1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/smp_lock.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/namei.h> 35 #include <asm/namei.h> 36 #include <asm/uaccess.h> 37 38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 39 40 /* [Feb-1997 T. Schoebel-Theuer] 41 * Fundamental changes in the pathname lookup mechanisms (namei) 42 * were necessary because of omirr. The reason is that omirr needs 43 * to know the _real_ pathname, not the user-supplied one, in case 44 * of symlinks (and also when transname replacements occur). 45 * 46 * The new code replaces the old recursive symlink resolution with 47 * an iterative one (in case of non-nested symlink chains). It does 48 * this with calls to <fs>_follow_link(). 49 * As a side effect, dir_namei(), _namei() and follow_link() are now 50 * replaced with a single function lookup_dentry() that can handle all 51 * the special cases of the former code. 52 * 53 * With the new dcache, the pathname is stored at each inode, at least as 54 * long as the refcount of the inode is positive. As a side effect, the 55 * size of the dcache depends on the inode cache and thus is dynamic. 56 * 57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 58 * resolution to correspond with current state of the code. 59 * 60 * Note that the symlink resolution is not *completely* iterative. 61 * There is still a significant amount of tail- and mid- recursion in 62 * the algorithm. Also, note that <fs>_readlink() is not used in 63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 64 * may return different results than <fs>_follow_link(). Many virtual 65 * filesystems (including /proc) exhibit this behavior. 66 */ 67 68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 70 * and the name already exists in form of a symlink, try to create the new 71 * name indicated by the symlink. The old code always complained that the 72 * name already exists, due to not following the symlink even if its target 73 * is nonexistent. The new semantics affects also mknod() and link() when 74 * the name is a symlink pointing to a non-existant name. 75 * 76 * I don't know which semantics is the right one, since I have no access 77 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 79 * "old" one. Personally, I think the new semantics is much more logical. 80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 81 * file does succeed in both HP-UX and SunOs, but not in Solaris 82 * and in the old Linux semantics. 83 */ 84 85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 86 * semantics. See the comments in "open_namei" and "do_link" below. 87 * 88 * [10-Sep-98 Alan Modra] Another symlink change. 89 */ 90 91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 92 * inside the path - always follow. 93 * in the last component in creation/removal/renaming - never follow. 94 * if LOOKUP_FOLLOW passed - follow. 95 * if the pathname has trailing slashes - follow. 96 * otherwise - don't follow. 97 * (applied in that order). 98 * 99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 101 * During the 2.4 we need to fix the userland stuff depending on it - 102 * hopefully we will be able to get rid of that wart in 2.5. So far only 103 * XEmacs seems to be relying on it... 104 */ 105 /* 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 108 * any extra contention... 109 */ 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(current->audit_context)) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 171 /** 172 * generic_permission - check for access rights on a Posix-like filesystem 173 * @inode: inode to check access rights for 174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 175 * @check_acl: optional callback to check for Posix ACLs 176 * 177 * Used to check for read/write/execute permissions on a file. 178 * We use "fsuid" for this, letting us set arbitrary permissions 179 * for filesystem access without changing the "normal" uids which 180 * are used for other things.. 181 */ 182 int generic_permission(struct inode *inode, int mask, 183 int (*check_acl)(struct inode *inode, int mask)) 184 { 185 umode_t mode = inode->i_mode; 186 187 if (current->fsuid == inode->i_uid) 188 mode >>= 6; 189 else { 190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 191 int error = check_acl(inode, mask); 192 if (error == -EACCES) 193 goto check_capabilities; 194 else if (error != -EAGAIN) 195 return error; 196 } 197 198 if (in_group_p(inode->i_gid)) 199 mode >>= 3; 200 } 201 202 /* 203 * If the DACs are ok we don't need any capability check. 204 */ 205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask)) 206 return 0; 207 208 check_capabilities: 209 /* 210 * Read/write DACs are always overridable. 211 * Executable DACs are overridable if at least one exec bit is set. 212 */ 213 if (!