xref: /linux/fs/namei.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37 
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existant name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 static int __link_path_walk(const char *name, struct nameidata *nd);
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static int do_getname(const char __user *filename, char *page)
121 {
122 	int retval;
123 	unsigned long len = PATH_MAX;
124 
125 	if (!segment_eq(get_fs(), KERNEL_DS)) {
126 		if ((unsigned long) filename >= TASK_SIZE)
127 			return -EFAULT;
128 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 			len = TASK_SIZE - (unsigned long) filename;
130 	}
131 
132 	retval = strncpy_from_user(page, filename, len);
133 	if (retval > 0) {
134 		if (retval < len)
135 			return 0;
136 		return -ENAMETOOLONG;
137 	} else if (!retval)
138 		retval = -ENOENT;
139 	return retval;
140 }
141 
142 char * getname(const char __user * filename)
143 {
144 	char *tmp, *result;
145 
146 	result = ERR_PTR(-ENOMEM);
147 	tmp = __getname();
148 	if (tmp)  {
149 		int retval = do_getname(filename, tmp);
150 
151 		result = tmp;
152 		if (retval < 0) {
153 			__putname(tmp);
154 			result = ERR_PTR(retval);
155 		}
156 	}
157 	audit_getname(result);
158 	return result;
159 }
160 
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
163 {
164 	if (unlikely(!audit_dummy_context()))
165 		audit_putname(name);
166 	else
167 		__putname(name);
168 }
169 EXPORT_SYMBOL(putname);
170 #endif
171 
172 
173 /**
174  * generic_permission  -  check for access rights on a Posix-like filesystem
175  * @inode:	inode to check access rights for
176  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
177  * @check_acl:	optional callback to check for Posix ACLs
178  *
179  * Used to check for read/write/execute permissions on a file.
180  * We use "fsuid" for this, letting us set arbitrary permissions
181  * for filesystem access without changing the "normal" uids which
182  * are used for other things..
183  */
184 int generic_permission(struct inode *inode, int mask,
185 		int (*check_acl)(struct inode *inode, int mask))
186 {
187 	umode_t			mode = inode->i_mode;
188 
189 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
190 
191 	if (current_fsuid() == inode->i_uid)
192 		mode >>= 6;
193 	else {
194 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
195 			int error = check_acl(inode, mask);
196 			if (error == -EACCES)
197 				goto check_capabilities;
198 			else if (error != -EAGAIN)
199 				return error;
200 		}
201 
202 		if (in_group_p(inode->i_gid))
203 			mode >>= 3;
204 	}
205 
206 	/*
207 	 * If the DACs are ok we don't need any capability check.
208 	 */
209 	if ((mask & ~mode) == 0)
210 		return 0;
211 
212  check_capabilities:
213 	/*
214 	 * Read/write DACs are always overridable.
215 	 * Executable DACs are overridable if at least one exec bit is set.
216 	 */
217 	if (!(mask & MAY_EXEC) || execute_ok(inode))
218 		if (capable(CAP_DAC_OVERRIDE))
219 			return 0;
220 
221 	/*
222 	 * Searching includes executable on directories, else just read.
223 	 */
224 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
225 		if (capable(CAP_DAC_READ_SEARCH))
226 			return 0;
227 
228 	return -EACCES;
229 }
230 
231 /**
232  * inode_permission  -  check for access rights to a given inode
233  * @inode:	inode to check permission on
234  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
235  *
236  * Used to check for read/write/execute permissions on an inode.
237  * We use "fsuid" for this, letting us set arbitrary permissions
238  * for filesystem access without changing the "normal" uids which
239  * are used for other things.
240  */
241 int inode_permission(struct inode *inode, int mask)
242 {
243 	int retval;
244 
245 	if (mask & MAY_WRITE) {
246 		umode_t mode = inode->i_mode;
247 
248 		/*
249 		 * Nobody gets write access to a read-only fs.
250 		 */
251 		if (IS_RDONLY(inode) &&
252 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
253 			return -EROFS;
254 
255 		/*
256 		 * Nobody gets write access to an immutable file.
257 		 */
258 		if (IS_IMMUTABLE(inode))
259 			return -EACCES;
260 	}
261 
262 	if (inode->i_op->permission)
263 		retval = inode->i_op->permission(inode, mask);
264 	else
265 		retval = generic_permission(inode, mask, NULL);
266 
267 	if (retval)
268 		return retval;
269 
270 	retval = devcgroup_inode_permission(inode, mask);
271 	if (retval)
272 		return retval;
273 
274 	return security_inode_permission(inode,
275 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
276 }
277 
278 /**
279  * file_permission  -  check for additional access rights to a given file
280  * @file:	file to check access rights for
281  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
282  *
283  * Used to check for read/write/execute permissions on an already opened
284  * file.
285  *
286  * Note:
287  *	Do not use this function in new code.  All access checks should
288  *	be done using inode_permission().
289  */
290 int file_permission(struct file *file, int mask)
291 {
292 	return inode_permission(file->f_path.dentry->d_inode, mask);
293 }
294 
295 /*
296  * get_write_access() gets write permission for a file.
297  * put_write_access() releases this write permission.
298  * This is used for regular files.
299  * We cannot support write (and maybe mmap read-write shared) accesses and
300  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
301  * can have the following values:
302  * 0: no writers, no VM_DENYWRITE mappings
303  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
304  * > 0: (i_writecount) users are writing to the file.
305  *
306  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
307  * except for the cases where we don't hold i_writecount yet. Then we need to
308  * use {get,deny}_write_access() - these functions check the sign and refuse
309  * to do the change if sign is wrong. Exclusion between them is provided by
310  * the inode->i_lock spinlock.
311  */
312 
313 int get_write_access(struct inode * inode)
314 {
315 	spin_lock(&inode->i_lock);
316 	if (atomic_read(&inode->i_writecount) < 0) {
317 		spin_unlock(&inode->i_lock);
318 		return -ETXTBSY;
319 	}
320 	atomic_inc(&inode->i_writecount);
321 	spin_unlock(&inode->i_lock);
322 
323 	return 0;
324 }
325 
326 int deny_write_access(struct file * file)
327 {
328 	struct inode *inode = file->f_path.dentry->d_inode;
329 
330 	spin_lock(&inode->i_lock);
331 	if (atomic_read(&inode->i_writecount) > 0) {
332 		spin_unlock(&inode->i_lock);
333 		return -ETXTBSY;
334 	}
335 	atomic_dec(&inode->i_writecount);
336 	spin_unlock(&inode->i_lock);
337 
338 	return 0;
339 }
340 
341 /**
342  * path_get - get a reference to a path
343  * @path: path to get the reference to
344  *
345  * Given a path increment the reference count to the dentry and the vfsmount.
346  */
347 void path_get(struct path *path)
348 {
349 	mntget(path->mnt);
350 	dget(path->dentry);
351 }
352 EXPORT_SYMBOL(path_get);
353 
354 /**
355  * path_put - put a reference to a path
356  * @path: path to put the reference to
357  *
358  * Given a path decrement the reference count to the dentry and the vfsmount.
359  */
360 void path_put(struct path *path)
361 {
362 	dput(path->dentry);
363 	mntput(path->mnt);
364 }
365 EXPORT_SYMBOL(path_put);
366 
367 /**
368  * release_open_intent - free up open intent resources
369  * @nd: pointer to nameidata
370  */
371 void release_open_intent(struct nameidata *nd)
372 {
373 	if (nd->intent.open.file->f_path.dentry == NULL)
374 		put_filp(nd->intent.open.file);
375 	else
376 		fput(nd->intent.open.file);
377 }
378 
379 static inline struct dentry *
380 do_revalidate(struct dentry *dentry, struct nameidata *nd)
381 {
382 	int status = dentry->d_op->d_revalidate(dentry, nd);
383 	if (unlikely(status <= 0)) {
384 		/*
385 		 * The dentry failed validation.
386 		 * If d_revalidate returned 0 attempt to invalidate
387 		 * the dentry otherwise d_revalidate is asking us
388 		 * to return a fail status.
389 		 */
390 		if (!status) {
391 			if (!d_invalidate(dentry)) {
392 				dput(dentry);
393 				dentry = NULL;
394 			}
395 		} else {
396 			dput(dentry);
397 			dentry = ERR_PTR(status);
398 		}
399 	}
400 	return dentry;
401 }
402 
403 /*
404  * Internal lookup() using the new generic dcache.
405  * SMP-safe
406  */
407 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
408 {
409 	struct dentry * dentry = __d_lookup(parent, name);
410 
411 	/* lockess __d_lookup may fail due to concurrent d_move()
412 	 * in some unrelated directory, so try with d_lookup
413 	 */
414 	if (!dentry)
415 		dentry = d_lookup(parent, name);
416 
417 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
418 		dentry = do_revalidate(dentry, nd);
419 
420 	return dentry;
421 }
422 
423 /*
424  * Short-cut version of permission(), for calling by
425  * path_walk(), when dcache lock is held.  Combines parts
426  * of permission() and generic_permission(), and tests ONLY for
427  * MAY_EXEC permission.
428  *
429  * If appropriate, check DAC only.  If not appropriate, or
430  * short-cut DAC fails, then call permission() to do more
431  * complete permission check.
432  */
433 static int exec_permission_lite(struct inode *inode)
434 {
435 	umode_t	mode = inode->i_mode;
436 
437 	if (inode->i_op->permission)
438 		return -EAGAIN;
439 
440 	if (current_fsuid() == inode->i_uid)
441 		mode >>= 6;
442 	else if (in_group_p(inode->i_gid))
443 		mode >>= 3;
444 
445 	if (mode & MAY_EXEC)
446 		goto ok;
447 
448 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
449 		goto ok;
450 
451 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
452 		goto ok;
453 
454 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
455 		goto ok;
456 
457 	return -EACCES;
458 ok:
459 	return security_inode_permission(inode, MAY_EXEC);
460 }
461 
462 /*
463  * This is called when everything else fails, and we actually have
464  * to go to the low-level filesystem to find out what we should do..
465  *
466  * We get the directory semaphore, and after getting that we also
467  * make sure that nobody added the entry to the dcache in the meantime..
468  * SMP-safe
469  */
470 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
471 {
472 	struct dentry * result;
473 	struct inode *dir = parent->d_inode;
474 
475 	mutex_lock(&dir->i_mutex);
476 	/*
477 	 * First re-do the cached lookup just in case it was created
478 	 * while we waited for the directory semaphore..
479 	 *
480 	 * FIXME! This could use version numbering or similar to
481 	 * avoid unnecessary cache lookups.
482 	 *
483 	 * The "dcache_lock" is purely to protect the RCU list walker
484 	 * from concurrent renames at this point (we mustn't get false
485 	 * negatives from the RCU list walk here, unlike the optimistic
486 	 * fast walk).
