xref: /linux/fs/namei.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37 
38 #include "internal.h"
39 #include "mount.h"
40 
41 /* [Feb-1997 T. Schoebel-Theuer]
42  * Fundamental changes in the pathname lookup mechanisms (namei)
43  * were necessary because of omirr.  The reason is that omirr needs
44  * to know the _real_ pathname, not the user-supplied one, in case
45  * of symlinks (and also when transname replacements occur).
46  *
47  * The new code replaces the old recursive symlink resolution with
48  * an iterative one (in case of non-nested symlink chains).  It does
49  * this with calls to <fs>_follow_link().
50  * As a side effect, dir_namei(), _namei() and follow_link() are now
51  * replaced with a single function lookup_dentry() that can handle all
52  * the special cases of the former code.
53  *
54  * With the new dcache, the pathname is stored at each inode, at least as
55  * long as the refcount of the inode is positive.  As a side effect, the
56  * size of the dcache depends on the inode cache and thus is dynamic.
57  *
58  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59  * resolution to correspond with current state of the code.
60  *
61  * Note that the symlink resolution is not *completely* iterative.
62  * There is still a significant amount of tail- and mid- recursion in
63  * the algorithm.  Also, note that <fs>_readlink() is not used in
64  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65  * may return different results than <fs>_follow_link().  Many virtual
66  * filesystems (including /proc) exhibit this behavior.
67  */
68 
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71  * and the name already exists in form of a symlink, try to create the new
72  * name indicated by the symlink. The old code always complained that the
73  * name already exists, due to not following the symlink even if its target
74  * is nonexistent.  The new semantics affects also mknod() and link() when
75  * the name is a symlink pointing to a non-existent name.
76  *
77  * I don't know which semantics is the right one, since I have no access
78  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80  * "old" one. Personally, I think the new semantics is much more logical.
81  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82  * file does succeed in both HP-UX and SunOs, but not in Solaris
83  * and in the old Linux semantics.
84  */
85 
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87  * semantics.  See the comments in "open_namei" and "do_link" below.
88  *
89  * [10-Sep-98 Alan Modra] Another symlink change.
90  */
91 
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93  *	inside the path - always follow.
94  *	in the last component in creation/removal/renaming - never follow.
95  *	if LOOKUP_FOLLOW passed - follow.
96  *	if the pathname has trailing slashes - follow.
97  *	otherwise - don't follow.
98  * (applied in that order).
99  *
100  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102  * During the 2.4 we need to fix the userland stuff depending on it -
103  * hopefully we will be able to get rid of that wart in 2.5. So far only
104  * XEmacs seems to be relying on it...
105  */
106 /*
107  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
109  * any extra contention...
110  */
111 
112 /* In order to reduce some races, while at the same time doing additional
113  * checking and hopefully speeding things up, we copy filenames to the
114  * kernel data space before using them..
115  *
116  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117  * PATH_MAX includes the nul terminator --RR.
118  */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 	int retval;
122 	unsigned long len = PATH_MAX;
123 
124 	if (!segment_eq(get_fs(), KERNEL_DS)) {
125 		if ((unsigned long) filename >= TASK_SIZE)
126 			return -EFAULT;
127 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 			len = TASK_SIZE - (unsigned long) filename;
129 	}
130 
131 	retval = strncpy_from_user(page, filename, len);
132 	if (retval > 0) {
133 		if (retval < len)
134 			return 0;
135 		return -ENAMETOOLONG;
136 	} else if (!retval)
137 		retval = -ENOENT;
138 	return retval;
139 }
140 
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 	char *result = __getname();
144 	int retval;
145 
146 	if (!result)
147 		return ERR_PTR(-ENOMEM);
148 
149 	retval = do_getname(filename, result);
150 	if (retval < 0) {
151 		if (retval == -ENOENT && empty)
152 			*empty = 1;
153 		if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 			__putname(result);
155 			return ERR_PTR(retval);
156 		}
157 	}
158 	audit_getname(result);
159 	return result;
160 }
161 
162 char *getname(const char __user * filename)
163 {
164 	return getname_flags(filename, 0, NULL);
165 }
166 
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
169 {
170 	if (unlikely(!audit_dummy_context()))
171 		audit_putname(name);
172 	else
173 		__putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177 
178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 	struct posix_acl *acl;
182 
183 	if (mask & MAY_NOT_BLOCK) {
184 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 	        if (!acl)
186 	                return -EAGAIN;
187 		/* no ->get_acl() calls in RCU mode... */
188 		if (acl == ACL_NOT_CACHED)
189 			return -ECHILD;
190 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 	}
192 
193 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194 
195 	/*
196 	 * A filesystem can force a ACL callback by just never filling the
197 	 * ACL cache. But normally you'd fill the cache either at inode
198 	 * instantiation time, or on the first ->get_acl call.
199 	 *
200 	 * If the filesystem doesn't have a get_acl() function at all, we'll
201 	 * just create the negative cache entry.
202 	 */
203 	if (acl == ACL_NOT_CACHED) {
204 	        if (inode->i_op->get_acl) {
205 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 			if (IS_ERR(acl))
207 				return PTR_ERR(acl);
208 		} else {
209 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 		        return -EAGAIN;
211 		}
212 	}
213 
214 	if (acl) {
215 	        int error = posix_acl_permission(inode, acl, mask);
216 	        posix_acl_release(acl);
217 	        return error;
218 	}
219 #endif
220 
221 	return -EAGAIN;
222 }
223 
224 /*
225  * This does the basic permission checking
226  */
227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 	unsigned int mode = inode->i_mode;
230 
231 	if (current_user_ns() != inode_userns(inode))
232 		goto other_perms;
233 
234 	if (likely(current_fsuid() == inode->i_uid))
235 		mode >>= 6;
236 	else {
237 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 			int error = check_acl(inode, mask);
239 			if (error != -EAGAIN)
240 				return error;
241 		}
242 
243 		if (in_group_p(inode->i_gid))
244 			mode >>= 3;
245 	}
246 
247 other_perms:
248 	/*
249 	 * If the DACs are ok we don't need any capability check.
250 	 */
251 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 		return 0;
253 	return -EACCES;
254 }
255 
256 /**
257  * generic_permission -  check for access rights on a Posix-like filesystem
258  * @inode:	inode to check access rights for
259  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260  *
261  * Used to check for read/write/execute permissions on a file.
262  * We use "fsuid" for this, letting us set arbitrary permissions
263  * for filesystem access without changing the "normal" uids which
264  * are used for other things.
265  *
266  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267  * request cannot be satisfied (eg. requires blocking or too much complexity).
268  * It would then be called again in ref-walk mode.
269  */
270 int generic_permission(struct inode *inode, int mask)
271 {
272 	int ret;
273 
274 	/*
275 	 * Do the basic permission checks.
276 	 */
277 	ret = acl_permission_check(inode, mask);
278 	if (ret != -EACCES)
279 		return ret;
280 
281 	if (S_ISDIR(inode->i_mode)) {
282 		/* DACs are overridable for directories */
283 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 			return 0;
285 		if (!(mask & MAY_WRITE))
286 			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 				return 0;
288 		return -EACCES;
289 	}
290 	/*
291 	 * Read/write DACs are always overridable.
292 	 * Executable DACs are overridable when there is
293 	 * at least one exec bit set.
294 	 */
295 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 			return 0;
298 
299 	/*
300 	 * Searching includes executable on directories, else just read.
301 	 */
302 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 	if (mask == MAY_READ)
304 		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 			return 0;
306 
307 	return -EACCES;
308 }
309 
310 /*
311  * We _really_ want to just do "generic_permission()" without
312  * even looking at the inode->i_op values. So we keep a cache
313  * flag in inode->i_opflags, that says "this has not special
314  * permission function, use the fast case".
315  */
316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 		if (likely(inode->i_op->permission))
320 			return inode->i_op->permission(inode, mask);
321 
322 		/* This gets set once for the inode lifetime */
323 		spin_lock(&inode->i_lock);
324 		inode->i_opflags |= IOP_FASTPERM;
325 		spin_unlock(&inode->i_lock);
326 	}
327 	return generic_permission(inode, mask);
328 }
329 
330 /**
331  * inode_permission  -  check for access rights to a given inode
332  * @inode:	inode to check permission on
333  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334  *
335  * Used to check for read/write/execute permissions on an inode.
336  * We use "fsuid" for this, letting us set arbitrary permissions
337  * for filesystem access without changing the "normal" uids which
338  * are used for other things.
339  *
340  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341  */
342 int inode_permission(struct inode *inode, int mask)
343 {
344 	int retval;
345 
346 	if (unlikely(mask & MAY_WRITE)) {
347 		umode_t mode = inode->i_mode;
348 
349 		/*
350 		 * Nobody gets write access to a read-only fs.
351 		 */
352 		if (IS_RDONLY(inode) &&
353 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 			return -EROFS;
355 
356 		/*
357 		 * Nobody gets write access to an immutable file.
358 		 */
359 		if (IS_IMMUTABLE(inode))
360 			return -EACCES;
361 	}
362 
363 	retval = do_inode_permission(inode, mask);
364 	if (retval)
365 		return retval;
366 
367 	retval = devcgroup_inode_permission(inode, mask);
368 	if (retval)
369 		return retval;
370 
371 	return security_inode_permission(inode, mask);
372 }
373 
374 /**
375  * path_get - get a reference to a path
376  * @path: path to get the reference to
377  *
378  * Given a path increment the reference count to the dentry and the vfsmount.
379  */
380 void path_get(struct path *path)
381 {
382 	mntget(path->mnt);
383 	dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386 
387 /**
388  * path_put - put a reference to a path
389  * @path: path to put the reference to
390  *
391  * Given a path decrement the reference count to the dentry and the vfsmount.
392  */
393 void path_put(struct path *path)
394 {
395 	dput(path->dentry);
396 	mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399 
400 /*
401  * Path walking has 2 modes, rcu-walk and ref-walk (see
402  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
403  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
406  * got stuck, so ref-walk may continue from there. If this is not successful
407  * (eg. a seqcount has changed), then failure is returned and it's up to caller
408  * to restart the path walk from the beginning in ref-walk mode.
409  */
410 
411 /**
412  * unlazy_walk - try to switch to ref-walk mode.
413  * @nd: nameidata pathwalk data
414  * @dentry: child of nd->path.dentry or NULL
415  * Returns: 0 on success, -ECHILD on failure
416  *
417  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
419  * @nd or NULL.  Must be called from rcu-walk context.
420  */
421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 	struct fs_struct *fs = current->fs;
424 	struct dentry *parent = nd->path.dentry;
425 	int want_root = 0;
426 
427 	BUG_ON(!(nd->flags & LOOKUP_RCU));
428 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 		want_root = 1;
430 		spin_lock(&fs->lock);
431 		if (nd->root.mnt != fs->root.mnt ||
432 				nd->root.dentry != fs->root.dentry)
433 			goto err_root;
434 	}
435 	spin_lock(&parent->d_lock);
436 	if (!dentry) {
437 		if (!__d_rcu_to_refcount(parent, nd->seq))
438 			goto err_parent;
439 		BUG_ON(nd->inode != parent->d_inode);
440 	} else {
441 		if (dentry->d_parent != parent)
442 			goto err_parent;
443 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 		if (!__d_rcu_to_refcount(dentry, nd->seq))
445 			goto err_child;
446 		/*
447 		 * If the sequence check on the child dentry passed, then
448 		 * the child has not been removed from its parent. This
449 		 * means the parent dentry must be valid and able to take
450 		 * a reference at this point.
451 		 */
452 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 		BUG_ON(!parent->d_count);
454 		parent->d_count++;
455 		spin_unlock(&dentry->d_lock);
456 	}
457 	spin_unlock(&parent->d_lock);
458 	if (want_root) {
459 		path_get(&nd->root);
460 		spin_unlock(&fs->lock);
461 	}
462 	mntget(nd->path.mnt);
463 
464 	rcu_read_unlock();
465 	br_read_unlock(vfsmount_lock);
466 	nd->flags &= ~LOOKUP_RCU;
467 	return 0;
468 
469 err_child:
470 	spin_unlock(&dentry->d_lock);
471 err_parent:
472 	spin_unlock(&parent->d_lock);
473 err_root:
474 	if (want_root)
475 		spin_unlock(&fs->lock);
476 	return -ECHILD;
477 }
478 
479 /**
480  * release_open_intent - free up open intent resources
481  * @nd: pointer to nameidata
482  */
483 void release_open_intent(struct nameidata *nd)
484 {
485 	struct file *file = nd->intent.open.file;
486 
487 	if (file && !IS_ERR(file)) {
488 		if (file->f_path.dentry == NULL)
489 			put_filp(file);
490 		else
491 			fput(file);
492 	}
493 }
494 
495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 	return dentry->d_op->d_revalidate(dentry, nd);
498 }
499 
500 /**
501  * complete_walk - successful completion of path walk
502  * @nd:  pointer nameidata
503  *
504  * If we had been in RCU mode, drop out of it and legitimize nd->path.
505  * Revalidate the final result, unless we'd already done that during
506  * the path walk or the filesystem doesn't ask for it.  Return 0 on
507  * success, -error on failure.  In case of failure caller does not
508  * need to drop nd->path.