(mask & MAY_EXEC) || 214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 215 if (capable(CAP_DAC_OVERRIDE)) 216 return 0; 217 218 /* 219 * Searching includes executable on directories, else just read. 220 */ 221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 222 if (capable(CAP_DAC_READ_SEARCH)) 223 return 0; 224 225 return -EACCES; 226 } 227 228 int permission(struct inode *inode, int mask, struct nameidata *nd) 229 { 230 int retval, submask; 231 232 if (mask & MAY_WRITE) { 233 umode_t mode = inode->i_mode; 234 235 /* 236 * Nobody gets write access to a read-only fs. 237 */ 238 if (IS_RDONLY(inode) && 239 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 240 return -EROFS; 241 242 /* 243 * Nobody gets write access to an immutable file. 244 */ 245 if (IS_IMMUTABLE(inode)) 246 return -EACCES; 247 } 248 249 250 /* Ordinary permission routines do not understand MAY_APPEND. */ 251 submask = mask & ~MAY_APPEND; 252 if (inode->i_op && inode->i_op->permission) 253 retval = inode->i_op->permission(inode, submask, nd); 254 else 255 retval = generic_permission(inode, submask, NULL); 256 if (retval) 257 return retval; 258 259 return security_inode_permission(inode, mask, nd); 260 } 261 262 /** 263 * vfs_permission - check for access rights to a given path 264 * @nd: lookup result that describes the path 265 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 266 * 267 * Used to check for read/write/execute permissions on a path. 268 * We use "fsuid" for this, letting us set arbitrary permissions 269 * for filesystem access without changing the "normal" uids which 270 * are used for other things. 271 */ 272 int vfs_permission(struct nameidata *nd, int mask) 273 { 274 return permission(nd->dentry->d_inode, mask, nd); 275 } 276 277 /** 278 * file_permission - check for additional access rights to a given file 279 * @file: file to check access rights for 280 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 281 * 282 * Used to check for read/write/execute permissions on an already opened 283 * file. 284 * 285 * Note: 286 * Do not use this function in new code. All access checks should 287 * be done using vfs_permission(). 288 */ 289 int file_permission(struct file *file, int mask) 290 { 291 return permission(file->f_dentry->d_inode, mask, NULL); 292 } 293 294 /* 295 * get_write_access() gets write permission for a file. 296 * put_write_access() releases this write permission. 297 * This is used for regular files. 298 * We cannot support write (and maybe mmap read-write shared) accesses and 299 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 300 * can have the following values: 301 * 0: no writers, no VM_DENYWRITE mappings 302 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 303 * > 0: (i_writecount) users are writing to the file. 304 * 305 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 306 * except for the cases where we don't hold i_writecount yet. Then we need to 307 * use {get,deny}_write_access() - these functions check the sign and refuse 308 * to do the change if sign is wrong. Exclusion between them is provided by 309 * the inode->i_lock spinlock. 310 */ 311 312 int get_write_access(struct inode * inode) 313 { 314 spin_lock(&inode->i_lock); 315 if (atomic_read(&inode->i_writecount) < 0) { 316 spin_unlock(&inode->i_lock); 317 return -ETXTBSY; 318 } 319 atomic_inc(&inode->i_writecount); 320 spin_unlock(&inode->i_lock); 321 322 return 0; 323 } 324 325 int deny_write_access(struct file * file) 326 { 327 struct inode *inode = file->f_dentry->d_inode; 328 329 spin_lock(&inode->i_lock); 330 if (atomic_read(&inode->i_writecount) > 0) { 331 spin_unlock(&inode->i_lock); 332 return -ETXTBSY; 333 } 334 atomic_dec(&inode->i_writecount); 335 spin_unlock(&inode->i_lock); 336 337 return 0; 338 } 339 340 void path_release(struct nameidata *nd) 341 { 342 dput(nd->dentry); 343 mntput(nd->mnt); 344 } 345 346 /* 347 * umount() mustn't call path_release()/mntput() as that would clear 348 * mnt_expiry_mark 349 */ 350 void path_release_on_umount(struct nameidata *nd) 351 { 352 dput(nd->dentry); 353 mntput_no_expire(nd->mnt); 354 } 355 356 /** 357 * release_open_intent - free up open intent resources 358 * @nd: pointer to nameidata 359 */ 360 void release_open_intent(struct nameidata *nd) 361 { 362 if (nd->intent.open.file->f_dentry == NULL) 363 put_filp(nd->intent.open.file); 364 else 365 fput(nd->intent.open.file); 366 } 367 368 /* 369 * Internal lookup() using the new generic dcache. 370 * SMP-safe 371 */ 372 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 373 { 374 struct dentry * dentry = __d_lookup(parent, name); 375 376 /* lockess __d_lookup may fail due to concurrent d_move() 377 * in some unrelated directory, so try with d_lookup 378 */ 379 if (!dentry) 380 dentry = d_lookup(parent, name); 381 382 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) { 383 if (!dentry->d_op->d_revalidate(dentry, nd) && !d_invalidate(dentry)) { 384 dput(dentry); 385 dentry = NULL; 386 } 387 } 388 return dentry; 389 } 390 391 /* 392 * Short-cut version of permission(), for calling by 393 * path_walk(), when dcache lock is held. Combines parts 394 * of permission() and generic_permission(), and tests ONLY for 395 * MAY_EXEC permission. 