted to 2738 * 2739 * Note that this routine is purely a helper for filesystem usage and should 2740 * not be called by generic code. 2741 * 2742 * The caller must hold base->i_mutex. 2743 */ 2744 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2745 { 2746 struct dentry *dentry; 2747 struct qstr this; 2748 int err; 2749 2750 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2751 2752 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2753 if (err) 2754 return ERR_PTR(err); 2755 2756 dentry = lookup_dcache(&this, base, 0); 2757 return dentry ? dentry : __lookup_slow(&this, base, 0); 2758 } 2759 EXPORT_SYMBOL(lookup_one_len); 2760 2761 /** 2762 * lookup_one - filesystem helper to lookup single pathname component 2763 * @idmap: idmap of the mount the lookup is performed from 2764 * @name: pathname component to lookup 2765 * @base: base directory to lookup from 2766 * @len: maximum length @len should be interpreted to 2767 * 2768 * Note that this routine is purely a helper for filesystem usage and should 2769 * not be called by generic code. 2770 * 2771 * The caller must hold base->i_mutex. 2772 */ 2773 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2774 struct dentry *base, int len) 2775 { 2776 struct dentry *dentry; 2777 struct qstr this; 2778 int err; 2779 2780 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2781 2782 err = lookup_one_common(idmap, name, base, len, &this); 2783 if (err) 2784 return ERR_PTR(err); 2785 2786 dentry = lookup_dcache(&this, base, 0); 2787 return dentry ? dentry : __lookup_slow(&this, base, 0); 2788 } 2789 EXPORT_SYMBOL(lookup_one); 2790 2791 /** 2792 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2793 * @idmap: idmap of the mount the lookup is performed from 2794 * @name: pathname component to lookup 2795 * @base: base directory to lookup from 2796 * @len: maximum length @len should be interpreted to 2797 * 2798 * Note that this routine is purely a helper for filesystem usage and should 2799 * not be called by generic code. 2800 * 2801 * Unlike lookup_one_len, it should be called without the parent 2802 * i_mutex held, and will take the i_mutex itself if necessary. 2803 */ 2804 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2805 const char *name, struct dentry *base, 2806 int len) 2807 { 2808 struct qstr this; 2809 int err; 2810 struct dentry *ret; 2811 2812 err = lookup_one_common(idmap, name, base, len, &this); 2813 if (err) 2814 return ERR_PTR(err); 2815 2816 ret = lookup_dcache(&this, base, 0); 2817 if (!ret) 2818 ret = lookup_slow(&this, base, 0); 2819 return ret; 2820 } 2821 EXPORT_SYMBOL(lookup_one_unlocked); 2822 2823 /** 2824 * lookup_one_positive_unlocked - filesystem helper to lookup single 2825 * pathname component 2826 * @idmap: idmap of the mount the lookup is performed from 2827 * @name: pathname component to lookup 2828 * @base: base directory to lookup from 2829 * @len: maximum length @len should be interpreted to 2830 * 2831 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2832 * known positive or ERR_PTR(). This is what most of the users want. 2833 * 2834 * Note that pinned negative with unlocked parent _can_ become positive at any 2835 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2836 * positives have >d_inode stable, so this one avoids such problems. 2837 * 2838 * Note that this routine is purely a helper for filesystem usage and should 2839 * not be called by generic code. 2840 * 2841 * The helper should be called without i_mutex held. 2842 */ 2843 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2844 const char *name, 2845 struct dentry *base, int len) 2846 { 2847 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2848 2849 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2850 dput(ret); 2851 ret = ERR_PTR(-ENOENT); 2852 } 2853 return ret; 2854 } 2855 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2856 2857 /** 2858 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2859 * @name: pathname component to lookup 2860 * @base: base directory to lookup from 2861 * @len: maximum length @len should be interpreted to 2862 * 2863 * Note that this routine is purely a helper for filesystem usage and should 2864 * not be called by generic code. 2865 * 2866 * Unlike lookup_one_len, it should be called without the parent 2867 * i_mutex held, and will take the i_mutex itself if necessary. 2868 */ 2869 struct dentry *lookup_one_len_unlocked(const char *name, 2870 struct dentry *base, int len) 2871 { 2872 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2873 } 2874 EXPORT_SYMBOL(lookup_one_len_unlocked); 2875 2876 /* 2877 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2878 * on negatives. Returns known positive or ERR_PTR(); that's what 2879 * most of the users want. Note that pinned negative with unlocked parent 2880 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2881 * need to be very careful; pinned positives have ->d_inode stable, so 2882 * this one avoids such problems. 2883 */ 2884 struct dentry *lookup_positive_unlocked(const char *name, 2885 struct dentry *base, int len) 2886 { 2887 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2888 } 2889 EXPORT_SYMBOL(lookup_positive_unlocked); 2890 2891 #ifdef CONFIG_UNIX98_PTYS 2892 int path_pts(struct path *path) 2893 { 2894 /* Find something mounted on "pts" in the same directory as 2895 * the input path. 2896 */ 2897 struct dentry *parent = dget_parent(path->dentry); 2898 struct dentry *child; 2899 struct qstr this = QSTR_INIT("pts", 3); 2900 2901 if (unlikely(!path_connected(path->mnt, parent))) { 2902 dput(parent); 2903 return -ENOENT; 2904 } 2905 dput(path->dentry); 2906 path->dentry = parent; 2907 child = d_hash_and_lookup(parent, &this); 2908 if (IS_ERR_OR_NULL(child)) 2909 return -ENOENT; 2910 2911 path->dentry = child; 2912 dput(parent); 2913 follow_down(path, 0); 2914 return 0; 2915 } 2916 #endif 2917 2918 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2919 struct path *path, int *empty) 2920 { 2921 struct filename *filename = getname_flags(name, flags, empty); 2922 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2923 2924 putname(filename); 2925 return ret; 2926 } 2927 EXPORT_SYMBOL(user_path_at_empty); 2928 2929 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2930 struct inode *inode) 2931 { 2932 kuid_t fsuid = current_fsuid(); 2933 2934 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 2935 return 0; 2936 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 2937 return 0; 2938 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 2939 } 2940 EXPORT_SYMBOL(__check_sticky); 2941 2942 /* 2943 * Check whether we can remove a link victim from directory dir, check 2944 * whether the type of victim is right. 2945 * 1. We can't do it if dir is read-only (done in permission()) 2946 * 2. We should have write and exec permissions on dir 2947 * 3. We can't remove anything from append-only dir 2948 * 4. We can't do anything with immutable dir (done in permission()) 2949 * 5. If the sticky bit on dir is set we should either 2950 * a. be owner of dir, or 2951 * b. be owner of victim, or 2952 * c. have CAP_FOWNER capability 2953 * 6. If the victim is append-only or immutable we can't do antyhing with 2954 * links pointing to it. 2955 * 7. If the victim has an unknown uid or gid we can't change the inode. 2956 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2957 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2958 * 10. We can't remove a root or mountpoint. 2959 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2960 * nfs_async_unlink(). 2961 */ 2962 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 2963 struct dentry *victim, bool isdir) 2964 { 2965 struct inode *inode = d_backing_inode(victim); 2966 int error; 2967 2968 if (d_is_negative(victim)) 2969 return -ENOENT; 2970 BUG_ON(!inode); 2971 2972 BUG_ON(victim->d_parent->d_inode != dir); 2973 2974 /* Inode writeback is not safe when the uid or gid are invalid. */ 2975 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2976 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 2977 return -EOVERFLOW; 2978 2979 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2980 2981 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 2982 if (error) 2983 return error; 2984 if (IS_APPEND(dir)) 2985 return -EPERM; 2986 2987 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 2988 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2989 HAS_UNMAPPED_ID(idmap, inode)) 2990 return -EPERM; 2991 if (isdir) { 2992 if (!d_is_dir(victim)) 2993 return -ENOTDIR; 2994 if (IS_ROOT(victim)) 2995 return -EBUSY; 2996 } else if (d_is_dir(victim)) 2997 return -EISDIR; 2998 if (IS_DEADDIR(dir)) 2999 return -ENOENT; 3000 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3001 return -EBUSY; 3002 return 0; 3003 } 3004 3005 /* Check whether we can create an object with dentry child in directory 3006 * dir. 3007 * 1. We can't do it if child already exists (open has special treatment for 3008 * this case, but since we are inlined it's OK) 3009 * 2. We can't do it if dir is read-only (done in permission()) 3010 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3011 * 4. We should have write and exec permissions on dir 3012 * 5. We can't do it if dir is immutable (done in permission()) 3013 */ 3014 static inline int may_create(struct mnt_idmap *idmap, 3015 struct inode *dir, struct