1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/smp_lock.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/namei.h> 35 #include <asm/namei.h> 36 #include <asm/uaccess.h> 37 38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(!audit_dummy_context())) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 171 /** 172 * generic_permission - check for access rights on a Posix-like filesystem 173 * @inode: inode to check access rights for 174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 175 * @check_acl: optional callback to check for Posix ACLs 176 * 177 * Used to check for read/write/execute permissions on a file. 178 * We use "fsuid" for this, letting us set arbitrary permissions 179 * for filesystem access without changing the "normal" uids which 180 * are used for other things.. 181 */ 182 int generic_permission(struct inode *inode, int mask, 183 int (*check_acl)(struct inode *inode, int mask)) 184 { 185 umode_t mode = inode->i_mode; 186 187 if (current->fsuid == inode->i_uid) 188 mode >>= 6; 189 else { 190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 191 int error = check_acl(inode, mask); 192 if (error == -EACCES) 193 goto check_capabilities; 194 else if (error != -EAGAIN) 195 return error; 196 } 197 198 if (in_group_p(inode->i_gid)) 199 mode >>= 3; 200 } 201 202 /* 203 * If the DACs are ok we don't need any capability check. 204 */ 205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask)) 206 return 0; 207 208 check_capabilities: 209 /* 210 * Read/write DACs are always overridable. 211 * Executable DACs are overridable if at least one exec bit is set. 212 */ 213 if (!(mask & MAY_EXEC) || 214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 215 if (capable(CAP_DAC_OVERRIDE)) 216 return 0; 217 218 /* 219 * Searching includes executable on directories, else just read. 220 */ 221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 222 if (capable(CAP_DAC_READ_SEARCH)) 223 return 0; 224 225 return -EACCES; 226 } 227 228 int permission(struct inode *inode, int mask, struct nameidata *nd) 229 { 230 umode_t mode = inode->i_mode; 231 int retval, submask; 232 233 if (mask & MAY_WRITE) { 234 235 /* 236 * Nobody gets write access to a read-only fs. 237 */ 238 if (IS_RDONLY(inode) && 239 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 240 return -EROFS; 241 242 /* 243 * Nobody gets write access to an immutable file. 244 */ 245 if (IS_IMMUTABLE(inode)) 246 return -EACCES; 247 } 248 249 250 /* 251 * MAY_EXEC on regular files requires special handling: We override 252 * filesystem execute permissions if the mode bits aren't set. 253 */ 254 if ((mask & MAY_EXEC) && S_ISREG(mode) && !(mode & S_IXUGO)) 255 return -EACCES; 256 257 /* Ordinary permission routines do not understand MAY_APPEND. */ 258 submask = mask & ~MAY_APPEND; 259 if (inode->i_op && inode->i_op->permission) 260 retval = inode->i_op->permission(inode, submask, nd); 261 else 262 retval = generic_permission(inode, submask, NULL); 263 if (retval) 264 return retval; 265 266 return security_inode_permission(inode, mask, nd); 267 } 268 269 /** 270 * vfs_permission - check for access rights to a given path 271 * @nd: lookup result that describes the path 272 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 273 * 274 * Used to check for read/write/execute permissions on a path. 275 * We use "fsuid" for this, letting us set arbitrary permissions 276 * for filesystem access without changing the "normal" uids which 277 * are used for other things. 278 */ 279 int vfs_permission(struct nameidata *nd, int mask) 280 { 281 return permission(nd->dentry->d_inode, mask, nd); 282 } 283 284 /** 285 * file_permission - check for additional access rights to a given file 286 * @file: file to check access rights for 287 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 288 * 289 * Used to check for read/write/execute permissions on an already opened 290 * file. 291 * 292 * Note: 293 * Do not use this function in new code. All access checks should 294 * be done using vfs_permission(). 295 */ 296 int file_permission(struct file *file, int mask) 297 { 298 return permission(file->f_dentry->d_inode, mask, NULL); 299 } 300 301 /* 302 * get_write_access() gets write permission for a file. 303 * put_write_access() releases this write permission. 304 * This is used for regular files. 305 * We cannot support write (and maybe mmap read-write shared) accesses and 306 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 307 * can have the following values: 308 * 0: no writers, no VM_DENYWRITE mappings 309 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 310 * > 0: (i_writecount) users are writing to the file. 311 * 312 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 313 * except for the cases where we don't hold i_writecount yet. Then we need to 314 * use {get,deny}_write_access() - these functions check the sign and refuse 315 * to do the change if sign is wrong. Exclusion between them is provided by 316 * the inode->i_lock spinlock. 317 */ 318 319 int get_write_access(struct inode * inode) 320 { 321 spin_lock(&inode->i_lock); 322 if (atomic_read(&inode->i_writecount) < 0) { 323 spin_unlock(&inode->i_lock); 324 return -ETXTBSY; 325 } 326 atomic_inc(&inode->i_writecount); 327 spin_unlock(&inode->i_lock); 328 329 return 0; 330 } 331 332 int deny_write_access(struct file * file) 333 { 334 struct inode *inode = file->f_dentry->d_inode; 335 336 spin_lock(&inode->i_lock); 337 if (atomic_read(&inode->i_writecount) > 0) { 338 spin_unlock(&inode->i_lock); 339 return -ETXTBSY; 340 } 341 atomic_dec(&inode->i_writecount); 342 spin_unlock(&inode->i_lock); 343 344 return 0; 345 } 346 347 void path_release(struct nameidata *nd) 348 { 349 dput(nd->dentry); 350 mntput(nd->mnt); 351 } 352 353 /* 354 * umount() mustn't call path_release()/mntput() as that would clear 355 * mnt_expiry_mark 356 */ 357 void path_release_on_umount(struct nameidata *nd) 358 { 359 dput(nd->dentry); 360 mntput_no_expire(nd->mnt); 361 } 362 363 /** 364 * release_open_intent - free up open intent resources 365 * @nd: pointer to nameidata 366 */ 367 void release_open_intent(struct nameidata *nd) 368 { 369 if (nd->intent.open.file->f_dentry == NULL) 370 put_filp(nd->intent.open.file); 371 else 372 fput(nd->intent.open.file); 373 } 374 375 /* 376 * Internal lookup() using the new generic dcache. 377 * SMP-safe 378 */ 379 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 380 { 381 struct dentry * dentry = __d_lookup(parent, name); 382 383 /* lockess __d_lookup may fail due to concurrent d_move() 384 * in some unrelated directory, so try with d_lookup 385 */ 386 if (!dentry) 387 dentry = d_lookup(parent, name); 388 389 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) { 390 if (!dentry->d_op->d_revalidate(dentry, nd) && !d_invalidate(dentry)) { 391 dput(dentry); 392 dentry = NULL; 393 } 394 } 395 return dentry; 396 } 397 398 /* 399 * Short-cut version of permission(), for calling by 400 * path_walk(), when dcache lock is held. Combines parts 401 * of permission() and generic_permission(), and tests ONLY for 402 * MAY_EXEC permission. 403 * 404 * If appropriate, check DAC only. If not appropriate, or 405 * short-cut DAC fails, then call permission() to do more 406 * complete permission check. 407 */ 408 static int exec_permission_lite(struct inode *inode, 409 struct nameidata *nd) 410 { 411 umode_t mode = inode->i_mode; 412 413 if (inode->i_op && inode->i_op->permission) 414 return -EAGAIN; 415 416 if (current->fsuid == inode->i_uid) 417 mode >>= 6; 418 else if (in_group_p(inode->i_gid)) 419 mode >>= 3; 420 421 if (mode & MAY_EXEC) 422 goto ok; 423 424 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 425 goto ok; 426 427 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 428 goto ok; 429 430 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 431 goto ok; 432 433 return -EACCES; 434 ok: 435 return security_inode_permission(inode, MAY_EXEC, nd); 436 } 437 438 /* 439 * This is called when everything else fails, and we actually have 440 * to go to the low-level filesystem to find out what we should do.. 441 * 442 * We get the directory semaphore, and after getting that we also 443 * make sure that nobody added the entry to the dcache in the meantime.. 444 * SMP-safe 445 */ 446 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 447 { 448 struct dentry * result; 449 struct inode *dir = parent->d_inode; 450 451 mutex_lock(&dir->i_mutex); 452 /* 453 * First re-do the cached lookup just in case it was created 454 * while we waited for the directory semaphore.. 455 * 456 * FIXME! This could use version numbering or similar to 457 * avoid unnecessary cache lookups. 458 * 459 * The "dcache_lock" is purely to protect the RCU list walker 460 * from concurrent renames at this point (we mustn't get false 461 * negatives from the RCU list walk here, unlike the optimistic 462 * fast walk). 