xref: /linux/fs/namei.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/smp_lock.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/namei.h>
35 #include <asm/namei.h>
36 #include <asm/uaccess.h>
37 
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existant name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 char * getname(const char __user * filename)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			__putname(tmp);
152 			result = ERR_PTR(retval);
153 		}
154 	}
155 	audit_getname(result);
156 	return result;
157 }
158 
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 	if (unlikely(current->audit_context))
163 		audit_putname(name);
164 	else
165 		__putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169 
170 
171 /**
172  * generic_permission  -  check for access rights on a Posix-like filesystem
173  * @inode:	inode to check access rights for
174  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175  * @check_acl:	optional callback to check for Posix ACLs
176  *
177  * Used to check for read/write/execute permissions on a file.
178  * We use "fsuid" for this, letting us set arbitrary permissions
179  * for filesystem access without changing the "normal" uids which
180  * are used for other things..
181  */
182 int generic_permission(struct inode *inode, int mask,
183 		int (*check_acl)(struct inode *inode, int mask))
184 {
185 	umode_t			mode = inode->i_mode;
186 
187 	if (current->fsuid == inode->i_uid)
188 		mode >>= 6;
189 	else {
190 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 			int error = check_acl(inode, mask);
192 			if (error == -EACCES)
193 				goto check_capabilities;
194 			else if (error != -EAGAIN)
195 				return error;
196 		}
197 
198 		if (in_group_p(inode->i_gid))
199 			mode >>= 3;
200 	}
201 
202 	/*
203 	 * If the DACs are ok we don't need any capability check.
204 	 */
205 	if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 		return 0;
207 
208  check_capabilities:
209 	/*
210 	 * Read/write DACs are always overridable.
211 	 * Executable DACs are overridable if at least one exec bit is set.
212 	 */
213 	if (!(mask & MAY_EXEC) ||
214 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 		if (capable(CAP_DAC_OVERRIDE))
216 			return 0;
217 
218 	/*
219 	 * Searching includes executable on directories, else just read.
220 	 */
221 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 		if (capable(CAP_DAC_READ_SEARCH))
223 			return 0;
224 
225 	return -EACCES;
226 }
227 
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 	int retval, submask;
231 
232 	if (mask & MAY_WRITE) {
233 		umode_t mode = inode->i_mode;
234 
235 		/*
236 		 * Nobody gets write access to a read-only fs.
237 		 */
238 		if (IS_RDONLY(inode) &&
239 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
240 			return -EROFS;
241 
242 		/*
243 		 * Nobody gets write access to an immutable file.
244 		 */
245 		if (IS_IMMUTABLE(inode))
246 			return -EACCES;
247 	}
248 
249 
250 	/* Ordinary permission routines do not understand MAY_APPEND. */
251 	submask = mask & ~MAY_APPEND;
252 	if (inode->i_op && inode->i_op->permission)
253 		retval = inode->i_op->permission(inode, submask, nd);
254 	else
255 		retval = generic_permission(inode, submask, NULL);
256 	if (retval)
257 		return retval;
258 
259 	return security_inode_permission(inode, mask, nd);
260 }
261 
262 /**
263  * vfs_permission  -  check for access rights to a given path
264  * @nd:		lookup result that describes the path
265  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
266  *
267  * Used to check for read/write/execute permissions on a path.
268  * We use "fsuid" for this, letting us set arbitrary permissions
269  * for filesystem access without changing the "normal" uids which
270  * are used for other things.
271  */
272 int vfs_permission(struct nameidata *nd, int mask)
273 {
274 	return permission(nd->dentry->d_inode, mask, nd);
275 }
276 
277 /**
278  * file_permission  -  check for additional access rights to a given file
279  * @file:	file to check access rights for
280  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
281  *
282  * Used to check for read/write/execute permissions on an already opened
283  * file.
284  *
285  * Note:
286  *	Do not use this function in new code.  All access checks should
287  *	be done using vfs_permission().
288  */
289 int file_permission(struct file *file, int mask)
290 {
291 	return permission(file->f_dentry->d_inode, mask, NULL);
292 }
293 
294 /*
295  * get_write_access() gets write permission for a file.
296  * put_write_access() releases this write permission.
297  * This is used for regular files.
298  * We cannot support write (and maybe mmap read-write shared) accesses and
299  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
300  * can have the following values:
301  * 0: no writers, no VM_DENYWRITE mappings
302  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
303  * > 0: (i_writecount) users are writing to the file.
304  *
305  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
306  * except for the cases where we don't hold i_writecount yet. Then we need to
307  * use {get,deny}_write_access() - these functions check the sign and refuse
308  * to do the change if sign is wrong. Exclusion between them is provided by
309  * the inode->i_lock spinlock.
310  */
311 
312 int get_write_access(struct inode * inode)
313 {
314 	spin_lock(&inode->i_lock);
315 	if (atomic_read(&inode->i_writecount) < 0) {
316 		spin_unlock(&inode->i_lock);
317 		return -ETXTBSY;
318 	}
319 	atomic_inc(&inode->i_writecount);
320 	spin_unlock(&inode->i_lock);
321 
322 	return 0;
323 }
324 
325 int deny_write_access(struct file * file)
326 {
327 	struct inode *inode = file->f_dentry->d_inode;
328 
329 	spin_lock(&inode->i_lock);
330 	if (atomic_read(&inode->i_writecount) > 0) {
331 		spin_unlock(&inode->i_lock);
332 		return -ETXTBSY;
333 	}
334 	atomic_dec(&inode->i_writecount);
335 	spin_unlock(&inode->i_lock);
336 
337 	return 0;
338 }
339 
340 void path_release(struct nameidata *nd)
341 {
342 	dput(nd->dentry);
343 	mntput(nd->mnt);
344 }
345 
346 /*
347  * umount() mustn't call path_release()/mntput() as that would clear
348  * mnt_expiry_mark
349  */
350 void path_release_on_umount(struct nameidata *nd)
351 {
352 	dput(nd->dentry);
353 	mntput_no_expire(nd->mnt);
354 }
355 
356 /**
357  * release_open_intent - free up open intent resources
358  * @nd: pointer to nameidata
359  */
360 void release_open_intent(struct nameidata *nd)
361 {
362 	if (nd->intent.open.file->f_dentry == NULL)
363 		put_filp(nd->intent.open.file);
364 	else
365 		fput(nd->intent.open.file);
366 }
367 
368 /*
369  * Internal lookup() using the new generic dcache.
370  * SMP-safe
371  */
372 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
373 {
374 	struct dentry * dentry = __d_lookup(parent, name);
375 
376 	/* lockess __d_lookup may fail due to concurrent d_move()
377 	 * in some unrelated directory, so try with d_lookup
378 	 */
379 	if (!dentry)
380 		dentry = d_lookup(parent, name);
381 
382 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate) {
383 		if (!dentry->d_op->d_revalidate(dentry, nd) && !d_invalidate(dentry)) {
384 			dput(dentry);
385 			dentry = NULL;
386 		}
387 	}
388 	return dentry;
389 }
390 
391 /*
392  * Short-cut version of permission(), for calling by
393  * path_walk(), when dcache lock is held.  Combines parts
394  * of permission() and generic_permission(), and tests ONLY for
395  * MAY_EXEC permission.
396  *
397  * If appropriate, check DAC only.  If not appropriate, or
398  * short-cut DAC fails, then call permission() to do more
399  * complete permission check.
400  */
401 static int exec_permission_lite(struct inode *inode,
402 				       struct nameidata *nd)
403 {
404 	umode_t	mode = inode->i_mode;
405 
406 	if (inode->i_op && inode->i_op->permission)
407 		return -EAGAIN;
408 
409 	if (current->fsuid == inode->i_uid)
410 		mode >>= 6;
411 	else if (in_group_p(inode->i_gid))
412 		mode >>= 3;
413 
414 	if (mode & MAY_EXEC)
415 		goto ok;
416 
417 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
418 		goto ok;
419 
420 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
421 		goto ok;
422 
423 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
424 		goto ok;
425 
426 	return -EACCES;
427 ok:
428 	return security_inode_permission(inode, MAY_EXEC, nd);
429 }
430 
431 /*
432  * This is called when everything else fails, and we actually have
433  * to go to the low-level filesystem to find out what we should do..
434  *
435  * We get the directory semaphore, and after getting that we also
436  * make sure that nobody added the entry to the dcache in the meantime..
437  * SMP-safe
438  */
439 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
440 {
441 	struct dentry * result;
442 	struct inode *dir = parent->d_inode;
443 
444 	mutex_lock(&dir->i_mutex);
445 	/*
446 	 * First re-do the cached lookup just in case it was created
447 	 * while we waited for the directory semaphore..
448 	 *
449 	 * FIXME! This could use version numbering or similar to
450 	 * avoid unnecessary cache lookups.
451 	 *
452 	 * The "dcache_lock" is purely to protect the RCU list walker
453 	 * from concurrent renames at this point (we mustn't get false
454 	 * negatives from the RCU list walk here, unlike the optimistic
455 	 * fast walk).
456 	 *
457 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
458 	 */
459 	result = d_lookup(parent, name);
460 	if (!result) {
461 		struct dentry * dentry = d_alloc(parent, name);
462 		result = ERR_PTR(-ENOMEM);
463 		if (dentry) {
464 			result = dir->i_op->lookup(dir, dentry, nd);
465 			if (result)
466 				dput(dentry);
467 			else
468 				result = dentry;
469 		}
470 		mutex_unlock(&dir->i_mutex);
471 		return result;
472 	}
473 
474 	/*
475 	 * Uhhuh! Nasty case: the cache was re-populated while
476 	 * we waited on the semaphore. Need to revalidate.
