1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <asm/uaccess.h> 37 38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 static int __link_path_walk(const char *name, struct nameidata *nd); 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 static int do_getname(const char __user *filename, char *page) 121 { 122 int retval; 123 unsigned long len = PATH_MAX; 124 125 if (!segment_eq(get_fs(), KERNEL_DS)) { 126 if ((unsigned long) filename >= TASK_SIZE) 127 return -EFAULT; 128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 129 len = TASK_SIZE - (unsigned long) filename; 130 } 131 132 retval = strncpy_from_user(page, filename, len); 133 if (retval > 0) { 134 if (retval < len) 135 return 0; 136 return -ENAMETOOLONG; 137 } else if (!retval) 138 retval = -ENOENT; 139 return retval; 140 } 141 142 char * getname(const char __user * filename) 143 { 144 char *tmp, *result; 145 146 result = ERR_PTR(-ENOMEM); 147 tmp = __getname(); 148 if (tmp) { 149 int retval = do_getname(filename, tmp); 150 151 result = tmp; 152 if (retval < 0) { 153 __putname(tmp); 154 result = ERR_PTR(retval); 155 } 156 } 157 audit_getname(result); 158 return result; 159 } 160 161 #ifdef CONFIG_AUDITSYSCALL 162 void putname(const char *name) 163 { 164 if (unlikely(!audit_dummy_context())) 165 audit_putname(name); 166 else 167 __putname(name); 168 } 169 EXPORT_SYMBOL(putname); 170 #endif 171 172 173 /** 174 * generic_permission - check for access rights on a Posix-like filesystem 175 * @inode: inode to check access rights for 176 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 177 * @check_acl: optional callback to check for Posix ACLs 178 * 179 * Used to check for read/write/execute permissions on a file. 180 * We use "fsuid" for this, letting us set arbitrary permissions 181 * for filesystem access without changing the "normal" uids which 182 * are used for other things.. 183 */ 184 int generic_permission(struct inode *inode, int mask, 185 int (*check_acl)(struct inode *inode, int mask)) 186 { 187 umode_t mode = inode->i_mode; 188 189 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 190 191 if (current_fsuid() == inode->i_uid) 192 mode >>= 6; 193 else { 194 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 195 int error = check_acl(inode, mask); 196 if (error == -EACCES) 197 goto check_capabilities; 198 else if (error != -EAGAIN) 199 return error; 200 } 201 202 if (in_group_p(inode->i_gid)) 203 mode >>= 3; 204 } 205 206 /* 207 * If the DACs are ok we don't need any capability check. 208 */ 209 if ((mask & ~mode) == 0) 210 return 0; 211 212 check_capabilities: 213 /* 214 * Read/write DACs are always overridable. 215 * Executable DACs are overridable if at least one exec bit is set. 216 */ 217 if (!(mask & MAY_EXEC) || execute_ok(inode)) 218 if (capable(CAP_DAC_OVERRIDE)) 219 return 0; 220 221 /* 222 * Searching includes executable on directories, else just read. 223 */ 224 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 225 if (capable(CAP_DAC_READ_SEARCH)) 226 return 0; 227 228 return -EACCES; 229 } 230 231 /** 232 * inode_permission - check for access rights to a given inode 233 * @inode: inode to check permission on 234 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 235 * 236 * Used to check for read/write/execute permissions on an inode. 237 * We use "fsuid" for this, letting us set arbitrary permissions 238 * for filesystem access without changing the "normal" uids which 239 * are used for other things. 240 */ 241 int inode_permission(struct inode *inode, int mask) 242 { 243 int retval; 244 245 if (mask & MAY_WRITE) { 246 umode_t mode = inode->i_mode; 247 248 /* 249 * Nobody gets write access to a read-only fs. 250 */ 251 if (IS_RDONLY(inode) && 252 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 253 return -EROFS; 254 255 /* 256 * Nobody gets write access to an immutable file. 257 */ 258 if (IS_IMMUTABLE(inode)) 259 return -EACCES; 260 } 261 262 if (inode->i_op->permission) 263 retval = inode->i_op->permission(inode, mask); 264 else 265 retval = generic_permission(inode, mask, NULL); 266 267 if (retval) 268 return retval; 269 270 retval = devcgroup_inode_permission(inode, mask); 271 if (retval) 272 return retval; 273 274 return security_inode_permission(inode, 275 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 276 } 277 278 /** 279 * file_permission - check for additional access rights to a given file 280 * @file: file to check access rights for 281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 282 * 283 * Used to check for read/write/execute permissions on an already opened 284 * file. 285 * 286 * Note: 287 * Do not use this function in new code. All access checks should 288 * be done using inode_permission(). 289 */ 290 int file_permission(struct file *file, int mask) 291 { 292 return inode_permission(file->f_path.dentry->d_inode, mask); 293 } 294 295 /* 296 * get_write_access() gets write permission for a file. 297 * put_write_access() releases this write permission. 298 * This is used for regular files. 299 * We cannot support write (and maybe mmap read-write shared) accesses and 300 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 301 * can have the following values: 302 * 0: no writers, no VM_DENYWRITE mappings 303 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 304 * > 0: (i_writecount) users are writing to the file. 305 * 306 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 307 * except for the cases where we don't hold i_writecount yet. Then we need to 308 * use {get,deny}_write_access() - these functions check the sign and refuse 309 * to do the change if sign is wrong. Exclusion between them is provided by 310 * the inode->i_lock spinlock. 311 */ 312 313 int get_write_access(struct inode * inode) 314 { 315 spin_lock(&inode->i_lock); 316 if (atomic_read(&inode->i_writecount) < 0) { 317 spin_unlock(&inode->i_lock); 318 return -ETXTBSY; 319 } 320 atomic_inc(&inode->i_writecount); 321 spin_unlock(&inode->i_lock); 322 323 return 0; 324 } 325 326 int deny_write_access(struct file * file) 327 { 328 struct inode *inode = file->f_path.dentry->d_inode; 329 330 spin_lock(&inode->i_lock); 331 if (atomic_read(&inode->i_writecount) > 0) { 332 spin_unlock(&inode->i_lock); 333 return -ETXTBSY; 334 } 335 atomic_dec(&inode->i_writecount); 336 spin_unlock(&inode->i_lock); 337 338 return 0; 339 } 340 341 /** 342 * path_get - get a reference to a path 343 * @path: path to get the reference to 344 * 345 * Given a path increment the reference count to the dentry and the vfsmount. 346 */ 347 void path_get(struct path *path) 348 { 349 mntget(path->mnt); 350 dget(path->dentry); 351 } 352 EXPORT_SYMBOL(path_get); 353 354 /** 355 * path_put - put a reference to a path 356 * @path: path to put the reference to 357 * 358 * Given a path decrement the reference count to the dentry and the vfsmount. 359 */ 360 void path_put(struct path *path) 361 { 362 dput(path->dentry); 363 mntput(path->mnt); 364 } 365 EXPORT_SYMBOL(path_put); 366 367 /** 368 * release_open_intent - free up open intent resources 369 * @nd: pointer to nameidata 370 */ 371 void release_open_intent(struct nameidata *nd) 372 { 373 if (nd->intent.open.file->f_path.dentry == NULL) 374 put_filp(nd->intent.open.file); 375 else 376 fput(nd->intent.open.file); 377 } 378 379 static inline struct dentry * 380 do_revalidate(struct dentry *dentry, struct nameidata *nd) 381 { 382 int status = dentry->d_op->d_revalidate(dentry, nd); 383 if (unlikely(status <= 0)) { 384 /* 385 * The dentry failed validation. 386 * If d_revalidate returned 0 attempt to invalidate 387 * the dentry otherwise d_revalidate is asking us 388 * to return a fail status. 389 */ 390 if (!status) { 391 if (!d_invalidate(dentry)) { 392 dput(dentry); 393 dentry = NULL; 394 } 395 } else { 396 dput(dentry); 397 dentry = ERR_PTR(status); 398 } 399 } 400 return dentry; 401 } 402 403 /* 404 * Internal lookup() using the new generic dcache. 405 * SMP-safe 406 */ 407 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 408 { 409 struct dentry * dentry = __d_lookup(parent, name); 410 411 /* lockess __d_lookup may fail due to concurrent d_move() 412 * in some unrelated directory, so try with d_lookup 413 */ 414 if (!dentry) 415 dentry = d_lookup(parent, name); 416 417 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 418 dentry = do_revalidate(dentry, nd); 419 420 return dentry; 421 } 422 423 /* 424 * Short-cut version of permission(), for calling by 425 * path_walk(), when dcache lock is held. Combines parts 426 * of permission() and generic_permission(), and tests ONLY for 427 * MAY_EXEC permission. 428 * 429 * If appropriate, check DAC only. If not appropriate, or 430 * short-cut DAC fails, then call permission() to do more 431 * complete permission check. 432 */ 433 static int exec_permission_lite(struct inode *inode) 434 { 435 umode_t mode = inode->i_mode; 436 437 if (inode->i_op->permission) 438 return -EAGAIN; 439 440 if (current_fsuid() == inode->i_uid) 441 mode >>= 6; 442 else if (in_group_p(inode->i_gid)) 443 mode >>= 3; 444 445 if (mode & MAY_EXEC) 446 goto ok; 447 448 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 449 goto ok; 450 451 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 452 goto ok; 453 454 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 455 goto ok; 456 457 return -EACCES; 458 ok: 459 return security_inode_permission(inode, MAY_EXEC); 460 } 461 462 /* 463 * This is called when everything else fails, and we actually have 464 * to go to the low-level filesystem to find out what we should do.. 465 * 466 * We get the directory semaphore, and after getting that we also 467 * make sure that nobody added the entry to the dcache in the meantime.. 