509  */
510 static int complete_walk(struct nameidata *nd)
511 {
512 	struct dentry *dentry = nd->path.dentry;
513 	int status;
514 
515 	if (nd->flags & LOOKUP_RCU) {
516 		nd->flags &= ~LOOKUP_RCU;
517 		if (!(nd->flags & LOOKUP_ROOT))
518 			nd->root.mnt = NULL;
519 		spin_lock(&dentry->d_lock);
520 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 			spin_unlock(&dentry->d_lock);
522 			rcu_read_unlock();
523 			br_read_unlock(vfsmount_lock);
524 			return -ECHILD;
525 		}
526 		BUG_ON(nd->inode != dentry->d_inode);
527 		spin_unlock(&dentry->d_lock);
528 		mntget(nd->path.mnt);
529 		rcu_read_unlock();
530 		br_read_unlock(vfsmount_lock);
531 	}
532 
533 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 		return 0;
535 
536 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 		return 0;
538 
539 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 		return 0;
541 
542 	/* Note: we do not d_invalidate() */
543 	status = d_revalidate(dentry, nd);
544 	if (status > 0)
545 		return 0;
546 
547 	if (!status)
548 		status = -ESTALE;
549 
550 	path_put(&nd->path);
551 	return status;
552 }
553 
554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 	if (!nd->root.mnt)
557 		get_fs_root(current->fs, &nd->root);
558 }
559 
560 static int link_path_walk(const char *, struct nameidata *);
561 
562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 	if (!nd->root.mnt) {
565 		struct fs_struct *fs = current->fs;
566 		unsigned seq;
567 
568 		do {
569 			seq = read_seqcount_begin(&fs->seq);
570 			nd->root = fs->root;
571 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 		} while (read_seqcount_retry(&fs->seq, seq));
573 	}
574 }
575 
576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 	int ret;
579 
580 	if (IS_ERR(link))
581 		goto fail;
582 
583 	if (*link == '/') {
584 		set_root(nd);
585 		path_put(&nd->path);
586 		nd->path = nd->root;
587 		path_get(&nd->root);
588 		nd->flags |= LOOKUP_JUMPED;
589 	}
590 	nd->inode = nd->path.dentry->d_inode;
591 
592 	ret = link_path_walk(link, nd);
593 	return ret;
594 fail:
595 	path_put(&nd->path);
596 	return PTR_ERR(link);
597 }
598 
599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 	dput(path->dentry);
602 	if (path->mnt != nd->path.mnt)
603 		mntput(path->mnt);
604 }
605 
606 static inline void path_to_nameidata(const struct path *path,
607 					struct nameidata *nd)
608 {
609 	if (!(nd->flags & LOOKUP_RCU)) {
610 		dput(nd->path.dentry);
611 		if (nd->path.mnt != path->mnt)
612 			mntput(nd->path.mnt);
613 	}
614 	nd->path.mnt = path->mnt;
615 	nd->path.dentry = path->dentry;
616 }
617 
618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 	struct inode *inode = link->dentry->d_inode;
621 	if (!IS_ERR(cookie) && inode->i_op->put_link)
622 		inode->i_op->put_link(link->dentry, nd, cookie);
623 	path_put(link);
624 }
625 
626 static __always_inline int
627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 	int error;
630 	struct dentry *dentry = link->dentry;
631 
632 	BUG_ON(nd->flags & LOOKUP_RCU);
633 
634 	if (link->mnt == nd->path.mnt)
635 		mntget(link->mnt);
636 
637 	if (unlikely(current->total_link_count >= 40)) {
638 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 		path_put(&nd->path);
640 		return -ELOOP;
641 	}
642 	cond_resched();
643 	current->total_link_count++;
644 
645 	touch_atime(link);
646 	nd_set_link(nd, NULL);
647 
648 	error = security_inode_follow_link(link->dentry, nd);
649 	if (error) {
650 		*p = ERR_PTR(error); /* no ->put_link(), please */
651 		path_put(&nd->path);
652 		return error;
653 	}
654 
655 	nd->last_type = LAST_BIND;
656 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 	error = PTR_ERR(*p);
658 	if (!IS_ERR(*p)) {
659 		char *s = nd_get_link(nd);
660 		error = 0;
661 		if (s)
662 			error = __vfs_follow_link(nd, s);
663 		else if (nd->last_type == LAST_BIND) {
664 			nd->flags |= LOOKUP_JUMPED;
665 			nd->inode = nd->path.dentry->d_inode;
666 			if (nd->inode->i_op->follow_link) {
667 				/* stepped on a _really_ weird one */
668 				path_put(&nd->path);
669 				error = -ELOOP;
670 			}
671 		}
672 	}
673 	return error;
674 }
675 
676 static int follow_up_rcu(struct path *path)
677 {
678 	struct mount *mnt = real_mount(path->mnt);
679 	struct mount *parent;
680 	struct dentry *mountpoint;
681 
682 	parent = mnt->mnt_parent;
683 	if (&parent->mnt == path->mnt)
684 		return 0;
685 	mountpoint = mnt->mnt_mountpoint;
686 	path->dentry = mountpoint;
687 	path->mnt = &parent->mnt;
688 	return 1;
689 }
690 
691 int follow_up(struct path *path)
692 {
693 	struct mount *mnt = real_mount(path->mnt);
694 	struct mount *parent;
695 	struct dentry *mountpoint;
696 
697 	br_read_lock(vfsmount_lock);
698 	parent = mnt->mnt_parent;
699 	if (&parent->mnt == path->mnt) {
700 		br_read_unlock(vfsmount_lock);
701 		return 0;
702 	}
703 	mntget(&parent->mnt);
704 	mountpoint = dget(mnt->mnt_mountpoint);
705 	br_read_unlock(vfsmount_lock);
706 	dput(path->dentry);
707 	path->dentry = mountpoint;
708 	mntput(path->mnt);
709 	path->mnt = &parent->mnt;
710 	return 1;
711 }
712 
713 /*
714  * Perform an automount
715  * - return -EISDIR to tell follow_managed() to stop and return the path we
716  *   were called with.
717  */
718 static int follow_automount(struct path *path, unsigned flags,
719 			    bool *need_mntput)
720 {
721 	struct vfsmount *mnt;
722 	int err;
723 
724 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 		return -EREMOTE;
726 
727 	/* We don't want to mount if someone's just doing a stat -
728 	 * unless they're stat'ing a directory and appended a '/' to
729 	 * the name.
730 	 *
731 	 * We do, however, want to mount if someone wants to open or
732 	 * create a file of any type under the mountpoint, wants to
733 	 * traverse through the mountpoint or wants to open the
734 	 * mounted directory.  Also, autofs may mark negative dentries
735 	 * as being automount points.  These will need the attentions
736 	 * of the daemon to instantiate them before they can be used.
737 	 */
738 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 	    path->dentry->d_inode)
741 		return -EISDIR;
742 
743 	current->total_link_count++;
744 	if (current->total_link_count >= 40)
745 		return -ELOOP;
746 
747 	mnt = path->dentry->d_op->d_automount(path);
748 	if (IS_ERR(mnt)) {
749 		/*
750 		 * The filesystem is allowed to return -EISDIR here to indicate
751 		 * it doesn't want to automount.  For instance, autofs would do
752 		 * this so that its userspace daemon can mount on this dentry.
753 		 *
754 		 * However, we can only permit this if it's a terminal point in
755 		 * the path being looked up; if it wasn't then the remainder of
756 		 * the path is inaccessible and we should say so.
757 		 */
758 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 			return -EREMOTE;
760 		return PTR_ERR(mnt);
761 	}
762 
763 	if (!mnt) /* mount collision */
764 		return 0;
765 
766 	if (!*need_mntput) {
767 		/* lock_mount() may release path->mnt on error */
768 		mntget(path->mnt);
769 		*need_mntput = true;
770 	}
771 	err = finish_automount(mnt, path);
772 
773 	switch (err) {
774 	case -EBUSY:
775 		/* Someone else made a mount here whilst we were busy */
776 		return 0;
777 	case 0:
778 		path_put(path);
779 		path->mnt = mnt;
780 		path->dentry = dget(mnt->mnt_root);
781 		return 0;
782 	default:
783 		return err;
784 	}
785 
786 }
787 
788 /*
789  * Handle a dentry that is managed in some way.
790  * - Flagged for transit management (autofs)
791  * - Flagged as mountpoint
792  * - Flagged as automount point
793  *
794  * This may only be called in refwalk mode.
795  *
796  * Serialization is taken care of in namespace.c
797  */
798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 	unsigned managed;
802 	bool need_mntput = false;
803 	int ret = 0;
804 
805 	/* Given that we're not holding a lock here, we retain the value in a
806 	 * local variable for each dentry as we look at it so that we don't see
807 	 * the components of that value change under us */
808 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 	       managed &= DCACHE_MANAGED_DENTRY,
810 	       unlikely(managed != 0)) {
811 		/* Allow the filesystem to manage the transit without i_mutex
812 		 * being held. */
813 		if (managed & DCACHE_MANAGE_TRANSIT) {
814 			BUG_ON(!path->dentry->d_op);
815 			BUG_ON(!path->dentry->d_op->d_manage);
816 			ret = path->dentry->d_op->d_manage(path->dentry, false);
817 			if (ret < 0)
818 				break;
819 		}
820 
821 		/* Transit to a mounted filesystem. */
822 		if (managed & DCACHE_MOUNTED) {
823 			struct vfsmount *mounted = lookup_mnt(path);
824 			if (mounted) {
825 				dput(path->dentry);
826 				if (need_mntput)
827 					mntput(path->mnt);
828 				path->mnt = mounted;
829 				path->dentry = dget(mounted->mnt_root);
830 				need_mntput = true;
831 				continue;
832 			}
833 
834 			/* Something is mounted on this dentry in another
835 			 * namespace and/or whatever was mounted there in this
836 			 * namespace got unmounted before we managed to get the
837 			 * vfsmount_lock */
838 		}
839 
840 		/* Handle an automount point */
841 		if (managed & DCACHE_NEED_AUTOMOUNT) {
842 			ret = follow_automount(path, flags, &need_mntput);
843 			if (ret < 0)
844 				break;
845 			continue;
846 		}
847 
848 		/* We didn't change the current path point */
849 		break;
850 	}
851 
852 	if (need_mntput && path->mnt == mnt)
853 		mntput(path->mnt);
854 	if (ret == -EISDIR)
855 		ret = 0;
856 	return ret < 0 ? ret : need_mntput;
857 }
858 
859 int follow_down_one(struct path *path)
860 {
861 	struct vfsmount *mounted;
862 
863 	mounted = lookup_mnt(path);
864 	if (mounted) {
865 		dput(path->dentry);
866 		mntput(path->mnt);
867 		path->mnt = mounted;
868 		path->dentry = dget(mounted->mnt_root);
869 		return 1;
870 	}
871 	return 0;
872 }
873 
874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 		dentry->d_op->d_manage(dentry, true) < 0);
878 }
879 
880 /*
881  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
882  * we meet a managed dentry that would need blocking.
883  */
884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 			       struct inode **inode)
886 {
887 	for (;;) {
888 		struct mount *mounted;
889 		/*
890 		 * Don't forget we might have a non-mountpoint managed dentry
891 		 * that wants to block transit.
892 		 */
893 		if (unlikely(managed_dentry_might_block(path->dentry)))
894 			return false;
895 
896 		if (!d_mountpoint(path->dentry))
897 			break;
898 
899 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 		if (!mounted)
901 			break;
902 		path->mnt = &mounted->mnt;
903 		path->dentry = mounted->mnt.mnt_root;
904 		nd->flags |= LOOKUP_JUMPED;
905 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 		/*
907 		 * Update the inode too. We don't need to re-check the
908 		 * dentry sequence number here after this d_inode read,
909 		 * because a mount-point is always pinned.
910 		 */
911 		*inode = path->dentry->d_inode;
912 	}
913 	return true;
914 }
915 
916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 	while (d_mountpoint(nd->path.dentry)) {
919 		struct mount *mounted;
920 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 		if (!mounted)
922 			break;
923 		nd->path.mnt = &mounted->mnt;
924 		nd->path.dentry = mounted->mnt.mnt_root;
925 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 	}
927 }
928 
929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 	set_root_rcu(nd);
932 
933 	while (1) {
934 		if (nd->path.dentry == nd->root.dentry &&
935 		    nd->path.mnt == nd->root.mnt) {
936 			break;
937 		}
938 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 			struct dentry *old = nd->path.dentry;
940 			struct dentry *parent = old->d_parent;
941 			unsigned seq;
942 
943 			seq = read_seqcount_begin(&parent->d_seq);
944 			if (read_seqcount_retry(&old->d_seq, nd->seq))
945 				goto failed;
946 			nd->path.dentry = parent;
947 			nd->seq = seq;
948 			break;
949 		}
950 		if (!follow_up_rcu(&nd->path))
951 			break;
952 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 	}
954 	follow_mount_rcu(nd);
955 	nd->inode = nd->path.dentry->d_inode;
956 	return 0;
957 
958 failed:
959 	nd->flags &= ~LOOKUP_RCU;
960 	if (!(nd->flags & LOOKUP_ROOT))
961 		nd->root.mnt = NULL;
962 	rcu_read_unlock();
963 	br_read_unlock(vfsmount_lock);
964 	return -ECHILD;
965 }
966 
967 /*
968  * Follow down to the covering mount currently visible to userspace.  At each
969  * point, the filesystem owning that dentry may be queried as to whether the
970  * caller is permitted to proceed or not.
