1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/smp_lock.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/namei.h> 35 #include <asm/namei.h> 36 #include <asm/uaccess.h> 37 38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(!audit_dummy_context())) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 171 /** 172 * generic_permission - check for access rights on a Posix-like filesystem 173 * @inode: inode to check access rights for 174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 175 * @check_acl: optional callback to check for Posix ACLs 176 * 177 * Used to check for read/write/execute permissions on a file. 178 * We use "fsuid" for this, letting us set arbitrary permissions 179 * for filesystem access without changing the "normal" uids which 180 * are used for other things.. 181 */ 182 int generic_permission(struct inode *inode, int mask, 183 int (*check_acl)(struct inode *inode, int mask)) 184 { 185 umode_t mode = inode->i_mode; 186 187 if (current->fsuid == inode->i_uid) 188 mode >>= 6; 189 else { 190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 191 int error = check_acl(inode, mask); 192 if (error == -EACCES) 193 goto check_capabilities; 194 else if (error != -EAGAIN) 195 return error; 196 } 197 198 if (in_group_p(inode->i_gid)) 199 mode >>= 3; 200 } 201 202 /* 203 * If the DACs are ok we don't need any capability check. 204 */ 205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask)) 206 return 0; 207 208 check_capabilities: 209 /* 210 * Read/write DACs are always overridable. 211 * Executable DACs are overridable if at least one exec bit is set. 212 */ 213 if (!(mask & MAY_EXEC) || 214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 215 if (capable(CAP_DAC_OVERRIDE)) 216 return 0; 217 218 /* 219 * Searching includes executable on directories, else just read. 220 */ 221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 222 if (capable(CAP_DAC_READ_SEARCH)) 223 return 0; 224 225 return -EACCES; 226 } 227 228 int permission(struct inode *inode, int mask, struct nameidata *nd) 229 { 230 umode_t mode = inode->i_mode; 231 int retval, submask; 232 233 if (mask & MAY_WRITE) { 234 235 /* 236 * Nobody gets write access to a read-only fs. 237 */ 238 if (IS_RDONLY(inode) && 239 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 240 return -EROFS; 241 242 /* 243 * Nobody gets write access to an immutable file. 244 */ 245 if (IS_IMMUTABLE(inode)) 246 return -EACCES; 247 } 248 249 250 /* 251 * MAY_EXEC on regular files requires special handling: We override 252 * filesystem execute permissions if the mode bits aren't set or 253 * the fs is mounted with the "noexec" flag. 254 */ 255 if ((mask & MAY_EXEC) && S_ISREG(mode) && (!(mode & S_IXUGO) || 256 (nd && nd->mnt && (nd->mnt->mnt_flags & MNT_NOEXEC)))) 257 return -EACCES; 258 259 /* Ordinary permission routines do not understand MAY_APPEND. */ 260 submask = mask & ~MAY_APPEND; 261 if (inode->i_op && inode->i_op->permission) 262 retval = inode->i_op->permission(inode, submask, nd); 263 else 264 retval = generic_permission(inode, submask, NULL); 265 if (retval) 266 return retval; 267 268 return security_inode_permission(inode, mask, nd); 269 } 270 271 /** 272 * vfs_permission - check for access rights to a given path 273 * @nd: lookup result that describes the path 274 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 275 * 276 * Used to check for read/write/execute permissions on a path. 277 * We use "fsuid" for this, letting us set arbitrary permissions 278 * for filesystem access without changing the "normal" uids which 279 * are used for other things. 280 */ 281 int vfs_permission(struct nameidata *nd, int mask) 282 { 283 return permission(nd->dentry->d_inode, mask, nd); 284 } 285 286 /** 287 * file_permission - check for additional access rights to a given file 288 * @file: file to check access rights for 289 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 290 * 291 * Used to check for read/write/execute permissions on an already opened 292 * file. 293 * 294 * Note: 295 * Do not use this function in new code. All access checks should 296 * be done using vfs_permission(). 297 */ 298 int file_permission(struct file *file, int mask) 299 { 300 return permission(file->f_path.dentry->d_inode, mask, NULL); 301 } 302 303 /* 304 * get_write_access() gets write permission for a file. 305 * put_write_access() releases this write permission. 306 * This is used for regular files. 307 * We cannot support write (and maybe mmap read-write shared) accesses and 308 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 309 * can have the following values: 310 * 0: no writers, no VM_DENYWRITE mappings 311 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 312 * > 0: (i_writecount) users are writing to the file. 313 * 314 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 315 * except for the cases where we don't hold i_writecount yet. Then we need to 316 * use {get,deny}_write_access() - these functions check the sign and refuse 317 * to do the change if sign is wrong. Exclusion between them is provided by 318 * the inode->i_lock spinlock. 319 */ 320 321 int get_write_access(struct inode * inode) 322 { 323 spin_lock(&inode->i_lock); 324 if (atomic_read(&inode->i_writecount) < 0) { 325 spin_unlock(&inode->i_lock); 326 return -ETXTBSY; 327 } 328 atomic_inc(&inode->i_writecount); 329 spin_unlock(&inode->i_lock); 330 331 return 0; 332 } 333 334 int deny_write_access(struct file * file) 335 { 336 struct inode *inode = file->f_path.dentry->d_inode; 337 338 spin_lock(&inode->i_lock); 339 if (atomic_read(&inode->i_writecount) > 0) { 340 spin_unlock(&inode->i_lock); 341 return -ETXTBSY; 342 } 343 atomic_dec(&inode->i_writecount); 344 spin_unlock(&inode->i_lock); 345 346 return 0; 347 } 348 349 void path_release(struct nameidata *nd) 350 { 351 dput(nd->dentry); 352 mntput(nd->mnt); 353 } 354 355 /* 356 * umount() mustn't call path_release()/mntput() as that would clear 357 * mnt_expiry_mark 358 */ 359 void path_release_on_umount(struct nameidata *nd) 360 { 361 dput(nd->dentry); 362 mntput_no_expire(nd->mnt); 363 } 364 365 /** 366 * release_open_intent - free up open intent resources 367 * @nd: pointer to nameidata 368 */ 369 void release_open_intent(struct nameidata *nd) 370 { 371 if (nd->intent.open.file->f_path.dentry == NULL) 372 put_filp(nd->intent.open.file); 373 else 374 fput(nd->intent.open.file); 375 } 376 377 static inline struct dentry * 378 do_revalidate(struct dentry *dentry, struct nameidata *nd) 379 { 380 int status = dentry->d_op->d_revalidate(dentry, nd); 381 if (unlikely(status <= 0)) { 382 /* 383 * The dentry failed validation. 384 * If d_revalidate returned 0 attempt to invalidate 385 * the dentry otherwise d_revalidate is asking us 386 * to return a fail status. 387 */ 388 if (!status) { 389 if (!d_invalidate(dentry)) { 390 dput(dentry); 391 dentry = NULL; 392 } 393 } else { 394 dput(dentry); 395 dentry = ERR_PTR(status); 396 } 397 } 398 return dentry; 399 } 400 401 /* 402 * Internal lookup() using the new generic dcache. 403 * SMP-safe 404 */ 405 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 406 { 407 struct dentry * dentry = __d_lookup(parent, name); 408 409 /* lockess __d_lookup may fail due to concurrent d_move() 410 * in some unrelated directory, so try with d_lookup 411 */ 412 if (!dentry) 413 dentry = d_lookup(parent, name); 414 415 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 416 dentry = do_revalidate(dentry, nd); 417 418 return dentry; 419 } 420 421 /* 422 * Short-cut version of permission(), for calling by 423 * path_walk(), when dcache lock is held. Combines parts 424 * of permission() and generic_permission(), and tests ONLY for 425 * MAY_EXEC permission. 426 * 427 * If appropriate, check DAC only. If not appropriate, or 428 * short-cut DAC fails, then call permission() to do more 429 * complete permission check. 430 */ 431 static int exec_permission_lite(struct inode *inode, 432 struct nameidata *nd) 433 { 434 umode_t mode = inode->i_mode; 435 436 if (inode->i_op && inode->i_op->permission) 437 return -EAGAIN; 438 439 if (current->fsuid == inode->i_uid) 440 mode >>= 6; 441 else if (in_group_p(inode->i_gid)) 442 mode >>= 3; 443 444 if (mode & MAY_EXEC) 445 goto ok; 446 447 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 448 goto ok; 449 450 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 451 goto ok; 452 453 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 454 goto ok; 455 456 return -EACCES; 457 ok: 458 return security_inode_permission(inode, MAY_EXEC, nd); 459 } 460 461 /* 462 * This is called when everything else fails, and we actually have 463 * to go to the low-level filesystem to find out what we should do.. 464 * 465 * We get the directory semaphore, and after getting that we also 466 * make sure that nobody added the entry to the dcache in the meantime.. 