487 	 *
488 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
489 	 */
490 	result = d_lookup(parent, name);
491 	if (!result) {
492 		struct dentry *dentry;
493 
494 		/* Don't create child dentry for a dead directory. */
495 		result = ERR_PTR(-ENOENT);
496 		if (IS_DEADDIR(dir))
497 			goto out_unlock;
498 
499 		dentry = d_alloc(parent, name);
500 		result = ERR_PTR(-ENOMEM);
501 		if (dentry) {
502 			result = dir->i_op->lookup(dir, dentry, nd);
503 			if (result)
504 				dput(dentry);
505 			else
506 				result = dentry;
507 		}
508 out_unlock:
509 		mutex_unlock(&dir->i_mutex);
510 		return result;
511 	}
512 
513 	/*
514 	 * Uhhuh! Nasty case: the cache was re-populated while
515 	 * we waited on the semaphore. Need to revalidate.
516 	 */
517 	mutex_unlock(&dir->i_mutex);
518 	if (result->d_op && result->d_op->d_revalidate) {
519 		result = do_revalidate(result, nd);
520 		if (!result)
521 			result = ERR_PTR(-ENOENT);
522 	}
523 	return result;
524 }
525 
526 /*
527  * Wrapper to retry pathname resolution whenever the underlying
528  * file system returns an ESTALE.
529  *
530  * Retry the whole path once, forcing real lookup requests
531  * instead of relying on the dcache.
532  */
533 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
534 {
535 	struct path save = nd->path;
536 	int result;
537 
538 	/* make sure the stuff we saved doesn't go away */
539 	path_get(&save);
540 
541 	result = __link_path_walk(name, nd);
542 	if (result == -ESTALE) {
543 		/* nd->path had been dropped */
544 		nd->path = save;
545 		path_get(&nd->path);
546 		nd->flags |= LOOKUP_REVAL;
547 		result = __link_path_walk(name, nd);
548 	}
549 
550 	path_put(&save);
551 
552 	return result;
553 }
554 
555 static __always_inline void set_root(struct nameidata *nd)
556 {
557 	if (!nd->root.mnt) {
558 		struct fs_struct *fs = current->fs;
559 		read_lock(&fs->lock);
560 		nd->root = fs->root;
561 		path_get(&nd->root);
562 		read_unlock(&fs->lock);
563 	}
564 }
565 
566 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
567 {
568 	int res = 0;
569 	char *name;
570 	if (IS_ERR(link))
571 		goto fail;
572 
573 	if (*link == '/') {
574 		set_root(nd);
575 		path_put(&nd->path);
576 		nd->path = nd->root;
577 		path_get(&nd->root);
578 	}
579 
580 	res = link_path_walk(link, nd);
581 	if (nd->depth || res || nd->last_type!=LAST_NORM)
582 		return res;
583 	/*
584 	 * If it is an iterative symlinks resolution in open_namei() we
585 	 * have to copy the last component. And all that crap because of
586 	 * bloody create() on broken symlinks. Furrfu...
587 	 */
588 	name = __getname();
589 	if (unlikely(!name)) {
590 		path_put(&nd->path);
591 		return -ENOMEM;
592 	}
593 	strcpy(name, nd->last.name);
594 	nd->last.name = name;
595 	return 0;
596 fail:
597 	path_put(&nd->path);
598 	return PTR_ERR(link);
599 }
600 
601 static void path_put_conditional(struct path *path, struct nameidata *nd)
602 {
603 	dput(path->dentry);
604 	if (path->mnt != nd->path.mnt)
605 		mntput(path->mnt);
606 }
607 
608 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
609 {
610 	dput(nd->path.dentry);
611 	if (nd->path.mnt != path->mnt)
612 		mntput(nd->path.mnt);
613 	nd->path.mnt = path->mnt;
614 	nd->path.dentry = path->dentry;
615 }
616 
617 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
618 {
619 	int error;
620 	void *cookie;
621 	struct dentry *dentry = path->dentry;
622 
623 	touch_atime(path->mnt, dentry);
624 	nd_set_link(nd, NULL);
625 
626 	if (path->mnt != nd->path.mnt) {
627 		path_to_nameidata(path, nd);
628 		dget(dentry);
629 	}
630 	mntget(path->mnt);
631 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
632 	error = PTR_ERR(cookie);
633 	if (!IS_ERR(cookie)) {
634 		char *s = nd_get_link(nd);
635 		error = 0;
636 		if (s)
637 			error = __vfs_follow_link(nd, s);
638 		if (dentry->d_inode->i_op->put_link)
639 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
640 	}
641 	path_put(path);
642 
643 	return error;
644 }
645 
646 /*
647  * This limits recursive symlink follows to 8, while
648  * limiting consecutive symlinks to 40.
649  *
650  * Without that kind of total limit, nasty chains of consecutive
651  * symlinks can cause almost arbitrarily long lookups.
652  */
653 static inline int do_follow_link(struct path *path, struct nameidata *nd)
654 {
655 	int err = -ELOOP;
656 	if (current->link_count >= MAX_NESTED_LINKS)
657 		goto loop;
658 	if (current->total_link_count >= 40)
659 		goto loop;
660 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
661 	cond_resched();
662 	err = security_inode_follow_link(path->dentry, nd);
663 	if (err)
664 		goto loop;
665 	current->link_count++;
666 	current->total_link_count++;
667 	nd->depth++;
668 	err = __do_follow_link(path, nd);
669 	current->link_count--;
670 	nd->depth--;
671 	return err;
672 loop:
673 	path_put_conditional(path, nd);
674 	path_put(&nd->path);
675 	return err;
676 }
677 
678 int follow_up(struct path *path)
679 {
680 	struct vfsmount *parent;
681 	struct dentry *mountpoint;
682 	spin_lock(&vfsmount_lock);
683 	parent = path->mnt->mnt_parent;
684 	if (parent == path->mnt) {
685 		spin_unlock(&vfsmount_lock);
686 		return 0;
687 	}
688 	mntget(parent);
689 	mountpoint = dget(path->mnt->mnt_mountpoint);
690 	spin_unlock(&vfsmount_lock);
691 	dput(path->dentry);
692 	path->dentry = mountpoint;
693 	mntput(path->mnt);
694 	path->mnt = parent;
695 	return 1;
696 }
697 
698 /* no need for dcache_lock, as serialization is taken care in
699  * namespace.c
700  */
701 static int __follow_mount(struct path *path)
702 {
703 	int res = 0;
704 	while (d_mountpoint(path->dentry)) {
705 		struct vfsmount *mounted = lookup_mnt(path);
706 		if (!mounted)
707 			break;
708 		dput(path->dentry);
709 		if (res)
710 			mntput(path->mnt);
711 		path->mnt = mounted;
712 		path->dentry = dget(mounted->mnt_root);
713 		res = 1;
714 	}
715 	return res;
716 }
717 
718 static void follow_mount(struct path *path)
719 {
720 	while (d_mountpoint(path->dentry)) {
721 		struct vfsmount *mounted = lookup_mnt(path);
722 		if (!mounted)
723 			break;
724 		dput(path->dentry);
725 		mntput(path->mnt);
726 		path->mnt = mounted;
727 		path->dentry = dget(mounted->mnt_root);
728 	}
729 }
730 
731 /* no need for dcache_lock, as serialization is taken care in
732  * namespace.c
733  */
734 int follow_down(struct path *path)
735 {
736 	struct vfsmount *mounted;
737 
738 	mounted = lookup_mnt(path);
739 	if (mounted) {
740 		dput(path->dentry);
741 		mntput(path->mnt);
742 		path->mnt = mounted;
743 		path->dentry = dget(mounted->mnt_root);
744 		return 1;
745 	}
746 	return 0;
747 }
748 
749 static __always_inline void follow_dotdot(struct nameidata *nd)
750 {
751 	set_root(nd);
752 
753 	while(1) {
754 		struct vfsmount *parent;
755 		struct dentry *old = nd->path.dentry;
756 
757 		if (nd->path.dentry == nd->root.dentry &&
758 		    nd->path.mnt == nd->root.mnt) {
759 			break;
760 		}
761 		spin_lock(&dcache_lock);
762 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
763 			nd->path.dentry = dget(nd->path.dentry->d_parent);
764 			spin_unlock(&dcache_lock);
765 			dput(old);
766 			break;
767 		}
768 		spin_unlock(&dcache_lock);
769 		spin_lock(&vfsmount_lock);
770 		parent = nd->path.mnt->mnt_parent;
771 		if (parent == nd->path.mnt) {
772 			spin_unlock(&vfsmount_lock);
773 			break;
774 		}
775 		mntget(parent);
776 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
777 		spin_unlock(&vfsmount_lock);
778 		dput(old);
779 		mntput(nd->path.mnt);
780 		nd->path.mnt = parent;
781 	}
782 	follow_mount(&nd->path);
783 }
784 
785 /*
786  *  It's more convoluted than I'd like it to be, but... it's still fairly
787  *  small and for now I'd prefer to have fast path as straight as possible.
788  *  It _is_ time-critical.
789  */
790 static int do_lookup(struct nameidata *nd, struct qstr *name,
791 		     struct path *path)
792 {
793 	struct vfsmount *mnt = nd->path.mnt;
794 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
795 
796 	if (!dentry)
797 		goto need_lookup;
798 	if (dentry->d_op && dentry->d_op->d_revalidate)
799 		goto need_revalidate;
800 done:
801 	path->mnt = mnt;
802 	path->dentry = dentry;
803 	__follow_mount(path);
804 	return 0;
805 
806 need_lookup:
807 	dentry = real_lookup(nd->path.dentry, name, nd);
808 	if (IS_ERR(dentry))
809 		goto fail;
810 	goto done;
811 
812 need_revalidate:
813 	dentry = do_revalidate(dentry, nd);
814 	if (!dentry)
815 		goto need_lookup;
816 	if (IS_ERR(dentry))
817 		goto fail;
818 	goto done;
819 
820 fail:
821 	return PTR_ERR(dentry);
822 }
823 
824 /*
825  * Name resolution.
826  * This is the basic name resolution function, turning a pathname into
827  * the final dentry. We expect 'base' to be positive and a directory.
828  *
829  * Returns 0 and nd will have valid dentry and mnt on success.
830  * Returns error and drops reference to input namei data on failure.