468 * SMP-safe 469 */ 470 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 471 { 472 struct dentry * result; 473 struct inode *dir = parent->d_inode; 474 475 mutex_lock(&dir->i_mutex); 476 /* 477 * First re-do the cached lookup just in case it was created 478 * while we waited for the directory semaphore.. 479 * 480 * FIXME! This could use version numbering or similar to 481 * avoid unnecessary cache lookups. 482 * 483 * The "dcache_lock" is purely to protect the RCU list walker 484 * from concurrent renames at this point (we mustn't get false 485 * negatives from the RCU list walk here, unlike the optimistic 486 * fast walk). 487 * 488 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 489 */ 490 result = d_lookup(parent, name); 491 if (!result) { 492 struct dentry *dentry; 493 494 /* Don't create child dentry for a dead directory. */ 495 result = ERR_PTR(-ENOENT); 496 if (IS_DEADDIR(dir)) 497 goto out_unlock; 498 499 dentry = d_alloc(parent, name); 500 result = ERR_PTR(-ENOMEM); 501 if (dentry) { 502 result = dir->i_op->lookup(dir, dentry, nd); 503 if (result) 504 dput(dentry); 505 else 506 result = dentry; 507 } 508 out_unlock: 509 mutex_unlock(&dir->i_mutex); 510 return result; 511 } 512 513 /* 514 * Uhhuh! Nasty case: the cache was re-populated while 515 * we waited on the semaphore. Need to revalidate. 516 */ 517 mutex_unlock(&dir->i_mutex); 518 if (result->d_op && result->d_op->d_revalidate) { 519 result = do_revalidate(result, nd); 520 if (!result) 521 result = ERR_PTR(-ENOENT); 522 } 523 return result; 524 } 525 526 /* 527 * Wrapper to retry pathname resolution whenever the underlying 528 * file system returns an ESTALE. 529 * 530 * Retry the whole path once, forcing real lookup requests 531 * instead of relying on the dcache. 532 */ 533 static __always_inline int link_path_walk(const char *name, struct nameidata *nd) 534 { 535 struct path save = nd->path; 536 int result; 537 538 /* make sure the stuff we saved doesn't go away */ 539 path_get(&save); 540 541 result = __link_path_walk(name, nd); 542 if (result == -ESTALE) { 543 /* nd->path had been dropped */ 544 nd->path = save; 545 path_get(&nd->path); 546 nd->flags |= LOOKUP_REVAL; 547 result = __link_path_walk(name, nd); 548 } 549 550 path_put(&save); 551 552 return result; 553 } 554 555 static __always_inline void set_root(struct nameidata *nd) 556 { 557 if (!nd->root.mnt) { 558 struct fs_struct *fs = current->fs; 559 read_lock(&fs->lock); 560 nd->root = fs->root; 561 path_get(&nd->root); 562 read_unlock(&fs->lock); 563 } 564 } 565 566 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 567 { 568 int res = 0; 569 char *name; 570 if (IS_ERR(link)) 571 goto fail; 572 573 if (*link == '/') { 574 set_root(nd); 575 path_put(&nd->path); 576 nd->path = nd->root; 577 path_get(&nd->root); 578 } 579 580 res = link_path_walk(link, nd); 581 if (nd->depth || res || nd->last_type!=LAST_NORM) 582 return res; 583 /* 584 * If it is an iterative symlinks resolution in open_namei() we 585 * have to copy the last component. And all that crap because of 586 * bloody create() on broken symlinks. Furrfu... 587 */ 588 name = __getname(); 589 if (unlikely(!name)) { 590 path_put(&nd->path); 591 return -ENOMEM; 592 } 593 strcpy(name, nd->last.name); 594 nd->last.name = name; 595 return 0; 596 fail: 597 path_put(&nd->path); 598 return PTR_ERR(link); 599 } 600 601 static void path_put_conditional(struct path *path, struct nameidata *nd) 602 { 603 dput(path->dentry); 604 if (path->mnt != nd->path.mnt) 605 mntput(path->mnt); 606 } 607 608 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 609 { 610 dput(nd->path.dentry); 611 if (nd->path.mnt != path->mnt) 612 mntput(nd->path.mnt); 613 nd->path.mnt = path->mnt; 614 nd->path.dentry = path->dentry; 615 } 616 617 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 618 { 619 int error; 620 void *cookie; 621 struct dentry *dentry = path->dentry; 622 623 touch_atime(path->mnt, dentry); 624 nd_set_link(nd, NULL); 625 626 if (path->mnt != nd->path.mnt) { 627 path_to_nameidata(path, nd); 628 dget(dentry); 629 } 630 mntget(path->mnt); 631 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 632 error = PTR_ERR(cookie); 633 if (!IS_ERR(cookie)) { 634 char *s = nd_get_link(nd); 635 error = 0; 636 if (s) 637 error = __vfs_follow_link(nd, s); 638 if (dentry->d_inode->i_op->put_link) 639 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 640 } 641 path_put(path); 642 643 return error; 644 } 645 646 /* 647 * This limits recursive symlink follows to 8, while 648 * limiting consecutive symlinks to 40. 649 * 650 * Without that kind of total limit, nasty chains of consecutive 651 * symlinks can cause almost arbitrarily long lookups. 652 */ 653 static inline int do_follow_link(struct path *path, struct nameidata *nd) 654 { 655 int err = -ELOOP; 656 if (current->link_count >= MAX_NESTED_LINKS) 657 goto loop; 658 if (current->total_link_count >= 40) 659 goto loop; 660 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 661 cond_resched(); 662 err = security_inode_follow_link(path->dentry, nd); 663 if (err) 664 goto loop; 665 current->link_count++; 666 current->total_link_count++; 667 nd->depth++; 668 err = __do_follow_link(path, nd); 669 current->link_count--; 670 nd->depth--; 671 return err; 672 loop: 673 path_put_conditional(path, nd); 674 path_put(&nd->path); 675 return err; 676 } 677 678 int follow_up(struct path *path) 679 { 680 struct vfsmount *parent; 681 struct dentry *mountpoint; 682 spin_lock(&vfsmount_lock); 683 parent = path->mnt->mnt_parent; 684 if (parent == path->mnt) { 685 spin_unlock(&vfsmount_lock); 686 return 0; 687 } 688 mntget(parent); 689 mountpoint = dget(path->mnt->mnt_mountpoint); 690 spin_unlock(&vfsmount_lock); 691 dput(path->dentry); 692 path->dentry = mountpoint; 693 mntput(path->mnt); 694 path->mnt = parent; 695 return 1; 696 } 697 698 /* no need for dcache_lock, as serialization is taken care in 699 * namespace.c 700 */ 701 static int __follow_mount(struct path *path) 702 { 703 int res = 0; 704 while (d_mountpoint(path->dentry)) { 705 struct vfsmount *mounted = lookup_mnt(path); 706 if (!mounted) 707 break; 708 dput(path->dentry); 709 if (res) 710 mntput(path->mnt); 711 path->mnt = mounted; 712 path->dentry = dget(mounted->mnt_root); 713 res = 1; 714 } 715 return res; 716 } 717 718 static void follow_mount(struct path *path) 719 { 720 while (d_mountpoint(path->dentry)) { 721 struct vfsmount *mounted = lookup_mnt(path); 722 if (!mounted) 723 break; 724 dput(path->dentry); 725 mntput(path->mnt); 726 path->mnt = mounted; 727 path->dentry = dget(mounted->mnt_root); 728 } 729 } 730 731 /* no need for dcache_lock, as serialization is taken care in 732 * namespace.c 733 */ 734 int follow_down(struct path *path) 735 { 736 struct vfsmount *mounted; 737 738 mounted = lookup_mnt(path); 739 if (mounted) { 740 dput(path->dentry); 741 mntput(path->mnt); 742 path->mnt = mounted; 743 path->dentry = dget(mounted->mnt_root); 744 return 1; 745 } 746 return 0; 747 } 748 749 static __always_inline void follow_dotdot(struct nameidata *nd) 750 { 751 set_root(nd); 752 753 while(1) { 754 struct vfsmount *parent; 755 struct dentry *old = nd->path.dentry; 756 757 if (nd->path.dentry == nd->root.dentry && 758 nd->path.mnt == nd->root.mnt) { 759 break; 760 } 761 spin_lock(&dcache_lock); 762 if (nd->path.dentry != nd->path.mnt->mnt_root) { 763 nd->path.dentry = dget(nd->path.dentry->d_parent); 764 spin_unlock(&dcache_lock); 765 dput(old); 766 break; 767 } 768 spin_unlock(&dcache_lock); 769 spin_lock(&vfsmount_lock); 770 parent = nd->path.mnt->mnt_parent; 771 if (parent == nd->path.mnt) { 772 spin_unlock(&vfsmount_lock); 773 break; 774 } 775 mntget(parent); 776 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 777 spin_unlock(&vfsmount_lock); 778 dput(old); 779 mntput(nd->path.mnt); 780 nd->path.mnt = parent; 781 } 782 follow_mount(&nd->path); 783 } 784 785 /* 786 * It's more convoluted than I'd like it to be, but... it's still fairly 787 * small and for now I'd prefer to have fast path as straight as possible. 788 * It _is_ time-critical. 789 */ 790 static int do_lookup(struct nameidata *nd, struct qstr *name, 791 struct path *path) 792 { 793 struct vfsmount *mnt = nd->path.mnt; 794 struct dentry *dentry = __d_lookup(nd->path.dentry, name); 795 796 if (!dentry) 797 goto need_lookup; 798 if (dentry->d_op && dentry->d_op->d_revalidate) 799 goto need_revalidate; 800 done: 801 path->mnt = mnt; 802 path->dentry = dentry; 803 __follow_mount(path); 804 return 0; 805 806 need_lookup: 807 dentry = real_lookup(nd->path.dentry, name, nd); 808 if (IS_ERR(dentry)) 809 goto fail; 810 goto done; 811 812 need_revalidate: 813 dentry = do_revalidate(dentry, nd); 814 if (!dentry) 815 goto need_lookup; 816 if (IS_ERR(dentry)) 817 goto fail; 818 goto done; 819 820 fail: 821 return PTR_ERR(dentry); 822 } 823 824 /* 825 * Name resolution. 826 * This is the basic name resolution function, turning a pathname into 827 * the final dentry. We expect 'base' to be positive and a directory. 828 * 829 * Returns 0 and nd will have valid dentry and mnt on success. 830 * Returns error and drops reference to input namei data on failure. 