xref: /linux/fs/namei.c (revision edc7616c307ad315159a8aa050142237f524e079)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask,
173 		int (*check_acl)(struct inode *inode, int mask))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission  -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  *
206  * Used to check for read/write/execute permissions on a file.
207  * We use "fsuid" for this, letting us set arbitrary permissions
208  * for filesystem access without changing the "normal" uids which
209  * are used for other things..
210  */
211 int generic_permission(struct inode *inode, int mask,
212 		int (*check_acl)(struct inode *inode, int mask))
213 {
214 	int ret;
215 
216 	/*
217 	 * Do the basic POSIX ACL permission checks.
218 	 */
219 	ret = acl_permission_check(inode, mask, check_acl);
220 	if (ret != -EACCES)
221 		return ret;
222 
223 	/*
224 	 * Read/write DACs are always overridable.
225 	 * Executable DACs are overridable if at least one exec bit is set.
226 	 */
227 	if (!(mask & MAY_EXEC) || execute_ok(inode))
228 		if (capable(CAP_DAC_OVERRIDE))
229 			return 0;
230 
231 	/*
232 	 * Searching includes executable on directories, else just read.
233 	 */
234 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 		if (capable(CAP_DAC_READ_SEARCH))
237 			return 0;
238 
239 	return -EACCES;
240 }
241 
242 /**
243  * inode_permission  -  check for access rights to a given inode
244  * @inode:	inode to check permission on
245  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246  *
247  * Used to check for read/write/execute permissions on an inode.
248  * We use "fsuid" for this, letting us set arbitrary permissions
249  * for filesystem access without changing the "normal" uids which
250  * are used for other things.
251  */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 	int retval;
255 
256 	if (mask & MAY_WRITE) {
257 		umode_t mode = inode->i_mode;
258 
259 		/*
260 		 * Nobody gets write access to a read-only fs.
261 		 */
262 		if (IS_RDONLY(inode) &&
263 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 			return -EROFS;
265 
266 		/*
267 		 * Nobody gets write access to an immutable file.
268 		 */
269 		if (IS_IMMUTABLE(inode))
270 			return -EACCES;
271 	}
272 
273 	if (inode->i_op->permission)
274 		retval = inode->i_op->permission(inode, mask);
275 	else
276 		retval = generic_permission(inode, mask, inode->i_op->check_acl);
277 
278 	if (retval)
279 		return retval;
280 
281 	retval = devcgroup_inode_permission(inode, mask);
282 	if (retval)
283 		return retval;
284 
285 	return security_inode_permission(inode,
286 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
287 }
288 
289 /**
290  * file_permission  -  check for additional access rights to a given file
291  * @file:	file to check access rights for
292  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
293  *
294  * Used to check for read/write/execute permissions on an already opened
295  * file.
296  *
297  * Note:
298  *	Do not use this function in new code.  All access checks should
299  *	be done using inode_permission().
300  */
301 int file_permission(struct file *file, int mask)
302 {
303 	return inode_permission(file->f_path.dentry->d_inode, mask);
304 }
305 
306 /*
307  * get_write_access() gets write permission for a file.
308  * put_write_access() releases this write permission.
309  * This is used for regular files.
310  * We cannot support write (and maybe mmap read-write shared) accesses and
311  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
312  * can have the following values:
313  * 0: no writers, no VM_DENYWRITE mappings
314  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
315  * > 0: (i_writecount) users are writing to the file.
316  *
317  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
318  * except for the cases where we don't hold i_writecount yet. Then we need to
319  * use {get,deny}_write_access() - these functions check the sign and refuse
320  * to do the change if sign is wrong. Exclusion between them is provided by
321  * the inode->i_lock spinlock.
322  */
323 
324 int get_write_access(struct inode * inode)
325 {
326 	spin_lock(&inode->i_lock);
327 	if (atomic_read(&inode->i_writecount) < 0) {
328 		spin_unlock(&inode->i_lock);
329 		return -ETXTBSY;
330 	}
331 	atomic_inc(&inode->i_writecount);
332 	spin_unlock(&inode->i_lock);
333 
334 	return 0;
335 }
336 
337 int deny_write_access(struct file * file)
338 {
339 	struct inode *inode = file->f_path.dentry->d_inode;
340 
341 	spin_lock(&inode->i_lock);
342 	if (atomic_read(&inode->i_writecount) > 0) {
343 		spin_unlock(&inode->i_lock);
344 		return -ETXTBSY;
345 	}
346 	atomic_dec(&inode->i_writecount);
347 	spin_unlock(&inode->i_lock);
348 
349 	return 0;
350 }
351 
352 /**
353  * path_get - get a reference to a path
354  * @path: path to get the reference to
355  *
356  * Given a path increment the reference count to the dentry and the vfsmount.
357  */
358 void path_get(struct path *path)
359 {
360 	mntget(path->mnt);
361 	dget(path->dentry);
362 }
363 EXPORT_SYMBOL(path_get);
364 
365 /**
366  * path_put - put a reference to a path
367  * @path: path to put the reference to
368  *
369  * Given a path decrement the reference count to the dentry and the vfsmount.
370  */
371 void path_put(struct path *path)
372 {
373 	dput(path->dentry);
374 	mntput(path->mnt);
375 }
376 EXPORT_SYMBOL(path_put);
377 
378 /**
379  * release_open_intent - free up open intent resources
380  * @nd: pointer to nameidata
381  */
382 void release_open_intent(struct nameidata *nd)
383 {
384 	if (nd->intent.open.file->f_path.dentry == NULL)
385 		put_filp(nd->intent.open.file);
386 	else
387 		fput(nd->intent.open.file);
388 }
389 
390 static inline struct dentry *
391 do_revalidate(struct dentry *dentry, struct nameidata *nd)
392 {
393 	int status = dentry->d_op->d_revalidate(dentry, nd);
394 	if (unlikely(status <= 0)) {
395 		/*
396 		 * The dentry failed validation.
397 		 * If d_revalidate returned 0 attempt to invalidate
398 		 * the dentry otherwise d_revalidate is asking us
399 		 * to return a fail status.
400 		 */
401 		if (!status) {
402 			if (!d_invalidate(dentry)) {
403 				dput(dentry);
404 				dentry = NULL;
405 			}
406 		} else {
407 			dput(dentry);
408 			dentry = ERR_PTR(status);
409 		}
410 	}
411 	return dentry;
412 }
413 
414 /*
415  * force_reval_path - force revalidation of a dentry
416  *
417  * In some situations the path walking code will trust dentries without
418  * revalidating them. This causes problems for filesystems that depend on
419  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
420  * (which indicates that it's possible for the dentry to go stale), force
421  * a d_revalidate call before proceeding.
422  *
423  * Returns 0 if the revalidation was successful. If the revalidation fails,
424  * either return the error returned by d_revalidate or -ESTALE if the
425  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
426  * invalidate the dentry. It's up to the caller to handle putting references
427  * to the path if necessary.
428  */
429 static int
430 force_reval_path(struct path *path, struct nameidata *nd)
431 {
432 	int status;
433 	struct dentry *dentry = path->dentry;
434 
435 	/*
436 	 * only check on filesystems where it's possible for the dentry to
437 	 * become stale. It's assumed that if this flag is set then the
438 	 * d_revalidate op will also be defined.
439 	 */
440 	if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
441 		return 0;
442 
443 	status = dentry->d_op->d_revalidate(dentry, nd);
444 	if (status > 0)
445 		return 0;
446 
447 	if (!status) {
448 		d_invalidate(dentry);
449 		status = -ESTALE;
450 	}
451 	return status;
452 }
453 
454 /*
455  * Short-cut version of permission(), for calling on directories
456  * during pathname resolution.  Combines parts of permission()
457  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
458  *
459  * If appropriate, check DAC only.  If not appropriate, or
460  * short-cut DAC fails, then call ->permission() to do more
461  * complete permission check.
462  */
463 static int exec_permission(struct inode *inode)
464 {
465 	int ret;
466 
467 	if (inode->i_op->permission) {
468 		ret = inode->i_op->permission(inode, MAY_EXEC);
469 		if (!ret)
470 			goto ok;
471 		return ret;
472 	}
473 	ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
474 	if (!ret)
475 		goto ok;
476 
477 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
478 		goto ok;
479 
480 	return ret;
481 ok:
482 	return security_inode_permission(inode, MAY_EXEC);
483 }
484 
485 static __always_inline void set_root(struct nameidata *nd)
486 {
487 	if (!nd->root.mnt) {
488 		struct fs_struct *fs = current->fs;
489 		read_lock(&fs->lock);
490 		nd->root = fs->root;
491 		path_get(&nd->root);
492 		read_unlock(&fs->lock);
493 	}
494 }
495 
496 static int link_path_walk(const char *, struct nameidata *);
497 
498 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
499 {
500 	if (IS_ERR(link))
501 		goto fail;
502 
503 	if (*link == '/') {
504 		set_root(nd);
505 		path_put(&nd->path);
506 		nd->path = nd->root;
507 		path_get(&nd->root);
508 	}
509 
510 	return link_path_walk(link, nd);
511 fail:
512 	path_put(&nd->path);
513 	return PTR_ERR(link);
514 }
515 
516 static void path_put_conditional(struct path *path, struct nameidata *nd)
517 {
518 	dput(path->dentry);
519 	if (path->mnt != nd->path.mnt)
520 		mntput(path->mnt);
521 }
522 
523 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
524 {
525 	dput(nd->path.dentry);
526 	if (nd->path.mnt != path->mnt)
527 		mntput(nd->path.mnt);
528 	nd->path.mnt = path->mnt;
529 	nd->path.dentry = path->dentry;
530 }
531 
532 static __always_inline int
533 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
534 {
535 	int error;
536 	struct dentry *dentry = path->dentry;
537 
538 	touch_atime(path->mnt, dentry);
539 	nd_set_link(nd, NULL);
540 
541 	if (path->mnt != nd->path.mnt) {
542 		path_to_nameidata(path, nd);
543 		dget(dentry);
544 	}
545 	mntget(path->mnt);
546 	nd->last_type = LAST_BIND;
547 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
548 	error = PTR_ERR(*p);
549 	if (!IS_ERR(*p)) {
550 		char *s = nd_get_link(nd);
551 		error = 0;
552 		if (s)
553 			error = __vfs_follow_link(nd, s);
554 		else if (nd->last_type == LAST_BIND) {
555 			error = force_reval_path(&nd->path, nd);
556 			if (error)
557 				path_put(&nd->path);
558 		}
559 	}
560 	return error;
561 }
562 
563 /*
564  * This limits recursive symlink follows to 8, while
565  * limiting consecutive symlinks to 40.