dentry *child) 3016 { 3017 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3018 if (child->d_inode) 3019 return -EEXIST; 3020 if (IS_DEADDIR(dir)) 3021 return -ENOENT; 3022 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3023 return -EOVERFLOW; 3024 3025 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3026 } 3027 3028 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3029 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3030 { 3031 struct dentry *p = p1, *q = p2, *r; 3032 3033 while ((r = p->d_parent) != p2 && r != p) 3034 p = r; 3035 if (r == p2) { 3036 // p is a child of p2 and an ancestor of p1 or p1 itself 3037 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3038 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3039 return p; 3040 } 3041 // p is the root of connected component that contains p1 3042 // p2 does not occur on the path from p to p1 3043 while ((r = q->d_parent) != p1 && r != p && r != q) 3044 q = r; 3045 if (r == p1) { 3046 // q is a child of p1 and an ancestor of p2 or p2 itself 3047 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3048 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3049 return q; 3050 } else if (likely(r == p)) { 3051 // both p2 and p1 are descendents of p 3052 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3053 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3054 return NULL; 3055 } else { // no common ancestor at the time we'd been called 3056 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3057 return ERR_PTR(-EXDEV); 3058 } 3059 } 3060 3061 /* 3062 * p1 and p2 should be directories on the same fs. 3063 */ 3064 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3065 { 3066 if (p1 == p2) { 3067 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3068 return NULL; 3069 } 3070 3071 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3072 return lock_two_directories(p1, p2); 3073 } 3074 EXPORT_SYMBOL(lock_rename); 3075 3076 /* 3077 * c1 and p2 should be on the same fs. 3078 */ 3079 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3080 { 3081 if (READ_ONCE(c1->d_parent) == p2) { 3082 /* 3083 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3084 */ 3085 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3086 /* 3087 * now that p2 is locked, nobody can move in or out of it, 3088 * so the test below is safe. 3089 */ 3090 if (likely(c1->d_parent == p2)) 3091 return NULL; 3092 3093 /* 3094 * c1 got moved out of p2 while we'd been taking locks; 3095 * unlock and fall back to slow case. 3096 */ 3097 inode_unlock(p2->d_inode); 3098 } 3099 3100 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3101 /* 3102 * nobody can move out of any directories on this fs. 3103 */ 3104 if (likely(c1->d_parent != p2)) 3105 return lock_two_directories(c1->d_parent, p2); 3106 3107 /* 3108 * c1 got moved into p2 while we were taking locks; 3109 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3110 * for consistency with lock_rename(). 3111 */ 3112 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3113 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3114 return NULL; 3115 } 3116 EXPORT_SYMBOL(lock_rename_child); 3117 3118 void unlock_rename(struct dentry *p1, struct dentry *p2) 3119 { 3120 inode_unlock(p1->d_inode); 3121 if (p1 != p2) { 3122 inode_unlock(p2->d_inode); 3123 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3124 } 3125 } 3126 EXPORT_SYMBOL(unlock_rename); 3127 3128 /** 3129 * vfs_prepare_mode - prepare the mode to be used for a new inode 3130 * @idmap: idmap of the mount the inode was found from 3131 * @dir: parent directory of the new inode 3132 * @mode: mode of the new inode 3133 * @mask_perms: allowed permission by the vfs 3134 * @type: type of file to be created 3135 * 3136 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3137 * object to be created. 3138 * 3139 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3140 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3141 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3142 * POSIX ACL supporting filesystems. 3143 * 3144 * Note that it's currently valid for @type to be 0 if a directory is created. 3145 * Filesystems raise that flag individually and we need to check whether each 3146 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3147 * non-zero type. 3148 * 3149 * Returns: mode to be passed to the filesystem 3150 */ 3151 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3152 const struct inode *dir, umode_t mode, 3153 umode_t mask_perms, umode_t type) 3154 { 3155 mode = mode_strip_sgid(idmap, dir, mode); 3156 mode = mode_strip_umask(dir, mode); 3157 3158 /* 3159 * Apply the vfs mandated allowed permission mask and set the type of 3160 * file to be created before we call into the filesystem. 3161 */ 3162 mode &= (mask_perms & ~S_IFMT); 3163 mode |= (type & S_IFMT); 3164 3165 return mode; 3166 } 3167 3168 /** 3169 * vfs_create - create new file 3170 * @idmap: idmap of the mount the inode was found from 3171 * @dir: inode of @dentry 3172 * @dentry: pointer to dentry of the base directory 3173 * @mode: mode of the new file 3174 * @want_excl: whether the file must not yet exist 3175 * 3176 * Create a new file. 3177 * 3178 * If the inode has been found through an idmapped mount the idmap of 3179 * the vfsmount must be passed through @idmap. This function will then take 3180 * care to map the inode according to @idmap before checking permissions. 3181 * On non-idmapped mounts or if permission checking is to be performed on the 3182 * raw inode simply pass @nop_mnt_idmap. 3183 */ 3184 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3185 struct dentry *dentry, umode_t mode, bool want_excl) 3186 { 3187 int error; 3188 3189 error = may_create(idmap, dir, dentry); 3190 if (error) 3191 return error; 3192 3193 if (!dir->i_op->create) 3194 return -EACCES; /* shouldn't it be ENOSYS? */ 3195 3196 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3197 error = security_inode_create(dir, dentry, mode); 3198 if (error) 3199 return error; 3200 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3201 if (!error) 3202 fsnotify_create(dir, dentry); 3203 return error; 3204 } 3205 EXPORT_SYMBOL(vfs_create); 3206 3207 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3208 int (*f)(struct dentry *, umode_t, void *), 3209 void *arg) 3210 { 3211 struct inode *dir = dentry->d_parent->d_inode; 3212 int error = may_create(&nop_mnt_idmap, dir, dentry); 3213 if (error) 3214 return error; 3215 3216 mode &= S_IALLUGO; 3217 mode |= S_IFREG; 3218 error = security_inode_create(dir, dentry, mode); 3219 if (error) 3220 return error; 3221 error = f(dentry, mode, arg); 3222 if (!error) 3223 fsnotify_create(dir, dentry); 3224 return error; 3225 } 3226 EXPORT_SYMBOL(vfs_mkobj); 3227 3228 bool may_open_dev(const struct path *path) 3229 { 3230 return !(path->mnt->mnt_flags & MNT_NODEV) && 3231 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3232 } 3233 3234 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3235 int acc_mode, int flag) 3236 { 3237 struct dentry *dentry = path->dentry; 3238 struct inode *inode = dentry->d_inode; 3239 int error; 3240 3241 if (!inode) 3242 return -ENOENT; 3243 3244 switch (inode->i_mode & S_IFMT) { 3245 case S_IFLNK: 3246 return -ELOOP; 3247 case S_IFDIR: 3248 if (acc_mode & MAY_WRITE) 3249 return -EISDIR; 3250 if (acc_mode & MAY_EXEC) 3251 return -EACCES; 3252 break; 3253 case S_IFBLK: 3254 case S_IFCHR: 3255 if (!may_open_dev(path)) 3256 return -EACCES; 3257 fallthrough; 3258 case S_IFIFO: 3259 case S_IFSOCK: 3260 if (acc_mode & MAY_EXEC) 3261 return -EACCES; 3262 flag &= ~O_TRUNC; 3263 break; 3264 case S_IFREG: 3265 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3266 return -EACCES; 3267 break; 3268 } 3269 3270 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3271 if (error) 3272 return error; 3273 3274 /* 3275 * An append-only file must be opened in append mode for writing. 3276 */ 3277 if (IS_APPEND(inode)) { 3278 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3279 return -EPERM; 3280 if (flag & O_TRUNC) 3281 return -EPERM; 3282 } 3283 3284 /* O_NOATIME can only be set by the owner or superuser */ 3285 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3286 return -EPERM; 3287 3288 return 0; 3289 } 3290 3291 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3292 { 3293 const struct path *path = &filp->f_path; 3294 struct inode *inode = path->dentry->d_inode; 3295 int error = get_write_access(inode); 3296 if (error) 3297 return error; 3298 3299 error = security_file_truncate(filp); 3300 if (!error) { 3301 error = do_truncate(idmap, path->dentry, 0, 3302 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3303 filp); 3304 } 3305 put_write_access(inode); 3306 return error; 3307 } 3308 3309 static inline int open_to_namei_flags(int flag) 3310 { 3311 if ((flag & O_ACCMODE) == 3) 3312 flag--; 3313 return flag; 3314 } 3315 3316 static int may_o_create(struct mnt_idmap *idmap, 3317 const struct path *dir, struct dentry *dentry, 3318 umode_t mode) 3319 { 3320 int error = security_path_mknod(dir, dentry, mode, 0); 3321 if (error) 3322 return error; 3323 3324 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3325 return -EOVERFLOW; 3326 3327 error = inode_permission(idmap, dir->dentry->d_inode, 3328 MAY_WRITE | MAY_EXEC); 3329 if (error) 3330 return error; 3331 3332 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3333 } 3334 3335 /* 3336 * Attempt to atomically look up, create and open a file from a negative 3337 * dentry. 