831 */ 832 static int __link_path_walk(const char *name, struct nameidata *nd) 833 { 834 struct path next; 835 struct inode *inode; 836 int err; 837 unsigned int lookup_flags = nd->flags; 838 839 while (*name=='/') 840 name++; 841 if (!*name) 842 goto return_reval; 843 844 inode = nd->path.dentry->d_inode; 845 if (nd->depth) 846 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 847 848 /* At this point we know we have a real path component. */ 849 for(;;) { 850 unsigned long hash; 851 struct qstr this; 852 unsigned int c; 853 854 nd->flags |= LOOKUP_CONTINUE; 855 err = exec_permission_lite(inode); 856 if (err == -EAGAIN) 857 err = inode_permission(nd->path.dentry->d_inode, 858 MAY_EXEC); 859 if (!err) 860 err = ima_path_check(&nd->path, MAY_EXEC, 861 IMA_COUNT_UPDATE); 862 if (err) 863 break; 864 865 this.name = name; 866 c = *(const unsigned char *)name; 867 868 hash = init_name_hash(); 869 do { 870 name++; 871 hash = partial_name_hash(c, hash); 872 c = *(const unsigned char *)name; 873 } while (c && (c != '/')); 874 this.len = name - (const char *) this.name; 875 this.hash = end_name_hash(hash); 876 877 /* remove trailing slashes? */ 878 if (!c) 879 goto last_component; 880 while (*++name == '/'); 881 if (!*name) 882 goto last_with_slashes; 883 884 /* 885 * "." and ".." are special - ".." especially so because it has 886 * to be able to know about the current root directory and 887 * parent relationships. 888 */ 889 if (this.name[0] == '.') switch (this.len) { 890 default: 891 break; 892 case 2: 893 if (this.name[1] != '.') 894 break; 895 follow_dotdot(nd); 896 inode = nd->path.dentry->d_inode; 897 /* fallthrough */ 898 case 1: 899 continue; 900 } 901 /* 902 * See if the low-level filesystem might want 903 * to use its own hash.. 904 */ 905 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 906 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 907 &this); 908 if (err < 0) 909 break; 910 } 911 /* This does the actual lookups.. */ 912 err = do_lookup(nd, &this, &next); 913 if (err) 914 break; 915 916 err = -ENOENT; 917 inode = next.dentry->d_inode; 918 if (!inode) 919 goto out_dput; 920 921 if (inode->i_op->follow_link) { 922 err = do_follow_link(&next, nd); 923 if (err) 924 goto return_err; 925 err = -ENOENT; 926 inode = nd->path.dentry->d_inode; 927 if (!inode) 928 break; 929 } else 930 path_to_nameidata(&next, nd); 931 err = -ENOTDIR; 932 if (!inode->i_op->lookup) 933 break; 934 continue; 935 /* here ends the main loop */ 936 937 last_with_slashes: 938 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 939 last_component: 940 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 941 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 942 if (lookup_flags & LOOKUP_PARENT) 943 goto lookup_parent; 944 if (this.name[0] == '.') switch (this.len) { 945 default: 946 break; 947 case 2: 948 if (this.name[1] != '.') 949 break; 950 follow_dotdot(nd); 951 inode = nd->path.dentry->d_inode; 952 /* fallthrough */ 953 case 1: 954 goto return_reval; 955 } 956 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 957 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 958 &this); 959 if (err < 0) 960 break; 961 } 962 err = do_lookup(nd, &this, &next); 963 if (err) 964 break; 965 inode = next.dentry->d_inode; 966 if ((lookup_flags & LOOKUP_FOLLOW) 967 && inode && inode->i_op->follow_link) { 968 err = do_follow_link(&next, nd); 969 if (err) 970 goto return_err; 971 inode = nd->path.dentry->d_inode; 972 } else 973 path_to_nameidata(&next, nd); 974 err = -ENOENT; 975 if (!inode) 976 break; 977 if (lookup_flags & LOOKUP_DIRECTORY) { 978 err = -ENOTDIR; 979 if (!inode->i_op->lookup) 980 break; 981 } 982 goto return_base; 983 lookup_parent: 984 nd->last = this; 985 nd->last_type = LAST_NORM; 986 if (this.name[0] != '.') 987 goto return_base; 988 if (this.len == 1) 989 nd->last_type = LAST_DOT; 990 else if (this.len == 2 && this.name[1] == '.') 991 nd->last_type = LAST_DOTDOT; 992 else 993 goto return_base; 994 return_reval: 995 /* 996 * We bypassed the ordinary revalidation routines. 997 * We may need to check the cached dentry for staleness. 998 */ 999 if (nd->path.dentry && nd->path.dentry->d_sb && 1000 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 1001 err = -ESTALE; 1002 /* Note: we do not d_invalidate() */ 1003 if (!nd->path.dentry->d_op->d_revalidate( 1004 nd->path.dentry, nd)) 1005 break; 1006 } 1007 return_base: 1008 return 0; 1009 out_dput: 1010 path_put_conditional(&next, nd); 1011 break; 1012 } 1013 path_put(&nd->path); 1014 return_err: 1015 return err; 1016 } 1017 1018 static int path_walk(const char *name, struct nameidata *nd) 1019 { 1020 current->total_link_count = 0; 1021 return link_path_walk(name, nd); 1022 } 1023 1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1025 { 1026 int retval = 0; 1027 int fput_needed; 1028 struct file *file; 1029 1030 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1031 nd->flags = flags; 1032 nd->depth = 0; 1033 nd->root.mnt = NULL; 1034 1035 if (*name=='/') { 1036 set_root(nd); 1037 nd->path = nd->root; 1038 path_get(&nd->root); 1039 } else if (dfd == AT_FDCWD) { 1040 struct fs_struct *fs = current->fs; 1041 read_lock(&fs->lock); 1042 nd->path = fs->pwd; 1043 path_get(&fs->pwd); 1044 read_unlock(&fs->lock); 1045 } else { 1046 struct dentry *dentry; 1047 1048 file = fget_light(dfd, &fput_needed); 1049 retval = -EBADF; 1050 if (!file) 1051 goto out_fail; 1052 1053 dentry = file->f_path.dentry; 1054 1055 retval = -ENOTDIR; 1056 if (!S_ISDIR(dentry->d_inode->i_mode)) 1057 goto fput_fail; 1058 1059 retval = file_permission(file, MAY_EXEC); 1060 if (retval) 1061 goto fput_fail; 1062 1063 nd->path = file->f_path; 1064 path_get(&file->f_path); 1065 1066 fput_light(file, fput_needed); 1067 } 1068 return 0; 1069 1070 fput_fail: 1071 fput_light(file, fput_needed); 1072 out_fail: 1073 return retval; 1074 } 1075 1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1077 static int do_path_lookup(int dfd, const char *name, 1078 unsigned int flags, struct nameidata *nd) 1079 { 1080 int retval = path_init(dfd, name, flags, nd); 1081 if (!retval) 1082 retval = path_walk(name, nd); 1083 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1084 nd->path.dentry->d_inode)) 1085 audit_inode(name, nd->path.dentry); 1086 if (nd->root.mnt) { 1087 path_put(&nd->root); 1088 nd->root.mnt = NULL; 1089 } 1090 return retval; 1091 } 1092 1093 int path_lookup(const char *name, unsigned int flags, 1094 struct nameidata *nd) 1095 { 1096 return do_path_lookup(AT_FDCWD, name, flags, nd); 1097 } 1098 1099 int kern_path(const char *name, unsigned int flags, struct path *path) 1100 { 1101 struct nameidata nd; 1102 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1103 if (!res) 1104 *path = nd.path; 1105 return res; 1106 } 1107 1108 /** 1109 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1110 * @dentry: pointer to dentry of the base directory 1111 * @mnt: pointer to vfs mount of the base directory 1112 * @name: pointer to file name 1113 * @flags: lookup flags 1114 * @nd: pointer to nameidata 1115 */ 1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1117 const char *name, unsigned int flags, 1118 struct nameidata *nd) 1119 { 1120 int retval; 1121 1122 /* same as do_path_lookup */ 1123 nd->last_type = LAST_ROOT; 1124 nd->flags = flags; 1125 nd->depth = 0; 1126 1127 nd->path.dentry = dentry; 1128 nd->path.mnt = mnt; 1129 path_get(&nd->path); 1130 nd->root = nd->path; 1131 path_get(&nd->root); 1132 1133 retval = path_walk(name, nd); 1134 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1135 nd->path.dentry->d_inode)) 1136 audit_inode(name, nd->path.dentry); 1137 1138 path_put(&nd->root); 1139 nd->root.mnt = NULL; 1140 1141 return retval; 1142 } 1143 1144 /** 1145 * path_lookup_open - lookup a file path with open intent 1146 * @dfd: the directory to use as base, or AT_FDCWD 1147 * @name: pointer to file name 1148 * @lookup_flags: lookup intent flags 1149 * @nd: pointer to nameidata 1150 * @open_flags: open intent flags 1151 */ 1152 static int path_lookup_open(int dfd, const char *name, 1153 unsigned int lookup_flags, struct nameidata *nd, int open_flags) 1154 { 1155 struct file *filp = get_empty_filp(); 1156 int err; 1157 1158 if (filp == NULL) 1159 return -ENFILE; 1160 nd->intent.open.file = filp; 1161 nd->intent.open.flags = open_flags; 1162 nd->intent.open.create_mode = 0; 1163 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1164 if (IS_ERR(nd->intent.open.file)) { 1165 if (err == 0) { 1166 err = PTR_ERR(nd->intent.open.file); 1167 path_put(&nd->path); 1168 } 1169 } else if (err != 0) 1170 release_open_intent(nd); 1171 return err; 1172 } 1173 1174 static struct dentry *__lookup_hash(struct qstr *name, 1175 struct dentry *base, struct nameidata *nd) 1176 { 1177 struct dentry *dentry; 1178 struct inode *inode; 1179 int err; 1180 1181 inode = base->d_inode; 1182 1183 /* 1184 * See if the low-level filesystem might want 1185 * to use its own hash.. 1186 */ 1187 if (base->d_op && base->d_op->d_hash) { 1188 err = base->d_op->d_hash(base, name); 1189 dentry = ERR_PTR(err); 1190 if (err < 0) 1191 goto out; 1192 } 1193 1194 dentry = cached_lookup(base, name, nd); 1195 if (!dentry) { 1196 struct dentry *new; 1197 1198 /* Don't create child dentry for a dead directory. */ 1199 dentry = ERR_PTR(-ENOENT); 1200 if (IS_DEADDIR(inode)) 1201 goto out; 1202 1203 new = d_alloc(base, name); 1204 dentry = ERR_PTR(-ENOMEM); 1205 if (!new) 1206 goto out; 1207 dentry = inode->i_op->lookup(inode, new, nd); 1208 if (!dentry) 1209 dentry = new; 1210 else 1211 dput(new); 1212 } 1213 out: 1214 return dentry; 1215 } 1216 1217 /* 1218 * Restricted form of lookup. Doesn't follow links, single-component only, 1219 * needs parent already locked. Doesn't follow mounts. 