xref: /linux/fs/namei.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/smp_lock.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/namei.h>
35 #include <asm/namei.h>
36 #include <asm/uaccess.h>
37 
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existant name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 char * getname(const char __user * filename)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			__putname(tmp);
152 			result = ERR_PTR(retval);
153 		}
154 	}
155 	audit_getname(result);
156 	return result;
157 }
158 
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 	if (unlikely(current->audit_context))
163 		audit_putname(name);
164 	else
165 		__putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169 
170 
171 /**
172  * generic_permission  -  check for access rights on a Posix-like filesystem
173  * @inode:	inode to check access rights for
174  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175  * @check_acl:	optional callback to check for Posix ACLs
176  *
177  * Used to check for read/write/execute permissions on a file.
178  * We use "fsuid" for this, letting us set arbitrary permissions
179  * for filesystem access without changing the "normal" uids which
180  * are used for other things..
181  */
182 int generic_permission(struct inode *inode, int mask,
183 		int (*check_acl)(struct inode *inode, int mask))
184 {
185 	umode_t			mode = inode->i_mode;
186 
187 	if (current->fsuid == inode->i_uid)
188 		mode >>= 6;
189 	else {
190 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 			int error = check_acl(inode, mask);
192 			if (error == -EACCES)
193 				goto check_capabilities;
194 			else if (error != -EAGAIN)
195 				return error;
196 		}
197 
198 		if (in_group_p(inode->i_gid))
199 			mode >>= 3;
200 	}
201 
202 	/*
203 	 * If the DACs are ok we don't need any capability check.
204 	 */
205 	if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 		return 0;
207 
208  check_capabilities:
209 	/*
210 	 * Read/write DACs are always overridable.
211 	 * Executable DACs are overridable if at least one exec bit is set.
212 	 */
213 	if (!(mask & MAY_EXEC) ||
214 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 		if (capable(CAP_DAC_OVERRIDE))
216 			return 0;
217 
218 	/*
219 	 * Searching includes executable on directories, else just read.
220 	 */
221 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 		if (capable(CAP_DAC_READ_SEARCH))
223 			return 0;
224 
225 	return -EACCES;
226 }
227 
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 	int retval, submask;
231 
232 	if (mask & MAY_WRITE) {
233 		umode_t mode = inode->i_mode;
234 
235 		/*
236 		 * Nobody gets write access to a read-only fs.
237 		 */
238 		if (IS_RDONLY(inode) &&
239 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
240 			return -EROFS;
241 
242 		/*
243 		 * Nobody gets write access to an immutable file.
244 		 */
245 		if (IS_IMMUTABLE(inode))
246 			return -EACCES;
247 	}
248 
249 
250 	/* Ordinary permission routines do not understand MAY_APPEND. */
251 	submask = mask & ~MAY_APPEND;
252 	if (inode->i_op && inode->i_op->permission)
253 		retval = inode->i_op->permission(inode, submask, nd);
254 	else
255 		retval = generic_permission(inode, submask, NULL);
256 	if (retval)
257 		return retval;
258 
259 	return security_inode_permission(inode, mask, nd);
260 }
261 
262 /**
263  * vfs_permission  -  check for access rights to a given path
264  * @nd:		lookup result that describes the path
265  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
266  *
267  * Used to check for read/write/execute permissions on a path.
268  * We use "fsuid" for this, letting us set arbitrary permissions
269  * for filesystem access without changing the "normal" uids which
270  * are used for other things.
271  */
272 int vfs_permission(struct nameidata *nd, int mask)
273 {
274 	return permission(nd->dentry->d_inode, mask, nd);
275 }
276 
277 /**
278  * file_permission  -  check for additional access rights to a given file
279  * @file:	file to check access rights for
280  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
281  *
282  * Used to check for read/write/execute permissions on an already opened
283  * file.
284  *
285  * Note:
286  *	Do not use this function in new code.  All access checks should
287  *	be done using vfs_permission().
288  */
289 int file_permission(struct file *file, int mask)
290 {
291 	return permission(file->f_dentry->d_inode, mask, NULL);
292 }
293 
294 /*
295  * get_write_access() gets write permission for a file.
296  * put_write_access() releases this write permission.
297  * This is used for regular files.
298  * We cannot support write (and maybe mmap read-write shared) accesses and
299  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
300  * can have the following values:
301  * 0: no writers, no VM_DENYWRITE mappings
302  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
303  * > 0: (i_writecount) users are writing to the file.
304  *
305  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
306  * except for the cases where we don't hold i_writecount yet. Then we need to
307  * use {get,deny}_write_access() - these functions check the sign and refuse
308  * to do the change if sign is wrong. Exclusion between them is provided by
309  * the inode->i_lock spinlock.
310  */
311 
312 int get_write_access(struct inode * inode)
313 {
314 	spin_lock(&inode->i_lock);
315 	if (atomic_read(&inode->i_writecount) < 0) {
316 		spin_unlock(&inode->i_lock);
317 		return -ETXTBSY;
318 	}
319 	atomic_inc(&inode->i_writecount);
320 	spin_unlock(&inode->i_lock);
321 
322 	return 0;
323 }
324 
325 int deny_write_access(struct file * file)
326 {
327 	struct inode *inode = file->f_dentry->d_inode;
328 
329 	spin_lock(&inode->i_lock);
330 	if (atomic_read(&inode->i_writecount) > 0) {
331 		spin_unlock(&inode->i_lock);
332 		return -ETXTBSY;
333 	}
334 	atomic_dec(&inode->i_writecount);
335 	spin_unlock(&inode->i_lock);
336 
337 	return 0;
338 }
339 
340 void path_release(struct nameidata *nd)
341 {
342 	dput(nd->dentry);
343 	mntput(nd->mnt);
344 }
345 
346 /*
347  * umount() mustn't call path_release()/mntput() as that would clear
348  * mnt_expiry_mark
349  */
350 void path_release_on_umount(struct nameidata *nd)
351 {
352 	dput(nd->dentry);
353 	mntput_no_expire(nd->mnt);
354 }
355 
356 /**
357  * release_open_intent - free up open intent resources
358  * @nd: pointer to nameidata
359  */
360 void release_open_intent(struct nameidata *nd)
361 {
362 	if (nd->intent.open.file->f_dentry == NULL)
363 		put_filp(nd->intent.open.file);
364 	else
365 		fput(nd->intent.open.file);
366 }
367 
368 /*
369  * Internal lookup() using the new generic dcache.
370  * SMP-safe
371  */
372 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
373 {
374 	struct dentry * dentry = __d_lookup(parent, name);
375 
376 	/* lockess __d_lookup may fail due to concurrent d_move()
377 	 * in some unrelated directory, so try with d_lookup
378 	 */
379 	if (!dentry)
380 		dentry = d_lookup(parent, name);
381 
382 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate) {
383 		if (!dentry->d_op->d_revalidate(dentry, nd) && !d_invalidate(dentry)) {
384 			dput(dentry);
385 			dentry = NULL;
386 		}
387 	}
388 	return dentry;
389 }
390 
391 /*
392  * Short-cut version of permission(), for calling by
393  * path_walk(), when dcache lock is held.  Combines parts
394  * of permission() and generic_permission(), and tests ONLY for
395  * MAY_EXEC permission.
396  *
397  * If appropriate, check DAC only.  If not appropriate, or
398  * short-cut DAC fails, then call permission() to do more
399  * complete permission check.
400  */
401 static int exec_permission_lite(struct inode *inode,
402 				       struct nameidata *nd)
403 {
404 	umode_t	mode = inode->i_mode;
405 
406 	if (inode->i_op && inode->i_op->permission)
407 		return -EAGAIN;
408 
409 	if (current->fsuid == inode->i_uid)
410 		mode >>= 6;
411 	else if (in_group_p(inode->i_gid))
412 		mode >>= 3;
413 
414 	if (mode & MAY_EXEC)
415 		goto ok;
416 
417 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
418 		goto ok;
419 
420 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
421 		goto ok;
422 
423 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
424 		goto ok;
425 
426 	return -EACCES;
427 ok:
428 	return security_inode_permission(inode, MAY_EXEC, nd);
429 }
430 
431 /*
432  * This is called when everything else fails, and we actually have
433  * to go to the low-level filesystem to find out what we should do..
434  *
435  * We get the directory semaphore, and after getting that we also
436  * make sure that nobody added the entry to the dcache in the meantime..
437  * SMP-safe
438  */
439 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
440 {
441 	struct dentry * result;
442 	struct inode *dir = parent->d_inode;
443 
444 	mutex_lock(&dir->i_mutex);
445 	/*
446 	 * First re-do the cached lookup just in case it was created
447 	 * while we waited for the directory semaphore..
448 	 *
449 	 * FIXME! This could use version numbering or similar to
450 	 * avoid unnecessary cache lookups.
451 	 *
452 	 * The "dcache_lock" is purely to protect the RCU list walker
453 	 * from concurrent renames at this point (we mustn't get false
454 	 * negatives from the RCU list walk here, unlike the optimistic
455 	 * fast walk).
456 	 *
457 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
458 	 */
459 	result = d_lookup(parent, name);
460 	if (!result) {
461 		struct dentry * dentry = d_alloc(parent, name);
462 		result = ERR_PTR(-ENOMEM);
463 		if (dentry) {
464 			result = dir->i_op->lookup(dir, dentry, nd);
465 			if (result)
466 				dput(dentry);
467 			else
468 				result = dentry;
469 		}
470 		mutex_unlock(&dir->i_mutex);
471 		return result;
472 	}
473 
474 	/*
475 	 * Uhhuh! Nasty case: the cache was re-populated while
476 	 * we waited on the semaphore. Need to revalidate.