566  *
567  * Without that kind of total limit, nasty chains of consecutive
568  * symlinks can cause almost arbitrarily long lookups.
569  */
570 static inline int do_follow_link(struct path *path, struct nameidata *nd)
571 {
572 	void *cookie;
573 	int err = -ELOOP;
574 	if (current->link_count >= MAX_NESTED_LINKS)
575 		goto loop;
576 	if (current->total_link_count >= 40)
577 		goto loop;
578 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
579 	cond_resched();
580 	err = security_inode_follow_link(path->dentry, nd);
581 	if (err)
582 		goto loop;
583 	current->link_count++;
584 	current->total_link_count++;
585 	nd->depth++;
586 	err = __do_follow_link(path, nd, &cookie);
587 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
588 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
589 	path_put(path);
590 	current->link_count--;
591 	nd->depth--;
592 	return err;
593 loop:
594 	path_put_conditional(path, nd);
595 	path_put(&nd->path);
596 	return err;
597 }
598 
599 int follow_up(struct path *path)
600 {
601 	struct vfsmount *parent;
602 	struct dentry *mountpoint;
603 	spin_lock(&vfsmount_lock);
604 	parent = path->mnt->mnt_parent;
605 	if (parent == path->mnt) {
606 		spin_unlock(&vfsmount_lock);
607 		return 0;
608 	}
609 	mntget(parent);
610 	mountpoint = dget(path->mnt->mnt_mountpoint);
611 	spin_unlock(&vfsmount_lock);
612 	dput(path->dentry);
613 	path->dentry = mountpoint;
614 	mntput(path->mnt);
615 	path->mnt = parent;
616 	return 1;
617 }
618 
619 /* no need for dcache_lock, as serialization is taken care in
620  * namespace.c
621  */
622 static int __follow_mount(struct path *path)
623 {
624 	int res = 0;
625 	while (d_mountpoint(path->dentry)) {
626 		struct vfsmount *mounted = lookup_mnt(path);
627 		if (!mounted)
628 			break;
629 		dput(path->dentry);
630 		if (res)
631 			mntput(path->mnt);
632 		path->mnt = mounted;
633 		path->dentry = dget(mounted->mnt_root);
634 		res = 1;
635 	}
636 	return res;
637 }
638 
639 static void follow_mount(struct path *path)
640 {
641 	while (d_mountpoint(path->dentry)) {
642 		struct vfsmount *mounted = lookup_mnt(path);
643 		if (!mounted)
644 			break;
645 		dput(path->dentry);
646 		mntput(path->mnt);
647 		path->mnt = mounted;
648 		path->dentry = dget(mounted->mnt_root);
649 	}
650 }
651 
652 /* no need for dcache_lock, as serialization is taken care in
653  * namespace.c
654  */
655 int follow_down(struct path *path)
656 {
657 	struct vfsmount *mounted;
658 
659 	mounted = lookup_mnt(path);
660 	if (mounted) {
661 		dput(path->dentry);
662 		mntput(path->mnt);
663 		path->mnt = mounted;
664 		path->dentry = dget(mounted->mnt_root);
665 		return 1;
666 	}
667 	return 0;
668 }
669 
670 static __always_inline void follow_dotdot(struct nameidata *nd)
671 {
672 	set_root(nd);
673 
674 	while(1) {
675 		struct dentry *old = nd->path.dentry;
676 
677 		if (nd->path.dentry == nd->root.dentry &&
678 		    nd->path.mnt == nd->root.mnt) {
679 			break;
680 		}
681 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
682 			/* rare case of legitimate dget_parent()... */
683 			nd->path.dentry = dget_parent(nd->path.dentry);
684 			dput(old);
685 			break;
686 		}
687 		if (!follow_up(&nd->path))
688 			break;
689 	}
690 	follow_mount(&nd->path);
691 }
692 
693 /*
694  *  It's more convoluted than I'd like it to be, but... it's still fairly
695  *  small and for now I'd prefer to have fast path as straight as possible.
696  *  It _is_ time-critical.
697  */
698 static int do_lookup(struct nameidata *nd, struct qstr *name,
699 		     struct path *path)
700 {
701 	struct vfsmount *mnt = nd->path.mnt;
702 	struct dentry *dentry, *parent;
703 	struct inode *dir;
704 	/*
705 	 * See if the low-level filesystem might want
706 	 * to use its own hash..
707 	 */
708 	if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
709 		int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
710 		if (err < 0)
711 			return err;
712 	}
713 
714 	dentry = __d_lookup(nd->path.dentry, name);
715 	if (!dentry)
716 		goto need_lookup;
717 	if (dentry->d_op && dentry->d_op->d_revalidate)
718 		goto need_revalidate;
719 done:
720 	path->mnt = mnt;
721 	path->dentry = dentry;
722 	__follow_mount(path);
723 	return 0;
724 
725 need_lookup:
726 	parent = nd->path.dentry;
727 	dir = parent->d_inode;
728 
729 	mutex_lock(&dir->i_mutex);
730 	/*
731 	 * First re-do the cached lookup just in case it was created
732 	 * while we waited for the directory semaphore..
733 	 *
734 	 * FIXME! This could use version numbering or similar to
735 	 * avoid unnecessary cache lookups.
736 	 *
737 	 * The "dcache_lock" is purely to protect the RCU list walker
738 	 * from concurrent renames at this point (we mustn't get false
739 	 * negatives from the RCU list walk here, unlike the optimistic
740 	 * fast walk).
741 	 *
742 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
743 	 */
744 	dentry = d_lookup(parent, name);
745 	if (!dentry) {
746 		struct dentry *new;
747 
748 		/* Don't create child dentry for a dead directory. */
749 		dentry = ERR_PTR(-ENOENT);
750 		if (IS_DEADDIR(dir))
751 			goto out_unlock;
752 
753 		new = d_alloc(parent, name);
754 		dentry = ERR_PTR(-ENOMEM);
755 		if (new) {
756 			dentry = dir->i_op->lookup(dir, new, nd);
757 			if (dentry)
758 				dput(new);
759 			else
760 				dentry = new;
761 		}
762 out_unlock:
763 		mutex_unlock(&dir->i_mutex);
764 		if (IS_ERR(dentry))
765 			goto fail;
766 		goto done;
767 	}
768 
769 	/*
770 	 * Uhhuh! Nasty case: the cache was re-populated while
771 	 * we waited on the semaphore. Need to revalidate.
772 	 */
773 	mutex_unlock(&dir->i_mutex);
774 	if (dentry->d_op && dentry->d_op->d_revalidate) {
775 		dentry = do_revalidate(dentry, nd);
776 		if (!dentry)
777 			dentry = ERR_PTR(-ENOENT);
778 	}
779 	if (IS_ERR(dentry))
780 		goto fail;
781 	goto done;
782 
783 need_revalidate:
784 	dentry = do_revalidate(dentry, nd);
785 	if (!dentry)
786 		goto need_lookup;
787 	if (IS_ERR(dentry))
788 		goto fail;
789 	goto done;
790 
791 fail:
792 	return PTR_ERR(dentry);
793 }
794 
795 /*
796  * This is a temporary kludge to deal with "automount" symlinks; proper
797  * solution is to trigger them on follow_mount(), so that do_lookup()
798  * would DTRT.  To be killed before 2.6.34-final.
799  */
800 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
801 {
802 	return inode && unlikely(inode->i_op->follow_link) &&
803 		((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
804 }
805 
806 /*
807  * Name resolution.
808  * This is the basic name resolution function, turning a pathname into
809  * the final dentry. We expect 'base' to be positive and a directory.
810  *
811  * Returns 0 and nd will have valid dentry and mnt on success.
812  * Returns error and drops reference to input namei data on failure.
813  */
814 static int link_path_walk(const char *name, struct nameidata *nd)
815 {
816 	struct path next;
817 	struct inode *inode;
818 	int err;
819 	unsigned int lookup_flags = nd->flags;
820 
821 	while (*name=='/')
822 		name++;
823 	if (!*name)
824 		goto return_reval;
825 
826 	inode = nd->path.dentry->d_inode;
827 	if (nd->depth)
828 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
829 
830 	/* At this point we know we have a real path component. */
831 	for(;;) {
832 		unsigned long hash;
833 		struct qstr this;
834 		unsigned int c;
835 
836 		nd->flags |= LOOKUP_CONTINUE;
837 		err = exec_permission(inode);
838  		if (err)
839 			break;
840 
841 		this.name = name;
842 		c = *(const unsigned char *)name;
843 
844 		hash = init_name_hash();
845 		do {
846 			name++;
847 			hash = partial_name_hash(c, hash);
848 			c = *(const unsigned char *)name;
849 		} while (c && (c != '/'));
850 		this.len = name - (const char *) this.name;
851 		this.hash = end_name_hash(hash);
852 
853 		/* remove trailing slashes? */
854 		if (!c)
855 			goto last_component;
856 		while (*++name == '/');
857 		if (!*name)
858 			goto last_with_slashes;
859 
860 		/*
861 		 * "." and ".." are special - ".." especially so because it has
862 		 * to be able to know about the current root directory and
863 		 * parent relationships.
864 		 */
865 		if (this.name[0] == '.') switch (this.len) {
866 			default:
867 				break;
868 			case 2:
869 				if (this.name[1] != '.')
870 					break;
871 				follow_dotdot(nd);
872 				inode = nd->path.dentry->d_inode;
873 				/* fallthrough */
874 			case 1:
875 				continue;
876 		}
877 		/* This does the actual lookups.. */
878 		err = do_lookup(nd, &this, &next);
879 		if (err)
880 			break;
881 
882 		err = -ENOENT;
883 		inode = next.dentry->d_inode;
884 		if (!inode)
885 			goto out_dput;
886 
887 		if (inode->i_op->follow_link) {
888 			err = do_follow_link(&next, nd);
889 			if (err)
890 				goto return_err;
891 			err = -ENOENT;
892 			inode = nd->path.dentry->d_inode;
893 			if (!inode)
894 				break;
895 		} else
896 			path_to_nameidata(&next, nd);
897 		err = -ENOTDIR;
898 		if (!inode->i_op->lookup)
899 			break;
900 		continue;
901 		/* here ends the main loop */
902 
903 last_with_slashes:
904 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
905 last_component:
906 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
907 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
908 		if (lookup_flags & LOOKUP_PARENT)
909 			goto lookup_parent;
910 		if (this.name[0] == '.') switch (this.len) {
911 			default:
912 				break;
913 			case 2:
914 				if (this.name[1] != '.')