396 * 397 * If appropriate, check DAC only. If not appropriate, or 398 * short-cut DAC fails, then call permission() to do more 399 * complete permission check. 400 */ 401 static int exec_permission_lite(struct inode *inode, 402 struct nameidata *nd) 403 { 404 umode_t mode = inode->i_mode; 405 406 if (inode->i_op && inode->i_op->permission) 407 return -EAGAIN; 408 409 if (current->fsuid == inode->i_uid) 410 mode >>= 6; 411 else if (in_group_p(inode->i_gid)) 412 mode >>= 3; 413 414 if (mode & MAY_EXEC) 415 goto ok; 416 417 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 418 goto ok; 419 420 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 421 goto ok; 422 423 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 424 goto ok; 425 426 return -EACCES; 427 ok: 428 return security_inode_permission(inode, MAY_EXEC, nd); 429 } 430 431 /* 432 * This is called when everything else fails, and we actually have 433 * to go to the low-level filesystem to find out what we should do.. 434 * 435 * We get the directory semaphore, and after getting that we also 436 * make sure that nobody added the entry to the dcache in the meantime.. 437 * SMP-safe 438 */ 439 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 440 { 441 struct dentry * result; 442 struct inode *dir = parent->d_inode; 443 444 mutex_lock(&dir->i_mutex); 445 /* 446 * First re-do the cached lookup just in case it was created 447 * while we waited for the directory semaphore.. 448 * 449 * FIXME! This could use version numbering or similar to 450 * avoid unnecessary cache lookups. 451 * 452 * The "dcache_lock" is purely to protect the RCU list walker 453 * from concurrent renames at this point (we mustn't get false 454 * negatives from the RCU list walk here, unlike the optimistic 455 * fast walk). 456 * 457 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 458 */ 459 result = d_lookup(parent, name); 460 if (!result) { 461 struct dentry * dentry = d_alloc(parent, name); 462 result = ERR_PTR(-ENOMEM); 463 if (dentry) { 464 result = dir->i_op->lookup(dir, dentry, nd); 465 if (result) 466 dput(dentry); 467 else 468 result = dentry; 469 } 470 mutex_unlock(&dir->i_mutex); 471 return result; 472 } 473 474 /* 475 * Uhhuh! Nasty case: the cache was re-populated while 476 * we waited on the semaphore. Need to revalidate. 477 */ 478 mutex_unlock(&dir->i_mutex); 479 if (result->d_op && result->d_op->d_revalidate) { 480 if (!result->d_op->d_revalidate(result, nd) && !d_invalidate(result)) { 481 dput(result); 482 result = ERR_PTR(-ENOENT); 483 } 484 } 485 return result; 486 } 487 488 static int __emul_lookup_dentry(const char *, struct nameidata *); 489 490 /* SMP-safe */ 491 static __always_inline int 492 walk_init_root(const char *name, struct nameidata *nd) 493 { 494 read_lock(¤t->fs->lock); 495 if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 496 nd->mnt = mntget(current->fs->altrootmnt); 497 nd->dentry = dget(current->fs->altroot); 498 read_unlock(¤t->fs->lock); 499 if (__emul_lookup_dentry(name,nd)) 500 return 0; 501 read_lock(¤t->fs->lock); 502 } 503 nd->mnt = mntget(current->fs->rootmnt); 504 nd->dentry = dget(current->fs->root); 505 read_unlock(¤t->fs->lock); 506 return 1; 507 } 508 509 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 510 { 511 int res = 0; 512 char *name; 513 if (IS_ERR(link)) 514 goto fail; 515 516 if (*link == '/') { 517 path_release(nd); 518 if (!walk_init_root(link, nd)) 519 /* weird __emul_prefix() stuff did it */ 520 goto out; 521 } 522 res = link_path_walk(link, nd); 523 out: 524 if (nd->depth || res || nd->last_type!=LAST_NORM) 525 return res; 526 /* 527 * If it is an iterative symlinks resolution in open_namei() we 528 * have to copy the last component. And all that crap because of 529 * bloody create() on broken symlinks. Furrfu... 530 */ 531 name = __getname(); 532 if (unlikely(!name)) { 533 path_release(nd); 534 return -ENOMEM; 535 } 536 strcpy(name, nd->last.name); 537 nd->last.name = name; 538 return 0; 539 fail: 540 path_release(nd); 541 return PTR_ERR(link); 542 } 543 544 struct path { 545 struct vfsmount *mnt; 546 struct dentry *dentry; 547 }; 548 549 static inline void dput_path(struct path *path, struct nameidata *nd) 550 { 551 dput(path->dentry); 552 if (path->mnt != nd->mnt) 553 mntput(path->mnt); 554 } 555 556 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 557 { 558 dput(nd->dentry); 559 if (nd->mnt != path->mnt) 560 mntput(nd->mnt); 561 nd->mnt = path->mnt; 562 nd->dentry = path->dentry; 563 } 564 565 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 566 { 567 int error; 