477 	 */
478 	mutex_unlock(&dir->i_mutex);
479 	if (result->d_op && result->d_op->d_revalidate) {
480 		if (!result->d_op->d_revalidate(result, nd) && !d_invalidate(result)) {
481 			dput(result);
482 			result = ERR_PTR(-ENOENT);
483 		}
484 	}
485 	return result;
486 }
487 
488 static int __emul_lookup_dentry(const char *, struct nameidata *);
489 
490 /* SMP-safe */
491 static __always_inline int
492 walk_init_root(const char *name, struct nameidata *nd)
493 {
494 	read_lock(&current->fs->lock);
495 	if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
496 		nd->mnt = mntget(current->fs->altrootmnt);
497 		nd->dentry = dget(current->fs->altroot);
498 		read_unlock(&current->fs->lock);
499 		if (__emul_lookup_dentry(name,nd))
500 			return 0;
501 		read_lock(&current->fs->lock);
502 	}
503 	nd->mnt = mntget(current->fs->rootmnt);
504 	nd->dentry = dget(current->fs->root);
505 	read_unlock(&current->fs->lock);
506 	return 1;
507 }
508 
509 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
510 {
511 	int res = 0;
512 	char *name;
513 	if (IS_ERR(link))
514 		goto fail;
515 
516 	if (*link == '/') {
517 		path_release(nd);
518 		if (!walk_init_root(link, nd))
519 			/* weird __emul_prefix() stuff did it */
520 			goto out;
521 	}
522 	res = link_path_walk(link, nd);
523 out:
524 	if (nd->depth || res || nd->last_type!=LAST_NORM)
525 		return res;
526 	/*
527 	 * If it is an iterative symlinks resolution in open_namei() we
528 	 * have to copy the last component. And all that crap because of
529 	 * bloody create() on broken symlinks. Furrfu...
530 	 */
531 	name = __getname();
532 	if (unlikely(!name)) {
533 		path_release(nd);
534 		return -ENOMEM;
535 	}
536 	strcpy(name, nd->last.name);
537 	nd->last.name = name;
538 	return 0;
539 fail:
540 	path_release(nd);
541 	return PTR_ERR(link);
542 }
543 
544 struct path {
545 	struct vfsmount *mnt;
546 	struct dentry *dentry;
547 };
548 
549 static inline void dput_path(struct path *path, struct nameidata *nd)
550 {
551 	dput(path->dentry);
552 	if (path->mnt != nd->mnt)
553 		mntput(path->mnt);
554 }
555 
556 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
557 {
558 	dput(nd->dentry);
559 	if (nd->mnt != path->mnt)
560 		mntput(nd->mnt);
561 	nd->mnt = path->mnt;
562 	nd->dentry = path->dentry;
563 }
564 
565 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
566 {
567 	int error;
568 	void *cookie;
569 	struct dentry *dentry = path->dentry;
570 
571 	touch_atime(path->mnt, dentry);
572 	nd_set_link(nd, NULL);
573 
574 	if (path->mnt != nd->mnt) {
575 		path_to_nameidata(path, nd);
576 		dget(dentry);
577 	}
578 	mntget(path->mnt);
579 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
580 	error = PTR_ERR(cookie);
581 	if (!IS_ERR(cookie)) {
582 		char *s = nd_get_link(nd);
583 		error = 0;
584 		if (s)
585 			error = __vfs_follow_link(nd, s);
586 		if (dentry->d_inode->i_op->put_link)
587 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
588 	}
589 	dput(dentry);
590 	mntput(path->mnt);
591 
592 	return error;
593 }
594 
595 /*
596  * This limits recursive symlink follows to 8, while
597  * limiting consecutive symlinks to 40.
598  *
599  * Without that kind of total limit, nasty chains of consecutive
600  * symlinks can cause almost arbitrarily long lookups.
601  */
602 static inline int do_follow_link(struct path *path, struct nameidata *nd)
603 {
604 	int err = -ELOOP;
605 	if (current->link_count >= MAX_NESTED_LINKS)
606 		goto loop;
607 	if (current->total_link_count >= 40)
608 		goto loop;
609 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
610 	cond_resched();
611 	err = security_inode_follow_link(path->dentry, nd);
612 	if (err)
613 		goto loop;
614 	current->link_count++;
615 	current->total_link_count++;
616 	nd->depth++;
617 	err = __do_follow_link(path, nd);
618 	current->link_count--;
619 	nd->depth--;
620 	return err;
621 loop:
622 	dput_path(path, nd);
623 	path_release(nd);
624 	return err;
625 }
626 
627 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
628 {
629 	struct vfsmount *parent;
630 	struct dentry *mountpoint;
631 	spin_lock(&vfsmount_lock);
632 	parent=(*mnt)->mnt_parent;
633 	if (parent == *mnt) {
634 		spin_unlock(&vfsmount_lock);
635 		return 0;
636 	}
637 	mntget(parent);
638 	mountpoint=dget((*mnt)->mnt_mountpoint);
639 	spin_unlock(&vfsmount_lock);
640 	dput(*dentry);
641 	*dentry = mountpoint;
642 	mntput(*mnt);
643 	*mnt = parent;
644 	return 1;
645 }
646 
647 /* no need for dcache_lock, as serialization is taken care in
648  * namespace.c
649  */
650 static int __follow_mount(struct path *path)
651 {
652 	int res = 0;
653 	while (d_mountpoint(path->dentry)) {
654 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
655 		if (!mounted)
656 			break;
657 		dput(path->dentry);
658 		if (res)
659 			mntput(path->mnt);
660 		path->mnt = mounted;
661 		path->dentry = dget(mounted->mnt_root);
662 		res = 1;
663 	}
664 	return res;
665 }
666 
667 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
668 {
669 	while (d_mountpoint(*dentry)) {
670 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
671 		if (!mounted)
672 			break;
673 		dput(*dentry);
674 		mntput(*mnt);
675 		*mnt = mounted;
676 		*dentry = dget(mounted->mnt_root);
677 	}
678 }
679 
680 /* no need for dcache_lock, as serialization is taken care in
681  * namespace.c
682  */
683 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
684 {
685 	struct vfsmount *mounted;
686 
687 	mounted = lookup_mnt(*mnt, *dentry);
688 	if (mounted) {
689 		dput(*dentry);
690 		mntput(*mnt);
691 		*mnt = mounted;
692 		*dentry = dget(mounted->mnt_root);
693 		return 1;
694 	}
695 	return 0;
696 }
697 
698 static __always_inline void follow_dotdot(struct nameidata *nd)
699 {
700 	while(1) {
701 		struct vfsmount *parent;
702 		struct dentry *old = nd->dentry;
703 
704                 read_lock(&current->fs->lock);
705 		if (nd->dentry == current->fs->root &&
706 		    nd->mnt == current->fs->rootmnt) {
707                         read_unlock(&current->fs->lock);
708 			break;
709 		}
710                 read_unlock(&current->fs->lock);
711 		spin_lock(&dcache_lock);
712 		if (nd->dentry != nd->mnt->mnt_root) {
713 			nd->dentry = dget(nd->dentry->d_parent);
714 			spin_unlock(&dcache_lock);
715 			dput(old);
716 			break;
717 		}
718 		spin_unlock(&dcache_lock);
719 		spin_lock(&vfsmount_lock);
720 		parent = nd->mnt->mnt_parent;
721 		if (parent == nd->mnt) {
722 			spin_unlock(&vfsmount_lock);
723 			break;
724 		}
725 		mntget(parent);
726 		nd->dentry = dget(nd->mnt->mnt_mountpoint);
727 		spin_unlock(&vfsmount_lock);
728 		dput(old);
729 		mntput(nd->mnt);
730 		nd->mnt = parent;
731 	}
732 	follow_mount(&nd->mnt, &nd->dentry);
733 }
734 
735 /*
736  *  It's more convoluted than I'd like it to be, but... it's still fairly
737  *  small and for now I'd prefer to have fast path as straight as possible.
738  *  It _is_ time-critical.
739  */
740 static int do_lookup(struct nameidata *nd, struct qstr *name,
741 		     struct path *path)
742 {
743 	struct vfsmount *mnt = nd->mnt;
744 	struct dentry *dentry = __d_lookup(nd->dentry, name);
745 
746 	if (!dentry)
747 		goto need_lookup;
748 	if (dentry->d_op && dentry->d_op->d_revalidate)
749 		goto need_revalidate;
750 done:
751 	path->mnt = mnt;
752 	path->dentry = dentry;
753 	__follow_mount(path);
754 	return 0;
755 
756 need_lookup:
757 	dentry = real_lookup(nd->dentry, name, nd);
758 	if (IS_ERR(dentry))
759 		goto fail;
760 	goto done;
761 
762 need_revalidate:
763 	if (dentry->d_op->d_revalidate(dentry, nd))
764 		goto done;
765 	if (d_invalidate(dentry))
766 		goto done;
767 	dput(dentry);
768 	goto need_lookup;
769 
770 fail:
771 	return PTR_ERR(dentry);
772 }
773 
774 /*
775  * Name resolution.
776  * This is the basic name resolution function, turning a pathname into
777  * the final dentry. We expect 'base' to be positive and a directory.
778  *
779  * Returns 0 and nd will have valid dentry and mnt on success.
780  * Returns error and drops reference to input namei data on failure.
781  */
782 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
783 {
784 	struct path next;
785 	struct inode *inode;
786 	int err;
787 	unsigned int lookup_flags = nd->flags;
788 
789 	while (*name=='/')
790 		name++;
791 	if (!*name)
792 		goto return_reval;
793 
794 	inode = nd->dentry->d_inode;
795 	if (nd->depth)
796 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
797 
798 	/* At this point we know we have a real path component. */
799 	for(;;) {
800 		unsigned long hash;
801 		struct qstr this;
802 		unsigned int c;
803 
804 		nd->flags |= LOOKUP_CONTINUE;
805 		err = exec_permission_lite(inode, nd);
806 		if (err == -EAGAIN)
807 			err = vfs_permission(nd, MAY_EXEC);
808  		if (err)
809 			break;
810 
811 		this.name = name;
812 		c = *(const unsigned char *)name;
813 
814 		hash = init_name_hash();
815 		do {
816 			name++;
817 			hash = partial_name_hash(c, hash);
818 			c = *(const unsigned char *)name;
819 		} while (c && (c != '/'));
820 		this.len = name - (const char *) this.name;
821 		this.hash = end_name_hash(hash);
822 
823 		/* remove trailing slashes? */
824 		if (!c)
825 			goto last_component;
826 		while (*++name == '/');
827 		if (!*name)
828 			goto last_with_slashes;
829 
830 		/*
831 		 * "." and ".." are special - ".." especially so because it has
832 		 * to be able to know about the current root directory and
833 		 * parent relationships.