971  */
972 int follow_down(struct path *path)
973 {
974 	unsigned managed;
975 	int ret;
976 
977 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 		/* Allow the filesystem to manage the transit without i_mutex
980 		 * being held.
981 		 *
982 		 * We indicate to the filesystem if someone is trying to mount
983 		 * something here.  This gives autofs the chance to deny anyone
984 		 * other than its daemon the right to mount on its
985 		 * superstructure.
986 		 *
987 		 * The filesystem may sleep at this point.
988 		 */
989 		if (managed & DCACHE_MANAGE_TRANSIT) {
990 			BUG_ON(!path->dentry->d_op);
991 			BUG_ON(!path->dentry->d_op->d_manage);
992 			ret = path->dentry->d_op->d_manage(
993 				path->dentry, false);
994 			if (ret < 0)
995 				return ret == -EISDIR ? 0 : ret;
996 		}
997 
998 		/* Transit to a mounted filesystem. */
999 		if (managed & DCACHE_MOUNTED) {
1000 			struct vfsmount *mounted = lookup_mnt(path);
1001 			if (!mounted)
1002 				break;
1003 			dput(path->dentry);
1004 			mntput(path->mnt);
1005 			path->mnt = mounted;
1006 			path->dentry = dget(mounted->mnt_root);
1007 			continue;
1008 		}
1009 
1010 		/* Don't handle automount points here */
1011 		break;
1012 	}
1013 	return 0;
1014 }
1015 
1016 /*
1017  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018  */
1019 static void follow_mount(struct path *path)
1020 {
1021 	while (d_mountpoint(path->dentry)) {
1022 		struct vfsmount *mounted = lookup_mnt(path);
1023 		if (!mounted)
1024 			break;
1025 		dput(path->dentry);
1026 		mntput(path->mnt);
1027 		path->mnt = mounted;
1028 		path->dentry = dget(mounted->mnt_root);
1029 	}
1030 }
1031 
1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 	set_root(nd);
1035 
1036 	while(1) {
1037 		struct dentry *old = nd->path.dentry;
1038 
1039 		if (nd->path.dentry == nd->root.dentry &&
1040 		    nd->path.mnt == nd->root.mnt) {
1041 			break;
1042 		}
1043 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 			/* rare case of legitimate dget_parent()... */
1045 			nd->path.dentry = dget_parent(nd->path.dentry);
1046 			dput(old);
1047 			break;
1048 		}
1049 		if (!follow_up(&nd->path))
1050 			break;
1051 	}
1052 	follow_mount(&nd->path);
1053 	nd->inode = nd->path.dentry->d_inode;
1054 }
1055 
1056 /*
1057  * Allocate a dentry with name and parent, and perform a parent
1058  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1059  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1060  * have verified that no child exists while under i_mutex.
1061  */
1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1063 				struct qstr *name, struct nameidata *nd)
1064 {
1065 	struct inode *inode = parent->d_inode;
1066 	struct dentry *dentry;
1067 	struct dentry *old;
1068 
1069 	/* Don't create child dentry for a dead directory. */
1070 	if (unlikely(IS_DEADDIR(inode)))
1071 		return ERR_PTR(-ENOENT);
1072 
1073 	dentry = d_alloc(parent, name);
1074 	if (unlikely(!dentry))
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	old = inode->i_op->lookup(inode, dentry, nd);
1078 	if (unlikely(old)) {
1079 		dput(dentry);
1080 		dentry = old;
1081 	}
1082 	return dentry;
1083 }
1084 
1085 /*
1086  * We already have a dentry, but require a lookup to be performed on the parent
1087  * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1088  * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1089  * child exists while under i_mutex.
1090  */
1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1092 				     struct nameidata *nd)
1093 {
1094 	struct inode *inode = parent->d_inode;
1095 	struct dentry *old;
1096 
1097 	/* Don't create child dentry for a dead directory. */
1098 	if (unlikely(IS_DEADDIR(inode))) {
1099 		dput(dentry);
1100 		return ERR_PTR(-ENOENT);
1101 	}
1102 
1103 	old = inode->i_op->lookup(inode, dentry, nd);
1104 	if (unlikely(old)) {
1105 		dput(dentry);
1106 		dentry = old;
1107 	}
1108 	return dentry;
1109 }
1110 
1111 /*
1112  *  It's more convoluted than I'd like it to be, but... it's still fairly
1113  *  small and for now I'd prefer to have fast path as straight as possible.
1114  *  It _is_ time-critical.
1115  */
1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 			struct path *path, struct inode **inode)
1118 {
1119 	struct vfsmount *mnt = nd->path.mnt;
1120 	struct dentry *dentry, *parent = nd->path.dentry;
1121 	int need_reval = 1;
1122 	int status = 1;
1123 	int err;
1124 
1125 	/*
1126 	 * Rename seqlock is not required here because in the off chance
1127 	 * of a false negative due to a concurrent rename, we're going to
1128 	 * do the non-racy lookup, below.
1129 	 */
1130 	if (nd->flags & LOOKUP_RCU) {
1131 		unsigned seq;
1132 		*inode = nd->inode;
1133 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 		if (!dentry)
1135 			goto unlazy;
1136 
1137 		/* Memory barrier in read_seqcount_begin of child is enough */
1138 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 			return -ECHILD;
1140 		nd->seq = seq;
1141 
1142 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 			status = d_revalidate(dentry, nd);
1144 			if (unlikely(status <= 0)) {
1145 				if (status != -ECHILD)
1146 					need_reval = 0;
1147 				goto unlazy;
1148 			}
1149 		}
1150 		if (unlikely(d_need_lookup(dentry)))
1151 			goto unlazy;
1152 		path->mnt = mnt;
1153 		path->dentry = dentry;
1154 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 			goto unlazy;
1156 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 			goto unlazy;
1158 		return 0;
1159 unlazy:
1160 		if (unlazy_walk(nd, dentry))
1161 			return -ECHILD;
1162 	} else {
1163 		dentry = __d_lookup(parent, name);
1164 	}
1165 
1166 	if (dentry && unlikely(d_need_lookup(dentry))) {
1167 		dput(dentry);
1168 		dentry = NULL;
1169 	}
1170 retry:
1171 	if (unlikely(!dentry)) {
1172 		struct inode *dir = parent->d_inode;
1173 		BUG_ON(nd->inode != dir);
1174 
1175 		mutex_lock(&dir->i_mutex);
1176 		dentry = d_lookup(parent, name);
1177 		if (likely(!dentry)) {
1178 			dentry = d_alloc_and_lookup(parent, name, nd);
1179 			if (IS_ERR(dentry)) {
1180 				mutex_unlock(&dir->i_mutex);
1181 				return PTR_ERR(dentry);
1182 			}
1183 			/* known good */
1184 			need_reval = 0;
1185 			status = 1;
1186 		} else if (unlikely(d_need_lookup(dentry))) {
1187 			dentry = d_inode_lookup(parent, dentry, nd);
1188 			if (IS_ERR(dentry)) {
1189 				mutex_unlock(&dir->i_mutex);
1190 				return PTR_ERR(dentry);
1191 			}
1192 			/* known good */
1193 			need_reval = 0;
1194 			status = 1;
1195 		}
1196 		mutex_unlock(&dir->i_mutex);
1197 	}
1198 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 		status = d_revalidate(dentry, nd);
1200 	if (unlikely(status <= 0)) {
1201 		if (status < 0) {
1202 			dput(dentry);
1203 			return status;
1204 		}
1205 		if (!d_invalidate(dentry)) {
1206 			dput(dentry);
1207 			dentry = NULL;
1208 			need_reval = 1;
1209 			goto retry;
1210 		}
1211 	}
1212 
1213 	path->mnt = mnt;
1214 	path->dentry = dentry;
1215 	err = follow_managed(path, nd->flags);
1216 	if (unlikely(err < 0)) {
1217 		path_put_conditional(path, nd);
1218 		return err;
1219 	}
1220 	if (err)
1221 		nd->flags |= LOOKUP_JUMPED;
1222 	*inode = path->dentry->d_inode;
1223 	return 0;
1224 }
1225 
1226 static inline int may_lookup(struct nameidata *nd)
1227 {
1228 	if (nd->flags & LOOKUP_RCU) {
1229 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1230 		if (err != -ECHILD)
1231 			return err;
1232 		if (unlazy_walk(nd, NULL))
1233 			return -ECHILD;
1234 	}
1235 	return inode_permission(nd->inode, MAY_EXEC);
1236 }
1237 
1238 static inline int handle_dots(struct nameidata *nd, int type)
1239 {
1240 	if (type == LAST_DOTDOT) {
1241 		if (nd->flags & LOOKUP_RCU) {
1242 			if (follow_dotdot_rcu(nd))
1243 				return -ECHILD;
1244 		} else
1245 			follow_dotdot(nd);
1246 	}
1247 	return 0;
1248 }
1249 
1250 static void terminate_walk(struct nameidata *nd)
1251 {
1252 	if (!(nd->flags & LOOKUP_RCU)) {
1253 		path_put(&nd->path);
1254 	} else {
1255 		nd->flags &= ~LOOKUP_RCU;
1256 		if (!(nd->flags & LOOKUP_ROOT))
1257 			nd->root.mnt = NULL;
1258 		rcu_read_unlock();
1259 		br_read_unlock(vfsmount_lock);
1260 	}
1261 }
1262 
1263 /*
1264  * Do we need to follow links? We _really_ want to be able
1265  * to do this check without having to look at inode->i_op,
1266  * so we keep a cache of "no, this doesn't need follow_link"
1267  * for the common case.
1268  */
1269 static inline int should_follow_link(struct inode *inode, int follow)
1270 {
1271 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1272 		if (likely(inode->i_op->follow_link))
1273 			return follow;
1274 
1275 		/* This gets set once for the inode lifetime */
1276 		spin_lock(&inode->i_lock);
1277 		inode->i_opflags |= IOP_NOFOLLOW;
1278 		spin_unlock(&inode->i_lock);
1279 	}
1280 	return 0;
1281 }
1282 
1283 static inline int walk_component(struct nameidata *nd, struct path *path,
1284 		struct qstr *name, int type, int follow)
1285 {
1286 	struct inode *inode;
1287 	int err;
1288 	/*
1289 	 * "." and ".." are special - ".." especially so because it has
1290 	 * to be able to know about the current root directory and
1291 	 * parent relationships.
1292 	 */
1293 	if (unlikely(type != LAST_NORM))
1294 		return handle_dots(nd, type);
1295 	err = do_lookup(nd, name, path, &inode);
1296 	if (unlikely(err)) {
1297 		terminate_walk(nd);
1298 		return err;
1299 	}
1300 	if (!inode) {
1301 		path_to_nameidata(path, nd);
1302 		terminate_walk(nd);
1303 		return -ENOENT;
1304 	}
1305 	if (should_follow_link(inode, follow)) {
1306 		if (nd->flags & LOOKUP_RCU) {
1307 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1308 				terminate_walk(nd);
1309 				return -ECHILD;
1310 			}
1311 		}
1312 		BUG_ON(inode != path->dentry->d_inode);
1313 		return 1;
1314 	}
1315 	path_to_nameidata(path, nd);
1316 	nd->inode = inode;
1317 	return 0;
1318 }
1319 
1320 /*
1321  * This limits recursive symlink follows to 8, while
1322  * limiting consecutive symlinks to 40.
1323  *
1324  * Without that kind of total limit, nasty chains of consecutive
1325  * symlinks can cause almost arbitrarily long lookups.
1326  */
1327 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1328 {
1329 	int res;
1330 
1331 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1332 		path_put_conditional(path, nd);
1333 		path_put(&nd->path);
1334 		return -ELOOP;
1335 	}
1336 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1337 
1338 	nd->depth++;
1339 	current->link_count++;
1340 
1341 	do {
1342 		struct path link = *path;
1343 		void *cookie;
1344 
1345 		res = follow_link(&link, nd, &cookie);
1346 		if (!res)
1347 			res = walk_component(nd, path, &nd->last,
1348 					     nd->last_type, LOOKUP_FOLLOW);
1349 		put_link(nd, &link, cookie);
1350 	} while (res > 0);
1351 
1352 	current->link_count--;
1353 	nd->depth--;
1354 	return res;
1355 }
1356 
1357 /*
1358  * We really don't want to look at inode->i_op->lookup
1359  * when we don't have to. So we keep a cache bit in
1360  * the inode ->i_opflags field that says "yes, we can
1361  * do lookup on this inode".
1362  */
1363 static inline int can_lookup(struct inode *inode)
1364 {
1365 	if (likely(inode->i_opflags & IOP_LOOKUP))
1366 		return 1;
1367 	if (likely(!inode->i_op->lookup))
1368 		return 0;
1369 
1370 	/* We do this once for the lifetime of the inode */
1371 	spin_lock(&inode->i_lock);
1372 	inode->i_opflags |= IOP_LOOKUP;
1373 	spin_unlock(&inode->i_lock);
1374 	return 1;
1375 }
1376 
1377 /*
1378  * We can do the critical dentry name comparison and hashing
1379  * operations one word at a time, but we are limited to:
1380  *
1381  * - Architectures with fast unaligned word accesses. We could
1382  *   do a "get_unaligned()" if this helps and is sufficiently
1383  *   fast.