467 * SMP-safe 468 */ 469 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 470 { 471 struct dentry * result; 472 struct inode *dir = parent->d_inode; 473 474 mutex_lock(&dir->i_mutex); 475 /* 476 * First re-do the cached lookup just in case it was created 477 * while we waited for the directory semaphore.. 478 * 479 * FIXME! This could use version numbering or similar to 480 * avoid unnecessary cache lookups. 481 * 482 * The "dcache_lock" is purely to protect the RCU list walker 483 * from concurrent renames at this point (we mustn't get false 484 * negatives from the RCU list walk here, unlike the optimistic 485 * fast walk). 486 * 487 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 488 */ 489 result = d_lookup(parent, name); 490 if (!result) { 491 struct dentry * dentry = d_alloc(parent, name); 492 result = ERR_PTR(-ENOMEM); 493 if (dentry) { 494 result = dir->i_op->lookup(dir, dentry, nd); 495 if (result) 496 dput(dentry); 497 else 498 result = dentry; 499 } 500 mutex_unlock(&dir->i_mutex); 501 return result; 502 } 503 504 /* 505 * Uhhuh! Nasty case: the cache was re-populated while 506 * we waited on the semaphore. Need to revalidate. 507 */ 508 mutex_unlock(&dir->i_mutex); 509 if (result->d_op && result->d_op->d_revalidate) { 510 result = do_revalidate(result, nd); 511 if (!result) 512 result = ERR_PTR(-ENOENT); 513 } 514 return result; 515 } 516 517 static int __emul_lookup_dentry(const char *, struct nameidata *); 518 519 /* SMP-safe */ 520 static __always_inline int 521 walk_init_root(const char *name, struct nameidata *nd) 522 { 523 struct fs_struct *fs = current->fs; 524 525 read_lock(&fs->lock); 526 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 527 nd->mnt = mntget(fs->altrootmnt); 528 nd->dentry = dget(fs->altroot); 529 read_unlock(&fs->lock); 530 if (__emul_lookup_dentry(name,nd)) 531 return 0; 532 read_lock(&fs->lock); 533 } 534 nd->mnt = mntget(fs->rootmnt); 535 nd->dentry = dget(fs->root); 536 read_unlock(&fs->lock); 537 return 1; 538 } 539 540 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 541 { 542 int res = 0; 543 char *name; 544 if (IS_ERR(link)) 545 goto fail; 546 547 if (*link == '/') { 548 path_release(nd); 549 if (!walk_init_root(link, nd)) 550 /* weird __emul_prefix() stuff did it */ 551 goto out; 552 } 553 res = link_path_walk(link, nd); 554 out: 555 if (nd->depth || res || nd->last_type!=LAST_NORM) 556 return res; 557 /* 558 * If it is an iterative symlinks resolution in open_namei() we 559 * have to copy the last component. And all that crap because of 560 * bloody create() on broken symlinks. Furrfu... 561 */ 562 name = __getname(); 563 if (unlikely(!name)) { 564 path_release(nd); 565 return -ENOMEM; 566 } 567 strcpy(name, nd->last.name); 568 nd->last.name = name; 569 return 0; 570 fail: 571 path_release(nd); 572 return PTR_ERR(link); 573 } 574 575 static inline void dput_path(struct path *path, struct nameidata *nd) 576 { 577 dput(path->dentry); 578 if (path->mnt != nd->mnt) 579 mntput(path->mnt); 580 } 581 582 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 583 { 584 dput(nd->dentry); 585 if (nd->mnt != path->mnt) 586 mntput(nd->mnt); 587 nd->mnt = path->mnt; 588 nd->dentry = path->dentry; 589 } 590 591 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 592 { 593 int error; 594 void *cookie; 595 struct dentry *dentry = path->dentry; 596 597 touch_atime(path->mnt, dentry); 598 nd_set_link(nd, NULL); 599 600 if (path->mnt != nd->mnt) { 601 path_to_nameidata(path, nd); 602 dget(dentry); 603 } 604 mntget(path->mnt); 605 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 606 error = PTR_ERR(cookie); 607 if (!IS_ERR(cookie)) { 608 char *s = nd_get_link(nd); 609 error = 0; 610 if (s) 611 error = __vfs_follow_link(nd, s); 612 if (dentry->d_inode->i_op->put_link) 613 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 614 } 615 dput(dentry); 616 mntput(path->mnt); 617 618 return error; 619 } 620 621 /* 622 * This limits recursive symlink follows to 8, while 623 * limiting consecutive symlinks to 40. 624 * 625 * Without that kind of total limit, nasty chains of consecutive 626 * symlinks can cause almost arbitrarily long lookups. 627 */ 628 static inline int do_follow_link(struct path *path, struct nameidata *nd) 629 { 630 int err = -ELOOP; 631 if (current->link_count >= MAX_NESTED_LINKS) 632 goto loop; 633 if (current->total_link_count >= 40) 634 goto loop; 635 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 636 cond_resched(); 637 err = security_inode_follow_link(path->dentry, nd); 638 if (err) 639 goto loop; 640 current->link_count++; 641 current->total_link_count++; 642 nd->depth++; 643 err = __do_follow_link(path, nd); 644 current->link_count--; 645 nd->depth--; 646 return err; 647 loop: 648 dput_path(path, nd); 649 path_release(nd); 650 return err; 651 } 652 653 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 654 { 655 struct vfsmount *parent; 656 struct dentry *mountpoint; 657 spin_lock(&vfsmount_lock); 658 parent=(*mnt)->mnt_parent; 659 if (parent == *mnt) { 660 spin_unlock(&vfsmount_lock); 661 return 0; 662 } 663 mntget(parent); 664 mountpoint=dget((*mnt)->mnt_mountpoint); 665 spin_unlock(&vfsmount_lock); 666 dput(*dentry); 667 *dentry = mountpoint; 668 mntput(*mnt); 669 *mnt = parent; 670 return 1; 671 } 672 673 /* no need for dcache_lock, as serialization is taken care in 674 * namespace.c 675 */ 676 static int __follow_mount(struct path *path) 677 { 678 int res = 0; 679 while (d_mountpoint(path->dentry)) { 680 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 681 if (!mounted) 682 break; 683 dput(path->dentry); 684 if (res) 685 mntput(path->mnt); 686 path->mnt = mounted; 687 path->dentry = dget(mounted->mnt_root); 688 res = 1; 689 } 690 return res; 691 } 692 693 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 694 { 695 while (d_mountpoint(*dentry)) { 696 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 697 if (!mounted) 698 break; 699 dput(*dentry); 700 mntput(*mnt); 701 *mnt = mounted; 702 *dentry = dget(mounted->mnt_root); 703 } 704 } 705 706 /* no need for dcache_lock, as serialization is taken care in 707 * namespace.c 708 */ 709 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 710 { 711 struct vfsmount *mounted; 712 713 mounted = lookup_mnt(*mnt, *dentry); 714 if (mounted) { 715 dput(*dentry); 716 mntput(*mnt); 717 *mnt = mounted; 718 *dentry = dget(mounted->mnt_root); 719 return 1; 720 } 721 return 0; 722 } 723 724 static __always_inline void follow_dotdot(struct nameidata *nd) 725 { 726 struct fs_struct *fs = current->fs; 727 728 while(1) { 729 struct vfsmount *parent; 730 struct dentry *old = nd->dentry; 731 732 read_lock(&fs->lock); 733 if (nd->dentry == fs->root && 734 nd->mnt == fs->rootmnt) { 735 read_unlock(&fs->lock); 736 break; 737 } 738 read_unlock(&fs->lock); 739 spin_lock(&dcache_lock); 740 if (nd->dentry != nd->mnt->mnt_root) { 741 nd->dentry = dget(nd->dentry->d_parent); 742 spin_unlock(&dcache_lock); 743 dput(old); 744 break; 745 } 746 spin_unlock(&dcache_lock); 747 spin_lock(&vfsmount_lock); 748 parent = nd->mnt->mnt_parent; 749 if (parent == nd->mnt) { 750 spin_unlock(&vfsmount_lock); 751 break; 752 } 753 mntget(parent); 754 nd->dentry = dget(nd->mnt->mnt_mountpoint); 755 spin_unlock(&vfsmount_lock); 756 dput(old); 757 mntput(nd->mnt); 758 nd->mnt = parent; 759 } 760 follow_mount(&nd->mnt, &nd->dentry); 761 } 762 763 /* 764 * It's more convoluted than I'd like it to be, but... it's still fairly 765 * small and for now I'd prefer to have fast path as straight as possible. 766 * It _is_ time-critical. 767 */ 768 static int do_lookup(struct nameidata *nd, struct qstr *name, 769 struct path *path) 770 { 771 struct vfsmount *mnt = nd->mnt; 772 struct dentry *dentry = __d_lookup(nd->dentry, name); 773 774 if (!dentry) 775 goto need_lookup; 776 if (dentry->d_op && dentry->d_op->d_revalidate) 777 goto need_revalidate; 778 done: 779 path->mnt = mnt; 780 path->dentry = dentry; 781 __follow_mount(path); 782 return 0; 783 784 need_lookup: 785 dentry = real_lookup(nd->dentry, name, nd); 786 if (IS_ERR(dentry)) 787 goto fail; 788 goto done; 789 790 need_revalidate: 791 dentry = do_revalidate(dentry, nd); 792 if (!dentry) 793 goto need_lookup; 794 if (IS_ERR(dentry)) 795 goto fail; 796 goto done; 797 798 fail: 799 return PTR_ERR(dentry); 800 } 801 802 /* 803 * Name resolution. 804 * This is the basic name resolution function, turning a pathname into 805 * the final dentry. We expect 'base' to be positive and a directory. 806 * 807 * Returns 0 and nd will have valid dentry and mnt on success. 808 * Returns error and drops reference to input namei data on failure. 809 */ 810 static fastcall int __link_path_walk(const char * name, struct nameidata *nd) 811 { 812 struct path next; 813 struct inode *inode; 814 int err; 815 unsigned int lookup_flags = nd->flags; 816 817 while (*name=='/') 818 name++; 819 if (!