834 		 */
835 		if (this.name[0] == '.') switch (this.len) {
836 			default:
837 				break;
838 			case 2:
839 				if (this.name[1] != '.')
840 					break;
841 				follow_dotdot(nd);
842 				inode = nd->dentry->d_inode;
843 				/* fallthrough */
844 			case 1:
845 				continue;
846 		}
847 		/*
848 		 * See if the low-level filesystem might want
849 		 * to use its own hash..
850 		 */
851 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
852 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
853 			if (err < 0)
854 				break;
855 		}
856 		/* This does the actual lookups.. */
857 		err = do_lookup(nd, &this, &next);
858 		if (err)
859 			break;
860 
861 		err = -ENOENT;
862 		inode = next.dentry->d_inode;
863 		if (!inode)
864 			goto out_dput;
865 		err = -ENOTDIR;
866 		if (!inode->i_op)
867 			goto out_dput;
868 
869 		if (inode->i_op->follow_link) {
870 			err = do_follow_link(&next, nd);
871 			if (err)
872 				goto return_err;
873 			err = -ENOENT;
874 			inode = nd->dentry->d_inode;
875 			if (!inode)
876 				break;
877 			err = -ENOTDIR;
878 			if (!inode->i_op)
879 				break;
880 		} else
881 			path_to_nameidata(&next, nd);
882 		err = -ENOTDIR;
883 		if (!inode->i_op->lookup)
884 			break;
885 		continue;
886 		/* here ends the main loop */
887 
888 last_with_slashes:
889 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
890 last_component:
891 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
892 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
893 		if (lookup_flags & LOOKUP_PARENT)
894 			goto lookup_parent;
895 		if (this.name[0] == '.') switch (this.len) {
896 			default:
897 				break;
898 			case 2:
899 				if (this.name[1] != '.')
900 					break;
901 				follow_dotdot(nd);
902 				inode = nd->dentry->d_inode;
903 				/* fallthrough */
904 			case 1:
905 				goto return_reval;
906 		}
907 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
908 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
909 			if (err < 0)
910 				break;
911 		}
912 		err = do_lookup(nd, &this, &next);
913 		if (err)
914 			break;
915 		inode = next.dentry->d_inode;
916 		if ((lookup_flags & LOOKUP_FOLLOW)
917 		    && inode && inode->i_op && inode->i_op->follow_link) {
918 			err = do_follow_link(&next, nd);
919 			if (err)
920 				goto return_err;
921 			inode = nd->dentry->d_inode;
922 		} else
923 			path_to_nameidata(&next, nd);
924 		err = -ENOENT;
925 		if (!inode)
926 			break;
927 		if (lookup_flags & LOOKUP_DIRECTORY) {
928 			err = -ENOTDIR;
929 			if (!inode->i_op || !inode->i_op->lookup)
930 				break;
931 		}
932 		goto return_base;
933 lookup_parent:
934 		nd->last = this;
935 		nd->last_type = LAST_NORM;
936 		if (this.name[0] != '.')
937 			goto return_base;
938 		if (this.len == 1)
939 			nd->last_type = LAST_DOT;
940 		else if (this.len == 2 && this.name[1] == '.')
941 			nd->last_type = LAST_DOTDOT;
942 		else
943 			goto return_base;
944 return_reval:
945 		/*
946 		 * We bypassed the ordinary revalidation routines.
947 		 * We may need to check the cached dentry for staleness.
948 		 */
949 		if (nd->dentry && nd->dentry->d_sb &&
950 		    (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
951 			err = -ESTALE;
952 			/* Note: we do not d_invalidate() */
953 			if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
954 				break;
955 		}
956 return_base:
957 		return 0;
958 out_dput:
959 		dput_path(&next, nd);
960 		break;
961 	}
962 	path_release(nd);
963 return_err:
964 	return err;
965 }
966 
967 /*
968  * Wrapper to retry pathname resolution whenever the underlying
969  * file system returns an ESTALE.
970  *
971  * Retry the whole path once, forcing real lookup requests
972  * instead of relying on the dcache.
973  */
974 int fastcall link_path_walk(const char *name, struct nameidata *nd)
975 {
976 	struct nameidata save = *nd;
977 	int result;
978 
979 	/* make sure the stuff we saved doesn't go away */
980 	dget(save.dentry);
981 	mntget(save.mnt);
982 
983 	result = __link_path_walk(name, nd);
984 	if (result == -ESTALE) {
985 		*nd = save;
986 		dget(nd->dentry);
987 		mntget(nd->mnt);
988 		nd->flags |= LOOKUP_REVAL;
989 		result = __link_path_walk(name, nd);
990 	}
991 
992 	dput(save.dentry);
993 	mntput(save.mnt);
994 
995 	return result;
996 }
997 
998 int fastcall path_walk(const char * name, struct nameidata *nd)
999 {
1000 	current->total_link_count = 0;
1001 	return link_path_walk(name, nd);
1002 }
1003 
1004 /*
1005  * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1006  * everything is done. Returns 0 and drops input nd, if lookup failed;
1007  */
1008 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1009 {
1010 	if (path_walk(name, nd))
1011 		return 0;		/* something went wrong... */
1012 
1013 	if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1014 		struct dentry *old_dentry = nd->dentry;
1015 		struct vfsmount *old_mnt = nd->mnt;
1016 		struct qstr last = nd->last;
1017 		int last_type = nd->last_type;
1018 		/*
1019 		 * NAME was not found in alternate root or it's a directory.  Try to find
1020 		 * it in the normal root:
1021 		 */
1022 		nd->last_type = LAST_ROOT;
1023 		read_lock(&current->fs->lock);
1024 		nd->mnt = mntget(current->fs->rootmnt);
1025 		nd->dentry = dget(current->fs->root);
1026 		read_unlock(&current->fs->lock);
1027 		if (path_walk(name, nd) == 0) {
1028 			if (nd->dentry->d_inode) {
1029 				dput(old_dentry);
1030 				mntput(old_mnt);
1031 				return 1;
1032 			}
1033 			path_release(nd);
1034 		}
1035 		nd->dentry = old_dentry;
1036 		nd->mnt = old_mnt;
1037 		nd->last = last;
1038 		nd->last_type = last_type;
1039 	}
1040 	return 1;
1041 }
1042 
1043 void set_fs_altroot(void)
1044 {
1045 	char *emul = __emul_prefix();
1046 	struct nameidata nd;
1047 	struct vfsmount *mnt = NULL, *oldmnt;
1048 	struct dentry *dentry = NULL, *olddentry;
1049 	int err;
1050 
1051 	if (!emul)
1052 		goto set_it;
1053 	err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1054 	if (!err) {
1055 		mnt = nd.mnt;
1056 		dentry = nd.dentry;
1057 	}
1058 set_it:
1059 	write_lock(&current->fs->lock);
1060 	oldmnt = current->fs->altrootmnt;
1061 	olddentry = current->fs->altroot;
1062 	current->fs->altrootmnt = mnt;
1063 	current->fs->altroot = dentry;
1064 	write_unlock(&current->fs->lock);
1065 	if (olddentry) {
1066 		dput(olddentry);
1067 		mntput(oldmnt);
1068 	}
1069 }
1070 
1071 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1072 static int fastcall do_path_lookup(int dfd, const char *name,
1073 				unsigned int flags, struct nameidata *nd)
1074 {
1075 	int retval = 0;
1076 	int fput_needed;
1077 	struct file *file;
1078 
1079 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1080 	nd->flags = flags;
1081 	nd->depth = 0;
1082 
1083 	if (*name=='/') {
1084 		read_lock(&current->fs->lock);
1085 		if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1086 			nd->mnt = mntget(current->fs->altrootmnt);
1087 			nd->dentry = dget(current->fs->altroot);
1088 			read_unlock(&current->fs->lock);
1089 			if (__emul_lookup_dentry(name,nd))
1090 				goto out; /* found in altroot */
1091 			read_lock(&current->fs->lock);
1092 		}
1093 		nd->mnt = mntget(current->fs->rootmnt);
1094 		nd->dentry = dget(current->fs->root);
1095 		read_unlock(&current->fs->lock);
1096 	} else if (dfd == AT_FDCWD) {
1097 		read_lock(&current->fs->lock);
1098 		nd->mnt = mntget(current->fs->pwdmnt);
1099 		nd->dentry = dget(current->fs->pwd);
1100 		read_unlock(&current->fs->lock);
1101 	} else {
1102 		struct dentry *dentry;
1103 
1104 		file = fget_light(dfd, &fput_needed);
1105 		retval = -EBADF;
1106 		if (!file)
1107 			goto out_fail;
1108 
1109 		dentry = file->f_dentry;
1110 
1111 		retval = -ENOTDIR;
1112 		if (!S_ISDIR(dentry->d_inode->i_mode))
1113 			goto fput_fail;
1114 
1115 		retval = file_permission(file, MAY_EXEC);
1116 		if (retval)
1117 			goto fput_fail;
1118 
1119 		nd->mnt = mntget(file->f_vfsmnt);
1120 		nd->dentry = dget(dentry);
1121 
1122 		fput_light(file, fput_needed);
1123 	}
1124 	current->total_link_count = 0;
1125 	retval = link_path_walk(name, nd);
1126 out:
1127 	if (likely(retval == 0)) {
1128 		if (unlikely(current->audit_context && nd && nd->dentry &&
1129 				nd->dentry->d_inode))
1130 		audit_inode(name, nd->dentry->d_inode);
1131 	}
1132 out_fail:
1133 	return retval;
1134 
1135 fput_fail:
1136 	fput_light(file, fput_needed);
1137 	goto out_fail;
1138 }
1139 
1140 int fastcall path_lookup(const char *name, unsigned int flags,
1141 			struct nameidata *nd)
1142 {
1143 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1144 }
1145 
1146 static int __path_lookup_intent_open(int dfd, const char *name,
1147 		unsigned int lookup_flags, struct nameidata *nd,
1148 		int open_flags, int create_mode)
1149 {
1150 	struct file *filp = get_empty_filp();
1151 	int err;
1152 
1153 	if (filp == NULL)
1154 		return -ENFILE;
1155 	nd->intent.open.file = filp;
1156 	nd->intent.open.flags = open_flags;
1157 	nd->intent.open.create_mode = create_mode;
1158 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1159 	if (IS_ERR(nd->intent.open.file)) {
1160 		if (err == 0) {
1161 			err = PTR_ERR(nd->intent.open.file);
1162 			path_release(nd);
1163 		}
1164 	} else if (err != 0)
1165 		release_open_intent(nd);
1166 	return err;
1167 }
1168 
1169 /**
1170  * path_lookup_open - lookup a file path with open intent
1171  * @dfd: the directory to use as base, or AT_FDCWD
1172  * @name: pointer to file name
1173  * @lookup_flags: lookup intent flags
1174  * @nd: pointer to nameidata
1175  * @open_flags: open intent flags
1176  */
1177 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1178 		struct nameidata *nd, int open_flags)
1179 {
1180 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1181 			open_flags, 0);
1182 }
1183 
1184 /**
1185  * path_lookup_create - lookup a file path with open + create intent
1186  * @dfd: the directory to use as base, or AT_FDCWD
1187  * @name: pointer to file name
1188  * @lookup_flags: lookup intent flags
1189  * @nd: pointer to nameidata
1190  * @open_flags: open intent flags
1191  * @create_mode: create intent flags
1192  */
1193 static int path_lookup_create(int dfd, const char *name,
1194 			      unsigned int lookup_flags, struct nameidata *nd,
1195 			      int open_flags, int create_mode)
1196 {
1197 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1198 			nd, open_flags, create_mode);
1199 }
1200 
1201 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1202 		struct nameidata *nd, int open_flags)
1203 {
1204 	char *tmp = getname(name);
1205 	int err = PTR_ERR(tmp);
1206 
1207 	if (!IS_ERR(tmp)) {
1208 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1209 		putname(tmp);
1210 	}
1211 	return err;
1212 }
1213 
1214 /*
1215  * Restricted form of lookup. Doesn't follow links, single-component only,
1216  * needs parent already locked. Doesn't follow mounts.