1220 * SMP-safe. 1221 */ 1222 static struct dentry *lookup_hash(struct nameidata *nd) 1223 { 1224 int err; 1225 1226 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); 1227 if (err) 1228 return ERR_PTR(err); 1229 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1230 } 1231 1232 static int __lookup_one_len(const char *name, struct qstr *this, 1233 struct dentry *base, int len) 1234 { 1235 unsigned long hash; 1236 unsigned int c; 1237 1238 this->name = name; 1239 this->len = len; 1240 if (!len) 1241 return -EACCES; 1242 1243 hash = init_name_hash(); 1244 while (len--) { 1245 c = *(const unsigned char *)name++; 1246 if (c == '/' || c == '\0') 1247 return -EACCES; 1248 hash = partial_name_hash(c, hash); 1249 } 1250 this->hash = end_name_hash(hash); 1251 return 0; 1252 } 1253 1254 /** 1255 * lookup_one_len - filesystem helper to lookup single pathname component 1256 * @name: pathname component to lookup 1257 * @base: base directory to lookup from 1258 * @len: maximum length @len should be interpreted to 1259 * 1260 * Note that this routine is purely a helper for filesystem usage and should 1261 * not be called by generic code. Also note that by using this function the 1262 * nameidata argument is passed to the filesystem methods and a filesystem 1263 * using this helper needs to be prepared for that. 1264 */ 1265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1266 { 1267 int err; 1268 struct qstr this; 1269 1270 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1271 1272 err = __lookup_one_len(name, &this, base, len); 1273 if (err) 1274 return ERR_PTR(err); 1275 1276 err = inode_permission(base->d_inode, MAY_EXEC); 1277 if (err) 1278 return ERR_PTR(err); 1279 return __lookup_hash(&this, base, NULL); 1280 } 1281 1282 /** 1283 * lookup_one_noperm - bad hack for sysfs 1284 * @name: pathname component to lookup 1285 * @base: base directory to lookup from 1286 * 1287 * This is a variant of lookup_one_len that doesn't perform any permission 1288 * checks. It's a horrible hack to work around the braindead sysfs 1289 * architecture and should not be used anywhere else. 1290 * 1291 * DON'T USE THIS FUNCTION EVER, thanks. 1292 */ 1293 struct dentry *lookup_one_noperm(const char *name, struct dentry *base) 1294 { 1295 int err; 1296 struct qstr this; 1297 1298 err = __lookup_one_len(name, &this, base, strlen(name)); 1299 if (err) 1300 return ERR_PTR(err); 1301 return __lookup_hash(&this, base, NULL); 1302 } 1303 1304 int user_path_at(int dfd, const char __user *name, unsigned flags, 1305 struct path *path) 1306 { 1307 struct nameidata nd; 1308 char *tmp = getname(name); 1309 int err = PTR_ERR(tmp); 1310 if (!IS_ERR(tmp)) { 1311 1312 BUG_ON(flags & LOOKUP_PARENT); 1313 1314 err = do_path_lookup(dfd, tmp, flags, &nd); 1315 putname(tmp); 1316 if (!err) 1317 *path = nd.path; 1318 } 1319 return err; 1320 } 1321 1322 static int user_path_parent(int dfd, const char __user *path, 1323 struct nameidata *nd, char **name) 1324 { 1325 char *s = getname(path); 1326 int error; 1327 1328 if (IS_ERR(s)) 1329 return PTR_ERR(s); 1330 1331 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1332 if (error) 1333 putname(s); 1334 else 1335 *name = s; 1336 1337 return error; 1338 } 1339 1340 /* 1341 * It's inline, so penalty for filesystems that don't use sticky bit is 1342 * minimal. 1343 */ 1344 static inline int check_sticky(struct inode *dir, struct inode *inode) 1345 { 1346 uid_t fsuid = current_fsuid(); 1347 1348 if (!(dir->i_mode & S_ISVTX)) 1349 return 0; 1350 if (inode->i_uid == fsuid) 1351 return 0; 1352 if (dir->i_uid == fsuid) 1353 return 0; 1354 return !capable(CAP_FOWNER); 1355 } 1356 1357 /* 1358 * Check whether we can remove a link victim from directory dir, check 1359 * whether the type of victim is right. 1360 * 1. We can't do it if dir is read-only (done in permission()) 1361 * 2. We should have write and exec permissions on dir 1362 * 3. We can't remove anything from append-only dir 1363 * 4. We can't do anything with immutable dir (done in permission()) 1364 * 5. If the sticky bit on dir is set we should either 1365 * a. be owner of dir, or 1366 * b. be owner of victim, or 1367 * c. have CAP_FOWNER capability 1368 * 6. If the victim is append-only or immutable we can't do antyhing with 1369 * links pointing to it. 1370 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1371 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1372 * 9. We can't remove a root or mountpoint. 1373 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1374 * nfs_async_unlink(). 1375 */ 1376 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1377 { 1378 int error; 1379 1380 if (!victim->d_inode) 1381 return -ENOENT; 1382 1383 BUG_ON(victim->d_parent->d_inode != dir); 1384 audit_inode_child(victim->d_name.name, victim, dir); 1385 1386 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1387 if (error) 1388 return error; 1389 if (IS_APPEND(dir)) 1390 return -EPERM; 1391 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1392 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1393 return -EPERM; 1394 if (isdir) { 1395 if (!S_ISDIR(victim->d_inode->i_mode)) 1396 return -ENOTDIR; 1397 if (IS_ROOT(victim)) 1398 return -EBUSY; 1399 } else if (S_ISDIR(victim->d_inode->i_mode)) 1400 return -EISDIR; 1401 if (IS_DEADDIR(dir)) 1402 return -ENOENT; 1403 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1404 return -EBUSY; 1405 return 0; 1406 } 1407 1408 /* Check whether we can create an object with dentry child in directory 1409 * dir. 1410 * 1. We can't do it if child already exists (open has special treatment for 1411 * this case, but since we are inlined it's OK) 1412 * 2. We can't do it if dir is read-only (done in permission()) 1413 * 3. We should have write and exec permissions on dir 1414 * 4. We can't do it if dir is immutable (done in permission()) 1415 */ 1416 static inline int may_create(struct inode *dir, struct dentry *child) 1417 { 1418 if (child->d_inode) 1419 return -EEXIST; 1420 if (IS_DEADDIR(dir)) 1421 return -ENOENT; 1422 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1423 } 1424 1425 /* 1426 * O_DIRECTORY translates into forcing a directory lookup. 1427 */ 1428 static inline int lookup_flags(unsigned int f) 1429 { 1430 unsigned long retval = LOOKUP_FOLLOW; 1431 1432 if (f & O_NOFOLLOW) 1433 retval &= ~LOOKUP_FOLLOW; 1434 1435 if (f & O_DIRECTORY) 1436 retval |= LOOKUP_DIRECTORY; 1437 1438 return retval; 1439 } 1440 1441 /* 1442 * p1 and p2 should be directories on the same fs. 1443 */ 1444 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1445 { 1446 struct dentry *p; 1447 1448 if (p1 == p2) { 1449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1450 return NULL; 1451 } 1452 1453 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1454 1455 p = d_ancestor(p2, p1); 1456 if (p) { 1457 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1458 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1459 return p; 1460 } 1461 1462 p = d_ancestor(p1, p2); 1463 if (p) { 1464 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1465 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1466 return p; 1467 } 1468 1469 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1470 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1471 return NULL; 1472 } 1473 1474 void unlock_rename(struct dentry *p1, struct dentry *p2) 1475 { 1476 mutex_unlock(&p1->d_inode->i_mutex); 1477 if (p1 != p2) { 1478 mutex_unlock(&p2->d_inode->i_mutex); 1479 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1480 } 1481 } 1482 1483 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1484 struct nameidata *nd) 1485 { 1486 int error = may_create(dir, dentry); 1487 1488 if (error) 1489 return error; 1490 1491 if (!dir->i_op->create) 1492 return -EACCES; /* shouldn't it be ENOSYS? */ 1493 mode &= S_IALLUGO; 1494 mode |= S_IFREG; 1495 error = security_inode_create(dir, dentry, mode); 1496 if (error) 1497 return error; 1498 vfs_dq_init(dir); 1499 error = dir->i_op->create(dir, dentry, mode, nd); 1500 if (!error) 1501 fsnotify_create(dir, dentry); 1502 return error; 1503 } 1504 1505 int may_open(struct path *path, int acc_mode, int flag) 1506 { 1507 struct dentry *dentry = path->dentry; 1508 struct inode *inode = dentry->d_inode; 1509 int error; 1510 1511 if (!inode) 1512 return -ENOENT; 1513 1514 switch (inode->i_mode & S_IFMT) { 1515 case S_IFLNK: 1516 return -ELOOP; 1517 case S_IFDIR: 1518 if (acc_mode & MAY_WRITE) 1519 return -EISDIR; 1520 break; 1521 case S_IFBLK: 1522 case S_IFCHR: 1523 if (path->mnt->mnt_flags & MNT_NODEV) 1524 return -EACCES; 1525 /*FALLTHRU*/ 1526 case S_IFIFO: 1527 case S_IFSOCK: 1528 flag &= ~O_TRUNC; 1529 break; 1530 } 1531 1532 error = inode_permission(inode, acc_mode); 1533 if (error) 1534 return error; 1535 1536 error = ima_path_check(path, 1537 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC), 1538 IMA_COUNT_UPDATE); 1539 if (error) 1540 return error; 1541 /* 1542 * An append-only file must be opened in append mode for writing. 