*name) 820 goto return_reval; 821 822 inode = nd->dentry->d_inode; 823 if (nd->depth) 824 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 825 826 /* At this point we know we have a real path component. */ 827 for(;;) { 828 unsigned long hash; 829 struct qstr this; 830 unsigned int c; 831 832 nd->flags |= LOOKUP_CONTINUE; 833 err = exec_permission_lite(inode, nd); 834 if (err == -EAGAIN) 835 err = vfs_permission(nd, MAY_EXEC); 836 if (err) 837 break; 838 839 this.name = name; 840 c = *(const unsigned char *)name; 841 842 hash = init_name_hash(); 843 do { 844 name++; 845 hash = partial_name_hash(c, hash); 846 c = *(const unsigned char *)name; 847 } while (c && (c != '/')); 848 this.len = name - (const char *) this.name; 849 this.hash = end_name_hash(hash); 850 851 /* remove trailing slashes? */ 852 if (!c) 853 goto last_component; 854 while (*++name == '/'); 855 if (!*name) 856 goto last_with_slashes; 857 858 /* 859 * "." and ".." are special - ".." especially so because it has 860 * to be able to know about the current root directory and 861 * parent relationships. 862 */ 863 if (this.name[0] == '.') switch (this.len) { 864 default: 865 break; 866 case 2: 867 if (this.name[1] != '.') 868 break; 869 follow_dotdot(nd); 870 inode = nd->dentry->d_inode; 871 /* fallthrough */ 872 case 1: 873 continue; 874 } 875 /* 876 * See if the low-level filesystem might want 877 * to use its own hash.. 878 */ 879 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 880 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 881 if (err < 0) 882 break; 883 } 884 /* This does the actual lookups.. */ 885 err = do_lookup(nd, &this, &next); 886 if (err) 887 break; 888 889 err = -ENOENT; 890 inode = next.dentry->d_inode; 891 if (!inode) 892 goto out_dput; 893 err = -ENOTDIR; 894 if (!inode->i_op) 895 goto out_dput; 896 897 if (inode->i_op->follow_link) { 898 err = do_follow_link(&next, nd); 899 if (err) 900 goto return_err; 901 err = -ENOENT; 902 inode = nd->dentry->d_inode; 903 if (!inode) 904 break; 905 err = -ENOTDIR; 906 if (!inode->i_op) 907 break; 908 } else 909 path_to_nameidata(&next, nd); 910 err = -ENOTDIR; 911 if (!inode->i_op->lookup) 912 break; 913 continue; 914 /* here ends the main loop */ 915 916 last_with_slashes: 917 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 918 last_component: 919 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 920 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 921 if (lookup_flags & LOOKUP_PARENT) 922 goto lookup_parent; 923 if (this.name[0] == '.') switch (this.len) { 924 default: 925 break; 926 case 2: 927 if (this.name[1] != '.') 928 break; 929 follow_dotdot(nd); 930 inode = nd->dentry->d_inode; 931 /* fallthrough */ 932 case 1: 933 goto return_reval; 934 } 935 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 936 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 937 if (err < 0) 938 break; 939 } 940 err = do_lookup(nd, &this, &next); 941 if (err) 942 break; 943 inode = next.dentry->d_inode; 944 if ((lookup_flags & LOOKUP_FOLLOW) 945 && inode && inode->i_op && inode->i_op->follow_link) { 946 err = do_follow_link(&next, nd); 947 if (err) 948 goto return_err; 949 inode = nd->dentry->d_inode; 950 } else 951 path_to_nameidata(&next, nd); 952 err = -ENOENT; 953 if (!inode) 954 break; 955 if (lookup_flags & LOOKUP_DIRECTORY) { 956 err = -ENOTDIR; 957 if (!inode->i_op || !inode->i_op->lookup) 958 break; 959 } 960 goto return_base; 961 lookup_parent: 962 nd->last = this; 963 nd->last_type = LAST_NORM; 964 if (this.name[0] != '.') 965 goto return_base; 966 if (this.len == 1) 967 nd->last_type = LAST_DOT; 968 else if (this.len == 2 && this.name[1] == '.') 969 nd->last_type = LAST_DOTDOT; 970 else 971 goto return_base; 972 return_reval: 973 /* 974 * We bypassed the ordinary revalidation routines. 975 * We may need to check the cached dentry for staleness. 976 */ 977 if (nd->dentry && nd->dentry->d_sb && 978 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 979 err = -ESTALE; 980 /* Note: we do not d_invalidate() */ 981 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd)) 982 break; 983 } 984 return_base: 985 return 0; 986 out_dput: 987 dput_path(&next, nd); 988 break; 989 } 990 path_release(nd); 991 return_err: 992 return err; 993 } 994 995 /* 996 * Wrapper to retry pathname resolution whenever the underlying 997 * file system returns an ESTALE. 998 * 999 * Retry the whole path once, forcing real lookup requests 1000 * instead of relying on the dcache. 1001 */ 1002 int fastcall link_path_walk(const char *name, struct nameidata *nd) 1003 { 1004 struct nameidata save = *nd; 1005 int result; 1006 1007 /* make sure the stuff we saved doesn't go away */ 1008 dget(save.dentry); 1009 mntget(save.mnt); 1010 1011 result = __link_path_walk(name, nd); 1012 if (result == -ESTALE) { 1013 *nd = save; 1014 dget(nd->dentry); 1015 mntget(nd->mnt); 1016 nd->flags |= LOOKUP_REVAL; 1017 result = __link_path_walk(name, nd); 1018 } 1019 1020 dput(save.dentry); 1021 mntput(save.mnt); 1022 1023 return result; 1024 } 1025 1026 int fastcall path_walk(const char * name, struct nameidata *nd) 1027 { 1028 current->total_link_count = 0; 1029 return link_path_walk(name, nd); 1030 } 1031 1032 /* 1033 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if 1034 * everything is done. Returns 0 and drops input nd, if lookup failed; 1035 */ 1036 static int __emul_lookup_dentry(const char *name, struct nameidata *nd) 1037 { 1038 if (path_walk(name, nd)) 1039 return 0; /* something went wrong... */ 1040 1041 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) { 1042 struct dentry *old_dentry = nd->dentry; 1043 struct vfsmount *old_mnt = nd->mnt; 1044 struct qstr last = nd->last; 1045 int last_type = nd->last_type; 1046 struct fs_struct *fs = current->fs; 1047 1048 /* 1049 * NAME was not found in alternate root or it's a directory. 1050 * Try to find it in the normal root: 1051 */ 1052 nd->last_type = LAST_ROOT; 1053 read_lock(&fs->lock); 1054 nd->mnt = mntget(fs->rootmnt); 1055 nd->dentry = dget(fs->root); 1056 read_unlock(&fs->lock); 1057 if (path_walk(name, nd) == 0) { 1058 if (nd->dentry->d_inode) { 1059 dput(old_dentry); 1060 mntput(old_mnt); 1061 return 1; 1062 } 1063 path_release(nd); 1064 } 1065 nd->dentry = old_dentry; 1066 nd->mnt = old_mnt; 1067 nd->last = last; 1068 nd->last_type = last_type; 1069 } 1070 return 1; 1071 } 1072 1073 void set_fs_altroot(void) 1074 { 1075 char *emul = __emul_prefix(); 1076 struct nameidata nd; 1077 struct vfsmount *mnt = NULL, *oldmnt; 1078 struct dentry *dentry = NULL, *olddentry; 1079 int err; 1080 struct fs_struct *fs = current->fs; 1081 1082 if (!emul) 1083 goto set_it; 1084 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd); 1085 if (!err) { 1086 mnt = nd.mnt; 1087 dentry = nd.dentry; 1088 } 1089 set_it: 1090 write_lock(&fs->lock); 1091 oldmnt = fs->altrootmnt; 1092 olddentry = fs->altroot; 1093 fs->altrootmnt = mnt; 1094 fs->altroot = dentry; 1095 write_unlock(&fs->lock); 1096 if (olddentry) { 1097 dput(olddentry); 1098 mntput(oldmnt); 1099 } 1100 } 1101 1102 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1103 static int fastcall do_path_lookup(int dfd, const char *name, 1104 unsigned int flags, struct nameidata *nd) 1105 { 1106 int retval = 0; 1107 int fput_needed; 1108 struct file *file; 1109 struct fs_struct *fs = current->fs; 1110 1111 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1112 nd->flags = flags; 1113 nd->depth = 0; 1114 1115 if (*name=='/') { 1116 read_lock(&fs->lock); 1117 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 1118 nd->mnt = mntget(fs->altrootmnt); 1119 nd->dentry = dget(fs->altroot); 1120 read_unlock(&fs->lock); 1121 if (__emul_lookup_dentry(name,nd)) 1122 goto out; /* found in altroot */ 1123 read_lock(&fs->lock); 1124 } 1125 nd->mnt = mntget(fs->rootmnt); 1126 nd->dentry = dget(fs->root); 1127 read_unlock(&fs->lock); 1128 } else if (dfd == AT_FDCWD) { 1129 read_lock(&fs->lock); 1130 nd->mnt = mntget(fs->pwdmnt); 1131 nd->dentry = dget(fs->pwd); 1132 read_unlock(&fs->lock); 1133 } else { 1134 struct dentry *dentry; 1135 1136 file = fget_light(dfd, &fput_needed); 1137 retval = -EBADF; 1138 if (!file) 1139 goto out_fail; 1140 1141 dentry = file->f_path.dentry; 1142 1143 retval = -ENOTDIR; 1144 if (!S_ISDIR(dentry->d_inode->i_mode)) 1145 goto fput_fail; 1146 1147 retval = file_permission(file, MAY_EXEC); 1148 if (retval) 1149 goto fput_fail; 1150 1151 nd->mnt = mntget(file->f_path.mnt); 1152 nd->dentry = dget(dentry); 1153 1154 fput_light(file, fput_needed); 1155 } 1156 current->total_link_count = 0; 1157 retval = link_path_walk(name, nd); 1158 out: 1159 if (likely(retval == 0)) { 1160 if (unlikely(!audit_dummy_context() && nd && nd->dentry && 1161 nd->dentry->d_inode)) 1162 audit_inode(name, nd->dentry->d_inode); 1163 } 1164 out_fail: 1165 return retval; 1166 1167 fput_fail: 1168 fput_light(file, fput_needed); 1169 goto out_fail; 1170 } 1171 1172 int fastcall path_lookup(const char *name, unsigned int flags, 1173 struct nameidata *nd) 1174 { 1175 return do_path_lookup(AT_FDCWD, name, flags, nd); 1176 } 1177 1178 static int __path_lookup_intent_open(int dfd, const char *name, 1179 unsigned int lookup_flags, struct