1217  * SMP-safe.
1218  */
1219 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd)
1220 {
1221 	struct dentry * dentry;
1222 	struct inode *inode;
1223 	int err;
1224 
1225 	inode = base->d_inode;
1226 	err = permission(inode, MAY_EXEC, nd);
1227 	dentry = ERR_PTR(err);
1228 	if (err)
1229 		goto out;
1230 
1231 	/*
1232 	 * See if the low-level filesystem might want
1233 	 * to use its own hash..
1234 	 */
1235 	if (base->d_op && base->d_op->d_hash) {
1236 		err = base->d_op->d_hash(base, name);
1237 		dentry = ERR_PTR(err);
1238 		if (err < 0)
1239 			goto out;
1240 	}
1241 
1242 	dentry = cached_lookup(base, name, nd);
1243 	if (!dentry) {
1244 		struct dentry *new = d_alloc(base, name);
1245 		dentry = ERR_PTR(-ENOMEM);
1246 		if (!new)
1247 			goto out;
1248 		dentry = inode->i_op->lookup(inode, new, nd);
1249 		if (!dentry)
1250 			dentry = new;
1251 		else
1252 			dput(new);
1253 	}
1254 out:
1255 	return dentry;
1256 }
1257 
1258 static struct dentry *lookup_hash(struct nameidata *nd)
1259 {
1260 	return __lookup_hash(&nd->last, nd->dentry, nd);
1261 }
1262 
1263 /* SMP-safe */
1264 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len)
1265 {
1266 	unsigned long hash;
1267 	struct qstr this;
1268 	unsigned int c;
1269 
1270 	this.name = name;
1271 	this.len = len;
1272 	if (!len)
1273 		goto access;
1274 
1275 	hash = init_name_hash();
1276 	while (len--) {
1277 		c = *(const unsigned char *)name++;
1278 		if (c == '/' || c == '\0')
1279 			goto access;
1280 		hash = partial_name_hash(c, hash);
1281 	}
1282 	this.hash = end_name_hash(hash);
1283 
1284 	return __lookup_hash(&this, base, NULL);
1285 access:
1286 	return ERR_PTR(-EACCES);
1287 }
1288 
1289 /*
1290  *	namei()
1291  *
1292  * is used by most simple commands to get the inode of a specified name.
1293  * Open, link etc use their own routines, but this is enough for things
1294  * like 'chmod' etc.
1295  *
1296  * namei exists in two versions: namei/lnamei. The only difference is
1297  * that namei follows links, while lnamei does not.
1298  * SMP-safe
1299  */
1300 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1301 			    struct nameidata *nd)
1302 {
1303 	char *tmp = getname(name);
1304 	int err = PTR_ERR(tmp);
1305 
1306 	if (!IS_ERR(tmp)) {
1307 		err = do_path_lookup(dfd, tmp, flags, nd);
1308 		putname(tmp);
1309 	}
1310 	return err;
1311 }
1312 
1313 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1314 {
1315 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1316 }
1317 
1318 /*
1319  * It's inline, so penalty for filesystems that don't use sticky bit is
1320  * minimal.
1321  */
1322 static inline int check_sticky(struct inode *dir, struct inode *inode)
1323 {
1324 	if (!(dir->i_mode & S_ISVTX))
1325 		return 0;
1326 	if (inode->i_uid == current->fsuid)
1327 		return 0;
1328 	if (dir->i_uid == current->fsuid)
1329 		return 0;
1330 	return !capable(CAP_FOWNER);
1331 }
1332 
1333 /*
1334  *	Check whether we can remove a link victim from directory dir, check
1335  *  whether the type of victim is right.
1336  *  1. We can't do it if dir is read-only (done in permission())
1337  *  2. We should have write and exec permissions on dir
1338  *  3. We can't remove anything from append-only dir
1339  *  4. We can't do anything with immutable dir (done in permission())
1340  *  5. If the sticky bit on dir is set we should either
1341  *	a. be owner of dir, or
1342  *	b. be owner of victim, or
1343  *	c. have CAP_FOWNER capability
1344  *  6. If the victim is append-only or immutable we can't do antyhing with
1345  *     links pointing to it.
1346  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1347  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1348  *  9. We can't remove a root or mountpoint.
1349  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1350  *     nfs_async_unlink().
1351  */
1352 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1353 {
1354 	int error;
1355 
1356 	if (!victim->d_inode)
1357 		return -ENOENT;
1358 
1359 	BUG_ON(victim->d_parent->d_inode != dir);
1360 	audit_inode_child(victim->d_name.name, victim->d_inode, dir->i_ino);
1361 
1362 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1363 	if (error)
1364 		return error;
1365 	if (IS_APPEND(dir))
1366 		return -EPERM;
1367 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1368 	    IS_IMMUTABLE(victim->d_inode))
1369 		return -EPERM;
1370 	if (isdir) {
1371 		if (!S_ISDIR(victim->d_inode->i_mode))
1372 			return -ENOTDIR;
1373 		if (IS_ROOT(victim))
1374 			return -EBUSY;
1375 	} else if (S_ISDIR(victim->d_inode->i_mode))
1376 		return -EISDIR;
1377 	if (IS_DEADDIR(dir))
1378 		return -ENOENT;
1379 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1380 		return -EBUSY;
1381 	return 0;
1382 }
1383 
1384 /*	Check whether we can create an object with dentry child in directory
1385  *  dir.
1386  *  1. We can't do it if child already exists (open has special treatment for
1387  *     this case, but since we are inlined it's OK)
1388  *  2. We can't do it if dir is read-only (done in permission())
1389  *  3. We should have write and exec permissions on dir
1390  *  4. We can't do it if dir is immutable (done in permission())
1391  */
1392 static inline int may_create(struct inode *dir, struct dentry *child,
1393 			     struct nameidata *nd)
1394 {
1395 	if (child->d_inode)
1396 		return -EEXIST;
1397 	if (IS_DEADDIR(dir))
1398 		return -ENOENT;
1399 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1400 }
1401 
1402 /*
1403  * O_DIRECTORY translates into forcing a directory lookup.
1404  */
1405 static inline int lookup_flags(unsigned int f)
1406 {
1407 	unsigned long retval = LOOKUP_FOLLOW;
1408 
1409 	if (f & O_NOFOLLOW)
1410 		retval &= ~LOOKUP_FOLLOW;
1411 
1412 	if (f & O_DIRECTORY)
1413 		retval |= LOOKUP_DIRECTORY;
1414 
1415 	return retval;
1416 }
1417 
1418 /*
1419  * p1 and p2 should be directories on the same fs.