477 	 */
478 	mutex_unlock(&dir->i_mutex);
479 	if (result->d_op && result->d_op->d_revalidate) {
480 		if (!result->d_op->d_revalidate(result, nd) && !d_invalidate(result)) {
481 			dput(result);
482 			result = ERR_PTR(-ENOENT);
483 		}
484 	}
485 	return result;
486 }
487 
488 static int __emul_lookup_dentry(const char *, struct nameidata *);
489 
490 /* SMP-safe */
491 static __always_inline int
492 walk_init_root(const char *name, struct nameidata *nd)
493 {
494 	read_lock(&current->fs->lock);
495 	if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
496 		nd->mnt = mntget(current->fs->altrootmnt);
497 		nd->dentry = dget(current->fs->altroot);
498 		read_unlock(&current->fs->lock);
499 		if (__emul_lookup_dentry(name,nd))
500 			return 0;
501 		read_lock(&current->fs->lock);
502 	}
503 	nd->mnt = mntget(current->fs->rootmnt);
504 	nd->dentry = dget(current->fs->root);
505 	read_unlock(&current->fs->lock);
506 	return 1;
507 }
508 
509 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
510 {
511 	int res = 0;
512 	char *name;
513 	if (IS_ERR(link))
514 		goto fail;
515 
516 	if (*link == '/') {
517 		path_release(nd);
518 		if (!walk_init_root(link, nd))
519 			/* weird __emul_prefix() stuff did it */
520 			goto out;
521 	}
522 	res = link_path_walk(link, nd);
523 out:
524 	if (nd->depth || res || nd->last_type!=LAST_NORM)
525 		return res;
526 	/*
527 	 * If it is an iterative symlinks resolution in open_namei() we
528 	 * have to copy the last component. And all that crap because of
529 	 * bloody create() on broken symlinks. Furrfu...
530 	 */
531 	name = __getname();
532 	if (unlikely(!name)) {
533 		path_release(nd);
534 		return -ENOMEM;
535 	}
536 	strcpy(name, nd->last.name);
537 	nd->last.name = name;
538 	return 0;
539 fail:
540 	path_release(nd);
541 	return PTR_ERR(link);
542 }
543 
544 struct path {
545 	struct vfsmount *mnt;
546 	struct dentry *dentry;
547 };
548 
549 static inline void dput_path(struct path *path, struct nameidata *nd)
550 {
551 	dput(path->dentry);
552 	if (path->mnt != nd->mnt)
553 		mntput(path->mnt);
554 }
555 
556 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
557 {
558 	dput(nd->dentry);
559 	if (nd->mnt != path->mnt)
560 		mntput(nd->mnt);
561 	nd->mnt = path->mnt;
562 	nd->dentry = path->dentry;
563 }
564 
565 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
566 {
567 	int error;
568 	void *cookie;
569 	struct dentry *dentry = path->dentry;
570 
571 	touch_atime(path->mnt, dentry);
572 	nd_set_link(nd, NULL);
573 
574 	if (path->mnt != nd->mnt) {
575 		path_to_nameidata(path, nd);
576 		dget(dentry);
577 	}
578 	mntget(path->mnt);
579 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
580 	error = PTR_ERR(cookie);
581 	if (!IS_ERR(cookie)) {
582 		char *s = nd_get_link(nd);
583 		error = 0;
584 		if (s)
585 			error = __vfs_follow_link(nd, s);
586 		if (dentry->d_inode->i_op->put_link)
587 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
588 	}
589 	dput(dentry);
590 	mntput(path->mnt);
591 
592 	return error;
593 }
594 
595 /*
596  * This limits recursive symlink follows to 8, while
597  * limiting consecutive symlinks to 40.
598  *
599  * Without that kind of total limit, nasty chains of consecutive
600  * symlinks can cause almost arbitrarily long lookups.
601  */
602 static inline int do_follow_link(struct path *path, struct nameidata *nd)
603 {
604 	int err = -ELOOP;
605 	if (current->link_count >= MAX_NESTED_LINKS)
606 		goto loop;
607 	if (current->total_link_count >= 40)
608 		goto loop;
609 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
610 	cond_resched();
611 	err = security_inode_follow_link(path->dentry, nd);
612 	if (err)
613 		goto loop;
614 	current->link_count++;
615 	current->total_link_count++;
616 	nd->depth++;
617 	err = __do_follow_link(path, nd);
618 	current->link_count--;
619 	nd->depth--;
620 	return err;
621 loop:
622 	dput_path(path, nd);
623 	path_release(nd);
624 	return err;
625 }
626 
627 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
628 {
629 	struct vfsmount *parent;
630 	struct dentry *mountpoint;
631 	spin_lock(&vfsmount_lock);
632 	parent=(*mnt)->mnt_parent;
633 	if (parent == *mnt) {
634 		spin_unlock(&vfsmount_lock);
635 		return 0;
636 	}
637 	mntget(parent);
638 	mountpoint=dget((*mnt)->mnt_mountpoint);
639 	spin_unlock(&vfsmount_lock);
640 	dput(*dentry);
641 	*dentry = mountpoint;
642 	mntput(*mnt);
643 	*mnt = parent;
644 	return 1;
645 }
646 
647 /* no need for dcache_lock, as serialization is taken care in
648  * namespace.c
649  */
650 static int __follow_mount(struct path *path)
651 {
652 	int res = 0;
653 	while (d_mountpoint(path->dentry)) {
654 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
655 		if (!mounted)
656 			break;
657 		dput(path->dentry);
658 		if (res)
659 			mntput(path->mnt);
660 		path->mnt = mounted;
661 		path->dentry = dget(mounted->mnt_root);
662 		res = 1;
663 	}
664 	return res;
665 }
666 
667 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
668 {
669 	while (d_mountpoint(*dentry)) {
670 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
671 		if (!mounted)
672 			break;
673 		dput(*dentry);
674 		mntput(*mnt);
675 		*mnt = mounted;
676 		*dentry = dget(mounted->mnt_root);
677 	}
678 }
679 
680 /* no need for dcache_lock, as serialization is taken care in
681  * namespace.c
682  */
683 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
684 {
685 	struct vfsmount *mounted;
686 
687 	mounted = lookup_mnt(*mnt, *dentry);
688 	if (mounted) {
689 		dput(*dentry);
690 		mntput(*mnt);
691 		*mnt = mounted;
692 		*dentry = dget(mounted->mnt_root);
693 		return 1;
694 	}
695 	return 0;
696 }
697 
698 static __always_inline void follow_dotdot(struct nameidata *nd)
699 {
700 	while(1) {
701 		struct vfsmount *parent;
702 		struct dentry *old = nd->dentry;
703 
704                 read_lock(&current->fs->lock);
705 		if (nd->dentry == current->fs->root &&
706 		    nd->mnt == current->fs->rootmnt) {
707                         read_unlock(&current->fs->lock);
708 			break;
709 		}
710                 read_unlock(&current->fs->lock);
711 		spin_lock(&dcache_lock);
712 		if (nd->dentry != nd->mnt->mnt_root) {
713 			nd->dentry = dget(nd->dentry->d_parent);
714 			spin_unlock(&dcache_lock);
715 			dput(old);
716 			break;
717 		}
718 		spin_unlock(&dcache_lock);
719 		spin_lock(&vfsmount_lock);
720 		parent = nd->mnt->mnt_parent;
721 		if (parent == nd->mnt) {
722 			spin_unlock(&vfsmount_lock);
723 			break;
724 		}
725 		mntget(parent);
726 		nd->dentry = dget(nd->mnt->mnt_mountpoint);
727 		spin_unlock(&vfsmount_lock);
728 		dput(old);
729 		mntput(nd->mnt);
730 		nd->mnt = parent;
731 	}
732 	follow_mount(&nd->mnt, &nd->dentry);
733 }
734 
735 /*
736  *  It's more convoluted than I'd like it to be, but... it's still fairly
737  *  small and for now I'd prefer to have fast path as straight as possible.
738  *  It _is_ time-critical.
739  */
740 static int do_lookup(struct nameidata *nd, struct qstr *name,
741 		     struct path *path)
742 {
743 	struct vfsmount *mnt = nd->mnt;
744 	struct dentry *dentry = __d_lookup(nd->dentry, name);
745 
746 	if (!dentry)
747 		goto need_lookup;
748 	if (dentry->d_op && dentry->d_op->d_revalidate)
749 		goto need_revalidate;
750 done:
751 	path->mnt = mnt;
752 	path->dentry = dentry;
753 	__follow_mount(path);
754 	return 0;
755 
756 need_lookup:
757 	dentry = real_lookup(nd->dentry, name, nd);
758 	if (IS_ERR(dentry))
759 		goto fail;
760 	goto done;
761 
762 need_revalidate:
763 	if (dentry->d_op->d_revalidate(dentry, nd))
764 		goto done;
765 	if (d_invalidate(dentry))
766 		goto done;
767 	dput(dentry);
768 	goto need_lookup;
769 
770 fail:
771 	return PTR_ERR(dentry);
772 }
773 
774 /*
775  * Name resolution.
776  * This is the basic name resolution function, turning a pathname into
777  * the final dentry. We expect 'base' to be positive and a directory.
778  *
779  * Returns 0 and nd will have valid dentry and mnt on success.
780  * Returns error and drops reference to input namei data on failure.
781  */
782 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
783 {
784 	struct path next;
785 	struct inode *inode;
786 	int err;
787 	unsigned int lookup_flags = nd->flags;
788 
789 	while (*name=='/')
790 		name++;
791 	if (!*name)
792 		goto return_reval;
793 
794 	inode = nd->dentry->d_inode;
795 	if (nd->depth)
796 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
797 
798 	/* At this point we know we have a real path component. */
799 	for(;;) {
800 		unsigned long hash;
801 		struct qstr this;
802 		unsigned int c;
803 
804 		nd->flags |= LOOKUP_CONTINUE;
805 		err = exec_permission_lite(inode, nd);
806 		if (err == -EAGAIN)
807 			err = vfs_permission(nd, MAY_EXEC);
808  		if (err)
809 			break;
810 
811 		this.name = name;
812 		c = *(const unsigned char *)name;
813 
814 		hash = init_name_hash();
815 		do {
816 			name++;
817 			hash = partial_name_hash(c, hash);
818 			c = *(const unsigned char *)name;
819 		} while (c && (c != '/'));
820 		this.len = name - (const char *) this.name;
821 		this.hash = end_name_hash(hash);
822 
823 		/* remove trailing slashes? */
824 		if (!c)
825 			goto last_component;
826 		while (*++name == '/');
827 		if (!*name)
828 			goto last_with_slashes;
829 
830 		/*
831 		 * "." and ".." are special - ".." especially so because it has
832 		 * to be able to know about the current root directory and
833 		 * parent relationships.