915 					break;
916 				follow_dotdot(nd);
917 				inode = nd->path.dentry->d_inode;
918 				/* fallthrough */
919 			case 1:
920 				goto return_reval;
921 		}
922 		err = do_lookup(nd, &this, &next);
923 		if (err)
924 			break;
925 		inode = next.dentry->d_inode;
926 		if (follow_on_final(inode, lookup_flags)) {
927 			err = do_follow_link(&next, nd);
928 			if (err)
929 				goto return_err;
930 			inode = nd->path.dentry->d_inode;
931 		} else
932 			path_to_nameidata(&next, nd);
933 		err = -ENOENT;
934 		if (!inode)
935 			break;
936 		if (lookup_flags & LOOKUP_DIRECTORY) {
937 			err = -ENOTDIR;
938 			if (!inode->i_op->lookup)
939 				break;
940 		}
941 		goto return_base;
942 lookup_parent:
943 		nd->last = this;
944 		nd->last_type = LAST_NORM;
945 		if (this.name[0] != '.')
946 			goto return_base;
947 		if (this.len == 1)
948 			nd->last_type = LAST_DOT;
949 		else if (this.len == 2 && this.name[1] == '.')
950 			nd->last_type = LAST_DOTDOT;
951 		else
952 			goto return_base;
953 return_reval:
954 		/*
955 		 * We bypassed the ordinary revalidation routines.
956 		 * We may need to check the cached dentry for staleness.
957 		 */
958 		if (nd->path.dentry && nd->path.dentry->d_sb &&
959 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
960 			err = -ESTALE;
961 			/* Note: we do not d_invalidate() */
962 			if (!nd->path.dentry->d_op->d_revalidate(
963 					nd->path.dentry, nd))
964 				break;
965 		}
966 return_base:
967 		return 0;
968 out_dput:
969 		path_put_conditional(&next, nd);
970 		break;
971 	}
972 	path_put(&nd->path);
973 return_err:
974 	return err;
975 }
976 
977 static int path_walk(const char *name, struct nameidata *nd)
978 {
979 	struct path save = nd->path;
980 	int result;
981 
982 	current->total_link_count = 0;
983 
984 	/* make sure the stuff we saved doesn't go away */
985 	path_get(&save);
986 
987 	result = link_path_walk(name, nd);
988 	if (result == -ESTALE) {
989 		/* nd->path had been dropped */
990 		current->total_link_count = 0;
991 		nd->path = save;
992 		path_get(&nd->path);
993 		nd->flags |= LOOKUP_REVAL;
994 		result = link_path_walk(name, nd);
995 	}
996 
997 	path_put(&save);
998 
999 	return result;
1000 }
1001 
1002 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1003 {
1004 	int retval = 0;
1005 	int fput_needed;
1006 	struct file *file;
1007 
1008 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1009 	nd->flags = flags;
1010 	nd->depth = 0;
1011 	nd->root.mnt = NULL;
1012 
1013 	if (*name=='/') {
1014 		set_root(nd);
1015 		nd->path = nd->root;
1016 		path_get(&nd->root);
1017 	} else if (dfd == AT_FDCWD) {
1018 		struct fs_struct *fs = current->fs;
1019 		read_lock(&fs->lock);
1020 		nd->path = fs->pwd;
1021 		path_get(&fs->pwd);
1022 		read_unlock(&fs->lock);
1023 	} else {
1024 		struct dentry *dentry;
1025 
1026 		file = fget_light(dfd, &fput_needed);
1027 		retval = -EBADF;
1028 		if (!file)
1029 			goto out_fail;
1030 
1031 		dentry = file->f_path.dentry;
1032 
1033 		retval = -ENOTDIR;
1034 		if (!S_ISDIR(dentry->d_inode->i_mode))
1035 			goto fput_fail;
1036 
1037 		retval = file_permission(file, MAY_EXEC);
1038 		if (retval)
1039 			goto fput_fail;
1040 
1041 		nd->path = file->f_path;
1042 		path_get(&file->f_path);
1043 
1044 		fput_light(file, fput_needed);
1045 	}
1046 	return 0;
1047 
1048 fput_fail:
1049 	fput_light(file, fput_needed);
1050 out_fail:
1051 	return retval;
1052 }
1053 
1054 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1055 static int do_path_lookup(int dfd, const char *name,
1056 				unsigned int flags, struct nameidata *nd)
1057 {
1058 	int retval = path_init(dfd, name, flags, nd);
1059 	if (!retval)
1060 		retval = path_walk(name, nd);
1061 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1062 				nd->path.dentry->d_inode))
1063 		audit_inode(name, nd->path.dentry);
1064 	if (nd->root.mnt) {
1065 		path_put(&nd->root);
1066 		nd->root.mnt = NULL;
1067 	}
1068 	return retval;
1069 }
1070 
1071 int path_lookup(const char *name, unsigned int flags,
1072 			struct nameidata *nd)
1073 {
1074 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1075 }
1076 
1077 int kern_path(const char *name, unsigned int flags, struct path *path)
1078 {
1079 	struct nameidata nd;
1080 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1081 	if (!res)
1082 		*path = nd.path;
1083 	return res;
1084 }
1085 
1086 /**
1087  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1088  * @dentry:  pointer to dentry of the base directory
1089  * @mnt: pointer to vfs mount of the base directory
1090  * @name: pointer to file name
1091  * @flags: lookup flags
1092  * @nd: pointer to nameidata
1093  */
1094 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1095 		    const char *name, unsigned int flags,
1096 		    struct nameidata *nd)
1097 {
1098 	int retval;
1099 
1100 	/* same as do_path_lookup */
1101 	nd->last_type = LAST_ROOT;
1102 	nd->flags = flags;
1103 	nd->depth = 0;
1104 
1105 	nd->path.dentry = dentry;
1106 	nd->path.mnt = mnt;
1107 	path_get(&nd->path);
1108 	nd->root = nd->path;
1109 	path_get(&nd->root);
1110 
1111 	retval = path_walk(name, nd);
1112 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1113 				nd->path.dentry->d_inode))
1114 		audit_inode(name, nd->path.dentry);
1115 
1116 	path_put(&nd->root);
1117 	nd->root.mnt = NULL;
1118 
1119 	return retval;
1120 }
1121 
1122 static struct dentry *__lookup_hash(struct qstr *name,
1123 		struct dentry *base, struct nameidata *nd)
1124 {
1125 	struct dentry *dentry;
1126 	struct inode *inode;
1127 	int err;
1128 
1129 	inode = base->d_inode;
1130 
1131 	/*
1132 	 * See if the low-level filesystem might want
1133 	 * to use its own hash..
1134 	 */
1135 	if (base->d_op && base->d_op->d_hash) {
1136 		err = base->d_op->d_hash(base, name);
1137 		dentry = ERR_PTR(err);
1138 		if (err < 0)
1139 			goto out;
1140 	}
1141 
1142 	dentry = __d_lookup(base, name);
1143 
1144 	/* lockess __d_lookup may fail due to concurrent d_move()
1145 	 * in some unrelated directory, so try with d_lookup
1146 	 */
1147 	if (!dentry)
1148 		dentry = d_lookup(base, name);
1149 
1150 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1151 		dentry = do_revalidate(dentry, nd);
1152 
1153 	if (!dentry) {
1154 		struct dentry *new;
1155 
1156 		/* Don't create child dentry for a dead directory. */
1157 		dentry = ERR_PTR(-ENOENT);
1158 		if (IS_DEADDIR(inode))
1159 			goto out;
1160 
1161 		new = d_alloc(base, name);
1162 		dentry = ERR_PTR(-ENOMEM);
1163 		if (!new)
1164 			goto out;
1165 		dentry = inode->i_op->lookup(inode, new, nd);
1166 		if (!dentry)
1167 			dentry = new;
1168 		else
1169 			dput(new);
1170 	}
1171 out:
1172 	return dentry;
1173 }
1174 
1175 /*
1176  * Restricted form of lookup. Doesn't follow links, single-component only,
1177  * needs parent already locked. Doesn't follow mounts.
1178  * SMP-safe.
1179  */
1180 static struct dentry *lookup_hash(struct nameidata *nd)
1181 {
1182 	int err;
1183 
1184 	err = exec_permission(nd->path.dentry->d_inode);
1185 	if (err)
1186 		return ERR_PTR(err);
1187 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1188 }
1189 
1190 static int __lookup_one_len(const char *name, struct qstr *this,
1191 		struct dentry *base, int len)
1192 {
1193 	unsigned long hash;
1194 	unsigned int c;
1195 
1196 	this->name = name;
1197 	this->len = len;
1198 	if (!len)
1199 		return -EACCES;
1200 
1201 	hash = init_name_hash();
1202 	while (len--) {
1203 		c = *(const unsigned char *)name++;
1204 		if (c == '/' || c == '\0')
1205 			return -EACCES;
1206 		hash = partial_name_hash(c, hash);
1207 	}
1208 	this->hash = end_name_hash(hash);
1209 	return 0;
1210 }
1211 
1212 /**
1213  * lookup_one_len - filesystem helper to lookup single pathname component
1214  * @name:	pathname component to lookup
1215  * @base:	base directory to lookup from
1216  * @len:	maximum length @len should be interpreted to
1217  *
1218  * Note that this routine is purely a helper for filesystem usage and should
1219  * not be called by generic code.  Also note that by using this function the
1220  * nameidata argument is passed to the filesystem methods and a filesystem
1221  * using this helper needs to be prepared for that.
1222  */
1223 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1224 {
1225 	int err;
1226 	struct qstr this;
1227 
1228 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1229 
1230 	err = __lookup_one_len(name, &this, base, len);
1231 	if (err)
1232 		return ERR_PTR(err);
1233 
1234 	err = exec_permission(base->d_inode);
1235 	if (err)
1236 		return ERR_PTR(err);
1237 	return __lookup_hash(&this, base, NULL);
1238 }
1239 
1240 int user_path_at(int dfd, const char __user *name, unsigned flags,
1241 		 struct path *path)
1242 {
1243 	struct nameidata nd;
1244 	char *tmp = getname(name);
1245 	int err = PTR_ERR(tmp);
1246 	if (!IS_ERR(tmp)) {
1247 
1248 		BUG_ON(flags & LOOKUP_PARENT);
1249 
1250 		err = do_path_lookup(dfd, tmp, flags, &nd);
1251 		putname(tmp);
1252 		if (!err)
1253 			*path = nd.path;
1254 	}
1255 	return err;
1256 }
1257 
1258 static int user_path_parent(int dfd, const char __user *path,
1259 			struct nameidata *nd, char **name)
1260 {
1261 	char *s = getname(path);
1262 	int error;
1263 
1264 	if (IS_ERR(s))
1265 		return PTR_ERR(s);
1266 
1267 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1268 	if (error)
1269 		putname(s);
1270 	else
1271 		*name = s;
1272 
1273 	return error;
1274 }
1275 
1276 /*
1277  * It's inline, so penalty for filesystems that don't use sticky bit is
1278  * minimal.