1420  */
1421 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1422 {
1423 	struct dentry *p;
1424 
1425 	if (p1 == p2) {
1426 		mutex_lock(&p1->d_inode->i_mutex);
1427 		return NULL;
1428 	}
1429 
1430 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1431 
1432 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1433 		if (p->d_parent == p2) {
1434 			mutex_lock(&p2->d_inode->i_mutex);
1435 			mutex_lock(&p1->d_inode->i_mutex);
1436 			return p;
1437 		}
1438 	}
1439 
1440 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1441 		if (p->d_parent == p1) {
1442 			mutex_lock(&p1->d_inode->i_mutex);
1443 			mutex_lock(&p2->d_inode->i_mutex);
1444 			return p;
1445 		}
1446 	}
1447 
1448 	mutex_lock(&p1->d_inode->i_mutex);
1449 	mutex_lock(&p2->d_inode->i_mutex);
1450 	return NULL;
1451 }
1452 
1453 void unlock_rename(struct dentry *p1, struct dentry *p2)
1454 {
1455 	mutex_unlock(&p1->d_inode->i_mutex);
1456 	if (p1 != p2) {
1457 		mutex_unlock(&p2->d_inode->i_mutex);
1458 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1459 	}
1460 }
1461 
1462 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1463 		struct nameidata *nd)
1464 {
1465 	int error = may_create(dir, dentry, nd);
1466 
1467 	if (error)
1468 		return error;
1469 
1470 	if (!dir->i_op || !dir->i_op->create)
1471 		return -EACCES;	/* shouldn't it be ENOSYS? */
1472 	mode &= S_IALLUGO;
1473 	mode |= S_IFREG;
1474 	error = security_inode_create(dir, dentry, mode);
1475 	if (error)
1476 		return error;
1477 	DQUOT_INIT(dir);
1478 	error = dir->i_op->create(dir, dentry, mode, nd);
1479 	if (!error)
1480 		fsnotify_create(dir, dentry);
1481 	return error;
1482 }
1483 
1484 int may_open(struct nameidata *nd, int acc_mode, int flag)
1485 {
1486 	struct dentry *dentry = nd->dentry;
1487 	struct inode *inode = dentry->d_inode;
1488 	int error;
1489 
1490 	if (!inode)
1491 		return -ENOENT;
1492 
1493 	if (S_ISLNK(inode->i_mode))
1494 		return -ELOOP;
1495 
1496 	if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1497 		return -EISDIR;
1498 
1499 	error = vfs_permission(nd, acc_mode);
1500 	if (error)
1501 		return error;
1502 
1503 	/*
1504 	 * FIFO's, sockets and device files are special: they don't
1505 	 * actually live on the filesystem itself, and as such you
1506 	 * can write to them even if the filesystem is read-only.
1507 	 */
1508 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1509 	    	flag &= ~O_TRUNC;
1510 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1511 		if (nd->mnt->mnt_flags & MNT_NODEV)
1512 			return -EACCES;
1513 
1514 		flag &= ~O_TRUNC;
1515 	} else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1516 		return -EROFS;
1517 	/*
1518 	 * An append-only file must be opened in append mode for writing.
1519 	 */
1520 	if (IS_APPEND(inode)) {
1521 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1522 			return -EPERM;
1523 		if (flag & O_TRUNC)
1524 			return -EPERM;
1525 	}
1526 
1527 	/* O_NOATIME can only be set by the owner or superuser */
1528 	if (flag & O_NOATIME)
1529 		if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1530 			return -EPERM;
1531 
1532 	/*
1533 	 * Ensure there are no outstanding leases on the file.
1534 	 */
1535 	error = break_lease(inode, flag);
1536 	if (error)
1537 		return error;
1538 
1539 	if (flag & O_TRUNC) {
1540 		error = get_write_access(inode);
1541 		if (error)
1542 			return error;
1543 
1544 		/*
1545 		 * Refuse to truncate files with mandatory locks held on them.
1546 		 */
1547 		error = locks_verify_locked(inode);
1548 		if (!error) {
1549 			DQUOT_INIT(inode);
1550 
1551 			error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1552 		}
1553 		put_write_access(inode);
1554 		if (error)
1555 			return error;
1556 	} else
1557 		if (flag & FMODE_WRITE)
1558 			DQUOT_INIT(inode);
1559 
1560 	return 0;
1561 }
1562 
1563 /*
1564  *	open_namei()
1565  *
1566  * namei for open - this is in fact almost the whole open-routine.
1567  *
1568  * Note that the low bits of "flag" aren't the same as in the open
1569  * system call - they are 00 - no permissions needed
1570  *			  01 - read permission needed
1571  *			  10 - write permission needed
1572  *			  11 - read/write permissions needed
1573  * which is a lot more logical, and also allows the "no perm" needed
1574  * for symlinks (where the permissions are checked later).
1575  * SMP-safe
1576  */
1577 int open_namei(int dfd, const char *pathname, int flag,
1578 		int mode, struct nameidata *nd)
1579 {
1580 	int acc_mode, error;
1581 	struct path path;
1582 	struct dentry *dir;
1583 	int count = 0;
1584 
1585 	acc_mode = ACC_MODE(flag);
1586 
1587 	/* O_TRUNC implies we need access checks for write permissions */
1588 	if (flag & O_TRUNC)
1589 		acc_mode |= MAY_WRITE;
1590 
1591 	/* Allow the LSM permission hook to distinguish append
1592 	   access from general write access. */
1593 	if (flag & O_APPEND)
1594 		acc_mode |= MAY_APPEND;
1595 
1596 	/*
1597 	 * The simplest case - just a plain lookup.
1598 	 */
1599 	if (!(flag & O_CREAT)) {
1600 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1601 					 nd, flag);
1602 		if (error)
1603 			return error;
1604 		goto ok;
1605 	}
1606 
1607 	/*
1608 	 * Create - we need to know the parent.
1609 	 */
1610 	error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1611 	if (error)
1612 		return error;
1613 
1614 	/*
1615 	 * We have the parent and last component. First of all, check
1616 	 * that we are not asked to creat(2) an obvious directory - that
1617 	 * will not do.
1618 	 */
1619 	error = -EISDIR;
1620 	if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1621 		goto exit;
1622 
1623 	dir = nd->dentry;
1624 	nd->flags &= ~LOOKUP_PARENT;
1625 	mutex_lock(&dir->d_inode->i_mutex);
1626 	path.dentry = lookup_hash(nd);
1627 	path.mnt = nd->mnt;
1628 
1629 do_last:
1630 	error = PTR_ERR(path.dentry);
1631 	if (IS_ERR(path.dentry)) {
1632 		mutex_unlock(&dir->d_inode->i_mutex);
1633 		goto exit;
1634 	}
1635 
1636 	if (IS_ERR(nd->intent.open.file)) {
1637 		mutex_unlock(&dir->d_inode->i_mutex);
1638 		error = PTR_ERR(nd->intent.open.file);
1639 		goto exit_dput;
1640 	}
1641 
1642 	/* Negative dentry, just create the file */
1643 	if (!path.dentry->d_inode) {
1644 		if (!IS_POSIXACL(dir->d_inode))
1645 			mode &= ~current->fs->umask;
1646 		error = vfs_create(dir->d_inode, path.dentry, mode, nd);
1647 		mutex_unlock(&dir->d_inode->i_mutex);
1648 		dput(nd->dentry);
1649 		nd->dentry = path.dentry;
1650 		if (error)
1651 			goto exit;
1652 		/* Don't check for write permission, don't truncate */
1653 		acc_mode = 0;
1654 		flag &= ~O_TRUNC;
1655 		goto ok;
1656 	}
1657 
1658 	/*
1659 	 * It already exists.
1660 	 */
1661 	mutex_unlock(&dir->d_inode->i_mutex);
1662 
1663 	error = -EEXIST;
1664 	if (flag & O_EXCL)
1665 		goto exit_dput;
1666 
1667 	if (__follow_mount(&path)) {
1668 		error = -ELOOP;
1669 		if (flag & O_NOFOLLOW)
1670 			goto exit_dput;
1671 	}
1672 	error = -ENOENT;
1673 	if (!path.dentry->d_inode)
1674 		goto exit_dput;
1675 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1676 		goto do_link;
1677 
1678 	path_to_nameidata(&path, nd);
1679 	error = -EISDIR;
1680 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1681 		goto exit;
1682 ok:
1683 	error = may_open(nd, acc_mode, flag);
1684 	if (error)
1685 		goto exit;
1686 	return 0;
1687 
1688 exit_dput:
1689 	dput_path(&path, nd);
1690 exit:
1691 	if (!IS_ERR(nd->intent.open.file))
1692 		release_open_intent(nd);
1693 	path_release(nd);
1694 	return error;
1695 
1696 do_link:
1697 	error = -ELOOP;
1698 	if (flag & O_NOFOLLOW)
1699 		goto exit_dput;
1700 	/*
1701 	 * This is subtle. Instead of calling do_follow_link() we do the
1702 	 * thing by hands. The reason is that this way we have zero link_count
1703 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1704 	 * After that we have the parent and last component, i.e.
1705 	 * we are in the same situation as after the first path_walk().
1706 	 * Well, almost - if the last component is normal we get its copy
1707 	 * stored in nd->last.name and we will have to putname() it when we
1708 	 * are done. Procfs-like symlinks just set LAST_BIND.
1709 	 */
1710 	nd->flags |= LOOKUP_PARENT;
1711 	error = security_inode_follow_link(path.dentry, nd);
1712 	if (error)
1713 		goto exit_dput;
1714 	error = __do_follow_link(&path, nd);
1715 	if (error)
1716 		return error;
1717 	nd->flags &= ~LOOKUP_PARENT;
1718 	if (nd->last_type == LAST_BIND)
1719 		goto ok;
1720 	error = -EISDIR;
1721 	if (nd->last_type != LAST_NORM)
1722 		goto exit;
1723 	if (nd->last.name[nd->last.len]) {
1724 		__putname(nd->last.name);
1725 		goto exit;
1726 	}
1727 	error = -ELOOP;
1728 	if (count++==32) {
1729 		__putname(nd->last.name);
1730 		goto exit;
1731 	}
1732 	dir = nd->dentry;
1733 	mutex_lock(&dir->d_inode->i_mutex);
1734 	path.dentry = lookup_hash(nd);
1735 	path.mnt = nd->mnt;
1736 	__putname(nd->last.name);
1737 	goto do_last;
1738 }
1739 
1740 /**
1741  * lookup_create - lookup a dentry, creating it if it doesn't exist
1742  * @nd: nameidata info
1743  * @is_dir: directory flag
1744  *
1745  * Simple function to lookup and return a dentry and create it
1746  * if it doesn't exist.  Is SMP-safe.
1747  *
1748  * Returns with nd->dentry->d_inode->i_mutex locked.
1749  */
1750 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1751 {
1752 	struct dentry *dentry = ERR_PTR(-EEXIST);
1753 
1754 	mutex_lock(&nd->dentry->d_inode->i_mutex);
1755 	/*
1756 	 * Yucky last component or no last component at all?
1757 	 * (foo/., foo/.., /////)
1758 	 */
1759 	if (nd->last_type != LAST_NORM)
1760 		goto fail;
1761 	nd->flags &= ~LOOKUP_PARENT;
1762 
1763 	/*
1764 	 * Do the final lookup.