831  */
832 static int __link_path_walk(const char *name, struct nameidata *nd)
833 {
834 	struct path next;
835 	struct inode *inode;
836 	int err;
837 	unsigned int lookup_flags = nd->flags;
838 
839 	while (*name=='/')
840 		name++;
841 	if (!*name)
842 		goto return_reval;
843 
844 	inode = nd->path.dentry->d_inode;
845 	if (nd->depth)
846 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
847 
848 	/* At this point we know we have a real path component. */
849 	for(;;) {
850 		unsigned long hash;
851 		struct qstr this;
852 		unsigned int c;
853 
854 		nd->flags |= LOOKUP_CONTINUE;
855 		err = exec_permission_lite(inode);
856 		if (err == -EAGAIN)
857 			err = inode_permission(nd->path.dentry->d_inode,
858 					       MAY_EXEC);
859 		if (!err)
860 			err = ima_path_check(&nd->path, MAY_EXEC,
861 				             IMA_COUNT_UPDATE);
862  		if (err)
863 			break;
864 
865 		this.name = name;
866 		c = *(const unsigned char *)name;
867 
868 		hash = init_name_hash();
869 		do {
870 			name++;
871 			hash = partial_name_hash(c, hash);
872 			c = *(const unsigned char *)name;
873 		} while (c && (c != '/'));
874 		this.len = name - (const char *) this.name;
875 		this.hash = end_name_hash(hash);
876 
877 		/* remove trailing slashes? */
878 		if (!c)
879 			goto last_component;
880 		while (*++name == '/');
881 		if (!*name)
882 			goto last_with_slashes;
883 
884 		/*
885 		 * "." and ".." are special - ".." especially so because it has
886 		 * to be able to know about the current root directory and
887 		 * parent relationships.
888 		 */
889 		if (this.name[0] == '.') switch (this.len) {
890 			default:
891 				break;
892 			case 2:
893 				if (this.name[1] != '.')
894 					break;
895 				follow_dotdot(nd);
896 				inode = nd->path.dentry->d_inode;
897 				/* fallthrough */
898 			case 1:
899 				continue;
900 		}
901 		/*
902 		 * See if the low-level filesystem might want
903 		 * to use its own hash..
904 		 */
905 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
906 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
907 							    &this);
908 			if (err < 0)
909 				break;
910 		}
911 		/* This does the actual lookups.. */
912 		err = do_lookup(nd, &this, &next);
913 		if (err)
914 			break;
915 
916 		err = -ENOENT;
917 		inode = next.dentry->d_inode;
918 		if (!inode)
919 			goto out_dput;
920 
921 		if (inode->i_op->follow_link) {
922 			err = do_follow_link(&next, nd);
923 			if (err)
924 				goto return_err;
925 			err = -ENOENT;
926 			inode = nd->path.dentry->d_inode;
927 			if (!inode)
928 				break;
929 		} else
930 			path_to_nameidata(&next, nd);
931 		err = -ENOTDIR;
932 		if (!inode->i_op->lookup)
933 			break;
934 		continue;
935 		/* here ends the main loop */
936 
937 last_with_slashes:
938 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
939 last_component:
940 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
941 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
942 		if (lookup_flags & LOOKUP_PARENT)
943 			goto lookup_parent;
944 		if (this.name[0] == '.') switch (this.len) {
945 			default:
946 				break;
947 			case 2:
948 				if (this.name[1] != '.')
949 					break;
950 				follow_dotdot(nd);
951 				inode = nd->path.dentry->d_inode;
952 				/* fallthrough */
953 			case 1:
954 				goto return_reval;
955 		}
956 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
957 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
958 							    &this);
959 			if (err < 0)
960 				break;
961 		}
962 		err = do_lookup(nd, &this, &next);
963 		if (err)
964 			break;
965 		inode = next.dentry->d_inode;
966 		if ((lookup_flags & LOOKUP_FOLLOW)
967 		    && inode && inode->i_op->follow_link) {
968 			err = do_follow_link(&next, nd);
969 			if (err)
970 				goto return_err;
971 			inode = nd->path.dentry->d_inode;
972 		} else
973 			path_to_nameidata(&next, nd);
974 		err = -ENOENT;
975 		if (!inode)
976 			break;
977 		if (lookup_flags & LOOKUP_DIRECTORY) {
978 			err = -ENOTDIR;
979 			if (!inode->i_op->lookup)
980 				break;
981 		}
982 		goto return_base;
983 lookup_parent:
984 		nd->last = this;
985 		nd->last_type = LAST_NORM;
986 		if (this.name[0] != '.')
987 			goto return_base;
988 		if (this.len == 1)
989 			nd->last_type = LAST_DOT;
990 		else if (this.len == 2 && this.name[1] == '.')
991 			nd->last_type = LAST_DOTDOT;
992 		else
993 			goto return_base;
994 return_reval:
995 		/*
996 		 * We bypassed the ordinary revalidation routines.
997 		 * We may need to check the cached dentry for staleness.
998 		 */
999 		if (nd->path.dentry && nd->path.dentry->d_sb &&
1000 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1001 			err = -ESTALE;
1002 			/* Note: we do not d_invalidate() */
1003 			if (!nd->path.dentry->d_op->d_revalidate(
1004 					nd->path.dentry, nd))
1005 				break;
1006 		}
1007 return_base:
1008 		return 0;
1009 out_dput:
1010 		path_put_conditional(&next, nd);
1011 		break;
1012 	}
1013 	path_put(&nd->path);
1014 return_err:
1015 	return err;
1016 }
1017 
1018 static int path_walk(const char *name, struct nameidata *nd)
1019 {
1020 	current->total_link_count = 0;
1021 	return link_path_walk(name, nd);
1022 }
1023 
1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1025 {
1026 	int retval = 0;
1027 	int fput_needed;
1028 	struct file *file;
1029 
1030 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1031 	nd->flags = flags;
1032 	nd->depth = 0;
1033 	nd->root.mnt = NULL;
1034 
1035 	if (*name=='/') {
1036 		set_root(nd);
1037 		nd->path = nd->root;
1038 		path_get(&nd->root);
1039 	} else if (dfd == AT_FDCWD) {
1040 		struct fs_struct *fs = current->fs;
1041 		read_lock(&fs->lock);
1042 		nd->path = fs->pwd;
1043 		path_get(&fs->pwd);
1044 		read_unlock(&fs->lock);
1045 	} else {
1046 		struct dentry *dentry;
1047 
1048 		file = fget_light(dfd, &fput_needed);
1049 		retval = -EBADF;
1050 		if (!file)
1051 			goto out_fail;
1052 
1053 		dentry = file->f_path.dentry;
1054 
1055 		retval = -ENOTDIR;
1056 		if (!S_ISDIR(dentry->d_inode->i_mode))
1057 			goto fput_fail;
1058 
1059 		retval = file_permission(file, MAY_EXEC);
1060 		if (retval)
1061 			goto fput_fail;
1062 
1063 		nd->path = file->f_path;
1064 		path_get(&file->f_path);
1065 
1066 		fput_light(file, fput_needed);
1067 	}
1068 	return 0;
1069 
1070 fput_fail:
1071 	fput_light(file, fput_needed);
1072 out_fail:
1073 	return retval;
1074 }
1075 
1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1077 static int do_path_lookup(int dfd, const char *name,
1078 				unsigned int flags, struct nameidata *nd)
1079 {
1080 	int retval = path_init(dfd, name, flags, nd);
1081 	if (!retval)
1082 		retval = path_walk(name, nd);
1083 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1084 				nd->path.dentry->d_inode))
1085 		audit_inode(name, nd->path.dentry);
1086 	if (nd->root.mnt) {
1087 		path_put(&nd->root);
1088 		nd->root.mnt = NULL;
1089 	}
1090 	return retval;
1091 }
1092 
1093 int path_lookup(const char *name, unsigned int flags,
1094 			struct nameidata *nd)
1095 {
1096 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1097 }
1098 
1099 int kern_path(const char *name, unsigned int flags, struct path *path)
1100 {
1101 	struct nameidata nd;
1102 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1103 	if (!res)
1104 		*path = nd.path;
1105 	return res;
1106 }
1107 
1108 /**
1109  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1110  * @dentry:  pointer to dentry of the base directory
1111  * @mnt: pointer to vfs mount of the base directory
1112  * @name: pointer to file name
1113  * @flags: lookup flags
1114  * @nd: pointer to nameidata
1115  */
1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1117 		    const char *name, unsigned int flags,
1118 		    struct nameidata *nd)
1119 {
1120 	int retval;
1121 
1122 	/* same as do_path_lookup */
1123 	nd->last_type = LAST_ROOT;
1124 	nd->flags = flags;
1125 	nd->depth = 0;
1126 
1127 	nd->path.dentry = dentry;
1128 	nd->path.mnt = mnt;
1129 	path_get(&nd->path);
1130 	nd->root = nd->path;
1131 	path_get(&nd->root);
1132 
1133 	retval = path_walk(name, nd);
1134 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1135 				nd->path.dentry->d_inode))
1136 		audit_inode(name, nd->path.dentry);
1137 
1138 	path_put(&nd->root);
1139 	nd->root.mnt = NULL;
1140 
1141 	return retval;
1142 }
1143 
1144 /**
1145  * path_lookup_open - lookup a file path with open intent
1146  * @dfd: the directory to use as base, or AT_FDCWD
1147  * @name: pointer to file name
1148  * @lookup_flags: lookup intent flags
1149  * @nd: pointer to nameidata
1150  * @open_flags: open intent flags
1151  */
1152 static int path_lookup_open(int dfd, const char *name,
1153 		unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1154 {
1155 	struct file *filp = get_empty_filp();
1156 	int err;
1157 
1158 	if (filp == NULL)
1159 		return -ENFILE;
1160 	nd->intent.open.file = filp;
1161 	nd->intent.open.flags = open_flags;
1162 	nd->intent.open.create_mode = 0;
1163 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1164 	if (IS_ERR(nd->intent.open.file)) {
1165 		if (err == 0) {
1166 			err = PTR_ERR(nd->intent.open.file);
1167 			path_put(&nd->path);
1168 		}
1169 	} else if (err != 0)
1170 		release_open_intent(nd);
1171 	return err;
1172 }
1173 
1174 static struct dentry *__lookup_hash(struct qstr *name,
1175 		struct dentry *base, struct nameidata *nd)
1176 {
1177 	struct dentry *dentry;
1178 	struct inode *inode;
1179 	int err;
1180 
1181 	inode = base->d_inode;
1182 
1183 	/*
1184 	 * See if the low-level filesystem might want
1185 	 * to use its own hash..