nameidata *nd, 1180 int open_flags, int create_mode) 1181 { 1182 struct file *filp = get_empty_filp(); 1183 int err; 1184 1185 if (filp == NULL) 1186 return -ENFILE; 1187 nd->intent.open.file = filp; 1188 nd->intent.open.flags = open_flags; 1189 nd->intent.open.create_mode = create_mode; 1190 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1191 if (IS_ERR(nd->intent.open.file)) { 1192 if (err == 0) { 1193 err = PTR_ERR(nd->intent.open.file); 1194 path_release(nd); 1195 } 1196 } else if (err != 0) 1197 release_open_intent(nd); 1198 return err; 1199 } 1200 1201 /** 1202 * path_lookup_open - lookup a file path with open intent 1203 * @dfd: the directory to use as base, or AT_FDCWD 1204 * @name: pointer to file name 1205 * @lookup_flags: lookup intent flags 1206 * @nd: pointer to nameidata 1207 * @open_flags: open intent flags 1208 */ 1209 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1210 struct nameidata *nd, int open_flags) 1211 { 1212 return __path_lookup_intent_open(dfd, name, lookup_flags, nd, 1213 open_flags, 0); 1214 } 1215 1216 /** 1217 * path_lookup_create - lookup a file path with open + create intent 1218 * @dfd: the directory to use as base, or AT_FDCWD 1219 * @name: pointer to file name 1220 * @lookup_flags: lookup intent flags 1221 * @nd: pointer to nameidata 1222 * @open_flags: open intent flags 1223 * @create_mode: create intent flags 1224 */ 1225 static int path_lookup_create(int dfd, const char *name, 1226 unsigned int lookup_flags, struct nameidata *nd, 1227 int open_flags, int create_mode) 1228 { 1229 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE, 1230 nd, open_flags, create_mode); 1231 } 1232 1233 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags, 1234 struct nameidata *nd, int open_flags) 1235 { 1236 char *tmp = getname(name); 1237 int err = PTR_ERR(tmp); 1238 1239 if (!IS_ERR(tmp)) { 1240 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0); 1241 putname(tmp); 1242 } 1243 return err; 1244 } 1245 1246 static inline struct dentry *__lookup_hash_kern(struct qstr *name, struct dentry *base, struct nameidata *nd) 1247 { 1248 struct dentry *dentry; 1249 struct inode *inode; 1250 int err; 1251 1252 inode = base->d_inode; 1253 1254 /* 1255 * See if the low-level filesystem might want 1256 * to use its own hash.. 1257 */ 1258 if (base->d_op && base->d_op->d_hash) { 1259 err = base->d_op->d_hash(base, name); 1260 dentry = ERR_PTR(err); 1261 if (err < 0) 1262 goto out; 1263 } 1264 1265 dentry = cached_lookup(base, name, nd); 1266 if (!dentry) { 1267 struct dentry *new = d_alloc(base, name); 1268 dentry = ERR_PTR(-ENOMEM); 1269 if (!new) 1270 goto out; 1271 dentry = inode->i_op->lookup(inode, new, nd); 1272 if (!dentry) 1273 dentry = new; 1274 else 1275 dput(new); 1276 } 1277 out: 1278 return dentry; 1279 } 1280 1281 /* 1282 * Restricted form of lookup. Doesn't follow links, single-component only, 1283 * needs parent already locked. Doesn't follow mounts. 1284 * SMP-safe. 1285 */ 1286 static inline struct dentry * __lookup_hash(struct qstr *name, struct dentry *base, struct nameidata *nd) 1287 { 1288 struct dentry *dentry; 1289 struct inode *inode; 1290 int err; 1291 1292 inode = base->d_inode; 1293 1294 err = permission(inode, MAY_EXEC, nd); 1295 dentry = ERR_PTR(err); 1296 if (err) 1297 goto out; 1298 1299 dentry = __lookup_hash_kern(name, base, nd); 1300 out: 1301 return dentry; 1302 } 1303 1304 static struct dentry *lookup_hash(struct nameidata *nd) 1305 { 1306 return __lookup_hash(&nd->last, nd->dentry, nd); 1307 } 1308 1309 /* SMP-safe */ 1310 static inline int __lookup_one_len(const char *name, struct qstr *this, struct dentry *base, int len) 1311 { 1312 unsigned long hash; 1313 unsigned int c; 1314 1315 this->name = name; 1316 this->len = len; 1317 if (!len) 1318 return -EACCES; 1319 1320 hash = init_name_hash(); 1321 while (len--) { 1322 c = *(const unsigned char *)name++; 1323 if (c == '/' || c == '\0') 1324 return -EACCES; 1325 hash = partial_name_hash(c, hash); 1326 } 1327 this->hash = end_name_hash(hash); 1328 return 0; 1329 } 1330 1331 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1332 { 1333 int err; 1334 struct qstr this; 1335 1336 err = __lookup_one_len(name, &this, base, len); 1337 if (err) 1338 return ERR_PTR(err); 1339 return __lookup_hash(&this, base, NULL); 1340 } 1341 1342 struct dentry *lookup_one_len_kern(const char *name, struct dentry *base, int len) 1343 { 1344 int err; 1345 struct qstr this; 1346 1347 err = __lookup_one_len(name, &this, base, len); 1348 if (err) 1349 return ERR_PTR(err); 1350 return __lookup_hash_kern(&this, base, NULL); 1351 } 1352 1353 /* 1354 * namei() 1355 * 1356 * is used by most simple commands to get the inode of a specified name. 1357 * Open, link etc use their own routines, but this is enough for things 1358 * like 'chmod' etc. 1359 * 1360 * namei exists in two versions: namei/lnamei. The only difference is 1361 * that namei follows links, while lnamei does not. 1362 * SMP-safe 1363 */ 1364 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags, 1365 struct nameidata *nd) 1366 { 1367 char *tmp = getname(name); 1368 int err = PTR_ERR(tmp); 1369 1370 if (!IS_ERR(tmp)) { 1371 err = do_path_lookup(dfd, tmp, flags, nd); 1372 putname(tmp); 1373 } 1374 return err; 1375 } 1376 1377 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd) 1378 { 1379 return __user_walk_fd(AT_FDCWD, name, flags, nd); 1380 } 1381 1382 /* 1383 * It's inline, so penalty for filesystems that don't use sticky bit is 1384 * minimal. 1385 */ 1386 static inline int check_sticky(struct inode *dir, struct inode *inode) 1387 { 1388 if (!(dir->i_mode & S_ISVTX)) 1389 return 0; 1390 if (inode->i_uid == current->fsuid) 1391 return 0; 1392 if (dir->i_uid == current->fsuid) 1393 return 0; 1394 return !capable(CAP_FOWNER); 1395 } 1396 1397 /* 1398 * Check whether we can remove a link victim from directory dir, check 1399 * whether the type of victim is right. 1400 * 1. We can't do it if dir is read-only (done in permission()) 1401 * 2. We should have write and exec permissions on dir 1402 * 3. We can't remove anything from append-only dir 1403 * 4. We can't do anything with immutable dir (done in permission()) 1404 * 5. If the sticky bit on dir is set we should either 1405 * a. be owner of dir, or 1406 * b. be owner of victim, or 1407 * c. have CAP_FOWNER capability 1408 * 6. If the victim is append-only or immutable we can't do antyhing with 1409 * links pointing to it. 1410 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1411 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1412 * 9. We can't remove a root or mountpoint. 1413 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1414 * nfs_async_unlink(). 1415 */ 1416 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1417 { 1418 int error; 1419 1420 if (!victim->d_inode) 1421 return -ENOENT; 1422 1423 BUG_ON(victim->d_parent->d_inode != dir); 1424 audit_inode_child(victim->d_name.name, victim->d_inode, dir); 1425 1426 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL); 1427 if (error) 1428 return error; 1429 if (IS_APPEND(dir)) 1430 return -EPERM; 1431 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1432 IS_IMMUTABLE(victim->d_inode)) 1433 return -EPERM; 1434 if (isdir) { 1435 if (!S_ISDIR(victim->d_inode->i_mode)) 1436 return -ENOTDIR; 1437 if (IS_ROOT(victim)) 1438 return -EBUSY; 1439 } else if (S_ISDIR(victim->d_inode->i_mode)) 1440 return -EISDIR; 1441 if (IS_DEADDIR(dir)) 1442 return -ENOENT; 1443 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1444 return -EBUSY; 1445 return 0; 1446 } 1447 1448 /* Check whether we can create an object with dentry child in directory 1449 * dir. 1450 * 1. We can't do it if child already exists (open has special treatment for 1451 * this case, but since we are inlined it's OK) 1452 * 2. We can't do it if dir is read-only (done in permission()) 1453 * 3. We should have write and exec permissions on dir 1454 * 4. We can't do it if dir is immutable (done in permission()) 1455 */ 1456 static inline int may_create(struct inode *dir, struct dentry *child, 1457 struct nameidata *nd) 1458 { 1459 if (child->d_inode) 1460 return -EEXIST; 1461 if (IS_DEADDIR(dir)) 1462 return -ENOENT; 1463 return permission(dir,MAY_WRITE | MAY_EXEC, nd); 1464 } 1465 1466 /* 1467 * O_DIRECTORY translates into forcing a directory lookup. 