1384  *
1385  * - Little-endian machines (so that we can generate the mask
1386  *   of low bytes efficiently). Again, we *could* do a byte
1387  *   swapping load on big-endian architectures if that is not
1388  *   expensive enough to make the optimization worthless.
1389  *
1390  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1391  *   do not trap on the (extremely unlikely) case of a page
1392  *   crossing operation.
1393  *
1394  * - Furthermore, we need an efficient 64-bit compile for the
1395  *   64-bit case in order to generate the "number of bytes in
1396  *   the final mask". Again, that could be replaced with a
1397  *   efficient population count instruction or similar.
1398  */
1399 #ifdef CONFIG_DCACHE_WORD_ACCESS
1400 
1401 #ifdef CONFIG_64BIT
1402 
1403 /*
1404  * Jan Achrenius on G+: microoptimized version of
1405  * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
1406  * that works for the bytemasks without having to
1407  * mask them first.
1408  */
1409 static inline long count_masked_bytes(unsigned long mask)
1410 {
1411 	return mask*0x0001020304050608ul >> 56;
1412 }
1413 
1414 static inline unsigned int fold_hash(unsigned long hash)
1415 {
1416 	hash += hash >> (8*sizeof(int));
1417 	return hash;
1418 }
1419 
1420 #else	/* 32-bit case */
1421 
1422 /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
1423 static inline long count_masked_bytes(long mask)
1424 {
1425 	/* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
1426 	long a = (0x0ff0001+mask) >> 23;
1427 	/* Fix the 1 for 00 case */
1428 	return a & mask;
1429 }
1430 
1431 #define fold_hash(x) (x)
1432 
1433 #endif
1434 
1435 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1436 {
1437 	unsigned long a, mask;
1438 	unsigned long hash = 0;
1439 
1440 	for (;;) {
1441 		a = *(unsigned long *)name;
1442 		if (len < sizeof(unsigned long))
1443 			break;
1444 		hash += a;
1445 		hash *= 9;
1446 		name += sizeof(unsigned long);
1447 		len -= sizeof(unsigned long);
1448 		if (!len)
1449 			goto done;
1450 	}
1451 	mask = ~(~0ul << len*8);
1452 	hash += mask & a;
1453 done:
1454 	return fold_hash(hash);
1455 }
1456 EXPORT_SYMBOL(full_name_hash);
1457 
1458 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
1459 #define ONEBYTES	REPEAT_BYTE(0x01)
1460 #define SLASHBYTES	REPEAT_BYTE('/')
1461 #define HIGHBITS	REPEAT_BYTE(0x80)
1462 
1463 /* Return the high bit set in the first byte that is a zero */
1464 static inline unsigned long has_zero(unsigned long a)
1465 {
1466 	return ((a - ONEBYTES) & ~a) & HIGHBITS;
1467 }
1468 
1469 /*
1470  * Calculate the length and hash of the path component, and
1471  * return the length of the component;
1472  */
1473 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1474 {
1475 	unsigned long a, mask, hash, len;
1476 
1477 	hash = a = 0;
1478 	len = -sizeof(unsigned long);
1479 	do {
1480 		hash = (hash + a) * 9;
1481 		len += sizeof(unsigned long);
1482 		a = *(unsigned long *)(name+len);
1483 		/* Do we have any NUL or '/' bytes in this word? */
1484 		mask = has_zero(a) | has_zero(a ^ SLASHBYTES);
1485 	} while (!mask);
1486 
1487 	/* The mask *below* the first high bit set */
1488 	mask = (mask - 1) & ~mask;
1489 	mask >>= 7;
1490 	hash += a & mask;
1491 	*hashp = fold_hash(hash);
1492 
1493 	return len + count_masked_bytes(mask);
1494 }
1495 
1496 #else
1497 
1498 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1499 {
1500 	unsigned long hash = init_name_hash();
1501 	while (len--)
1502 		hash = partial_name_hash(*name++, hash);
1503 	return end_name_hash(hash);
1504 }
1505 EXPORT_SYMBOL(full_name_hash);
1506 
1507 /*
1508  * We know there's a real path component here of at least
1509  * one character.
1510  */
1511 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1512 {
1513 	unsigned long hash = init_name_hash();
1514 	unsigned long len = 0, c;
1515 
1516 	c = (unsigned char)*name;
1517 	do {
1518 		len++;
1519 		hash = partial_name_hash(c, hash);
1520 		c = (unsigned char)name[len];
1521 	} while (c && c != '/');
1522 	*hashp = end_name_hash(hash);
1523 	return len;
1524 }
1525 
1526 #endif
1527 
1528 /*
1529  * Name resolution.
1530  * This is the basic name resolution function, turning a pathname into
1531  * the final dentry. We expect 'base' to be positive and a directory.
1532  *
1533  * Returns 0 and nd will have valid dentry and mnt on success.
1534  * Returns error and drops reference to input namei data on failure.
1535  */
1536 static int link_path_walk(const char *name, struct nameidata *nd)
1537 {
1538 	struct path next;
1539 	int err;
1540 
1541 	while (*name=='/')
1542 		name++;
1543 	if (!*name)
1544 		return 0;
1545 
1546 	/* At this point we know we have a real path component. */
1547 	for(;;) {
1548 		struct qstr this;
1549 		long len;
1550 		int type;
1551 
1552 		err = may_lookup(nd);
1553  		if (err)
1554 			break;
1555 
1556 		len = hash_name(name, &this.hash);
1557 		this.name = name;
1558 		this.len = len;
1559 
1560 		type = LAST_NORM;
1561 		if (name[0] == '.') switch (len) {
1562 			case 2:
1563 				if (name[1] == '.') {
1564 					type = LAST_DOTDOT;
1565 					nd->flags |= LOOKUP_JUMPED;
1566 				}
1567 				break;
1568 			case 1:
1569 				type = LAST_DOT;
1570 		}
1571 		if (likely(type == LAST_NORM)) {
1572 			struct dentry *parent = nd->path.dentry;
1573 			nd->flags &= ~LOOKUP_JUMPED;
1574 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1575 				err = parent->d_op->d_hash(parent, nd->inode,
1576 							   &this);
1577 				if (err < 0)
1578 					break;
1579 			}
1580 		}
1581 
1582 		if (!name[len])
1583 			goto last_component;
1584 		/*
1585 		 * If it wasn't NUL, we know it was '/'. Skip that
1586 		 * slash, and continue until no more slashes.
1587 		 */
1588 		do {
1589 			len++;
1590 		} while (unlikely(name[len] == '/'));
1591 		if (!name[len])
1592 			goto last_component;
1593 		name += len;
1594 
1595 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1596 		if (err < 0)
1597 			return err;
1598 
1599 		if (err) {
1600 			err = nested_symlink(&next, nd);
1601 			if (err)
1602 				return err;
1603 		}
1604 		if (can_lookup(nd->inode))
1605 			continue;
1606 		err = -ENOTDIR;
1607 		break;
1608 		/* here ends the main loop */
1609 
1610 last_component:
1611 		nd->last = this;
1612 		nd->last_type = type;
1613 		return 0;
1614 	}
1615 	terminate_walk(nd);
1616 	return err;
1617 }
1618 
1619 static int path_init(int dfd, const char *name, unsigned int flags,
1620 		     struct nameidata *nd, struct file **fp)
1621 {
1622 	int retval = 0;
1623 	int fput_needed;
1624 	struct file *file;
1625 
1626 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1627 	nd->flags = flags | LOOKUP_JUMPED;
1628 	nd->depth = 0;
1629 	if (flags & LOOKUP_ROOT) {
1630 		struct inode *inode = nd->root.dentry->d_inode;
1631 		if (*name) {
1632 			if (!inode->i_op->lookup)
1633 				return -ENOTDIR;
1634 			retval = inode_permission(inode, MAY_EXEC);
1635 			if (retval)
1636 				return retval;
1637 		}
1638 		nd->path = nd->root;
1639 		nd->inode = inode;
1640 		if (flags & LOOKUP_RCU) {
1641 			br_read_lock(vfsmount_lock);
1642 			rcu_read_lock();
1643 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1644 		} else {
1645 			path_get(&nd->path);
1646 		}
1647 		return 0;
1648 	}
1649 
1650 	nd->root.mnt = NULL;
1651 
1652 	if (*name=='/') {
1653 		if (flags & LOOKUP_RCU) {
1654 			br_read_lock(vfsmount_lock);
1655 			rcu_read_lock();
1656 			set_root_rcu(nd);
1657 		} else {
1658 			set_root(nd);
1659 			path_get(&nd->root);
1660 		}
1661 		nd->path = nd->root;
1662 	} else if (dfd == AT_FDCWD) {
1663 		if (flags & LOOKUP_RCU) {
1664 			struct fs_struct *fs = current->fs;
1665 			unsigned seq;
1666 
1667 			br_read_lock(vfsmount_lock);
1668 			rcu_read_lock();
1669 
1670 			do {
1671 				seq = read_seqcount_begin(&fs->seq);
1672 				nd->path = fs->pwd;
1673 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1674 			} while (read_seqcount_retry(&fs->seq, seq));
1675 		} else {
1676 			get_fs_pwd(current->fs, &nd->path);
1677 		}
1678 	} else {
1679 		struct dentry *dentry;
1680 
1681 		file = fget_raw_light(dfd, &fput_needed);
1682 		retval = -EBADF;
1683 		if (!file)
1684 			goto out_fail;
1685 
1686 		dentry = file->f_path.dentry;
1687 
1688 		if (*name) {
1689 			retval = -ENOTDIR;
1690 			if (!S_ISDIR(dentry->d_inode->i_mode))
1691 				goto fput_fail;
1692 
1693 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1694 			if (retval)
1695 				goto fput_fail;
1696 		}
1697 
1698 		nd->path = file->f_path;
1699 		if (flags & LOOKUP_RCU) {
1700 			if (fput_needed)
1701 				*fp = file;
1702 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1703 			br_read_lock(vfsmount_lock);
1704 			rcu_read_lock();
1705 		} else {
1706 			path_get(&file->f_path);
1707 			fput_light(file, fput_needed);
1708 		}
1709 	}
1710 
1711 	nd->inode = nd->path.dentry->d_inode;
1712 	return 0;
1713 
1714 fput_fail:
1715 	fput_light(file, fput_needed);
1716 out_fail:
1717 	return retval;
1718 }
1719 
1720 static inline int lookup_last(struct nameidata *nd, struct path *path)
1721 {
1722 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1723 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1724 
1725 	nd->flags &= ~LOOKUP_PARENT;
1726 	return walk_component(nd, path, &nd->last, nd->last_type,
1727 					nd->flags & LOOKUP_FOLLOW);
1728 }
1729 
1730 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1731 static int path_lookupat(int dfd, const char *name,
1732 				unsigned int flags, struct nameidata *nd)
1733 {
1734 	struct file *base = NULL;
1735 	struct path path;
1736 	int err;
1737 
1738 	/*
1739 	 * Path walking is largely split up into 2 different synchronisation
1740 	 * schemes, rcu-walk and ref-walk (explained in
1741 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1742 	 * path walk code, but some things particularly setup, cleanup, and
1743 	 * following mounts are sufficiently divergent that functions are
1744 	 * duplicated. Typically there is a function foo(), and its RCU
1745 	 * analogue, foo_rcu().
1746 	 *
1747 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1748 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1749 	 * be handled by restarting a traditional ref-walk (which will always
1750 	 * be able to complete).
1751 	 */
1752 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1753 
1754 	if (unlikely(err))
1755 		return err;
1756 
1757 	current->total_link_count = 0;
1758 	err = link_path_walk(name, nd);
1759 
1760 	if (!err && !(flags & LOOKUP_PARENT)) {
1761 		err = lookup_last(nd, &path);
1762 		while (err > 0) {
1763 			void *cookie;
1764 			struct path link = path;
1765 			nd->flags |= LOOKUP_PARENT;
1766 			err = follow_link(&link, nd, &cookie);
1767 			if (!err)
1768 				err = lookup_last(nd, &path);
1769 			put_link(nd, &link, cookie);
1770 		}
1771 	}
1772 
1773 	if (!err)
1774 		err = complete_walk(nd);
1775 
1776 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1777 		if (!nd->inode->i_op->lookup) {
1778 			path_put(&nd->path);
1779 			err = -ENOTDIR;
1780 		}
1781 	}
1782 
1783 	if (base)
1784 		fput(base);
1785 
1786 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1787 		path_put(&nd->root);
1788 		nd->root.mnt = NULL;
1789 	}
1790 	return err;
1791 }
1792 
1793 static int do_path_lookup(int dfd, const char *name,
1794 				unsigned int flags, struct nameidata *nd)
1795 {
1796 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1797 	if (unlikely(retval == -ECHILD))
1798 		retval = path_lookupat(dfd, name, flags, nd);
1799 	if (unlikely(retval == -ESTALE))
1800 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1801 
1802 	if (likely(!retval)) {
1803 		if (unlikely(!audit_dummy_context())) {
1804 			if (nd->path.dentry && nd->inode)
1805 				audit_inode(name, nd->path.dentry);
1806 		}
1807 	}
1808 	return retval;
1809 }
1810 
1811 int kern_path_parent(const char *name, struct nameidata *nd)
1812 {
1813 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1814 }
1815 
1816 int kern_path(const char *name, unsigned int flags, struct path *path)
1817 {
1818 	struct nameidata nd;
1819 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1820 	if (!res)
1821 		*path = nd.path;
1822 	return res;
1823 }
1824 
1825 /**
1826  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1827  * @dentry:  pointer to dentry of the base directory
1828  * @mnt: pointer to vfs mount of the base directory
1829  * @name: pointer to file name
1830  * @flags: lookup flags
1831  * @path: pointer to struct path to fill
1832  */
1833 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1834 		    const char *name, unsigned int flags,
1835 		    struct path *path)
1836 {
1837 	struct nameidata nd;
1838 	int err;
1839 	nd.root.dentry = dentry;
1840 	nd.root.mnt = mnt;
1841 	BUG_ON(flags & LOOKUP_PARENT);
1842 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1843 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1844 	if (!err)
1845 		*path = nd.path;
1846 	return err;
1847 }
1848 
1849 static struct dentry *__lookup_hash(struct qstr *name,
1850 		struct dentry *base, struct nameidata *nd)
1851 {
1852 	struct inode *inode = base->d_inode;
1853 	struct dentry *dentry;
1854 	int err;
1855 
1856 	err = inode_permission(inode, MAY_EXEC);
1857 	if (err)
1858 		return ERR_PTR(err);
1859 
1860 	/*
1861 	 * Don't bother with __d_lookup: callers are for creat as
1862 	 * well as unlink, so a lot of the time it would cost
1863 	 * a double lookup.