1186 	 */
1187 	if (base->d_op && base->d_op->d_hash) {
1188 		err = base->d_op->d_hash(base, name);
1189 		dentry = ERR_PTR(err);
1190 		if (err < 0)
1191 			goto out;
1192 	}
1193 
1194 	dentry = cached_lookup(base, name, nd);
1195 	if (!dentry) {
1196 		struct dentry *new;
1197 
1198 		/* Don't create child dentry for a dead directory. */
1199 		dentry = ERR_PTR(-ENOENT);
1200 		if (IS_DEADDIR(inode))
1201 			goto out;
1202 
1203 		new = d_alloc(base, name);
1204 		dentry = ERR_PTR(-ENOMEM);
1205 		if (!new)
1206 			goto out;
1207 		dentry = inode->i_op->lookup(inode, new, nd);
1208 		if (!dentry)
1209 			dentry = new;
1210 		else
1211 			dput(new);
1212 	}
1213 out:
1214 	return dentry;
1215 }
1216 
1217 /*
1218  * Restricted form of lookup. Doesn't follow links, single-component only,
1219  * needs parent already locked. Doesn't follow mounts.
1220  * SMP-safe.
1221  */
1222 static struct dentry *lookup_hash(struct nameidata *nd)
1223 {
1224 	int err;
1225 
1226 	err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1227 	if (err)
1228 		return ERR_PTR(err);
1229 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1230 }
1231 
1232 static int __lookup_one_len(const char *name, struct qstr *this,
1233 		struct dentry *base, int len)
1234 {
1235 	unsigned long hash;
1236 	unsigned int c;
1237 
1238 	this->name = name;
1239 	this->len = len;
1240 	if (!len)
1241 		return -EACCES;
1242 
1243 	hash = init_name_hash();
1244 	while (len--) {
1245 		c = *(const unsigned char *)name++;
1246 		if (c == '/' || c == '\0')
1247 			return -EACCES;
1248 		hash = partial_name_hash(c, hash);
1249 	}
1250 	this->hash = end_name_hash(hash);
1251 	return 0;
1252 }
1253 
1254 /**
1255  * lookup_one_len - filesystem helper to lookup single pathname component
1256  * @name:	pathname component to lookup
1257  * @base:	base directory to lookup from
1258  * @len:	maximum length @len should be interpreted to
1259  *
1260  * Note that this routine is purely a helper for filesystem usage and should
1261  * not be called by generic code.  Also note that by using this function the
1262  * nameidata argument is passed to the filesystem methods and a filesystem
1263  * using this helper needs to be prepared for that.
1264  */
1265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1266 {
1267 	int err;
1268 	struct qstr this;
1269 
1270 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1271 
1272 	err = __lookup_one_len(name, &this, base, len);
1273 	if (err)
1274 		return ERR_PTR(err);
1275 
1276 	err = inode_permission(base->d_inode, MAY_EXEC);
1277 	if (err)
1278 		return ERR_PTR(err);
1279 	return __lookup_hash(&this, base, NULL);
1280 }
1281 
1282 /**
1283  * lookup_one_noperm - bad hack for sysfs
1284  * @name:	pathname component to lookup
1285  * @base:	base directory to lookup from
1286  *
1287  * This is a variant of lookup_one_len that doesn't perform any permission
1288  * checks.   It's a horrible hack to work around the braindead sysfs
1289  * architecture and should not be used anywhere else.
1290  *
1291  * DON'T USE THIS FUNCTION EVER, thanks.
1292  */
1293 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1294 {
1295 	int err;
1296 	struct qstr this;
1297 
1298 	err = __lookup_one_len(name, &this, base, strlen(name));
1299 	if (err)
1300 		return ERR_PTR(err);
1301 	return __lookup_hash(&this, base, NULL);
1302 }
1303 
1304 int user_path_at(int dfd, const char __user *name, unsigned flags,
1305 		 struct path *path)
1306 {
1307 	struct nameidata nd;
1308 	char *tmp = getname(name);
1309 	int err = PTR_ERR(tmp);
1310 	if (!IS_ERR(tmp)) {
1311 
1312 		BUG_ON(flags & LOOKUP_PARENT);
1313 
1314 		err = do_path_lookup(dfd, tmp, flags, &nd);
1315 		putname(tmp);
1316 		if (!err)
1317 			*path = nd.path;
1318 	}
1319 	return err;
1320 }
1321 
1322 static int user_path_parent(int dfd, const char __user *path,
1323 			struct nameidata *nd, char **name)
1324 {
1325 	char *s = getname(path);
1326 	int error;
1327 
1328 	if (IS_ERR(s))
1329 		return PTR_ERR(s);
1330 
1331 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1332 	if (error)
1333 		putname(s);
1334 	else
1335 		*name = s;
1336 
1337 	return error;
1338 }
1339 
1340 /*
1341  * It's inline, so penalty for filesystems that don't use sticky bit is
1342  * minimal.
1343  */
1344 static inline int check_sticky(struct inode *dir, struct inode *inode)
1345 {
1346 	uid_t fsuid = current_fsuid();
1347 
1348 	if (!(dir->i_mode & S_ISVTX))
1349 		return 0;
1350 	if (inode->i_uid == fsuid)
1351 		return 0;
1352 	if (dir->i_uid == fsuid)
1353 		return 0;
1354 	return !capable(CAP_FOWNER);
1355 }
1356 
1357 /*
1358  *	Check whether we can remove a link victim from directory dir, check
1359  *  whether the type of victim is right.
1360  *  1. We can't do it if dir is read-only (done in permission())
1361  *  2. We should have write and exec permissions on dir
1362  *  3. We can't remove anything from append-only dir
1363  *  4. We can't do anything with immutable dir (done in permission())
1364  *  5. If the sticky bit on dir is set we should either
1365  *	a. be owner of dir, or
1366  *	b. be owner of victim, or
1367  *	c. have CAP_FOWNER capability
1368  *  6. If the victim is append-only or immutable we can't do antyhing with
1369  *     links pointing to it.
1370  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1371  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1372  *  9. We can't remove a root or mountpoint.
1373  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1374  *     nfs_async_unlink().
1375  */
1376 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1377 {
1378 	int error;
1379 
1380 	if (!victim->d_inode)
1381 		return -ENOENT;
1382 
1383 	BUG_ON(victim->d_parent->d_inode != dir);
1384 	audit_inode_child(victim->d_name.name, victim, dir);
1385 
1386 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1387 	if (error)
1388 		return error;
1389 	if (IS_APPEND(dir))
1390 		return -EPERM;
1391 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1392 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1393 		return -EPERM;
1394 	if (isdir) {
1395 		if (!S_ISDIR(victim->d_inode->i_mode))
1396 			return -ENOTDIR;
1397 		if (IS_ROOT(victim))
1398 			return -EBUSY;
1399 	} else if (S_ISDIR(victim->d_inode->i_mode))
1400 		return -EISDIR;
1401 	if (IS_DEADDIR(dir))
1402 		return -ENOENT;
1403 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1404 		return -EBUSY;
1405 	return 0;
1406 }
1407 
1408 /*	Check whether we can create an object with dentry child in directory
1409  *  dir.
1410  *  1. We can't do it if child already exists (open has special treatment for
1411  *     this case, but since we are inlined it's OK)
1412  *  2. We can't do it if dir is read-only (done in permission())
1413  *  3. We should have write and exec permissions on dir
1414  *  4. We can't do it if dir is immutable (done in permission())
1415  */
1416 static inline int may_create(struct inode *dir, struct dentry *child)
1417 {
1418 	if (child->d_inode)
1419 		return -EEXIST;
1420 	if (IS_DEADDIR(dir))
1421 		return -ENOENT;
1422 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1423 }
1424 
1425 /*
1426  * O_DIRECTORY translates into forcing a directory lookup.
1427  */
1428 static inline int lookup_flags(unsigned int f)
1429 {
1430 	unsigned long retval = LOOKUP_FOLLOW;
1431 
1432 	if (f & O_NOFOLLOW)
1433 		retval &= ~LOOKUP_FOLLOW;
1434 
1435 	if (f & O_DIRECTORY)
1436 		retval |= LOOKUP_DIRECTORY;
1437 
1438 	return retval;
1439 }
1440 
1441 /*
1442  * p1 and p2 should be directories on the same fs.
1443  */
1444 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1445 {
1446 	struct dentry *p;
1447 
1448 	if (p1 == p2) {
1449 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1450 		return NULL;
1451 	}
1452 
1453 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1454 
1455 	p = d_ancestor(p2, p1);
1456 	if (p) {
1457 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1458 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1459 		return p;
1460 	}
1461 
1462 	p = d_ancestor(p1, p2);
1463 	if (p) {
1464 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1465 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1466 		return p;
1467 	}
1468 
1469 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1470 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1471 	return NULL;
1472 }
1473 
1474 void unlock_rename(struct dentry *p1, struct dentry *p2)
1475 {
1476 	mutex_unlock(&p1->d_inode->i_mutex);
1477 	if (p1 != p2) {
1478 		mutex_unlock(&p2->d_inode->i_mutex);
1479 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1480 	}
1481 }
1482 
1483 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1484 		struct nameidata *nd)
1485 {
1486 	int error = may_create(dir, dentry);
1487 
1488 	if (error)
1489 		return error;
1490 
1491 	if (!dir->i_op->create)
1492 		return -EACCES;	/* shouldn't it be ENOSYS? */
1493 	mode &= S_IALLUGO;
1494 	mode |= S_IFREG;
1495 	error = security_inode_create(dir, dentry, mode);
1496 	if (error)
1497 		return error;
1498 	vfs_dq_init(dir);
1499 	error = dir->i_op->create(dir, dentry, mode, nd);
1500 	if (!error)
1501 		fsnotify_create(dir, dentry);
1502 	return error;
1503 }
1504 
1505 int may_open(struct path *path, int acc_mode, int flag)
1506 {
1507 	struct dentry *dentry = path->dentry;
1508 	struct inode *inode = dentry->d_inode;
1509 	int error;
1510 
1511 	if (!inode)
1512 		return -ENOENT;
1513 
1514 	switch (inode->i_mode & S_IFMT) {
1515 	case S_IFLNK:
1516 		return -ELOOP;
1517 	case S_IFDIR:
1518 		if (acc_mode & MAY_WRITE)
1519 			return -EISDIR;
1520 		break;
1521 	case S_IFBLK:
1522 	case S_IFCHR:
1523 		if (path->mnt->mnt_flags & MNT_NODEV)
1524 			return -EACCES;
1525 		/*FALLTHRU*/
1526 	case S_IFIFO:
1527 	case S_IFSOCK:
1528 		flag &= ~O_TRUNC;
1529 		break;
1530 	}
1531 
1532 	error = inode_permission(inode, acc_mode);
1533 	if (error)
1534 		return error;
1535 
1536 	error = ima_path_check(path,
1537 			       acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC),
1538 			       IMA_COUNT_UPDATE);
1539 	if (error)
1540 		return error;
1541 	/*
1542 	 * An append-only file must be opened in append mode for writing.