1279  */
1280 static inline int check_sticky(struct inode *dir, struct inode *inode)
1281 {
1282 	uid_t fsuid = current_fsuid();
1283 
1284 	if (!(dir->i_mode & S_ISVTX))
1285 		return 0;
1286 	if (inode->i_uid == fsuid)
1287 		return 0;
1288 	if (dir->i_uid == fsuid)
1289 		return 0;
1290 	return !capable(CAP_FOWNER);
1291 }
1292 
1293 /*
1294  *	Check whether we can remove a link victim from directory dir, check
1295  *  whether the type of victim is right.
1296  *  1. We can't do it if dir is read-only (done in permission())
1297  *  2. We should have write and exec permissions on dir
1298  *  3. We can't remove anything from append-only dir
1299  *  4. We can't do anything with immutable dir (done in permission())
1300  *  5. If the sticky bit on dir is set we should either
1301  *	a. be owner of dir, or
1302  *	b. be owner of victim, or
1303  *	c. have CAP_FOWNER capability
1304  *  6. If the victim is append-only or immutable we can't do antyhing with
1305  *     links pointing to it.
1306  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1307  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1308  *  9. We can't remove a root or mountpoint.
1309  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1310  *     nfs_async_unlink().
1311  */
1312 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1313 {
1314 	int error;
1315 
1316 	if (!victim->d_inode)
1317 		return -ENOENT;
1318 
1319 	BUG_ON(victim->d_parent->d_inode != dir);
1320 	audit_inode_child(victim, dir);
1321 
1322 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1323 	if (error)
1324 		return error;
1325 	if (IS_APPEND(dir))
1326 		return -EPERM;
1327 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1328 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1329 		return -EPERM;
1330 	if (isdir) {
1331 		if (!S_ISDIR(victim->d_inode->i_mode))
1332 			return -ENOTDIR;
1333 		if (IS_ROOT(victim))
1334 			return -EBUSY;
1335 	} else if (S_ISDIR(victim->d_inode->i_mode))
1336 		return -EISDIR;
1337 	if (IS_DEADDIR(dir))
1338 		return -ENOENT;
1339 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1340 		return -EBUSY;
1341 	return 0;
1342 }
1343 
1344 /*	Check whether we can create an object with dentry child in directory
1345  *  dir.
1346  *  1. We can't do it if child already exists (open has special treatment for
1347  *     this case, but since we are inlined it's OK)
1348  *  2. We can't do it if dir is read-only (done in permission())
1349  *  3. We should have write and exec permissions on dir
1350  *  4. We can't do it if dir is immutable (done in permission())
1351  */
1352 static inline int may_create(struct inode *dir, struct dentry *child)
1353 {
1354 	if (child->d_inode)
1355 		return -EEXIST;
1356 	if (IS_DEADDIR(dir))
1357 		return -ENOENT;
1358 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1359 }
1360 
1361 /*
1362  * p1 and p2 should be directories on the same fs.
1363  */
1364 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1365 {
1366 	struct dentry *p;
1367 
1368 	if (p1 == p2) {
1369 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1370 		return NULL;
1371 	}
1372 
1373 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1374 
1375 	p = d_ancestor(p2, p1);
1376 	if (p) {
1377 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1378 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1379 		return p;
1380 	}
1381 
1382 	p = d_ancestor(p1, p2);
1383 	if (p) {
1384 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1385 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1386 		return p;
1387 	}
1388 
1389 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1390 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1391 	return NULL;
1392 }
1393 
1394 void unlock_rename(struct dentry *p1, struct dentry *p2)
1395 {
1396 	mutex_unlock(&p1->d_inode->i_mutex);
1397 	if (p1 != p2) {
1398 		mutex_unlock(&p2->d_inode->i_mutex);
1399 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1400 	}
1401 }
1402 
1403 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1404 		struct nameidata *nd)
1405 {
1406 	int error = may_create(dir, dentry);
1407 
1408 	if (error)
1409 		return error;
1410 
1411 	if (!dir->i_op->create)
1412 		return -EACCES;	/* shouldn't it be ENOSYS? */
1413 	mode &= S_IALLUGO;
1414 	mode |= S_IFREG;
1415 	error = security_inode_create(dir, dentry, mode);
1416 	if (error)
1417 		return error;
1418 	error = dir->i_op->create(dir, dentry, mode, nd);
1419 	if (!error)
1420 		fsnotify_create(dir, dentry);
1421 	return error;
1422 }
1423 
1424 int may_open(struct path *path, int acc_mode, int flag)
1425 {
1426 	struct dentry *dentry = path->dentry;
1427 	struct inode *inode = dentry->d_inode;
1428 	int error;
1429 
1430 	if (!inode)
1431 		return -ENOENT;
1432 
1433 	switch (inode->i_mode & S_IFMT) {
1434 	case S_IFLNK:
1435 		return -ELOOP;
1436 	case S_IFDIR:
1437 		if (acc_mode & MAY_WRITE)
1438 			return -EISDIR;
1439 		break;
1440 	case S_IFBLK:
1441 	case S_IFCHR:
1442 		if (path->mnt->mnt_flags & MNT_NODEV)
1443 			return -EACCES;
1444 		/*FALLTHRU*/
1445 	case S_IFIFO:
1446 	case S_IFSOCK:
1447 		flag &= ~O_TRUNC;
1448 		break;
1449 	}
1450 
1451 	error = inode_permission(inode, acc_mode);
1452 	if (error)
1453 		return error;
1454 
1455 	/*
1456 	 * An append-only file must be opened in append mode for writing.
1457 	 */
1458 	if (IS_APPEND(inode)) {
1459 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1460 			return -EPERM;
1461 		if (flag & O_TRUNC)
1462 			return -EPERM;
1463 	}
1464 
1465 	/* O_NOATIME can only be set by the owner or superuser */
1466 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
1467 		return -EPERM;
1468 
1469 	/*
1470 	 * Ensure there are no outstanding leases on the file.
1471 	 */
1472 	return break_lease(inode, flag);
1473 }
1474 
1475 static int handle_truncate(struct path *path)
1476 {
1477 	struct inode *inode = path->dentry->d_inode;
1478 	int error = get_write_access(inode);
1479 	if (error)
1480 		return error;
1481 	/*
1482 	 * Refuse to truncate files with mandatory locks held on them.
1483 	 */
1484 	error = locks_verify_locked(inode);
1485 	if (!error)
1486 		error = security_path_truncate(path, 0,
1487 				       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1488 	if (!error) {
1489 		error = do_truncate(path->dentry, 0,
1490 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1491 				    NULL);
1492 	}
1493 	put_write_access(inode);
1494 	return error;
1495 }
1496 
1497 /*
1498  * Be careful about ever adding any more callers of this
1499  * function.  Its flags must be in the namei format, not
1500  * what get passed to sys_open().
1501  */
1502 static int __open_namei_create(struct nameidata *nd, struct path *path,
1503 				int open_flag, int mode)
1504 {
1505 	int error;
1506 	struct dentry *dir = nd->path.dentry;
1507 
1508 	if (!IS_POSIXACL(dir->d_inode))
1509 		mode &= ~current_umask();
1510 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1511 	if (error)
1512 		goto out_unlock;
1513 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1514 out_unlock:
1515 	mutex_unlock(&dir->d_inode->i_mutex);
1516 	dput(nd->path.dentry);
1517 	nd->path.dentry = path->dentry;
1518 	if (error)
1519 		return error;
1520 	/* Don't check for write permission, don't truncate */
1521 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1522 }
1523 
1524 /*
1525  * Note that while the flag value (low two bits) for sys_open means:
1526  *	00 - read-only
1527  *	01 - write-only
1528  *	10 - read-write
1529  *	11 - special
1530  * it is changed into
1531  *	00 - no permissions needed
1532  *	01 - read-permission
1533  *	10 - write-permission
1534  *	11 - read-write
1535  * for the internal routines (ie open_namei()/follow_link() etc)
1536  * This is more logical, and also allows the 00 "no perm needed"
1537  * to be used for symlinks (where the permissions are checked
1538  * later).
1539  *
1540 */
1541 static inline int open_to_namei_flags(int flag)
1542 {
1543 	if ((flag+1) & O_ACCMODE)
1544 		flag++;
1545 	return flag;
1546 }
1547 
1548 static int open_will_truncate(int flag, struct inode *inode)
1549 {
1550 	/*
1551 	 * We'll never write to the fs underlying
1552 	 * a device file.
1553 	 */
1554 	if (special_file(inode->i_mode))
1555 		return 0;
1556 	return (flag & O_TRUNC);
1557 }
1558 
1559 static struct file *finish_open(struct nameidata *nd,
1560 				int open_flag, int acc_mode)
1561 {
1562 	struct file *filp;
1563 	int will_truncate;
1564 	int error;
1565 
1566 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1567 	if (will_truncate) {
1568 		error = mnt_want_write(nd->path.mnt);
1569 		if (error)
1570 			goto exit;
1571 	}
1572 	error = may_open(&nd->path, acc_mode, open_flag);
1573 	if (error) {
1574 		if (will_truncate)
1575 			mnt_drop_write(nd->path.mnt);
1576 		goto exit;
1577 	}
1578 	filp = nameidata_to_filp(nd);
1579 	if (!IS_ERR(filp)) {
1580 		error = ima_file_check(filp, acc_mode);
1581 		if (error) {
1582 			fput(filp);
1583 			filp = ERR_PTR(error);
1584 		}
1585 	}
1586 	if (!IS_ERR(filp)) {
1587 		if (will_truncate) {
1588 			error = handle_truncate(&nd->path);
1589 			if (error) {
1590 				fput(filp);
1591 				filp = ERR_PTR(error);
1592 			}
1593 		}
1594 	}
1595 	/*
1596 	 * It is now safe to drop the mnt write
1597 	 * because the filp has had a write taken
1598 	 * on its behalf.