1864 	 */
1865 	dentry = d_lookup(base, name);
1866 
1867 	if (dentry && d_need_lookup(dentry)) {
1868 		/*
1869 		 * __lookup_hash is called with the parent dir's i_mutex already
1870 		 * held, so we are good to go here.
1871 		 */
1872 		dentry = d_inode_lookup(base, dentry, nd);
1873 		if (IS_ERR(dentry))
1874 			return dentry;
1875 	}
1876 
1877 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1878 		int status = d_revalidate(dentry, nd);
1879 		if (unlikely(status <= 0)) {
1880 			/*
1881 			 * The dentry failed validation.
1882 			 * If d_revalidate returned 0 attempt to invalidate
1883 			 * the dentry otherwise d_revalidate is asking us
1884 			 * to return a fail status.
1885 			 */
1886 			if (status < 0) {
1887 				dput(dentry);
1888 				return ERR_PTR(status);
1889 			} else if (!d_invalidate(dentry)) {
1890 				dput(dentry);
1891 				dentry = NULL;
1892 			}
1893 		}
1894 	}
1895 
1896 	if (!dentry)
1897 		dentry = d_alloc_and_lookup(base, name, nd);
1898 
1899 	return dentry;
1900 }
1901 
1902 /*
1903  * Restricted form of lookup. Doesn't follow links, single-component only,
1904  * needs parent already locked. Doesn't follow mounts.
1905  * SMP-safe.
1906  */
1907 static struct dentry *lookup_hash(struct nameidata *nd)
1908 {
1909 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1910 }
1911 
1912 /**
1913  * lookup_one_len - filesystem helper to lookup single pathname component
1914  * @name:	pathname component to lookup
1915  * @base:	base directory to lookup from
1916  * @len:	maximum length @len should be interpreted to
1917  *
1918  * Note that this routine is purely a helper for filesystem usage and should
1919  * not be called by generic code.  Also note that by using this function the
1920  * nameidata argument is passed to the filesystem methods and a filesystem
1921  * using this helper needs to be prepared for that.
1922  */
1923 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1924 {
1925 	struct qstr this;
1926 	unsigned int c;
1927 
1928 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1929 
1930 	this.name = name;
1931 	this.len = len;
1932 	this.hash = full_name_hash(name, len);
1933 	if (!len)
1934 		return ERR_PTR(-EACCES);
1935 
1936 	while (len--) {
1937 		c = *(const unsigned char *)name++;
1938 		if (c == '/' || c == '\0')
1939 			return ERR_PTR(-EACCES);
1940 	}
1941 	/*
1942 	 * See if the low-level filesystem might want
1943 	 * to use its own hash..
1944 	 */
1945 	if (base->d_flags & DCACHE_OP_HASH) {
1946 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1947 		if (err < 0)
1948 			return ERR_PTR(err);
1949 	}
1950 
1951 	return __lookup_hash(&this, base, NULL);
1952 }
1953 
1954 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1955 		 struct path *path, int *empty)
1956 {
1957 	struct nameidata nd;
1958 	char *tmp = getname_flags(name, flags, empty);
1959 	int err = PTR_ERR(tmp);
1960 	if (!IS_ERR(tmp)) {
1961 
1962 		BUG_ON(flags & LOOKUP_PARENT);
1963 
1964 		err = do_path_lookup(dfd, tmp, flags, &nd);
1965 		putname(tmp);
1966 		if (!err)
1967 			*path = nd.path;
1968 	}
1969 	return err;
1970 }
1971 
1972 int user_path_at(int dfd, const char __user *name, unsigned flags,
1973 		 struct path *path)
1974 {
1975 	return user_path_at_empty(dfd, name, flags, path, NULL);
1976 }
1977 
1978 static int user_path_parent(int dfd, const char __user *path,
1979 			struct nameidata *nd, char **name)
1980 {
1981 	char *s = getname(path);
1982 	int error;
1983 
1984 	if (IS_ERR(s))
1985 		return PTR_ERR(s);
1986 
1987 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1988 	if (error)
1989 		putname(s);
1990 	else
1991 		*name = s;
1992 
1993 	return error;
1994 }
1995 
1996 /*
1997  * It's inline, so penalty for filesystems that don't use sticky bit is
1998  * minimal.
1999  */
2000 static inline int check_sticky(struct inode *dir, struct inode *inode)
2001 {
2002 	uid_t fsuid = current_fsuid();
2003 
2004 	if (!(dir->i_mode & S_ISVTX))
2005 		return 0;
2006 	if (current_user_ns() != inode_userns(inode))
2007 		goto other_userns;
2008 	if (inode->i_uid == fsuid)
2009 		return 0;
2010 	if (dir->i_uid == fsuid)
2011 		return 0;
2012 
2013 other_userns:
2014 	return !ns_capable(inode_userns(inode), CAP_FOWNER);
2015 }
2016 
2017 /*
2018  *	Check whether we can remove a link victim from directory dir, check
2019  *  whether the type of victim is right.
2020  *  1. We can't do it if dir is read-only (done in permission())
2021  *  2. We should have write and exec permissions on dir
2022  *  3. We can't remove anything from append-only dir
2023  *  4. We can't do anything with immutable dir (done in permission())
2024  *  5. If the sticky bit on dir is set we should either
2025  *	a. be owner of dir, or
2026  *	b. be owner of victim, or
2027  *	c. have CAP_FOWNER capability
2028  *  6. If the victim is append-only or immutable we can't do antyhing with
2029  *     links pointing to it.
2030  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2031  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2032  *  9. We can't remove a root or mountpoint.
2033  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2034  *     nfs_async_unlink().
2035  */
2036 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2037 {
2038 	int error;
2039 
2040 	if (!victim->d_inode)
2041 		return -ENOENT;
2042 
2043 	BUG_ON(victim->d_parent->d_inode != dir);
2044 	audit_inode_child(victim, dir);
2045 
2046 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2047 	if (error)
2048 		return error;
2049 	if (IS_APPEND(dir))
2050 		return -EPERM;
2051 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2052 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2053 		return -EPERM;
2054 	if (isdir) {
2055 		if (!S_ISDIR(victim->d_inode->i_mode))
2056 			return -ENOTDIR;
2057 		if (IS_ROOT(victim))
2058 			return -EBUSY;
2059 	} else if (S_ISDIR(victim->d_inode->i_mode))
2060 		return -EISDIR;
2061 	if (IS_DEADDIR(dir))
2062 		return -ENOENT;
2063 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2064 		return -EBUSY;
2065 	return 0;
2066 }
2067 
2068 /*	Check whether we can create an object with dentry child in directory
2069  *  dir.
2070  *  1. We can't do it if child already exists (open has special treatment for
2071  *     this case, but since we are inlined it's OK)
2072  *  2. We can't do it if dir is read-only (done in permission())
2073  *  3. We should have write and exec permissions on dir
2074  *  4. We can't do it if dir is immutable (done in permission())
2075  */
2076 static inline int may_create(struct inode *dir, struct dentry *child)
2077 {
2078 	if (child->d_inode)
2079 		return -EEXIST;
2080 	if (IS_DEADDIR(dir))
2081 		return -ENOENT;
2082 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2083 }
2084 
2085 /*
2086  * p1 and p2 should be directories on the same fs.
2087  */
2088 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2089 {
2090 	struct dentry *p;
2091 
2092 	if (p1 == p2) {
2093 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2094 		return NULL;
2095 	}
2096 
2097 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2098 
2099 	p = d_ancestor(p2, p1);
2100 	if (p) {
2101 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2102 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2103 		return p;
2104 	}
2105 
2106 	p = d_ancestor(p1, p2);
2107 	if (p) {
2108 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2109 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2110 		return p;
2111 	}
2112 
2113 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2114 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2115 	return NULL;
2116 }
2117 
2118 void unlock_rename(struct dentry *p1, struct dentry *p2)
2119 {
2120 	mutex_unlock(&p1->d_inode->i_mutex);
2121 	if (p1 != p2) {
2122 		mutex_unlock(&p2->d_inode->i_mutex);
2123 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2124 	}
2125 }
2126 
2127 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2128 		struct nameidata *nd)
2129 {
2130 	int error = may_create(dir, dentry);
2131 
2132 	if (error)
2133 		return error;
2134 
2135 	if (!dir->i_op->create)
2136 		return -EACCES;	/* shouldn't it be ENOSYS? */
2137 	mode &= S_IALLUGO;
2138 	mode |= S_IFREG;
2139 	error = security_inode_create(dir, dentry, mode);
2140 	if (error)
2141 		return error;
2142 	error = dir->i_op->create(dir, dentry, mode, nd);
2143 	if (!error)
2144 		fsnotify_create(dir, dentry);
2145 	return error;
2146 }
2147 
2148 static int may_open(struct path *path, int acc_mode, int flag)
2149 {
2150 	struct dentry *dentry = path->dentry;
2151 	struct inode *inode = dentry->d_inode;
2152 	int error;
2153 
2154 	/* O_PATH? */
2155 	if (!acc_mode)
2156 		return 0;
2157 
2158 	if (!inode)
2159 		return -ENOENT;
2160 
2161 	switch (inode->i_mode & S_IFMT) {
2162 	case S_IFLNK:
2163 		return -ELOOP;
2164 	case S_IFDIR:
2165 		if (acc_mode & MAY_WRITE)
2166 			return -EISDIR;
2167 		break;
2168 	case S_IFBLK:
2169 	case S_IFCHR:
2170 		if (path->mnt->mnt_flags & MNT_NODEV)
2171 			return -EACCES;
2172 		/*FALLTHRU*/
2173 	case S_IFIFO:
2174 	case S_IFSOCK:
2175 		flag &= ~O_TRUNC;
2176 		break;
2177 	}
2178 
2179 	error = inode_permission(inode, acc_mode);
2180 	if (error)
2181 		return error;
2182 
2183 	/*
2184 	 * An append-only file must be opened in append mode for writing.
2185 	 */
2186 	if (IS_APPEND(inode)) {
2187 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2188 			return -EPERM;
2189 		if (flag & O_TRUNC)
2190 			return -EPERM;
2191 	}
2192 
2193 	/* O_NOATIME can only be set by the owner or superuser */
2194 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2195 		return -EPERM;
2196 
2197 	return 0;
2198 }
2199 
2200 static int handle_truncate(struct file *filp)
2201 {
2202 	struct path *path = &filp->f_path;
2203 	struct inode *inode = path->dentry->d_inode;
2204 	int error = get_write_access(inode);
2205 	if (error)
2206 		return error;
2207 	/*
2208 	 * Refuse to truncate files with mandatory locks held on them.