463 * 464 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 465 */ 466 result = d_lookup(parent, name); 467 if (!result) { 468 struct dentry * dentry = d_alloc(parent, name); 469 result = ERR_PTR(-ENOMEM); 470 if (dentry) { 471 result = dir->i_op->lookup(dir, dentry, nd); 472 if (result) 473 dput(dentry); 474 else 475 result = dentry; 476 } 477 mutex_unlock(&dir->i_mutex); 478 return result; 479 } 480 481 /* 482 * Uhhuh! Nasty case: the cache was re-populated while 483 * we waited on the semaphore. Need to revalidate. 484 */ 485 mutex_unlock(&dir->i_mutex); 486 if (result->d_op && result->d_op->d_revalidate) { 487 if (!result->d_op->d_revalidate(result, nd) && !d_invalidate(result)) { 488 dput(result); 489 result = ERR_PTR(-ENOENT); 490 } 491 } 492 return result; 493 } 494 495 static int __emul_lookup_dentry(const char *, struct nameidata *); 496 497 /* SMP-safe */ 498 static __always_inline int 499 walk_init_root(const char *name, struct nameidata *nd) 500 { 501 read_lock(¤t->fs->lock); 502 if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 503 nd->mnt = mntget(current->fs->altrootmnt); 504 nd->dentry = dget(current->fs->altroot); 505 read_unlock(¤t->fs->lock); 506 if (__emul_lookup_dentry(name,nd)) 507 return 0; 508 read_lock(¤t->fs->lock); 509 } 510 nd->mnt = mntget(current->fs->rootmnt); 511 nd->dentry = dget(current->fs->root); 512 read_unlock(¤t->fs->lock); 513 return 1; 514 } 515 516 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 517 { 518 int res = 0; 519 char *name; 520 if (IS_ERR(link)) 521 goto fail; 522 523 if (*link == '/') { 524 path_release(nd); 525 if (!walk_init_root(link, nd)) 526 /* weird __emul_prefix() stuff did it */ 527 goto out; 528 } 529 res = link_path_walk(link, nd); 530 out: 531 if (nd->depth || res || nd->last_type!=LAST_NORM) 532 return res; 533 /* 534 * If it is an iterative symlinks resolution in open_namei() we 535 * have to copy the last component. And all that crap because of 536 * bloody create() on broken symlinks. Furrfu... 537 */ 538 name = __getname(); 539 if (unlikely(!name)) { 540 path_release(nd); 541 return -ENOMEM; 542 } 543 strcpy(name, nd->last.name); 544 nd->last.name = name; 545 return 0; 546 fail: 547 path_release(nd); 548 return PTR_ERR(link); 549 } 550 551 struct path { 552 struct vfsmount *mnt; 553 struct dentry *dentry; 554 }; 555 556 static inline void dput_path(struct path *path, struct nameidata *nd) 557 { 558 dput(path->dentry); 559 if (path->mnt != nd->mnt) 560 mntput(path->mnt); 561 } 562 563 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 564 { 565 dput(nd->dentry); 566 if (nd->mnt != path->mnt) 567 mntput(nd->mnt); 568 nd->mnt = path->mnt; 569 nd->dentry = path->dentry; 570 } 571 572 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 573 { 574 int error; 575 void *cookie; 576 struct dentry *dentry = path->dentry; 577 578 touch_atime(path->mnt, dentry); 579 nd_set_link(nd, NULL); 580 581 if (path->mnt != nd->mnt) { 582 path_to_nameidata(path, nd); 583 dget(dentry); 584 } 585 mntget(path->mnt); 586 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 587 error = PTR_ERR(cookie); 588 if (!IS_ERR(cookie)) { 589 char *s = nd_get_link(nd); 590 error = 0; 591 if (s) 592 error = __vfs_follow_link(nd, s); 593 if (dentry->d_inode->i_op->put_link) 594 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 595 } 596 dput(dentry); 597 mntput(path->mnt); 598 599 return error; 600 } 601 602 /* 603 * This limits recursive symlink follows to 8, while 604 * limiting consecutive symlinks to 40. 605 * 606 * Without that kind of total limit, nasty chains of consecutive 607 * symlinks can cause almost arbitrarily long lookups. 608 */ 609 static inline int do_follow_link(struct path *path, struct nameidata *nd) 610 { 611 int err = -ELOOP; 612 if (current->link_count >= MAX_NESTED_LINKS) 613 goto loop; 614 if (current->total_link_count >= 40) 615 goto loop; 616 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 617 cond_resched(); 618 err = security_inode_follow_link(path->dentry, nd); 619 if (err) 620 goto loop; 621 current->link_count++; 622 current->total_link_count++; 623 nd->depth++; 624 err = __do_follow_link(path, nd); 625 current->link_count--; 626 nd->depth--; 627 return err; 628 loop: 629 dput_path(path, nd); 630 path_release(nd); 631 return err; 632 } 633 634 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 635 { 636 struct vfsmount *parent; 637 struct dentry *mountpoint; 638 spin_lock(&vfsmount_lock); 639 parent=(*mnt)->mnt_parent; 640 if (parent == *mnt) { 641 spin_unlock(&vfsmount_lock); 642 return 0; 643 } 644 mntget(parent); 645 mountpoint=dget((*mnt)->mnt_mountpoint); 646 spin_unlock(&vfsmount_lock); 647 dput(*dentry); 648 *dentry = mountpoint; 649 mntput(*mnt); 650 *mnt = parent; 651 return 1; 652 } 653 654 /* no need for dcache_lock, as serialization is taken care in 655 * namespace.c 656 */ 657 static int __follow_mount(struct path *path) 658 { 659 int res = 0; 660 while (d_mountpoint(path->dentry)) { 661 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 662 if (!mounted) 663 break; 664 dput(path->dentry); 665 if (res) 666 mntput(path->mnt); 667 path->mnt = mounted; 668 path->dentry = dget(mounted->mnt_root); 669 res = 1; 670 } 671 return res; 672 } 673 674 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 675 { 676 while (d_mountpoint(*dentry)) { 677 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 678 if (!mounted) 679 break; 680 dput(*dentry); 681 mntput(*mnt); 682 *mnt = mounted; 683 *dentry = dget(mounted->mnt_root); 684 } 685 } 686 687 /* no need for dcache_lock, as serialization is taken care in 688 * namespace.c 689 */ 690 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 691 { 692 struct vfsmount *mounted; 693 694 mounted = lookup_mnt(*mnt, *dentry); 695 if (mounted) { 696 dput(*dentry); 697 mntput(*mnt); 698 *mnt = mounted; 699 *dentry = dget(mounted->mnt_root); 700 return 1; 701 } 702 return 0; 703 } 704 705 static __always_inline void follow_dotdot(struct nameidata *nd) 706 { 707 while(1) { 708 struct vfsmount *parent; 709 struct dentry *old = nd->dentry; 710 711 read_lock(¤t->fs->lock); 712 if (nd->dentry == current->fs->root && 713 nd->mnt == current->fs->rootmnt) { 714 read_unlock(¤t->fs->lock); 715 break; 716 } 717 read_unlock(¤t->fs->lock); 718 spin_lock(&dcache_lock); 719 if (nd->dentry != nd->mnt->mnt_root) { 720 nd->dentry = dget(nd->dentry->d_parent); 721 spin_unlock(&dcache_lock); 722 dput(old); 723 break; 724 } 725 spin_unlock(&dcache_lock); 726 spin_lock(&vfsmount_lock); 727 parent = nd->mnt->mnt_parent; 728 if (parent == nd->mnt) { 729 spin_unlock(&vfsmount_lock); 730 break; 731 } 732 mntget(parent); 733 nd->dentry = dget(nd->mnt->mnt_mountpoint); 734 spin_unlock(&vfsmount_lock); 735 dput(old); 736 mntput(nd->mnt); 737 nd->mnt = parent; 738 } 739 follow_mount(&nd->mnt, &nd->dentry); 740 } 741 742 /* 743 * It's more convoluted than I'd like it to be, but... it's still fairly 744 * small and for now I'd prefer to have fast path as straight as possible. 745 * It _is_ time-critical. 746 */ 747 static int do_lookup(struct nameidata *nd, struct qstr *name, 748 struct path *path) 749 { 750 struct vfsmount *mnt = nd->mnt; 751 struct dentry *dentry = __d_lookup(nd->dentry, name); 752 753 if (!dentry) 754 goto need_lookup; 755 if (dentry->d_op && dentry->d_op->d_revalidate) 756 goto need_revalidate; 757 done: 758 path->mnt = mnt; 759 path->dentry = dentry; 760 __follow_mount(path); 761 return 0; 762 763 need_lookup: 764 dentry = real_lookup(nd->dentry, name, nd); 765 if (IS_ERR(dentry)) 766 goto fail; 767 goto done; 768 769 need_revalidate: 770 if (dentry->d_op->d_revalidate(dentry, nd)) 771 goto done; 772 if (d_invalidate(dentry)) 773 goto done; 774 dput(dentry); 775 goto need_lookup; 776 777 fail: 778 return PTR_ERR(dentry); 779 } 780 781 /* 782 * Name resolution. 783 * This is the basic name resolution function, turning a pathname into 784 * the final dentry. We expect 'base' to be positive and a directory. 785 * 786 * Returns 0 and nd will have valid dentry and mnt on success. 787 * Returns error and drops reference to input namei data on failure. 788 */ 789 static fastcall int __link_path_walk(const char * name, struct nameidata *nd) 790 { 791 struct path next; 792 struct inode *inode; 793 int err; 794 unsigned int lookup_flags = nd->flags; 795 796 while (*name=='/') 797 name++; 798 if (!