568 void *cookie; 569 struct dentry *dentry = path->dentry; 570 571 touch_atime(path->mnt, dentry); 572 nd_set_link(nd, NULL); 573 574 if (path->mnt != nd->mnt) { 575 path_to_nameidata(path, nd); 576 dget(dentry); 577 } 578 mntget(path->mnt); 579 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 580 error = PTR_ERR(cookie); 581 if (!IS_ERR(cookie)) { 582 char *s = nd_get_link(nd); 583 error = 0; 584 if (s) 585 error = __vfs_follow_link(nd, s); 586 if (dentry->d_inode->i_op->put_link) 587 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 588 } 589 dput(dentry); 590 mntput(path->mnt); 591 592 return error; 593 } 594 595 /* 596 * This limits recursive symlink follows to 8, while 597 * limiting consecutive symlinks to 40. 598 * 599 * Without that kind of total limit, nasty chains of consecutive 600 * symlinks can cause almost arbitrarily long lookups. 601 */ 602 static inline int do_follow_link(struct path *path, struct nameidata *nd) 603 { 604 int err = -ELOOP; 605 if (current->link_count >= MAX_NESTED_LINKS) 606 goto loop; 607 if (current->total_link_count >= 40) 608 goto loop; 609 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 610 cond_resched(); 611 err = security_inode_follow_link(path->dentry, nd); 612 if (err) 613 goto loop; 614 current->link_count++; 615 current->total_link_count++; 616 nd->depth++; 617 err = __do_follow_link(path, nd); 618 current->link_count--; 619 nd->depth--; 620 return err; 621 loop: 622 dput_path(path, nd); 623 path_release(nd); 624 return err; 625 } 626 627 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 628 { 629 struct vfsmount *parent; 630 struct dentry *mountpoint; 631 spin_lock(&vfsmount_lock); 632 parent=(*mnt)->mnt_parent; 633 if (parent == *mnt) { 634 spin_unlock(&vfsmount_lock); 635 return 0; 636 } 637 mntget(parent); 638 mountpoint=dget((*mnt)->mnt_mountpoint); 639 spin_unlock(&vfsmount_lock); 640 dput(*dentry); 641 *dentry = mountpoint; 642 mntput(*mnt); 643 *mnt = parent; 644 return 1; 645 } 646 647 /* no need for dcache_lock, as serialization is taken care in 648 * namespace.c 649 */ 650 static int __follow_mount(struct path *path) 651 { 652 int res = 0; 653 while (d_mountpoint(path->dentry)) { 654 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 655 if (!mounted) 656 break; 657 dput(path->dentry); 658 if (res) 659 mntput(path->mnt); 660 path->mnt = mounted; 661 path->dentry = dget(mounted->mnt_root); 662 res = 1; 663 } 664 return res; 665 } 666 667 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 668 { 669 while (d_mountpoint(*dentry)) { 670 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 671 if (!mounted) 672 break; 673 dput(*dentry); 674 mntput(*mnt); 675 *mnt = mounted; 676 *dentry = dget(mounted->mnt_root); 677 } 678 } 679 680 /* no need for dcache_lock, as serialization is taken care in 681 * namespace.c 682 */ 683 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 684 { 685 struct vfsmount *mounted; 686 687 mounted = lookup_mnt(*mnt, *dentry); 688 if (mounted) { 689 dput(*dentry); 690 mntput(*mnt); 691 *mnt = mounted; 692 *dentry = dget(mounted->mnt_root); 693 return 1; 694 } 695 return 0; 696 } 697 698 static __always_inline void follow_dotdot(struct nameidata *nd) 699 { 700 while(1) { 701 struct vfsmount *parent; 702 struct dentry *old = nd->dentry; 703 704 read_lock(¤t->fs->lock); 705 if (nd->dentry == current->fs->root && 706 nd->mnt == current->fs->rootmnt) { 707 read_unlock(¤t->fs->lock); 708 break; 709 } 710 read_unlock(¤t->fs->lock); 711 spin_lock(&dcache_lock); 712 if (nd->dentry != nd->mnt->mnt_root) { 713 nd->dentry = dget(nd->dentry->d_parent); 714 spin_unlock(&dcache_lock); 715 dput(old); 716 break; 717 } 718 spin_unlock(&dcache_lock); 719 spin_lock(&vfsmount_lock); 720 parent = nd->mnt->mnt_parent; 721 if (parent == nd->mnt) { 722 spin_unlock(&vfsmount_lock); 723 break; 724 } 725 mntget(parent); 726 nd->dentry = dget(nd->mnt->mnt_mountpoint); 727 spin_unlock(&vfsmount_lock); 728 dput(old); 729 mntput(nd->mnt); 730 nd->mnt = parent; 731 } 732 follow_mount(&nd->mnt, &nd->dentry); 733 } 734 735 /* 736 * It's more convoluted than I'd like it to be, but... it's still fairly 737 * small and for now I'd prefer to have fast path as straight as possible. 738 * It _is_ time-critical. 739 */ 740 static int do_lookup(struct nameidata *nd, struct qstr *name, 741 struct path *path) 742 { 743 struct vfsmount *mnt = nd->mnt; 744 struct dentry *dentry = __d_lookup(nd->dentry, name); 745 746 if (!dentry) 747 goto need_lookup; 748 if (dentry->d_op && dentry->d_op->d_revalidate) 749 goto need_revalidate; 750 done: 751 path->mnt = mnt; 752 path->dentry = dentry; 753 __follow_mount(path); 754 return 0; 755 756 need_lookup: 757 dentry = real_lookup(nd->dentry, name, nd); 758 if (IS_ERR(dentry)) 759 goto fail; 760 goto done; 761 762 need_revalidate: 763 if (dentry->d_op->d_revalidate(dentry, nd)) 764 goto done; 765 if (d_invalidate(dentry)) 766 goto done; 767 dput(dentry); 768 goto need_lookup; 769 770 fail: 771 return PTR_ERR(dentry); 772 } 773 774 /* 775 * Name resolution. 