2209 	 */
2210 	error = locks_verify_locked(inode);
2211 	if (!error)
2212 		error = security_path_truncate(path);
2213 	if (!error) {
2214 		error = do_truncate(path->dentry, 0,
2215 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2216 				    filp);
2217 	}
2218 	put_write_access(inode);
2219 	return error;
2220 }
2221 
2222 static inline int open_to_namei_flags(int flag)
2223 {
2224 	if ((flag & O_ACCMODE) == 3)
2225 		flag--;
2226 	return flag;
2227 }
2228 
2229 /*
2230  * Handle the last step of open()
2231  */
2232 static struct file *do_last(struct nameidata *nd, struct path *path,
2233 			    const struct open_flags *op, const char *pathname)
2234 {
2235 	struct dentry *dir = nd->path.dentry;
2236 	struct dentry *dentry;
2237 	int open_flag = op->open_flag;
2238 	int will_truncate = open_flag & O_TRUNC;
2239 	int want_write = 0;
2240 	int acc_mode = op->acc_mode;
2241 	struct file *filp;
2242 	int error;
2243 
2244 	nd->flags &= ~LOOKUP_PARENT;
2245 	nd->flags |= op->intent;
2246 
2247 	switch (nd->last_type) {
2248 	case LAST_DOTDOT:
2249 	case LAST_DOT:
2250 		error = handle_dots(nd, nd->last_type);
2251 		if (error)
2252 			return ERR_PTR(error);
2253 		/* fallthrough */
2254 	case LAST_ROOT:
2255 		error = complete_walk(nd);
2256 		if (error)
2257 			return ERR_PTR(error);
2258 		audit_inode(pathname, nd->path.dentry);
2259 		if (open_flag & O_CREAT) {
2260 			error = -EISDIR;
2261 			goto exit;
2262 		}
2263 		goto ok;
2264 	case LAST_BIND:
2265 		error = complete_walk(nd);
2266 		if (error)
2267 			return ERR_PTR(error);
2268 		audit_inode(pathname, dir);
2269 		goto ok;
2270 	}
2271 
2272 	if (!(open_flag & O_CREAT)) {
2273 		int symlink_ok = 0;
2274 		if (nd->last.name[nd->last.len])
2275 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2276 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2277 			symlink_ok = 1;
2278 		/* we _can_ be in RCU mode here */
2279 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2280 					!symlink_ok);
2281 		if (error < 0)
2282 			return ERR_PTR(error);
2283 		if (error) /* symlink */
2284 			return NULL;
2285 		/* sayonara */
2286 		error = complete_walk(nd);
2287 		if (error)
2288 			return ERR_PTR(error);
2289 
2290 		error = -ENOTDIR;
2291 		if (nd->flags & LOOKUP_DIRECTORY) {
2292 			if (!nd->inode->i_op->lookup)
2293 				goto exit;
2294 		}
2295 		audit_inode(pathname, nd->path.dentry);
2296 		goto ok;
2297 	}
2298 
2299 	/* create side of things */
2300 	/*
2301 	 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2302 	 * cleared when we got to the last component we are about to look up
2303 	 */
2304 	error = complete_walk(nd);
2305 	if (error)
2306 		return ERR_PTR(error);
2307 
2308 	audit_inode(pathname, dir);
2309 	error = -EISDIR;
2310 	/* trailing slashes? */
2311 	if (nd->last.name[nd->last.len])
2312 		goto exit;
2313 
2314 	mutex_lock(&dir->d_inode->i_mutex);
2315 
2316 	dentry = lookup_hash(nd);
2317 	error = PTR_ERR(dentry);
2318 	if (IS_ERR(dentry)) {
2319 		mutex_unlock(&dir->d_inode->i_mutex);
2320 		goto exit;
2321 	}
2322 
2323 	path->dentry = dentry;
2324 	path->mnt = nd->path.mnt;
2325 
2326 	/* Negative dentry, just create the file */
2327 	if (!dentry->d_inode) {
2328 		umode_t mode = op->mode;
2329 		if (!IS_POSIXACL(dir->d_inode))
2330 			mode &= ~current_umask();
2331 		/*
2332 		 * This write is needed to ensure that a
2333 		 * rw->ro transition does not occur between
2334 		 * the time when the file is created and when
2335 		 * a permanent write count is taken through
2336 		 * the 'struct file' in nameidata_to_filp().
2337 		 */
2338 		error = mnt_want_write(nd->path.mnt);
2339 		if (error)
2340 			goto exit_mutex_unlock;
2341 		want_write = 1;
2342 		/* Don't check for write permission, don't truncate */
2343 		open_flag &= ~O_TRUNC;
2344 		will_truncate = 0;
2345 		acc_mode = MAY_OPEN;
2346 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2347 		if (error)
2348 			goto exit_mutex_unlock;
2349 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2350 		if (error)
2351 			goto exit_mutex_unlock;
2352 		mutex_unlock(&dir->d_inode->i_mutex);
2353 		dput(nd->path.dentry);
2354 		nd->path.dentry = dentry;
2355 		goto common;
2356 	}
2357 
2358 	/*
2359 	 * It already exists.
2360 	 */
2361 	mutex_unlock(&dir->d_inode->i_mutex);
2362 	audit_inode(pathname, path->dentry);
2363 
2364 	error = -EEXIST;
2365 	if (open_flag & O_EXCL)
2366 		goto exit_dput;
2367 
2368 	error = follow_managed(path, nd->flags);
2369 	if (error < 0)
2370 		goto exit_dput;
2371 
2372 	if (error)
2373 		nd->flags |= LOOKUP_JUMPED;
2374 
2375 	error = -ENOENT;
2376 	if (!path->dentry->d_inode)
2377 		goto exit_dput;
2378 
2379 	if (path->dentry->d_inode->i_op->follow_link)
2380 		return NULL;
2381 
2382 	path_to_nameidata(path, nd);
2383 	nd->inode = path->dentry->d_inode;
2384 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2385 	error = complete_walk(nd);
2386 	if (error)
2387 		return ERR_PTR(error);
2388 	error = -EISDIR;
2389 	if (S_ISDIR(nd->inode->i_mode))
2390 		goto exit;
2391 ok:
2392 	if (!S_ISREG(nd->inode->i_mode))
2393 		will_truncate = 0;
2394 
2395 	if (will_truncate) {
2396 		error = mnt_want_write(nd->path.mnt);
2397 		if (error)
2398 			goto exit;
2399 		want_write = 1;
2400 	}
2401 common:
2402 	error = may_open(&nd->path, acc_mode, open_flag);
2403 	if (error)
2404 		goto exit;
2405 	filp = nameidata_to_filp(nd);
2406 	if (!IS_ERR(filp)) {
2407 		error = ima_file_check(filp, op->acc_mode);
2408 		if (error) {
2409 			fput(filp);
2410 			filp = ERR_PTR(error);
2411 		}
2412 	}
2413 	if (!IS_ERR(filp)) {
2414 		if (will_truncate) {
2415 			error = handle_truncate(filp);
2416 			if (error) {
2417 				fput(filp);
2418 				filp = ERR_PTR(error);
2419 			}
2420 		}
2421 	}
2422 out:
2423 	if (want_write)
2424 		mnt_drop_write(nd->path.mnt);
2425 	path_put(&nd->path);
2426 	return filp;
2427 
2428 exit_mutex_unlock:
2429 	mutex_unlock(&dir->d_inode->i_mutex);
2430 exit_dput:
2431 	path_put_conditional(path, nd);
2432 exit:
2433 	filp = ERR_PTR(error);
2434 	goto out;
2435 }
2436 
2437 static struct file *path_openat(int dfd, const char *pathname,
2438 		struct nameidata *nd, const struct open_flags *op, int flags)
2439 {
2440 	struct file *base = NULL;
2441 	struct file *filp;
2442 	struct path path;
2443 	int error;
2444 
2445 	filp = get_empty_filp();
2446 	if (!filp)
2447 		return ERR_PTR(-ENFILE);
2448 
2449 	filp->f_flags = op->open_flag;
2450 	nd->intent.open.file = filp;
2451 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2452 	nd->intent.open.create_mode = op->mode;
2453 
2454 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2455 	if (unlikely(error))
2456 		goto out_filp;
2457 
2458 	current->total_link_count = 0;
2459 	error = link_path_walk(pathname, nd);
2460 	if (unlikely(error))
2461 		goto out_filp;
2462 
2463 	filp = do_last(nd, &path, op, pathname);
2464 	while (unlikely(!filp)) { /* trailing symlink */
2465 		struct path link = path;
2466 		void *cookie;
2467 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2468 			path_put_conditional(&path, nd);
2469 			path_put(&nd->path);
2470 			filp = ERR_PTR(-ELOOP);
2471 			break;
2472 		}
2473 		nd->flags |= LOOKUP_PARENT;
2474 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2475 		error = follow_link(&link, nd, &cookie);
2476 		if (unlikely(error))
2477 			filp = ERR_PTR(error);
2478 		else
2479 			filp = do_last(nd, &path, op, pathname);
2480 		put_link(nd, &link, cookie);
2481 	}
2482 out:
2483 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2484 		path_put(&nd->root);
2485 	if (base)
2486 		fput(base);
2487 	release_open_intent(nd);
2488 	return filp;
2489 
2490 out_filp:
2491 	filp = ERR_PTR(error);
2492 	goto out;
2493 }
2494 
2495 struct file *do_filp_open(int dfd, const char *pathname,
2496 		const struct open_flags *op, int flags)
2497 {
2498 	struct nameidata nd;
2499 	struct file *filp;
2500 
2501 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2502 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2503 		filp = path_openat(dfd, pathname, &nd, op, flags);
2504 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2505 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2506 	return filp;
2507 }
2508 
2509 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2510 		const char *name, const struct open_flags *op, int flags)
2511 {
2512 	struct nameidata nd;
2513 	struct file *file;
2514 
2515 	nd.root.mnt = mnt;
2516 	nd.root.dentry = dentry;
2517 
2518 	flags |= LOOKUP_ROOT;
2519 
2520 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2521 		return ERR_PTR(-ELOOP);
2522 
2523 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2524 	if (unlikely(file == ERR_PTR(-ECHILD)))
2525 		file = path_openat(-1, name, &nd, op, flags);
2526 	if (unlikely(file == ERR_PTR(-ESTALE)))
2527 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2528 	return file;
2529 }
2530 
2531 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2532 {
2533 	struct dentry *dentry = ERR_PTR(-EEXIST);
2534 	struct nameidata nd;
2535 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2536 	if (error)
2537 		return ERR_PTR(error);
2538 
2539 	/*
2540 	 * Yucky last component or no last component at all?
2541 	 * (foo/., foo/.., /////)
2542 	 */
2543 	if (nd.last_type != LAST_NORM)
2544 		goto out;
2545 	nd.flags &= ~LOOKUP_PARENT;
2546 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2547 	nd.intent.open.flags = O_EXCL;
2548 
2549 	/*
2550 	 * Do the final lookup.
2551 	 */
2552 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2553 	dentry = lookup_hash(&nd);
2554 	if (IS_ERR(dentry))
2555 		goto fail;
2556 
2557 	if (dentry->d_inode)
2558 		goto eexist;
2559 	/*
2560 	 * Special case - lookup gave negative, but... we had foo/bar/
2561 	 * From the vfs_mknod() POV we just have a negative dentry -
2562 	 * all is fine. Let's be bastards - you had / on the end, you've
2563 	 * been asking for (non-existent) directory. -ENOENT for you.
2564 	 */
2565 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2566 		dput(dentry);
2567 		dentry = ERR_PTR(-ENOENT);
2568 		goto fail;
2569 	}
2570 	*path = nd.path;
2571 	return dentry;
2572 eexist:
2573 	dput(dentry);
2574 	dentry = ERR_PTR(-EEXIST);
2575 fail:
2576 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2577 out:
2578 	path_put(&nd.path);
2579 	return dentry;
2580 }
2581 EXPORT_SYMBOL(kern_path_create);
2582 
2583 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2584 {
2585 	char *tmp = getname(pathname);
2586 	struct dentry *res;
2587 	if (IS_ERR(tmp))
2588 		return ERR_CAST(tmp);
2589 	res = kern_path_create(dfd, tmp, path, is_dir);
2590 	putname(tmp);
2591 	return res;
2592 }
2593 EXPORT_SYMBOL(user_path_create);
2594 
2595 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2596 {
2597 	int error = may_create(dir, dentry);
2598 
2599 	if (error)
2600 		return error;
2601 
2602 	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2603 	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2604 		return -EPERM;
2605 
2606 	if (!dir->i_op->mknod)
2607 		return -EPERM;
2608 
2609 	error = devcgroup_inode_mknod(mode, dev);
2610 	if (error)
2611 		return error;
2612 
2613 	error = security_inode_mknod(dir, dentry, mode, dev);
2614 	if (error)
2615 		return error;
2616 
2617 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2618 	if (!error)
2619 		fsnotify_create(dir, dentry);
2620 	return error;
2621 }
2622 
2623 static int may_mknod(umode_t mode)
2624 {
2625 	switch (mode & S_IFMT) {
2626 	case S_IFREG:
2627 	case S_IFCHR:
2628 	case S_IFBLK:
2629 	case S_IFIFO:
2630 	case S_IFSOCK:
2631 	case 0: /* zero mode translates to S_IFREG */
2632 		return 0;
2633 	case S_IFDIR:
2634 		return -EPERM;
2635 	default:
2636 		return -EINVAL;
2637 	}
2638 }
2639 
2640 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2641 		unsigned, dev)
2642 {
2643 	struct dentry *dentry;
2644 	struct path path;
2645 	int error;
2646 
2647 	if (S_ISDIR(mode))
2648 		return -EPERM;
2649 
2650 	dentry = user_path_create(dfd, filename, &path, 0);
2651 	if (IS_ERR(dentry))
2652 		return PTR_ERR(dentry);
2653 
2654 	if (!IS_POSIXACL(path.dentry->d_inode))
2655 		mode &= ~current_umask();
2656 	error = may_mknod(mode);
2657 	if (error)
2658 		goto out_dput;
2659 	error = mnt_want_write(path.mnt);
2660 	if (error)
2661 		goto out_dput;
2662 	error = security_path_mknod(&path, dentry, mode, dev);
2663 	if (error)
2664 		goto out_drop_write;
2665 	switch (mode & S_IFMT) {
2666 		case 0: case S_IFREG:
2667 			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2668 			break;
2669 		case S_IFCHR: case S_IFBLK:
2670 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2671 					new_decode_dev(dev));
2672 			break;
2673 		case S_IFIFO: case S_IFSOCK:
2674 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2675 			break;
2676 	}
2677 out_drop_write:
2678 	mnt_drop_write(path.mnt);
2679 out_dput:
2680 	dput(dentry);
2681 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2682 	path_put(&path);
2683 
2684 	return error;
2685 }
2686 
2687 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2688 {
2689 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2690 }
2691 
2692 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2693 {
2694 	int error = may_create(dir, dentry);
2695 	unsigned max_links = dir->i_sb->s_max_links;
2696 
2697 	if (error)
2698 		return error;
2699 
2700 	if (!dir->i_op->mkdir)
2701 		return -EPERM;
2702 
2703 	mode &= (S_IRWXUGO|S_ISVTX);
2704 	error = security_inode_mkdir(dir, dentry, mode);
2705 	if (error)
2706 		return error;
2707 
2708 	if (max_links && dir->i_nlink >= max_links)
2709 		return -EMLINK;
2710 
2711 	error = dir->i_op->mkdir(dir, dentry, mode);
2712 	if (!error)
2713 		fsnotify_mkdir(dir, dentry);
2714 	return error;
2715 }
2716 
2717 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2718 {
2719 	struct dentry *dentry;
2720 	struct path path;
2721 	int error;
2722 
2723 	dentry = user_path_create(dfd, pathname, &path, 1);
2724 	if (IS_ERR(dentry))
2725 		return PTR_ERR(dentry);
2726 
2727 	if (!IS_POSIXACL(path.dentry->d_inode))
2728 		mode &= ~current_umask();
2729 	error = mnt_want_write(path.mnt);
2730 	if (error)
2731 		goto out_dput;
2732 	error = security_path_mkdir(&path, dentry, mode);
2733 	if (error)
2734 		goto out_drop_write;
2735 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2736 out_drop_write:
2737 	mnt_drop_write(path.mnt);
2738 out_dput:
2739 	dput(dentry);
2740 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2741 	path_put(&path);
2742 	return error;
2743 }
2744 
2745 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2746 {
2747 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2748 }
2749 
2750 /*
2751  * The dentry_unhash() helper will try to drop the dentry early: we
2752  * should have a usage count of 2 if we're the only user of this
2753  * dentry, and if that is true (possibly after pruning the dcache),
2754  * then we drop the dentry now.