1765 	 */
1766 	dentry = lookup_hash(nd);
1767 	if (IS_ERR(dentry))
1768 		goto fail;
1769 
1770 	/*
1771 	 * Special case - lookup gave negative, but... we had foo/bar/
1772 	 * From the vfs_mknod() POV we just have a negative dentry -
1773 	 * all is fine. Let's be bastards - you had / on the end, you've
1774 	 * been asking for (non-existent) directory. -ENOENT for you.
1775 	 */
1776 	if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1777 		goto enoent;
1778 	return dentry;
1779 enoent:
1780 	dput(dentry);
1781 	dentry = ERR_PTR(-ENOENT);
1782 fail:
1783 	return dentry;
1784 }
1785 EXPORT_SYMBOL_GPL(lookup_create);
1786 
1787 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1788 {
1789 	int error = may_create(dir, dentry, NULL);
1790 
1791 	if (error)
1792 		return error;
1793 
1794 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1795 		return -EPERM;
1796 
1797 	if (!dir->i_op || !dir->i_op->mknod)
1798 		return -EPERM;
1799 
1800 	error = security_inode_mknod(dir, dentry, mode, dev);
1801 	if (error)
1802 		return error;
1803 
1804 	DQUOT_INIT(dir);
1805 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1806 	if (!error)
1807 		fsnotify_create(dir, dentry);
1808 	return error;
1809 }
1810 
1811 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1812 				unsigned dev)
1813 {
1814 	int error = 0;
1815 	char * tmp;
1816 	struct dentry * dentry;
1817 	struct nameidata nd;
1818 
1819 	if (S_ISDIR(mode))
1820 		return -EPERM;
1821 	tmp = getname(filename);
1822 	if (IS_ERR(tmp))
1823 		return PTR_ERR(tmp);
1824 
1825 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1826 	if (error)
1827 		goto out;
1828 	dentry = lookup_create(&nd, 0);
1829 	error = PTR_ERR(dentry);
1830 
1831 	if (!IS_POSIXACL(nd.dentry->d_inode))
1832 		mode &= ~current->fs->umask;
1833 	if (!IS_ERR(dentry)) {
1834 		switch (mode & S_IFMT) {
1835 		case 0: case S_IFREG:
1836 			error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1837 			break;
1838 		case S_IFCHR: case S_IFBLK:
1839 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1840 					new_decode_dev(dev));
1841 			break;
1842 		case S_IFIFO: case S_IFSOCK:
1843 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1844 			break;
1845 		case S_IFDIR:
1846 			error = -EPERM;
1847 			break;
1848 		default:
1849 			error = -EINVAL;
1850 		}
1851 		dput(dentry);
1852 	}
1853 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1854 	path_release(&nd);
1855 out:
1856 	putname(tmp);
1857 
1858 	return error;
1859 }
1860 
1861 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1862 {
1863 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
1864 }
1865 
1866 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1867 {
1868 	int error = may_create(dir, dentry, NULL);
1869 
1870 	if (error)
1871 		return error;
1872 
1873 	if (!dir->i_op || !dir->i_op->mkdir)
1874 		return -EPERM;
1875 
1876 	mode &= (S_IRWXUGO|S_ISVTX);
1877 	error = security_inode_mkdir(dir, dentry, mode);
1878 	if (error)
1879 		return error;
1880 
1881 	DQUOT_INIT(dir);
1882 	error = dir->i_op->mkdir(dir, dentry, mode);
1883 	if (!error)
1884 		fsnotify_mkdir(dir, dentry);
1885 	return error;
1886 }
1887 
1888 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
1889 {
1890 	int error = 0;
1891 	char * tmp;
1892 
1893 	tmp = getname(pathname);
1894 	error = PTR_ERR(tmp);
1895 	if (!IS_ERR(tmp)) {
1896 		struct dentry *dentry;
1897 		struct nameidata nd;
1898 
1899 		error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1900 		if (error)
1901 			goto out;
1902 		dentry = lookup_create(&nd, 1);
1903 		error = PTR_ERR(dentry);
1904 		if (!IS_ERR(dentry)) {
1905 			if (!IS_POSIXACL(nd.dentry->d_inode))
1906 				mode &= ~current->fs->umask;
1907 			error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1908 			dput(dentry);
1909 		}
1910 		mutex_unlock(&nd.dentry->d_inode->i_mutex);
1911 		path_release(&nd);
1912 out:
1913 		putname(tmp);
1914 	}
1915 
1916 	return error;
1917 }
1918 
1919 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
1920 {
1921 	return sys_mkdirat(AT_FDCWD, pathname, mode);
1922 }
1923 
1924 /*
1925  * We try to drop the dentry early: we should have
1926  * a usage count of 2 if we're the only user of this
1927  * dentry, and if that is true (possibly after pruning
1928  * the dcache), then we drop the dentry now.
1929  *
1930  * A low-level filesystem can, if it choses, legally
1931  * do a
1932  *
1933  *	if (!d_unhashed(dentry))
1934  *		return -EBUSY;
1935  *
1936  * if it cannot handle the case of removing a directory
1937  * that is still in use by something else..
1938  */
1939 void dentry_unhash(struct dentry *dentry)
1940 {
1941 	dget(dentry);
1942 	if (atomic_read(&dentry->d_count))
1943 		shrink_dcache_parent(dentry);
1944 	spin_lock(&dcache_lock);
1945 	spin_lock(&dentry->d_lock);
1946 	if (atomic_read(&dentry->d_count) == 2)
1947 		__d_drop(dentry);
1948 	spin_unlock(&dentry->d_lock);
1949 	spin_unlock(&dcache_lock);
1950 }
1951 
1952 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
1953 {
1954 	int error = may_delete(dir, dentry, 1);
1955 
1956 	if (error)
1957 		return error;
1958 
1959 	if (!dir->i_op || !dir->i_op->rmdir)
1960 		return -EPERM;
1961 
1962 	DQUOT_INIT(dir);
1963 
1964 	mutex_lock(&dentry->d_inode->i_mutex);
1965 	dentry_unhash(dentry);
1966 	if (d_mountpoint(dentry))
1967 		error = -EBUSY;
1968 	else {
1969 		error = security_inode_rmdir(dir, dentry);
1970 		if (!error) {
1971 			error = dir->i_op->rmdir(dir, dentry);
1972 			if (!error)
1973 				dentry->d_inode->i_flags |= S_DEAD;
1974 		}
1975 	}
1976 	mutex_unlock(&dentry->d_inode->i_mutex);
1977 	if (!error) {
1978 		d_delete(dentry);
1979 	}
1980 	dput(dentry);
1981 
1982 	return error;
1983 }
1984 
1985 static long do_rmdir(int dfd, const char __user *pathname)
1986 {
1987 	int error = 0;
1988 	char * name;
1989 	struct dentry *dentry;
1990 	struct nameidata nd;
1991 
1992 	name = getname(pathname);
1993 	if(IS_ERR(name))
1994 		return PTR_ERR(name);
1995 
1996 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
1997 	if (error)
1998 		goto exit;
1999 
2000 	switch(nd.last_type) {
2001 		case LAST_DOTDOT:
2002 			error = -ENOTEMPTY;
2003 			goto exit1;
2004 		case LAST_DOT:
2005 			error = -EINVAL;
2006 			goto exit1;
2007 		case LAST_ROOT:
2008 			error = -EBUSY;
2009 			goto exit1;
2010 	}
2011 	mutex_lock(&nd.dentry->d_inode->i_mutex);
2012 	dentry = lookup_hash(&nd);
2013 	error = PTR_ERR(dentry);
2014 	if (!IS_ERR(dentry)) {
2015 		error = vfs_rmdir(nd.dentry->d_inode, dentry);
2016 		dput(dentry);
2017 	}
2018 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2019 exit1:
2020 	path_release(&nd);
2021 exit:
2022 	putname(name);
2023 	return error;
2024 }
2025 
2026 asmlinkage long sys_rmdir(const char __user *pathname)
2027 {
2028 	return do_rmdir(AT_FDCWD, pathname);
2029 }
2030 
2031 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2032 {
2033 	int error = may_delete(dir, dentry, 0);
2034 
2035 	if (error)
2036 		return error;
2037 
2038 	if (!dir->i_op || !dir->i_op->unlink)
2039 		return -EPERM;
2040 
2041 	DQUOT_INIT(dir);
2042 
2043 	mutex_lock(&dentry->d_inode->i_mutex);
2044 	if (d_mountpoint(dentry))
2045 		error = -EBUSY;
2046 	else {
2047 		error = security_inode_unlink(dir, dentry);
2048 		if (!error)
2049 			error = dir->i_op->unlink(dir, dentry);
2050 	}
2051 	mutex_unlock(&dentry->d_inode->i_mutex);
2052 
2053 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2054 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2055 		d_delete(dentry);
2056 	}
2057 
2058 	return error;
2059 }
2060 
2061 /*
2062  * Make sure that the actual truncation of the file will occur outside its
2063  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2064  * writeout happening, and we don't want to prevent access to the directory
2065  * while waiting on the I/O.