1543 	 */
1544 	if (IS_APPEND(inode)) {
1545 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1546 			return -EPERM;
1547 		if (flag & O_TRUNC)
1548 			return -EPERM;
1549 	}
1550 
1551 	/* O_NOATIME can only be set by the owner or superuser */
1552 	if (flag & O_NOATIME)
1553 		if (!is_owner_or_cap(inode))
1554 			return -EPERM;
1555 
1556 	/*
1557 	 * Ensure there are no outstanding leases on the file.
1558 	 */
1559 	error = break_lease(inode, flag);
1560 	if (error)
1561 		return error;
1562 
1563 	if (flag & O_TRUNC) {
1564 		error = get_write_access(inode);
1565 		if (error)
1566 			return error;
1567 
1568 		/*
1569 		 * Refuse to truncate files with mandatory locks held on them.
1570 		 */
1571 		error = locks_verify_locked(inode);
1572 		if (!error)
1573 			error = security_path_truncate(path, 0,
1574 					       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1575 		if (!error) {
1576 			vfs_dq_init(inode);
1577 
1578 			error = do_truncate(dentry, 0,
1579 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1580 					    NULL);
1581 		}
1582 		put_write_access(inode);
1583 		if (error)
1584 			return error;
1585 	} else
1586 		if (flag & FMODE_WRITE)
1587 			vfs_dq_init(inode);
1588 
1589 	return 0;
1590 }
1591 
1592 /*
1593  * Be careful about ever adding any more callers of this
1594  * function.  Its flags must be in the namei format, not
1595  * what get passed to sys_open().
1596  */
1597 static int __open_namei_create(struct nameidata *nd, struct path *path,
1598 				int flag, int mode)
1599 {
1600 	int error;
1601 	struct dentry *dir = nd->path.dentry;
1602 
1603 	if (!IS_POSIXACL(dir->d_inode))
1604 		mode &= ~current_umask();
1605 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1606 	if (error)
1607 		goto out_unlock;
1608 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1609 out_unlock:
1610 	mutex_unlock(&dir->d_inode->i_mutex);
1611 	dput(nd->path.dentry);
1612 	nd->path.dentry = path->dentry;
1613 	if (error)
1614 		return error;
1615 	/* Don't check for write permission, don't truncate */
1616 	return may_open(&nd->path, 0, flag & ~O_TRUNC);
1617 }
1618 
1619 /*
1620  * Note that while the flag value (low two bits) for sys_open means:
1621  *	00 - read-only
1622  *	01 - write-only
1623  *	10 - read-write
1624  *	11 - special
1625  * it is changed into
1626  *	00 - no permissions needed
1627  *	01 - read-permission
1628  *	10 - write-permission
1629  *	11 - read-write
1630  * for the internal routines (ie open_namei()/follow_link() etc)
1631  * This is more logical, and also allows the 00 "no perm needed"
1632  * to be used for symlinks (where the permissions are checked
1633  * later).
1634  *
1635 */
1636 static inline int open_to_namei_flags(int flag)
1637 {
1638 	if ((flag+1) & O_ACCMODE)
1639 		flag++;
1640 	return flag;
1641 }
1642 
1643 static int open_will_write_to_fs(int flag, struct inode *inode)
1644 {
1645 	/*
1646 	 * We'll never write to the fs underlying
1647 	 * a device file.
1648 	 */
1649 	if (special_file(inode->i_mode))
1650 		return 0;
1651 	return (flag & O_TRUNC);
1652 }
1653 
1654 /*
1655  * Note that the low bits of the passed in "open_flag"
1656  * are not the same as in the local variable "flag". See
1657  * open_to_namei_flags() for more details.
1658  */
1659 struct file *do_filp_open(int dfd, const char *pathname,
1660 		int open_flag, int mode, int acc_mode)
1661 {
1662 	struct file *filp;
1663 	struct nameidata nd;
1664 	int error;
1665 	struct path path;
1666 	struct dentry *dir;
1667 	int count = 0;
1668 	int will_write;
1669 	int flag = open_to_namei_flags(open_flag);
1670 
1671 	if (!acc_mode)
1672 		acc_mode = MAY_OPEN | ACC_MODE(flag);
1673 
1674 	/* O_TRUNC implies we need access checks for write permissions */
1675 	if (flag & O_TRUNC)
1676 		acc_mode |= MAY_WRITE;
1677 
1678 	/* Allow the LSM permission hook to distinguish append
1679 	   access from general write access. */
1680 	if (flag & O_APPEND)
1681 		acc_mode |= MAY_APPEND;
1682 
1683 	/*
1684 	 * The simplest case - just a plain lookup.
1685 	 */
1686 	if (!(flag & O_CREAT)) {
1687 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1688 					 &nd, flag);
1689 		if (error)
1690 			return ERR_PTR(error);
1691 		goto ok;
1692 	}
1693 
1694 	/*
1695 	 * Create - we need to know the parent.
1696 	 */
1697 	error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1698 	if (error)
1699 		return ERR_PTR(error);
1700 	error = path_walk(pathname, &nd);
1701 	if (error)
1702 		return ERR_PTR(error);
1703 	if (unlikely(!audit_dummy_context()))
1704 		audit_inode(pathname, nd.path.dentry);
1705 
1706 	/*
1707 	 * We have the parent and last component. First of all, check
1708 	 * that we are not asked to creat(2) an obvious directory - that
1709 	 * will not do.
1710 	 */
1711 	error = -EISDIR;
1712 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1713 		goto exit_parent;
1714 
1715 	error = -ENFILE;
1716 	filp = get_empty_filp();
1717 	if (filp == NULL)
1718 		goto exit_parent;
1719 	nd.intent.open.file = filp;
1720 	nd.intent.open.flags = flag;
1721 	nd.intent.open.create_mode = mode;
1722 	dir = nd.path.dentry;
1723 	nd.flags &= ~LOOKUP_PARENT;
1724 	nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1725 	if (flag & O_EXCL)
1726 		nd.flags |= LOOKUP_EXCL;
1727 	mutex_lock(&dir->d_inode->i_mutex);
1728 	path.dentry = lookup_hash(&nd);
1729 	path.mnt = nd.path.mnt;
1730 
1731 do_last:
1732 	error = PTR_ERR(path.dentry);
1733 	if (IS_ERR(path.dentry)) {
1734 		mutex_unlock(&dir->d_inode->i_mutex);
1735 		goto exit;
1736 	}
1737 
1738 	if (IS_ERR(nd.intent.open.file)) {
1739 		error = PTR_ERR(nd.intent.open.file);
1740 		goto exit_mutex_unlock;
1741 	}
1742 
1743 	/* Negative dentry, just create the file */
1744 	if (!path.dentry->d_inode) {
1745 		/*
1746 		 * This write is needed to ensure that a
1747 		 * ro->rw transition does not occur between
1748 		 * the time when the file is created and when
1749 		 * a permanent write count is taken through
1750 		 * the 'struct file' in nameidata_to_filp().
1751 		 */
1752 		error = mnt_want_write(nd.path.mnt);
1753 		if (error)
1754 			goto exit_mutex_unlock;
1755 		error = __open_namei_create(&nd, &path, flag, mode);
1756 		if (error) {
1757 			mnt_drop_write(nd.path.mnt);
1758 			goto exit;
1759 		}
1760 		filp = nameidata_to_filp(&nd, open_flag);
1761 		mnt_drop_write(nd.path.mnt);
1762 		return filp;
1763 	}
1764 
1765 	/*
1766 	 * It already exists.
1767 	 */
1768 	mutex_unlock(&dir->d_inode->i_mutex);
1769 	audit_inode(pathname, path.dentry);
1770 
1771 	error = -EEXIST;
1772 	if (flag & O_EXCL)
1773 		goto exit_dput;
1774 
1775 	if (__follow_mount(&path)) {
1776 		error = -ELOOP;
1777 		if (flag & O_NOFOLLOW)
1778 			goto exit_dput;
1779 	}
1780 
1781 	error = -ENOENT;
1782 	if (!path.dentry->d_inode)
1783 		goto exit_dput;
1784 	if (path.dentry->d_inode->i_op->follow_link)
1785 		goto do_link;
1786 
1787 	path_to_nameidata(&path, &nd);
1788 	error = -EISDIR;
1789 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1790 		goto exit;
1791 ok:
1792 	/*
1793 	 * Consider:
1794 	 * 1. may_open() truncates a file
1795 	 * 2. a rw->ro mount transition occurs
1796 	 * 3. nameidata_to_filp() fails due to
1797 	 *    the ro mount.
1798 	 * That would be inconsistent, and should
1799 	 * be avoided. Taking this mnt write here
1800 	 * ensures that (2) can not occur.
1801 	 */
1802 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1803 	if (will_write) {
1804 		error = mnt_want_write(nd.path.mnt);
1805 		if (error)
1806 			goto exit;
1807 	}
1808 	error = may_open(&nd.path, acc_mode, flag);
1809 	if (error) {
1810 		if (will_write)
1811 			mnt_drop_write(nd.path.mnt);
1812 		goto exit;
1813 	}
1814 	filp = nameidata_to_filp(&nd, open_flag);
1815 	/*
1816 	 * It is now safe to drop the mnt write
1817 	 * because the filp has had a write taken
1818 	 * on its behalf.
1819 	 */
1820 	if (will_write)
1821 		mnt_drop_write(nd.path.mnt);
1822 	return filp;
1823 
1824 exit_mutex_unlock:
1825 	mutex_unlock(&dir->d_inode->i_mutex);
1826 exit_dput:
1827 	path_put_conditional(&path, &nd);
1828 exit:
1829 	if (!IS_ERR(nd.intent.open.file))
1830 		release_open_intent(&nd);
1831 exit_parent:
1832 	if (nd.root.mnt)
1833 		path_put(&nd.root);
1834 	path_put(&nd.path);
1835 	return ERR_PTR(error);
1836 
1837 do_link:
1838 	error = -ELOOP;
1839 	if (flag & O_NOFOLLOW)
1840 		goto exit_dput;
1841 	/*
1842 	 * This is subtle. Instead of calling do_follow_link() we do the
1843 	 * thing by hands. The reason is that this way we have zero link_count
1844 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1845 	 * After that we have the parent and last component, i.e.
1846 	 * we are in the same situation as after the first path_walk().
1847 	 * Well, almost - if the last component is normal we get its copy
1848 	 * stored in nd->last.name and we will have to putname() it when we
1849 	 * are done. Procfs-like symlinks just set LAST_BIND.
1850 	 */
1851 	nd.flags |= LOOKUP_PARENT;
1852 	error = security_inode_follow_link(path.dentry, &nd);
1853 	if (error)
1854 		goto exit_dput;
1855 	error = __do_follow_link(&path, &nd);
1856 	if (error) {
1857 		/* Does someone understand code flow here? Or it is only
1858 		 * me so stupid? Anathema to whoever designed this non-sense
1859 		 * with "intent.open".