1599 	 */
1600 	if (will_truncate)
1601 		mnt_drop_write(nd->path.mnt);
1602 	return filp;
1603 
1604 exit:
1605 	if (!IS_ERR(nd->intent.open.file))
1606 		release_open_intent(nd);
1607 	path_put(&nd->path);
1608 	return ERR_PTR(error);
1609 }
1610 
1611 static struct file *do_last(struct nameidata *nd, struct path *path,
1612 			    int open_flag, int acc_mode,
1613 			    int mode, const char *pathname,
1614 			    int *want_dir)
1615 {
1616 	struct dentry *dir = nd->path.dentry;
1617 	struct file *filp;
1618 	int error = -EISDIR;
1619 
1620 	switch (nd->last_type) {
1621 	case LAST_DOTDOT:
1622 		follow_dotdot(nd);
1623 		dir = nd->path.dentry;
1624 		if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1625 			if (!dir->d_op->d_revalidate(dir, nd)) {
1626 				error = -ESTALE;
1627 				goto exit;
1628 			}
1629 		}
1630 		/* fallthrough */
1631 	case LAST_DOT:
1632 	case LAST_ROOT:
1633 		if (open_flag & O_CREAT)
1634 			goto exit;
1635 		/* fallthrough */
1636 	case LAST_BIND:
1637 		audit_inode(pathname, dir);
1638 		goto ok;
1639 	}
1640 
1641 	/* trailing slashes? */
1642 	if (nd->last.name[nd->last.len]) {
1643 		if (open_flag & O_CREAT)
1644 			goto exit;
1645 		*want_dir = 1;
1646 	}
1647 
1648 	/* just plain open? */
1649 	if (!(open_flag & O_CREAT)) {
1650 		error = do_lookup(nd, &nd->last, path);
1651 		if (error)
1652 			goto exit;
1653 		error = -ENOENT;
1654 		if (!path->dentry->d_inode)
1655 			goto exit_dput;
1656 		if (path->dentry->d_inode->i_op->follow_link)
1657 			return NULL;
1658 		error = -ENOTDIR;
1659 		if (*want_dir && !path->dentry->d_inode->i_op->lookup)
1660 			goto exit_dput;
1661 		path_to_nameidata(path, nd);
1662 		audit_inode(pathname, nd->path.dentry);
1663 		goto ok;
1664 	}
1665 
1666 	/* OK, it's O_CREAT */
1667 	mutex_lock(&dir->d_inode->i_mutex);
1668 
1669 	path->dentry = lookup_hash(nd);
1670 	path->mnt = nd->path.mnt;
1671 
1672 	error = PTR_ERR(path->dentry);
1673 	if (IS_ERR(path->dentry)) {
1674 		mutex_unlock(&dir->d_inode->i_mutex);
1675 		goto exit;
1676 	}
1677 
1678 	if (IS_ERR(nd->intent.open.file)) {
1679 		error = PTR_ERR(nd->intent.open.file);
1680 		goto exit_mutex_unlock;
1681 	}
1682 
1683 	/* Negative dentry, just create the file */
1684 	if (!path->dentry->d_inode) {
1685 		/*
1686 		 * This write is needed to ensure that a
1687 		 * ro->rw transition does not occur between
1688 		 * the time when the file is created and when
1689 		 * a permanent write count is taken through
1690 		 * the 'struct file' in nameidata_to_filp().
1691 		 */
1692 		error = mnt_want_write(nd->path.mnt);
1693 		if (error)
1694 			goto exit_mutex_unlock;
1695 		error = __open_namei_create(nd, path, open_flag, mode);
1696 		if (error) {
1697 			mnt_drop_write(nd->path.mnt);
1698 			goto exit;
1699 		}
1700 		filp = nameidata_to_filp(nd);
1701 		mnt_drop_write(nd->path.mnt);
1702 		if (!IS_ERR(filp)) {
1703 			error = ima_file_check(filp, acc_mode);
1704 			if (error) {
1705 				fput(filp);
1706 				filp = ERR_PTR(error);
1707 			}
1708 		}
1709 		return filp;
1710 	}
1711 
1712 	/*
1713 	 * It already exists.
1714 	 */
1715 	mutex_unlock(&dir->d_inode->i_mutex);
1716 	audit_inode(pathname, path->dentry);
1717 
1718 	error = -EEXIST;
1719 	if (open_flag & O_EXCL)
1720 		goto exit_dput;
1721 
1722 	if (__follow_mount(path)) {
1723 		error = -ELOOP;
1724 		if (open_flag & O_NOFOLLOW)
1725 			goto exit_dput;
1726 	}
1727 
1728 	error = -ENOENT;
1729 	if (!path->dentry->d_inode)
1730 		goto exit_dput;
1731 
1732 	if (path->dentry->d_inode->i_op->follow_link)
1733 		return NULL;
1734 
1735 	path_to_nameidata(path, nd);
1736 	error = -EISDIR;
1737 	if (S_ISDIR(path->dentry->d_inode->i_mode))
1738 		goto exit;
1739 ok:
1740 	filp = finish_open(nd, open_flag, acc_mode);
1741 	return filp;
1742 
1743 exit_mutex_unlock:
1744 	mutex_unlock(&dir->d_inode->i_mutex);
1745 exit_dput:
1746 	path_put_conditional(path, nd);
1747 exit:
1748 	if (!IS_ERR(nd->intent.open.file))
1749 		release_open_intent(nd);
1750 	path_put(&nd->path);
1751 	return ERR_PTR(error);
1752 }
1753 
1754 /*
1755  * Note that the low bits of the passed in "open_flag"
1756  * are not the same as in the local variable "flag". See
1757  * open_to_namei_flags() for more details.
1758  */
1759 struct file *do_filp_open(int dfd, const char *pathname,
1760 		int open_flag, int mode, int acc_mode)
1761 {
1762 	struct file *filp;
1763 	struct nameidata nd;
1764 	int error;
1765 	struct path path;
1766 	int count = 0;
1767 	int flag = open_to_namei_flags(open_flag);
1768 	int force_reval = 0;
1769 	int want_dir = open_flag & O_DIRECTORY;
1770 
1771 	if (!(open_flag & O_CREAT))
1772 		mode = 0;
1773 
1774 	/*
1775 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
1776 	 * check for O_DSYNC if the need any syncing at all we enforce it's
1777 	 * always set instead of having to deal with possibly weird behaviour
1778 	 * for malicious applications setting only __O_SYNC.
1779 	 */
1780 	if (open_flag & __O_SYNC)
1781 		open_flag |= O_DSYNC;
1782 
1783 	if (!acc_mode)
1784 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1785 
1786 	/* O_TRUNC implies we need access checks for write permissions */
1787 	if (open_flag & O_TRUNC)
1788 		acc_mode |= MAY_WRITE;
1789 
1790 	/* Allow the LSM permission hook to distinguish append
1791 	   access from general write access. */
1792 	if (open_flag & O_APPEND)
1793 		acc_mode |= MAY_APPEND;
1794 
1795 	/* find the parent */
1796 reval:
1797 	error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1798 	if (error)
1799 		return ERR_PTR(error);
1800 	if (force_reval)
1801 		nd.flags |= LOOKUP_REVAL;
1802 
1803 	current->total_link_count = 0;
1804 	error = link_path_walk(pathname, &nd);
1805 	if (error) {
1806 		filp = ERR_PTR(error);
1807 		goto out;
1808 	}
1809 	if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1810 		audit_inode(pathname, nd.path.dentry);
1811 
1812 	/*
1813 	 * We have the parent and last component.
1814 	 */
1815 
1816 	error = -ENFILE;
1817 	filp = get_empty_filp();
1818 	if (filp == NULL)
1819 		goto exit_parent;
1820 	nd.intent.open.file = filp;
1821 	filp->f_flags = open_flag;
1822 	nd.intent.open.flags = flag;
1823 	nd.intent.open.create_mode = mode;
1824 	nd.flags &= ~LOOKUP_PARENT;
1825 	nd.flags |= LOOKUP_OPEN;
1826 	if (open_flag & O_CREAT) {
1827 		nd.flags |= LOOKUP_CREATE;
1828 		if (open_flag & O_EXCL)
1829 			nd.flags |= LOOKUP_EXCL;
1830 	}
1831 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname, &want_dir);
1832 	while (unlikely(!filp)) { /* trailing symlink */
1833 		struct path holder;
1834 		struct inode *inode = path.dentry->d_inode;
1835 		void *cookie;
1836 		error = -ELOOP;
1837 		/* S_ISDIR part is a temporary automount kludge */
1838 		if ((open_flag & O_NOFOLLOW) && !S_ISDIR(inode->i_mode))
1839 			goto exit_dput;
1840 		if (count++ == 32)
1841 			goto exit_dput;
1842 		/*
1843 		 * This is subtle. Instead of calling do_follow_link() we do
1844 		 * the thing by hands. The reason is that this way we have zero
1845 		 * link_count and path_walk() (called from ->follow_link)
1846 		 * honoring LOOKUP_PARENT.  After that we have the parent and
1847 		 * last component, i.e. we are in the same situation as after
1848 		 * the first path_walk().  Well, almost - if the last component
1849 		 * is normal we get its copy stored in nd->last.name and we will
1850 		 * have to putname() it when we are done. Procfs-like symlinks
1851 		 * just set LAST_BIND.
1852 		 */
1853 		nd.flags |= LOOKUP_PARENT;
1854 		error = security_inode_follow_link(path.dentry, &nd);
1855 		if (error)
1856 			goto exit_dput;
1857 		error = __do_follow_link(&path, &nd, &cookie);
1858 		if (unlikely(error)) {
1859 			/* nd.path had been dropped */
1860 			if (!IS_ERR(cookie) && inode->i_op->put_link)
1861 				inode->i_op->put_link(path.dentry, &nd, cookie);
1862 			path_put(&path);
1863 			release_open_intent(&nd);
1864 			filp = ERR_PTR(error);
1865 			goto out;
1866 		}
1867 		holder = path;
1868 		nd.flags &= ~LOOKUP_PARENT;
1869 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname, &want_dir);
1870 		if (inode->i_op->put_link)
1871 			inode->i_op->put_link(holder.dentry, &nd, cookie);
1872 		path_put(&holder);
1873 	}
1874 out:
1875 	if (nd.root.mnt)
1876 		path_put(&nd.root);
1877 	if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1878 		force_reval = 1;
1879 		goto reval;
1880 	}
1881 	return filp;
1882 
1883 exit_dput:
1884 	path_put_conditional(&path, &nd);
1885 	if (!IS_ERR(nd.intent.open.file))
1886 		release_open_intent(&nd);
1887 exit_parent:
1888 	path_put(&nd.path);
1889 	filp = ERR_PTR(error);
1890 	goto out;
1891 }
1892 
1893 /**
1894  * filp_open - open file and return file pointer
1895  *
1896  * @filename:	path to open
1897  * @flags:	open flags as per the open(2) second argument
1898  * @mode:	mode for the new file if O_CREAT is set, else ignored
1899  *
1900  * This is the helper to open a file from kernelspace if you really
1901  * have to.  But in generally you should not do this, so please move
1902  * along, nothing to see here..