*name) 799 goto return_reval; 800 801 inode = nd->dentry->d_inode; 802 if (nd->depth) 803 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 804 805 /* At this point we know we have a real path component. */ 806 for(;;) { 807 unsigned long hash; 808 struct qstr this; 809 unsigned int c; 810 811 nd->flags |= LOOKUP_CONTINUE; 812 err = exec_permission_lite(inode, nd); 813 if (err == -EAGAIN) 814 err = vfs_permission(nd, MAY_EXEC); 815 if (err) 816 break; 817 818 this.name = name; 819 c = *(const unsigned char *)name; 820 821 hash = init_name_hash(); 822 do { 823 name++; 824 hash = partial_name_hash(c, hash); 825 c = *(const unsigned char *)name; 826 } while (c && (c != '/')); 827 this.len = name - (const char *) this.name; 828 this.hash = end_name_hash(hash); 829 830 /* remove trailing slashes? */ 831 if (!c) 832 goto last_component; 833 while (*++name == '/'); 834 if (!*name) 835 goto last_with_slashes; 836 837 /* 838 * "." and ".." are special - ".." especially so because it has 839 * to be able to know about the current root directory and 840 * parent relationships. 841 */ 842 if (this.name[0] == '.') switch (this.len) { 843 default: 844 break; 845 case 2: 846 if (this.name[1] != '.') 847 break; 848 follow_dotdot(nd); 849 inode = nd->dentry->d_inode; 850 /* fallthrough */ 851 case 1: 852 continue; 853 } 854 /* 855 * See if the low-level filesystem might want 856 * to use its own hash.. 857 */ 858 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 859 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 860 if (err < 0) 861 break; 862 } 863 /* This does the actual lookups.. */ 864 err = do_lookup(nd, &this, &next); 865 if (err) 866 break; 867 868 err = -ENOENT; 869 inode = next.dentry->d_inode; 870 if (!inode) 871 goto out_dput; 872 err = -ENOTDIR; 873 if (!inode->i_op) 874 goto out_dput; 875 876 if (inode->i_op->follow_link) { 877 err = do_follow_link(&next, nd); 878 if (err) 879 goto return_err; 880 err = -ENOENT; 881 inode = nd->dentry->d_inode; 882 if (!inode) 883 break; 884 err = -ENOTDIR; 885 if (!inode->i_op) 886 break; 887 } else 888 path_to_nameidata(&next, nd); 889 err = -ENOTDIR; 890 if (!inode->i_op->lookup) 891 break; 892 continue; 893 /* here ends the main loop */ 894 895 last_with_slashes: 896 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 897 last_component: 898 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 899 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 900 if (lookup_flags & LOOKUP_PARENT) 901 goto lookup_parent; 902 if (this.name[0] == '.') switch (this.len) { 903 default: 904 break; 905 case 2: 906 if (this.name[1] != '.') 907 break; 908 follow_dotdot(nd); 909 inode = nd->dentry->d_inode; 910 /* fallthrough */ 911 case 1: 912 goto return_reval; 913 } 914 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 915 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 916 if (err < 0) 917 break; 918 } 919 err = do_lookup(nd, &this, &next); 920 if (err) 921 break; 922 inode = next.dentry->d_inode; 923 if ((lookup_flags & LOOKUP_FOLLOW) 924 && inode && inode->i_op && inode->i_op->follow_link) { 925 err = do_follow_link(&next, nd); 926 if (err) 927 goto return_err; 928 inode = nd->dentry->d_inode; 929 } else 930 path_to_nameidata(&next, nd); 931 err = -ENOENT; 932 if (!inode) 933 break; 934 if (lookup_flags & LOOKUP_DIRECTORY) { 935 err = -ENOTDIR; 936 if (!inode->i_op || !inode->i_op->lookup) 937 break; 938 } 939 goto return_base; 940 lookup_parent: 941 nd->last = this; 942 nd->last_type = LAST_NORM; 943 if (this.name[0] != '.') 944 goto return_base; 945 if (this.len == 1) 946 nd->last_type = LAST_DOT; 947 else if (this.len == 2 && this.name[1] == '.') 948 nd->last_type = LAST_DOTDOT; 949 else 950 goto return_base; 951 return_reval: 952 /* 953 * We bypassed the ordinary revalidation routines. 954 * We may need to check the cached dentry for staleness. 955 */ 956 if (nd->dentry && nd->dentry->d_sb && 957 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 958 err = -ESTALE; 959 /* Note: we do not d_invalidate() */ 960 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd)) 961 break; 962 } 963 return_base: 964 return 0; 965 out_dput: 966 dput_path(&next, nd); 967 break; 968 } 969 path_release(nd); 970 return_err: 971 return err; 972 } 973 974 /* 975 * Wrapper to retry pathname resolution whenever the underlying 976 * file system returns an ESTALE. 977 * 978 * Retry the whole path once, forcing real lookup requests 979 * instead of relying on the dcache. 980 */ 981 int fastcall link_path_walk(const char *name, struct nameidata *nd) 982 { 983 struct nameidata save = *nd; 984 int result; 985 986 /* make sure the stuff we saved doesn't go away */ 987 dget(save.dentry); 988 mntget(save.mnt); 989 990 result = __link_path_walk(name, nd); 991 if (result == -ESTALE) { 992 *nd = save; 993 dget(nd->dentry); 994 mntget(nd->mnt); 995 nd->flags |= LOOKUP_REVAL; 996 result = __link_path_walk(name, nd); 997 } 998 999 dput(save.dentry); 1000 mntput(save.mnt); 1001 1002 return result; 1003 } 1004 1005 int fastcall path_walk(const char * name, struct nameidata *nd) 1006 { 1007 current->total_link_count = 0; 1008 return link_path_walk(name, nd); 1009 } 1010 1011 /* 1012 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if 1013 * everything is done. Returns 0 and drops input nd, if lookup failed; 1014 */ 1015 static int __emul_lookup_dentry(const char *name, struct nameidata *nd) 1016 { 1017 if (path_walk(name, nd)) 1018 return 0; /* something went wrong... */ 1019 1020 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) { 1021 struct dentry *old_dentry = nd->dentry; 1022 struct vfsmount *old_mnt = nd->mnt; 1023 struct qstr last = nd->last; 1024 int last_type = nd->last_type; 1025 /* 1026 * NAME was not found in alternate root or it's a directory. Try to find 1027 * it in the normal root: 1028 */ 1029 nd->last_type = LAST_ROOT; 1030 read_lock(¤t->fs->lock); 1031 nd->mnt = mntget(current->fs->rootmnt); 1032 nd->dentry = dget(current->fs->root); 1033 read_unlock(¤t->fs->lock); 1034 if (path_walk(name, nd) == 0) { 1035 if (nd->dentry->d_inode) { 1036 dput(old_dentry); 1037 mntput(old_mnt); 1038 return 1; 1039 } 1040 path_release(nd); 1041 } 1042 nd->dentry = old_dentry; 1043 nd->mnt = old_mnt; 1044 nd->last = last; 1045 nd->last_type = last_type; 1046 } 1047 return 1; 1048 } 1049 1050 void set_fs_altroot(void) 1051 { 1052 char *emul = __emul_prefix(); 1053 struct nameidata nd; 1054 struct vfsmount *mnt = NULL, *oldmnt; 1055 struct dentry *dentry = NULL, *olddentry; 1056 int err; 1057 1058 if (!emul) 1059 goto set_it; 1060 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd); 1061 if (!err) { 1062 mnt = nd.mnt; 1063 dentry = nd.dentry; 1064 } 1065 set_it: 1066 write_lock(¤t->fs->lock); 1067 oldmnt = current->fs->altrootmnt; 1068 olddentry = current->fs->altroot; 1069 current->fs->altrootmnt = mnt; 1070 current->fs->altroot = dentry; 1071 write_unlock(¤t->fs->lock); 1072 if (olddentry) { 1073 dput(olddentry); 1074 mntput(oldmnt); 1075 } 1076 } 1077 1078 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1079 static int fastcall do_path_lookup(int dfd, const char *name, 1080 unsigned int flags, struct nameidata *nd) 1081 { 1082 int retval = 0; 1083 int fput_needed; 1084 struct file *file; 1085 1086 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1087 nd->flags = flags; 1088 nd->depth = 0; 1089 1090 if (*name=='/') { 1091 read_lock(¤t->fs->lock); 1092 if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 1093 nd->mnt = mntget(current->fs->altrootmnt); 1094 nd->dentry = dget(current->fs->altroot); 1095 read_unlock(¤t->fs->lock); 1096 if (__emul_lookup_dentry(name,nd)) 1097 goto out; /* found in altroot */ 1098 read_lock(¤t->fs->lock); 1099 } 1100 nd->mnt = mntget(current->fs->rootmnt); 1101 nd->dentry = dget(current->fs->root); 1102 read_unlock(¤t->fs->lock); 1103 } else if (dfd == AT_FDCWD) { 1104 read_lock(¤t->fs->lock); 1105 nd->mnt = mntget(current->fs->pwdmnt); 1106 nd->dentry = dget(current->fs->pwd); 1107 read_unlock(¤t->fs->lock); 1108 } else { 1109 struct dentry *dentry; 1110 1111 file = fget_light(dfd, &fput_needed); 1112 retval = -EBADF; 1113 if (!file) 1114 goto out_fail; 1115 1116 dentry = file->f_dentry; 1117 1118 retval = -ENOTDIR; 1119 if (!S_ISDIR(dentry->d_inode->i_mode)) 1120 goto fput_fail; 1121 1122 retval = file_permission(file, MAY_EXEC); 1123 if (retval) 1124 goto fput_fail; 1125 1126 nd->mnt = mntget(file->f_vfsmnt); 1127 nd->dentry = dget(dentry); 1128 1129 fput_light(file, fput_needed); 1130 } 1131 current->total_link_count = 0; 1132 retval = link_path_walk(name, nd); 1133 out: 1134 if (likely(retval == 0)) { 1135 if (unlikely(!audit_dummy_context() && nd && nd->dentry && 1136 nd->dentry->d_inode)) 1137 audit_inode(name, nd->dentry->d_inode); 1138 } 1139 out_fail: 1140 return retval; 1141 1142 fput_fail: 1143 fput_light(file, fput_needed); 1144 goto out_fail; 1145 } 1146 1147 int fastcall path_lookup(const char *name, unsigned int flags, 1148 struct nameidata *nd) 1149 { 1150 return do_path_lookup(AT_FDCWD, name, flags, nd); 1151 } 1152 1153 static int __path_lookup_intent_open(int dfd, const char *name, 1154 unsigned int lookup_flags, struct nameidata *nd, 1155 int open_flags, int create_mode) 1156 { 1157 struct file *filp = get_empty_filp(); 1158 int err; 1159 1160 if (filp == NULL) 1161 return -ENFILE; 1162 nd->intent.open.file = filp; 1163 nd->intent.open.flags = open_flags; 1164 nd->intent.open.create_mode = create_mode; 1165 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1166 if (IS_ERR(nd->intent.open.file)) { 1167 if (err == 0) { 1168 err = PTR_ERR(nd->intent.open.file); 1169 path_release(nd); 1170 } 1171 } else if (err != 0) 1172 release_open_intent(nd); 1173 return err; 1174 } 1175 1176 /** 1177 * path_lookup_open - lookup a file path with open intent 1178 * @dfd: the directory to use as base, or AT_FDCWD 1179 * @name: pointer to file name 1180 * @lookup_flags: lookup intent flags 1181 * @nd: pointer to nameidata 1182 * @open_flags: open intent flags 1183 */ 1184 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1185 struct nameidata *nd, int open_flags) 1186 { 1187 return __path_lookup_intent_open(dfd, name, lookup_flags, nd, 1188 open_flags, 0); 1189 } 1190 1191 /** 1192 * path_lookup_create - lookup a file path with open + create intent 1193 * @dfd: the directory to use as base, or AT_FDCWD 1194 * @name: pointer to file name 1195 * @lookup_flags: lookup intent flags 1196 * @nd: pointer to nameidata 1197 * @open_flags: open intent flags 1198 * @create_mode: create intent flags 1199 */ 1200 static int path_lookup_create(int dfd, const char *name, 1201 unsigned int lookup_flags, struct nameidata *nd, 1202 int open_flags, int create_mode) 1203 { 1204 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE, 1205 nd, open_flags, create_mode); 1206 } 1207 1208 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags, 1209 struct nameidata *nd, int open_flags) 1210 { 1211 char *tmp = getname(name); 1212 int err = PTR_ERR(tmp); 1213 1214 if (!IS_ERR(tmp)) { 1215 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0); 1216 putname(tmp); 1217 } 1218 return err; 1219 } 1220 1221 /* 1222 * Restricted form of lookup. Doesn't follow links, single-component only, 1223 * needs parent already locked. Doesn't follow mounts. 1224 * SMP-safe. 1225 */ 1226 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd) 1227 { 1228 struct dentry * dentry; 1229 struct inode *inode; 1230 int err; 1231 1232 inode = base->d_inode; 1233 err = permission(inode, MAY_EXEC, nd); 1234 dentry = ERR_PTR(err); 1235 if (err) 1236 goto out; 1237 1238 /* 1239 * See if the low-level filesystem might want 1240 * to use its own hash.. 1241 */ 1242 if (base->d_op && base->d_op->d_hash) { 1243 err = base->d_op->d_hash(base, name); 1244 dentry = ERR_PTR(err); 1245 if (err < 0) 1246 goto out; 1247 } 1248 1249 dentry = cached_lookup(base, name, nd); 1250 if (!dentry) { 1251 struct dentry *new = d_alloc(base, name); 1252 dentry = ERR_PTR(-ENOMEM); 1253 if (!new) 1254 goto out; 1255 dentry = inode->i_op->lookup(inode, new, nd); 1256 if (!dentry) 1257 dentry = new; 1258 else 1259 dput(new); 1260 } 1261 out: 1262 return dentry; 1263 } 1264 1265 static struct dentry *lookup_hash(struct nameidata *nd) 1266 { 1267 return __lookup_hash(&nd->last, nd->dentry, nd); 1268 } 1269 1270 /* SMP-safe */ 1271 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len) 1272 { 1273 unsigned long hash; 1274 struct qstr this; 1275 unsigned int c; 1276 1277 this.name = name; 1278 this.len = len; 1279 if (!len) 1280 goto access; 1281 1282 hash = init_name_hash(); 1283 while (len--) { 1284 c = *(const unsigned char *)name++; 1285 if (c == '/' || c == '\0') 1286 goto access; 1287 hash = partial_name_hash(c, hash); 1288 } 1289 this.hash = end_name_hash(hash); 1290 1291 return __lookup_hash(&this, base, NULL); 1292 access: 1293 return ERR_PTR(-EACCES); 1294 } 1295 1296 /* 1297 * namei() 1298 * 1299 * is used by most simple commands to get the inode of a specified name. 1300 * Open, link etc use their own routines, but this is enough for things 1301 * like 'chmod' etc. 1302 * 1303 * namei exists in two versions: namei/lnamei. The only difference is 1304 * that namei follows links, while lnamei does not. 1305 * SMP-safe 1306 */ 1307 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags, 1308 struct nameidata *nd) 1309 { 1310 char *tmp = getname(name); 1311 int err = PTR_ERR(tmp); 1312 1313 if (!IS_ERR(tmp)) { 1314 err = do_path_lookup(dfd, tmp, flags, nd); 1315 putname(tmp); 1316 } 1317 return err; 1318 } 1319 1320 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd) 1321 { 1322 return __user_walk_fd(AT_FDCWD, name, flags, nd); 1323 } 1324 1325 /* 1326 * It's inline, so penalty for filesystems that don't use sticky bit is 1327 * minimal. 1328 */ 1329 static inline int check_sticky(struct inode *dir, struct inode *inode) 1330 { 1331 if (!(dir->i_mode & S_ISVTX)) 1332 return 0; 1333 if (inode->i_uid == current->fsuid) 1334 return 0; 1335 if (dir->i_uid == current->fsuid) 1336 return 0; 1337 return !capable(CAP_FOWNER); 1338 } 1339 1340 /* 1341 * Check whether we can remove a link victim from directory dir, check 1342 * whether the type of victim is right. 1343 * 1. We can't do it if dir is read-only (done in permission()) 1344 * 2. We should have write and exec permissions on dir 1345 * 3. We can't remove anything from append-only dir 1346 * 4. We can't do anything with immutable dir (done in permission()) 1347 * 5. If the sticky bit on dir is set we should either 1348 * a. be owner of dir, or 1349 * b. be owner of victim, or 1350 * c. have CAP_FOWNER capability 1351 * 6. If the victim is append-only or immutable we can't do antyhing with 1352 * links pointing to it. 1353 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1354 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1355 * 9. We can't remove a root or mountpoint. 1356 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1357 * nfs_async_unlink(). 1358 */ 1359 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1360 { 1361 int error; 1362 1363 if (!victim->d_inode) 1364 return -ENOENT; 1365 1366 BUG_ON(victim->d_parent->d_inode != dir); 1367 audit_inode_child(victim->d_name.name, victim->d_inode, dir); 1368 1369 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL); 1370 if (error) 1371 return error; 1372 if (IS_APPEND(dir)) 1373 return -EPERM; 1374 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1375 IS_IMMUTABLE(victim->d_inode)) 1376 return -EPERM; 1377 if (isdir) { 1378 if (!S_ISDIR(victim->d_inode->i_mode)) 1379 return -ENOTDIR; 1380 if (IS_ROOT(victim)) 1381 return -EBUSY; 1382 } else if (S_ISDIR(victim->d_inode->i_mode)) 1383 return -EISDIR; 1384 if (IS_DEADDIR(dir)) 1385 return -ENOENT; 1386 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1387 return -EBUSY; 1388 return 0; 1389 } 1390 1391 /* Check whether we can create an object with dentry child in directory 1392 * dir. 1393 * 1. We can't do it if child already exists (open has special treatment for 1394 * this case, but since we are inlined it's OK) 1395 * 2. We can't do it if dir is read-only (done in permission()) 1396 * 3. We should have write and exec permissions on dir 1397 * 4. We can't do it if dir is immutable (done in permission()) 1398 */ 1399 static inline int may_create(struct inode *dir, struct dentry *child, 1400 struct nameidata *nd) 1401 { 1402 if (child->d_inode) 1403 return -EEXIST; 1404 if (IS_DEADDIR(dir)) 1405 return -ENOENT; 1406 return permission(dir,MAY_WRITE | MAY_EXEC, nd); 1407 } 1408 1409 /* 1410 * O_DIRECTORY translates into forcing a directory lookup. 