1543 */ 1544 if (IS_APPEND(inode)) { 1545 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1546 return -EPERM; 1547 if (flag & O_TRUNC) 1548 return -EPERM; 1549 } 1550 1551 /* O_NOATIME can only be set by the owner or superuser */ 1552 if (flag & O_NOATIME) 1553 if (!is_owner_or_cap(inode)) 1554 return -EPERM; 1555 1556 /* 1557 * Ensure there are no outstanding leases on the file. 1558 */ 1559 error = break_lease(inode, flag); 1560 if (error) 1561 return error; 1562 1563 if (flag & O_TRUNC) { 1564 error = get_write_access(inode); 1565 if (error) 1566 return error; 1567 1568 /* 1569 * Refuse to truncate files with mandatory locks held on them. 1570 */ 1571 error = locks_verify_locked(inode); 1572 if (!error) 1573 error = security_path_truncate(path, 0, 1574 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); 1575 if (!error) { 1576 vfs_dq_init(inode); 1577 1578 error = do_truncate(dentry, 0, 1579 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1580 NULL); 1581 } 1582 put_write_access(inode); 1583 if (error) 1584 return error; 1585 } else 1586 if (flag & FMODE_WRITE) 1587 vfs_dq_init(inode); 1588 1589 return 0; 1590 } 1591 1592 /* 1593 * Be careful about ever adding any more callers of this 1594 * function. Its flags must be in the namei format, not 1595 * what get passed to sys_open(). 1596 */ 1597 static int __open_namei_create(struct nameidata *nd, struct path *path, 1598 int flag, int mode) 1599 { 1600 int error; 1601 struct dentry *dir = nd->path.dentry; 1602 1603 if (!IS_POSIXACL(dir->d_inode)) 1604 mode &= ~current_umask(); 1605 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 1606 if (error) 1607 goto out_unlock; 1608 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1609 out_unlock: 1610 mutex_unlock(&dir->d_inode->i_mutex); 1611 dput(nd->path.dentry); 1612 nd->path.dentry = path->dentry; 1613 if (error) 1614 return error; 1615 /* Don't check for write permission, don't truncate */ 1616 return may_open(&nd->path, 0, flag & ~O_TRUNC); 1617 } 1618 1619 /* 1620 * Note that while the flag value (low two bits) for sys_open means: 1621 * 00 - read-only 1622 * 01 - write-only 1623 * 10 - read-write 1624 * 11 - special 1625 * it is changed into 1626 * 00 - no permissions needed 1627 * 01 - read-permission 1628 * 10 - write-permission 1629 * 11 - read-write 1630 * for the internal routines (ie open_namei()/follow_link() etc) 1631 * This is more logical, and also allows the 00 "no perm needed" 1632 * to be used for symlinks (where the permissions are checked 1633 * later). 1634 * 1635 */ 1636 static inline int open_to_namei_flags(int flag) 1637 { 1638 if ((flag+1) & O_ACCMODE) 1639 flag++; 1640 return flag; 1641 } 1642 1643 static int open_will_write_to_fs(int flag, struct inode *inode) 1644 { 1645 /* 1646 * We'll never write to the fs underlying 1647 * a device file. 1648 */ 1649 if (special_file(inode->i_mode)) 1650 return 0; 1651 return (flag & O_TRUNC); 1652 } 1653 1654 /* 1655 * Note that the low bits of the passed in "open_flag" 1656 * are not the same as in the local variable "flag". See 1657 * open_to_namei_flags() for more details. 1658 */ 1659 struct file *do_filp_open(int dfd, const char *pathname, 1660 int open_flag, int mode, int acc_mode) 1661 { 1662 struct file *filp; 1663 struct nameidata nd; 1664 int error; 1665 struct path path; 1666 struct dentry *dir; 1667 int count = 0; 1668 int will_write; 1669 int flag = open_to_namei_flags(open_flag); 1670 1671 if (!acc_mode) 1672 acc_mode = MAY_OPEN | ACC_MODE(flag); 1673 1674 /* O_TRUNC implies we need access checks for write permissions */ 1675 if (flag & O_TRUNC) 1676 acc_mode |= MAY_WRITE; 1677 1678 /* Allow the LSM permission hook to distinguish append 1679 access from general write access. */ 1680 if (flag & O_APPEND) 1681 acc_mode |= MAY_APPEND; 1682 1683 /* 1684 * The simplest case - just a plain lookup. 1685 */ 1686 if (!(flag & O_CREAT)) { 1687 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1688 &nd, flag); 1689 if (error) 1690 return ERR_PTR(error); 1691 goto ok; 1692 } 1693 1694 /* 1695 * Create - we need to know the parent. 1696 */ 1697 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd); 1698 if (error) 1699 return ERR_PTR(error); 1700 error = path_walk(pathname, &nd); 1701 if (error) 1702 return ERR_PTR(error); 1703 if (unlikely(!audit_dummy_context())) 1704 audit_inode(pathname, nd.path.dentry); 1705 1706 /* 1707 * We have the parent and last component. First of all, check 1708 * that we are not asked to creat(2) an obvious directory - that 1709 * will not do. 1710 */ 1711 error = -EISDIR; 1712 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1713 goto exit_parent; 1714 1715 error = -ENFILE; 1716 filp = get_empty_filp(); 1717 if (filp == NULL) 1718 goto exit_parent; 1719 nd.intent.open.file = filp; 1720 nd.intent.open.flags = flag; 1721 nd.intent.open.create_mode = mode; 1722 dir = nd.path.dentry; 1723 nd.flags &= ~LOOKUP_PARENT; 1724 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN; 1725 if (flag & O_EXCL) 1726 nd.flags |= LOOKUP_EXCL; 1727 mutex_lock(&dir->d_inode->i_mutex); 1728 path.dentry = lookup_hash(&nd); 1729 path.mnt = nd.path.mnt; 1730 1731 do_last: 1732 error = PTR_ERR(path.dentry); 1733 if (IS_ERR(path.dentry)) { 1734 mutex_unlock(&dir->d_inode->i_mutex); 1735 goto exit; 1736 } 1737 1738 if (IS_ERR(nd.intent.open.file)) { 1739 error = PTR_ERR(nd.intent.open.file); 1740 goto exit_mutex_unlock; 1741 } 1742 1743 /* Negative dentry, just create the file */ 1744 if (!path.dentry->d_inode) { 1745 /* 1746 * This write is needed to ensure that a 1747 * ro->rw transition does not occur between 1748 * the time when the file is created and when 1749 * a permanent write count is taken through 1750 * the 'struct file' in nameidata_to_filp(). 1751 */ 1752 error = mnt_want_write(nd.path.mnt); 1753 if (error) 1754 goto exit_mutex_unlock; 1755 error = __open_namei_create(&nd, &path, flag, mode); 1756 if (error) { 1757 mnt_drop_write(nd.path.mnt); 1758 goto exit; 1759 } 1760 filp = nameidata_to_filp(&nd, open_flag); 1761 mnt_drop_write(nd.path.mnt); 1762 return filp; 1763 } 1764 1765 /* 1766 * It already exists. 1767 */ 1768 mutex_unlock(&dir->d_inode->i_mutex); 1769 audit_inode(pathname, path.dentry); 1770 1771 error = -EEXIST; 1772 if (flag & O_EXCL) 1773 goto exit_dput; 1774 1775 if (__follow_mount(&path)) { 1776 error = -ELOOP; 1777 if (flag & O_NOFOLLOW) 1778 goto exit_dput; 1779 } 1780 1781 error = -ENOENT; 1782 if (!path.dentry->d_inode) 1783 goto exit_dput; 1784 if (path.dentry->d_inode->i_op->follow_link) 1785 goto do_link; 1786 1787 path_to_nameidata(&path, &nd); 1788 error = -EISDIR; 1789 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1790 goto exit; 1791 ok: 1792 /* 1793 * Consider: 1794 * 1. may_open() truncates a file 1795 * 2. a rw->ro mount transition occurs 1796 * 3. nameidata_to_filp() fails due to 1797 * the ro mount. 1798 * That would be inconsistent, and should 1799 * be avoided. Taking this mnt write here 1800 * ensures that (2) can not occur. 1801 */ 1802 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); 1803 if (will_write) { 1804 error = mnt_want_write(nd.path.mnt); 1805 if (error) 1806 goto exit; 1807 } 1808 error = may_open(&nd.path, acc_mode, flag); 1809 if (error) { 1810 if (will_write) 1811 mnt_drop_write(nd.path.mnt); 1812 goto exit; 1813 } 1814 filp = nameidata_to_filp(&nd, open_flag); 1815 /* 1816 * It is now safe to drop the mnt write 1817 * because the filp has had a write taken 1818 * on its behalf. 1819 */ 1820 if (will_write) 1821 mnt_drop_write(nd.path.mnt); 1822 return filp; 1823 1824 exit_mutex_unlock: 1825 mutex_unlock(&dir->d_inode->i_mutex); 1826 exit_dput: 1827 path_put_conditional(&path, &nd); 1828 exit: 1829 if (!IS_ERR(nd.intent.open.file)) 1830 release_open_intent(&nd); 1831 exit_parent: 1832 if (nd.root.mnt) 1833 path_put(&nd.root); 1834 path_put(&nd.path); 1835 return ERR_PTR(error); 1836 1837 do_link: 1838 error = -ELOOP; 1839 if (flag & O_NOFOLLOW) 1840 goto exit_dput; 1841 /* 1842 * This is subtle. Instead of calling do_follow_link() we do the 1843 * thing by hands. The reason is that this way we have zero link_count 1844 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1845 * After that we have the parent and last component, i.e. 1846 * we are in the same situation as after the first path_walk(). 1847 * Well, almost - if the last component is normal we get its copy 1848 * stored in nd->last.name and we will have to putname() it when we 1849 * are done. Procfs-like symlinks just set LAST_BIND. 1850 */ 1851 nd.flags |= LOOKUP_PARENT; 1852 error = security_inode_follow_link(path.dentry, &nd); 1853 if (error) 1854 goto exit_dput; 1855 error = __do_follow_link(&path, &nd); 1856 if (error) { 1857 /* Does someone understand code flow here? Or it is only 1858 * me so stupid? Anathema to whoever designed this non-sense 1859 * with "intent.open". 