1860 		 */
1861 		release_open_intent(&nd);
1862 		return ERR_PTR(error);
1863 	}
1864 	nd.flags &= ~LOOKUP_PARENT;
1865 	if (nd.last_type == LAST_BIND)
1866 		goto ok;
1867 	error = -EISDIR;
1868 	if (nd.last_type != LAST_NORM)
1869 		goto exit;
1870 	if (nd.last.name[nd.last.len]) {
1871 		__putname(nd.last.name);
1872 		goto exit;
1873 	}
1874 	error = -ELOOP;
1875 	if (count++==32) {
1876 		__putname(nd.last.name);
1877 		goto exit;
1878 	}
1879 	dir = nd.path.dentry;
1880 	mutex_lock(&dir->d_inode->i_mutex);
1881 	path.dentry = lookup_hash(&nd);
1882 	path.mnt = nd.path.mnt;
1883 	__putname(nd.last.name);
1884 	goto do_last;
1885 }
1886 
1887 /**
1888  * filp_open - open file and return file pointer
1889  *
1890  * @filename:	path to open
1891  * @flags:	open flags as per the open(2) second argument
1892  * @mode:	mode for the new file if O_CREAT is set, else ignored
1893  *
1894  * This is the helper to open a file from kernelspace if you really
1895  * have to.  But in generally you should not do this, so please move
1896  * along, nothing to see here..
1897  */
1898 struct file *filp_open(const char *filename, int flags, int mode)
1899 {
1900 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1901 }
1902 EXPORT_SYMBOL(filp_open);
1903 
1904 /**
1905  * lookup_create - lookup a dentry, creating it if it doesn't exist
1906  * @nd: nameidata info
1907  * @is_dir: directory flag
1908  *
1909  * Simple function to lookup and return a dentry and create it
1910  * if it doesn't exist.  Is SMP-safe.
1911  *
1912  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1913  */
1914 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1915 {
1916 	struct dentry *dentry = ERR_PTR(-EEXIST);
1917 
1918 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1919 	/*
1920 	 * Yucky last component or no last component at all?
1921 	 * (foo/., foo/.., /////)
1922 	 */
1923 	if (nd->last_type != LAST_NORM)
1924 		goto fail;
1925 	nd->flags &= ~LOOKUP_PARENT;
1926 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1927 	nd->intent.open.flags = O_EXCL;
1928 
1929 	/*
1930 	 * Do the final lookup.
1931 	 */
1932 	dentry = lookup_hash(nd);
1933 	if (IS_ERR(dentry))
1934 		goto fail;
1935 
1936 	if (dentry->d_inode)
1937 		goto eexist;
1938 	/*
1939 	 * Special case - lookup gave negative, but... we had foo/bar/
1940 	 * From the vfs_mknod() POV we just have a negative dentry -
1941 	 * all is fine. Let's be bastards - you had / on the end, you've
1942 	 * been asking for (non-existent) directory. -ENOENT for you.
1943 	 */
1944 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1945 		dput(dentry);
1946 		dentry = ERR_PTR(-ENOENT);
1947 	}
1948 	return dentry;
1949 eexist:
1950 	dput(dentry);
1951 	dentry = ERR_PTR(-EEXIST);
1952 fail:
1953 	return dentry;
1954 }
1955 EXPORT_SYMBOL_GPL(lookup_create);
1956 
1957 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1958 {
1959 	int error = may_create(dir, dentry);
1960 
1961 	if (error)
1962 		return error;
1963 
1964 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1965 		return -EPERM;
1966 
1967 	if (!dir->i_op->mknod)
1968 		return -EPERM;
1969 
1970 	error = devcgroup_inode_mknod(mode, dev);
1971 	if (error)
1972 		return error;
1973 
1974 	error = security_inode_mknod(dir, dentry, mode, dev);
1975 	if (error)
1976 		return error;
1977 
1978 	vfs_dq_init(dir);
1979 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1980 	if (!error)
1981 		fsnotify_create(dir, dentry);
1982 	return error;
1983 }
1984 
1985 static int may_mknod(mode_t mode)
1986 {
1987 	switch (mode & S_IFMT) {
1988 	case S_IFREG:
1989 	case S_IFCHR:
1990 	case S_IFBLK:
1991 	case S_IFIFO:
1992 	case S_IFSOCK:
1993 	case 0: /* zero mode translates to S_IFREG */
1994 		return 0;
1995 	case S_IFDIR:
1996 		return -EPERM;
1997 	default:
1998 		return -EINVAL;
1999 	}
2000 }
2001 
2002 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2003 		unsigned, dev)
2004 {
2005 	int error;
2006 	char *tmp;
2007 	struct dentry *dentry;
2008 	struct nameidata nd;
2009 
2010 	if (S_ISDIR(mode))
2011 		return -EPERM;
2012 
2013 	error = user_path_parent(dfd, filename, &nd, &tmp);
2014 	if (error)
2015 		return error;
2016 
2017 	dentry = lookup_create(&nd, 0);
2018 	if (IS_ERR(dentry)) {
2019 		error = PTR_ERR(dentry);
2020 		goto out_unlock;
2021 	}
2022 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2023 		mode &= ~current_umask();
2024 	error = may_mknod(mode);
2025 	if (error)
2026 		goto out_dput;
2027 	error = mnt_want_write(nd.path.mnt);
2028 	if (error)
2029 		goto out_dput;
2030 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2031 	if (error)
2032 		goto out_drop_write;
2033 	switch (mode & S_IFMT) {
2034 		case 0: case S_IFREG:
2035 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2036 			break;
2037 		case S_IFCHR: case S_IFBLK:
2038 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2039 					new_decode_dev(dev));
2040 			break;
2041 		case S_IFIFO: case S_IFSOCK:
2042 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2043 			break;
2044 	}
2045 out_drop_write:
2046 	mnt_drop_write(nd.path.mnt);
2047 out_dput:
2048 	dput(dentry);
2049 out_unlock:
2050 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2051 	path_put(&nd.path);
2052 	putname(tmp);
2053 
2054 	return error;
2055 }
2056 
2057 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2058 {
2059 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2060 }
2061 
2062 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2063 {
2064 	int error = may_create(dir, dentry);
2065 
2066 	if (error)
2067 		return error;
2068 
2069 	if (!dir->i_op->mkdir)
2070 		return -EPERM;
2071 
2072 	mode &= (S_IRWXUGO|S_ISVTX);
2073 	error = security_inode_mkdir(dir, dentry, mode);
2074 	if (error)
2075 		return error;
2076 
2077 	vfs_dq_init(dir);
2078 	error = dir->i_op->mkdir(dir, dentry, mode);
2079 	if (!error)
2080 		fsnotify_mkdir(dir, dentry);
2081 	return error;
2082 }
2083 
2084 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2085 {
2086 	int error = 0;
2087 	char * tmp;
2088 	struct dentry *dentry;
2089 	struct nameidata nd;
2090 
2091 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2092 	if (error)
2093 		goto out_err;
2094 
2095 	dentry = lookup_create(&nd, 1);
2096 	error = PTR_ERR(dentry);
2097 	if (IS_ERR(dentry))
2098 		goto out_unlock;
2099 
2100 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2101 		mode &= ~current_umask();
2102 	error = mnt_want_write(nd.path.mnt);
2103 	if (error)
2104 		goto out_dput;
2105 	error = security_path_mkdir(&nd.path, dentry, mode);
2106 	if (error)
2107 		goto out_drop_write;
2108 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2109 out_drop_write:
2110 	mnt_drop_write(nd.path.mnt);
2111 out_dput:
2112 	dput(dentry);
2113 out_unlock:
2114 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2115 	path_put(&nd.path);
2116 	putname(tmp);
2117 out_err:
2118 	return error;
2119 }
2120 
2121 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2122 {
2123 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2124 }
2125 
2126 /*
2127  * We try to drop the dentry early: we should have
2128  * a usage count of 2 if we're the only user of this
2129  * dentry, and if that is true (possibly after pruning
2130  * the dcache), then we drop the dentry now.
2131  *
2132  * A low-level filesystem can, if it choses, legally
2133  * do a
2134  *
2135  *	if (!d_unhashed(dentry))
2136  *		return -EBUSY;
2137  *
2138  * if it cannot handle the case of removing a directory
2139  * that is still in use by something else..
2140  */
2141 void dentry_unhash(struct dentry *dentry)
2142 {
2143 	dget(dentry);
2144 	shrink_dcache_parent(dentry);
2145 	spin_lock(&dcache_lock);
2146 	spin_lock(&dentry->d_lock);
2147 	if (atomic_read(&dentry->d_count) == 2)
2148 		__d_drop(dentry);
2149 	spin_unlock(&dentry->d_lock);
2150 	spin_unlock(&dcache_lock);
2151 }
2152 
2153 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2154 {
2155 	int error = may_delete(dir, dentry, 1);
2156 
2157 	if (error)
2158 		return error;
2159 
2160 	if (!dir->i_op->rmdir)
2161 		return -EPERM;
2162 
2163 	vfs_dq_init(dir);
2164 
2165 	mutex_lock(&dentry->d_inode->i_mutex);
2166 	dentry_unhash(dentry);
2167 	if (d_mountpoint(dentry))
2168 		error = -EBUSY;
2169 	else {
2170 		error = security_inode_rmdir(dir, dentry);
2171 		if (!error) {
2172 			error = dir->i_op->rmdir(dir, dentry);
2173 			if (!error)
2174 				dentry->d_inode->i_flags |= S_DEAD;
2175 		}
2176 	}
2177 	mutex_unlock(&dentry->d_inode->i_mutex);
2178 	if (!error) {
2179 		d_delete(dentry);
2180 	}
2181 	dput(dentry);
2182 
2183 	return error;
2184 }
2185 
2186 static long do_rmdir(int dfd, const char __user *pathname)
2187 {
2188 	int error = 0;
2189 	char * name;
2190 	struct dentry *dentry;
2191 	struct nameidata nd;
2192 
2193 	error = user_path_parent(dfd, pathname, &nd, &name);
2194 	if (error)
2195 		return error;
2196 
2197 	switch(nd.last_type) {
2198 	case LAST_DOTDOT:
2199 		error = -ENOTEMPTY;
2200 		goto exit1;
2201 	case LAST_DOT:
2202 		error = -EINVAL;
2203 		goto exit1;
2204 	case LAST_ROOT:
2205 		error = -EBUSY;
2206 		goto exit1;
2207 	}
2208 
2209 	nd.flags &= ~LOOKUP_PARENT;
2210 
2211 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2212 	dentry = lookup_hash(&nd);
2213 	error = PTR_ERR(dentry);
2214 	if (IS_ERR(dentry))
2215 		goto exit2;
2216 	error = mnt_want_write(nd.path.mnt);
2217 	if (error)
2218 		goto exit3;
2219 	error = security_path_rmdir(&nd.path, dentry);
2220 	if (error)
2221 		goto exit4;
2222 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2223 exit4:
2224 	mnt_drop_write(nd.path.mnt);
2225 exit3:
2226 	dput(dentry);
2227 exit2:
2228 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2229 exit1:
2230 	path_put(&nd.path);
2231 	putname(name);
2232 	return error;
2233 }
2234 
2235 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2236 {
2237 	return do_rmdir(AT_FDCWD, pathname);
2238 }
2239 
2240 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2241 {
2242 	int error = may_delete(dir, dentry, 0);
2243 
2244 	if (error)
2245 		return error;
2246 
2247 	if (!dir->i_op->unlink)
2248 		return -EPERM;
2249 
2250 	vfs_dq_init(dir);
2251 
2252 	mutex_lock(&dentry->d_inode->i_mutex);
2253 	if (d_mountpoint(dentry))
2254 		error = -EBUSY;
2255 	else {
2256 		error = security_inode_unlink(dir, dentry);
2257 		if (!error)
2258 			error = dir->i_op->unlink(dir, dentry);
2259 	}
2260 	mutex_unlock(&dentry->d_inode->i_mutex);
2261 
2262 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2263 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2264 		fsnotify_link_count(dentry->d_inode);
2265 		d_delete(dentry);
2266 	}
2267 
2268 	return error;
2269 }
2270 
2271 /*
2272  * Make sure that the actual truncation of the file will occur outside its
2273  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2274  * writeout happening, and we don't want to prevent access to the directory
2275  * while waiting on the I/O.