834 		 */
835 		if (this.name[0] == '.') switch (this.len) {
836 			default:
837 				break;
838 			case 2:
839 				if (this.name[1] != '.')
840 					break;
841 				follow_dotdot(nd);
842 				inode = nd->dentry->d_inode;
843 				/* fallthrough */
844 			case 1:
845 				continue;
846 		}
847 		/*
848 		 * See if the low-level filesystem might want
849 		 * to use its own hash..
850 		 */
851 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
852 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
853 			if (err < 0)
854 				break;
855 		}
856 		/* This does the actual lookups.. */
857 		err = do_lookup(nd, &this, &next);
858 		if (err)
859 			break;
860 
861 		err = -ENOENT;
862 		inode = next.dentry->d_inode;
863 		if (!inode)
864 			goto out_dput;
865 		err = -ENOTDIR;
866 		if (!inode->i_op)
867 			goto out_dput;
868 
869 		if (inode->i_op->follow_link) {
870 			err = do_follow_link(&next, nd);
871 			if (err)
872 				goto return_err;
873 			err = -ENOENT;
874 			inode = nd->dentry->d_inode;
875 			if (!inode)
876 				break;
877 			err = -ENOTDIR;
878 			if (!inode->i_op)
879 				break;
880 		} else
881 			path_to_nameidata(&next, nd);
882 		err = -ENOTDIR;
883 		if (!inode->i_op->lookup)
884 			break;
885 		continue;
886 		/* here ends the main loop */
887 
888 last_with_slashes:
889 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
890 last_component:
891 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
892 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
893 		if (lookup_flags & LOOKUP_PARENT)
894 			goto lookup_parent;
895 		if (this.name[0] == '.') switch (this.len) {
896 			default:
897 				break;
898 			case 2:
899 				if (this.name[1] != '.')
900 					break;
901 				follow_dotdot(nd);
902 				inode = nd->dentry->d_inode;
903 				/* fallthrough */
904 			case 1:
905 				goto return_reval;
906 		}
907 		if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
908 			err = nd->dentry->d_op->d_hash(nd->dentry, &this);
909 			if (err < 0)
910 				break;
911 		}
912 		err = do_lookup(nd, &this, &next);
913 		if (err)
914 			break;
915 		inode = next.dentry->d_inode;
916 		if ((lookup_flags & LOOKUP_FOLLOW)
917 		    && inode && inode->i_op && inode->i_op->follow_link) {
918 			err = do_follow_link(&next, nd);
919 			if (err)
920 				goto return_err;
921 			inode = nd->dentry->d_inode;
922 		} else
923 			path_to_nameidata(&next, nd);
924 		err = -ENOENT;
925 		if (!inode)
926 			break;
927 		if (lookup_flags & LOOKUP_DIRECTORY) {
928 			err = -ENOTDIR;
929 			if (!inode->i_op || !inode->i_op->lookup)
930 				break;
931 		}
932 		goto return_base;
933 lookup_parent:
934 		nd->last = this;
935 		nd->last_type = LAST_NORM;
936 		if (this.name[0] != '.')
937 			goto return_base;
938 		if (this.len == 1)
939 			nd->last_type = LAST_DOT;
940 		else if (this.len == 2 && this.name[1] == '.')
941 			nd->last_type = LAST_DOTDOT;
942 		else
943 			goto return_base;
944 return_reval:
945 		/*
946 		 * We bypassed the ordinary revalidation routines.
947 		 * We may need to check the cached dentry for staleness.
948 		 */
949 		if (nd->dentry && nd->dentry->d_sb &&
950 		    (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
951 			err = -ESTALE;
952 			/* Note: we do not d_invalidate() */
953 			if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
954 				break;
955 		}
956 return_base:
957 		return 0;
958 out_dput:
959 		dput_path(&next, nd);
960 		break;
961 	}
962 	path_release(nd);
963 return_err:
964 	return err;
965 }
966 
967 /*
968  * Wrapper to retry pathname resolution whenever the underlying
969  * file system returns an ESTALE.
970  *
971  * Retry the whole path once, forcing real lookup requests
972  * instead of relying on the dcache.
973  */
974 int fastcall link_path_walk(const char *name, struct nameidata *nd)
975 {
976 	struct nameidata save = *nd;
977 	int result;
978 
979 	/* make sure the stuff we saved doesn't go away */
980 	dget(save.dentry);
981 	mntget(save.mnt);
982 
983 	result = __link_path_walk(name, nd);
984 	if (result == -ESTALE) {
985 		*nd = save;
986 		dget(nd->dentry);
987 		mntget(nd->mnt);
988 		nd->flags |= LOOKUP_REVAL;
989 		result = __link_path_walk(name, nd);
990 	}
991 
992 	dput(save.dentry);
993 	mntput(save.mnt);
994 
995 	return result;
996 }
997 
998 int fastcall path_walk(const char * name, struct nameidata *nd)
999 {
1000 	current->total_link_count = 0;
1001 	return link_path_walk(name, nd);
1002 }
1003 
1004 /*
1005  * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1006  * everything is done. Returns 0 and drops input nd, if lookup failed;
1007  */
1008 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1009 {
1010 	if (path_walk(name, nd))
1011 		return 0;		/* something went wrong... */
1012 
1013 	if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1014 		struct dentry *old_dentry = nd->dentry;
1015 		struct vfsmount *old_mnt = nd->mnt;
1016 		struct qstr last = nd->last;
1017 		int last_type = nd->last_type;
1018 		/*
1019 		 * NAME was not found in alternate root or it's a directory.  Try to find
1020 		 * it in the normal root:
1021 		 */
1022 		nd->last_type = LAST_ROOT;
1023 		read_lock(&current->fs->lock);
1024 		nd->mnt = mntget(current->fs->rootmnt);
1025 		nd->dentry = dget(current->fs->root);
1026 		read_unlock(&current->fs->lock);
1027 		if (path_walk(name, nd) == 0) {
1028 			if (nd->dentry->d_inode) {
1029 				dput(old_dentry);
1030 				mntput(old_mnt);
1031 				return 1;
1032 			}
1033 			path_release(nd);
1034 		}
1035 		nd->dentry = old_dentry;
1036 		nd->mnt = old_mnt;
1037 		nd->last = last;
1038 		nd->last_type = last_type;
1039 	}
1040 	return 1;
1041 }
1042 
1043 void set_fs_altroot(void)
1044 {
1045 	char *emul = __emul_prefix();
1046 	struct nameidata nd;
1047 	struct vfsmount *mnt = NULL, *oldmnt;
1048 	struct dentry *dentry = NULL, *olddentry;
1049 	int err;
1050 
1051 	if (!emul)
1052 		goto set_it;
1053 	err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1054 	if (!err) {
1055 		mnt = nd.mnt;
1056 		dentry = nd.dentry;
1057 	}
1058 set_it:
1059 	write_lock(&current->fs->lock);
1060 	oldmnt = current->fs->altrootmnt;
1061 	olddentry = current->fs->altroot;
1062 	current->fs->altrootmnt = mnt;
1063 	current->fs->altroot = dentry;
1064 	write_unlock(&current->fs->lock);
1065 	if (olddentry) {
1066 		dput(olddentry);
1067 		mntput(oldmnt);
1068 	}
1069 }
1070 
1071 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1072 static int fastcall do_path_lookup(int dfd, const char *name,
1073 				unsigned int flags, struct nameidata *nd)
1074 {
1075 	int retval = 0;
1076 	int fput_needed;
1077 	struct file *file;
1078 
1079 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1080 	nd->flags = flags;
1081 	nd->depth = 0;
1082 
1083 	read_lock(&current->fs->lock);
1084 	if (*name=='/') {
1085 		if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1086 			nd->mnt = mntget(current->fs->altrootmnt);
1087 			nd->dentry = dget(current->fs->altroot);
1088 			read_unlock(&current->fs->lock);
1089 			if (__emul_lookup_dentry(name,nd))
1090 				goto out; /* found in altroot */
1091 			read_lock(&current->fs->lock);
1092 		}
1093 		nd->mnt = mntget(current->fs->rootmnt);
1094 		nd->dentry = dget(current->fs->root);
1095 	} else if (dfd == AT_FDCWD) {
1096 		nd->mnt = mntget(current->fs->pwdmnt);
1097 		nd->dentry = dget(current->fs->pwd);
1098 	} else {
1099 		struct dentry *dentry;
1100 
1101 		file = fget_light(dfd, &fput_needed);
1102 		retval = -EBADF;
1103 		if (!file)
1104 			goto unlock_fail;
1105 
1106 		dentry = file->f_dentry;
1107 
1108 		retval = -ENOTDIR;
1109 		if (!S_ISDIR(dentry->d_inode->i_mode))
1110 			goto fput_unlock_fail;
1111 
1112 		retval = file_permission(file, MAY_EXEC);
1113 		if (retval)
1114 			goto fput_unlock_fail;
1115 
1116 		nd->mnt = mntget(file->f_vfsmnt);
1117 		nd->dentry = dget(dentry);
1118 
1119 		fput_light(file, fput_needed);
1120 	}
1121 	read_unlock(&current->fs->lock);
1122 	current->total_link_count = 0;
1123 	retval = link_path_walk(name, nd);
1124 out:
1125 	if (likely(retval == 0)) {
1126 		if (unlikely(current->audit_context && nd && nd->dentry &&
1127 				nd->dentry->d_inode))
1128 		audit_inode(name, nd->dentry->d_inode, flags);
1129 	}
1130 	return retval;
1131 
1132 fput_unlock_fail:
1133 	fput_light(file, fput_needed);
1134 unlock_fail:
1135 	read_unlock(&current->fs->lock);
1136 	return retval;
1137 }
1138 
1139 int fastcall path_lookup(const char *name, unsigned int flags,
1140 			struct nameidata *nd)
1141 {
1142 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1143 }
1144 
1145 static int __path_lookup_intent_open(int dfd, const char *name,
1146 		unsigned int lookup_flags, struct nameidata *nd,
1147 		int open_flags, int create_mode)
1148 {
1149 	struct file *filp = get_empty_filp();
1150 	int err;
1151 
1152 	if (filp == NULL)
1153 		return -ENFILE;
1154 	nd->intent.open.file = filp;
1155 	nd->intent.open.flags = open_flags;
1156 	nd->intent.open.create_mode = create_mode;
1157 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1158 	if (IS_ERR(nd->intent.open.file)) {
1159 		if (err == 0) {
1160 			err = PTR_ERR(nd->intent.open.file);
1161 			path_release(nd);
1162 		}
1163 	} else if (err != 0)
1164 		release_open_intent(nd);
1165 	return err;
1166 }
1167 
1168 /**
1169  * path_lookup_open - lookup a file path with open intent
1170  * @dfd: the directory to use as base, or AT_FDCWD
1171  * @name: pointer to file name
1172  * @lookup_flags: lookup intent flags
1173  * @nd: pointer to nameidata
1174  * @open_flags: open intent flags
1175  */
1176 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1177 		struct nameidata *nd, int open_flags)
1178 {
1179 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1180 			open_flags, 0);
1181 }
1182 
1183 /**
1184  * path_lookup_create - lookup a file path with open + create intent
1185  * @dfd: the directory to use as base, or AT_FDCWD
1186  * @name: pointer to file name
1187  * @lookup_flags: lookup intent flags
1188  * @nd: pointer to nameidata
1189  * @open_flags: open intent flags
1190  * @create_mode: create intent flags
1191  */
1192 static int path_lookup_create(int dfd, const char *name,
1193 			      unsigned int lookup_flags, struct nameidata *nd,
1194 			      int open_flags, int create_mode)
1195 {
1196 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1197 			nd, open_flags, create_mode);
1198 }
1199 
1200 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1201 		struct nameidata *nd, int open_flags)
1202 {
1203 	char *tmp = getname(name);
1204 	int err = PTR_ERR(tmp);
1205 
1206 	if (!IS_ERR(tmp)) {
1207 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1208 		putname(tmp);
1209 	}
1210 	return err;
1211 }
1212 
1213 /*
1214  * Restricted form of lookup. Doesn't follow links, single-component only,
1215  * needs parent already locked. Doesn't follow mounts.