3338 * 3339 * Returns 0 if successful. The file will have been created and attached to 3340 * @file by the filesystem calling finish_open(). 3341 * 3342 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3343 * be set. The caller will need to perform the open themselves. @path will 3344 * have been updated to point to the new dentry. This may be negative. 3345 * 3346 * Returns an error code otherwise. 3347 */ 3348 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3349 struct file *file, 3350 int open_flag, umode_t mode) 3351 { 3352 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3353 struct inode *dir = nd->path.dentry->d_inode; 3354 int error; 3355 3356 if (nd->flags & LOOKUP_DIRECTORY) 3357 open_flag |= O_DIRECTORY; 3358 3359 file->f_path.dentry = DENTRY_NOT_SET; 3360 file->f_path.mnt = nd->path.mnt; 3361 error = dir->i_op->atomic_open(dir, dentry, file, 3362 open_to_namei_flags(open_flag), mode); 3363 d_lookup_done(dentry); 3364 if (!error) { 3365 if (file->f_mode & FMODE_OPENED) { 3366 if (unlikely(dentry != file->f_path.dentry)) { 3367 dput(dentry); 3368 dentry = dget(file->f_path.dentry); 3369 } 3370 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3371 error = -EIO; 3372 } else { 3373 if (file->f_path.dentry) { 3374 dput(dentry); 3375 dentry = file->f_path.dentry; 3376 } 3377 if (unlikely(d_is_negative(dentry))) 3378 error = -ENOENT; 3379 } 3380 } 3381 if (error) { 3382 dput(dentry); 3383 dentry = ERR_PTR(error); 3384 } 3385 return dentry; 3386 } 3387 3388 /* 3389 * Look up and maybe create and open the last component. 3390 * 3391 * Must be called with parent locked (exclusive in O_CREAT case). 3392 * 3393 * Returns 0 on success, that is, if 3394 * the file was successfully atomically created (if necessary) and opened, or 3395 * the file was not completely opened at this time, though lookups and 3396 * creations were performed. 3397 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3398 * In the latter case dentry returned in @path might be negative if O_CREAT 3399 * hadn't been specified. 3400 * 3401 * An error code is returned on failure. 3402 */ 3403 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3404 const struct open_flags *op, 3405 bool got_write) 3406 { 3407 struct mnt_idmap *idmap; 3408 struct dentry *dir = nd->path.dentry; 3409 struct inode *dir_inode = dir->d_inode; 3410 int open_flag = op->open_flag; 3411 struct dentry *dentry; 3412 int error, create_error = 0; 3413 umode_t mode = op->mode; 3414 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3415 3416 if (unlikely(IS_DEADDIR(dir_inode))) 3417 return ERR_PTR(-ENOENT); 3418 3419 file->f_mode &= ~FMODE_CREATED; 3420 dentry = d_lookup(dir, &nd->last); 3421 for (;;) { 3422 if (!dentry) { 3423 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3424 if (IS_ERR(dentry)) 3425 return dentry; 3426 } 3427 if (d_in_lookup(dentry)) 3428 break; 3429 3430 error = d_revalidate(dentry, nd->flags); 3431 if (likely(error > 0)) 3432 break; 3433 if (error) 3434 goto out_dput; 3435 d_invalidate(dentry); 3436 dput(dentry); 3437 dentry = NULL; 3438 } 3439 if (dentry->d_inode) { 3440 /* Cached positive dentry: will open in f_op->open */ 3441 return dentry; 3442 } 3443 3444 /* 3445 * Checking write permission is tricky, bacuse we don't know if we are 3446 * going to actually need it: O_CREAT opens should work as long as the 3447 * file exists. But checking existence breaks atomicity. The trick is 3448 * to check access and if not granted clear O_CREAT from the flags. 3449 * 3450 * Another problem is returing the "right" error value (e.g. for an 3451 * O_EXCL open we want to return EEXIST not EROFS). 3452 */ 3453 if (unlikely(!got_write)) 3454 open_flag &= ~O_TRUNC; 3455 idmap = mnt_idmap(nd->path.mnt); 3456 if (open_flag & O_CREAT) { 3457 if (open_flag & O_EXCL) 3458 open_flag &= ~O_TRUNC; 3459 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3460 if (likely(got_write)) 3461 create_error = may_o_create(idmap, &nd->path, 3462 dentry, mode); 3463 else 3464 create_error = -EROFS; 3465 } 3466 if (create_error) 3467 open_flag &= ~O_CREAT; 3468 if (dir_inode->i_op->atomic_open) { 3469 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3470 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3471 dentry = ERR_PTR(create_error); 3472 return dentry; 3473 } 3474 3475 if (d_in_lookup(dentry)) { 3476 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3477 nd->flags); 3478 d_lookup_done(dentry); 3479 if (unlikely(res)) { 3480 if (IS_ERR(res)) { 3481 error = PTR_ERR(res); 3482 goto out_dput; 3483 } 3484 dput(dentry); 3485 dentry = res; 3486 } 3487 } 3488 3489 /* Negative dentry, just create the file */ 3490 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3491 file->f_mode |= FMODE_CREATED; 3492 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3493 if (!dir_inode->i_op->create) { 3494 error = -EACCES; 3495 goto out_dput; 3496 } 3497 3498 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3499 mode, open_flag & O_EXCL); 3500 if (error) 3501 goto out_dput; 3502 } 3503 if (unlikely(create_error) && !dentry->d_inode) { 3504 error = create_error; 3505 goto out_dput; 3506 } 3507 return dentry; 3508 3509 out_dput: 3510 dput(dentry); 3511 return ERR_PTR(error); 3512 } 3513 3514 static const char *open_last_lookups(struct nameidata *nd, 3515 struct file *file, const struct open_flags *op) 3516 { 3517 struct dentry *dir = nd->path.dentry; 3518 int open_flag = op->open_flag; 3519 bool got_write = false; 3520 struct dentry *dentry; 3521 const char *res; 3522 3523 nd->flags |= op->intent; 3524 3525 if (nd->last_type != LAST_NORM) { 3526 if (nd->depth) 3527 put_link(nd); 3528 return handle_dots(nd, nd->last_type); 3529 } 3530 3531 if (!(open_flag & O_CREAT)) { 3532 if (nd->last.name[nd->last.len]) 3533 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3534 /* we _can_ be in RCU mode here */ 3535 dentry = lookup_fast(nd); 3536 if (IS_ERR(dentry)) 3537 return ERR_CAST(dentry); 3538 if (likely(dentry)) 3539 goto finish_lookup; 3540 3541 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3542 return ERR_PTR(-ECHILD); 3543 } else { 3544 /* create side of things */ 3545 if (nd->flags & LOOKUP_RCU) { 3546 if (!try_to_unlazy(nd)) 3547 return ERR_PTR(-ECHILD); 3548 } 3549 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3550 /* trailing slashes? */ 3551 if (unlikely(nd->last.name[nd->last.len])) 3552 return ERR_PTR(-EISDIR); 3553 } 3554 3555 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3556 got_write = !mnt_want_write(nd->path.mnt); 3557 /* 3558 * do _not_ fail yet - we might not need that or fail with 3559 * a different error; let lookup_open() decide; we'll be 3560 * dropping this one anyway. 3561 */ 3562 } 3563 if (open_flag & O_CREAT) 3564 inode_lock(dir->d_inode); 3565 else 3566 inode_lock_shared(dir->d_inode); 3567 dentry = lookup_open(nd, file, op, got_write); 3568 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3569 fsnotify_create(dir->d_inode, dentry); 3570 if (open_flag & O_CREAT) 3571 inode_unlock(dir->d_inode); 3572 else 3573 inode_unlock_shared(dir->d_inode); 3574 3575 if (got_write) 3576 mnt_drop_write(nd->path.mnt); 3577 3578 if (IS_ERR(dentry)) 3579 return ERR_CAST(dentry); 3580 3581 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3582 dput(nd->path.dentry); 3583 nd->path.dentry = dentry; 3584 return NULL; 3585 } 3586 3587 finish_lookup: 3588 if (nd->depth) 3589 put_link(nd); 3590 res = step_into(nd, WALK_TRAILING, dentry); 3591 if (unlikely(res)) 3592 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3593 return res; 3594 } 3595 3596 /* 3597 * Handle the last step of open() 3598 */ 3599 static int do_open(struct nameidata *nd, 3600 struct file *file, const struct open_flags *op) 3601 { 3602 struct mnt_idmap *idmap; 3603 int open_flag = op->open_flag; 3604 bool do_truncate; 3605 int acc_mode; 3606 int error; 3607 3608 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3609 error = complete_walk(nd); 3610 if (error) 3611 return error; 3612 } 3613 if (!(file->f_mode & FMODE_CREATED)) 3614 audit_inode(nd->name, nd->path.dentry, 0); 3615 idmap = mnt_idmap(nd->path.mnt); 3616 if (open_flag & O_CREAT) { 3617 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3618 return -EEXIST; 3619 if (d_is_dir(nd->path.dentry)) 3620 return -EISDIR; 3621 error = may_create_in_sticky(idmap, nd, 3622 d_backing_inode(nd->path.dentry)); 3623 if (unlikely(error)) 3624 return error; 3625 } 3626 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3627 return -ENOTDIR; 3628 3629 do_truncate = false; 3630 acc_mode = op->acc_mode; 3631 if (file->f_mode & FMODE_CREATED) { 3632 /* Don't check for write permission, don't truncate */ 3633 open_flag &= ~O_TRUNC; 3634 acc_mode = 0; 3635 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3636 error = mnt_want_write(nd->path.mnt); 3637 if (error) 3638 return error; 3639 do_truncate = true; 3640 } 3641 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3642 if (!error && !