2066  */
2067 static long do_unlinkat(int dfd, const char __user *pathname)
2068 {
2069 	int error = 0;
2070 	char * name;
2071 	struct dentry *dentry;
2072 	struct nameidata nd;
2073 	struct inode *inode = NULL;
2074 
2075 	name = getname(pathname);
2076 	if(IS_ERR(name))
2077 		return PTR_ERR(name);
2078 
2079 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2080 	if (error)
2081 		goto exit;
2082 	error = -EISDIR;
2083 	if (nd.last_type != LAST_NORM)
2084 		goto exit1;
2085 	mutex_lock(&nd.dentry->d_inode->i_mutex);
2086 	dentry = lookup_hash(&nd);
2087 	error = PTR_ERR(dentry);
2088 	if (!IS_ERR(dentry)) {
2089 		/* Why not before? Because we want correct error value */
2090 		if (nd.last.name[nd.last.len])
2091 			goto slashes;
2092 		inode = dentry->d_inode;
2093 		if (inode)
2094 			atomic_inc(&inode->i_count);
2095 		error = vfs_unlink(nd.dentry->d_inode, dentry);
2096 	exit2:
2097 		dput(dentry);
2098 	}
2099 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2100 	if (inode)
2101 		iput(inode);	/* truncate the inode here */
2102 exit1:
2103 	path_release(&nd);
2104 exit:
2105 	putname(name);
2106 	return error;
2107 
2108 slashes:
2109 	error = !dentry->d_inode ? -ENOENT :
2110 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2111 	goto exit2;
2112 }
2113 
2114 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2115 {
2116 	if ((flag & ~AT_REMOVEDIR) != 0)
2117 		return -EINVAL;
2118 
2119 	if (flag & AT_REMOVEDIR)
2120 		return do_rmdir(dfd, pathname);
2121 
2122 	return do_unlinkat(dfd, pathname);
2123 }
2124 
2125 asmlinkage long sys_unlink(const char __user *pathname)
2126 {
2127 	return do_unlinkat(AT_FDCWD, pathname);
2128 }
2129 
2130 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2131 {
2132 	int error = may_create(dir, dentry, NULL);
2133 
2134 	if (error)
2135 		return error;
2136 
2137 	if (!dir->i_op || !dir->i_op->symlink)
2138 		return -EPERM;
2139 
2140 	error = security_inode_symlink(dir, dentry, oldname);
2141 	if (error)
2142 		return error;
2143 
2144 	DQUOT_INIT(dir);
2145 	error = dir->i_op->symlink(dir, dentry, oldname);
2146 	if (!error)
2147 		fsnotify_create(dir, dentry);
2148 	return error;
2149 }
2150 
2151 asmlinkage long sys_symlinkat(const char __user *oldname,
2152 			      int newdfd, const char __user *newname)
2153 {
2154 	int error = 0;
2155 	char * from;
2156 	char * to;
2157 
2158 	from = getname(oldname);
2159 	if(IS_ERR(from))
2160 		return PTR_ERR(from);
2161 	to = getname(newname);
2162 	error = PTR_ERR(to);
2163 	if (!IS_ERR(to)) {
2164 		struct dentry *dentry;
2165 		struct nameidata nd;
2166 
2167 		error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2168 		if (error)
2169 			goto out;
2170 		dentry = lookup_create(&nd, 0);
2171 		error = PTR_ERR(dentry);
2172 		if (!IS_ERR(dentry)) {
2173 			error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2174 			dput(dentry);
2175 		}
2176 		mutex_unlock(&nd.dentry->d_inode->i_mutex);
2177 		path_release(&nd);
2178 out:
2179 		putname(to);
2180 	}
2181 	putname(from);
2182 	return error;
2183 }
2184 
2185 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2186 {
2187 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2188 }
2189 
2190 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2191 {
2192 	struct inode *inode = old_dentry->d_inode;
2193 	int error;
2194 
2195 	if (!inode)
2196 		return -ENOENT;
2197 
2198 	error = may_create(dir, new_dentry, NULL);
2199 	if (error)
2200 		return error;
2201 
2202 	if (dir->i_sb != inode->i_sb)
2203 		return -EXDEV;
2204 
2205 	/*
2206 	 * A link to an append-only or immutable file cannot be created.
2207 	 */
2208 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2209 		return -EPERM;
2210 	if (!dir->i_op || !dir->i_op->link)
2211 		return -EPERM;
2212 	if (S_ISDIR(old_dentry->d_inode->i_mode))
2213 		return -EPERM;
2214 
2215 	error = security_inode_link(old_dentry, dir, new_dentry);
2216 	if (error)
2217 		return error;
2218 
2219 	mutex_lock(&old_dentry->d_inode->i_mutex);
2220 	DQUOT_INIT(dir);
2221 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2222 	mutex_unlock(&old_dentry->d_inode->i_mutex);
2223 	if (!error)
2224 		fsnotify_create(dir, new_dentry);
2225 	return error;
2226 }
2227 
2228 /*
2229  * Hardlinks are often used in delicate situations.  We avoid
2230  * security-related surprises by not following symlinks on the
2231  * newname.  --KAB
2232  *
2233  * We don't follow them on the oldname either to be compatible
2234  * with linux 2.0, and to avoid hard-linking to directories
2235  * and other special files.  --ADM
2236  */
2237 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2238 			   int newdfd, const char __user *newname,
2239 			   int flags)
2240 {
2241 	struct dentry *new_dentry;
2242 	struct nameidata nd, old_nd;
2243 	int error;
2244 	char * to;
2245 
2246 	if (flags != 0)
2247 		return -EINVAL;
2248 
2249 	to = getname(newname);
2250 	if (IS_ERR(to))
2251 		return PTR_ERR(to);
2252 
2253 	error = __user_walk_fd(olddfd, oldname, 0, &old_nd);
2254 	if (error)
2255 		goto exit;
2256 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2257 	if (error)
2258 		goto out;
2259 	error = -EXDEV;
2260 	if (old_nd.mnt != nd.mnt)
2261 		goto out_release;
2262 	new_dentry = lookup_create(&nd, 0);
2263 	error = PTR_ERR(new_dentry);
2264 	if (!IS_ERR(new_dentry)) {
2265 		error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2266 		dput(new_dentry);
2267 	}
2268 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2269 out_release:
2270 	path_release(&nd);
2271 out:
2272 	path_release(&old_nd);
2273 exit:
2274 	putname(to);
2275 
2276 	return error;
2277 }
2278 
2279 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2280 {
2281 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2282 }
2283 
2284 /*
2285  * The worst of all namespace operations - renaming directory. "Perverted"
2286  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2287  * Problems:
2288  *	a) we can get into loop creation. Check is done in is_subdir().
2289  *	b) race potential - two innocent renames can create a loop together.
2290  *	   That's where 4.4 screws up. Current fix: serialization on
2291  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2292  *	   story.
2293  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2294  *	   And that - after we got ->i_mutex on parents (until then we don't know
2295  *	   whether the target exists).  Solution: try to be smart with locking
2296  *	   order for inodes.  We rely on the fact that tree topology may change
2297  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2298  *	   move will be locked.  Thus we can rank directories by the tree
2299  *	   (ancestors first) and rank all non-directories after them.
2300  *	   That works since everybody except rename does "lock parent, lookup,
2301  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2302  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2303  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2304  *	   we'd better make sure that there's no link(2) for them.
2305  *	d) some filesystems don't support opened-but-unlinked directories,
2306  *	   either because of layout or because they are not ready to deal with
2307  *	   all cases correctly. The latter will be fixed (taking this sort of
2308  *	   stuff into VFS), but the former is not going away. Solution: the same
2309  *	   trick as in rmdir().
2310  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2311  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2312  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2313  *	   ->i_mutex on parents, which works but leads to some truely excessive
2314  *	   locking].
2315  */
2316 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2317 			  struct inode *new_dir, struct dentry *new_dentry)
2318 {
2319 	int error = 0;
2320 	struct inode *target;
2321 
2322 	/*
2323 	 * If we are going to change the parent - check write permissions,
2324 	 * we'll need to flip '..'.