1216  * SMP-safe.
1217  */
1218 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd)
1219 {
1220 	struct dentry * dentry;
1221 	struct inode *inode;
1222 	int err;
1223 
1224 	inode = base->d_inode;
1225 	err = permission(inode, MAY_EXEC, nd);
1226 	dentry = ERR_PTR(err);
1227 	if (err)
1228 		goto out;
1229 
1230 	/*
1231 	 * See if the low-level filesystem might want
1232 	 * to use its own hash..
1233 	 */
1234 	if (base->d_op && base->d_op->d_hash) {
1235 		err = base->d_op->d_hash(base, name);
1236 		dentry = ERR_PTR(err);
1237 		if (err < 0)
1238 			goto out;
1239 	}
1240 
1241 	dentry = cached_lookup(base, name, nd);
1242 	if (!dentry) {
1243 		struct dentry *new = d_alloc(base, name);
1244 		dentry = ERR_PTR(-ENOMEM);
1245 		if (!new)
1246 			goto out;
1247 		dentry = inode->i_op->lookup(inode, new, nd);
1248 		if (!dentry)
1249 			dentry = new;
1250 		else
1251 			dput(new);
1252 	}
1253 out:
1254 	return dentry;
1255 }
1256 
1257 struct dentry * lookup_hash(struct nameidata *nd)
1258 {
1259 	return __lookup_hash(&nd->last, nd->dentry, nd);
1260 }
1261 
1262 /* SMP-safe */
1263 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len)
1264 {
1265 	unsigned long hash;
1266 	struct qstr this;
1267 	unsigned int c;
1268 
1269 	this.name = name;
1270 	this.len = len;
1271 	if (!len)
1272 		goto access;
1273 
1274 	hash = init_name_hash();
1275 	while (len--) {
1276 		c = *(const unsigned char *)name++;
1277 		if (c == '/' || c == '\0')
1278 			goto access;
1279 		hash = partial_name_hash(c, hash);
1280 	}
1281 	this.hash = end_name_hash(hash);
1282 
1283 	return __lookup_hash(&this, base, NULL);
1284 access:
1285 	return ERR_PTR(-EACCES);
1286 }
1287 
1288 /*
1289  *	namei()
1290  *
1291  * is used by most simple commands to get the inode of a specified name.
1292  * Open, link etc use their own routines, but this is enough for things
1293  * like 'chmod' etc.
1294  *
1295  * namei exists in two versions: namei/lnamei. The only difference is
1296  * that namei follows links, while lnamei does not.
1297  * SMP-safe
1298  */
1299 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1300 			    struct nameidata *nd)
1301 {
1302 	char *tmp = getname(name);
1303 	int err = PTR_ERR(tmp);
1304 
1305 	if (!IS_ERR(tmp)) {
1306 		err = do_path_lookup(dfd, tmp, flags, nd);
1307 		putname(tmp);
1308 	}
1309 	return err;
1310 }
1311 
1312 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1313 {
1314 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1315 }
1316 
1317 /*
1318  * It's inline, so penalty for filesystems that don't use sticky bit is
1319  * minimal.
1320  */
1321 static inline int check_sticky(struct inode *dir, struct inode *inode)
1322 {
1323 	if (!(dir->i_mode & S_ISVTX))
1324 		return 0;
1325 	if (inode->i_uid == current->fsuid)
1326 		return 0;
1327 	if (dir->i_uid == current->fsuid)
1328 		return 0;
1329 	return !capable(CAP_FOWNER);
1330 }
1331 
1332 /*
1333  *	Check whether we can remove a link victim from directory dir, check
1334  *  whether the type of victim is right.
1335  *  1. We can't do it if dir is read-only (done in permission())
1336  *  2. We should have write and exec permissions on dir
1337  *  3. We can't remove anything from append-only dir
1338  *  4. We can't do anything with immutable dir (done in permission())
1339  *  5. If the sticky bit on dir is set we should either
1340  *	a. be owner of dir, or
1341  *	b. be owner of victim, or
1342  *	c. have CAP_FOWNER capability
1343  *  6. If the victim is append-only or immutable we can't do antyhing with
1344  *     links pointing to it.
1345  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1346  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1347  *  9. We can't remove a root or mountpoint.
1348  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1349  *     nfs_async_unlink().
1350  */
1351 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1352 {
1353 	int error;
1354 
1355 	if (!victim->d_inode)
1356 		return -ENOENT;
1357 
1358 	BUG_ON(victim->d_parent->d_inode != dir);
1359 	audit_inode_child(victim->d_name.name, victim->d_inode, dir->i_ino);
1360 
1361 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1362 	if (error)
1363 		return error;
1364 	if (IS_APPEND(dir))
1365 		return -EPERM;
1366 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1367 	    IS_IMMUTABLE(victim->d_inode))
1368 		return -EPERM;
1369 	if (isdir) {
1370 		if (!S_ISDIR(victim->d_inode->i_mode))
1371 			return -ENOTDIR;
1372 		if (IS_ROOT(victim))
1373 			return -EBUSY;
1374 	} else if (S_ISDIR(victim->d_inode->i_mode))
1375 		return -EISDIR;
1376 	if (IS_DEADDIR(dir))
1377 		return -ENOENT;
1378 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1379 		return -EBUSY;
1380 	return 0;
1381 }
1382 
1383 /*	Check whether we can create an object with dentry child in directory
1384  *  dir.
1385  *  1. We can't do it if child already exists (open has special treatment for
1386  *     this case, but since we are inlined it's OK)
1387  *  2. We can't do it if dir is read-only (done in permission())
1388  *  3. We should have write and exec permissions on dir
1389  *  4. We can't do it if dir is immutable (done in permission())
1390  */
1391 static inline int may_create(struct inode *dir, struct dentry *child,
1392 			     struct nameidata *nd)
1393 {
1394 	if (child->d_inode)
1395 		return -EEXIST;
1396 	if (IS_DEADDIR(dir))
1397 		return -ENOENT;
1398 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1399 }
1400 
1401 /*
1402  * O_DIRECTORY translates into forcing a directory lookup.
1403  */
1404 static inline int lookup_flags(unsigned int f)
1405 {
1406 	unsigned long retval = LOOKUP_FOLLOW;
1407 
1408 	if (f & O_NOFOLLOW)
1409 		retval &= ~LOOKUP_FOLLOW;
1410 
1411 	if (f & O_DIRECTORY)
1412 		retval |= LOOKUP_DIRECTORY;
1413 
1414 	return retval;
1415 }
1416 
1417 /*
1418  * p1 and p2 should be directories on the same fs.