776 * This is the basic name resolution function, turning a pathname into 777 * the final dentry. We expect 'base' to be positive and a directory. 778 * 779 * Returns 0 and nd will have valid dentry and mnt on success. 780 * Returns error and drops reference to input namei data on failure. 781 */ 782 static fastcall int __link_path_walk(const char * name, struct nameidata *nd) 783 { 784 struct path next; 785 struct inode *inode; 786 int err; 787 unsigned int lookup_flags = nd->flags; 788 789 while (*name=='/') 790 name++; 791 if (!*name) 792 goto return_reval; 793 794 inode = nd->dentry->d_inode; 795 if (nd->depth) 796 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 797 798 /* At this point we know we have a real path component. */ 799 for(;;) { 800 unsigned long hash; 801 struct qstr this; 802 unsigned int c; 803 804 nd->flags |= LOOKUP_CONTINUE; 805 err = exec_permission_lite(inode, nd); 806 if (err == -EAGAIN) 807 err = vfs_permission(nd, MAY_EXEC); 808 if (err) 809 break; 810 811 this.name = name; 812 c = *(const unsigned char *)name; 813 814 hash = init_name_hash(); 815 do { 816 name++; 817 hash = partial_name_hash(c, hash); 818 c = *(const unsigned char *)name; 819 } while (c && (c != '/')); 820 this.len = name - (const char *) this.name; 821 this.hash = end_name_hash(hash); 822 823 /* remove trailing slashes? */ 824 if (!c) 825 goto last_component; 826 while (*++name == '/'); 827 if (!*name) 828 goto last_with_slashes; 829 830 /* 831 * "." and ".." are special - ".." especially so because it has 832 * to be able to know about the current root directory and 833 * parent relationships. 834 */ 835 if (this.name[0] == '.') switch (this.len) { 836 default: 837 break; 838 case 2: 839 if (this.name[1] != '.') 840 break; 841 follow_dotdot(nd); 842 inode = nd->dentry->d_inode; 843 /* fallthrough */ 844 case 1: 845 continue; 846 } 847 /* 848 * See if the low-level filesystem might want 849 * to use its own hash.. 850 */ 851 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 852 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 853 if (err < 0) 854 break; 855 } 856 /* This does the actual lookups.. */ 857 err = do_lookup(nd, &this, &next); 858 if (err) 859 break; 860 861 err = -ENOENT; 862 inode = next.dentry->d_inode; 863 if (!inode) 864 goto out_dput; 865 err = -ENOTDIR; 866 if (!inode->i_op) 867 goto out_dput; 868 869 if (inode->i_op->follow_link) { 870 err = do_follow_link(&next, nd); 871 if (err) 872 goto return_err; 873 err = -ENOENT; 874 inode = nd->dentry->d_inode; 875 if (!inode) 876 break; 877 err = -ENOTDIR; 878 if (!inode->i_op) 879 break; 880 } else 881 path_to_nameidata(&next, nd); 882 err = -ENOTDIR; 883 if (!inode->i_op->lookup) 884 break; 885 continue; 886 /* here ends the main loop */ 887 888 last_with_slashes: 889 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 890 last_component: 891 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 892 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 893 if (lookup_flags & LOOKUP_PARENT) 894 goto lookup_parent; 895 if (this.name[0] == '.') switch (this.len) { 896 default: 897 break; 898 case 2: 899 if (this.name[1] != '.') 900 break; 901 follow_dotdot(nd); 902 inode = nd->dentry->d_inode; 903 /* fallthrough */ 904 case 1: 905 goto return_reval; 906 } 907 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) { 908 err = nd->dentry->d_op->d_hash(nd->dentry, &this); 909 if (err < 0) 910 break; 911 } 912 err = do_lookup(nd, &this, &next); 913 if (err) 914 break; 915 inode = next.dentry->d_inode; 916 if ((lookup_flags & LOOKUP_FOLLOW) 917 && inode && inode->i_op && inode->i_op->follow_link) { 918 err = do_follow_link(&next, nd); 919 if (err) 920 goto return_err; 921 inode = nd->dentry->d_inode; 922 } else 923 path_to_nameidata(&next, nd); 924 err = -ENOENT; 925 if (!inode) 926 break; 927 if (lookup_flags & LOOKUP_DIRECTORY) { 928 err = -ENOTDIR; 929 if (!inode->i_op || !inode->i_op->lookup) 930 break; 931 } 932 goto return_base; 933 lookup_parent: 934 nd->last = this; 935 nd->last_type = LAST_NORM; 936 if (this.name[0] != '.') 937 goto return_base; 938 if (this.len == 1) 939 nd->last_type = LAST_DOT; 940 else if (this.len == 2 && this.name[1] == '.') 941 nd->last_type = LAST_DOTDOT; 942 else 943 goto return_base; 944 return_reval: 945 /* 946 * We bypassed the ordinary revalidation routines. 947 * We may need to check the cached dentry for staleness. 948 */ 949 if (nd->dentry && nd->dentry->d_sb && 950 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 951 err = -ESTALE; 952 /* Note: we do not d_invalidate() */ 953 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd)) 954 break; 955 } 956 return_base: 957 return 0; 958 out_dput: 959 dput_path(&next, nd); 960 break; 961 } 962 path_release(nd); 963 return_err: 964 return err; 965 } 966 967 /* 968 * Wrapper to retry pathname resolution whenever the underlying 969 * file system returns an ESTALE. 