1468 */ 1469 static inline int lookup_flags(unsigned int f) 1470 { 1471 unsigned long retval = LOOKUP_FOLLOW; 1472 1473 if (f & O_NOFOLLOW) 1474 retval &= ~LOOKUP_FOLLOW; 1475 1476 if (f & O_DIRECTORY) 1477 retval |= LOOKUP_DIRECTORY; 1478 1479 return retval; 1480 } 1481 1482 /* 1483 * p1 and p2 should be directories on the same fs. 1484 */ 1485 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1486 { 1487 struct dentry *p; 1488 1489 if (p1 == p2) { 1490 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1491 return NULL; 1492 } 1493 1494 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1495 1496 for (p = p1; p->d_parent != p; p = p->d_parent) { 1497 if (p->d_parent == p2) { 1498 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1499 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1500 return p; 1501 } 1502 } 1503 1504 for (p = p2; p->d_parent != p; p = p->d_parent) { 1505 if (p->d_parent == p1) { 1506 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1507 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1508 return p; 1509 } 1510 } 1511 1512 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1513 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1514 return NULL; 1515 } 1516 1517 void unlock_rename(struct dentry *p1, struct dentry *p2) 1518 { 1519 mutex_unlock(&p1->d_inode->i_mutex); 1520 if (p1 != p2) { 1521 mutex_unlock(&p2->d_inode->i_mutex); 1522 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1523 } 1524 } 1525 1526 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1527 struct nameidata *nd) 1528 { 1529 int error = may_create(dir, dentry, nd); 1530 1531 if (error) 1532 return error; 1533 1534 if (!dir->i_op || !dir->i_op->create) 1535 return -EACCES; /* shouldn't it be ENOSYS? */ 1536 mode &= S_IALLUGO; 1537 mode |= S_IFREG; 1538 error = security_inode_create(dir, dentry, mode); 1539 if (error) 1540 return error; 1541 DQUOT_INIT(dir); 1542 error = dir->i_op->create(dir, dentry, mode, nd); 1543 if (!error) 1544 fsnotify_create(dir, dentry); 1545 return error; 1546 } 1547 1548 int may_open(struct nameidata *nd, int acc_mode, int flag) 1549 { 1550 struct dentry *dentry = nd->dentry; 1551 struct inode *inode = dentry->d_inode; 1552 int error; 1553 1554 if (!inode) 1555 return -ENOENT; 1556 1557 if (S_ISLNK(inode->i_mode)) 1558 return -ELOOP; 1559 1560 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE)) 1561 return -EISDIR; 1562 1563 error = vfs_permission(nd, acc_mode); 1564 if (error) 1565 return error; 1566 1567 /* 1568 * FIFO's, sockets and device files are special: they don't 1569 * actually live on the filesystem itself, and as such you 1570 * can write to them even if the filesystem is read-only. 1571 */ 1572 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1573 flag &= ~O_TRUNC; 1574 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1575 if (nd->mnt->mnt_flags & MNT_NODEV) 1576 return -EACCES; 1577 1578 flag &= ~O_TRUNC; 1579 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE)) 1580 return -EROFS; 1581 /* 1582 * An append-only file must be opened in append mode for writing. 1583 */ 1584 if (IS_APPEND(inode)) { 1585 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1586 return -EPERM; 1587 if (flag & O_TRUNC) 1588 return -EPERM; 1589 } 1590 1591 /* O_NOATIME can only be set by the owner or superuser */ 1592 if (flag & O_NOATIME) 1593 if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER)) 1594 return -EPERM; 1595 1596 /* 1597 * Ensure there are no outstanding leases on the file. 1598 */ 1599 error = break_lease(inode, flag); 1600 if (error) 1601 return error; 1602 1603 if (flag & O_TRUNC) { 1604 error = get_write_access(inode); 1605 if (error) 1606 return error; 1607 1608 /* 1609 * Refuse to truncate files with mandatory locks held on them. 1610 */ 1611 error = locks_verify_locked(inode); 1612 if (!error) { 1613 DQUOT_INIT(inode); 1614 1615 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL); 1616 } 1617 put_write_access(inode); 1618 if (error) 1619 return error; 1620 } else 1621 if (flag & FMODE_WRITE) 1622 DQUOT_INIT(inode); 1623 1624 return 0; 1625 } 1626 1627 static int open_namei_create(struct nameidata *nd, struct path *path, 1628 int flag, int mode) 1629 { 1630 int error; 1631 struct dentry *dir = nd->dentry; 1632 1633 if (!IS_POSIXACL(dir->d_inode)) 1634 mode &= ~current->fs->umask; 1635 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1636 mutex_unlock(&dir->d_inode->i_mutex); 1637 dput(nd->dentry); 1638 nd->dentry = path->dentry; 1639 if (error) 1640 return error; 1641 /* Don't check for write permission, don't truncate */ 1642 return may_open(nd, 0, flag & ~O_TRUNC); 1643 } 1644 1645 /* 1646 * open_namei() 1647 * 1648 * namei for open - this is in fact almost the whole open-routine. 1649 * 1650 * Note that the low bits of "flag" aren't the same as in the open 1651 * system call - they are 00 - no permissions needed 1652 * 01 - read permission needed 1653 * 10 - write permission needed 1654 * 11 - read/write permissions needed 1655 * which is a lot more logical, and also allows the "no perm" needed 1656 * for symlinks (where the permissions are checked later). 1657 * SMP-safe 1658 */ 1659 int open_namei(int dfd, const char *pathname, int flag, 1660 int mode, struct nameidata *nd) 1661 { 1662 int acc_mode, error; 1663 struct path path; 1664 struct dentry *dir; 1665 int count = 0; 1666 1667 acc_mode = ACC_MODE(flag); 1668 1669 /* O_TRUNC implies we need access checks for write permissions */ 1670 if (flag & O_TRUNC) 1671 acc_mode |= MAY_WRITE; 1672 1673 /* Allow the LSM permission hook to distinguish append 1674 access from general write access. */ 1675 if (flag & O_APPEND) 1676 acc_mode |= MAY_APPEND; 1677 1678 /* 1679 * The simplest case - just a plain lookup. 1680 */ 1681 if (!(flag & O_CREAT)) { 1682 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1683 nd, flag); 1684 if (error) 1685 return error; 1686 goto ok; 1687 } 1688 1689 /* 1690 * Create - we need to know the parent. 1691 */ 1692 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode); 1693 if (error) 1694 return error; 1695 1696 /* 1697 * We have the parent and last component. First of all, check 1698 * that we are not asked to creat(2) an obvious directory - that 1699 * will not do. 1700 */ 1701 error = -EISDIR; 1702 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len]) 1703 goto exit; 1704 1705 dir = nd->dentry; 1706 nd->flags &= ~LOOKUP_PARENT; 1707 mutex_lock(&dir->d_inode->i_mutex); 1708 path.dentry = lookup_hash(nd); 1709 path.mnt = nd->mnt; 1710 1711 do_last: 1712 error = PTR_ERR(path.dentry); 1713 if (IS_ERR(path.dentry)) { 1714 mutex_unlock(&dir->d_inode->i_mutex); 1715 goto exit; 1716 } 1717 1718 if (IS_ERR(nd->intent.open.file)) { 1719 mutex_unlock(&dir->d_inode->i_mutex); 1720 error = PTR_ERR(nd->intent.open.file); 1721 goto exit_dput; 1722 } 1723 1724 /* Negative dentry, just create the file */ 1725 if (!path.dentry->d_inode) { 1726 error = open_namei_create(nd, &path, flag, mode); 1727 if (error) 1728 goto exit; 1729 return 0; 1730 } 1731 1732 /* 1733 * It already exists. 1734 */ 1735 mutex_unlock(&dir->d_inode->i_mutex); 1736 audit_inode_update(path.dentry->d_inode); 1737 1738 error = -EEXIST; 1739 if (flag & O_EXCL) 1740 goto exit_dput; 1741 1742 if (__follow_mount(&path)) { 1743 error = -ELOOP; 1744 if (flag & O_NOFOLLOW) 1745 goto exit_dput; 1746 } 1747 1748 error = -ENOENT; 1749 if (!path.dentry->d_inode) 1750 goto exit_dput; 1751 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) 1752 goto do_link; 1753 1754 path_to_nameidata(&path, nd); 1755 error = -EISDIR; 1756 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1757 goto exit; 1758 ok: 1759 error = may_open(nd, acc_mode, flag); 1760 if (error) 1761 goto exit; 1762 return 0; 1763 1764 exit_dput: 1765 dput_path(&path, nd); 1766 exit: 1767 if (!IS_ERR(nd->intent.open.file)) 1768 release_open_intent(nd); 1769 path_release(nd); 1770 return error; 1771 1772 do_link: 1773 error = -ELOOP; 1774 if (flag & O_NOFOLLOW) 1775 goto exit_dput; 1776 /* 1777 * This is subtle. Instead of calling do_follow_link() we do the 1778 * thing by hands. The reason is that this way we have zero link_count 1779 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1780 * After that we have the parent and last component, i.e. 1781 * we are in the same situation as after the first path_walk(). 1782 * Well, almost - if the last component is normal we get its copy 1783 * stored in nd->last.name and we will have to putname() it when we 1784 * are done. Procfs-like symlinks just set LAST_BIND. 1785 */ 1786 nd->flags |= LOOKUP_PARENT; 1787 error = security_inode_follow_link(path.dentry, nd); 1788 if (error) 1789 goto exit_dput; 1790 error = __do_follow_link(&path, nd); 1791 if (error) { 1792 /* Does someone understand code flow here? Or it is only 1793 * me so stupid? Anathema to whoever designed this non-sense 1794 * with "intent.open". 1795 */ 1796 release_open_intent(nd); 1797 return error; 1798 } 1799 nd->flags &= ~LOOKUP_PARENT; 1800 if (nd->last_type == LAST_BIND) 1801 goto ok; 1802 error = -EISDIR; 1803 if (nd->last_type != LAST_NORM) 1804 goto exit; 1805 if (nd->last.name[nd->last.len]) { 1806 __putname(nd->last.name); 1807 goto exit; 1808 } 1809 error = -ELOOP; 1810 if (count++==32) { 1811 __putname(nd->last.name); 1812 goto exit; 1813 } 1814 dir = nd->dentry; 1815 mutex_lock(&dir->d_inode->i_mutex); 1816 path.dentry = lookup_hash(nd); 1817 path.mnt = nd->mnt; 1818 __putname(nd->last.name); 1819 goto do_last; 1820 } 1821 1822 /** 1823 * lookup_create - lookup a dentry, creating it if it doesn't exist 1824 * @nd: nameidata info 1825 * @is_dir: directory flag 1826 * 1827 * Simple function to lookup and return a dentry and create it 1828 * if it doesn't exist. Is SMP-safe. 1829 * 1830 * Returns with nd->dentry->d_inode->i_mutex locked. 