1411 */ 1412 static inline int lookup_flags(unsigned int f) 1413 { 1414 unsigned long retval = LOOKUP_FOLLOW; 1415 1416 if (f & O_NOFOLLOW) 1417 retval &= ~LOOKUP_FOLLOW; 1418 1419 if (f & O_DIRECTORY) 1420 retval |= LOOKUP_DIRECTORY; 1421 1422 return retval; 1423 } 1424 1425 /* 1426 * p1 and p2 should be directories on the same fs. 1427 */ 1428 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1429 { 1430 struct dentry *p; 1431 1432 if (p1 == p2) { 1433 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1434 return NULL; 1435 } 1436 1437 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1438 1439 for (p = p1; p->d_parent != p; p = p->d_parent) { 1440 if (p->d_parent == p2) { 1441 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1442 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1443 return p; 1444 } 1445 } 1446 1447 for (p = p2; p->d_parent != p; p = p->d_parent) { 1448 if (p->d_parent == p1) { 1449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1450 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1451 return p; 1452 } 1453 } 1454 1455 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1456 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1457 return NULL; 1458 } 1459 1460 void unlock_rename(struct dentry *p1, struct dentry *p2) 1461 { 1462 mutex_unlock(&p1->d_inode->i_mutex); 1463 if (p1 != p2) { 1464 mutex_unlock(&p2->d_inode->i_mutex); 1465 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1466 } 1467 } 1468 1469 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1470 struct nameidata *nd) 1471 { 1472 int error = may_create(dir, dentry, nd); 1473 1474 if (error) 1475 return error; 1476 1477 if (!dir->i_op || !dir->i_op->create) 1478 return -EACCES; /* shouldn't it be ENOSYS? */ 1479 mode &= S_IALLUGO; 1480 mode |= S_IFREG; 1481 error = security_inode_create(dir, dentry, mode); 1482 if (error) 1483 return error; 1484 DQUOT_INIT(dir); 1485 error = dir->i_op->create(dir, dentry, mode, nd); 1486 if (!error) 1487 fsnotify_create(dir, dentry); 1488 return error; 1489 } 1490 1491 int may_open(struct nameidata *nd, int acc_mode, int flag) 1492 { 1493 struct dentry *dentry = nd->dentry; 1494 struct inode *inode = dentry->d_inode; 1495 int error; 1496 1497 if (!inode) 1498 return -ENOENT; 1499 1500 if (S_ISLNK(inode->i_mode)) 1501 return -ELOOP; 1502 1503 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE)) 1504 return -EISDIR; 1505 1506 error = vfs_permission(nd, acc_mode); 1507 if (error) 1508 return error; 1509 1510 /* 1511 * FIFO's, sockets and device files are special: they don't 1512 * actually live on the filesystem itself, and as such you 1513 * can write to them even if the filesystem is read-only. 1514 */ 1515 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1516 flag &= ~O_TRUNC; 1517 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1518 if (nd->mnt->mnt_flags & MNT_NODEV) 1519 return -EACCES; 1520 1521 flag &= ~O_TRUNC; 1522 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE)) 1523 return -EROFS; 1524 /* 1525 * An append-only file must be opened in append mode for writing. 1526 */ 1527 if (IS_APPEND(inode)) { 1528 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1529 return -EPERM; 1530 if (flag & O_TRUNC) 1531 return -EPERM; 1532 } 1533 1534 /* O_NOATIME can only be set by the owner or superuser */ 1535 if (flag & O_NOATIME) 1536 if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER)) 1537 return -EPERM; 1538 1539 /* 1540 * Ensure there are no outstanding leases on the file. 1541 */ 1542 error = break_lease(inode, flag); 1543 if (error) 1544 return error; 1545 1546 if (flag & O_TRUNC) { 1547 error = get_write_access(inode); 1548 if (error) 1549 return error; 1550 1551 /* 1552 * Refuse to truncate files with mandatory locks held on them. 1553 */ 1554 error = locks_verify_locked(inode); 1555 if (!error) { 1556 DQUOT_INIT(inode); 1557 1558 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL); 1559 } 1560 put_write_access(inode); 1561 if (error) 1562 return error; 1563 } else 1564 if (flag & FMODE_WRITE) 1565 DQUOT_INIT(inode); 1566 1567 return 0; 1568 } 1569 1570 /* 1571 * open_namei() 1572 * 1573 * namei for open - this is in fact almost the whole open-routine. 1574 * 1575 * Note that the low bits of "flag" aren't the same as in the open 1576 * system call - they are 00 - no permissions needed 1577 * 01 - read permission needed 1578 * 10 - write permission needed 1579 * 11 - read/write permissions needed 1580 * which is a lot more logical, and also allows the "no perm" needed 1581 * for symlinks (where the permissions are checked later). 1582 * SMP-safe 1583 */ 1584 int open_namei(int dfd, const char *pathname, int flag, 1585 int mode, struct nameidata *nd) 1586 { 1587 int acc_mode, error; 1588 struct path path; 1589 struct dentry *dir; 1590 int count = 0; 1591 1592 acc_mode = ACC_MODE(flag); 1593 1594 /* O_TRUNC implies we need access checks for write permissions */ 1595 if (flag & O_TRUNC) 1596 acc_mode |= MAY_WRITE; 1597 1598 /* Allow the LSM permission hook to distinguish append 1599 access from general write access. */ 1600 if (flag & O_APPEND) 1601 acc_mode |= MAY_APPEND; 1602 1603 /* 1604 * The simplest case - just a plain lookup. 1605 */ 1606 if (!(flag & O_CREAT)) { 1607 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1608 nd, flag); 1609 if (error) 1610 return error; 1611 goto ok; 1612 } 1613 1614 /* 1615 * Create - we need to know the parent. 1616 */ 1617 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode); 1618 if (error) 1619 return error; 1620 1621 /* 1622 * We have the parent and last component. First of all, check 1623 * that we are not asked to creat(2) an obvious directory - that 1624 * will not do. 1625 */ 1626 error = -EISDIR; 1627 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len]) 1628 goto exit; 1629 1630 dir = nd->dentry; 1631 nd->flags &= ~LOOKUP_PARENT; 1632 mutex_lock(&dir->d_inode->i_mutex); 1633 path.dentry = lookup_hash(nd); 1634 path.mnt = nd->mnt; 1635 1636 do_last: 1637 error = PTR_ERR(path.dentry); 1638 if (IS_ERR(path.dentry)) { 1639 mutex_unlock(&dir->d_inode->i_mutex); 1640 goto exit; 1641 } 1642 1643 if (IS_ERR(nd->intent.open.file)) { 1644 mutex_unlock(&dir->d_inode->i_mutex); 1645 error = PTR_ERR(nd->intent.open.file); 1646 goto exit_dput; 1647 } 1648 1649 /* Negative dentry, just create the file */ 1650 if (!path.dentry->d_inode) { 1651 if (!IS_POSIXACL(dir->d_inode)) 1652 mode &= ~current->fs->umask; 1653 error = vfs_create(dir->d_inode, path.dentry, mode, nd); 1654 mutex_unlock(&dir->d_inode->i_mutex); 1655 dput(nd->dentry); 1656 nd->dentry = path.dentry; 1657 if (error) 1658 goto exit; 1659 /* Don't check for write permission, don't truncate */ 1660 acc_mode = 0; 1661 flag &= ~O_TRUNC; 1662 goto ok; 1663 } 1664 1665 /* 1666 * It already exists. 1667 */ 1668 mutex_unlock(&dir->d_inode->i_mutex); 1669 audit_inode_update(path.dentry->d_inode); 1670 1671 error = -EEXIST; 1672 if (flag & O_EXCL) 1673 goto exit_dput; 1674 1675 if (__follow_mount(&path)) { 1676 error = -ELOOP; 1677 if (flag & O_NOFOLLOW) 1678 goto exit_dput; 1679 } 1680 1681 error = -ENOENT; 1682 if (!path.dentry->d_inode) 1683 goto exit_dput; 1684 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) 1685 goto do_link; 1686 1687 path_to_nameidata(&path, nd); 1688 error = -EISDIR; 1689 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1690 goto exit; 1691 ok: 1692 error = may_open(nd, acc_mode, flag); 1693 if (error) 1694 goto exit; 1695 return 0; 1696 1697 exit_dput: 1698 dput_path(&path, nd); 1699 exit: 1700 if (!IS_ERR(nd->intent.open.file)) 1701 release_open_intent(nd); 1702 path_release(nd); 1703 return error; 1704 1705 do_link: 1706 error = -ELOOP; 1707 if (flag & O_NOFOLLOW) 1708 goto exit_dput; 1709 /* 1710 * This is subtle. Instead of calling do_follow_link() we do the 1711 * thing by hands. The reason is that this way we have zero link_count 1712 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1713 * After that we have the parent and last component, i.e. 1714 * we are in the same situation as after the first path_walk(). 1715 * Well, almost - if the last component is normal we get its copy 1716 * stored in nd->last.name and we will have to putname() it when we 1717 * are done. Procfs-like symlinks just set LAST_BIND. 1718 */ 1719 nd->flags |= LOOKUP_PARENT; 1720 error = security_inode_follow_link(path.dentry, nd); 1721 if (error) 1722 goto exit_dput; 1723 error = __do_follow_link(&path, nd); 1724 if (error) { 1725 /* Does someone understand code flow here? Or it is only 1726 * me so stupid? Anathema to whoever designed this non-sense 1727 * with "intent.open". 1728 */ 1729 release_open_intent(nd); 1730 return error; 1731 } 1732 nd->flags &= ~LOOKUP_PARENT; 1733 if (nd->last_type == LAST_BIND) 1734 goto ok; 1735 error = -EISDIR; 1736 if (nd->last_type != LAST_NORM) 1737 goto exit; 1738 if (nd->last.name[nd->last.len]) { 1739 __putname(nd->last.name); 1740 goto exit; 1741 } 1742 error = -ELOOP; 1743 if (count++==32) { 1744 __putname(nd->last.name); 1745 goto exit; 1746 } 1747 dir = nd->dentry; 1748 mutex_lock(&dir->d_inode->i_mutex); 1749 path.dentry = lookup_hash(nd); 1750 path.mnt = nd->mnt; 1751 __putname(nd->last.name); 1752 goto do_last; 1753 } 1754 1755 /** 1756 * lookup_create - lookup a dentry, creating it if it doesn't exist 1757 * @nd: nameidata info 1758 * @is_dir: directory flag 1759 * 1760 * Simple function to lookup and return a dentry and create it 1761 * if it doesn't exist. Is SMP-safe. 1762 * 1763 * Returns with nd->dentry->d_inode->i_mutex locked. 1764 */ 1765 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1766 { 1767 struct dentry *dentry = ERR_PTR(-EEXIST); 1768 1769 mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1770 /* 1771 * Yucky last component or no last component at all? 1772 * (foo/., foo/.., /////) 1773 */ 1774 if (nd->last_type != LAST_NORM) 1775 goto fail; 1776 nd->flags &= ~LOOKUP_PARENT; 1777 nd->flags |= LOOKUP_CREATE; 1778 nd->intent.open.flags = O_EXCL; 1779 1780 /* 1781 * Do the final lookup. 