970 * 971 * Retry the whole path once, forcing real lookup requests 972 * instead of relying on the dcache. 973 */ 974 int fastcall link_path_walk(const char *name, struct nameidata *nd) 975 { 976 struct nameidata save = *nd; 977 int result; 978 979 /* make sure the stuff we saved doesn't go away */ 980 dget(save.dentry); 981 mntget(save.mnt); 982 983 result = __link_path_walk(name, nd); 984 if (result == -ESTALE) { 985 *nd = save; 986 dget(nd->dentry); 987 mntget(nd->mnt); 988 nd->flags |= LOOKUP_REVAL; 989 result = __link_path_walk(name, nd); 990 } 991 992 dput(save.dentry); 993 mntput(save.mnt); 994 995 return result; 996 } 997 998 int fastcall path_walk(const char * name, struct nameidata *nd) 999 { 1000 current->total_link_count = 0; 1001 return link_path_walk(name, nd); 1002 } 1003 1004 /* 1005 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if 1006 * everything is done. Returns 0 and drops input nd, if lookup failed; 1007 */ 1008 static int __emul_lookup_dentry(const char *name, struct nameidata *nd) 1009 { 1010 if (path_walk(name, nd)) 1011 return 0; /* something went wrong... */ 1012 1013 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) { 1014 struct dentry *old_dentry = nd->dentry; 1015 struct vfsmount *old_mnt = nd->mnt; 1016 struct qstr last = nd->last; 1017 int last_type = nd->last_type; 1018 /* 1019 * NAME was not found in alternate root or it's a directory. Try to find 1020 * it in the normal root: 1021 */ 1022 nd->last_type = LAST_ROOT; 1023 read_lock(¤t->fs->lock); 1024 nd->mnt = mntget(current->fs->rootmnt); 1025 nd->dentry = dget(current->fs->root); 1026 read_unlock(¤t->fs->lock); 1027 if (path_walk(name, nd) == 0) { 1028 if (nd->dentry->d_inode) { 1029 dput(old_dentry); 1030 mntput(old_mnt); 1031 return 1; 1032 } 1033 path_release(nd); 1034 } 1035 nd->dentry = old_dentry; 1036 nd->mnt = old_mnt; 1037 nd->last = last; 1038 nd->last_type = last_type; 1039 } 1040 return 1; 1041 } 1042 1043 void set_fs_altroot(void) 1044 { 1045 char *emul = __emul_prefix(); 1046 struct nameidata nd; 1047 struct vfsmount *mnt = NULL, *oldmnt; 1048 struct dentry *dentry = NULL, *olddentry; 1049 int err; 1050 1051 if (!emul) 1052 goto set_it; 1053 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd); 1054 if (!err) { 1055 mnt = nd.mnt; 1056 dentry = nd.dentry; 1057 } 1058 set_it: 1059 write_lock(¤t->fs->lock); 1060 oldmnt = current->fs->altrootmnt; 1061 olddentry = current->fs->altroot; 1062 current->fs->altrootmnt = mnt; 1063 current->fs->altroot = dentry; 1064 write_unlock(¤t->fs->lock); 1065 if (olddentry) { 1066 dput(olddentry); 1067 mntput(oldmnt); 1068 } 1069 } 1070 1071 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1072 static int fastcall do_path_lookup(int dfd, const char *name, 1073 unsigned int flags, struct nameidata *nd) 1074 { 1075 int retval = 0; 1076 int fput_needed; 1077 struct file *file; 1078 1079 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1080 nd->flags = flags; 1081 nd->depth = 0; 1082 1083 read_lock(¤t->fs->lock); 1084 if (*name=='/') { 1085 if (current->fs->altroot && !(nd->flags & LOOKUP_NOALT)) { 1086 nd->mnt = mntget(current->fs->altrootmnt); 1087 nd->dentry = dget(current->fs->altroot); 1088 read_unlock(¤t->fs->lock); 1089 if (__emul_lookup_dentry(name,nd)) 1090 goto out; /* found in altroot */ 1091 read_lock(¤t->fs->lock); 1092 } 1093 nd->mnt = mntget(current->fs->rootmnt); 1094 nd->dentry = dget(current->fs->root); 1095 } else if (dfd == AT_FDCWD) { 1096 nd->mnt = mntget(current->fs->pwdmnt); 1097 nd->dentry = dget(current->fs->pwd); 1098 } else { 1099 struct dentry *dentry; 1100 1101 file = fget_light(dfd, &fput_needed); 1102 retval = -EBADF; 1103 if (!file) 1104 goto unlock_fail; 1105 1106 dentry = file->f_dentry; 1107 1108 retval = -ENOTDIR; 1109 if (!S_ISDIR(dentry->d_inode->i_mode)) 1110 goto fput_unlock_fail; 1111 1112 retval = file_permission(file, MAY_EXEC); 1113 if (retval) 1114 goto fput_unlock_fail; 1115 1116 nd->mnt = mntget(file->f_vfsmnt); 1117 nd->dentry = dget(dentry); 1118 1119 fput_light(file, fput_needed); 1120 } 1121 read_unlock(¤t->fs->lock); 1122 current->total_link_count = 0; 1123 retval = link_path_walk(name, nd); 1124 out: 1125 if (likely(retval == 0)) { 1126 if (unlikely(current->audit_context && nd && nd->dentry && 1127 nd->dentry->d_inode)) 1128 audit_inode(name, nd->dentry->d_inode, flags); 1129 } 1130 return retval; 1131 1132 fput_unlock_fail: 1133 fput_light(file, fput_needed); 1134 unlock_fail: 1135 read_unlock(¤t->fs->lock); 1136 return retval; 1137 } 1138 1139 int fastcall path_lookup(const char *name, unsigned int flags, 1140 struct nameidata *nd) 1141 { 1142 return