1831 */ 1832 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1833 { 1834 struct dentry *dentry = ERR_PTR(-EEXIST); 1835 1836 mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1837 /* 1838 * Yucky last component or no last component at all? 1839 * (foo/., foo/.., /////) 1840 */ 1841 if (nd->last_type != LAST_NORM) 1842 goto fail; 1843 nd->flags &= ~LOOKUP_PARENT; 1844 nd->flags |= LOOKUP_CREATE; 1845 nd->intent.open.flags = O_EXCL; 1846 1847 /* 1848 * Do the final lookup. 1849 */ 1850 dentry = lookup_hash(nd); 1851 if (IS_ERR(dentry)) 1852 goto fail; 1853 1854 /* 1855 * Special case - lookup gave negative, but... we had foo/bar/ 1856 * From the vfs_mknod() POV we just have a negative dentry - 1857 * all is fine. Let's be bastards - you had / on the end, you've 1858 * been asking for (non-existent) directory. -ENOENT for you. 1859 */ 1860 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode) 1861 goto enoent; 1862 return dentry; 1863 enoent: 1864 dput(dentry); 1865 dentry = ERR_PTR(-ENOENT); 1866 fail: 1867 return dentry; 1868 } 1869 EXPORT_SYMBOL_GPL(lookup_create); 1870 1871 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1872 { 1873 int error = may_create(dir, dentry, NULL); 1874 1875 if (error) 1876 return error; 1877 1878 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1879 return -EPERM; 1880 1881 if (!dir->i_op || !dir->i_op->mknod) 1882 return -EPERM; 1883 1884 error = security_inode_mknod(dir, dentry, mode, dev); 1885 if (error) 1886 return error; 1887 1888 DQUOT_INIT(dir); 1889 error = dir->i_op->mknod(dir, dentry, mode, dev); 1890 if (!error) 1891 fsnotify_create(dir, dentry); 1892 return error; 1893 } 1894 1895 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode, 1896 unsigned dev) 1897 { 1898 int error = 0; 1899 char * tmp; 1900 struct dentry * dentry; 1901 struct nameidata nd; 1902 1903 if (S_ISDIR(mode)) 1904 return -EPERM; 1905 tmp = getname(filename); 1906 if (IS_ERR(tmp)) 1907 return PTR_ERR(tmp); 1908 1909 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1910 if (error) 1911 goto out; 1912 dentry = lookup_create(&nd, 0); 1913 error = PTR_ERR(dentry); 1914 1915 if (!IS_POSIXACL(nd.dentry->d_inode)) 1916 mode &= ~current->fs->umask; 1917 if (!IS_ERR(dentry)) { 1918 switch (mode & S_IFMT) { 1919 case 0: case S_IFREG: 1920 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd); 1921 break; 1922 case S_IFCHR: case S_IFBLK: 1923 error = vfs_mknod(nd.dentry->d_inode,dentry,mode, 1924 new_decode_dev(dev)); 1925 break; 1926 case S_IFIFO: case S_IFSOCK: 1927 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0); 1928 break; 1929 case S_IFDIR: 1930 error = -EPERM; 1931 break; 1932 default: 1933 error = -EINVAL; 1934 } 1935 dput(dentry); 1936 } 1937 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1938 path_release(&nd); 1939 out: 1940 putname(tmp); 1941 1942 return error; 1943 } 1944 1945 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev) 1946 { 1947 return sys_mknodat(AT_FDCWD, filename, mode, dev); 1948 } 1949 1950 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1951 { 1952 int error = may_create(dir, dentry, NULL); 1953 1954 if (error) 1955 return error; 1956 1957 if (!dir->i_op || !dir->i_op->mkdir) 1958 return -EPERM; 1959 1960 mode &= (S_IRWXUGO|S_ISVTX); 1961 error = security_inode_mkdir(dir, dentry, mode); 1962 if (error) 1963 return error; 1964 1965 DQUOT_INIT(dir); 1966 error = dir->i_op->mkdir(dir, dentry, mode); 1967 if (!error) 1968 fsnotify_mkdir(dir, dentry); 1969 return error; 1970 } 1971 1972 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode) 1973 { 1974 int error = 0; 1975 char * tmp; 1976 struct dentry *dentry; 1977 struct nameidata nd; 1978 1979 tmp = getname(pathname); 1980 error = PTR_ERR(tmp); 1981 if (IS_ERR(tmp)) 1982 goto out_err; 1983 1984 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1985 if (error) 1986 goto out; 1987 dentry = lookup_create(&nd, 1); 1988 error = PTR_ERR(dentry); 1989 if (IS_ERR(dentry)) 1990 goto out_unlock; 1991 1992 if (!IS_POSIXACL(nd.dentry->d_inode)) 1993 mode &= ~current->fs->umask; 1994 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode); 1995 dput(dentry); 1996 out_unlock: 1997 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1998 path_release(&nd); 1999 out: 2000 putname(tmp); 2001 out_err: 2002 return error; 2003 } 2004 2005 asmlinkage long sys_mkdir(const char __user *pathname, int mode) 2006 { 2007 return sys_mkdirat(AT_FDCWD, pathname, mode); 2008 } 2009 2010 /* 2011 * We try to drop the dentry early: we should have 2012 * a usage count of 2 if we're the only user of this 2013 * dentry, and if that is true (possibly after pruning 2014 * the dcache), then we drop the dentry now. 2015 * 2016 * A low-level filesystem can, if it choses, legally 2017 * do a 2018 * 2019 * if (!d_unhashed(dentry)) 2020 * return -EBUSY; 2021 * 2022 * if it cannot handle the case of removing a directory 2023 * that is still in use by something else.. 2024 */ 2025 void dentry_unhash(struct dentry *dentry) 2026 { 2027 dget(dentry); 2028 shrink_dcache_parent(dentry); 2029 spin_lock(&dcache_lock); 2030 spin_lock(&dentry->d_lock); 2031 if (atomic_read(&dentry->d_count) == 2) 2032 __d_drop(dentry); 2033 spin_unlock(&dentry->d_lock); 2034 spin_unlock(&dcache_lock); 2035 } 2036 2037 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2038 { 2039 int error = may_delete(dir, dentry, 1); 2040 2041 if (error) 2042 return error; 2043 2044 if (!dir->i_op || !dir->i_op->rmdir) 2045 return -EPERM; 2046 2047 DQUOT_INIT(dir); 2048 2049 mutex_lock(&dentry->d_inode->i_mutex); 2050 dentry_unhash(dentry); 2051 if (d_mountpoint(dentry)) 2052 error = -EBUSY; 2053 else { 2054 error = security_inode_rmdir(dir, dentry); 2055 if (!error) { 2056 error = dir->i_op->rmdir(dir, dentry); 2057 if (!error) 2058 dentry->d_inode->i_flags |= S_DEAD; 2059 } 2060 } 2061 mutex_unlock(&dentry->d_inode->i_mutex); 2062 if (!error) { 2063 d_delete(dentry); 2064 } 2065 dput(dentry); 2066 2067 return error; 2068 } 2069 2070 static long do_rmdir(int dfd, const char __user *pathname) 2071 { 2072 int error = 0; 2073 char * name; 2074 struct dentry *dentry; 2075 struct nameidata nd; 2076 2077 name = getname(pathname); 2078 if(IS_ERR(name)) 2079 return PTR_ERR(name); 2080 2081 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2082 if (error) 2083 goto exit; 2084 2085 switch(nd.last_type) { 2086 case LAST_DOTDOT: 2087 error = -ENOTEMPTY; 2088 goto exit1; 2089 case LAST_DOT: 2090 error = -EINVAL; 2091 goto exit1; 2092 case LAST_ROOT: 2093 error = -EBUSY; 2094 goto exit1; 2095 } 2096 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2097 dentry = lookup_hash(&nd); 2098 error = PTR_ERR(dentry); 2099 if (IS_ERR(dentry)) 2100 goto exit2; 2101 error = vfs_rmdir(nd.dentry->d_inode, dentry); 2102 dput(dentry); 2103 exit2: 2104 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2105 exit1: 2106 path_release(&nd); 2107 exit: 2108 putname(name); 2109 return error; 2110 } 2111 2112 asmlinkage long sys_rmdir(const char __user *pathname) 2113 { 2114 return do_rmdir(AT_FDCWD, pathname); 2115 } 2116 2117 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2118 { 2119 int error = may_delete(dir, dentry, 0); 2120 2121 if (error) 2122 return error; 2123 2124 if (!dir->i_op || !dir->i_op->unlink) 2125 return -EPERM; 2126 2127 DQUOT_INIT(dir); 2128 2129 mutex_lock(&dentry->d_inode->i_mutex); 2130 if (d_mountpoint(dentry)) 2131 error = -EBUSY; 2132 else { 2133 error = security_inode_unlink(dir, dentry); 2134 if (!error) 2135 error = dir->i_op->unlink(dir, dentry); 2136 } 2137 mutex_unlock(&dentry->d_inode->i_mutex); 2138 2139 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2140 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2141 d_delete(dentry); 2142 } 2143 2144 return error; 2145 } 2146 2147 /* 2148 * Make sure that the actual truncation of the file will occur outside its 2149 * directory's i_mutex. Truncate can take a long time if there is a lot of 2150 * writeout happening, and we don't want to prevent access to the directory 2151 * while waiting on the I/O. 2152 */ 2153 static long do_unlinkat(int dfd, const char __user *pathname) 2154 { 2155 int error = 0; 2156 char * name; 2157 struct dentry *dentry; 2158 struct nameidata nd; 2159 struct inode *inode = NULL; 2160 2161 name = getname(pathname); 2162 if(IS_ERR(name)) 2163 return PTR_ERR(name); 2164 2165 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2166 if (error) 2167 goto exit; 2168 error = -EISDIR; 2169 if (nd.last_type != LAST_NORM) 2170 goto exit1; 2171 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2172 dentry = lookup_hash(&nd); 2173 error = PTR_ERR(dentry); 2174 if (!IS_ERR(dentry)) { 2175 /* Why not before? Because we want correct error value */ 2176 if (nd.last.name[nd.last.len]) 2177 goto