1903  */
1904 struct file *filp_open(const char *filename, int flags, int mode)
1905 {
1906 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1907 }
1908 EXPORT_SYMBOL(filp_open);
1909 
1910 /**
1911  * lookup_create - lookup a dentry, creating it if it doesn't exist
1912  * @nd: nameidata info
1913  * @is_dir: directory flag
1914  *
1915  * Simple function to lookup and return a dentry and create it
1916  * if it doesn't exist.  Is SMP-safe.
1917  *
1918  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1919  */
1920 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1921 {
1922 	struct dentry *dentry = ERR_PTR(-EEXIST);
1923 
1924 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1925 	/*
1926 	 * Yucky last component or no last component at all?
1927 	 * (foo/., foo/.., /////)
1928 	 */
1929 	if (nd->last_type != LAST_NORM)
1930 		goto fail;
1931 	nd->flags &= ~LOOKUP_PARENT;
1932 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1933 	nd->intent.open.flags = O_EXCL;
1934 
1935 	/*
1936 	 * Do the final lookup.
1937 	 */
1938 	dentry = lookup_hash(nd);
1939 	if (IS_ERR(dentry))
1940 		goto fail;
1941 
1942 	if (dentry->d_inode)
1943 		goto eexist;
1944 	/*
1945 	 * Special case - lookup gave negative, but... we had foo/bar/
1946 	 * From the vfs_mknod() POV we just have a negative dentry -
1947 	 * all is fine. Let's be bastards - you had / on the end, you've
1948 	 * been asking for (non-existent) directory. -ENOENT for you.
1949 	 */
1950 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1951 		dput(dentry);
1952 		dentry = ERR_PTR(-ENOENT);
1953 	}
1954 	return dentry;
1955 eexist:
1956 	dput(dentry);
1957 	dentry = ERR_PTR(-EEXIST);
1958 fail:
1959 	return dentry;
1960 }
1961 EXPORT_SYMBOL_GPL(lookup_create);
1962 
1963 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1964 {
1965 	int error = may_create(dir, dentry);
1966 
1967 	if (error)
1968 		return error;
1969 
1970 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1971 		return -EPERM;
1972 
1973 	if (!dir->i_op->mknod)
1974 		return -EPERM;
1975 
1976 	error = devcgroup_inode_mknod(mode, dev);
1977 	if (error)
1978 		return error;
1979 
1980 	error = security_inode_mknod(dir, dentry, mode, dev);
1981 	if (error)
1982 		return error;
1983 
1984 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1985 	if (!error)
1986 		fsnotify_create(dir, dentry);
1987 	return error;
1988 }
1989 
1990 static int may_mknod(mode_t mode)
1991 {
1992 	switch (mode & S_IFMT) {
1993 	case S_IFREG:
1994 	case S_IFCHR:
1995 	case S_IFBLK:
1996 	case S_IFIFO:
1997 	case S_IFSOCK:
1998 	case 0: /* zero mode translates to S_IFREG */
1999 		return 0;
2000 	case S_IFDIR:
2001 		return -EPERM;
2002 	default:
2003 		return -EINVAL;
2004 	}
2005 }
2006 
2007 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2008 		unsigned, dev)
2009 {
2010 	int error;
2011 	char *tmp;
2012 	struct dentry *dentry;
2013 	struct nameidata nd;
2014 
2015 	if (S_ISDIR(mode))
2016 		return -EPERM;
2017 
2018 	error = user_path_parent(dfd, filename, &nd, &tmp);
2019 	if (error)
2020 		return error;
2021 
2022 	dentry = lookup_create(&nd, 0);
2023 	if (IS_ERR(dentry)) {
2024 		error = PTR_ERR(dentry);
2025 		goto out_unlock;
2026 	}
2027 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2028 		mode &= ~current_umask();
2029 	error = may_mknod(mode);
2030 	if (error)
2031 		goto out_dput;
2032 	error = mnt_want_write(nd.path.mnt);
2033 	if (error)
2034 		goto out_dput;
2035 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2036 	if (error)
2037 		goto out_drop_write;
2038 	switch (mode & S_IFMT) {
2039 		case 0: case S_IFREG:
2040 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2041 			break;
2042 		case S_IFCHR: case S_IFBLK:
2043 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2044 					new_decode_dev(dev));
2045 			break;
2046 		case S_IFIFO: case S_IFSOCK:
2047 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2048 			break;
2049 	}
2050 out_drop_write:
2051 	mnt_drop_write(nd.path.mnt);
2052 out_dput:
2053 	dput(dentry);
2054 out_unlock:
2055 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2056 	path_put(&nd.path);
2057 	putname(tmp);
2058 
2059 	return error;
2060 }
2061 
2062 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2063 {
2064 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2065 }
2066 
2067 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2068 {
2069 	int error = may_create(dir, dentry);
2070 
2071 	if (error)
2072 		return error;
2073 
2074 	if (!dir->i_op->mkdir)
2075 		return -EPERM;
2076 
2077 	mode &= (S_IRWXUGO|S_ISVTX);
2078 	error = security_inode_mkdir(dir, dentry, mode);
2079 	if (error)
2080 		return error;
2081 
2082 	error = dir->i_op->mkdir(dir, dentry, mode);
2083 	if (!error)
2084 		fsnotify_mkdir(dir, dentry);
2085 	return error;
2086 }
2087 
2088 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2089 {
2090 	int error = 0;
2091 	char * tmp;
2092 	struct dentry *dentry;
2093 	struct nameidata nd;
2094 
2095 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2096 	if (error)
2097 		goto out_err;
2098 
2099 	dentry = lookup_create(&nd, 1);
2100 	error = PTR_ERR(dentry);
2101 	if (IS_ERR(dentry))
2102 		goto out_unlock;
2103 
2104 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2105 		mode &= ~current_umask();
2106 	error = mnt_want_write(nd.path.mnt);
2107 	if (error)
2108 		goto out_dput;
2109 	error = security_path_mkdir(&nd.path, dentry, mode);
2110 	if (error)
2111 		goto out_drop_write;
2112 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2113 out_drop_write:
2114 	mnt_drop_write(nd.path.mnt);
2115 out_dput:
2116 	dput(dentry);
2117 out_unlock:
2118 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2119 	path_put(&nd.path);
2120 	putname(tmp);
2121 out_err:
2122 	return error;
2123 }
2124 
2125 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2126 {
2127 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2128 }
2129 
2130 /*
2131  * We try to drop the dentry early: we should have
2132  * a usage count of 2 if we're the only user of this
2133  * dentry, and if that is true (possibly after pruning
2134  * the dcache), then we drop the dentry now.
2135  *
2136  * A low-level filesystem can, if it choses, legally
2137  * do a
2138  *
2139  *	if (!d_unhashed(dentry))
2140  *		return -EBUSY;
2141  *
2142  * if it cannot handle the case of removing a directory
2143  * that is still in use by something else..
2144  */
2145 void dentry_unhash(struct dentry *dentry)
2146 {
2147 	dget(dentry);
2148 	shrink_dcache_parent(dentry);
2149 	spin_lock(&dcache_lock);
2150 	spin_lock(&dentry->d_lock);
2151 	if (atomic_read(&dentry->d_count) == 2)
2152 		__d_drop(dentry);
2153 	spin_unlock(&dentry->d_lock);
2154 	spin_unlock(&dcache_lock);
2155 }
2156 
2157 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2158 {
2159 	int error = may_delete(dir, dentry, 1);
2160 
2161 	if (error)
2162 		return error;
2163 
2164 	if (!dir->i_op->rmdir)
2165 		return -EPERM;
2166 
2167 	mutex_lock(&dentry->d_inode->i_mutex);
2168 	dentry_unhash(dentry);
2169 	if (d_mountpoint(dentry))
2170 		error = -EBUSY;
2171 	else {
2172 		error = security_inode_rmdir(dir, dentry);
2173 		if (!error) {
2174 			error = dir->i_op->rmdir(dir, dentry);
2175 			if (!error)
2176 				dentry->d_inode->i_flags |= S_DEAD;
2177 		}
2178 	}
2179 	mutex_unlock(&dentry->d_inode->i_mutex);
2180 	if (!error) {
2181 		d_delete(dentry);
2182 	}
2183 	dput(dentry);
2184 
2185 	return error;
2186 }
2187 
2188 static long do_rmdir(int dfd, const char __user *pathname)
2189 {
2190 	int error = 0;
2191 	char * name;
2192 	struct dentry *dentry;
2193 	struct nameidata nd;
2194 
2195 	error = user_path_parent(dfd, pathname, &nd, &name);
2196 	if (error)
2197 		return error;
2198 
2199 	switch(nd.last_type) {
2200 	case LAST_DOTDOT:
2201 		error = -ENOTEMPTY;
2202 		goto exit1;
2203 	case LAST_DOT:
2204 		error = -EINVAL;
2205 		goto exit1;
2206 	case LAST_ROOT:
2207 		error = -EBUSY;
2208 		goto exit1;
2209 	}
2210 
2211 	nd.flags &= ~LOOKUP_PARENT;
2212 
2213 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2214 	dentry = lookup_hash(&nd);
2215 	error = PTR_ERR(dentry);
2216 	if (IS_ERR(dentry))
2217 		goto exit2;
2218 	error = mnt_want_write(nd.path.mnt);
2219 	if (error)
2220 		goto exit3;
2221 	error = security_path_rmdir(&nd.path, dentry);
2222 	if (error)
2223 		goto exit4;
2224 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2225 exit4:
2226 	mnt_drop_write(nd.path.mnt);
2227 exit3:
2228 	dput(dentry);
2229 exit2:
2230 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2231 exit1:
2232 	path_put(&nd.path);
2233 	putname(name);
2234 	return error;
2235 }
2236 
2237 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2238 {
2239 	return do_rmdir(AT_FDCWD, pathname);
2240 }
2241 
2242 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2243 {
2244 	int error = may_delete(dir, dentry, 0);
2245 
2246 	if (error)
2247 		return error;
2248 
2249 	if (!dir->i_op->unlink)
2250 		return -EPERM;
2251 
2252 	mutex_lock(&dentry->d_inode->i_mutex);
2253 	if (d_mountpoint(dentry))
2254 		error = -EBUSY;
2255 	else {
2256 		error = security_inode_unlink(dir, dentry);
2257 		if (!error) {
2258 			error = dir->i_op->unlink(dir, dentry);
2259 			if (!error)
2260 				dentry->d_inode->i_flags |= S_DEAD;
2261 		}
2262 	}
2263 	mutex_unlock(&dentry->d_inode->i_mutex);
2264 
2265 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2266 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2267 		fsnotify_link_count(dentry->d_inode);
2268 		d_delete(dentry);
2269 	}
2270 
2271 	return error;
2272 }
2273 
2274 /*
2275  * Make sure that the actual truncation of the file will occur outside its
2276  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2277  * writeout happening, and we don't want to prevent access to the directory
2278  * while waiting on the I/O.