do_path_lookup(AT_FDCWD, name, flags, nd); 1143 } 1144 1145 static int __path_lookup_intent_open(int dfd, const char *name, 1146 unsigned int lookup_flags, struct nameidata *nd, 1147 int open_flags, int create_mode) 1148 { 1149 struct file *filp = get_empty_filp(); 1150 int err; 1151 1152 if (filp == NULL) 1153 return -ENFILE; 1154 nd->intent.open.file = filp; 1155 nd->intent.open.flags = open_flags; 1156 nd->intent.open.create_mode = create_mode; 1157 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1158 if (IS_ERR(nd->intent.open.file)) { 1159 if (err == 0) { 1160 err = PTR_ERR(nd->intent.open.file); 1161 path_release(nd); 1162 } 1163 } else if (err != 0) 1164 release_open_intent(nd); 1165 return err; 1166 } 1167 1168 /** 1169 * path_lookup_open - lookup a file path with open intent 1170 * @dfd: the directory to use as base, or AT_FDCWD 1171 * @name: pointer to file name 1172 * @lookup_flags: lookup intent flags 1173 * @nd: pointer to nameidata 1174 * @open_flags: open intent flags 1175 */ 1176 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1177 struct nameidata *nd, int open_flags) 1178 { 1179 return __path_lookup_intent_open(dfd, name, lookup_flags, nd, 1180 open_flags, 0); 1181 } 1182 1183 /** 1184 * path_lookup_create - lookup a file path with open + create intent 1185 * @dfd: the directory to use as base, or AT_FDCWD 1186 * @name: pointer to file name 1187 * @lookup_flags: lookup intent flags 1188 * @nd: pointer to nameidata 1189 * @open_flags: open intent flags 1190 * @create_mode: create intent flags 1191 */ 1192 static int path_lookup_create(int dfd, const char *name, 1193 unsigned int lookup_flags, struct nameidata *nd, 1194 int open_flags, int create_mode) 1195 { 1196 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE, 1197 nd, open_flags, create_mode); 1198 } 1199 1200 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags, 1201 struct nameidata *nd, int open_flags) 1202 { 1203 char *tmp = getname(name); 1204 int err = PTR_ERR(tmp); 1205 1206 if (!IS_ERR(tmp)) { 1207 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0); 1208 putname(tmp); 1209 } 1210 return err; 1211 } 1212 1213 /* 1214 * Restricted form of lookup. Doesn't follow links, single-component only, 1215 * needs parent already locked. Doesn't follow mounts. 1216 * SMP-safe. 1217 */ 1218 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd) 1219 { 1220 struct dentry * dentry; 1221 struct inode *inode; 1222 int err; 1223 1224 inode = base->d_inode; 1225 err = permission(inode, MAY_EXEC, nd); 1226 dentry = ERR_PTR(err); 1227 if (err) 1228 goto out; 1229 1230 /* 1231 * See if the low-level filesystem might want 1232 * to use its own hash.. 1233 */ 1234 if (base->d_op && base->d_op->d_hash) { 1235 err = base->d_op->d_hash(base, name); 1236 dentry = ERR_PTR(err); 1237 if (err < 0) 1238 goto out; 1239 } 1240 1241 dentry = cached_lookup(base, name, nd); 1242 if (!dentry) { 1243 struct dentry *new = d_alloc(base, name); 1244 dentry = ERR_PTR(-ENOMEM); 1245 if (!new) 1246 goto out; 1247 dentry = inode->i_op->lookup(inode, new, nd); 1248 if (!dentry) 1249 dentry = new; 1250 else 1251 dput(new); 1252 } 1253 out: 1254 return dentry; 1255 } 1256 1257 struct dentry * lookup_hash(struct nameidata *nd) 1258 { 1259 return __lookup_hash(&nd->last, nd->dentry, nd); 1260 } 1261 1262 /* SMP-safe */ 1263 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len) 1264 { 1265 unsigned long hash; 1266 struct qstr this; 1267 unsigned int c; 1268 1269 this.name = name; 1270 this.len = len; 1271 if (!len) 1272 goto access; 1273 1274 hash = init_name_hash(); 1275 while (len--) { 1276 c = *(const unsigned char *)name++; 1277 if (c == '/' || c == '\0') 1278 goto access; 1279 hash = partial_name_hash(c, hash); 1280 } 1281 this.hash = end_name_hash(hash); 1282 1283 return __lookup_hash(&this, base, NULL); 1284 access: 1285 return ERR_PTR(-EACCES); 1286 } 1287 1288 /* 1289 * namei() 1290 * 1291 * is used by most simple commands to get the inode of a specified name. 1292 * Open, link etc use their own routines, but this is enough for things 1293 * like 'chmod' etc. 1294 * 1295 * namei exists in two versions: namei/lnamei. The only difference is 1296 * that namei follows links, while lnamei does not. 1297 * SMP-safe 1298 */ 1299 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags, 1300 struct nameidata *nd) 1301 { 1302 char *tmp = getname(name); 1303 int err = PTR_ERR(tmp); 1304 1305 if (!IS_ERR(tmp)) { 1306 err = do_path_lookup(dfd, tmp, flags, nd); 1307 putname(tmp); 1308 } 1309 return err; 1310 } 1311 1312 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd) 1313 { 1314 return __user_walk_fd(AT_FDCWD, name, flags, nd); 1315 } 1316 1317 /* 1318 * It's inline, so penalty for filesystems that don't use sticky bit is 1319 * minimal. 1320 */ 1321 static inline int check_sticky(struct inode *dir, struct inode *inode) 1322 { 1323 if (!