2325 	 */
2326 	if (new_dir != old_dir) {
2327 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2328 		if (error)
2329 			return error;
2330 	}
2331 
2332 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2333 	if (error)
2334 		return error;
2335 
2336 	target = new_dentry->d_inode;
2337 	if (target) {
2338 		mutex_lock(&target->i_mutex);
2339 		dentry_unhash(new_dentry);
2340 	}
2341 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2342 		error = -EBUSY;
2343 	else
2344 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2345 	if (target) {
2346 		if (!error)
2347 			target->i_flags |= S_DEAD;
2348 		mutex_unlock(&target->i_mutex);
2349 		if (d_unhashed(new_dentry))
2350 			d_rehash(new_dentry);
2351 		dput(new_dentry);
2352 	}
2353 	if (!error)
2354 		d_move(old_dentry,new_dentry);
2355 	return error;
2356 }
2357 
2358 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2359 			    struct inode *new_dir, struct dentry *new_dentry)
2360 {
2361 	struct inode *target;
2362 	int error;
2363 
2364 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2365 	if (error)
2366 		return error;
2367 
2368 	dget(new_dentry);
2369 	target = new_dentry->d_inode;
2370 	if (target)
2371 		mutex_lock(&target->i_mutex);
2372 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2373 		error = -EBUSY;
2374 	else
2375 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2376 	if (!error) {
2377 		/* The following d_move() should become unconditional */
2378 		if (!(old_dir->i_sb->s_type->fs_flags & FS_ODD_RENAME))
2379 			d_move(old_dentry, new_dentry);
2380 	}
2381 	if (target)
2382 		mutex_unlock(&target->i_mutex);
2383 	dput(new_dentry);
2384 	return error;
2385 }
2386 
2387 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2388 	       struct inode *new_dir, struct dentry *new_dentry)
2389 {
2390 	int error;
2391 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2392 	const char *old_name;
2393 
2394 	if (old_dentry->d_inode == new_dentry->d_inode)
2395  		return 0;
2396 
2397 	error = may_delete(old_dir, old_dentry, is_dir);
2398 	if (error)
2399 		return error;
2400 
2401 	if (!new_dentry->d_inode)
2402 		error = may_create(new_dir, new_dentry, NULL);
2403 	else
2404 		error = may_delete(new_dir, new_dentry, is_dir);
2405 	if (error)
2406 		return error;
2407 
2408 	if (!old_dir->i_op || !old_dir->i_op->rename)
2409 		return -EPERM;
2410 
2411 	DQUOT_INIT(old_dir);
2412 	DQUOT_INIT(new_dir);
2413 
2414 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2415 
2416 	if (is_dir)
2417 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2418 	else
2419 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2420 	if (!error) {
2421 		const char *new_name = old_dentry->d_name.name;
2422 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2423 			      new_dentry->d_inode, old_dentry->d_inode);
2424 	}
2425 	fsnotify_oldname_free(old_name);
2426 
2427 	return error;
2428 }
2429 
2430 static int do_rename(int olddfd, const char *oldname,
2431 			int newdfd, const char *newname)
2432 {
2433 	int error = 0;
2434 	struct dentry * old_dir, * new_dir;
2435 	struct dentry * old_dentry, *new_dentry;
2436 	struct dentry * trap;
2437 	struct nameidata oldnd, newnd;
2438 
2439 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2440 	if (error)
2441 		goto exit;
2442 
2443 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2444 	if (error)
2445 		goto exit1;
2446 
2447 	error = -EXDEV;
2448 	if (oldnd.mnt != newnd.mnt)
2449 		goto exit2;
2450 
2451 	old_dir = oldnd.dentry;
2452 	error = -EBUSY;
2453 	if (oldnd.last_type != LAST_NORM)
2454 		goto exit2;
2455 
2456 	new_dir = newnd.dentry;
2457 	if (newnd.last_type != LAST_NORM)
2458 		goto exit2;
2459 
2460 	trap = lock_rename(new_dir, old_dir);
2461 
2462 	old_dentry = lookup_hash(&oldnd);
2463 	error = PTR_ERR(old_dentry);
2464 	if (IS_ERR(old_dentry))
2465 		goto exit3;
2466 	/* source must exist */
2467 	error = -ENOENT;
2468 	if (!old_dentry->d_inode)
2469 		goto exit4;
2470 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2471 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2472 		error = -ENOTDIR;
2473 		if (oldnd.last.name[oldnd.last.len])
2474 			goto exit4;
2475 		if (newnd.last.name[newnd.last.len])
2476 			goto exit4;
2477 	}
2478 	/* source should not be ancestor of target */
2479 	error = -EINVAL;
2480 	if (old_dentry == trap)
2481 		goto exit4;
2482 	new_dentry = lookup_hash(&newnd);
2483 	error = PTR_ERR(new_dentry);
2484 	if (IS_ERR(new_dentry))
2485 		goto exit4;
2486 	/* target should not be an ancestor of source */
2487 	error = -ENOTEMPTY;
2488 	if (new_dentry == trap)
2489 		goto exit5;
2490 
2491 	error = vfs_rename(old_dir->d_inode, old_dentry,
2492 				   new_dir->d_inode, new_dentry);
2493 exit5:
2494 	dput(new_dentry);
2495 exit4:
2496 	dput(old_dentry);
2497 exit3:
2498 	unlock_rename(new_dir, old_dir);
2499 exit2:
2500 	path_release(&newnd);
2501 exit1:
2502 	path_release(&oldnd);
2503 exit:
2504 	return error;
2505 }
2506 
2507 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2508 			     int newdfd, const char __user *newname)
2509 {
2510 	int error;
2511 	char * from;
2512 	char * to;
2513 
2514 	from = getname(oldname);
2515 	if(IS_ERR(from))
2516 		return PTR_ERR(from);
2517 	to = getname(newname);
2518 	error = PTR_ERR(to);
2519 	if (!IS_ERR(to)) {
2520 		error = do_rename(olddfd, from, newdfd, to);
2521 		putname(to);
2522 	}
2523 	putname(from);
2524 	return error;
2525 }
2526 
2527 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2528 {
2529 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2530 }
2531 
2532 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2533 {
2534 	int len;
2535 
2536 	len = PTR_ERR(link);
2537 	if (IS_ERR(link))
2538 		goto out;
2539 
2540 	len = strlen(link);
2541 	if (len > (unsigned) buflen)
2542 		len = buflen;
2543 	if (copy_to_user(buffer, link, len))
2544 		len = -EFAULT;
2545 out:
2546 	return len;
2547 }
2548 
2549 /*
2550  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2551  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2552  * using) it for any given inode is up to filesystem.
2553  */
2554 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2555 {
2556 	struct nameidata nd;
2557 	void *cookie;
2558 
2559 	nd.depth = 0;
2560 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2561 	if (!IS_ERR(cookie)) {
2562 		int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2563 		if (dentry->d_inode->i_op->put_link)
2564 			dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2565 		cookie = ERR_PTR(res);
2566 	}
2567 	return PTR_ERR(cookie);
2568 }
2569 
2570 int vfs_follow_link(struct nameidata *nd, const char *link)
2571 {
2572 	return __vfs_follow_link(nd, link);
2573 }
2574 
2575 /* get the link contents into pagecache */
2576 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2577 {
2578 	struct page * page;
2579 	struct address_space *mapping = dentry->d_inode->i_mapping;
2580 	page = read_cache_page(mapping, 0, (filler_t *)mapping->a_ops->readpage,
2581 				NULL);
2582 	if (IS_ERR(page))
2583 		goto sync_fail;
2584 	wait_on_page_locked(page);
2585 	if (!PageUptodate(page))
2586 		goto async_fail;
2587 	*ppage = page;
2588 	return kmap(page);
2589 
2590 async_fail:
2591 	page_cache_release(page);
2592 	return ERR_PTR(-EIO);
2593 
2594 sync_fail:
2595 	return (char*)page;
2596 }
2597 
2598 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2599 {
2600 	struct page *page = NULL;
2601 	char *s = page_getlink(dentry, &page);
2602 	int res = vfs_readlink(dentry,buffer,buflen,s);
2603 	if (page) {
2604 		kunmap(page);
2605 		page_cache_release(page);
2606 	}
2607 	return res;
2608 }
2609 
2610 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2611 {
2612 	struct page *page = NULL;
2613 	nd_set_link(nd, page_getlink(dentry, &page));
2614 	return page;
2615 }
2616 
2617 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2618 {
2619 	struct page *page = cookie;
2620 
2621 	if (page) {
2622 		kunmap(page);
2623 		page_cache_release(page);
2624 	}
2625 }
2626 
2627 int __page_symlink(struct inode *inode, const char *symname, int len,
2628 		gfp_t gfp_mask)
2629 {
2630 	struct address_space *mapping = inode->i_mapping;
2631 	struct page *page;
2632 	int err = -ENOMEM;
2633 	char *kaddr;
2634 
2635 retry:
2636 	page = find_or_create_page(mapping, 0, gfp_mask);
2637 	if (!page)
2638 		goto fail;
2639 	err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2640 	if (err == AOP_TRUNCATED_PAGE) {
2641 		page_cache_release(page);
2642 		goto retry;
2643 	}
2644 	if (err)
2645 		goto fail_map;
2646 	kaddr = kmap_atomic(page, KM_USER0);
2647 	memcpy(kaddr, symname, len-1);
2648 	kunmap_atomic(kaddr, KM_USER0);
2649 	err = mapping->a_ops->commit_write(NULL, page, 0, len-1);
2650 	if (err == AOP_TRUNCATED_PAGE) {
2651 		page_cache_release(page);
2652 		goto retry;
2653 	}
2654 	if (err)
2655 		goto fail_map;
2656 	/*
2657 	 * Notice that we are _not_ going to block here - end of page is
2658 	 * unmapped, so this will only try to map the rest of page, see
2659 	 * that it is unmapped (typically even will not look into inode -
2660 	 * ->i_size will be enough for everything) and zero it out.
2661 	 * OTOH it's obviously correct and should make the page up-to-date.
2662 	 */
2663 	if (!PageUptodate(page)) {
2664 		err = mapping->a_ops->readpage(NULL, page);
2665 		if (err != AOP_TRUNCATED_PAGE)
2666 			wait_on_page_locked(page);
2667 	} else {
2668 		unlock_page(page);
2669 	}
2670 	page_cache_release(page);
2671 	if (err < 0)
2672 		goto fail;
2673 	mark_inode_dirty(inode);
2674 	return 0;
2675 fail_map:
2676 	unlock_page(page);
2677 	page_cache_release(page);
2678 fail:
2679 	return err;
2680 }
2681 
2682 int page_symlink(struct inode *inode, const char *symname, int len)
2683 {
2684 	return __page_symlink(inode, symname, len,
2685 			mapping_gfp_mask(inode->i_mapping));
2686 }
2687 
2688 struct inode_operations page_symlink_inode_operations = {
2689 	.readlink	= generic_readlink,
2690 	.follow_link	= page_follow_link_light,
2691 	.put_link	= page_put_link,
2692 };
2693 
2694 EXPORT_SYMBOL(__user_walk);
2695 EXPORT_SYMBOL(__user_walk_fd);
2696 EXPORT_SYMBOL(follow_down);
2697 EXPORT_SYMBOL(follow_up);
2698 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2699 EXPORT_SYMBOL(getname);
2700 EXPORT_SYMBOL(lock_rename);
2701 EXPORT_SYMBOL(lookup_one_len);
2702 EXPORT_SYMBOL(page_follow_link_light);
2703 EXPORT_SYMBOL(page_put_link);
2704 EXPORT_SYMBOL(page_readlink);
2705 EXPORT_SYMBOL(__page_symlink);
2706 EXPORT_SYMBOL(page_symlink);
2707 EXPORT_SYMBOL(page_symlink_inode_operations);
2708 EXPORT_SYMBOL(path_lookup);
2709 EXPORT_SYMBOL(path_release);
2710 EXPORT_SYMBOL(path_walk);
2711 EXPORT_SYMBOL(permission);
2712 EXPORT_SYMBOL(vfs_permission);
2713 EXPORT_SYMBOL(file_permission);
2714 EXPORT_SYMBOL(unlock_rename);
2715 EXPORT_SYMBOL(vfs_create);
2716 EXPORT_SYMBOL(vfs_follow_link);
2717 EXPORT_SYMBOL(vfs_link);
2718 EXPORT_SYMBOL(vfs_mkdir);
2719 EXPORT_SYMBOL(vfs_mknod);
2720 EXPORT_SYMBOL(generic_permission);
2721 EXPORT_SYMBOL(vfs_readlink);
2722 EXPORT_SYMBOL(vfs_rename);
2723 EXPORT_SYMBOL(vfs_rmdir);
2724 EXPORT_SYMBOL(vfs_symlink);
2725 EXPORT_SYMBOL(vfs_unlink);
2726 EXPORT_SYMBOL(dentry_unhash);
2727 EXPORT_SYMBOL(generic_readlink);
2728