(file->f_mode & FMODE_OPENED)) 3643 error = vfs_open(&nd->path, file); 3644 if (!error) 3645 error = ima_file_check(file, op->acc_mode); 3646 if (!error && do_truncate) 3647 error = handle_truncate(idmap, file); 3648 if (unlikely(error > 0)) { 3649 WARN_ON(1); 3650 error = -EINVAL; 3651 } 3652 if (do_truncate) 3653 mnt_drop_write(nd->path.mnt); 3654 return error; 3655 } 3656 3657 /** 3658 * vfs_tmpfile - create tmpfile 3659 * @idmap: idmap of the mount the inode was found from 3660 * @parentpath: pointer to the path of the base directory 3661 * @file: file descriptor of the new tmpfile 3662 * @mode: mode of the new tmpfile 3663 * 3664 * Create a temporary file. 3665 * 3666 * If the inode has been found through an idmapped mount the idmap of 3667 * the vfsmount must be passed through @idmap. This function will then take 3668 * care to map the inode according to @idmap before checking permissions. 3669 * On non-idmapped mounts or if permission checking is to be performed on the 3670 * raw inode simply pass @nop_mnt_idmap. 3671 */ 3672 static int vfs_tmpfile(struct mnt_idmap *idmap, 3673 const struct path *parentpath, 3674 struct file *file, umode_t mode) 3675 { 3676 struct dentry *child; 3677 struct inode *dir = d_inode(parentpath->dentry); 3678 struct inode *inode; 3679 int error; 3680 int open_flag = file->f_flags; 3681 3682 /* we want directory to be writable */ 3683 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3684 if (error) 3685 return error; 3686 if (!dir->i_op->tmpfile) 3687 return -EOPNOTSUPP; 3688 child = d_alloc(parentpath->dentry, &slash_name); 3689 if (unlikely(!child)) 3690 return -ENOMEM; 3691 file->f_path.mnt = parentpath->mnt; 3692 file->f_path.dentry = child; 3693 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3694 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3695 dput(child); 3696 if (error) 3697 return error; 3698 /* Don't check for other permissions, the inode was just created */ 3699 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3700 if (error) 3701 return error; 3702 inode = file_inode(file); 3703 if (!(open_flag & O_EXCL)) { 3704 spin_lock(&inode->i_lock); 3705 inode->i_state |= I_LINKABLE; 3706 spin_unlock(&inode->i_lock); 3707 } 3708 ima_post_create_tmpfile(idmap, inode); 3709 return 0; 3710 } 3711 3712 /** 3713 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3714 * @idmap: idmap of the mount the inode was found from 3715 * @parentpath: path of the base directory 3716 * @mode: mode of the new tmpfile 3717 * @open_flag: flags 3718 * @cred: credentials for open 3719 * 3720 * Create and open a temporary file. The file is not accounted in nr_files, 3721 * hence this is only for kernel internal use, and must not be installed into 3722 * file tables or such. 3723 */ 3724 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3725 const struct path *parentpath, 3726 umode_t mode, int open_flag, 3727 const struct cred *cred) 3728 { 3729 struct file *file; 3730 int error; 3731 3732 file = alloc_empty_file_noaccount(open_flag, cred); 3733 if (IS_ERR(file)) 3734 return file; 3735 3736 error = vfs_tmpfile(idmap, parentpath, file, mode); 3737 if (error) { 3738 fput(file); 3739 file = ERR_PTR(error); 3740 } 3741 return file; 3742 } 3743 EXPORT_SYMBOL(kernel_tmpfile_open); 3744 3745 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3746 const struct open_flags *op, 3747 struct file *file) 3748 { 3749 struct path path; 3750 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3751 3752 if (unlikely(error)) 3753 return error; 3754 error = mnt_want_write(path.mnt); 3755 if (unlikely(error)) 3756 goto out; 3757 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3758 if (error) 3759 goto out2; 3760 audit_inode(nd->name, file->f_path.dentry, 0); 3761 out2: 3762 mnt_drop_write(path.mnt); 3763 out: 3764 path_put(&path); 3765 return error; 3766 } 3767 3768 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3769 { 3770 struct path path; 3771 int error = path_lookupat(nd, flags, &path); 3772 if (!error) { 3773 audit_inode(nd->name, path.dentry, 0); 3774 error = vfs_open(&path, file); 3775 path_put(&path); 3776 } 3777 return error; 3778 } 3779 3780 static struct file *path_openat(struct nameidata *nd, 3781 const struct open_flags *op, unsigned flags) 3782 { 3783 struct file *file; 3784 int error; 3785 3786 file = alloc_empty_file(op->open_flag, current_cred()); 3787 if (IS_ERR(file)) 3788 return file; 3789 3790 if (unlikely(file->f_flags & __O_TMPFILE)) { 3791 error = do_tmpfile(nd, flags, op, file); 3792 } else if (unlikely(file->f_flags & O_PATH)) { 3793 error = do_o_path(nd, flags, file); 3794 } else { 3795 const char *s = path_init(nd, flags); 3796 while (!(error = link_path_walk(s, nd)) && 3797 (s = open_last_lookups(nd, file, op)) != NULL) 3798 ; 3799 if (!error) 3800 error = do_open(nd, file, op); 3801 terminate_walk(nd); 3802 } 3803 if (likely(!error)) { 3804 if (likely(file->f_mode & FMODE_OPENED)) 3805 return file; 3806 WARN_ON(1); 3807 error = -EINVAL; 3808 } 3809 fput(file); 3810 if (error == -EOPENSTALE) { 3811 if (flags & LOOKUP_RCU) 3812 error = -ECHILD; 3813 else 3814 error = -ESTALE; 3815 } 3816 return ERR_PTR(error); 3817 } 3818 3819 struct file *do_filp_open(int dfd, struct filename *pathname, 3820 const struct open_flags *op) 3821 { 3822 struct nameidata nd; 3823 int flags = op->lookup_flags; 3824 struct file *filp; 3825 3826 set_nameidata(&nd, dfd, pathname, NULL); 3827 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3828 if (unlikely(filp == ERR_PTR(-ECHILD))) 3829 filp = path_openat(&nd, op, flags); 3830 if (unlikely(filp == ERR_PTR(-ESTALE))) 3831 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3832 restore_nameidata(); 3833 return filp; 3834 } 3835 3836 struct file *do_file_open_root(const struct path *root, 3837 const char *name, const struct open_flags *op) 3838 { 3839 struct nameidata nd; 3840 struct file *file; 3841 struct filename *filename; 3842 int flags = op->lookup_flags; 3843 3844 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3845 return ERR_PTR(-ELOOP); 3846 3847 filename = getname_kernel(name); 3848 if (IS_ERR(filename)) 3849 return ERR_CAST(filename); 3850 3851 set_nameidata(&nd, -1, filename, root); 3852 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3853 if (unlikely(file == ERR_PTR(-ECHILD))) 3854 file = path_openat(&nd, op, flags); 3855 if (unlikely(file == ERR_PTR(-ESTALE))) 3856 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3857 restore_nameidata(); 3858 putname(filename); 3859 return file; 3860 } 3861 3862 static struct dentry *filename_create(int dfd, struct filename *name, 3863 struct path *path, unsigned int lookup_flags) 3864 { 3865 struct dentry *dentry = ERR_PTR(-EEXIST); 3866 struct qstr last; 3867 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3868 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3869 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3870 int type; 3871 int err2; 3872 int error; 3873 3874 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3875 if (error) 3876 return ERR_PTR(error); 3877 3878 /* 3879 * Yucky last component or no last component at all? 3880 * (foo/., foo/.., /////) 3881 */ 3882 if (unlikely(type != LAST_NORM)) 3883 goto out; 3884 3885 /* don't fail immediately if it's r/o, at least try to report other errors */ 3886 err2 = mnt_want_write(path->mnt); 3887 /* 3888 * Do the final lookup. Suppress 'create' if there is a trailing 3889 * '/', and a directory wasn't requested. 3890 */ 3891 if (last.name[last.len] && !want_dir) 3892 create_flags = 0; 3893 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3894 dentry = lookup_one_qstr_excl(&last, path->dentry, 3895 reval_flag | create_flags); 3896 if (IS_ERR(dentry)) 3897 goto unlock; 3898 3899 error = -EEXIST; 3900 if (d_is_positive(dentry)) 3901 goto fail; 3902 3903 /* 3904 * Special case - lookup gave negative, but... we had foo/bar/ 3905 * From the vfs_mknod() POV we just have a negative dentry - 3906 * all is fine. Let's be bastards - you had / on the end, you've 3907 * been asking for (non-existent) directory. -ENOENT for you. 3908 */ 3909 if (unlikely(!create_flags)) { 3910 error = -ENOENT; 3911 goto fail; 3912 } 3913 if (unlikely(err2)) { 3914 error = err2; 3915 goto fail; 3916 } 3917 return dentry; 3918 fail: 3919 dput(dentry); 3920 dentry = ERR_PTR(error); 3921 unlock: 3922 inode_unlock(path->dentry->d_inode); 3923 if (!err2) 3924 mnt_drop_write(path->mnt); 3925 out: 3926 path_put(path); 3927 return dentry; 3928 } 3929 3930 struct dentry *kern_path_create(int dfd, const char *pathname, 3931 struct path *path, unsigned int lookup_flags) 3932 { 3933 struct filename *filename = getname_kernel(pathname); 3934 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3935 3936 putname(filename); 3937 return res; 3938 } 3939 EXPORT_SYMBOL(kern_path_create); 3940 3941 void done_path_create(struct path *path, struct dentry *dentry) 3942 { 3943 dput(dentry); 3944 inode_unlock(path->dentry->d_inode); 3945 mnt_drop_write(path->mnt); 3946 path_put(path); 3947 } 3948 EXPORT_SYMBOL(done_path_create); 3949 3950 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3951 struct path *path, unsigned int lookup_flags) 3952 { 3953 struct filename *filename = getname(pathname); 3954 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3955 3956 putname(filename); 3957 return res; 3958 } 3959 EXPORT_SYMBOL(user_path_create); 3960 3961 /** 3962 * vfs_mknod - create device node or file 3963 * @idmap: idmap of the mount the inode was found from 3964 * @dir: inode of @dentry 3965 * @dentry: pointer to dentry of the base directory 3966 * @mode: mode of the new device node or file 3967 * @dev: device number of device to create 3968 * 3969 * Create a device node or file. 3970 * 3971 * If the inode has been found through an idmapped mount the idmap of 3972 * the vfsmount must be passed through @idmap. This function will then take 3973 * care to map the inode according to @idmap before checking permissions. 