1860 */ 1861 release_open_intent(&nd); 1862 return ERR_PTR(error); 1863 } 1864 nd.flags &= ~LOOKUP_PARENT; 1865 if (nd.last_type == LAST_BIND) 1866 goto ok; 1867 error = -EISDIR; 1868 if (nd.last_type != LAST_NORM) 1869 goto exit; 1870 if (nd.last.name[nd.last.len]) { 1871 __putname(nd.last.name); 1872 goto exit; 1873 } 1874 error = -ELOOP; 1875 if (count++==32) { 1876 __putname(nd.last.name); 1877 goto exit; 1878 } 1879 dir = nd.path.dentry; 1880 mutex_lock(&dir->d_inode->i_mutex); 1881 path.dentry = lookup_hash(&nd); 1882 path.mnt = nd.path.mnt; 1883 __putname(nd.last.name); 1884 goto do_last; 1885 } 1886 1887 /** 1888 * filp_open - open file and return file pointer 1889 * 1890 * @filename: path to open 1891 * @flags: open flags as per the open(2) second argument 1892 * @mode: mode for the new file if O_CREAT is set, else ignored 1893 * 1894 * This is the helper to open a file from kernelspace if you really 1895 * have to. But in generally you should not do this, so please move 1896 * along, nothing to see here.. 1897 */ 1898 struct file *filp_open(const char *filename, int flags, int mode) 1899 { 1900 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 1901 } 1902 EXPORT_SYMBOL(filp_open); 1903 1904 /** 1905 * lookup_create - lookup a dentry, creating it if it doesn't exist 1906 * @nd: nameidata info 1907 * @is_dir: directory flag 1908 * 1909 * Simple function to lookup and return a dentry and create it 1910 * if it doesn't exist. Is SMP-safe. 1911 * 1912 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1913 */ 1914 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1915 { 1916 struct dentry *dentry = ERR_PTR(-EEXIST); 1917 1918 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1919 /* 1920 * Yucky last component or no last component at all? 1921 * (foo/., foo/.., /////) 1922 */ 1923 if (nd->last_type != LAST_NORM) 1924 goto fail; 1925 nd->flags &= ~LOOKUP_PARENT; 1926 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 1927 nd->intent.open.flags = O_EXCL; 1928 1929 /* 1930 * Do the final lookup. 1931 */ 1932 dentry = lookup_hash(nd); 1933 if (IS_ERR(dentry)) 1934 goto fail; 1935 1936 if (dentry->d_inode) 1937 goto eexist; 1938 /* 1939 * Special case - lookup gave negative, but... we had foo/bar/ 1940 * From the vfs_mknod() POV we just have a negative dentry - 1941 * all is fine. Let's be bastards - you had / on the end, you've 1942 * been asking for (non-existent) directory. -ENOENT for you. 1943 */ 1944 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1945 dput(dentry); 1946 dentry = ERR_PTR(-ENOENT); 1947 } 1948 return dentry; 1949 eexist: 1950 dput(dentry); 1951 dentry = ERR_PTR(-EEXIST); 1952 fail: 1953 return dentry; 1954 } 1955 EXPORT_SYMBOL_GPL(lookup_create); 1956 1957 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1958 { 1959 int error = may_create(dir, dentry); 1960 1961 if (error) 1962 return error; 1963 1964 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1965 return -EPERM; 1966 1967 if (!dir->i_op->mknod) 1968 return -EPERM; 1969 1970 error = devcgroup_inode_mknod(mode, dev); 1971 if (error) 1972 return error; 1973 1974 error = security_inode_mknod(dir, dentry, mode, dev); 1975 if (error) 1976 return error; 1977 1978 vfs_dq_init(dir); 1979 error = dir->i_op->mknod(dir, dentry, mode, dev); 1980 if (!error) 1981 fsnotify_create(dir, dentry); 1982 return error; 1983 } 1984 1985 static int may_mknod(mode_t mode) 1986 { 1987 switch (mode & S_IFMT) { 1988 case S_IFREG: 1989 case S_IFCHR: 1990 case S_IFBLK: 1991 case S_IFIFO: 1992 case S_IFSOCK: 1993 case 0: /* zero mode translates to S_IFREG */ 1994 return 0; 1995 case S_IFDIR: 1996 return -EPERM; 1997 default: 1998 return -EINVAL; 1999 } 2000 } 2001 2002 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2003 unsigned, dev) 2004 { 2005 int error; 2006 char *tmp; 2007 struct dentry *dentry; 2008 struct nameidata nd; 2009 2010 if (S_ISDIR(mode)) 2011 return -EPERM; 2012 2013 error = user_path_parent(dfd, filename, &nd, &tmp); 2014 if (error) 2015 return error; 2016 2017 dentry = lookup_create(&nd, 0); 2018 if (IS_ERR(dentry)) { 2019 error = PTR_ERR(dentry); 2020 goto out_unlock; 2021 } 2022 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2023 mode &= ~current_umask(); 2024 error = may_mknod(mode); 2025 if (error) 2026 goto out_dput; 2027 error = mnt_want_write(nd.path.mnt); 2028 if (error) 2029 goto out_dput; 2030 error = security_path_mknod(&nd.path, dentry, mode, dev); 2031 if (error) 2032 goto out_drop_write; 2033 switch (mode & S_IFMT) { 2034 case 0: case S_IFREG: 2035 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2036 break; 2037 case S_IFCHR: case S_IFBLK: 2038 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2039 new_decode_dev(dev)); 2040 break; 2041 case S_IFIFO: case S_IFSOCK: 2042 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2043 break; 2044 } 2045 out_drop_write: 2046 mnt_drop_write(nd.path.mnt); 2047 out_dput: 2048 dput(dentry); 2049 out_unlock: 2050 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2051 path_put(&nd.path); 2052 putname(tmp); 2053 2054 return error; 2055 } 2056 2057 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2058 { 2059 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2060 } 2061 2062 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2063 { 2064 int error = may_create(dir, dentry); 2065 2066 if (error) 2067 return error; 2068 2069 if (!dir->i_op->mkdir) 2070 return -EPERM; 2071 2072 mode &= (S_IRWXUGO|S_ISVTX); 2073 error = security_inode_mkdir(dir, dentry, mode); 2074 if (error) 2075 return error; 2076 2077 vfs_dq_init(dir); 2078 error = dir->i_op->mkdir(dir, dentry, mode); 2079 if (!error) 2080 fsnotify_mkdir(dir, dentry); 2081 return error; 2082 } 2083 2084 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2085 { 2086 int error = 0; 2087 char * tmp; 2088 struct dentry *dentry; 2089 struct nameidata nd; 2090 2091 error = user_path_parent(dfd, pathname, &nd, &tmp); 2092 if (error) 2093 goto out_err; 2094 2095 dentry = lookup_create(&nd, 1); 2096 error = PTR_ERR(dentry); 2097 if (IS_ERR(dentry)) 2098 goto out_unlock; 2099 2100 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2101 mode &= ~current_umask(); 2102 error = mnt_want_write(nd.path.mnt); 2103 if (error) 2104 goto out_dput; 2105 error = security_path_mkdir(&nd.path, dentry, mode); 2106 if (error) 2107 goto out_drop_write; 2108 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2109 out_drop_write: 2110 mnt_drop_write(nd.path.mnt); 2111 out_dput: 2112 dput(dentry); 2113 out_unlock: 2114 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2115 path_put(&nd.path); 2116 putname(tmp); 2117 out_err: 2118 return error; 2119 } 2120 2121 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2122 { 2123 return sys_mkdirat(AT_FDCWD, pathname, mode); 2124 } 2125 2126 /* 2127 * We try to drop the dentry early: we should have 2128 * a usage count of 2 if we're the only user of this 2129 * dentry, and if that is true (possibly after pruning 2130 * the dcache), then we drop the dentry now. 2131 * 2132 * A low-level filesystem can, if it choses, legally 2133 * do a 2134 * 2135 * if (!d_unhashed(dentry)) 2136 * return -EBUSY; 2137 * 2138 * if it cannot handle the case of removing a directory 2139 * that is still in use by something else.. 2140 */ 2141 void dentry_unhash(struct dentry *dentry) 2142 { 2143 dget(dentry); 2144 shrink_dcache_parent(dentry); 2145 spin_lock(&dcache_lock); 2146 spin_lock(&dentry->d_lock); 2147 if (atomic_read(&dentry->d_count) == 2) 2148 __d_drop(dentry); 2149 spin_unlock(&dentry->d_lock); 2150 spin_unlock(&dcache_lock); 2151 } 2152 2153 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2154 { 2155 int error = may_delete(dir, dentry, 1); 2156 2157 if (error) 2158 return error; 2159 2160 if (!dir->i_op->rmdir) 2161 return -EPERM; 2162 2163 vfs_dq_init(dir); 2164 2165 mutex_lock(&dentry->d_inode->i_mutex); 2166 dentry_unhash(dentry); 2167 if (d_mountpoint(dentry)) 2168 error = -EBUSY; 2169 else { 2170 error = security_inode_rmdir(dir, dentry); 2171 if (!error) { 2172 error = dir->i_op->rmdir(dir, dentry); 2173 if (!error) 2174 dentry->d_inode->i_flags |= S_DEAD; 2175 } 2176 } 2177 mutex_unlock(&dentry->d_inode->i_mutex); 2178 if (!error) { 2179 d_delete(dentry); 2180 } 2181 dput(dentry); 2182 2183 return error; 2184 } 2185 2186 static long do_rmdir(int dfd, const char __user *pathname) 2187 { 2188 int error = 0; 2189 char * name; 2190 struct dentry *dentry; 2191 struct nameidata nd; 2192 2193 error = user_path_parent(dfd, pathname, &nd, &name); 2194 if (error) 2195 return error; 2196 2197 switch(nd.last_type) { 2198 case LAST_DOTDOT: 2199 error = -ENOTEMPTY; 2200 goto exit1; 2201 case LAST_DOT: 2202 error = -EINVAL; 2203 goto exit1; 2204 case LAST_ROOT: 2205 error = -EBUSY; 2206 goto exit1; 2207 } 2208 2209 nd.flags &= ~LOOKUP_PARENT; 2210 2211 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2212 dentry = lookup_hash(&nd); 2213 error = PTR_ERR(dentry); 2214 if (IS_ERR(dentry)) 2215 goto exit2; 2216 error = mnt_want_write(nd.path.mnt); 2217 if (error) 2218 goto exit3; 2219 error = security_path_rmdir(&nd.path, dentry); 2220 if (error) 2221 goto exit4; 2222 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2223 exit4: 2224 mnt_drop_write(nd.path.mnt); 2225 exit3: 2226 dput(dentry); 2227 exit2: 2228 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2229 exit1: 2230 path_put(&nd.path); 2231 putname(name); 2232 return error; 2233 } 2234 2235 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2236 { 2237 return do_rmdir(AT_FDCWD, pathname); 2238 } 2239 2240 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2241 { 2242 int error = may_delete(dir, dentry, 0); 2243 2244 if (error) 2245 return error; 2246 2247 if (!dir->i_op->unlink) 2248 return -EPERM; 2249 2250 vfs_dq_init(dir); 2251 2252 mutex_lock(&dentry->d_inode->i_mutex); 2253 if (d_mountpoint(dentry)) 2254 error = -EBUSY; 2255 else { 2256 error = security_inode_unlink(dir, dentry); 2257 if (!error) 2258 error = dir->i_op->unlink(dir, dentry); 2259 } 2260 