1782 */ 1783 dentry = lookup_hash(nd); 1784 if (IS_ERR(dentry)) 1785 goto fail; 1786 1787 /* 1788 * Special case - lookup gave negative, but... we had foo/bar/ 1789 * From the vfs_mknod() POV we just have a negative dentry - 1790 * all is fine. Let's be bastards - you had / on the end, you've 1791 * been asking for (non-existent) directory. -ENOENT for you. 1792 */ 1793 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode) 1794 goto enoent; 1795 return dentry; 1796 enoent: 1797 dput(dentry); 1798 dentry = ERR_PTR(-ENOENT); 1799 fail: 1800 return dentry; 1801 } 1802 EXPORT_SYMBOL_GPL(lookup_create); 1803 1804 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1805 { 1806 int error = may_create(dir, dentry, NULL); 1807 1808 if (error) 1809 return error; 1810 1811 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1812 return -EPERM; 1813 1814 if (!dir->i_op || !dir->i_op->mknod) 1815 return -EPERM; 1816 1817 error = security_inode_mknod(dir, dentry, mode, dev); 1818 if (error) 1819 return error; 1820 1821 DQUOT_INIT(dir); 1822 error = dir->i_op->mknod(dir, dentry, mode, dev); 1823 if (!error) 1824 fsnotify_create(dir, dentry); 1825 return error; 1826 } 1827 1828 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode, 1829 unsigned dev) 1830 { 1831 int error = 0; 1832 char * tmp; 1833 struct dentry * dentry; 1834 struct nameidata nd; 1835 1836 if (S_ISDIR(mode)) 1837 return -EPERM; 1838 tmp = getname(filename); 1839 if (IS_ERR(tmp)) 1840 return PTR_ERR(tmp); 1841 1842 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1843 if (error) 1844 goto out; 1845 dentry = lookup_create(&nd, 0); 1846 error = PTR_ERR(dentry); 1847 1848 if (!IS_POSIXACL(nd.dentry->d_inode)) 1849 mode &= ~current->fs->umask; 1850 if (!IS_ERR(dentry)) { 1851 switch (mode & S_IFMT) { 1852 case 0: case S_IFREG: 1853 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd); 1854 break; 1855 case S_IFCHR: case S_IFBLK: 1856 error = vfs_mknod(nd.dentry->d_inode,dentry,mode, 1857 new_decode_dev(dev)); 1858 break; 1859 case S_IFIFO: case S_IFSOCK: 1860 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0); 1861 break; 1862 case S_IFDIR: 1863 error = -EPERM; 1864 break; 1865 default: 1866 error = -EINVAL; 1867 } 1868 dput(dentry); 1869 } 1870 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1871 path_release(&nd); 1872 out: 1873 putname(tmp); 1874 1875 return error; 1876 } 1877 1878 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev) 1879 { 1880 return sys_mknodat(AT_FDCWD, filename, mode, dev); 1881 } 1882 1883 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1884 { 1885 int error = may_create(dir, dentry, NULL); 1886 1887 if (error) 1888 return error; 1889 1890 if (!dir->i_op || !dir->i_op->mkdir) 1891 return -EPERM; 1892 1893 mode &= (S_IRWXUGO|S_ISVTX); 1894 error = security_inode_mkdir(dir, dentry, mode); 1895 if (error) 1896 return error; 1897 1898 DQUOT_INIT(dir); 1899 error = dir->i_op->mkdir(dir, dentry, mode); 1900 if (!error) 1901 fsnotify_mkdir(dir, dentry); 1902 return error; 1903 } 1904 1905 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode) 1906 { 1907 int error = 0; 1908 char * tmp; 1909 1910 tmp = getname(pathname); 1911 error = PTR_ERR(tmp); 1912 if (!IS_ERR(tmp)) { 1913 struct dentry *dentry; 1914 struct nameidata nd; 1915 1916 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1917 if (error) 1918 goto out; 1919 dentry = lookup_create(&nd, 1); 1920 error = PTR_ERR(dentry); 1921 if (!IS_ERR(dentry)) { 1922 if (!IS_POSIXACL(nd.dentry->d_inode)) 1923 mode &= ~current->fs->umask; 1924 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode); 1925 dput(dentry); 1926 } 1927 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1928 path_release(&nd); 1929 out: 1930 putname(tmp); 1931 } 1932 1933 return error; 1934 } 1935 1936 asmlinkage long sys_mkdir(const char __user *pathname, int mode) 1937 { 1938 return sys_mkdirat(AT_FDCWD, pathname, mode); 1939 } 1940 1941 /* 1942 * We try to drop the dentry early: we should have 1943 * a usage count of 2 if we're the only user of this 1944 * dentry, and if that is true (possibly after pruning 1945 * the dcache), then we drop the dentry now. 1946 * 1947 * A low-level filesystem can, if it choses, legally 1948 * do a 1949 * 1950 * if (!d_unhashed(dentry)) 1951 * return -EBUSY; 1952 * 1953 * if it cannot handle the case of removing a directory 1954 * that is still in use by something else.. 1955 */ 1956 void dentry_unhash(struct dentry *dentry) 1957 { 1958 dget(dentry); 1959 if (atomic_read(&dentry->d_count)) 1960 shrink_dcache_parent(dentry); 1961 spin_lock(&dcache_lock); 1962 spin_lock(&dentry->d_lock); 1963 if (atomic_read(&dentry->d_count) == 2) 1964 __d_drop(dentry); 1965 spin_unlock(&dentry->d_lock); 1966 spin_unlock(&dcache_lock); 1967 } 1968 1969 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 1970 { 1971 int error = may_delete(dir, dentry, 1); 1972 1973 if (error) 1974 return error; 1975 1976 if (!dir->i_op || !dir->i_op->rmdir) 1977 return -EPERM; 1978 1979 DQUOT_INIT(dir); 1980 1981 mutex_lock(&dentry->d_inode->i_mutex); 1982 dentry_unhash(dentry); 1983 if (d_mountpoint(dentry)) 1984 error = -EBUSY; 1985 else { 1986 error = security_inode_rmdir(dir, dentry); 1987 if (!error) { 1988 error = dir->i_op->rmdir(dir, dentry); 1989 if (!error) 1990 dentry->d_inode->i_flags |= S_DEAD; 1991 } 1992 } 1993 mutex_unlock(&dentry->d_inode->i_mutex); 1994 if (!error) { 1995 d_delete(dentry); 1996 } 1997 dput(dentry); 1998 1999 return error; 2000 } 2001 2002 static long do_rmdir(int dfd, const char __user *pathname) 2003 { 2004 int error = 0; 2005 char * name; 2006 struct dentry *dentry; 2007 struct nameidata nd; 2008 2009 name = getname(pathname); 2010 if(IS_ERR(name)) 2011 return PTR_ERR(name); 2012 2013 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2014 if (error) 2015 goto exit; 2016 2017 switch(nd.last_type) { 2018 case LAST_DOTDOT: 2019 error = -ENOTEMPTY; 2020 goto exit1; 2021 case LAST_DOT: 2022 error = -EINVAL; 2023 goto exit1; 2024 case LAST_ROOT: 2025 error = -EBUSY; 2026 goto exit1; 2027 } 2028 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2029 dentry = lookup_hash(&nd); 2030 error = PTR_ERR(dentry); 2031 if (!IS_ERR(dentry)) { 2032 error = vfs_rmdir(nd.dentry->d_inode, dentry); 2033 dput(dentry); 2034 } 2035 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2036 exit1: 2037 path_release(&nd); 2038 exit: 2039 putname(name); 2040 return error; 2041 } 2042 2043 asmlinkage long sys_rmdir(const char __user *pathname) 2044 { 2045 return do_rmdir(AT_FDCWD, pathname); 2046 } 2047 2048 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2049 { 2050 int error = may_delete(dir, dentry, 0); 2051 2052 if (error) 2053 return error; 2054 2055 if (!dir->i_op || !dir->i_op->unlink) 2056 return -EPERM; 2057 2058 DQUOT_INIT(dir); 2059 2060 mutex_lock(&dentry->d_inode->i_mutex); 2061 if (d_mountpoint(dentry)) 2062 error = -EBUSY; 2063 else { 2064 error = security_inode_unlink(dir, dentry); 2065 if (!error) 2066 error = dir->i_op->unlink(dir, dentry); 2067 } 2068 mutex_unlock(&dentry->d_inode->i_mutex); 2069 2070 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2071 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2072 d_delete(dentry); 2073 } 2074 2075 return error; 2076 } 2077 2078 /* 2079 * Make sure that the actual truncation of the file will occur outside its 2080 * directory's i_mutex. Truncate can take a long time if there is a lot of 2081 * writeout happening, and we don't want to prevent access to the directory 2082 * while waiting on the I/O. 2083 */ 2084 static long do_unlinkat(int dfd, const char __user *pathname) 2085 { 2086 int error = 0; 2087 char * name; 2088 struct dentry *dentry; 2089 struct nameidata nd; 2090 struct inode *inode = NULL; 2091 2092 name = getname(pathname); 2093 if(IS_ERR(name)) 2094 return PTR_ERR(name); 2095 2096 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2097 if (error) 2098 goto exit; 2099 error = -EISDIR; 2100 if (nd.last_type != LAST_NORM) 2101 goto exit1; 2102 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2103 dentry = lookup_hash(&nd); 2104 error = PTR_ERR(dentry); 2105 if (!IS_ERR(dentry)) { 2106 /* Why not before? Because we want correct error value */ 2107 if (nd.last.name[nd.last.len]) 2108 goto slashes; 2109 inode = dentry->d_inode; 2110 if (inode) 2111 atomic_inc(&inode->i_count); 2112 error = vfs_unlink(nd.dentry->d_inode, dentry); 2113 exit2: 2114 dput(dentry); 2115 } 2116 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2117 if (inode) 2118 iput(inode); /* truncate the inode here */ 2119 exit1: 2120 path_release(&nd); 2121 exit: 2122 putname(name); 2123 return error; 2124 2125 slashes: 2126 error = !dentry->d_inode ? -ENOENT : 2127 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2128 