3974 * On non-idmapped mounts or if permission checking is to be performed on the 3975 * raw inode simply pass @nop_mnt_idmap. 3976 */ 3977 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 3978 struct dentry *dentry, umode_t mode, dev_t dev) 3979 { 3980 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3981 int error = may_create(idmap, dir, dentry); 3982 3983 if (error) 3984 return error; 3985 3986 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3987 !capable(CAP_MKNOD)) 3988 return -EPERM; 3989 3990 if (!dir->i_op->mknod) 3991 return -EPERM; 3992 3993 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3994 error = devcgroup_inode_mknod(mode, dev); 3995 if (error) 3996 return error; 3997 3998 error = security_inode_mknod(dir, dentry, mode, dev); 3999 if (error) 4000 return error; 4001 4002 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4003 if (!error) 4004 fsnotify_create(dir, dentry); 4005 return error; 4006 } 4007 EXPORT_SYMBOL(vfs_mknod); 4008 4009 static int may_mknod(umode_t mode) 4010 { 4011 switch (mode & S_IFMT) { 4012 case S_IFREG: 4013 case S_IFCHR: 4014 case S_IFBLK: 4015 case S_IFIFO: 4016 case S_IFSOCK: 4017 case 0: /* zero mode translates to S_IFREG */ 4018 return 0; 4019 case S_IFDIR: 4020 return -EPERM; 4021 default: 4022 return -EINVAL; 4023 } 4024 } 4025 4026 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4027 unsigned int dev) 4028 { 4029 struct mnt_idmap *idmap; 4030 struct dentry *dentry; 4031 struct path path; 4032 int error; 4033 unsigned int lookup_flags = 0; 4034 4035 error = may_mknod(mode); 4036 if (error) 4037 goto out1; 4038 retry: 4039 dentry = filename_create(dfd, name, &path, lookup_flags); 4040 error = PTR_ERR(dentry); 4041 if (IS_ERR(dentry)) 4042 goto out1; 4043 4044 error = security_path_mknod(&path, dentry, 4045 mode_strip_umask(path.dentry->d_inode, mode), dev); 4046 if (error) 4047 goto out2; 4048 4049 idmap = mnt_idmap(path.mnt); 4050 switch (mode & S_IFMT) { 4051 case 0: case S_IFREG: 4052 error = vfs_create(idmap, path.dentry->d_inode, 4053 dentry, mode, true); 4054 if (!error) 4055 ima_post_path_mknod(idmap, dentry); 4056 break; 4057 case S_IFCHR: case S_IFBLK: 4058 error = vfs_mknod(idmap, path.dentry->d_inode, 4059 dentry, mode, new_decode_dev(dev)); 4060 break; 4061 case S_IFIFO: case S_IFSOCK: 4062 error = vfs_mknod(idmap, path.dentry->d_inode, 4063 dentry, mode, 0); 4064 break; 4065 } 4066 out2: 4067 done_path_create(&path, dentry); 4068 if (retry_estale(error, lookup_flags)) { 4069 lookup_flags |= LOOKUP_REVAL; 4070 goto retry; 4071 } 4072 out1: 4073 putname(name); 4074 return error; 4075 } 4076 4077 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4078 unsigned int, dev) 4079 { 4080 return do_mknodat(dfd, getname(filename), mode, dev); 4081 } 4082 4083 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4084 { 4085 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4086 } 4087 4088 /** 4089 * vfs_mkdir - create directory 4090 * @idmap: idmap of the mount the inode was found from 4091 * @dir: inode of @dentry 4092 * @dentry: pointer to dentry of the base directory 4093 * @mode: mode of the new directory 4094 * 4095 * Create a directory. 4096 * 4097 * If the inode has been found through an idmapped mount the idmap of 4098 * the vfsmount must be passed through @idmap. This function will then take 4099 * care to map the inode according to @idmap before checking permissions. 4100 * On non-idmapped mounts or if permission checking is to be performed on the 4101 * raw inode simply pass @nop_mnt_idmap. 4102 */ 4103 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4104 struct dentry *dentry, umode_t mode) 4105 { 4106 int error; 4107 unsigned max_links = dir->i_sb->s_max_links; 4108 4109 error = may_create(idmap, dir, dentry); 4110 if (error) 4111 return error; 4112 4113 if (!dir->i_op->mkdir) 4114 return -EPERM; 4115 4116 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4117 error = security_inode_mkdir(dir, dentry, mode); 4118 if (error) 4119 return error; 4120 4121 if (max_links && dir->i_nlink >= max_links) 4122 return -EMLINK; 4123 4124 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4125 if (!error) 4126 fsnotify_mkdir(dir, dentry); 4127 return error; 4128 } 4129 EXPORT_SYMBOL(vfs_mkdir); 4130 4131 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4132 { 4133 struct dentry *dentry; 4134 struct path path; 4135 int error; 4136 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4137 4138 retry: 4139 dentry = filename_create(dfd, name, &path, lookup_flags); 4140 error = PTR_ERR(dentry); 4141 if (IS_ERR(dentry)) 4142 goto out_putname; 4143 4144 error = security_path_mkdir(&path, dentry, 4145 mode_strip_umask(path.dentry->d_inode, mode)); 4146 if (!error) { 4147 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4148 dentry, mode); 4149 } 4150 done_path_create(&path, dentry); 4151 if (retry_estale(error, lookup_flags)) { 4152 lookup_flags |= LOOKUP_REVAL; 4153 goto retry; 4154 } 4155 out_putname: 4156 putname(name); 4157 return error; 4158 } 4159 4160 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4161 { 4162 return do_mkdirat(dfd, getname(pathname), mode); 4163 } 4164 4165 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4166 { 4167 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4168 } 4169 4170 /** 4171 * vfs_rmdir - remove directory 4172 * @idmap: idmap of the mount the inode was found from 4173 * @dir: inode of @dentry 4174 * @dentry: pointer to dentry of the base directory 4175 * 4176 * Remove a directory. 4177 * 4178 * If the inode has been found through an idmapped mount the idmap of 4179 * the vfsmount must be passed through @idmap. This function will then take 4180 * care to map the inode according to @idmap before checking permissions. 4181 * On non-idmapped mounts or if permission checking is to be performed on the 4182 * raw inode simply pass @nop_mnt_idmap. 4183 */ 4184 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4185 struct dentry *dentry) 4186 { 4187 int error = may_delete(idmap, dir, dentry, 1); 4188 4189 if (error) 4190 return error; 4191 4192 if (!dir->i_op->rmdir) 4193 return -EPERM; 4194 4195 dget(dentry); 4196 inode_lock(dentry->d_inode); 4197 4198 error = -EBUSY; 4199 if (is_local_mountpoint(dentry) || 4200 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4201 goto out; 4202 4203 error = security_inode_rmdir(dir, dentry); 4204 if (error) 4205 goto out; 4206 4207 error = dir->i_op->rmdir(dir, dentry); 4208 if (error) 4209 goto out; 4210 4211 shrink_dcache_parent(dentry); 4212 dentry->d_inode->i_flags |= S_DEAD; 4213 dont_mount(dentry); 4214 detach_mounts(dentry); 4215 4216 out: 4217 inode_unlock(dentry->d_inode); 4218 dput(dentry); 4219 if (!error) 4220 d_delete_notify(dir, dentry); 4221 return error; 4222 } 4223 EXPORT_SYMBOL(vfs_rmdir); 4224 4225 int do_rmdir(int dfd, struct filename *name) 4226 { 4227 int error; 4228 struct dentry *dentry; 4229 struct path path; 4230 struct qstr last; 4231 int type; 4232 unsigned int lookup_flags = 0; 4233 retry: 4234 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4235 if (error) 4236 goto exit1; 4237 4238 switch (type) { 4239 case LAST_DOTDOT: 4240 error = -ENOTEMPTY; 4241 goto exit2; 4242 case LAST_DOT: 4243 error = -EINVAL; 4244 goto exit2; 4245 case LAST_ROOT: 4246 error = -EBUSY; 4247 goto exit2; 4248 } 4249 4250 error = mnt_want_write(path.mnt); 4251 if (error) 4252 goto exit2; 4253 4254 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4255 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4256 error = PTR_ERR(dentry); 4257 if (IS_ERR(dentry)) 4258 goto exit3; 4259 if (!dentry->d_inode) { 4260 error = -ENOENT; 4261 goto exit4; 4262 } 4263 error = security_path_rmdir(&path, dentry); 4264 if (error) 4265 goto exit4; 4266 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4267 exit4: 4268 dput(dentry); 4269 exit3: 4270 inode_unlock(path.dentry->d_inode); 4271 mnt_drop_write(path.mnt); 4272 exit2: 4273 path_put(&path); 4274 if (retry_estale(error, lookup_flags)) { 4275 lookup_flags |= LOOKUP_REVAL; 4276 goto retry; 4277 } 4278 exit1: 4279 putname(name); 4280 return error; 4281 } 4282 4283 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4284 { 4285 return do_rmdir(AT_FDCWD, getname(pathname)); 4286 } 4287 4288 /** 4289 * vfs_unlink - unlink a filesystem object 4290 * @idmap: idmap of the mount the inode was found from 4291 * @dir: parent directory 4292 * @dentry: victim 4293 * @delegated_inode: returns victim inode, if the inode is delegated. 4294 * 4295 * The caller must hold dir->i_mutex. 4296 * 4297 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4298 * return a reference to the inode in delegated_inode. The caller 4299 * should then break the delegation on that inode and retry. Because 4300 * breaking a delegation may take a long time, the caller should drop 4301 * dir->i_mutex before doing so. 4302 * 4303 * Alternatively, a caller may pass NULL for delegated_inode. This may 4304 * be appropriate for callers that expect the underlying filesystem not 4305 * to be NFS exported. 