mutex_unlock(&dentry->d_inode->i_mutex); 2261 2262 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2263 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2264 fsnotify_link_count(dentry->d_inode); 2265 d_delete(dentry); 2266 } 2267 2268 return error; 2269 } 2270 2271 /* 2272 * Make sure that the actual truncation of the file will occur outside its 2273 * directory's i_mutex. Truncate can take a long time if there is a lot of 2274 * writeout happening, and we don't want to prevent access to the directory 2275 * while waiting on the I/O. 2276 */ 2277 static long do_unlinkat(int dfd, const char __user *pathname) 2278 { 2279 int error; 2280 char *name; 2281 struct dentry *dentry; 2282 struct nameidata nd; 2283 struct inode *inode = NULL; 2284 2285 error = user_path_parent(dfd, pathname, &nd, &name); 2286 if (error) 2287 return error; 2288 2289 error = -EISDIR; 2290 if (nd.last_type != LAST_NORM) 2291 goto exit1; 2292 2293 nd.flags &= ~LOOKUP_PARENT; 2294 2295 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2296 dentry = lookup_hash(&nd); 2297 error = PTR_ERR(dentry); 2298 if (!IS_ERR(dentry)) { 2299 /* Why not before? Because we want correct error value */ 2300 if (nd.last.name[nd.last.len]) 2301 goto slashes; 2302 inode = dentry->d_inode; 2303 if (inode) 2304 atomic_inc(&inode->i_count); 2305 error = mnt_want_write(nd.path.mnt); 2306 if (error) 2307 goto exit2; 2308 error = security_path_unlink(&nd.path, dentry); 2309 if (error) 2310 goto exit3; 2311 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2312 exit3: 2313 mnt_drop_write(nd.path.mnt); 2314 exit2: 2315 dput(dentry); 2316 } 2317 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2318 if (inode) 2319 iput(inode); /* truncate the inode here */ 2320 exit1: 2321 path_put(&nd.path); 2322 putname(name); 2323 return error; 2324 2325 slashes: 2326 error = !dentry->d_inode ? -ENOENT : 2327 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2328 goto exit2; 2329 } 2330 2331 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2332 { 2333 if ((flag & ~AT_REMOVEDIR) != 0) 2334 return -EINVAL; 2335 2336 if (flag & AT_REMOVEDIR) 2337 return do_rmdir(dfd, pathname); 2338 2339 return do_unlinkat(dfd, pathname); 2340 } 2341 2342 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2343 { 2344 return do_unlinkat(AT_FDCWD, pathname); 2345 } 2346 2347 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2348 { 2349 int error = may_create(dir, dentry); 2350 2351 if (error) 2352 return error; 2353 2354 if (!dir->i_op->symlink) 2355 return -EPERM; 2356 2357 error = security_inode_symlink(dir, dentry, oldname); 2358 if (error) 2359 return error; 2360 2361 vfs_dq_init(dir); 2362 error = dir->i_op->symlink(dir, dentry, oldname); 2363 if (!error) 2364 fsnotify_create(dir, dentry); 2365 return error; 2366 } 2367 2368 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2369 int, newdfd, const char __user *, newname) 2370 { 2371 int error; 2372 char *from; 2373 char *to; 2374 struct dentry *dentry; 2375 struct nameidata nd; 2376 2377 from = getname(oldname); 2378 if (IS_ERR(from)) 2379 return PTR_ERR(from); 2380 2381 error = user_path_parent(newdfd, newname, &nd, &to); 2382 if (error) 2383 goto out_putname; 2384 2385 dentry = lookup_create(&nd, 0); 2386 error = PTR_ERR(dentry); 2387 if (IS_ERR(dentry)) 2388 goto out_unlock; 2389 2390 error = mnt_want_write(nd.path.mnt); 2391 if (error) 2392 goto out_dput; 2393 error = security_path_symlink(&nd.path, dentry, from); 2394 if (error) 2395 goto out_drop_write; 2396 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2397 out_drop_write: 2398 mnt_drop_write(nd.path.mnt); 2399 out_dput: 2400 dput(dentry); 2401 out_unlock: 2402 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2403 path_put(&nd.path); 2404 putname(to); 2405 out_putname: 2406 putname(from); 2407 return error; 2408 } 2409 2410 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2411 { 2412 return sys_symlinkat(oldname, AT_FDCWD, newname); 2413 } 2414 2415 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2416 { 2417 struct inode *inode = old_dentry->d_inode; 2418 int error; 2419 2420 if (!inode) 2421 return -ENOENT; 2422 2423 error = may_create(dir, new_dentry); 2424 if (error) 2425 return error; 2426 2427 if (dir->i_sb != inode->i_sb) 2428 return -EXDEV; 2429 2430 /* 2431 * A link to an append-only or immutable file cannot be created. 2432 */ 2433 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2434 return -EPERM; 2435 if (!dir->i_op->link) 2436 return -EPERM; 2437 if (S_ISDIR(inode->i_mode)) 2438 return -EPERM; 2439 2440 error = security_inode_link(old_dentry, dir, new_dentry); 2441 if (error) 2442 return error; 2443 2444 mutex_lock(&inode->i_mutex); 2445 vfs_dq_init(dir); 2446 error = dir->i_op->link(old_dentry, dir, new_dentry); 2447 mutex_unlock(&inode->i_mutex); 2448 if (!error) 2449 fsnotify_link(dir, inode, new_dentry); 2450 return error; 2451 } 2452 2453 /* 2454 * Hardlinks are often used in delicate situations. We avoid 2455 * security-related surprises by not following symlinks on the 2456 * newname. --KAB 2457 * 2458 * We don't follow them on the oldname either to be compatible 2459 * with linux 2.0, and to avoid hard-linking to directories 2460 * and other special files. --ADM 2461 */ 2462 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2463 int, newdfd, const char __user *, newname, int, flags) 2464 { 2465 struct dentry *new_dentry; 2466 struct nameidata nd; 2467 struct path old_path; 2468 int error; 2469 char *to; 2470 2471 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2472 return -EINVAL; 2473 2474 error = user_path_at(olddfd, oldname, 2475 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2476 &old_path); 2477 if (error) 2478 return error; 2479 2480 error = user_path_parent(newdfd, newname, &nd, &to); 2481 if (error) 2482 goto out; 2483 error = -EXDEV; 2484 if (old_path.mnt != nd.path.mnt) 2485 goto out_release; 2486 new_dentry = lookup_create(&nd, 0); 2487 error = PTR_ERR(new_dentry); 2488 if (IS_ERR(new_dentry)) 2489 goto out_unlock; 2490 error = mnt_want_write(nd.path.mnt); 2491 if (error) 2492 goto out_dput; 2493 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2494 if (error) 2495 goto out_drop_write; 2496 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2497 out_drop_write: 2498 mnt_drop_write(nd.path.mnt); 2499 out_dput: 2500 dput(new_dentry); 2501 out_unlock: 2502 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2503 out_release: 2504 path_put(&nd.path); 2505 putname(to); 2506 out: 2507 path_put(&old_path); 2508 2509 return error; 2510 } 2511 2512 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 2513 { 2514 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2515 } 2516 2517 /* 2518 * The worst of all namespace operations - renaming directory. "Perverted" 2519 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2520 * Problems: 2521 * a) we can get into loop creation. Check is done in is_subdir(). 2522 * b) race potential - two innocent renames can create a loop together. 2523 * That's where 4.4 screws up. Current fix: serialization on 2524 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2525 * story. 2526 * c) we have to lock _three_ objects - parents and victim (if it exists). 2527 * And that - after we got ->i_mutex on parents (until then we don't know 2528 * whether the target exists). Solution: try to be smart with locking 2529 * order for inodes. We rely on the fact that tree topology may change 2530 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2531 * move will be locked. Thus we can rank directories by the tree 2532 * (ancestors first) and rank all non-directories after them. 2533 * That works since everybody except rename does "lock parent, lookup, 2534 * lock child" and rename is under ->s_vfs_rename_mutex. 2535 * HOWEVER, it relies on the assumption that any object with ->lookup() 2536 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2537 * we'd better make sure that there's no link(2) for them. 2538 * d) some filesystems don't support opened-but-unlinked directories, 2539 * either because of layout or because they are not ready to deal with 2540 * all cases correctly. The latter will be fixed (taking this sort of 2541 * stuff into VFS), but the former is not going away. Solution: the same 2542 * trick as in rmdir(). 2543 * e) conversion from fhandle to dentry may come in the wrong moment - when 2544 * we are removing the target. Solution: we will have to grab ->i_mutex 2545 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2546 * ->i_mutex on parents, which works but leads to some truely excessive 2547 * locking]. 2548 */ 2549 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2550 struct inode *new_dir, struct dentry *new_dentry) 2551 { 2552 int error = 0; 2553 struct inode *target; 2554 2555 /* 2556 * If we are going to change the parent - check write permissions, 2557 * we'll need to flip '..'. 