2279  */
2280 static long do_unlinkat(int dfd, const char __user *pathname)
2281 {
2282 	int error;
2283 	char *name;
2284 	struct dentry *dentry;
2285 	struct nameidata nd;
2286 	struct inode *inode = NULL;
2287 
2288 	error = user_path_parent(dfd, pathname, &nd, &name);
2289 	if (error)
2290 		return error;
2291 
2292 	error = -EISDIR;
2293 	if (nd.last_type != LAST_NORM)
2294 		goto exit1;
2295 
2296 	nd.flags &= ~LOOKUP_PARENT;
2297 
2298 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2299 	dentry = lookup_hash(&nd);
2300 	error = PTR_ERR(dentry);
2301 	if (!IS_ERR(dentry)) {
2302 		/* Why not before? Because we want correct error value */
2303 		if (nd.last.name[nd.last.len])
2304 			goto slashes;
2305 		inode = dentry->d_inode;
2306 		if (inode)
2307 			atomic_inc(&inode->i_count);
2308 		error = mnt_want_write(nd.path.mnt);
2309 		if (error)
2310 			goto exit2;
2311 		error = security_path_unlink(&nd.path, dentry);
2312 		if (error)
2313 			goto exit3;
2314 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2315 exit3:
2316 		mnt_drop_write(nd.path.mnt);
2317 	exit2:
2318 		dput(dentry);
2319 	}
2320 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2321 	if (inode)
2322 		iput(inode);	/* truncate the inode here */
2323 exit1:
2324 	path_put(&nd.path);
2325 	putname(name);
2326 	return error;
2327 
2328 slashes:
2329 	error = !dentry->d_inode ? -ENOENT :
2330 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2331 	goto exit2;
2332 }
2333 
2334 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2335 {
2336 	if ((flag & ~AT_REMOVEDIR) != 0)
2337 		return -EINVAL;
2338 
2339 	if (flag & AT_REMOVEDIR)
2340 		return do_rmdir(dfd, pathname);
2341 
2342 	return do_unlinkat(dfd, pathname);
2343 }
2344 
2345 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2346 {
2347 	return do_unlinkat(AT_FDCWD, pathname);
2348 }
2349 
2350 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2351 {
2352 	int error = may_create(dir, dentry);
2353 
2354 	if (error)
2355 		return error;
2356 
2357 	if (!dir->i_op->symlink)
2358 		return -EPERM;
2359 
2360 	error = security_inode_symlink(dir, dentry, oldname);
2361 	if (error)
2362 		return error;
2363 
2364 	error = dir->i_op->symlink(dir, dentry, oldname);
2365 	if (!error)
2366 		fsnotify_create(dir, dentry);
2367 	return error;
2368 }
2369 
2370 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2371 		int, newdfd, const char __user *, newname)
2372 {
2373 	int error;
2374 	char *from;
2375 	char *to;
2376 	struct dentry *dentry;
2377 	struct nameidata nd;
2378 
2379 	from = getname(oldname);
2380 	if (IS_ERR(from))
2381 		return PTR_ERR(from);
2382 
2383 	error = user_path_parent(newdfd, newname, &nd, &to);
2384 	if (error)
2385 		goto out_putname;
2386 
2387 	dentry = lookup_create(&nd, 0);
2388 	error = PTR_ERR(dentry);
2389 	if (IS_ERR(dentry))
2390 		goto out_unlock;
2391 
2392 	error = mnt_want_write(nd.path.mnt);
2393 	if (error)
2394 		goto out_dput;
2395 	error = security_path_symlink(&nd.path, dentry, from);
2396 	if (error)
2397 		goto out_drop_write;
2398 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2399 out_drop_write:
2400 	mnt_drop_write(nd.path.mnt);
2401 out_dput:
2402 	dput(dentry);
2403 out_unlock:
2404 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2405 	path_put(&nd.path);
2406 	putname(to);
2407 out_putname:
2408 	putname(from);
2409 	return error;
2410 }
2411 
2412 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2413 {
2414 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2415 }
2416 
2417 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2418 {
2419 	struct inode *inode = old_dentry->d_inode;
2420 	int error;
2421 
2422 	if (!inode)
2423 		return -ENOENT;
2424 
2425 	error = may_create(dir, new_dentry);
2426 	if (error)
2427 		return error;
2428 
2429 	if (dir->i_sb != inode->i_sb)
2430 		return -EXDEV;
2431 
2432 	/*
2433 	 * A link to an append-only or immutable file cannot be created.
2434 	 */
2435 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2436 		return -EPERM;
2437 	if (!dir->i_op->link)
2438 		return -EPERM;
2439 	if (S_ISDIR(inode->i_mode))
2440 		return -EPERM;
2441 
2442 	error = security_inode_link(old_dentry, dir, new_dentry);
2443 	if (error)
2444 		return error;
2445 
2446 	mutex_lock(&inode->i_mutex);
2447 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2448 	mutex_unlock(&inode->i_mutex);
2449 	if (!error)
2450 		fsnotify_link(dir, inode, new_dentry);
2451 	return error;
2452 }
2453 
2454 /*
2455  * Hardlinks are often used in delicate situations.  We avoid
2456  * security-related surprises by not following symlinks on the
2457  * newname.  --KAB
2458  *
2459  * We don't follow them on the oldname either to be compatible
2460  * with linux 2.0, and to avoid hard-linking to directories
2461  * and other special files.  --ADM
2462  */
2463 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2464 		int, newdfd, const char __user *, newname, int, flags)
2465 {
2466 	struct dentry *new_dentry;
2467 	struct nameidata nd;
2468 	struct path old_path;
2469 	int error;
2470 	char *to;
2471 
2472 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2473 		return -EINVAL;
2474 
2475 	error = user_path_at(olddfd, oldname,
2476 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2477 			     &old_path);
2478 	if (error)
2479 		return error;
2480 
2481 	error = user_path_parent(newdfd, newname, &nd, &to);
2482 	if (error)
2483 		goto out;
2484 	error = -EXDEV;
2485 	if (old_path.mnt != nd.path.mnt)
2486 		goto out_release;
2487 	new_dentry = lookup_create(&nd, 0);
2488 	error = PTR_ERR(new_dentry);
2489 	if (IS_ERR(new_dentry))
2490 		goto out_unlock;
2491 	error = mnt_want_write(nd.path.mnt);
2492 	if (error)
2493 		goto out_dput;
2494 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2495 	if (error)
2496 		goto out_drop_write;
2497 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2498 out_drop_write:
2499 	mnt_drop_write(nd.path.mnt);
2500 out_dput:
2501 	dput(new_dentry);
2502 out_unlock:
2503 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2504 out_release:
2505 	path_put(&nd.path);
2506 	putname(to);
2507 out:
2508 	path_put(&old_path);
2509 
2510 	return error;
2511 }
2512 
2513 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2514 {
2515 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2516 }
2517 
2518 /*
2519  * The worst of all namespace operations - renaming directory. "Perverted"
2520  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2521  * Problems:
2522  *	a) we can get into loop creation. Check is done in is_subdir().
2523  *	b) race potential - two innocent renames can create a loop together.
2524  *	   That's where 4.4 screws up. Current fix: serialization on
2525  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2526  *	   story.
2527  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2528  *	   And that - after we got ->i_mutex on parents (until then we don't know
2529  *	   whether the target exists).  Solution: try to be smart with locking
2530  *	   order for inodes.  We rely on the fact that tree topology may change
2531  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2532  *	   move will be locked.  Thus we can rank directories by the tree
2533  *	   (ancestors first) and rank all non-directories after them.
2534  *	   That works since everybody except rename does "lock parent, lookup,
2535  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2536  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2537  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2538  *	   we'd better make sure that there's no link(2) for them.
2539  *	d) some filesystems don't support opened-but-unlinked directories,
2540  *	   either because of layout or because they are not ready to deal with
2541  *	   all cases correctly. The latter will be fixed (taking this sort of
2542  *	   stuff into VFS), but the former is not going away. Solution: the same
2543  *	   trick as in rmdir().
2544  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2545  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2546  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2547  *	   ->i_mutex on parents, which works but leads to some truly excessive
2548  *	   locking].
2549  */
2550 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2551 			  struct inode *new_dir, struct dentry *new_dentry)
2552 {
2553 	int error = 0;
2554 	struct inode *target;
2555 
2556 	/*
2557 	 * If we are going to change the parent - check write permissions,
2558 	 * we'll need to flip '..'.