4306 * 4307 * If the inode has been found through an idmapped mount the idmap of 4308 * the vfsmount must be passed through @idmap. This function will then take 4309 * care to map the inode according to @idmap before checking permissions. 4310 * On non-idmapped mounts or if permission checking is to be performed on the 4311 * raw inode simply pass @nop_mnt_idmap. 4312 */ 4313 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4314 struct dentry *dentry, struct inode **delegated_inode) 4315 { 4316 struct inode *target = dentry->d_inode; 4317 int error = may_delete(idmap, dir, dentry, 0); 4318 4319 if (error) 4320 return error; 4321 4322 if (!dir->i_op->unlink) 4323 return -EPERM; 4324 4325 inode_lock(target); 4326 if (IS_SWAPFILE(target)) 4327 error = -EPERM; 4328 else if (is_local_mountpoint(dentry)) 4329 error = -EBUSY; 4330 else { 4331 error = security_inode_unlink(dir, dentry); 4332 if (!error) { 4333 error = try_break_deleg(target, delegated_inode); 4334 if (error) 4335 goto out; 4336 error = dir->i_op->unlink(dir, dentry); 4337 if (!error) { 4338 dont_mount(dentry); 4339 detach_mounts(dentry); 4340 } 4341 } 4342 } 4343 out: 4344 inode_unlock(target); 4345 4346 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4347 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4348 fsnotify_unlink(dir, dentry); 4349 } else if (!error) { 4350 fsnotify_link_count(target); 4351 d_delete_notify(dir, dentry); 4352 } 4353 4354 return error; 4355 } 4356 EXPORT_SYMBOL(vfs_unlink); 4357 4358 /* 4359 * Make sure that the actual truncation of the file will occur outside its 4360 * directory's i_mutex. Truncate can take a long time if there is a lot of 4361 * writeout happening, and we don't want to prevent access to the directory 4362 * while waiting on the I/O. 4363 */ 4364 int do_unlinkat(int dfd, struct filename *name) 4365 { 4366 int error; 4367 struct dentry *dentry; 4368 struct path path; 4369 struct qstr last; 4370 int type; 4371 struct inode *inode = NULL; 4372 struct inode *delegated_inode = NULL; 4373 unsigned int lookup_flags = 0; 4374 retry: 4375 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4376 if (error) 4377 goto exit1; 4378 4379 error = -EISDIR; 4380 if (type != LAST_NORM) 4381 goto exit2; 4382 4383 error = mnt_want_write(path.mnt); 4384 if (error) 4385 goto exit2; 4386 retry_deleg: 4387 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4388 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4389 error = PTR_ERR(dentry); 4390 if (!IS_ERR(dentry)) { 4391 4392 /* Why not before? Because we want correct error value */ 4393 if (last.name[last.len] || d_is_negative(dentry)) 4394 goto slashes; 4395 inode = dentry->d_inode; 4396 ihold(inode); 4397 error = security_path_unlink(&path, dentry); 4398 if (error) 4399 goto exit3; 4400 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4401 dentry, &delegated_inode); 4402 exit3: 4403 dput(dentry); 4404 } 4405 inode_unlock(path.dentry->d_inode); 4406 if (inode) 4407 iput(inode); /* truncate the inode here */ 4408 inode = NULL; 4409 if (delegated_inode) { 4410 error = break_deleg_wait(&delegated_inode); 4411 if (!error) 4412 goto retry_deleg; 4413 } 4414 mnt_drop_write(path.mnt); 4415 exit2: 4416 path_put(&path); 4417 if (retry_estale(error, lookup_flags)) { 4418 lookup_flags |= LOOKUP_REVAL; 4419 inode = NULL; 4420 goto retry; 4421 } 4422 exit1: 4423 putname(name); 4424 return error; 4425 4426 slashes: 4427 if (d_is_negative(dentry)) 4428 error = -ENOENT; 4429 else if (d_is_dir(dentry)) 4430 error = -EISDIR; 4431 else 4432 error = -ENOTDIR; 4433 goto exit3; 4434 } 4435 4436 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4437 { 4438 if ((flag & ~AT_REMOVEDIR) != 0) 4439 return -EINVAL; 4440 4441 if (flag & AT_REMOVEDIR) 4442 return do_rmdir(dfd, getname(pathname)); 4443 return do_unlinkat(dfd, getname(pathname)); 4444 } 4445 4446 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4447 { 4448 return do_unlinkat(AT_FDCWD, getname(pathname)); 4449 } 4450 4451 /** 4452 * vfs_symlink - create symlink 4453 * @idmap: idmap of the mount the inode was found from 4454 * @dir: inode of @dentry 4455 * @dentry: pointer to dentry of the base directory 4456 * @oldname: name of the file to link to 4457 * 4458 * Create a symlink. 4459 * 4460 * If the inode has been found through an idmapped mount the idmap of 4461 * the vfsmount must be passed through @idmap. This function will then take 4462 * care to map the inode according to @idmap before checking permissions. 4463 * On non-idmapped mounts or if permission checking is to be performed on the 4464 * raw inode simply pass @nop_mnt_idmap. 4465 */ 4466 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4467 struct dentry *dentry, const char *oldname) 4468 { 4469 int error; 4470 4471 error = may_create(idmap, dir, dentry); 4472 if (error) 4473 return error; 4474 4475 if (!dir->i_op->symlink) 4476 return -EPERM; 4477 4478 error = security_inode_symlink(dir, dentry, oldname); 4479 if (error) 4480 return error; 4481 4482 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4483 if (!error) 4484 fsnotify_create(dir, dentry); 4485 return error; 4486 } 4487 EXPORT_SYMBOL(vfs_symlink); 4488 4489 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4490 { 4491 int error; 4492 struct dentry *dentry; 4493 struct path path; 4494 unsigned int lookup_flags = 0; 4495 4496 if (IS_ERR(from)) { 4497 error = PTR_ERR(from); 4498 goto out_putnames; 4499 } 4500 retry: 4501 dentry = filename_create(newdfd, to, &path, lookup_flags); 4502 error = PTR_ERR(dentry); 4503 if (IS_ERR(dentry)) 4504 goto out_putnames; 4505 4506 error = security_path_symlink(&path, dentry, from->name); 4507 if (!error) 4508 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4509 dentry, from->name); 4510 done_path_create(&path, dentry); 4511 if (retry_estale(error, lookup_flags)) { 4512 lookup_flags |= LOOKUP_REVAL; 4513 goto retry; 4514 } 4515 out_putnames: 4516 putname(to); 4517 putname(from); 4518 return error; 4519 } 4520 4521 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4522 int, newdfd, const char __user *, newname) 4523 { 4524 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4525 } 4526 4527 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4528 { 4529 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4530 } 4531 4532 /** 4533 * vfs_link - create a new link 4534 * @old_dentry: object to be linked 4535 * @idmap: idmap of the mount 4536 * @dir: new parent 4537 * @new_dentry: where to create the new link 4538 * @delegated_inode: returns inode needing a delegation break 4539 * 4540 * The caller must hold dir->i_mutex 4541 * 4542 * If vfs_link discovers a delegation on the to-be-linked file in need 4543 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4544 * inode in delegated_inode. The caller should then break the delegation 4545 * and retry. Because breaking a delegation may take a long time, the 4546 * caller should drop the i_mutex before doing so. 4547 * 4548 * Alternatively, a caller may pass NULL for delegated_inode. This may 4549 * be appropriate for callers that expect the underlying filesystem not 4550 * to be NFS exported. 4551 * 4552 * If the inode has been found through an idmapped mount the idmap of 4553 * the vfsmount must be passed through @idmap. This function will then take 4554 * care to map the inode according to @idmap before checking permissions. 4555 * On non-idmapped mounts or if permission checking is to be performed on the 4556 * raw inode simply pass @nop_mnt_idmap. 4557 */ 4558 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4559 struct inode *dir, struct dentry *new_dentry, 4560 struct inode **delegated_inode) 4561 { 4562 struct inode *inode = old_dentry->d_inode; 4563 unsigned max_links = dir->i_sb->s_max_links; 4564 int error; 4565 4566 if (!inode) 4567 return -ENOENT; 4568 4569 error = may_create(idmap, dir, new_dentry); 4570 if (error) 4571 return error; 4572 4573 if (dir->i_sb != inode->i_sb) 4574 return -EXDEV; 4575 4576 /* 4577 * A link to an append-only or immutable file cannot be created. 4578 */ 4579 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4580 return -EPERM; 4581 /* 4582 * Updating the link count will likely cause i_uid and i_gid to 4583 * be writen back improperly if their true value is unknown to 4584 * the vfs. 4585 */ 4586 if (HAS_UNMAPPED_ID(idmap, inode)) 4587 return -EPERM; 4588 if (!dir->i_op->link) 4589 return -EPERM; 4590 if (S_ISDIR(inode->i_mode)) 4591 return -EPERM; 4592 4593 error = security_inode_link(old_dentry, dir, new_dentry); 4594 if (error) 4595 return error; 4596 4597 inode_lock(inode); 4598 /* Make sure we don't allow creating hardlink to an unlinked file */ 4599 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4600 error = -ENOENT; 4601 else if (max_links && inode->i_nlink >= max_links) 4602 error = -EMLINK; 4603 else { 4604 error = try_break_deleg(inode, delegated_inode); 4605 if (!error) 4606 error = dir->i_op->link(old_dentry, dir, new_dentry); 4607 } 4608 4609 if (!error && (inode->i_state & I_LINKABLE)) { 4610 spin_lock(&inode->i_lock); 4611 inode->i_state &= ~I_LINKABLE; 4612 spin_unlock(&inode->i_lock); 4613 } 4614 inode_unlock(inode); 4615 if (!error) 4616 fsnotify_link(dir, inode, new_dentry); 4617 return error; 4618 } 4619 EXPORT_SYMBOL(vfs_link); 4620 4621 /* 4622 * Hardlinks are often used in delicate situations. We avoid 4623 * security-related surprises by not following symlinks on the 4624 * newname. --KAB 4625 * 4626 * We don't follow them on the oldname either to be compatible 4627 * with linux 2.0, and to avoid hard-linking to directories 4628 * and other special files. --ADM 4629 */ 4630 int do_linkat(int olddfd, struct filename *old, int newdfd, 4631 struct filename *new, int flags) 4632 { 4633 struct mnt_idmap *idmap; 4634 struct dentry *new_dentry; 4635 struct path old_path, new_path; 4636 struct inode *delegated_inode = NULL; 4637 int how = 0; 4638 int error; 4639 4640 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4641 error = -EINVAL; 4642 goto out_putnames; 4643 } 4644 /* 4645 * To use null names we require CAP_DAC_READ_SEARCH 4646 * This ensures that not everyone will be able to create 4647 * handlink using the passed filedescriptor. 