goto exit2; 2129 } 2130 2131 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag) 2132 { 2133 if ((flag & ~AT_REMOVEDIR) != 0) 2134 return -EINVAL; 2135 2136 if (flag & AT_REMOVEDIR) 2137 return do_rmdir(dfd, pathname); 2138 2139 return do_unlinkat(dfd, pathname); 2140 } 2141 2142 asmlinkage long sys_unlink(const char __user *pathname) 2143 { 2144 return do_unlinkat(AT_FDCWD, pathname); 2145 } 2146 2147 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode) 2148 { 2149 int error = may_create(dir, dentry, NULL); 2150 2151 if (error) 2152 return error; 2153 2154 if (!dir->i_op || !dir->i_op->symlink) 2155 return -EPERM; 2156 2157 error = security_inode_symlink(dir, dentry, oldname); 2158 if (error) 2159 return error; 2160 2161 DQUOT_INIT(dir); 2162 error = dir->i_op->symlink(dir, dentry, oldname); 2163 if (!error) 2164 fsnotify_create(dir, dentry); 2165 return error; 2166 } 2167 2168 asmlinkage long sys_symlinkat(const char __user *oldname, 2169 int newdfd, const char __user *newname) 2170 { 2171 int error = 0; 2172 char * from; 2173 char * to; 2174 2175 from = getname(oldname); 2176 if(IS_ERR(from)) 2177 return PTR_ERR(from); 2178 to = getname(newname); 2179 error = PTR_ERR(to); 2180 if (!IS_ERR(to)) { 2181 struct dentry *dentry; 2182 struct nameidata nd; 2183 2184 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2185 if (error) 2186 goto out; 2187 dentry = lookup_create(&nd, 0); 2188 error = PTR_ERR(dentry); 2189 if (!IS_ERR(dentry)) { 2190 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO); 2191 dput(dentry); 2192 } 2193 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2194 path_release(&nd); 2195 out: 2196 putname(to); 2197 } 2198 putname(from); 2199 return error; 2200 } 2201 2202 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname) 2203 { 2204 return sys_symlinkat(oldname, AT_FDCWD, newname); 2205 } 2206 2207 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2208 { 2209 struct inode *inode = old_dentry->d_inode; 2210 int error; 2211 2212 if (!inode) 2213 return -ENOENT; 2214 2215 error = may_create(dir, new_dentry, NULL); 2216 if (error) 2217 return error; 2218 2219 if (dir->i_sb != inode->i_sb) 2220 return -EXDEV; 2221 2222 /* 2223 * A link to an append-only or immutable file cannot be created. 2224 */ 2225 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2226 return -EPERM; 2227 if (!dir->i_op || !dir->i_op->link) 2228 return -EPERM; 2229 if (S_ISDIR(old_dentry->d_inode->i_mode)) 2230 return -EPERM; 2231 2232 error = security_inode_link(old_dentry, dir, new_dentry); 2233 if (error) 2234 return error; 2235 2236 mutex_lock(&old_dentry->d_inode->i_mutex); 2237 DQUOT_INIT(dir); 2238 error = dir->i_op->link(old_dentry, dir, new_dentry); 2239 mutex_unlock(&old_dentry->d_inode->i_mutex); 2240 if (!error) 2241 fsnotify_create(dir, new_dentry); 2242 return error; 2243 } 2244 2245 /* 2246 * Hardlinks are often used in delicate situations. We avoid 2247 * security-related surprises by not following symlinks on the 2248 * newname. --KAB 2249 * 2250 * We don't follow them on the oldname either to be compatible 2251 * with linux 2.0, and to avoid hard-linking to directories 2252 * and other special files. --ADM 2253 */ 2254 asmlinkage long sys_linkat(int olddfd, const char __user *oldname, 2255 int newdfd, const char __user *newname, 2256 int flags) 2257 { 2258 struct dentry *new_dentry; 2259 struct nameidata nd, old_nd; 2260 int error; 2261 char * to; 2262 2263 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2264 return -EINVAL; 2265 2266 to = getname(newname); 2267 if (IS_ERR(to)) 2268 return PTR_ERR(to); 2269 2270 error = __user_walk_fd(olddfd, oldname, 2271 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2272 &old_nd); 2273 if (error) 2274 goto exit; 2275 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2276 if (error) 2277 goto out; 2278 error = -EXDEV; 2279 if (old_nd.mnt != nd.mnt) 2280 goto out_release; 2281 new_dentry = lookup_create(&nd, 0); 2282 error = PTR_ERR(new_dentry); 2283 if (!IS_ERR(new_dentry)) { 2284 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry); 2285 dput(new_dentry); 2286 } 2287 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2288 out_release: 2289 path_release(&nd); 2290 out: 2291 path_release(&old_nd); 2292 exit: 2293 putname(to); 2294 2295 return error; 2296 } 2297 2298 asmlinkage long sys_link(const char __user *oldname, const char __user *newname) 2299 { 2300 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2301 } 2302 2303 /* 2304 * The worst of all namespace operations - renaming directory. "Perverted" 2305 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2306 * Problems: 2307 * a) we can get into loop creation. Check is done in is_subdir(). 2308 * b) race potential - two innocent renames can create a loop together. 2309 * That's where 4.4 screws up. Current fix: serialization on 2310 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2311 * story. 2312 * c) we have to lock _three_ objects - parents and victim (if it exists). 2313 * And that - after we got ->i_mutex on parents (until then we don't know 2314 * whether the target exists). Solution: try to be smart with locking 2315 * order for inodes. We rely on the fact that tree topology may change 2316 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2317 * move will be locked. Thus we can rank directories by the tree 2318 * (ancestors first) and rank all non-directories after them. 2319 * That works since everybody except rename does "lock parent, lookup, 2320 * lock child" and rename is under ->s_vfs_rename_mutex. 2321 * HOWEVER, it relies on the assumption that any object with ->lookup() 2322 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2323 * we'd better make sure that there's no link(2) for them. 2324 * d) some filesystems don't support opened-but-unlinked directories, 2325 * either because of layout or because they are not ready to deal with 2326 * all cases correctly. The latter will be fixed (taking this sort of 2327 * stuff into VFS), but the former is not going away. Solution: the same 2328 * trick as in rmdir(). 2329 * e) conversion from fhandle to dentry may come in the wrong moment - when 2330 * we are removing the target. Solution: we will have to grab ->i_mutex 2331 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2332 * ->i_mutex on parents, which works but leads to some truely excessive 2333 * locking]. 2334 */ 2335 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2336 struct inode *new_dir, struct dentry *new_dentry) 2337 { 2338 int error = 0; 2339 struct inode *target; 2340 2341 /* 2342 * If we are going to change the parent - check write permissions, 2343 * we'll need to flip '..'. 2344 */ 2345 if (new_dir != old_dir) { 2346 error = permission(old_dentry->d_inode, MAY_WRITE, NULL); 2347 if (error) 2348 return error; 2349 } 2350 2351 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2352 if (error) 2353 return error; 2354 2355 target = new_dentry->d_inode; 2356 if (target) { 2357 mutex_lock(&target->i_mutex); 2358 dentry_unhash(new_dentry); 2359 } 2360 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2361 error = -EBUSY; 2362 else 2363 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2364 if (target) { 2365 if (!error) 2366 target->i_flags |= S_DEAD; 2367 mutex_unlock(&target->i_mutex); 2368 if (d_unhashed(new_dentry)) 2369 d_rehash(new_dentry); 2370 dput(new_dentry); 2371 } 2372 if (!error) 2373 d_move(old_dentry,new_dentry); 2374 return error; 2375 } 2376 2377 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2378 struct inode *new_dir, struct dentry *new_dentry) 2379 { 2380 struct inode *target; 2381 int error; 2382 2383 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2384 if (error) 2385 return error; 2386 2387 dget(new_dentry); 2388 target = new_dentry->d_inode; 2389 if (target) 2390 mutex_lock(&target->i_mutex); 2391 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2392 error = -EBUSY; 2393 else 2394 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2395 if (!error) { 2396 /* The following d_move() should become unconditional */ 2397 if (!