2276  */
2277 static long do_unlinkat(int dfd, const char __user *pathname)
2278 {
2279 	int error;
2280 	char *name;
2281 	struct dentry *dentry;
2282 	struct nameidata nd;
2283 	struct inode *inode = NULL;
2284 
2285 	error = user_path_parent(dfd, pathname, &nd, &name);
2286 	if (error)
2287 		return error;
2288 
2289 	error = -EISDIR;
2290 	if (nd.last_type != LAST_NORM)
2291 		goto exit1;
2292 
2293 	nd.flags &= ~LOOKUP_PARENT;
2294 
2295 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2296 	dentry = lookup_hash(&nd);
2297 	error = PTR_ERR(dentry);
2298 	if (!IS_ERR(dentry)) {
2299 		/* Why not before? Because we want correct error value */
2300 		if (nd.last.name[nd.last.len])
2301 			goto slashes;
2302 		inode = dentry->d_inode;
2303 		if (inode)
2304 			atomic_inc(&inode->i_count);
2305 		error = mnt_want_write(nd.path.mnt);
2306 		if (error)
2307 			goto exit2;
2308 		error = security_path_unlink(&nd.path, dentry);
2309 		if (error)
2310 			goto exit3;
2311 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2312 exit3:
2313 		mnt_drop_write(nd.path.mnt);
2314 	exit2:
2315 		dput(dentry);
2316 	}
2317 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2318 	if (inode)
2319 		iput(inode);	/* truncate the inode here */
2320 exit1:
2321 	path_put(&nd.path);
2322 	putname(name);
2323 	return error;
2324 
2325 slashes:
2326 	error = !dentry->d_inode ? -ENOENT :
2327 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2328 	goto exit2;
2329 }
2330 
2331 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2332 {
2333 	if ((flag & ~AT_REMOVEDIR) != 0)
2334 		return -EINVAL;
2335 
2336 	if (flag & AT_REMOVEDIR)
2337 		return do_rmdir(dfd, pathname);
2338 
2339 	return do_unlinkat(dfd, pathname);
2340 }
2341 
2342 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2343 {
2344 	return do_unlinkat(AT_FDCWD, pathname);
2345 }
2346 
2347 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2348 {
2349 	int error = may_create(dir, dentry);
2350 
2351 	if (error)
2352 		return error;
2353 
2354 	if (!dir->i_op->symlink)
2355 		return -EPERM;
2356 
2357 	error = security_inode_symlink(dir, dentry, oldname);
2358 	if (error)
2359 		return error;
2360 
2361 	vfs_dq_init(dir);
2362 	error = dir->i_op->symlink(dir, dentry, oldname);
2363 	if (!error)
2364 		fsnotify_create(dir, dentry);
2365 	return error;
2366 }
2367 
2368 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2369 		int, newdfd, const char __user *, newname)
2370 {
2371 	int error;
2372 	char *from;
2373 	char *to;
2374 	struct dentry *dentry;
2375 	struct nameidata nd;
2376 
2377 	from = getname(oldname);
2378 	if (IS_ERR(from))
2379 		return PTR_ERR(from);
2380 
2381 	error = user_path_parent(newdfd, newname, &nd, &to);
2382 	if (error)
2383 		goto out_putname;
2384 
2385 	dentry = lookup_create(&nd, 0);
2386 	error = PTR_ERR(dentry);
2387 	if (IS_ERR(dentry))
2388 		goto out_unlock;
2389 
2390 	error = mnt_want_write(nd.path.mnt);
2391 	if (error)
2392 		goto out_dput;
2393 	error = security_path_symlink(&nd.path, dentry, from);
2394 	if (error)
2395 		goto out_drop_write;
2396 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2397 out_drop_write:
2398 	mnt_drop_write(nd.path.mnt);
2399 out_dput:
2400 	dput(dentry);
2401 out_unlock:
2402 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2403 	path_put(&nd.path);
2404 	putname(to);
2405 out_putname:
2406 	putname(from);
2407 	return error;
2408 }
2409 
2410 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2411 {
2412 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2413 }
2414 
2415 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2416 {
2417 	struct inode *inode = old_dentry->d_inode;
2418 	int error;
2419 
2420 	if (!inode)
2421 		return -ENOENT;
2422 
2423 	error = may_create(dir, new_dentry);
2424 	if (error)
2425 		return error;
2426 
2427 	if (dir->i_sb != inode->i_sb)
2428 		return -EXDEV;
2429 
2430 	/*
2431 	 * A link to an append-only or immutable file cannot be created.
2432 	 */
2433 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2434 		return -EPERM;
2435 	if (!dir->i_op->link)
2436 		return -EPERM;
2437 	if (S_ISDIR(inode->i_mode))
2438 		return -EPERM;
2439 
2440 	error = security_inode_link(old_dentry, dir, new_dentry);
2441 	if (error)
2442 		return error;
2443 
2444 	mutex_lock(&inode->i_mutex);
2445 	vfs_dq_init(dir);
2446 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2447 	mutex_unlock(&inode->i_mutex);
2448 	if (!error)
2449 		fsnotify_link(dir, inode, new_dentry);
2450 	return error;
2451 }
2452 
2453 /*
2454  * Hardlinks are often used in delicate situations.  We avoid
2455  * security-related surprises by not following symlinks on the
2456  * newname.  --KAB
2457  *
2458  * We don't follow them on the oldname either to be compatible
2459  * with linux 2.0, and to avoid hard-linking to directories
2460  * and other special files.  --ADM
2461  */
2462 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2463 		int, newdfd, const char __user *, newname, int, flags)
2464 {
2465 	struct dentry *new_dentry;
2466 	struct nameidata nd;
2467 	struct path old_path;
2468 	int error;
2469 	char *to;
2470 
2471 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2472 		return -EINVAL;
2473 
2474 	error = user_path_at(olddfd, oldname,
2475 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2476 			     &old_path);
2477 	if (error)
2478 		return error;
2479 
2480 	error = user_path_parent(newdfd, newname, &nd, &to);
2481 	if (error)
2482 		goto out;
2483 	error = -EXDEV;
2484 	if (old_path.mnt != nd.path.mnt)
2485 		goto out_release;
2486 	new_dentry = lookup_create(&nd, 0);
2487 	error = PTR_ERR(new_dentry);
2488 	if (IS_ERR(new_dentry))
2489 		goto out_unlock;
2490 	error = mnt_want_write(nd.path.mnt);
2491 	if (error)
2492 		goto out_dput;
2493 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2494 	if (error)
2495 		goto out_drop_write;
2496 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2497 out_drop_write:
2498 	mnt_drop_write(nd.path.mnt);
2499 out_dput:
2500 	dput(new_dentry);
2501 out_unlock:
2502 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2503 out_release:
2504 	path_put(&nd.path);
2505 	putname(to);
2506 out:
2507 	path_put(&old_path);
2508 
2509 	return error;
2510 }
2511 
2512 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2513 {
2514 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2515 }
2516 
2517 /*
2518  * The worst of all namespace operations - renaming directory. "Perverted"
2519  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2520  * Problems:
2521  *	a) we can get into loop creation. Check is done in is_subdir().
2522  *	b) race potential - two innocent renames can create a loop together.
2523  *	   That's where 4.4 screws up. Current fix: serialization on
2524  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2525  *	   story.
2526  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2527  *	   And that - after we got ->i_mutex on parents (until then we don't know
2528  *	   whether the target exists).  Solution: try to be smart with locking
2529  *	   order for inodes.  We rely on the fact that tree topology may change
2530  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2531  *	   move will be locked.  Thus we can rank directories by the tree
2532  *	   (ancestors first) and rank all non-directories after them.
2533  *	   That works since everybody except rename does "lock parent, lookup,
2534  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2535  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2536  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2537  *	   we'd better make sure that there's no link(2) for them.
2538  *	d) some filesystems don't support opened-but-unlinked directories,
2539  *	   either because of layout or because they are not ready to deal with
2540  *	   all cases correctly. The latter will be fixed (taking this sort of
2541  *	   stuff into VFS), but the former is not going away. Solution: the same
2542  *	   trick as in rmdir().
2543  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2544  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2545  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2546  *	   ->i_mutex on parents, which works but leads to some truely excessive
2547  *	   locking].
2548  */
2549 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2550 			  struct inode *new_dir, struct dentry *new_dentry)
2551 {
2552 	int error = 0;
2553 	struct inode *target;
2554 
2555 	/*
2556 	 * If we are going to change the parent - check write permissions,
2557 	 * we'll need to flip '..'.