4648 */ 4649 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4650 error = -ENOENT; 4651 goto out_putnames; 4652 } 4653 4654 if (flags & AT_SYMLINK_FOLLOW) 4655 how |= LOOKUP_FOLLOW; 4656 retry: 4657 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4658 if (error) 4659 goto out_putnames; 4660 4661 new_dentry = filename_create(newdfd, new, &new_path, 4662 (how & LOOKUP_REVAL)); 4663 error = PTR_ERR(new_dentry); 4664 if (IS_ERR(new_dentry)) 4665 goto out_putpath; 4666 4667 error = -EXDEV; 4668 if (old_path.mnt != new_path.mnt) 4669 goto out_dput; 4670 idmap = mnt_idmap(new_path.mnt); 4671 error = may_linkat(idmap, &old_path); 4672 if (unlikely(error)) 4673 goto out_dput; 4674 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4675 if (error) 4676 goto out_dput; 4677 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4678 new_dentry, &delegated_inode); 4679 out_dput: 4680 done_path_create(&new_path, new_dentry); 4681 if (delegated_inode) { 4682 error = break_deleg_wait(&delegated_inode); 4683 if (!error) { 4684 path_put(&old_path); 4685 goto retry; 4686 } 4687 } 4688 if (retry_estale(error, how)) { 4689 path_put(&old_path); 4690 how |= LOOKUP_REVAL; 4691 goto retry; 4692 } 4693 out_putpath: 4694 path_put(&old_path); 4695 out_putnames: 4696 putname(old); 4697 putname(new); 4698 4699 return error; 4700 } 4701 4702 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4703 int, newdfd, const char __user *, newname, int, flags) 4704 { 4705 return do_linkat(olddfd, getname_uflags(oldname, flags), 4706 newdfd, getname(newname), flags); 4707 } 4708 4709 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4710 { 4711 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4712 } 4713 4714 /** 4715 * vfs_rename - rename a filesystem object 4716 * @rd: pointer to &struct renamedata info 4717 * 4718 * The caller must hold multiple mutexes--see lock_rename()). 4719 * 4720 * If vfs_rename discovers a delegation in need of breaking at either 4721 * the source or destination, it will return -EWOULDBLOCK and return a 4722 * reference to the inode in delegated_inode. The caller should then 4723 * break the delegation and retry. Because breaking a delegation may 4724 * take a long time, the caller should drop all locks before doing 4725 * so. 4726 * 4727 * Alternatively, a caller may pass NULL for delegated_inode. This may 4728 * be appropriate for callers that expect the underlying filesystem not 4729 * to be NFS exported. 4730 * 4731 * The worst of all namespace operations - renaming directory. "Perverted" 4732 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4733 * Problems: 4734 * 4735 * a) we can get into loop creation. 4736 * b) race potential - two innocent renames can create a loop together. 4737 * That's where 4.4BSD screws up. Current fix: serialization on 4738 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4739 * story. 4740 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4741 * and source (if it's a non-directory or a subdirectory that moves to 4742 * different parent). 4743 * And that - after we got ->i_mutex on parents (until then we don't know 4744 * whether the target exists). Solution: try to be smart with locking 4745 * order for inodes. We rely on the fact that tree topology may change 4746 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4747 * move will be locked. Thus we can rank directories by the tree 4748 * (ancestors first) and rank all non-directories after them. 4749 * That works since everybody except rename does "lock parent, lookup, 4750 * lock child" and rename is under ->s_vfs_rename_mutex. 4751 * HOWEVER, it relies on the assumption that any object with ->lookup() 4752 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4753 * we'd better make sure that there's no link(2) for them. 4754 * d) conversion from fhandle to dentry may come in the wrong moment - when 4755 * we are removing the target. Solution: we will have to grab ->i_mutex 4756 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4757 * ->i_mutex on parents, which works but leads to some truly excessive 4758 * locking]. 4759 */ 4760 int vfs_rename(struct renamedata *rd) 4761 { 4762 int error; 4763 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4764 struct dentry *old_dentry = rd->old_dentry; 4765 struct dentry *new_dentry = rd->new_dentry; 4766 struct inode **delegated_inode = rd->delegated_inode; 4767 unsigned int flags = rd->flags; 4768 bool is_dir = d_is_dir(old_dentry); 4769 struct inode *source = old_dentry->d_inode; 4770 struct inode *target = new_dentry->d_inode; 4771 bool new_is_dir = false; 4772 unsigned max_links = new_dir->i_sb->s_max_links; 4773 struct name_snapshot old_name; 4774 bool lock_old_subdir, lock_new_subdir; 4775 4776 if (source == target) 4777 return 0; 4778 4779 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4780 if (error) 4781 return error; 4782 4783 if (!target) { 4784 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4785 } else { 4786 new_is_dir = d_is_dir(new_dentry); 4787 4788 if (!(flags & RENAME_EXCHANGE)) 4789 error = may_delete(rd->new_mnt_idmap, new_dir, 4790 new_dentry, is_dir); 4791 else 4792 error = may_delete(rd->new_mnt_idmap, new_dir, 4793 new_dentry, new_is_dir); 4794 } 4795 if (error) 4796 return error; 4797 4798 if (!old_dir->i_op->rename) 4799 return -EPERM; 4800 4801 /* 4802 * If we are going to change the parent - check write permissions, 4803 * we'll need to flip '..'. 4804 */ 4805 if (new_dir != old_dir) { 4806 if (is_dir) { 4807 error = inode_permission(rd->old_mnt_idmap, source, 4808 MAY_WRITE); 4809 if (error) 4810 return error; 4811 } 4812 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4813 error = inode_permission(rd->new_mnt_idmap, target, 4814 MAY_WRITE); 4815 if (error) 4816 return error; 4817 } 4818 } 4819 4820 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4821 flags); 4822 if (error) 4823 return error; 4824 4825 take_dentry_name_snapshot(&old_name, old_dentry); 4826 dget(new_dentry); 4827 /* 4828 * Lock children. 4829 * The source subdirectory needs to be locked on cross-directory 4830 * rename or cross-directory exchange since its parent changes. 4831 * The target subdirectory needs to be locked on cross-directory 4832 * exchange due to parent change and on any rename due to becoming 4833 * a victim. 4834 * Non-directories need locking in all cases (for NFS reasons); 4835 * they get locked after any subdirectories (in inode address order). 4836 * 4837 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 4838 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 4839 */ 4840 lock_old_subdir = new_dir != old_dir; 4841 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 4842 if (is_dir) { 4843 if (lock_old_subdir) 4844 inode_lock_nested(source, I_MUTEX_CHILD); 4845 if (target && (!new_is_dir || lock_new_subdir)) 4846 inode_lock(target); 4847 } else if (new_is_dir) { 4848 if (lock_new_subdir) 4849 inode_lock_nested(target, I_MUTEX_CHILD); 4850 inode_lock(source); 4851 } else { 4852 lock_two_nondirectories(source, target); 4853 } 4854 4855 error = -EPERM; 4856 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4857 goto out; 4858 4859 error = -EBUSY; 4860 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4861 goto out; 4862 4863 if (max_links && new_dir != old_dir) { 4864 error = -EMLINK; 4865 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4866 goto out; 4867 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4868 old_dir->i_nlink >= max_links) 4869 goto out; 4870 } 4871 if (!is_dir) { 4872 error = try_break_deleg(source, delegated_inode); 4873 if (error) 4874 goto out; 4875 } 4876 if (target && !new_is_dir) { 4877 error = try_break_deleg(target, delegated_inode); 4878 if (error) 4879 goto out; 4880 } 4881 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 4882 new_dir, new_dentry, flags); 4883 if (error) 4884 goto out; 4885 4886 if (!(flags & RENAME_EXCHANGE) && target) { 4887 if (is_dir) { 4888 shrink_dcache_parent(new_dentry); 4889 target->i_flags |= S_DEAD; 4890 } 4891 dont_mount(new_dentry); 4892 detach_mounts(new_dentry); 4893 } 4894 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4895 if (!