2755  *
2756  * A low-level filesystem can, if it choses, legally
2757  * do a
2758  *
2759  *	if (!d_unhashed(dentry))
2760  *		return -EBUSY;
2761  *
2762  * if it cannot handle the case of removing a directory
2763  * that is still in use by something else..
2764  */
2765 void dentry_unhash(struct dentry *dentry)
2766 {
2767 	shrink_dcache_parent(dentry);
2768 	spin_lock(&dentry->d_lock);
2769 	if (dentry->d_count == 1)
2770 		__d_drop(dentry);
2771 	spin_unlock(&dentry->d_lock);
2772 }
2773 
2774 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2775 {
2776 	int error = may_delete(dir, dentry, 1);
2777 
2778 	if (error)
2779 		return error;
2780 
2781 	if (!dir->i_op->rmdir)
2782 		return -EPERM;
2783 
2784 	dget(dentry);
2785 	mutex_lock(&dentry->d_inode->i_mutex);
2786 
2787 	error = -EBUSY;
2788 	if (d_mountpoint(dentry))
2789 		goto out;
2790 
2791 	error = security_inode_rmdir(dir, dentry);
2792 	if (error)
2793 		goto out;
2794 
2795 	shrink_dcache_parent(dentry);
2796 	error = dir->i_op->rmdir(dir, dentry);
2797 	if (error)
2798 		goto out;
2799 
2800 	dentry->d_inode->i_flags |= S_DEAD;
2801 	dont_mount(dentry);
2802 
2803 out:
2804 	mutex_unlock(&dentry->d_inode->i_mutex);
2805 	dput(dentry);
2806 	if (!error)
2807 		d_delete(dentry);
2808 	return error;
2809 }
2810 
2811 static long do_rmdir(int dfd, const char __user *pathname)
2812 {
2813 	int error = 0;
2814 	char * name;
2815 	struct dentry *dentry;
2816 	struct nameidata nd;
2817 
2818 	error = user_path_parent(dfd, pathname, &nd, &name);
2819 	if (error)
2820 		return error;
2821 
2822 	switch(nd.last_type) {
2823 	case LAST_DOTDOT:
2824 		error = -ENOTEMPTY;
2825 		goto exit1;
2826 	case LAST_DOT:
2827 		error = -EINVAL;
2828 		goto exit1;
2829 	case LAST_ROOT:
2830 		error = -EBUSY;
2831 		goto exit1;
2832 	}
2833 
2834 	nd.flags &= ~LOOKUP_PARENT;
2835 
2836 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2837 	dentry = lookup_hash(&nd);
2838 	error = PTR_ERR(dentry);
2839 	if (IS_ERR(dentry))
2840 		goto exit2;
2841 	if (!dentry->d_inode) {
2842 		error = -ENOENT;
2843 		goto exit3;
2844 	}
2845 	error = mnt_want_write(nd.path.mnt);
2846 	if (error)
2847 		goto exit3;
2848 	error = security_path_rmdir(&nd.path, dentry);
2849 	if (error)
2850 		goto exit4;
2851 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2852 exit4:
2853 	mnt_drop_write(nd.path.mnt);
2854 exit3:
2855 	dput(dentry);
2856 exit2:
2857 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2858 exit1:
2859 	path_put(&nd.path);
2860 	putname(name);
2861 	return error;
2862 }
2863 
2864 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2865 {
2866 	return do_rmdir(AT_FDCWD, pathname);
2867 }
2868 
2869 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2870 {
2871 	int error = may_delete(dir, dentry, 0);
2872 
2873 	if (error)
2874 		return error;
2875 
2876 	if (!dir->i_op->unlink)
2877 		return -EPERM;
2878 
2879 	mutex_lock(&dentry->d_inode->i_mutex);
2880 	if (d_mountpoint(dentry))
2881 		error = -EBUSY;
2882 	else {
2883 		error = security_inode_unlink(dir, dentry);
2884 		if (!error) {
2885 			error = dir->i_op->unlink(dir, dentry);
2886 			if (!error)
2887 				dont_mount(dentry);
2888 		}
2889 	}
2890 	mutex_unlock(&dentry->d_inode->i_mutex);
2891 
2892 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2893 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2894 		fsnotify_link_count(dentry->d_inode);
2895 		d_delete(dentry);
2896 	}
2897 
2898 	return error;
2899 }
2900 
2901 /*
2902  * Make sure that the actual truncation of the file will occur outside its
2903  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2904  * writeout happening, and we don't want to prevent access to the directory
2905  * while waiting on the I/O.
2906  */
2907 static long do_unlinkat(int dfd, const char __user *pathname)
2908 {
2909 	int error;
2910 	char *name;
2911 	struct dentry *dentry;
2912 	struct nameidata nd;
2913 	struct inode *inode = NULL;
2914 
2915 	error = user_path_parent(dfd, pathname, &nd, &name);
2916 	if (error)
2917 		return error;
2918 
2919 	error = -EISDIR;
2920 	if (nd.last_type != LAST_NORM)
2921 		goto exit1;
2922 
2923 	nd.flags &= ~LOOKUP_PARENT;
2924 
2925 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2926 	dentry = lookup_hash(&nd);
2927 	error = PTR_ERR(dentry);
2928 	if (!IS_ERR(dentry)) {
2929 		/* Why not before? Because we want correct error value */
2930 		if (nd.last.name[nd.last.len])
2931 			goto slashes;
2932 		inode = dentry->d_inode;
2933 		if (!inode)
2934 			goto slashes;
2935 		ihold(inode);
2936 		error = mnt_want_write(nd.path.mnt);
2937 		if (error)
2938 			goto exit2;
2939 		error = security_path_unlink(&nd.path, dentry);
2940 		if (error)
2941 			goto exit3;
2942 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2943 exit3:
2944 		mnt_drop_write(nd.path.mnt);
2945 	exit2:
2946 		dput(dentry);
2947 	}
2948 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2949 	if (inode)
2950 		iput(inode);	/* truncate the inode here */
2951 exit1:
2952 	path_put(&nd.path);
2953 	putname(name);
2954 	return error;
2955 
2956 slashes:
2957 	error = !dentry->d_inode ? -ENOENT :
2958 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2959 	goto exit2;
2960 }
2961 
2962 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2963 {
2964 	if ((flag & ~AT_REMOVEDIR) != 0)
2965 		return -EINVAL;
2966 
2967 	if (flag & AT_REMOVEDIR)
2968 		return do_rmdir(dfd, pathname);
2969 
2970 	return do_unlinkat(dfd, pathname);
2971 }
2972 
2973 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2974 {
2975 	return do_unlinkat(AT_FDCWD, pathname);
2976 }
2977 
2978 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2979 {
2980 	int error = may_create(dir, dentry);
2981 
2982 	if (error)
2983 		return error;
2984 
2985 	if (!dir->i_op->symlink)
2986 		return -EPERM;
2987 
2988 	error = security_inode_symlink(dir, dentry, oldname);
2989 	if (error)
2990 		return error;
2991 
2992 	error = dir->i_op->symlink(dir, dentry, oldname);
2993 	if (!error)
2994 		fsnotify_create(dir, dentry);
2995 	return error;
2996 }
2997 
2998 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2999 		int, newdfd, const char __user *, newname)
3000 {
3001 	int error;
3002 	char *from;
3003 	struct dentry *dentry;
3004 	struct path path;
3005 
3006 	from = getname(oldname);
3007 	if (IS_ERR(from))
3008 		return PTR_ERR(from);
3009 
3010 	dentry = user_path_create(newdfd, newname, &path, 0);
3011 	error = PTR_ERR(dentry);
3012 	if (IS_ERR(dentry))
3013 		goto out_putname;
3014 
3015 	error = mnt_want_write(path.mnt);
3016 	if (error)
3017 		goto out_dput;
3018 	error = security_path_symlink(&path, dentry, from);
3019 	if (error)
3020 		goto out_drop_write;
3021 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
3022 out_drop_write:
3023 	mnt_drop_write(path.mnt);
3024 out_dput:
3025 	dput(dentry);
3026 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3027 	path_put(&path);
3028 out_putname:
3029 	putname(from);
3030 	return error;
3031 }
3032 
3033 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3034 {
3035 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3036 }
3037 
3038 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3039 {
3040 	struct inode *inode = old_dentry->d_inode;
3041 	unsigned max_links = dir->i_sb->s_max_links;
3042 	int error;
3043 
3044 	if (!inode)
3045 		return -ENOENT;
3046 
3047 	error = may_create(dir, new_dentry);
3048 	if (error)
3049 		return error;
3050 
3051 	if (dir->i_sb != inode->i_sb)
3052 		return -EXDEV;
3053 
3054 	/*
3055 	 * A link to an append-only or immutable file cannot be created.
3056 	 */
3057 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3058 		return -EPERM;
3059 	if (!dir->i_op->link)
3060 		return -EPERM;
3061 	if (S_ISDIR(inode->i_mode))
3062 		return -EPERM;
3063 
3064 	error = security_inode_link(old_dentry, dir, new_dentry);
3065 	if (error)
3066 		return error;
3067 
3068 	mutex_lock(&inode->i_mutex);
3069 	/* Make sure we don't allow creating hardlink to an unlinked file */
3070 	if (inode->i_nlink == 0)
3071 		error =  -ENOENT;
3072 	else if (max_links && inode->i_nlink >= max_links)
3073 		error = -EMLINK;
3074 	else
3075 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3076 	mutex_unlock(&inode->i_mutex);
3077 	if (!error)
3078 		fsnotify_link(dir, inode, new_dentry);
3079 	return error;
3080 }
3081 
3082 /*
3083  * Hardlinks are often used in delicate situations.  We avoid
3084  * security-related surprises by not following symlinks on the
3085  * newname.  --KAB
3086  *
3087  * We don't follow them on the oldname either to be compatible
3088  * with linux 2.0, and to avoid hard-linking to directories
3089  * and other special files.  --ADM
3090  */
3091 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3092 		int, newdfd, const char __user *, newname, int, flags)
3093 {
3094 	struct dentry *new_dentry;
3095 	struct path old_path, new_path;
3096 	int how = 0;
3097 	int error;
3098 
3099 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3100 		return -EINVAL;
3101 	/*
3102 	 * To use null names we require CAP_DAC_READ_SEARCH
3103 	 * This ensures that not everyone will be able to create
3104 	 * handlink using the passed filedescriptor.
3105 	 */
3106 	if (flags & AT_EMPTY_PATH) {
3107 		if (!capable(CAP_DAC_READ_SEARCH))
3108 			return -ENOENT;
3109 		how = LOOKUP_EMPTY;
3110 	}
3111 
3112 	if (flags & AT_SYMLINK_FOLLOW)
3113 		how |= LOOKUP_FOLLOW;
3114 
3115 	error = user_path_at(olddfd, oldname, how, &old_path);
3116 	if (error)
3117 		return error;
3118 
3119 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3120 	error = PTR_ERR(new_dentry);
3121 	if (IS_ERR(new_dentry))
3122 		goto out;
3123 
3124 	error = -EXDEV;
3125 	if (old_path.mnt != new_path.mnt)
3126 		goto out_dput;
3127 	error = mnt_want_write(new_path.mnt);
3128 	if (error)
3129 		goto out_dput;
3130 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3131 	if (error)
3132 		goto out_drop_write;
3133 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3134 out_drop_write:
3135 	mnt_drop_write(new_path.mnt);
3136 out_dput:
3137 	dput(new_dentry);
3138 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3139 	path_put(&new_path);
3140 out:
3141 	path_put(&old_path);
3142 
3143 	return error;
3144 }
3145 
3146 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3147 {
3148 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3149 }
3150 
3151 /*
3152  * The worst of all namespace operations - renaming directory. "Perverted"
3153  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3154  * Problems:
3155  *	a) we can get into loop creation. Check is done in is_subdir().