1419  */
1420 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1421 {
1422 	struct dentry *p;
1423 
1424 	if (p1 == p2) {
1425 		mutex_lock(&p1->d_inode->i_mutex);
1426 		return NULL;
1427 	}
1428 
1429 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1430 
1431 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1432 		if (p->d_parent == p2) {
1433 			mutex_lock(&p2->d_inode->i_mutex);
1434 			mutex_lock(&p1->d_inode->i_mutex);
1435 			return p;
1436 		}
1437 	}
1438 
1439 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1440 		if (p->d_parent == p1) {
1441 			mutex_lock(&p1->d_inode->i_mutex);
1442 			mutex_lock(&p2->d_inode->i_mutex);
1443 			return p;
1444 		}
1445 	}
1446 
1447 	mutex_lock(&p1->d_inode->i_mutex);
1448 	mutex_lock(&p2->d_inode->i_mutex);
1449 	return NULL;
1450 }
1451 
1452 void unlock_rename(struct dentry *p1, struct dentry *p2)
1453 {
1454 	mutex_unlock(&p1->d_inode->i_mutex);
1455 	if (p1 != p2) {
1456 		mutex_unlock(&p2->d_inode->i_mutex);
1457 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1458 	}
1459 }
1460 
1461 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1462 		struct nameidata *nd)
1463 {
1464 	int error = may_create(dir, dentry, nd);
1465 
1466 	if (error)
1467 		return error;
1468 
1469 	if (!dir->i_op || !dir->i_op->create)
1470 		return -EACCES;	/* shouldn't it be ENOSYS? */
1471 	mode &= S_IALLUGO;
1472 	mode |= S_IFREG;
1473 	error = security_inode_create(dir, dentry, mode);
1474 	if (error)
1475 		return error;
1476 	DQUOT_INIT(dir);
1477 	error = dir->i_op->create(dir, dentry, mode, nd);
1478 	if (!error)
1479 		fsnotify_create(dir, dentry);
1480 	return error;
1481 }
1482 
1483 int may_open(struct nameidata *nd, int acc_mode, int flag)
1484 {
1485 	struct dentry *dentry = nd->dentry;
1486 	struct inode *inode = dentry->d_inode;
1487 	int error;
1488 
1489 	if (!inode)
1490 		return -ENOENT;
1491 
1492 	if (S_ISLNK(inode->i_mode))
1493 		return -ELOOP;
1494 
1495 	if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1496 		return -EISDIR;
1497 
1498 	error = vfs_permission(nd, acc_mode);
1499 	if (error)
1500 		return error;
1501 
1502 	/*
1503 	 * FIFO's, sockets and device files are special: they don't
1504 	 * actually live on the filesystem itself, and as such you
1505 	 * can write to them even if the filesystem is read-only.
1506 	 */
1507 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1508 	    	flag &= ~O_TRUNC;
1509 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1510 		if (nd->mnt->mnt_flags & MNT_NODEV)
1511 			return -EACCES;
1512 
1513 		flag &= ~O_TRUNC;
1514 	} else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1515 		return -EROFS;
1516 	/*
1517 	 * An append-only file must be opened in append mode for writing.
1518 	 */
1519 	if (IS_APPEND(inode)) {
1520 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1521 			return -EPERM;
1522 		if (flag & O_TRUNC)
1523 			return -EPERM;
1524 	}
1525 
1526 	/* O_NOATIME can only be set by the owner or superuser */
1527 	if (flag & O_NOATIME)
1528 		if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1529 			return -EPERM;
1530 
1531 	/*
1532 	 * Ensure there are no outstanding leases on the file.
1533 	 */
1534 	error = break_lease(inode, flag);
1535 	if (error)
1536 		return error;
1537 
1538 	if (flag & O_TRUNC) {
1539 		error = get_write_access(inode);
1540 		if (error)
1541 			return error;
1542 
1543 		/*
1544 		 * Refuse to truncate files with mandatory locks held on them.
1545 		 */
1546 		error = locks_verify_locked(inode);
1547 		if (!error) {
1548 			DQUOT_INIT(inode);
1549 
1550 			error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1551 		}
1552 		put_write_access(inode);
1553 		if (error)
1554 			return error;
1555 	} else
1556 		if (flag & FMODE_WRITE)
1557 			DQUOT_INIT(inode);
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  *	open_namei()
1564  *
1565  * namei for open - this is in fact almost the whole open-routine.
1566  *
1567  * Note that the low bits of "flag" aren't the same as in the open
1568  * system call - they are 00 - no permissions needed
1569  *			  01 - read permission needed
1570  *			  10 - write permission needed
1571  *			  11 - read/write permissions needed
1572  * which is a lot more logical, and also allows the "no perm" needed
1573  * for symlinks (where the permissions are checked later).
1574  * SMP-safe
1575  */
1576 int open_namei(int dfd, const char *pathname, int flag,
1577 		int mode, struct nameidata *nd)
1578 {
1579 	int acc_mode, error;
1580 	struct path path;
1581 	struct dentry *dir;
1582 	int count = 0;
1583 
1584 	acc_mode = ACC_MODE(flag);
1585 
1586 	/* O_TRUNC implies we need access checks for write permissions */
1587 	if (flag & O_TRUNC)
1588 		acc_mode |= MAY_WRITE;
1589 
1590 	/* Allow the LSM permission hook to distinguish append
1591 	   access from general write access. */
1592 	if (flag & O_APPEND)
1593 		acc_mode |= MAY_APPEND;
1594 
1595 	/*
1596 	 * The simplest case - just a plain lookup.
1597 	 */
1598 	if (!(flag & O_CREAT)) {
1599 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1600 					 nd, flag);
1601 		if (error)
1602 			return error;
1603 		goto ok;
1604 	}
1605 
1606 	/*
1607 	 * Create - we need to know the parent.
1608 	 */
1609 	error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1610 	if (error)
1611 		return error;
1612 
1613 	/*
1614 	 * We have the parent and last component. First of all, check
1615 	 * that we are not asked to creat(2) an obvious directory - that
1616 	 * will not do.
1617 	 */
1618 	error = -EISDIR;
1619 	if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1620 		goto exit;
1621 
1622 	dir = nd->dentry;
1623 	nd->flags &= ~LOOKUP_PARENT;
1624 	mutex_lock(&dir->d_inode->i_mutex);
1625 	path.dentry = lookup_hash(nd);
1626 	path.mnt = nd->mnt;
1627 
1628 do_last:
1629 	error = PTR_ERR(path.dentry);
1630 	if (IS_ERR(path.dentry)) {
1631 		mutex_unlock(&dir->d_inode->i_mutex);
1632 		goto exit;
1633 	}
1634 
1635 	if (IS_ERR(nd->intent.open.file)) {
1636 		mutex_unlock(&dir->d_inode->i_mutex);
1637 		error = PTR_ERR(nd->intent.open.file);
1638 		goto exit_dput;
1639 	}
1640 
1641 	/* Negative dentry, just create the file */
1642 	if (!path.dentry->d_inode) {
1643 		if (!IS_POSIXACL(dir->d_inode))
1644 			mode &= ~current->fs->umask;
1645 		error = vfs_create(dir->d_inode, path.dentry, mode, nd);
1646 		mutex_unlock(&dir->d_inode->i_mutex);
1647 		dput(nd->dentry);
1648 		nd->dentry = path.dentry;
1649 		if (error)
1650 			goto exit;
1651 		/* Don't check for write permission, don't truncate */
1652 		acc_mode = 0;
1653 		flag &= ~O_TRUNC;
1654 		goto ok;
1655 	}
1656 
1657 	/*
1658 	 * It already exists.
1659 	 */
1660 	mutex_unlock(&dir->d_inode->i_mutex);
1661 
1662 	error = -EEXIST;
1663 	if (flag & O_EXCL)
1664 		goto exit_dput;
1665 
1666 	if (__follow_mount(&path)) {
1667 		error = -ELOOP;
1668 		if (flag & O_NOFOLLOW)
1669 			goto exit_dput;
1670 	}
1671 	error = -ENOENT;
1672 	if (!path.dentry->d_inode)
1673 		goto exit_dput;
1674 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1675 		goto do_link;
1676 
1677 	path_to_nameidata(&path, nd);
1678 	error = -EISDIR;
1679 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1680 		goto exit;
1681 ok:
1682 	error = may_open(nd, acc_mode, flag);
1683 	if (error)
1684 		goto exit;
1685 	return 0;
1686 
1687 exit_dput:
1688 	dput_path(&path, nd);
1689 exit:
1690 	if (!IS_ERR(nd->intent.open.file))
1691 		release_open_intent(nd);
1692 	path_release(nd);
1693 	return error;
1694 
1695 do_link:
1696 	error = -ELOOP;
1697 	if (flag & O_NOFOLLOW)
1698 		goto exit_dput;
1699 	/*
1700 	 * This is subtle. Instead of calling do_follow_link() we do the
1701 	 * thing by hands. The reason is that this way we have zero link_count
1702 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1703 	 * After that we have the parent and last component, i.e.
1704 	 * we are in the same situation as after the first path_walk().
1705 	 * Well, almost - if the last component is normal we get its copy
1706 	 * stored in nd->last.name and we will have to putname() it when we
1707 	 * are done. Procfs-like symlinks just set LAST_BIND.
1708 	 */
1709 	nd->flags |= LOOKUP_PARENT;
1710 	error = security_inode_follow_link(path.dentry, nd);
1711 	if (error)
1712 		goto exit_dput;
1713 	error = __do_follow_link(&path, nd);
1714 	if (error)
1715 		return error;
1716 	nd->flags &= ~LOOKUP_PARENT;
1717 	if (nd->last_type == LAST_BIND)
1718 		goto ok;
1719 	error = -EISDIR;
1720 	if (nd->last_type != LAST_NORM)
1721 		goto exit;
1722 	if (nd->last.name[nd->last.len]) {
1723 		__putname(nd->last.name);
1724 		goto exit;
1725 	}
1726 	error = -ELOOP;
1727 	if (count++==32) {
1728 		__putname(nd->last.name);
1729 		goto exit;
1730 	}
1731 	dir = nd->dentry;
1732 	mutex_lock(&dir->d_inode->i_mutex);
1733 	path.dentry = lookup_hash(nd);
1734 	path.mnt = nd->mnt;
1735 	__putname(nd->last.name);
1736 	goto do_last;
1737 }
1738 
1739 /**
1740  * lookup_create - lookup a dentry, creating it if it doesn't exist
1741  * @nd: nameidata info
1742  * @is_dir: directory flag
1743  *
1744  * Simple function to lookup and return a dentry and create it
1745  * if it doesn't exist.  Is SMP-safe.
1746  *
1747  * Returns with nd->dentry->d_inode->i_mutex locked.
1748  */
1749 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1750 {
1751 	struct dentry *dentry = ERR_PTR(-EEXIST);
1752 
1753 	mutex_lock(&nd->dentry->d_inode->i_mutex);
1754 	/*
1755 	 * Yucky last component or no last component at all?
1756 	 * (foo/., foo/.., /////)
1757 	 */
1758 	if (nd->last_type != LAST_NORM)
1759 		goto fail;
1760 	nd->flags &= ~LOOKUP_PARENT;
1761 
1762 	/*
1763 	 * Do the final lookup.