2558 	 */
2559 	if (new_dir != old_dir) {
2560 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2561 		if (error)
2562 			return error;
2563 	}
2564 
2565 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2566 	if (error)
2567 		return error;
2568 
2569 	target = new_dentry->d_inode;
2570 	if (target) {
2571 		mutex_lock(&target->i_mutex);
2572 		dentry_unhash(new_dentry);
2573 	}
2574 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2575 		error = -EBUSY;
2576 	else
2577 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2578 	if (target) {
2579 		if (!error)
2580 			target->i_flags |= S_DEAD;
2581 		mutex_unlock(&target->i_mutex);
2582 		if (d_unhashed(new_dentry))
2583 			d_rehash(new_dentry);
2584 		dput(new_dentry);
2585 	}
2586 	if (!error)
2587 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2588 			d_move(old_dentry,new_dentry);
2589 	return error;
2590 }
2591 
2592 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2593 			    struct inode *new_dir, struct dentry *new_dentry)
2594 {
2595 	struct inode *target;
2596 	int error;
2597 
2598 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2599 	if (error)
2600 		return error;
2601 
2602 	dget(new_dentry);
2603 	target = new_dentry->d_inode;
2604 	if (target)
2605 		mutex_lock(&target->i_mutex);
2606 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2607 		error = -EBUSY;
2608 	else
2609 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2610 	if (!error) {
2611 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2612 			d_move(old_dentry, new_dentry);
2613 	}
2614 	if (target)
2615 		mutex_unlock(&target->i_mutex);
2616 	dput(new_dentry);
2617 	return error;
2618 }
2619 
2620 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2621 	       struct inode *new_dir, struct dentry *new_dentry)
2622 {
2623 	int error;
2624 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2625 	const char *old_name;
2626 
2627 	if (old_dentry->d_inode == new_dentry->d_inode)
2628  		return 0;
2629 
2630 	error = may_delete(old_dir, old_dentry, is_dir);
2631 	if (error)
2632 		return error;
2633 
2634 	if (!new_dentry->d_inode)
2635 		error = may_create(new_dir, new_dentry);
2636 	else
2637 		error = may_delete(new_dir, new_dentry, is_dir);
2638 	if (error)
2639 		return error;
2640 
2641 	if (!old_dir->i_op->rename)
2642 		return -EPERM;
2643 
2644 	vfs_dq_init(old_dir);
2645 	vfs_dq_init(new_dir);
2646 
2647 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2648 
2649 	if (is_dir)
2650 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2651 	else
2652 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2653 	if (!error) {
2654 		const char *new_name = old_dentry->d_name.name;
2655 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2656 			      new_dentry->d_inode, old_dentry);
2657 	}
2658 	fsnotify_oldname_free(old_name);
2659 
2660 	return error;
2661 }
2662 
2663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2664 		int, newdfd, const char __user *, newname)
2665 {
2666 	struct dentry *old_dir, *new_dir;
2667 	struct dentry *old_dentry, *new_dentry;
2668 	struct dentry *trap;
2669 	struct nameidata oldnd, newnd;
2670 	char *from;
2671 	char *to;
2672 	int error;
2673 
2674 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2675 	if (error)
2676 		goto exit;
2677 
2678 	error = user_path_parent(newdfd, newname, &newnd, &to);
2679 	if (error)
2680 		goto exit1;
2681 
2682 	error = -EXDEV;
2683 	if (oldnd.path.mnt != newnd.path.mnt)
2684 		goto exit2;
2685 
2686 	old_dir = oldnd.path.dentry;
2687 	error = -EBUSY;
2688 	if (oldnd.last_type != LAST_NORM)
2689 		goto exit2;
2690 
2691 	new_dir = newnd.path.dentry;
2692 	if (newnd.last_type != LAST_NORM)
2693 		goto exit2;
2694 
2695 	oldnd.flags &= ~LOOKUP_PARENT;
2696 	newnd.flags &= ~LOOKUP_PARENT;
2697 	newnd.flags |= LOOKUP_RENAME_TARGET;
2698 
2699 	trap = lock_rename(new_dir, old_dir);
2700 
2701 	old_dentry = lookup_hash(&oldnd);
2702 	error = PTR_ERR(old_dentry);
2703 	if (IS_ERR(old_dentry))
2704 		goto exit3;
2705 	/* source must exist */
2706 	error = -ENOENT;
2707 	if (!old_dentry->d_inode)
2708 		goto exit4;
2709 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2710 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2711 		error = -ENOTDIR;
2712 		if (oldnd.last.name[oldnd.last.len])
2713 			goto exit4;
2714 		if (newnd.last.name[newnd.last.len])
2715 			goto exit4;
2716 	}
2717 	/* source should not be ancestor of target */
2718 	error = -EINVAL;
2719 	if (old_dentry == trap)
2720 		goto exit4;
2721 	new_dentry = lookup_hash(&newnd);
2722 	error = PTR_ERR(new_dentry);
2723 	if (IS_ERR(new_dentry))
2724 		goto exit4;
2725 	/* target should not be an ancestor of source */
2726 	error = -ENOTEMPTY;
2727 	if (new_dentry == trap)
2728 		goto exit5;
2729 
2730 	error = mnt_want_write(oldnd.path.mnt);
2731 	if (error)
2732 		goto exit5;
2733 	error = security_path_rename(&oldnd.path, old_dentry,
2734 				     &newnd.path, new_dentry);
2735 	if (error)
2736 		goto exit6;
2737 	error = vfs_rename(old_dir->d_inode, old_dentry,
2738 				   new_dir->d_inode, new_dentry);
2739 exit6:
2740 	mnt_drop_write(oldnd.path.mnt);
2741 exit5:
2742 	dput(new_dentry);
2743 exit4:
2744 	dput(old_dentry);
2745 exit3:
2746 	unlock_rename(new_dir, old_dir);
2747 exit2:
2748 	path_put(&newnd.path);
2749 	putname(to);
2750 exit1:
2751 	path_put(&oldnd.path);
2752 	putname(from);
2753 exit:
2754 	return error;
2755 }
2756 
2757 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2758 {
2759 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2760 }
2761 
2762 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2763 {
2764 	int len;
2765 
2766 	len = PTR_ERR(link);
2767 	if (IS_ERR(link))
2768 		goto out;
2769 
2770 	len = strlen(link);
2771 	if (len > (unsigned) buflen)
2772 		len = buflen;
2773 	if (copy_to_user(buffer, link, len))
2774 		len = -EFAULT;
2775 out:
2776 	return len;
2777 }
2778 
2779 /*
2780  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2781  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2782  * using) it for any given inode is up to filesystem.
2783  */
2784 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2785 {
2786 	struct nameidata nd;
2787 	void *cookie;
2788 	int res;
2789 
2790 	nd.depth = 0;
2791 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2792 	if (IS_ERR(cookie))
2793 		return PTR_ERR(cookie);
2794 
2795 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2796 	if (dentry->d_inode->i_op->put_link)
2797 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2798 	return res;
2799 }
2800 
2801 int vfs_follow_link(struct nameidata *nd, const char *link)
2802 {
2803 	return __vfs_follow_link(nd, link);
2804 }
2805 
2806 /* get the link contents into pagecache */
2807 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2808 {
2809 	char *kaddr;
2810 	struct page *page;
2811 	struct address_space *mapping = dentry->d_inode->i_mapping;
2812 	page = read_mapping_page(mapping, 0, NULL);
2813 	if (IS_ERR(page))
2814 		return (char*)page;
2815 	*ppage = page;
2816 	kaddr = kmap(page);
2817 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2818 	return kaddr;
2819 }
2820 
2821 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2822 {
2823 	struct page *page = NULL;
2824 	char *s = page_getlink(dentry, &page);
2825 	int res = vfs_readlink(dentry,buffer,buflen,s);
2826 	if (page) {
2827 		kunmap(page);
2828 		page_cache_release(page);
2829 	}
2830 	return res;
2831 }
2832 
2833 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2834 {
2835 	struct page *page = NULL;
2836 	nd_set_link(nd, page_getlink(dentry, &page));
2837 	return page;
2838 }
2839 
2840 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2841 {
2842 	struct page *page = cookie;
2843 
2844 	if (page) {
2845 		kunmap(page);
2846 		page_cache_release(page);
2847 	}
2848 }
2849 
2850 /*
2851  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2852  */
2853 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2854 {
2855 	struct address_space *mapping = inode->i_mapping;
2856 	struct page *page;
2857 	void *fsdata;
2858 	int err;
2859 	char *kaddr;
2860 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2861 	if (nofs)
2862 		flags |= AOP_FLAG_NOFS;
2863 
2864 retry:
2865 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2866 				flags, &page, &fsdata);
2867 	if (err)
2868 		goto fail;
2869 
2870 	kaddr = kmap_atomic(page, KM_USER0);
2871 	memcpy(kaddr, symname, len-1);
2872 	kunmap_atomic(kaddr, KM_USER0);
2873 
2874 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2875 							page, fsdata);
2876 	if (err < 0)
2877 		goto fail;
2878 	if (err < len-1)
2879 		goto retry;
2880 
2881 	mark_inode_dirty(inode);
2882 	return 0;
2883 fail:
2884 	return err;
2885 }
2886 
2887 int page_symlink(struct inode *inode, const char *symname, int len)
2888 {
2889 	return __page_symlink(inode, symname, len,
2890 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2891 }
2892 
2893 const struct inode_operations page_symlink_inode_operations = {
2894 	.readlink	= generic_readlink,
2895 	.follow_link	= page_follow_link_light,
2896 	.put_link	= page_put_link,
2897 };
2898 
2899 EXPORT_SYMBOL(user_path_at);
2900 EXPORT_SYMBOL(follow_down);
2901 EXPORT_SYMBOL(follow_up);
2902 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2903 EXPORT_SYMBOL(getname);
2904 EXPORT_SYMBOL(lock_rename);
2905 EXPORT_SYMBOL(lookup_one_len);
2906 EXPORT_SYMBOL(page_follow_link_light);
2907 EXPORT_SYMBOL(page_put_link);
2908 EXPORT_SYMBOL(page_readlink);
2909 EXPORT_SYMBOL(__page_symlink);
2910 EXPORT_SYMBOL(page_symlink);
2911 EXPORT_SYMBOL(page_symlink_inode_operations);
2912 EXPORT_SYMBOL(path_lookup);
2913 EXPORT_SYMBOL(kern_path);
2914 EXPORT_SYMBOL(vfs_path_lookup);
2915 EXPORT_SYMBOL(inode_permission);
2916 EXPORT_SYMBOL(file_permission);
2917 EXPORT_SYMBOL(unlock_rename);
2918 EXPORT_SYMBOL(vfs_create);
2919 EXPORT_SYMBOL(vfs_follow_link);
2920 EXPORT_SYMBOL(vfs_link);
2921 EXPORT_SYMBOL(vfs_mkdir);
2922 EXPORT_SYMBOL(vfs_mknod);
2923 EXPORT_SYMBOL(generic_permission);
2924 EXPORT_SYMBOL(vfs_readlink);
2925 EXPORT_SYMBOL(vfs_rename);
2926 EXPORT_SYMBOL(vfs_rmdir);
2927 EXPORT_SYMBOL(vfs_symlink);
2928 EXPORT_SYMBOL(vfs_unlink);
2929 EXPORT_SYMBOL(dentry_unhash);
2930 EXPORT_SYMBOL(generic_readlink);
2931