3156  *	b) race potential - two innocent renames can create a loop together.
3157  *	   That's where 4.4 screws up. Current fix: serialization on
3158  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3159  *	   story.
3160  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3161  *	   And that - after we got ->i_mutex on parents (until then we don't know
3162  *	   whether the target exists).  Solution: try to be smart with locking
3163  *	   order for inodes.  We rely on the fact that tree topology may change
3164  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3165  *	   move will be locked.  Thus we can rank directories by the tree
3166  *	   (ancestors first) and rank all non-directories after them.
3167  *	   That works since everybody except rename does "lock parent, lookup,
3168  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3169  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3170  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3171  *	   we'd better make sure that there's no link(2) for them.
3172  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3173  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3174  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3175  *	   ->i_mutex on parents, which works but leads to some truly excessive
3176  *	   locking].
3177  */
3178 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3179 			  struct inode *new_dir, struct dentry *new_dentry)
3180 {
3181 	int error = 0;
3182 	struct inode *target = new_dentry->d_inode;
3183 	unsigned max_links = new_dir->i_sb->s_max_links;
3184 
3185 	/*
3186 	 * If we are going to change the parent - check write permissions,
3187 	 * we'll need to flip '..'.
3188 	 */
3189 	if (new_dir != old_dir) {
3190 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3191 		if (error)
3192 			return error;
3193 	}
3194 
3195 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3196 	if (error)
3197 		return error;
3198 
3199 	dget(new_dentry);
3200 	if (target)
3201 		mutex_lock(&target->i_mutex);
3202 
3203 	error = -EBUSY;
3204 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3205 		goto out;
3206 
3207 	error = -EMLINK;
3208 	if (max_links && !target && new_dir != old_dir &&
3209 	    new_dir->i_nlink >= max_links)
3210 		goto out;
3211 
3212 	if (target)
3213 		shrink_dcache_parent(new_dentry);
3214 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3215 	if (error)
3216 		goto out;
3217 
3218 	if (target) {
3219 		target->i_flags |= S_DEAD;
3220 		dont_mount(new_dentry);
3221 	}
3222 out:
3223 	if (target)
3224 		mutex_unlock(&target->i_mutex);
3225 	dput(new_dentry);
3226 	if (!error)
3227 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3228 			d_move(old_dentry,new_dentry);
3229 	return error;
3230 }
3231 
3232 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3233 			    struct inode *new_dir, struct dentry *new_dentry)
3234 {
3235 	struct inode *target = new_dentry->d_inode;
3236 	int error;
3237 
3238 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3239 	if (error)
3240 		return error;
3241 
3242 	dget(new_dentry);
3243 	if (target)
3244 		mutex_lock(&target->i_mutex);
3245 
3246 	error = -EBUSY;
3247 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3248 		goto out;
3249 
3250 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3251 	if (error)
3252 		goto out;
3253 
3254 	if (target)
3255 		dont_mount(new_dentry);
3256 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3257 		d_move(old_dentry, new_dentry);
3258 out:
3259 	if (target)
3260 		mutex_unlock(&target->i_mutex);
3261 	dput(new_dentry);
3262 	return error;
3263 }
3264 
3265 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3266 	       struct inode *new_dir, struct dentry *new_dentry)
3267 {
3268 	int error;
3269 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3270 	const unsigned char *old_name;
3271 
3272 	if (old_dentry->d_inode == new_dentry->d_inode)
3273  		return 0;
3274 
3275 	error = may_delete(old_dir, old_dentry, is_dir);
3276 	if (error)
3277 		return error;
3278 
3279 	if (!new_dentry->d_inode)
3280 		error = may_create(new_dir, new_dentry);
3281 	else
3282 		error = may_delete(new_dir, new_dentry, is_dir);
3283 	if (error)
3284 		return error;
3285 
3286 	if (!old_dir->i_op->rename)
3287 		return -EPERM;
3288 
3289 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3290 
3291 	if (is_dir)
3292 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3293 	else
3294 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3295 	if (!error)
3296 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3297 			      new_dentry->d_inode, old_dentry);
3298 	fsnotify_oldname_free(old_name);
3299 
3300 	return error;
3301 }
3302 
3303 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3304 		int, newdfd, const char __user *, newname)
3305 {
3306 	struct dentry *old_dir, *new_dir;
3307 	struct dentry *old_dentry, *new_dentry;
3308 	struct dentry *trap;
3309 	struct nameidata oldnd, newnd;
3310 	char *from;
3311 	char *to;
3312 	int error;
3313 
3314 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3315 	if (error)
3316 		goto exit;
3317 
3318 	error = user_path_parent(newdfd, newname, &newnd, &to);
3319 	if (error)
3320 		goto exit1;
3321 
3322 	error = -EXDEV;
3323 	if (oldnd.path.mnt != newnd.path.mnt)
3324 		goto exit2;
3325 
3326 	old_dir = oldnd.path.dentry;
3327 	error = -EBUSY;
3328 	if (oldnd.last_type != LAST_NORM)
3329 		goto exit2;
3330 
3331 	new_dir = newnd.path.dentry;
3332 	if (newnd.last_type != LAST_NORM)
3333 		goto exit2;
3334 
3335 	oldnd.flags &= ~LOOKUP_PARENT;
3336 	newnd.flags &= ~LOOKUP_PARENT;
3337 	newnd.flags |= LOOKUP_RENAME_TARGET;
3338 
3339 	trap = lock_rename(new_dir, old_dir);
3340 
3341 	old_dentry = lookup_hash(&oldnd);
3342 	error = PTR_ERR(old_dentry);
3343 	if (IS_ERR(old_dentry))
3344 		goto exit3;
3345 	/* source must exist */
3346 	error = -ENOENT;
3347 	if (!old_dentry->d_inode)
3348 		goto exit4;
3349 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3350 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3351 		error = -ENOTDIR;
3352 		if (oldnd.last.name[oldnd.last.len])
3353 			goto exit4;
3354 		if (newnd.last.name[newnd.last.len])
3355 			goto exit4;
3356 	}
3357 	/* source should not be ancestor of target */
3358 	error = -EINVAL;
3359 	if (old_dentry == trap)
3360 		goto exit4;
3361 	new_dentry = lookup_hash(&newnd);
3362 	error = PTR_ERR(new_dentry);
3363 	if (IS_ERR(new_dentry))
3364 		goto exit4;
3365 	/* target should not be an ancestor of source */
3366 	error = -ENOTEMPTY;
3367 	if (new_dentry == trap)
3368 		goto exit5;
3369 
3370 	error = mnt_want_write(oldnd.path.mnt);
3371 	if (error)
3372 		goto exit5;
3373 	error = security_path_rename(&oldnd.path, old_dentry,
3374 				     &newnd.path, new_dentry);
3375 	if (error)
3376 		goto exit6;
3377 	error = vfs_rename(old_dir->d_inode, old_dentry,
3378 				   new_dir->d_inode, new_dentry);
3379 exit6:
3380 	mnt_drop_write(oldnd.path.mnt);
3381 exit5:
3382 	dput(new_dentry);
3383 exit4:
3384 	dput(old_dentry);
3385 exit3:
3386 	unlock_rename(new_dir, old_dir);
3387 exit2:
3388 	path_put(&newnd.path);
3389 	putname(to);
3390 exit1:
3391 	path_put(&oldnd.path);
3392 	putname(from);
3393 exit:
3394 	return error;
3395 }
3396 
3397 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3398 {
3399 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3400 }
3401 
3402 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3403 {
3404 	int len;
3405 
3406 	len = PTR_ERR(link);
3407 	if (IS_ERR(link))
3408 		goto out;
3409 
3410 	len = strlen(link);
3411 	if (len > (unsigned) buflen)
3412 		len = buflen;
3413 	if (copy_to_user(buffer, link, len))
3414 		len = -EFAULT;
3415 out:
3416 	return len;
3417 }
3418 
3419 /*
3420  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3421  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3422  * using) it for any given inode is up to filesystem.
3423  */
3424 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3425 {
3426 	struct nameidata nd;
3427 	void *cookie;
3428 	int res;
3429 
3430 	nd.depth = 0;
3431 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3432 	if (IS_ERR(cookie))
3433 		return PTR_ERR(cookie);
3434 
3435 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3436 	if (dentry->d_inode->i_op->put_link)
3437 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3438 	return res;
3439 }
3440 
3441 int vfs_follow_link(struct nameidata *nd, const char *link)
3442 {
3443 	return __vfs_follow_link(nd, link);
3444 }
3445 
3446 /* get the link contents into pagecache */
3447 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3448 {
3449 	char *kaddr;
3450 	struct page *page;
3451 	struct address_space *mapping = dentry->d_inode->i_mapping;
3452 	page = read_mapping_page(mapping, 0, NULL);
3453 	if (IS_ERR(page))
3454 		return (char*)page;
3455 	*ppage = page;
3456 	kaddr = kmap(page);
3457 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3458 	return kaddr;
3459 }
3460 
3461 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3462 {
3463 	struct page *page = NULL;
3464 	char *s = page_getlink(dentry, &page);
3465 	int res = vfs_readlink(dentry,buffer,buflen,s);
3466 	if (page) {
3467 		kunmap(page);
3468 		page_cache_release(page);
3469 	}
3470 	return res;
3471 }
3472 
3473 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3474 {
3475 	struct page *page = NULL;
3476 	nd_set_link(nd, page_getlink(dentry, &page));
3477 	return page;
3478 }
3479 
3480 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3481 {
3482 	struct page *page = cookie;
3483 
3484 	if (page) {
3485 		kunmap(page);
3486 		page_cache_release(page);
3487 	}
3488 }
3489 
3490 /*
3491  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3492  */
3493 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3494 {
3495 	struct address_space *mapping = inode->i_mapping;
3496 	struct page *page;
3497 	void *fsdata;
3498 	int err;
3499 	char *kaddr;
3500 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3501 	if (nofs)
3502 		flags |= AOP_FLAG_NOFS;
3503 
3504 retry:
3505 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3506 				flags, &page, &fsdata);
3507 	if (err)
3508 		goto fail;
3509 
3510 	kaddr = kmap_atomic(page);
3511 	memcpy(kaddr, symname, len-1);
3512 	kunmap_atomic(kaddr);
3513 
3514 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3515 							page, fsdata);
3516 	if (err < 0)
3517 		goto fail;
3518 	if (err < len-1)
3519 		goto retry;
3520 
3521 	mark_inode_dirty(inode);
3522 	return 0;
3523 fail:
3524 	return err;
3525 }
3526 
3527 int page_symlink(struct inode *inode, const char *symname, int len)
3528 {
3529 	return __page_symlink(inode, symname, len,
3530 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3531 }
3532 
3533 const struct inode_operations page_symlink_inode_operations = {
3534 	.readlink	= generic_readlink,
3535 	.follow_link	= page_follow_link_light,
3536 	.put_link	= page_put_link,
3537 };
3538 
3539 EXPORT_SYMBOL(user_path_at);
3540 EXPORT_SYMBOL(follow_down_one);
3541 EXPORT_SYMBOL(follow_down);
3542 EXPORT_SYMBOL(follow_up);
3543 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3544 EXPORT_SYMBOL(getname);
3545 EXPORT_SYMBOL(lock_rename);
3546 EXPORT_SYMBOL(lookup_one_len);
3547 EXPORT_SYMBOL(page_follow_link_light);
3548 EXPORT_SYMBOL(page_put_link);
3549 EXPORT_SYMBOL(page_readlink);
3550 EXPORT_SYMBOL(__page_symlink);
3551 EXPORT_SYMBOL(page_symlink);
3552 EXPORT_SYMBOL(page_symlink_inode_operations);
3553 EXPORT_SYMBOL(kern_path);
3554 EXPORT_SYMBOL(vfs_path_lookup);
3555 EXPORT_SYMBOL(inode_permission);
3556 EXPORT_SYMBOL(unlock_rename);
3557 EXPORT_SYMBOL(vfs_create);
3558 EXPORT_SYMBOL(vfs_follow_link);
3559 EXPORT_SYMBOL(vfs_link);
3560 EXPORT_SYMBOL(vfs_mkdir);
3561 EXPORT_SYMBOL(vfs_mknod);
3562 EXPORT_SYMBOL(generic_permission);
3563 EXPORT_SYMBOL(vfs_readlink);
3564 EXPORT_SYMBOL(vfs_rename);
3565 EXPORT_SYMBOL(vfs_rmdir);
3566 EXPORT_SYMBOL(vfs_symlink);
3567 EXPORT_SYMBOL(vfs_unlink);
3568 EXPORT_SYMBOL(dentry_unhash);
3569 EXPORT_SYMBOL(generic_readlink);
3570