2558 */ 2559 if (new_dir != old_dir) { 2560 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2561 if (error) 2562 return error; 2563 } 2564 2565 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2566 if (error) 2567 return error; 2568 2569 target = new_dentry->d_inode; 2570 if (target) { 2571 mutex_lock(&target->i_mutex); 2572 dentry_unhash(new_dentry); 2573 } 2574 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2575 error = -EBUSY; 2576 else 2577 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2578 if (target) { 2579 if (!error) 2580 target->i_flags |= S_DEAD; 2581 mutex_unlock(&target->i_mutex); 2582 if (d_unhashed(new_dentry)) 2583 d_rehash(new_dentry); 2584 dput(new_dentry); 2585 } 2586 if (!error) 2587 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2588 d_move(old_dentry,new_dentry); 2589 return error; 2590 } 2591 2592 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2593 struct inode *new_dir, struct dentry *new_dentry) 2594 { 2595 struct inode *target; 2596 int error; 2597 2598 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2599 if (error) 2600 return error; 2601 2602 dget(new_dentry); 2603 target = new_dentry->d_inode; 2604 if (target) 2605 mutex_lock(&target->i_mutex); 2606 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2607 error = -EBUSY; 2608 else 2609 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2610 if (!error) { 2611 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2612 d_move(old_dentry, new_dentry); 2613 } 2614 if (target) 2615 mutex_unlock(&target->i_mutex); 2616 dput(new_dentry); 2617 return error; 2618 } 2619 2620 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2621 struct inode *new_dir, struct dentry *new_dentry) 2622 { 2623 int error; 2624 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2625 const char *old_name; 2626 2627 if (old_dentry->d_inode == new_dentry->d_inode) 2628 return 0; 2629 2630 error = may_delete(old_dir, old_dentry, is_dir); 2631 if (error) 2632 return error; 2633 2634 if (!new_dentry->d_inode) 2635 error = may_create(new_dir, new_dentry); 2636 else 2637 error = may_delete(new_dir, new_dentry, is_dir); 2638 if (error) 2639 return error; 2640 2641 if (!old_dir->i_op->rename) 2642 return -EPERM; 2643 2644 vfs_dq_init(old_dir); 2645 vfs_dq_init(new_dir); 2646 2647 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2648 2649 if (is_dir) 2650 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2651 else 2652 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2653 if (!error) { 2654 const char *new_name = old_dentry->d_name.name; 2655 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2656 new_dentry->d_inode, old_dentry); 2657 } 2658 fsnotify_oldname_free(old_name); 2659 2660 return error; 2661 } 2662 2663 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 2664 int, newdfd, const char __user *, newname) 2665 { 2666 struct dentry *old_dir, *new_dir; 2667 struct dentry *old_dentry, *new_dentry; 2668 struct dentry *trap; 2669 struct nameidata oldnd, newnd; 2670 char *from; 2671 char *to; 2672 int error; 2673 2674 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2675 if (error) 2676 goto exit; 2677 2678 error = user_path_parent(newdfd, newname, &newnd, &to); 2679 if (error) 2680 goto exit1; 2681 2682 error = -EXDEV; 2683 if (oldnd.path.mnt != newnd.path.mnt) 2684 goto exit2; 2685 2686 old_dir = oldnd.path.dentry; 2687 error = -EBUSY; 2688 if (oldnd.last_type != LAST_NORM) 2689 goto exit2; 2690 2691 new_dir = newnd.path.dentry; 2692 if (newnd.last_type != LAST_NORM) 2693 goto exit2; 2694 2695 oldnd.flags &= ~LOOKUP_PARENT; 2696 newnd.flags &= ~LOOKUP_PARENT; 2697 newnd.flags |= LOOKUP_RENAME_TARGET; 2698 2699 trap = lock_rename(new_dir, old_dir); 2700 2701 old_dentry = lookup_hash(&oldnd); 2702 error = PTR_ERR(old_dentry); 2703 if (IS_ERR(old_dentry)) 2704 goto exit3; 2705 /* source must exist */ 2706 error = -ENOENT; 2707 if (!old_dentry->d_inode) 2708 goto exit4; 2709 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2710 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2711 error = -ENOTDIR; 2712 if (oldnd.last.name[oldnd.last.len]) 2713 goto exit4; 2714 if (newnd.last.name[newnd.last.len]) 2715 goto exit4; 2716 } 2717 /* source should not be ancestor of target */ 2718 error = -EINVAL; 2719 if (old_dentry == trap) 2720 goto exit4; 2721 new_dentry = lookup_hash(&newnd); 2722 error = PTR_ERR(new_dentry); 2723 if (IS_ERR(new_dentry)) 2724 goto exit4; 2725 /* target should not be an ancestor of source */ 2726 error = -ENOTEMPTY; 2727 if (new_dentry == trap) 2728 goto exit5; 2729 2730 error = mnt_want_write(oldnd.path.mnt); 2731 if (error) 2732 goto exit5; 2733 error = security_path_rename(&oldnd.path, old_dentry, 2734 &newnd.path, new_dentry); 2735 if (error) 2736 goto exit6; 2737 error = vfs_rename(old_dir->d_inode, old_dentry, 2738 new_dir->d_inode, new_dentry); 2739 exit6: 2740 mnt_drop_write(oldnd.path.mnt); 2741 exit5: 2742 dput(new_dentry); 2743 exit4: 2744 dput(old_dentry); 2745 exit3: 2746 unlock_rename(new_dir, old_dir); 2747 exit2: 2748 path_put(&newnd.path); 2749 putname(to); 2750 exit1: 2751 path_put(&oldnd.path); 2752 putname(from); 2753 exit: 2754 return error; 2755 } 2756 2757 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 2758 { 2759 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2760 } 2761 2762 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2763 { 2764 int len; 2765 2766 len = PTR_ERR(link); 2767 if (IS_ERR(link)) 2768 goto out; 2769 2770 len = strlen(link); 2771 if (len > (unsigned) buflen) 2772 len = buflen; 2773 if (copy_to_user(buffer, link, len)) 2774 len = -EFAULT; 2775 out: 2776 return len; 2777 } 2778 2779 /* 2780 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2781 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2782 * using) it for any given inode is up to filesystem. 2783 */ 2784 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2785 { 2786 struct nameidata nd; 2787 void *cookie; 2788 int res; 2789 2790 nd.depth = 0; 2791 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2792 if (IS_ERR(cookie)) 2793 return PTR_ERR(cookie); 2794 2795 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2796 if (dentry->d_inode->i_op->put_link) 2797 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2798 return res; 2799 } 2800 2801 int vfs_follow_link(struct nameidata *nd, const char *link) 2802 { 2803 return __vfs_follow_link(nd, link); 2804 } 2805 2806 /* get the link contents into pagecache */ 2807 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2808 { 2809 char *kaddr; 2810 struct page *page; 2811 struct address_space *mapping = dentry->d_inode->i_mapping; 2812 page = read_mapping_page(mapping, 0, NULL); 2813 if (IS_ERR(page)) 2814 return (char*)page; 2815 *ppage = page; 2816 kaddr = kmap(page); 2817 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 2818 return kaddr; 2819 } 2820 2821 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2822 { 2823 struct page *page = NULL; 2824 char *s = page_getlink(dentry, &page); 2825 int res = vfs_readlink(dentry,buffer,buflen,s); 2826 if (page) { 2827 kunmap(page); 2828 page_cache_release(page); 2829 } 2830 return res; 2831 } 2832 2833 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2834 { 2835 struct page *page = NULL; 2836 nd_set_link(nd, page_getlink(dentry, &page)); 2837 return page; 2838 } 2839 2840 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2841 { 2842 struct page *page = cookie; 2843 2844 if (page) { 2845 kunmap(page); 2846 page_cache_release(page); 2847 } 2848 } 2849 2850 /* 2851 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 2852 */ 2853 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 2854 { 2855 struct address_space *mapping = inode->i_mapping; 2856 struct page *page; 2857 void *fsdata; 2858 int err; 2859 char *kaddr; 2860 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 2861 if (nofs) 2862 flags |= AOP_FLAG_NOFS; 2863 2864 retry: 2865 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2866 flags, &page, &fsdata); 2867 if (err) 2868 goto fail; 2869 2870 kaddr = kmap_atomic(page, KM_USER0); 2871 memcpy(kaddr, symname, len-1); 2872 kunmap_atomic(kaddr, KM_USER0); 2873 2874 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2875 page, fsdata); 2876 if (err < 0) 2877 goto fail; 2878 if (err < len-1) 2879 goto retry; 2880 2881 mark_inode_dirty(inode); 2882 return 0; 2883 fail: 2884 return err; 2885 } 2886 2887 int page_symlink(struct inode *inode, const char *symname, int len) 2888 { 2889 return __page_symlink(inode, symname, len, 2890 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 2891 } 2892 2893 const struct inode_operations page_symlink_inode_operations = { 2894 .readlink = generic_readlink, 2895 .follow_link = page_follow_link_light, 2896 .put_link = page_put_link, 2897 }; 2898 2899 EXPORT_SYMBOL(user_path_at); 2900 EXPORT_SYMBOL(follow_down); 2901 EXPORT_SYMBOL(follow_up); 2902 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2903 EXPORT_SYMBOL(getname); 2904 EXPORT_SYMBOL(lock_rename); 2905 EXPORT_SYMBOL(lookup_one_len); 2906 EXPORT_SYMBOL(page_follow_link_light); 2907 EXPORT_SYMBOL(page_put_link); 2908 EXPORT_SYMBOL(page_readlink); 2909 EXPORT_SYMBOL(__page_symlink); 2910 EXPORT_SYMBOL(page_symlink); 2911 EXPORT_SYMBOL(page_symlink_inode_operations); 2912 EXPORT_SYMBOL(path_lookup); 2913 EXPORT_SYMBOL(kern_path); 2914 EXPORT_SYMBOL(vfs_path_lookup); 2915 EXPORT_SYMBOL(inode_permission); 2916 EXPORT_SYMBOL(file_permission); 2917 EXPORT_SYMBOL(unlock_rename); 2918 EXPORT_SYMBOL(vfs_create); 2919 EXPORT_SYMBOL(vfs_follow_link); 2920 EXPORT_SYMBOL(vfs_link); 2921 EXPORT_SYMBOL(vfs_mkdir); 2922 EXPORT_SYMBOL(vfs_mknod); 2923 EXPORT_SYMBOL(generic_permission); 2924 EXPORT_SYMBOL(vfs_readlink); 2925 EXPORT_SYMBOL(vfs_rename); 2926 EXPORT_SYMBOL(vfs_rmdir); 2927 EXPORT_SYMBOL(vfs_symlink); 2928 EXPORT_SYMBOL(vfs_unlink); 2929 EXPORT_SYMBOL(dentry_unhash); 2930 EXPORT_SYMBOL(generic_readlink); 2931