2559 	 */
2560 	if (new_dir != old_dir) {
2561 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2562 		if (error)
2563 			return error;
2564 	}
2565 
2566 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2567 	if (error)
2568 		return error;
2569 
2570 	target = new_dentry->d_inode;
2571 	if (target) {
2572 		mutex_lock(&target->i_mutex);
2573 		dentry_unhash(new_dentry);
2574 	}
2575 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2576 		error = -EBUSY;
2577 	else
2578 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2579 	if (target) {
2580 		if (!error)
2581 			target->i_flags |= S_DEAD;
2582 		mutex_unlock(&target->i_mutex);
2583 		if (d_unhashed(new_dentry))
2584 			d_rehash(new_dentry);
2585 		dput(new_dentry);
2586 	}
2587 	if (!error)
2588 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2589 			d_move(old_dentry,new_dentry);
2590 	return error;
2591 }
2592 
2593 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2594 			    struct inode *new_dir, struct dentry *new_dentry)
2595 {
2596 	struct inode *target;
2597 	int error;
2598 
2599 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2600 	if (error)
2601 		return error;
2602 
2603 	dget(new_dentry);
2604 	target = new_dentry->d_inode;
2605 	if (target)
2606 		mutex_lock(&target->i_mutex);
2607 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2608 		error = -EBUSY;
2609 	else
2610 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2611 	if (!error) {
2612 		if (target)
2613 			target->i_flags |= S_DEAD;
2614 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2615 			d_move(old_dentry, new_dentry);
2616 	}
2617 	if (target)
2618 		mutex_unlock(&target->i_mutex);
2619 	dput(new_dentry);
2620 	return error;
2621 }
2622 
2623 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2624 	       struct inode *new_dir, struct dentry *new_dentry)
2625 {
2626 	int error;
2627 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2628 	const char *old_name;
2629 
2630 	if (old_dentry->d_inode == new_dentry->d_inode)
2631  		return 0;
2632 
2633 	error = may_delete(old_dir, old_dentry, is_dir);
2634 	if (error)
2635 		return error;
2636 
2637 	if (!new_dentry->d_inode)
2638 		error = may_create(new_dir, new_dentry);
2639 	else
2640 		error = may_delete(new_dir, new_dentry, is_dir);
2641 	if (error)
2642 		return error;
2643 
2644 	if (!old_dir->i_op->rename)
2645 		return -EPERM;
2646 
2647 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2648 
2649 	if (is_dir)
2650 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2651 	else
2652 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2653 	if (!error)
2654 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
2655 			      new_dentry->d_inode, old_dentry);
2656 	fsnotify_oldname_free(old_name);
2657 
2658 	return error;
2659 }
2660 
2661 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2662 		int, newdfd, const char __user *, newname)
2663 {
2664 	struct dentry *old_dir, *new_dir;
2665 	struct dentry *old_dentry, *new_dentry;
2666 	struct dentry *trap;
2667 	struct nameidata oldnd, newnd;
2668 	char *from;
2669 	char *to;
2670 	int error;
2671 
2672 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2673 	if (error)
2674 		goto exit;
2675 
2676 	error = user_path_parent(newdfd, newname, &newnd, &to);
2677 	if (error)
2678 		goto exit1;
2679 
2680 	error = -EXDEV;
2681 	if (oldnd.path.mnt != newnd.path.mnt)
2682 		goto exit2;
2683 
2684 	old_dir = oldnd.path.dentry;
2685 	error = -EBUSY;
2686 	if (oldnd.last_type != LAST_NORM)
2687 		goto exit2;
2688 
2689 	new_dir = newnd.path.dentry;
2690 	if (newnd.last_type != LAST_NORM)
2691 		goto exit2;
2692 
2693 	oldnd.flags &= ~LOOKUP_PARENT;
2694 	newnd.flags &= ~LOOKUP_PARENT;
2695 	newnd.flags |= LOOKUP_RENAME_TARGET;
2696 
2697 	trap = lock_rename(new_dir, old_dir);
2698 
2699 	old_dentry = lookup_hash(&oldnd);
2700 	error = PTR_ERR(old_dentry);
2701 	if (IS_ERR(old_dentry))
2702 		goto exit3;
2703 	/* source must exist */
2704 	error = -ENOENT;
2705 	if (!old_dentry->d_inode)
2706 		goto exit4;
2707 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2708 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2709 		error = -ENOTDIR;
2710 		if (oldnd.last.name[oldnd.last.len])
2711 			goto exit4;
2712 		if (newnd.last.name[newnd.last.len])
2713 			goto exit4;
2714 	}
2715 	/* source should not be ancestor of target */
2716 	error = -EINVAL;
2717 	if (old_dentry == trap)
2718 		goto exit4;
2719 	new_dentry = lookup_hash(&newnd);
2720 	error = PTR_ERR(new_dentry);
2721 	if (IS_ERR(new_dentry))
2722 		goto exit4;
2723 	/* target should not be an ancestor of source */
2724 	error = -ENOTEMPTY;
2725 	if (new_dentry == trap)
2726 		goto exit5;
2727 
2728 	error = mnt_want_write(oldnd.path.mnt);
2729 	if (error)
2730 		goto exit5;
2731 	error = security_path_rename(&oldnd.path, old_dentry,
2732 				     &newnd.path, new_dentry);
2733 	if (error)
2734 		goto exit6;
2735 	error = vfs_rename(old_dir->d_inode, old_dentry,
2736 				   new_dir->d_inode, new_dentry);
2737 exit6:
2738 	mnt_drop_write(oldnd.path.mnt);
2739 exit5:
2740 	dput(new_dentry);
2741 exit4:
2742 	dput(old_dentry);
2743 exit3:
2744 	unlock_rename(new_dir, old_dir);
2745 exit2:
2746 	path_put(&newnd.path);
2747 	putname(to);
2748 exit1:
2749 	path_put(&oldnd.path);
2750 	putname(from);
2751 exit:
2752 	return error;
2753 }
2754 
2755 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2756 {
2757 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2758 }
2759 
2760 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2761 {
2762 	int len;
2763 
2764 	len = PTR_ERR(link);
2765 	if (IS_ERR(link))
2766 		goto out;
2767 
2768 	len = strlen(link);
2769 	if (len > (unsigned) buflen)
2770 		len = buflen;
2771 	if (copy_to_user(buffer, link, len))
2772 		len = -EFAULT;
2773 out:
2774 	return len;
2775 }
2776 
2777 /*
2778  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2779  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2780  * using) it for any given inode is up to filesystem.
2781  */
2782 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2783 {
2784 	struct nameidata nd;
2785 	void *cookie;
2786 	int res;
2787 
2788 	nd.depth = 0;
2789 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2790 	if (IS_ERR(cookie))
2791 		return PTR_ERR(cookie);
2792 
2793 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2794 	if (dentry->d_inode->i_op->put_link)
2795 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2796 	return res;
2797 }
2798 
2799 int vfs_follow_link(struct nameidata *nd, const char *link)
2800 {
2801 	return __vfs_follow_link(nd, link);
2802 }
2803 
2804 /* get the link contents into pagecache */
2805 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2806 {
2807 	char *kaddr;
2808 	struct page *page;
2809 	struct address_space *mapping = dentry->d_inode->i_mapping;
2810 	page = read_mapping_page(mapping, 0, NULL);
2811 	if (IS_ERR(page))
2812 		return (char*)page;
2813 	*ppage = page;
2814 	kaddr = kmap(page);
2815 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2816 	return kaddr;
2817 }
2818 
2819 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2820 {
2821 	struct page *page = NULL;
2822 	char *s = page_getlink(dentry, &page);
2823 	int res = vfs_readlink(dentry,buffer,buflen,s);
2824 	if (page) {
2825 		kunmap(page);
2826 		page_cache_release(page);
2827 	}
2828 	return res;
2829 }
2830 
2831 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2832 {
2833 	struct page *page = NULL;
2834 	nd_set_link(nd, page_getlink(dentry, &page));
2835 	return page;
2836 }
2837 
2838 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2839 {
2840 	struct page *page = cookie;
2841 
2842 	if (page) {
2843 		kunmap(page);
2844 		page_cache_release(page);
2845 	}
2846 }
2847 
2848 /*
2849  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2850  */
2851 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2852 {
2853 	struct address_space *mapping = inode->i_mapping;
2854 	struct page *page;
2855 	void *fsdata;
2856 	int err;
2857 	char *kaddr;
2858 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2859 	if (nofs)
2860 		flags |= AOP_FLAG_NOFS;
2861 
2862 retry:
2863 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2864 				flags, &page, &fsdata);
2865 	if (err)
2866 		goto fail;
2867 
2868 	kaddr = kmap_atomic(page, KM_USER0);
2869 	memcpy(kaddr, symname, len-1);
2870 	kunmap_atomic(kaddr, KM_USER0);
2871 
2872 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2873 							page, fsdata);
2874 	if (err < 0)
2875 		goto fail;
2876 	if (err < len-1)
2877 		goto retry;
2878 
2879 	mark_inode_dirty(inode);
2880 	return 0;
2881 fail:
2882 	return err;
2883 }
2884 
2885 int page_symlink(struct inode *inode, const char *symname, int len)
2886 {
2887 	return __page_symlink(inode, symname, len,
2888 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2889 }
2890 
2891 const struct inode_operations page_symlink_inode_operations = {
2892 	.readlink	= generic_readlink,
2893 	.follow_link	= page_follow_link_light,
2894 	.put_link	= page_put_link,
2895 };
2896 
2897 EXPORT_SYMBOL(user_path_at);
2898 EXPORT_SYMBOL(follow_down);
2899 EXPORT_SYMBOL(follow_up);
2900 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2901 EXPORT_SYMBOL(getname);
2902 EXPORT_SYMBOL(lock_rename);
2903 EXPORT_SYMBOL(lookup_one_len);
2904 EXPORT_SYMBOL(page_follow_link_light);
2905 EXPORT_SYMBOL(page_put_link);
2906 EXPORT_SYMBOL(page_readlink);
2907 EXPORT_SYMBOL(__page_symlink);
2908 EXPORT_SYMBOL(page_symlink);
2909 EXPORT_SYMBOL(page_symlink_inode_operations);
2910 EXPORT_SYMBOL(path_lookup);
2911 EXPORT_SYMBOL(kern_path);
2912 EXPORT_SYMBOL(vfs_path_lookup);
2913 EXPORT_SYMBOL(inode_permission);
2914 EXPORT_SYMBOL(file_permission);
2915 EXPORT_SYMBOL(unlock_rename);
2916 EXPORT_SYMBOL(vfs_create);
2917 EXPORT_SYMBOL(vfs_follow_link);
2918 EXPORT_SYMBOL(vfs_link);
2919 EXPORT_SYMBOL(vfs_mkdir);
2920 EXPORT_SYMBOL(vfs_mknod);
2921 EXPORT_SYMBOL(generic_permission);
2922 EXPORT_SYMBOL(vfs_readlink);
2923 EXPORT_SYMBOL(vfs_rename);
2924 EXPORT_SYMBOL(vfs_rmdir);
2925 EXPORT_SYMBOL(vfs_symlink);
2926 EXPORT_SYMBOL(vfs_unlink);
2927 EXPORT_SYMBOL(dentry_unhash);
2928 EXPORT_SYMBOL(generic_readlink);
2929