1764 	 */
1765 	dentry = lookup_hash(nd);
1766 	if (IS_ERR(dentry))
1767 		goto fail;
1768 
1769 	/*
1770 	 * Special case - lookup gave negative, but... we had foo/bar/
1771 	 * From the vfs_mknod() POV we just have a negative dentry -
1772 	 * all is fine. Let's be bastards - you had / on the end, you've
1773 	 * been asking for (non-existent) directory. -ENOENT for you.
1774 	 */
1775 	if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1776 		goto enoent;
1777 	return dentry;
1778 enoent:
1779 	dput(dentry);
1780 	dentry = ERR_PTR(-ENOENT);
1781 fail:
1782 	return dentry;
1783 }
1784 EXPORT_SYMBOL_GPL(lookup_create);
1785 
1786 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1787 {
1788 	int error = may_create(dir, dentry, NULL);
1789 
1790 	if (error)
1791 		return error;
1792 
1793 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1794 		return -EPERM;
1795 
1796 	if (!dir->i_op || !dir->i_op->mknod)
1797 		return -EPERM;
1798 
1799 	error = security_inode_mknod(dir, dentry, mode, dev);
1800 	if (error)
1801 		return error;
1802 
1803 	DQUOT_INIT(dir);
1804 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1805 	if (!error)
1806 		fsnotify_create(dir, dentry);
1807 	return error;
1808 }
1809 
1810 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1811 				unsigned dev)
1812 {
1813 	int error = 0;
1814 	char * tmp;
1815 	struct dentry * dentry;
1816 	struct nameidata nd;
1817 
1818 	if (S_ISDIR(mode))
1819 		return -EPERM;
1820 	tmp = getname(filename);
1821 	if (IS_ERR(tmp))
1822 		return PTR_ERR(tmp);
1823 
1824 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1825 	if (error)
1826 		goto out;
1827 	dentry = lookup_create(&nd, 0);
1828 	error = PTR_ERR(dentry);
1829 
1830 	if (!IS_POSIXACL(nd.dentry->d_inode))
1831 		mode &= ~current->fs->umask;
1832 	if (!IS_ERR(dentry)) {
1833 		switch (mode & S_IFMT) {
1834 		case 0: case S_IFREG:
1835 			error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1836 			break;
1837 		case S_IFCHR: case S_IFBLK:
1838 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1839 					new_decode_dev(dev));
1840 			break;
1841 		case S_IFIFO: case S_IFSOCK:
1842 			error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1843 			break;
1844 		case S_IFDIR:
1845 			error = -EPERM;
1846 			break;
1847 		default:
1848 			error = -EINVAL;
1849 		}
1850 		dput(dentry);
1851 	}
1852 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
1853 	path_release(&nd);
1854 out:
1855 	putname(tmp);
1856 
1857 	return error;
1858 }
1859 
1860 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1861 {
1862 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
1863 }
1864 
1865 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1866 {
1867 	int error = may_create(dir, dentry, NULL);
1868 
1869 	if (error)
1870 		return error;
1871 
1872 	if (!dir->i_op || !dir->i_op->mkdir)
1873 		return -EPERM;
1874 
1875 	mode &= (S_IRWXUGO|S_ISVTX);
1876 	error = security_inode_mkdir(dir, dentry, mode);
1877 	if (error)
1878 		return error;
1879 
1880 	DQUOT_INIT(dir);
1881 	error = dir->i_op->mkdir(dir, dentry, mode);
1882 	if (!error)
1883 		fsnotify_mkdir(dir, dentry);
1884 	return error;
1885 }
1886 
1887 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
1888 {
1889 	int error = 0;
1890 	char * tmp;
1891 
1892 	tmp = getname(pathname);
1893 	error = PTR_ERR(tmp);
1894 	if (!IS_ERR(tmp)) {
1895 		struct dentry *dentry;
1896 		struct nameidata nd;
1897 
1898 		error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1899 		if (error)
1900 			goto out;
1901 		dentry = lookup_create(&nd, 1);
1902 		error = PTR_ERR(dentry);
1903 		if (!IS_ERR(dentry)) {
1904 			if (!IS_POSIXACL(nd.dentry->d_inode))
1905 				mode &= ~current->fs->umask;
1906 			error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1907 			dput(dentry);
1908 		}
1909 		mutex_unlock(&nd.dentry->d_inode->i_mutex);
1910 		path_release(&nd);
1911 out:
1912 		putname(tmp);
1913 	}
1914 
1915 	return error;
1916 }
1917 
1918 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
1919 {
1920 	return sys_mkdirat(AT_FDCWD, pathname, mode);
1921 }
1922 
1923 /*
1924  * We try to drop the dentry early: we should have
1925  * a usage count of 2 if we're the only user of this
1926  * dentry, and if that is true (possibly after pruning
1927  * the dcache), then we drop the dentry now.
1928  *
1929  * A low-level filesystem can, if it choses, legally
1930  * do a
1931  *
1932  *	if (!d_unhashed(dentry))
1933  *		return -EBUSY;
1934  *
1935  * if it cannot handle the case of removing a directory
1936  * that is still in use by something else..
1937  */
1938 void dentry_unhash(struct dentry *dentry)
1939 {
1940 	dget(dentry);
1941 	if (atomic_read(&dentry->d_count))
1942 		shrink_dcache_parent(dentry);
1943 	spin_lock(&dcache_lock);
1944 	spin_lock(&dentry->d_lock);
1945 	if (atomic_read(&dentry->d_count) == 2)
1946 		__d_drop(dentry);
1947 	spin_unlock(&dentry->d_lock);
1948 	spin_unlock(&dcache_lock);
1949 }
1950 
1951 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
1952 {
1953 	int error = may_delete(dir, dentry, 1);
1954 
1955 	if (error)
1956 		return error;
1957 
1958 	if (!dir->i_op || !dir->i_op->rmdir)
1959 		return -EPERM;
1960 
1961 	DQUOT_INIT(dir);
1962 
1963 	mutex_lock(&dentry->d_inode->i_mutex);
1964 	dentry_unhash(dentry);
1965 	if (d_mountpoint(dentry))
1966 		error = -EBUSY;
1967 	else {
1968 		error = security_inode_rmdir(dir, dentry);
1969 		if (!error) {
1970 			error = dir->i_op->rmdir(dir, dentry);
1971 			if (!error)
1972 				dentry->d_inode->i_flags |= S_DEAD;
1973 		}
1974 	}
1975 	mutex_unlock(&dentry->d_inode->i_mutex);
1976 	if (!error) {
1977 		d_delete(dentry);
1978 	}
1979 	dput(dentry);
1980 
1981 	return error;
1982 }
1983 
1984 static long do_rmdir(int dfd, const char __user *pathname)
1985 {
1986 	int error = 0;
1987 	char * name;
1988 	struct dentry *dentry;
1989 	struct nameidata nd;
1990 
1991 	name = getname(pathname);
1992 	if(IS_ERR(name))
1993 		return PTR_ERR(name);
1994 
1995 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
1996 	if (error)
1997 		goto exit;
1998 
1999 	switch(nd.last_type) {
2000 		case LAST_DOTDOT:
2001 			error = -ENOTEMPTY;
2002 			goto exit1;
2003 		case LAST_DOT:
2004 			error = -EINVAL;
2005 			goto exit1;
2006 		case LAST_ROOT:
2007 			error = -EBUSY;
2008 			goto exit1;
2009 	}
2010 	mutex_lock(&nd.dentry->d_inode->i_mutex);
2011 	dentry = lookup_hash(&nd);
2012 	error = PTR_ERR(dentry);
2013 	if (!IS_ERR(dentry)) {
2014 		error = vfs_rmdir(nd.dentry->d_inode, dentry);
2015 		dput(dentry);
2016 	}
2017 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2018 exit1:
2019 	path_release(&nd);
2020 exit:
2021 	putname(name);
2022 	return error;
2023 }
2024 
2025 asmlinkage long sys_rmdir(const char __user *pathname)
2026 {
2027 	return do_rmdir(AT_FDCWD, pathname);
2028 }
2029 
2030 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2031 {
2032 	int error = may_delete(dir, dentry, 0);
2033 
2034 	if (error)
2035 		return error;
2036 
2037 	if (!dir->i_op || !dir->i_op->unlink)
2038 		return -EPERM;
2039 
2040 	DQUOT_INIT(dir);
2041 
2042 	mutex_lock(&dentry->d_inode->i_mutex);
2043 	if (d_mountpoint(dentry))
2044 		error = -EBUSY;
2045 	else {
2046 		error = security_inode_unlink(dir, dentry);
2047 		if (!error)
2048 			error = dir->i_op->unlink(dir, dentry);
2049 	}
2050 	mutex_unlock(&dentry->d_inode->i_mutex);
2051 
2052 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2053 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2054 		d_delete(dentry);
2055 	}
2056 
2057 	return error;
2058 }
2059 
2060 /*
2061  * Make sure that the actual truncation of the file will occur outside its
2062  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2063  * writeout happening, and we don't want to prevent access to the directory
2064  * while waiting on the I/O.