(flags & RENAME_EXCHANGE)) 4896 d_move(old_dentry, new_dentry); 4897 else 4898 d_exchange(old_dentry, new_dentry); 4899 } 4900 out: 4901 if (!is_dir || lock_old_subdir) 4902 inode_unlock(source); 4903 if (target && (!new_is_dir || lock_new_subdir)) 4904 inode_unlock(target); 4905 dput(new_dentry); 4906 if (!error) { 4907 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4908 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4909 if (flags & RENAME_EXCHANGE) { 4910 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4911 new_is_dir, NULL, new_dentry); 4912 } 4913 } 4914 release_dentry_name_snapshot(&old_name); 4915 4916 return error; 4917 } 4918 EXPORT_SYMBOL(vfs_rename); 4919 4920 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4921 struct filename *to, unsigned int flags) 4922 { 4923 struct renamedata rd; 4924 struct dentry *old_dentry, *new_dentry; 4925 struct dentry *trap; 4926 struct path old_path, new_path; 4927 struct qstr old_last, new_last; 4928 int old_type, new_type; 4929 struct inode *delegated_inode = NULL; 4930 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4931 bool should_retry = false; 4932 int error = -EINVAL; 4933 4934 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4935 goto put_names; 4936 4937 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4938 (flags & RENAME_EXCHANGE)) 4939 goto put_names; 4940 4941 if (flags & RENAME_EXCHANGE) 4942 target_flags = 0; 4943 4944 retry: 4945 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4946 &old_last, &old_type); 4947 if (error) 4948 goto put_names; 4949 4950 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4951 &new_type); 4952 if (error) 4953 goto exit1; 4954 4955 error = -EXDEV; 4956 if (old_path.mnt != new_path.mnt) 4957 goto exit2; 4958 4959 error = -EBUSY; 4960 if (old_type != LAST_NORM) 4961 goto exit2; 4962 4963 if (flags & RENAME_NOREPLACE) 4964 error = -EEXIST; 4965 if (new_type != LAST_NORM) 4966 goto exit2; 4967 4968 error = mnt_want_write(old_path.mnt); 4969 if (error) 4970 goto exit2; 4971 4972 retry_deleg: 4973 trap = lock_rename(new_path.dentry, old_path.dentry); 4974 if (IS_ERR(trap)) { 4975 error = PTR_ERR(trap); 4976 goto exit_lock_rename; 4977 } 4978 4979 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 4980 lookup_flags); 4981 error = PTR_ERR(old_dentry); 4982 if (IS_ERR(old_dentry)) 4983 goto exit3; 4984 /* source must exist */ 4985 error = -ENOENT; 4986 if (d_is_negative(old_dentry)) 4987 goto exit4; 4988 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 4989 lookup_flags | target_flags); 4990 error = PTR_ERR(new_dentry); 4991 if (IS_ERR(new_dentry)) 4992 goto exit4; 4993 error = -EEXIST; 4994 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4995 goto exit5; 4996 if (flags & RENAME_EXCHANGE) { 4997 error = -ENOENT; 4998 if (d_is_negative(new_dentry)) 4999 goto exit5; 5000 5001 if (!d_is_dir(new_dentry)) { 5002 error = -ENOTDIR; 5003 if (new_last.name[new_last.len]) 5004 goto exit5; 5005 } 5006 } 5007 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5008 if (!d_is_dir(old_dentry)) { 5009 error = -ENOTDIR; 5010 if (old_last.name[old_last.len]) 5011 goto exit5; 5012 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5013 goto exit5; 5014 } 5015 /* source should not be ancestor of target */ 5016 error = -EINVAL; 5017 if (old_dentry == trap) 5018 goto exit5; 5019 /* target should not be an ancestor of source */ 5020 if (!(flags & RENAME_EXCHANGE)) 5021 error = -ENOTEMPTY; 5022 if (new_dentry == trap) 5023 goto exit5; 5024 5025 error = security_path_rename(&old_path, old_dentry, 5026 &new_path, new_dentry, flags); 5027 if (error) 5028 goto exit5; 5029 5030 rd.old_dir = old_path.dentry->d_inode; 5031 rd.old_dentry = old_dentry; 5032 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5033 rd.new_dir = new_path.dentry->d_inode; 5034 rd.new_dentry = new_dentry; 5035 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5036 rd.delegated_inode = &delegated_inode; 5037 rd.flags = flags; 5038 error = vfs_rename(&rd); 5039 exit5: 5040 dput(new_dentry); 5041 exit4: 5042 dput(old_dentry); 5043 exit3: 5044 unlock_rename(new_path.dentry, old_path.dentry); 5045 exit_lock_rename: 5046 if (delegated_inode) { 5047 error = break_deleg_wait(&delegated_inode); 5048 if (!error) 5049 goto retry_deleg; 5050 } 5051 mnt_drop_write(old_path.mnt); 5052 exit2: 5053 if (retry_estale(error, lookup_flags)) 5054 should_retry = true; 5055 path_put(&new_path); 5056 exit1: 5057 path_put(&old_path); 5058 if (should_retry) { 5059 should_retry = false; 5060 lookup_flags |= LOOKUP_REVAL; 5061 goto retry; 5062 } 5063 put_names: 5064 putname(from); 5065 putname(to); 5066 return error; 5067 } 5068 5069 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5070 int, newdfd, const char __user *, newname, unsigned int, flags) 5071 { 5072 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5073 flags); 5074 } 5075 5076 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5077 int, newdfd, const char __user *, newname) 5078 { 5079 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5080 0); 5081 } 5082 5083 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5084 { 5085 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5086 getname(newname), 0); 5087 } 5088 5089 int readlink_copy(char __user *buffer, int buflen, const char *link) 5090 { 5091 int len = PTR_ERR(link); 5092 if (IS_ERR(link)) 5093 goto out; 5094 5095 len = strlen(link); 5096 if (len > (unsigned) buflen) 5097 len = buflen; 5098 if (copy_to_user(buffer, link, len)) 5099 len = -EFAULT; 5100 out: 5101 return len; 5102 } 5103 5104 /** 5105 * vfs_readlink - copy symlink body into userspace buffer 5106 * @dentry: dentry on which to get symbolic link 5107 * @buffer: user memory pointer 5108 * @buflen: size of buffer 5109 * 5110 * Does not touch atime. That's up to the caller if necessary 5111 * 5112 * Does not call security hook. 5113 */ 5114 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5115 { 5116 struct inode *inode = d_inode(dentry); 5117 DEFINE_DELAYED_CALL(done); 5118 const char *link; 5119 int res; 5120 5121 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5122 if (unlikely(inode->i_op->readlink)) 5123 return inode->i_op->readlink(dentry, buffer, buflen); 5124 5125 if (!d_is_symlink(dentry)) 5126 return -EINVAL; 5127 5128 spin_lock(&inode->i_lock); 5129 inode->i_opflags |= IOP_DEFAULT_READLINK; 5130 spin_unlock(&inode->i_lock); 5131 } 5132 5133 link = READ_ONCE(inode->i_link); 5134 if (!link) { 5135 link = inode->i_op->get_link(dentry, inode, &done); 5136 if (IS_ERR(link)) 5137 return PTR_ERR(link); 5138 } 5139 res = readlink_copy(buffer, buflen, link); 5140 do_delayed_call(&done); 5141 return res; 5142 } 5143 EXPORT_SYMBOL(vfs_readlink); 5144 5145 /** 5146 * vfs_get_link - get symlink body 5147 * @dentry: dentry on which to get symbolic link 5148 * @done: caller needs to free returned data with this 5149 * 5150 * Calls security hook and i_op->get_link() on the supplied inode. 5151 * 5152 * It does not touch atime. That's up to the caller if necessary. 5153 * 5154 * Does not work on "special" symlinks like /proc/$$/fd/N 5155 */ 5156 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5157 { 5158 const char *res = ERR_PTR(-EINVAL); 5159 struct inode *inode = d_inode(dentry); 5160 5161 if (d_is_symlink(dentry)) { 5162 res = ERR_PTR(security_inode_readlink(dentry)); 5163 if (!res) 5164 res = inode->i_op->get_link(dentry, inode, done); 5165 } 5166 return res; 5167 } 5168 EXPORT_SYMBOL(vfs_get_link); 5169 5170 /* get the link contents into pagecache */ 5171 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5172 struct delayed_call *callback) 5173 { 5174 char *kaddr; 5175 struct page *page; 5176 struct address_space *mapping = inode->i_mapping; 5177 5178 if (!dentry) { 5179 page = find_get_page(mapping, 0); 5180 if (!page) 5181 return ERR_PTR(-ECHILD); 5182 if (!PageUptodate(page)) { 5183 put_page(page); 5184 return ERR_PTR(-ECHILD); 5185 } 5186 } else { 5187 page = read_mapping_page(mapping, 0, NULL); 5188 if (IS_ERR(page)) 5189 return (char*)page; 5190 } 5191 set_delayed_call(callback, page_put_link, page); 5192 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5193 kaddr = page_address(page); 5194 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5195 return kaddr; 5196 } 5197 5198 EXPORT_SYMBOL(page_get_link); 5199 5200 void page_put_link(void *arg) 5201 { 5202 put_page(arg); 5203 } 5204 EXPORT_SYMBOL(page_put_link); 5205 5206 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5207 { 5208 DEFINE_DELAYED_CALL(done); 5209 int res = readlink_copy(buffer, buflen, 5210 page_get_link(dentry, d_inode(dentry), 5211 &done)); 5212 do_delayed_call(&done); 5213 return res; 5214 } 5215 EXPORT_SYMBOL(page_readlink); 5216 5217 int page_symlink(struct inode *inode, const char *symname, int len) 5218 { 5219 struct address_space *mapping = inode->i_mapping; 5220 const struct address_space_operations *aops = mapping->a_ops; 5221 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5222 struct page *page; 5223 void *fsdata = NULL; 5224 int err; 5225 unsigned int flags; 5226 5227 retry: 5228 if (nofs) 5229 flags = memalloc_nofs_save(); 5230 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5231 if (nofs) 5232 memalloc_nofs_restore(flags); 5233 if (err) 5234 goto fail; 5235 5236 memcpy(page_address(page), symname, len-1); 5237 5238 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5239 page, fsdata); 5240 if (err < 0) 5241 goto fail; 5242 if (err < len-1) 5243 goto retry; 5244 5245 mark_inode_dirty(inode); 5246 return 0; 5247 fail: 5248 return err; 5249 } 5250 EXPORT_SYMBOL(page_symlink); 5251 5252 const struct inode_operations page_symlink_inode_operations = { 5253 .get_link = page_get_link, 5254 }; 5255 EXPORT_SYMBOL(page_symlink_inode_operations); 5256