(old_dir->i_sb->s_type->fs_flags & FS_ODD_RENAME)) 2398 d_move(old_dentry, new_dentry); 2399 } 2400 if (target) 2401 mutex_unlock(&target->i_mutex); 2402 dput(new_dentry); 2403 return error; 2404 } 2405 2406 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2407 struct inode *new_dir, struct dentry *new_dentry) 2408 { 2409 int error; 2410 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2411 const char *old_name; 2412 2413 if (old_dentry->d_inode == new_dentry->d_inode) 2414 return 0; 2415 2416 error = may_delete(old_dir, old_dentry, is_dir); 2417 if (error) 2418 return error; 2419 2420 if (!new_dentry->d_inode) 2421 error = may_create(new_dir, new_dentry, NULL); 2422 else 2423 error = may_delete(new_dir, new_dentry, is_dir); 2424 if (error) 2425 return error; 2426 2427 if (!old_dir->i_op || !old_dir->i_op->rename) 2428 return -EPERM; 2429 2430 DQUOT_INIT(old_dir); 2431 DQUOT_INIT(new_dir); 2432 2433 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2434 2435 if (is_dir) 2436 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2437 else 2438 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2439 if (!error) { 2440 const char *new_name = old_dentry->d_name.name; 2441 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2442 new_dentry->d_inode, old_dentry->d_inode); 2443 } 2444 fsnotify_oldname_free(old_name); 2445 2446 return error; 2447 } 2448 2449 static int do_rename(int olddfd, const char *oldname, 2450 int newdfd, const char *newname) 2451 { 2452 int error = 0; 2453 struct dentry * old_dir, * new_dir; 2454 struct dentry * old_dentry, *new_dentry; 2455 struct dentry * trap; 2456 struct nameidata oldnd, newnd; 2457 2458 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd); 2459 if (error) 2460 goto exit; 2461 2462 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd); 2463 if (error) 2464 goto exit1; 2465 2466 error = -EXDEV; 2467 if (oldnd.mnt != newnd.mnt) 2468 goto exit2; 2469 2470 old_dir = oldnd.dentry; 2471 error = -EBUSY; 2472 if (oldnd.last_type != LAST_NORM) 2473 goto exit2; 2474 2475 new_dir = newnd.dentry; 2476 if (newnd.last_type != LAST_NORM) 2477 goto exit2; 2478 2479 trap = lock_rename(new_dir, old_dir); 2480 2481 old_dentry = lookup_hash(&oldnd); 2482 error = PTR_ERR(old_dentry); 2483 if (IS_ERR(old_dentry)) 2484 goto exit3; 2485 /* source must exist */ 2486 error = -ENOENT; 2487 if (!old_dentry->d_inode) 2488 goto exit4; 2489 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2490 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2491 error = -ENOTDIR; 2492 if (oldnd.last.name[oldnd.last.len]) 2493 goto exit4; 2494 if (newnd.last.name[newnd.last.len]) 2495 goto exit4; 2496 } 2497 /* source should not be ancestor of target */ 2498 error = -EINVAL; 2499 if (old_dentry == trap) 2500 goto exit4; 2501 new_dentry = lookup_hash(&newnd); 2502 error = PTR_ERR(new_dentry); 2503 if (IS_ERR(new_dentry)) 2504 goto exit4; 2505 /* target should not be an ancestor of source */ 2506 error = -ENOTEMPTY; 2507 if (new_dentry == trap) 2508 goto exit5; 2509 2510 error = vfs_rename(old_dir->d_inode, old_dentry, 2511 new_dir->d_inode, new_dentry); 2512 exit5: 2513 dput(new_dentry); 2514 exit4: 2515 dput(old_dentry); 2516 exit3: 2517 unlock_rename(new_dir, old_dir); 2518 exit2: 2519 path_release(&newnd); 2520 exit1: 2521 path_release(&oldnd); 2522 exit: 2523 return error; 2524 } 2525 2526 asmlinkage long sys_renameat(int olddfd, const char __user *oldname, 2527 int newdfd, const char __user *newname) 2528 { 2529 int error; 2530 char * from; 2531 char * to; 2532 2533 from = getname(oldname); 2534 if(IS_ERR(from)) 2535 return PTR_ERR(from); 2536 to = getname(newname); 2537 error = PTR_ERR(to); 2538 if (!IS_ERR(to)) { 2539 error = do_rename(olddfd, from, newdfd, to); 2540 putname(to); 2541 } 2542 putname(from); 2543 return error; 2544 } 2545 2546 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname) 2547 { 2548 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2549 } 2550 2551 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2552 { 2553 int len; 2554 2555 len = PTR_ERR(link); 2556 if (IS_ERR(link)) 2557 goto out; 2558 2559 len = strlen(link); 2560 if (len > (unsigned) buflen) 2561 len = buflen; 2562 if (copy_to_user(buffer, link, len)) 2563 len = -EFAULT; 2564 out: 2565 return len; 2566 } 2567 2568 /* 2569 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2570 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2571 * using) it for any given inode is up to filesystem. 2572 */ 2573 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2574 { 2575 struct nameidata nd; 2576 void *cookie; 2577 2578 nd.depth = 0; 2579 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2580 if (!IS_ERR(cookie)) { 2581 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2582 if (dentry->d_inode->i_op->put_link) 2583 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2584 cookie = ERR_PTR(res); 2585 } 2586 return PTR_ERR(cookie); 2587 } 2588 2589 int vfs_follow_link(struct nameidata *nd, const char *link) 2590 { 2591 return __vfs_follow_link(nd, link); 2592 } 2593 2594 /* get the link contents into pagecache */ 2595 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2596 { 2597 struct page * page; 2598 struct address_space *mapping = dentry->d_inode->i_mapping; 2599 page = read_mapping_page(mapping, 0, NULL); 2600 if (IS_ERR(page)) 2601 goto sync_fail; 2602 wait_on_page_locked(page); 2603 if (!PageUptodate(page)) 2604 goto async_fail; 2605 *ppage = page; 2606 return kmap(page); 2607 2608 async_fail: 2609 page_cache_release(page); 2610 return ERR_PTR(-EIO); 2611 2612 sync_fail: 2613 return (char*)page; 2614 } 2615 2616 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2617 { 2618 struct page *page = NULL; 2619 char *s = page_getlink(dentry, &page); 2620 int res = vfs_readlink(dentry,buffer,buflen,s); 2621 if (page) { 2622 kunmap(page); 2623 page_cache_release(page); 2624 } 2625 return res; 2626 } 2627 2628 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2629 { 2630 struct page *page = NULL; 2631 nd_set_link(nd, page_getlink(dentry, &page)); 2632 return page; 2633 } 2634 2635 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2636 { 2637 struct page *page = cookie; 2638 2639 if (page) { 2640 kunmap(page); 2641 page_cache_release(page); 2642 } 2643 } 2644 2645 int __page_symlink(struct inode *inode, const char *symname, int len, 2646 gfp_t gfp_mask) 2647 { 2648 struct address_space *mapping = inode->i_mapping; 2649 struct page *page; 2650 int err = -ENOMEM; 2651 char *kaddr; 2652 2653 retry: 2654 page = find_or_create_page(mapping, 0, gfp_mask); 2655 if (!page) 2656 goto fail; 2657 err = mapping->a_ops->prepare_write(NULL, page, 0, len-1); 2658 if (err == AOP_TRUNCATED_PAGE) { 2659 page_cache_release(page); 2660 goto retry; 2661 } 2662 if (err) 2663 goto fail_map; 2664 kaddr = kmap_atomic(page, KM_USER0); 2665 memcpy(kaddr, symname, len-1); 2666 kunmap_atomic(kaddr, KM_USER0); 2667 err = mapping->a_ops->commit_write(NULL, page, 0, len-1); 2668 if (err == AOP_TRUNCATED_PAGE) { 2669 page_cache_release(page); 2670 goto retry; 2671 } 2672 if (err) 2673 goto fail_map; 2674 /* 2675 * Notice that we are _not_ going to block here - end of page is 2676 * unmapped, so this will only try to map the rest of page, see 2677 * that it is unmapped (typically even will not look into inode - 2678 * ->i_size will be enough for everything) and zero it out. 2679 * OTOH it's obviously correct and should make the page up-to-date. 2680 */ 2681 if (!PageUptodate(page)) { 2682 err = mapping->a_ops->readpage(NULL, page); 2683 if (err != AOP_TRUNCATED_PAGE) 2684 wait_on_page_locked(page); 2685 } else { 2686 unlock_page(page); 2687 } 2688 page_cache_release(page); 2689 if (err < 0) 2690 goto fail; 2691 mark_inode_dirty(inode); 2692 return 0; 2693 fail_map: 2694 unlock_page(page); 2695 page_cache_release(page); 2696 fail: 2697 return err; 2698 } 2699 2700 int page_symlink(struct inode *inode, const char *symname, int len) 2701 { 2702 return __page_symlink(inode, symname, len, 2703 mapping_gfp_mask(inode->i_mapping)); 2704 } 2705 2706 struct inode_operations page_symlink_inode_operations = { 2707 .readlink = generic_readlink, 2708 .follow_link = page_follow_link_light, 2709 .put_link = page_put_link, 2710 }; 2711 2712 EXPORT_SYMBOL(__user_walk); 2713 EXPORT_SYMBOL(__user_walk_fd); 2714 EXPORT_SYMBOL(follow_down); 2715 EXPORT_SYMBOL(follow_up); 2716 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2717 EXPORT_SYMBOL(getname); 2718 EXPORT_SYMBOL(lock_rename); 2719 EXPORT_SYMBOL(lookup_one_len); 2720 EXPORT_SYMBOL(page_follow_link_light); 2721 EXPORT_SYMBOL(page_put_link); 2722 EXPORT_SYMBOL(page_readlink); 2723 EXPORT_SYMBOL(__page_symlink); 2724 EXPORT_SYMBOL(page_symlink); 2725 EXPORT_SYMBOL(page_symlink_inode_operations); 2726 EXPORT_SYMBOL(path_lookup); 2727 EXPORT_SYMBOL(path_release); 2728 EXPORT_SYMBOL(path_walk); 2729 EXPORT_SYMBOL(permission); 2730 EXPORT_SYMBOL(vfs_permission); 2731 EXPORT_SYMBOL(file_permission); 2732 EXPORT_SYMBOL(unlock_rename); 2733 EXPORT_SYMBOL(vfs_create); 2734 EXPORT_SYMBOL(vfs_follow_link); 2735 EXPORT_SYMBOL(vfs_link); 2736 EXPORT_SYMBOL(vfs_mkdir); 2737 EXPORT_SYMBOL(vfs_mknod); 2738 EXPORT_SYMBOL(generic_permission); 2739 EXPORT_SYMBOL(vfs_readlink); 2740 EXPORT_SYMBOL(vfs_rename); 2741 EXPORT_SYMBOL(vfs_rmdir); 2742 EXPORT_SYMBOL(vfs_symlink); 2743 EXPORT_SYMBOL(vfs_unlink); 2744 EXPORT_SYMBOL(dentry_unhash); 2745 EXPORT_SYMBOL(generic_readlink); 2746