2065  */
2066 static long do_unlinkat(int dfd, const char __user *pathname)
2067 {
2068 	int error = 0;
2069 	char * name;
2070 	struct dentry *dentry;
2071 	struct nameidata nd;
2072 	struct inode *inode = NULL;
2073 
2074 	name = getname(pathname);
2075 	if(IS_ERR(name))
2076 		return PTR_ERR(name);
2077 
2078 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2079 	if (error)
2080 		goto exit;
2081 	error = -EISDIR;
2082 	if (nd.last_type != LAST_NORM)
2083 		goto exit1;
2084 	mutex_lock(&nd.dentry->d_inode->i_mutex);
2085 	dentry = lookup_hash(&nd);
2086 	error = PTR_ERR(dentry);
2087 	if (!IS_ERR(dentry)) {
2088 		/* Why not before? Because we want correct error value */
2089 		if (nd.last.name[nd.last.len])
2090 			goto slashes;
2091 		inode = dentry->d_inode;
2092 		if (inode)
2093 			atomic_inc(&inode->i_count);
2094 		error = vfs_unlink(nd.dentry->d_inode, dentry);
2095 	exit2:
2096 		dput(dentry);
2097 	}
2098 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2099 	if (inode)
2100 		iput(inode);	/* truncate the inode here */
2101 exit1:
2102 	path_release(&nd);
2103 exit:
2104 	putname(name);
2105 	return error;
2106 
2107 slashes:
2108 	error = !dentry->d_inode ? -ENOENT :
2109 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2110 	goto exit2;
2111 }
2112 
2113 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2114 {
2115 	if ((flag & ~AT_REMOVEDIR) != 0)
2116 		return -EINVAL;
2117 
2118 	if (flag & AT_REMOVEDIR)
2119 		return do_rmdir(dfd, pathname);
2120 
2121 	return do_unlinkat(dfd, pathname);
2122 }
2123 
2124 asmlinkage long sys_unlink(const char __user *pathname)
2125 {
2126 	return do_unlinkat(AT_FDCWD, pathname);
2127 }
2128 
2129 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2130 {
2131 	int error = may_create(dir, dentry, NULL);
2132 
2133 	if (error)
2134 		return error;
2135 
2136 	if (!dir->i_op || !dir->i_op->symlink)
2137 		return -EPERM;
2138 
2139 	error = security_inode_symlink(dir, dentry, oldname);
2140 	if (error)
2141 		return error;
2142 
2143 	DQUOT_INIT(dir);
2144 	error = dir->i_op->symlink(dir, dentry, oldname);
2145 	if (!error)
2146 		fsnotify_create(dir, dentry);
2147 	return error;
2148 }
2149 
2150 asmlinkage long sys_symlinkat(const char __user *oldname,
2151 			      int newdfd, const char __user *newname)
2152 {
2153 	int error = 0;
2154 	char * from;
2155 	char * to;
2156 
2157 	from = getname(oldname);
2158 	if(IS_ERR(from))
2159 		return PTR_ERR(from);
2160 	to = getname(newname);
2161 	error = PTR_ERR(to);
2162 	if (!IS_ERR(to)) {
2163 		struct dentry *dentry;
2164 		struct nameidata nd;
2165 
2166 		error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2167 		if (error)
2168 			goto out;
2169 		dentry = lookup_create(&nd, 0);
2170 		error = PTR_ERR(dentry);
2171 		if (!IS_ERR(dentry)) {
2172 			error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2173 			dput(dentry);
2174 		}
2175 		mutex_unlock(&nd.dentry->d_inode->i_mutex);
2176 		path_release(&nd);
2177 out:
2178 		putname(to);
2179 	}
2180 	putname(from);
2181 	return error;
2182 }
2183 
2184 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2185 {
2186 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2187 }
2188 
2189 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2190 {
2191 	struct inode *inode = old_dentry->d_inode;
2192 	int error;
2193 
2194 	if (!inode)
2195 		return -ENOENT;
2196 
2197 	error = may_create(dir, new_dentry, NULL);
2198 	if (error)
2199 		return error;
2200 
2201 	if (dir->i_sb != inode->i_sb)
2202 		return -EXDEV;
2203 
2204 	/*
2205 	 * A link to an append-only or immutable file cannot be created.
2206 	 */
2207 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2208 		return -EPERM;
2209 	if (!dir->i_op || !dir->i_op->link)
2210 		return -EPERM;
2211 	if (S_ISDIR(old_dentry->d_inode->i_mode))
2212 		return -EPERM;
2213 
2214 	error = security_inode_link(old_dentry, dir, new_dentry);
2215 	if (error)
2216 		return error;
2217 
2218 	mutex_lock(&old_dentry->d_inode->i_mutex);
2219 	DQUOT_INIT(dir);
2220 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2221 	mutex_unlock(&old_dentry->d_inode->i_mutex);
2222 	if (!error)
2223 		fsnotify_create(dir, new_dentry);
2224 	return error;
2225 }
2226 
2227 /*
2228  * Hardlinks are often used in delicate situations.  We avoid
2229  * security-related surprises by not following symlinks on the
2230  * newname.  --KAB
2231  *
2232  * We don't follow them on the oldname either to be compatible
2233  * with linux 2.0, and to avoid hard-linking to directories
2234  * and other special files.  --ADM
2235  */
2236 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2237 			   int newdfd, const char __user *newname,
2238 			   int flags)
2239 {
2240 	struct dentry *new_dentry;
2241 	struct nameidata nd, old_nd;
2242 	int error;
2243 	char * to;
2244 
2245 	if (flags != 0)
2246 		return -EINVAL;
2247 
2248 	to = getname(newname);
2249 	if (IS_ERR(to))
2250 		return PTR_ERR(to);
2251 
2252 	error = __user_walk_fd(olddfd, oldname, 0, &old_nd);
2253 	if (error)
2254 		goto exit;
2255 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2256 	if (error)
2257 		goto out;
2258 	error = -EXDEV;
2259 	if (old_nd.mnt != nd.mnt)
2260 		goto out_release;
2261 	new_dentry = lookup_create(&nd, 0);
2262 	error = PTR_ERR(new_dentry);
2263 	if (!IS_ERR(new_dentry)) {
2264 		error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2265 		dput(new_dentry);
2266 	}
2267 	mutex_unlock(&nd.dentry->d_inode->i_mutex);
2268 out_release:
2269 	path_release(&nd);
2270 out:
2271 	path_release(&old_nd);
2272 exit:
2273 	putname(to);
2274 
2275 	return error;
2276 }
2277 
2278 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2279 {
2280 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2281 }
2282 
2283 /*
2284  * The worst of all namespace operations - renaming directory. "Perverted"
2285  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2286  * Problems:
2287  *	a) we can get into loop creation. Check is done in is_subdir().
2288  *	b) race potential - two innocent renames can create a loop together.
2289  *	   That's where 4.4 screws up. Current fix: serialization on
2290  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2291  *	   story.
2292  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2293  *	   And that - after we got ->i_mutex on parents (until then we don't know
2294  *	   whether the target exists).  Solution: try to be smart with locking
2295  *	   order for inodes.  We rely on the fact that tree topology may change
2296  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2297  *	   move will be locked.  Thus we can rank directories by the tree
2298  *	   (ancestors first) and rank all non-directories after them.
2299  *	   That works since everybody except rename does "lock parent, lookup,
2300  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2301  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2302  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2303  *	   we'd better make sure that there's no link(2) for them.
2304  *	d) some filesystems don't support opened-but-unlinked directories,
2305  *	   either because of layout or because they are not ready to deal with
2306  *	   all cases correctly. The latter will be fixed (taking this sort of
2307  *	   stuff into VFS), but the former is not going away. Solution: the same
2308  *	   trick as in rmdir().
2309  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2310  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2311  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2312  *	   ->i_mutex on parents, which works but leads to some truely excessive
2313  *	   locking].
2314  */
2315 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2316 			  struct inode *new_dir, struct dentry *new_dentry)
2317 {
2318 	int error = 0;
2319 	struct inode *target;
2320 
2321 	/*
2322 	 * If we are going to change the parent - check write permissions,
2323 	 * we'll need to flip '..'.