slashes; 2178 inode = dentry->d_inode; 2179 if (inode) 2180 atomic_inc(&inode->i_count); 2181 error = vfs_unlink(nd.dentry->d_inode, dentry); 2182 exit2: 2183 dput(dentry); 2184 } 2185 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2186 if (inode) 2187 iput(inode); /* truncate the inode here */ 2188 exit1: 2189 path_release(&nd); 2190 exit: 2191 putname(name); 2192 return error; 2193 2194 slashes: 2195 error = !dentry->d_inode ? -ENOENT : 2196 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2197 goto exit2; 2198 } 2199 2200 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag) 2201 { 2202 if ((flag & ~AT_REMOVEDIR) != 0) 2203 return -EINVAL; 2204 2205 if (flag & AT_REMOVEDIR) 2206 return do_rmdir(dfd, pathname); 2207 2208 return do_unlinkat(dfd, pathname); 2209 } 2210 2211 asmlinkage long sys_unlink(const char __user *pathname) 2212 { 2213 return do_unlinkat(AT_FDCWD, pathname); 2214 } 2215 2216 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode) 2217 { 2218 int error = may_create(dir, dentry, NULL); 2219 2220 if (error) 2221 return error; 2222 2223 if (!dir->i_op || !dir->i_op->symlink) 2224 return -EPERM; 2225 2226 error = security_inode_symlink(dir, dentry, oldname); 2227 if (error) 2228 return error; 2229 2230 DQUOT_INIT(dir); 2231 error = dir->i_op->symlink(dir, dentry, oldname); 2232 if (!error) 2233 fsnotify_create(dir, dentry); 2234 return error; 2235 } 2236 2237 asmlinkage long sys_symlinkat(const char __user *oldname, 2238 int newdfd, const char __user *newname) 2239 { 2240 int error = 0; 2241 char * from; 2242 char * to; 2243 struct dentry *dentry; 2244 struct nameidata nd; 2245 2246 from = getname(oldname); 2247 if(IS_ERR(from)) 2248 return PTR_ERR(from); 2249 to = getname(newname); 2250 error = PTR_ERR(to); 2251 if (IS_ERR(to)) 2252 goto out_putname; 2253 2254 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2255 if (error) 2256 goto out; 2257 dentry = lookup_create(&nd, 0); 2258 error = PTR_ERR(dentry); 2259 if (IS_ERR(dentry)) 2260 goto out_unlock; 2261 2262 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO); 2263 dput(dentry); 2264 out_unlock: 2265 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2266 path_release(&nd); 2267 out: 2268 putname(to); 2269 out_putname: 2270 putname(from); 2271 return error; 2272 } 2273 2274 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname) 2275 { 2276 return sys_symlinkat(oldname, AT_FDCWD, newname); 2277 } 2278 2279 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2280 { 2281 struct inode *inode = old_dentry->d_inode; 2282 int error; 2283 2284 if (!inode) 2285 return -ENOENT; 2286 2287 error = may_create(dir, new_dentry, NULL); 2288 if (error) 2289 return error; 2290 2291 if (dir->i_sb != inode->i_sb) 2292 return -EXDEV; 2293 2294 /* 2295 * A link to an append-only or immutable file cannot be created. 2296 */ 2297 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2298 return -EPERM; 2299 if (!dir->i_op || !dir->i_op->link) 2300 return -EPERM; 2301 if (S_ISDIR(old_dentry->d_inode->i_mode)) 2302 return -EPERM; 2303 2304 error = security_inode_link(old_dentry, dir, new_dentry); 2305 if (error) 2306 return error; 2307 2308 mutex_lock(&old_dentry->d_inode->i_mutex); 2309 DQUOT_INIT(dir); 2310 error = dir->i_op->link(old_dentry, dir, new_dentry); 2311 mutex_unlock(&old_dentry->d_inode->i_mutex); 2312 if (!error) 2313 fsnotify_create(dir, new_dentry); 2314 return error; 2315 } 2316 2317 /* 2318 * Hardlinks are often used in delicate situations. We avoid 2319 * security-related surprises by not following symlinks on the 2320 * newname. --KAB 2321 * 2322 * We don't follow them on the oldname either to be compatible 2323 * with linux 2.0, and to avoid hard-linking to directories 2324 * and other special files. --ADM 2325 */ 2326 asmlinkage long sys_linkat(int olddfd, const char __user *oldname, 2327 int newdfd, const char __user *newname, 2328 int flags) 2329 { 2330 struct dentry *new_dentry; 2331 struct nameidata nd, old_nd; 2332 int error; 2333 char * to; 2334 2335 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2336 return -EINVAL; 2337 2338 to = getname(newname); 2339 if (IS_ERR(to)) 2340 return PTR_ERR(to); 2341 2342 error = __user_walk_fd(olddfd, oldname, 2343 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2344 &old_nd); 2345 if (error) 2346 goto exit; 2347 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2348 if (error) 2349 goto out; 2350 error = -EXDEV; 2351 if (old_nd.mnt != nd.mnt) 2352 goto out_release; 2353 new_dentry = lookup_create(&nd, 0); 2354 error = PTR_ERR(new_dentry); 2355 if (IS_ERR(new_dentry)) 2356 goto out_unlock; 2357 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry); 2358 dput(new_dentry); 2359 out_unlock: 2360 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2361 out_release: 2362 path_release(&nd); 2363 out: 2364 path_release(&old_nd); 2365 exit: 2366 putname(to); 2367 2368 return error; 2369 } 2370 2371 asmlinkage long sys_link(const char __user *oldname, const char __user *newname) 2372 { 2373 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2374 } 2375 2376 /* 2377 * The worst of all namespace operations - renaming directory. "Perverted" 2378 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2379 * Problems: 2380 * a) we can get into loop creation. Check is done in is_subdir(). 2381 * b) race potential - two innocent renames can create a loop together. 2382 * That's where 4.4 screws up. Current fix: serialization on 2383 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2384 * story. 2385 * c) we have to lock _three_ objects - parents and victim (if it exists). 2386 * And that - after we got ->i_mutex on parents (until then we don't know 2387 * whether the target exists). Solution: try to be smart with locking 2388 * order for inodes. We rely on the fact that tree topology may change 2389 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2390 * move will be locked. Thus we can rank directories by the tree 2391 * (ancestors first) and rank all non-directories after them. 2392 * That works since everybody except rename does "lock parent, lookup, 2393 * lock child" and rename is under ->s_vfs_rename_mutex. 2394 * HOWEVER, it relies on the assumption that any object with ->lookup() 2395 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2396 * we'd better make sure that there's no link(2) for them. 2397 * d) some filesystems don't support opened-but-unlinked directories, 2398 * either because of layout or because they are not ready to deal with 2399 * all cases correctly. The latter will be fixed (taking this sort of 2400 * stuff into VFS), but the former is not going away. Solution: the same 2401 * trick as in rmdir(). 2402 * e) conversion from fhandle to dentry may come in the wrong moment - when 2403 * we are removing the target. Solution: we will have to grab ->i_mutex 2404 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2405 * ->i_mutex on parents, which works but leads to some truely excessive 2406 * locking]. 2407 */ 2408 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2409 struct inode *new_dir, struct dentry *new_dentry) 2410 { 2411 int error = 0; 2412 struct inode *target; 2413 2414 /* 2415 * If we are going to change the parent - check write permissions, 2416 * we'll need to flip '..'. 2417 */ 2418 if (new_dir != old_dir) { 2419 error = permission(old_dentry->d_inode, MAY_WRITE, NULL); 2420 if (error) 2421 return error; 2422 } 2423 2424 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2425 if (error) 2426 return error; 2427 2428 target = new_dentry->d_inode; 2429 if (target) { 2430 mutex_lock(&target->i_mutex); 2431 dentry_unhash(new_dentry); 2432 } 2433 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2434 error = -EBUSY; 2435 else 2436 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2437 if (target) { 2438 if (!error) 2439 target->i_flags |= S_DEAD; 2440 mutex_unlock(&target->i_mutex); 2441 if (d_unhashed(new_dentry)) 2442 d_rehash(new_dentry); 2443 dput(new_dentry); 2444 } 2445 if (!error) 2446 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2447 d_move(old_dentry,new_dentry); 2448 return error; 2449 } 2450 2451 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2452 struct inode *new_dir, struct dentry *new_dentry) 2453 { 2454 struct inode *target; 2455 int error; 2456 2457 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2458 if (error) 2459 return error; 2460 2461 dget(new_dentry); 2462 target = new_dentry->d_inode; 2463 if (target) 2464 mutex_lock(&target->i_mutex); 2465 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2466 error = -EBUSY; 2467 else 2468 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2469 if (!error) { 2470 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2471 d_move(old_dentry, new_dentry); 2472 } 2473 if (target) 2474 mutex_unlock(&target->i_mutex); 2475 dput(new_dentry); 2476 return error; 2477 } 2478 2479 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2480 struct inode *new_dir, struct dentry *new_dentry) 2481 { 2482 int error; 2483 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2484 const char *old_name; 2485 2486 if (old_dentry->d_inode == new_dentry->d_inode) 2487 return 0; 2488 2489 error = may_delete(old_dir, old_dentry, is_dir); 2490 if (error) 2491 return error; 2492 2493 if (!new_dentry->d_inode) 2494 error = may_create(new_dir, new_dentry, NULL); 2495 else 2496 error = may_delete(new_dir, new_dentry, is_dir); 2497 if (error) 2498 return error; 2499 2500 if (!old_dir->i_op || !old_dir->i_op->rename) 2501 return -EPERM; 2502 2503 DQUOT_INIT(old_dir); 2504 DQUOT_INIT(new_dir); 2505 2506 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2507 2508 if (is_dir) 2509 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2510 else 2511 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2512 if (!error) { 2513 const char *new_name = old_dentry->d_name.name; 2514 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2515 new_dentry->d_inode, old_dentry->d_inode); 2516 } 2517 fsnotify_oldname_free(old_name); 2518 2519 return error; 2520 } 2521 2522 static int do_rename(int olddfd, const char *oldname, 2523 int newdfd, const char *newname) 2524 { 2525 int error = 0; 2526 struct dentry * old_dir, * new_dir; 2527 struct dentry * old_dentry, *new_dentry; 2528 struct dentry * trap; 2529 struct nameidata oldnd, newnd; 2530 2531 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd); 2532 if (error) 2533 goto exit; 2534 2535 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd); 2536 if (error) 2537 goto exit1; 2538 2539 error = -EXDEV; 2540 if (oldnd.mnt != newnd.mnt) 2541 goto exit2; 2542 2543 old_dir = oldnd.dentry; 2544 error = -EBUSY; 2545 if (oldnd.last_type != LAST_NORM) 2546 goto exit2; 2547 2548 new_dir = newnd.dentry; 2549 if (newnd.last_type != LAST_NORM) 2550 goto exit2; 2551 2552 trap = lock_rename(new_dir, old_dir); 2553 2554 old_dentry = lookup_hash(&oldnd); 2555 error = PTR_ERR(old_dentry); 2556 if (IS_ERR(old_dentry)) 2557 goto exit3; 2558 /* source must exist */ 2559 error = -ENOENT; 2560 if (!old_dentry->d_inode) 2561 goto exit4; 2562 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2563 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2564 error = -ENOTDIR; 2565 if (oldnd.last.name[oldnd.last.len]) 2566 goto exit4; 2567 if (newnd.last.name[newnd.last.len]) 2568 goto exit4; 2569 } 2570 /* source should not be ancestor of target */ 2571 error = -EINVAL; 2572 if (old_dentry == trap) 2573 goto exit4; 2574 new_dentry = lookup_hash(&newnd); 2575 error = PTR_ERR(new_dentry); 2576 if (IS_ERR(new_dentry)) 2577 goto exit4; 2578 /* target should not be an ancestor of source */ 2579 error = -ENOTEMPTY; 2580 if (new_dentry == trap) 2581 goto exit5; 2582 2583 error = vfs_rename(old_dir->d_inode, old_dentry, 2584 new_dir->d_inode, new_dentry); 2585 exit5: 2586 dput(new_dentry); 2587 exit4: 2588 dput(old_dentry); 2589 exit3: 2590 unlock_rename(new_dir, old_dir); 2591 exit2: 2592 path_release(&newnd); 2593 exit1: 2594 path_release(&oldnd); 2595 exit: 2596 return error; 2597 } 2598 2599 asmlinkage long sys_renameat(int olddfd, const char __user *oldname, 2600 int newdfd, const char __user *newname) 2601 { 2602 int error; 2603 char * from; 2604 char * to; 2605 2606 from = getname(oldname); 2607 if(IS_ERR(from)) 2608 return PTR_ERR(from); 2609 to = getname(newname); 2610 error = PTR_ERR(to); 2611 if (!IS_ERR(to)) { 2612 error = do_rename(olddfd, from, newdfd, to); 2613 putname(to); 2614 } 2615 putname(from); 2616 return error; 2617 } 2618 2619 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname) 2620 { 2621 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2622 } 2623 2624 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2625 { 2626 int len; 2627 2628 len = PTR_ERR(link); 2629 if (IS_ERR(link)) 2630 goto out; 2631 2632 len = strlen(link); 2633 if (len > (unsigned) buflen) 2634 len = buflen; 2635 if (copy_to_user(buffer, link, len)) 2636 len = -EFAULT; 2637 out: 2638 return len; 2639 } 2640 2641 /* 2642 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2643 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2644 * using) it for any given inode is up to filesystem. 2645 */ 2646 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2647 { 2648 struct nameidata nd; 2649 void *cookie; 2650 2651 nd.depth = 0; 2652 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2653 if (!IS_ERR(cookie)) { 2654 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2655 if (dentry->d_inode->i_op->put_link) 2656 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2657 cookie = ERR_PTR(res); 2658 } 2659 return PTR_ERR(cookie); 2660 } 2661 2662 int vfs_follow_link(struct nameidata *nd, const char *link) 2663 { 2664 return __vfs_follow_link(nd, link); 2665 } 2666 2667 /* get the link contents into pagecache */ 2668 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2669 { 2670 struct page * page; 2671 struct address_space *mapping = dentry->d_inode->i_mapping; 2672 page = read_mapping_page(mapping, 0, NULL); 2673 if (IS_ERR(page)) 2674 return (char*)page; 2675 *ppage = page; 2676 return kmap(page); 2677 } 2678 2679 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2680 { 2681 struct page *page = NULL; 2682 char *s = page_getlink(dentry, &page); 2683 int res = vfs_readlink(dentry,buffer,buflen,s); 2684 if (page) { 2685 kunmap(page); 2686 page_cache_release(page); 2687 } 2688 return res; 2689 } 2690 2691 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2692 { 2693 struct page *page = NULL; 2694 nd_set_link(nd, page_getlink(dentry, &page)); 2695 return page; 2696 } 2697 2698 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2699 { 2700 struct page *page = cookie; 2701 2702 if (page) { 2703 kunmap(page); 2704 page_cache_release(page); 2705 } 2706 } 2707 2708 int __page_symlink(struct inode *inode, const char *symname, int len, 2709 gfp_t gfp_mask) 2710 { 2711 struct address_space *mapping = inode->i_mapping; 2712 struct page *page; 2713 int err; 2714 char *kaddr; 2715 2716 retry: 2717 err = -ENOMEM; 2718 page = find_or_create_page(mapping, 0, gfp_mask); 2719 if (!page) 2720 goto fail; 2721 err = mapping->a_ops->prepare_write(NULL, page, 0, len-1); 2722 if (err == AOP_TRUNCATED_PAGE) { 2723 page_cache_release(page); 2724 goto retry; 2725 } 2726 if (err) 2727 goto fail_map; 2728 kaddr = kmap_atomic(page, KM_USER0); 2729 memcpy(kaddr, symname, len-1); 2730 kunmap_atomic(kaddr, KM_USER0); 2731 err = mapping->a_ops->commit_write(NULL, page, 0, len-1); 2732 if (err == AOP_TRUNCATED_PAGE) { 2733 page_cache_release(page); 2734 goto retry; 2735 } 2736 if (err) 2737 goto fail_map; 2738 /* 2739 * Notice that we are _not_ going to block here - end of page is 2740 * unmapped, so this will only try to map the rest of page, see 2741 * that it is unmapped (typically even will not look into inode - 2742 * ->i_size will be enough for everything) and zero it out. 2743 * OTOH it's obviously correct and should make the page up-to-date. 2744 */ 2745 if (!PageUptodate(page)) { 2746 err = mapping->a_ops->readpage(NULL, page); 2747 if (err != AOP_TRUNCATED_PAGE) 2748 wait_on_page_locked(page); 2749 } else { 2750 unlock_page(page); 2751 } 2752 page_cache_release(page); 2753 if (err < 0) 2754 goto fail; 2755 mark_inode_dirty(inode); 2756 return 0; 2757 fail_map: 2758 unlock_page(page); 2759 page_cache_release(page); 2760 fail: 2761 return err; 2762 } 2763 2764 int page_symlink(struct inode *inode, const char *symname, int len) 2765 { 2766 return __page_symlink(inode, symname, len, 2767 mapping_gfp_mask(inode->i_mapping)); 2768 } 2769 2770 const struct inode_operations page_symlink_inode_operations = { 2771 .readlink = generic_readlink, 2772 .follow_link = page_follow_link_light, 2773 .put_link = page_put_link, 2774 }; 2775 2776 EXPORT_SYMBOL(__user_walk); 2777 EXPORT_SYMBOL(__user_walk_fd); 2778 EXPORT_SYMBOL(follow_down); 2779 EXPORT_SYMBOL(follow_up); 2780 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2781 EXPORT_SYMBOL(getname); 2782 EXPORT_SYMBOL(lock_rename); 2783 EXPORT_SYMBOL(lookup_one_len); 2784 EXPORT_SYMBOL(page_follow_link_light); 2785 EXPORT_SYMBOL(page_put_link); 2786 EXPORT_SYMBOL(page_readlink); 2787 EXPORT_SYMBOL(__page_symlink); 2788 EXPORT_SYMBOL(page_symlink); 2789 EXPORT_SYMBOL(page_symlink_inode_operations); 2790 EXPORT_SYMBOL(path_lookup); 2791 EXPORT_SYMBOL(path_release); 2792 EXPORT_SYMBOL(path_walk); 2793 EXPORT_SYMBOL(permission); 2794 EXPORT_SYMBOL(vfs_permission); 2795 EXPORT_SYMBOL(file_permission); 2796 EXPORT_SYMBOL(unlock_rename); 2797 EXPORT_SYMBOL(vfs_create); 2798 EXPORT_SYMBOL(vfs_follow_link); 2799 EXPORT_SYMBOL(vfs_link); 2800 EXPORT_SYMBOL(vfs_mkdir); 2801 EXPORT_SYMBOL(vfs_mknod); 2802 EXPORT_SYMBOL(generic_permission); 2803 EXPORT_SYMBOL(vfs_readlink); 2804 EXPORT_SYMBOL(vfs_rename); 2805 EXPORT_SYMBOL(vfs_rmdir); 2806 EXPORT_SYMBOL(vfs_symlink); 2807 EXPORT_SYMBOL(vfs_unlink); 2808 EXPORT_SYMBOL(dentry_unhash); 2809 EXPORT_SYMBOL(generic_readlink); 2810