2324 	 */
2325 	if (new_dir != old_dir) {
2326 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2327 		if (error)
2328 			return error;
2329 	}
2330 
2331 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2332 	if (error)
2333 		return error;
2334 
2335 	target = new_dentry->d_inode;
2336 	if (target) {
2337 		mutex_lock(&target->i_mutex);
2338 		dentry_unhash(new_dentry);
2339 	}
2340 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2341 		error = -EBUSY;
2342 	else
2343 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2344 	if (target) {
2345 		if (!error)
2346 			target->i_flags |= S_DEAD;
2347 		mutex_unlock(&target->i_mutex);
2348 		if (d_unhashed(new_dentry))
2349 			d_rehash(new_dentry);
2350 		dput(new_dentry);
2351 	}
2352 	if (!error)
2353 		d_move(old_dentry,new_dentry);
2354 	return error;
2355 }
2356 
2357 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2358 			    struct inode *new_dir, struct dentry *new_dentry)
2359 {
2360 	struct inode *target;
2361 	int error;
2362 
2363 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2364 	if (error)
2365 		return error;
2366 
2367 	dget(new_dentry);
2368 	target = new_dentry->d_inode;
2369 	if (target)
2370 		mutex_lock(&target->i_mutex);
2371 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2372 		error = -EBUSY;
2373 	else
2374 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2375 	if (!error) {
2376 		/* The following d_move() should become unconditional */
2377 		if (!(old_dir->i_sb->s_type->fs_flags & FS_ODD_RENAME))
2378 			d_move(old_dentry, new_dentry);
2379 	}
2380 	if (target)
2381 		mutex_unlock(&target->i_mutex);
2382 	dput(new_dentry);
2383 	return error;
2384 }
2385 
2386 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2387 	       struct inode *new_dir, struct dentry *new_dentry)
2388 {
2389 	int error;
2390 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2391 	const char *old_name;
2392 
2393 	if (old_dentry->d_inode == new_dentry->d_inode)
2394  		return 0;
2395 
2396 	error = may_delete(old_dir, old_dentry, is_dir);
2397 	if (error)
2398 		return error;
2399 
2400 	if (!new_dentry->d_inode)
2401 		error = may_create(new_dir, new_dentry, NULL);
2402 	else
2403 		error = may_delete(new_dir, new_dentry, is_dir);
2404 	if (error)
2405 		return error;
2406 
2407 	if (!old_dir->i_op || !old_dir->i_op->rename)
2408 		return -EPERM;
2409 
2410 	DQUOT_INIT(old_dir);
2411 	DQUOT_INIT(new_dir);
2412 
2413 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2414 
2415 	if (is_dir)
2416 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2417 	else
2418 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2419 	if (!error) {
2420 		const char *new_name = old_dentry->d_name.name;
2421 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2422 			      new_dentry->d_inode, old_dentry->d_inode);
2423 	}
2424 	fsnotify_oldname_free(old_name);
2425 
2426 	return error;
2427 }
2428 
2429 static int do_rename(int olddfd, const char *oldname,
2430 			int newdfd, const char *newname)
2431 {
2432 	int error = 0;
2433 	struct dentry * old_dir, * new_dir;
2434 	struct dentry * old_dentry, *new_dentry;
2435 	struct dentry * trap;
2436 	struct nameidata oldnd, newnd;
2437 
2438 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2439 	if (error)
2440 		goto exit;
2441 
2442 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2443 	if (error)
2444 		goto exit1;
2445 
2446 	error = -EXDEV;
2447 	if (oldnd.mnt != newnd.mnt)
2448 		goto exit2;
2449 
2450 	old_dir = oldnd.dentry;
2451 	error = -EBUSY;
2452 	if (oldnd.last_type != LAST_NORM)
2453 		goto exit2;
2454 
2455 	new_dir = newnd.dentry;
2456 	if (newnd.last_type != LAST_NORM)
2457 		goto exit2;
2458 
2459 	trap = lock_rename(new_dir, old_dir);
2460 
2461 	old_dentry = lookup_hash(&oldnd);
2462 	error = PTR_ERR(old_dentry);
2463 	if (IS_ERR(old_dentry))
2464 		goto exit3;
2465 	/* source must exist */
2466 	error = -ENOENT;
2467 	if (!old_dentry->d_inode)
2468 		goto exit4;
2469 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2470 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2471 		error = -ENOTDIR;
2472 		if (oldnd.last.name[oldnd.last.len])
2473 			goto exit4;
2474 		if (newnd.last.name[newnd.last.len])
2475 			goto exit4;
2476 	}
2477 	/* source should not be ancestor of target */
2478 	error = -EINVAL;
2479 	if (old_dentry == trap)
2480 		goto exit4;
2481 	new_dentry = lookup_hash(&newnd);
2482 	error = PTR_ERR(new_dentry);
2483 	if (IS_ERR(new_dentry))
2484 		goto exit4;
2485 	/* target should not be an ancestor of source */
2486 	error = -ENOTEMPTY;
2487 	if (new_dentry == trap)
2488 		goto exit5;
2489 
2490 	error = vfs_rename(old_dir->d_inode, old_dentry,
2491 				   new_dir->d_inode, new_dentry);
2492 exit5:
2493 	dput(new_dentry);
2494 exit4:
2495 	dput(old_dentry);
2496 exit3:
2497 	unlock_rename(new_dir, old_dir);
2498 exit2:
2499 	path_release(&newnd);
2500 exit1:
2501 	path_release(&oldnd);
2502 exit:
2503 	return error;
2504 }
2505 
2506 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2507 			     int newdfd, const char __user *newname)
2508 {
2509 	int error;
2510 	char * from;
2511 	char * to;
2512 
2513 	from = getname(oldname);
2514 	if(IS_ERR(from))
2515 		return PTR_ERR(from);
2516 	to = getname(newname);
2517 	error = PTR_ERR(to);
2518 	if (!IS_ERR(to)) {
2519 		error = do_rename(olddfd, from, newdfd, to);
2520 		putname(to);
2521 	}
2522 	putname(from);
2523 	return error;
2524 }
2525 
2526 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2527 {
2528 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2529 }
2530 
2531 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2532 {
2533 	int len;
2534 
2535 	len = PTR_ERR(link);
2536 	if (IS_ERR(link))
2537 		goto out;
2538 
2539 	len = strlen(link);
2540 	if (len > (unsigned) buflen)
2541 		len = buflen;
2542 	if (copy_to_user(buffer, link, len))
2543 		len = -EFAULT;
2544 out:
2545 	return len;
2546 }
2547 
2548 /*
2549  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2550  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2551  * using) it for any given inode is up to filesystem.
2552  */
2553 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2554 {
2555 	struct nameidata nd;
2556 	void *cookie;
2557 
2558 	nd.depth = 0;
2559 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2560 	if (!IS_ERR(cookie)) {
2561 		int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2562 		if (dentry->d_inode->i_op->put_link)
2563 			dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2564 		cookie = ERR_PTR(res);
2565 	}
2566 	return PTR_ERR(cookie);
2567 }
2568 
2569 int vfs_follow_link(struct nameidata *nd, const char *link)
2570 {
2571 	return __vfs_follow_link(nd, link);
2572 }
2573 
2574 /* get the link contents into pagecache */
2575 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2576 {
2577 	struct page * page;
2578 	struct address_space *mapping = dentry->d_inode->i_mapping;
2579 	page = read_cache_page(mapping, 0, (filler_t *)mapping->a_ops->readpage,
2580 				NULL);
2581 	if (IS_ERR(page))
2582 		goto sync_fail;
2583 	wait_on_page_locked(page);
2584 	if (!PageUptodate(page))
2585 		goto async_fail;
2586 	*ppage = page;
2587 	return kmap(page);
2588 
2589 async_fail:
2590 	page_cache_release(page);
2591 	return ERR_PTR(-EIO);
2592 
2593 sync_fail:
2594 	return (char*)page;
2595 }
2596 
2597 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2598 {
2599 	struct page *page = NULL;
2600 	char *s = page_getlink(dentry, &page);
2601 	int res = vfs_readlink(dentry,buffer,buflen,s);
2602 	if (page) {
2603 		kunmap(page);
2604 		page_cache_release(page);
2605 	}
2606 	return res;
2607 }
2608 
2609 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2610 {
2611 	struct page *page = NULL;
2612 	nd_set_link(nd, page_getlink(dentry, &page));
2613 	return page;
2614 }
2615 
2616 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2617 {
2618 	struct page *page = cookie;
2619 
2620 	if (page) {
2621 		kunmap(page);
2622 		page_cache_release(page);
2623 	}
2624 }
2625 
2626 int __page_symlink(struct inode *inode, const char *symname, int len,
2627 		gfp_t gfp_mask)
2628 {
2629 	struct address_space *mapping = inode->i_mapping;
2630 	struct page *page;
2631 	int err = -ENOMEM;
2632 	char *kaddr;
2633 
2634 retry:
2635 	page = find_or_create_page(mapping, 0, gfp_mask);
2636 	if (!page)
2637 		goto fail;
2638 	err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2639 	if (err == AOP_TRUNCATED_PAGE) {
2640 		page_cache_release(page);
2641 		goto retry;
2642 	}
2643 	if (err)
2644 		goto fail_map;
2645 	kaddr = kmap_atomic(page, KM_USER0);
2646 	memcpy(kaddr, symname, len-1);
2647 	kunmap_atomic(kaddr, KM_USER0);
2648 	err = mapping->a_ops->commit_write(NULL, page, 0, len-1);
2649 	if (err == AOP_TRUNCATED_PAGE) {
2650 		page_cache_release(page);
2651 		goto retry;
2652 	}
2653 	if (err)
2654 		goto fail_map;
2655 	/*
2656 	 * Notice that we are _not_ going to block here - end of page is
2657 	 * unmapped, so this will only try to map the rest of page, see
2658 	 * that it is unmapped (typically even will not look into inode -
2659 	 * ->i_size will be enough for everything) and zero it out.
2660 	 * OTOH it's obviously correct and should make the page up-to-date.
2661 	 */
2662 	if (!PageUptodate(page)) {
2663 		err = mapping->a_ops->readpage(NULL, page);
2664 		if (err != AOP_TRUNCATED_PAGE)
2665 			wait_on_page_locked(page);
2666 	} else {
2667 		unlock_page(page);
2668 	}
2669 	page_cache_release(page);
2670 	if (err < 0)
2671 		goto fail;
2672 	mark_inode_dirty(inode);
2673 	return 0;
2674 fail_map:
2675 	unlock_page(page);
2676 	page_cache_release(page);
2677 fail:
2678 	return err;
2679 }
2680 
2681 int page_symlink(struct inode *inode, const char *symname, int len)
2682 {
2683 	return __page_symlink(inode, symname, len,
2684 			mapping_gfp_mask(inode->i_mapping));
2685 }
2686 
2687 struct inode_operations page_symlink_inode_operations = {
2688 	.readlink	= generic_readlink,
2689 	.follow_link	= page_follow_link_light,
2690 	.put_link	= page_put_link,
2691 };
2692 
2693 EXPORT_SYMBOL(__user_walk);
2694 EXPORT_SYMBOL(__user_walk_fd);
2695 EXPORT_SYMBOL(follow_down);
2696 EXPORT_SYMBOL(follow_up);
2697 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2698 EXPORT_SYMBOL(getname);
2699 EXPORT_SYMBOL(lock_rename);
2700 EXPORT_SYMBOL(lookup_hash);
2701 EXPORT_SYMBOL(lookup_one_len);
2702 EXPORT_SYMBOL(page_follow_link_light);
2703 EXPORT_SYMBOL(page_put_link);
2704 EXPORT_SYMBOL(page_readlink);
2705 EXPORT_SYMBOL(__page_symlink);
2706 EXPORT_SYMBOL(page_symlink);
2707 EXPORT_SYMBOL(page_symlink_inode_operations);
2708 EXPORT_SYMBOL(path_lookup);
2709 EXPORT_SYMBOL(path_release);
2710 EXPORT_SYMBOL(path_walk);
2711 EXPORT_SYMBOL(permission);
2712 EXPORT_SYMBOL(vfs_permission);
2713 EXPORT_SYMBOL(file_permission);
2714 EXPORT_SYMBOL(unlock_rename);
2715 EXPORT_SYMBOL(vfs_create);
2716 EXPORT_SYMBOL(vfs_follow_link);
2717 EXPORT_SYMBOL(vfs_link);
2718 EXPORT_SYMBOL(vfs_mkdir);
2719 EXPORT_SYMBOL(vfs_mknod);
2720 EXPORT_SYMBOL(generic_permission);
2721 EXPORT_SYMBOL(vfs_readlink);
2722 EXPORT_SYMBOL(vfs_rename);
2723 EXPORT_SYMBOL(vfs_rmdir);
2724 EXPORT_SYMBOL(vfs_symlink);
2725 EXPORT_SYMBOL(vfs_unlink);
2726 EXPORT_SYMBOL(dentry_unhash);
2727 EXPORT_SYMBOL(generic_readlink);
2728