(dir->i_mode & S_ISVTX)) 1324 return 0; 1325 if (inode->i_uid == current->fsuid) 1326 return 0; 1327 if (dir->i_uid == current->fsuid) 1328 return 0; 1329 return !capable(CAP_FOWNER); 1330 } 1331 1332 /* 1333 * Check whether we can remove a link victim from directory dir, check 1334 * whether the type of victim is right. 1335 * 1. We can't do it if dir is read-only (done in permission()) 1336 * 2. We should have write and exec permissions on dir 1337 * 3. We can't remove anything from append-only dir 1338 * 4. We can't do anything with immutable dir (done in permission()) 1339 * 5. If the sticky bit on dir is set we should either 1340 * a. be owner of dir, or 1341 * b. be owner of victim, or 1342 * c. have CAP_FOWNER capability 1343 * 6. If the victim is append-only or immutable we can't do antyhing with 1344 * links pointing to it. 1345 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1346 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1347 * 9. We can't remove a root or mountpoint. 1348 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1349 * nfs_async_unlink(). 1350 */ 1351 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1352 { 1353 int error; 1354 1355 if (!victim->d_inode) 1356 return -ENOENT; 1357 1358 BUG_ON(victim->d_parent->d_inode != dir); 1359 audit_inode_child(victim->d_name.name, victim->d_inode, dir->i_ino); 1360 1361 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL); 1362 if (error) 1363 return error; 1364 if (IS_APPEND(dir)) 1365 return -EPERM; 1366 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1367 IS_IMMUTABLE(victim->d_inode)) 1368 return -EPERM; 1369 if (isdir) { 1370 if (!S_ISDIR(victim->d_inode->i_mode)) 1371 return -ENOTDIR; 1372 if (IS_ROOT(victim)) 1373 return -EBUSY; 1374 } else if (S_ISDIR(victim->d_inode->i_mode)) 1375 return -EISDIR; 1376 if (IS_DEADDIR(dir)) 1377 return -ENOENT; 1378 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1379 return -EBUSY; 1380 return 0; 1381 } 1382 1383 /* Check whether we can create an object with dentry child in directory 1384 * dir. 1385 * 1. We can't do it if child already exists (open has special treatment for 1386 * this case, but since we are inlined it's OK) 1387 * 2. We can't do it if dir is read-only (done in permission()) 1388 * 3. We should have write and exec permissions on dir 1389 * 4. We can't do it if dir is immutable (done in permission()) 1390 */ 1391 static inline int may_create(struct inode *dir, struct dentry *child, 1392 struct nameidata *nd) 1393 { 1394 if (child->d_inode) 1395 return -EEXIST; 1396 if (IS_DEADDIR(dir)) 1397 return -ENOENT; 1398 return permission(dir,MAY_WRITE | MAY_EXEC, nd); 1399 } 1400 1401 /* 1402 * O_DIRECTORY translates into forcing a directory lookup. 1403 */ 1404 static inline int lookup_flags(unsigned int f) 1405 { 1406 unsigned long retval = LOOKUP_FOLLOW; 1407 1408 if (f & O_NOFOLLOW) 1409 retval &= ~LOOKUP_FOLLOW; 1410 1411 if (f & O_DIRECTORY) 1412 retval |= LOOKUP_DIRECTORY; 1413 1414 return retval; 1415 } 1416 1417 /* 1418 * p1 and p2 should be directories on the same fs. 1419 */ 1420 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1421 { 1422 struct dentry *p; 1423 1424 if (p1 == p2) { 1425 mutex_lock(&p1->d_inode->i_mutex); 1426 return NULL; 1427 } 1428 1429 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1430 1431 for (p = p1; p->d_parent != p; p = p->d_parent) { 1432 if (p->d_parent == p2) { 1433 mutex_lock(&p2->d_inode->i_mutex); 1434 mutex_lock(&p1->d_inode->i_mutex); 1435 return p; 1436 } 1437 } 1438 1439 for (p = p2; p->d_parent != p; p = p->d_parent) { 1440 if (p->d_parent == p1) { 1441 mutex_lock(&p1->d_inode->i_mutex); 1442 mutex_lock(&p2->d_inode->i_mutex); 1443 return p; 1444 } 1445 } 1446 1447 mutex_lock(&p1->d_inode->i_mutex); 1448 mutex_lock(&p2->d_inode->i_mutex); 1449 return NULL; 1450 } 1451 1452 void unlock_rename(struct dentry *p1, struct dentry *p2) 1453 { 1454 mutex_unlock(&p1->d_inode->i_mutex); 1455 if (p1 != p2) { 1456 mutex_unlock(&p2->d_inode->i_mutex); 1457 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1458 } 1459 } 1460 1461 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1462 struct nameidata *nd) 1463 { 1464 int error = may_create(dir, dentry, nd); 1465 1466 if (error) 1467 return error; 1468 1469 if (!dir->i_op || !dir->i_op->create) 1470 return -EACCES; /* shouldn't it be ENOSYS? */ 1471 mode &= S_IALLUGO; 1472 mode |= S_IFREG; 1473 error = security_inode_create(dir, dentry, mode); 1474 if (error) 1475 return error; 1476 DQUOT_INIT(dir); 1477 error = dir->i_op->create(dir, dentry, mode, nd); 1478 if (!error) 1479 fsnotify_create(dir, dentry); 1480 return error; 1481 } 1482 1483 int may_open(struct nameidata *nd, int acc_mode, int flag) 1484 { 1485 struct dentry *dentry = nd->dentry; 1486 struct inode *inode = dentry->d_inode; 1487 int error; 1488 1489 if (!inode) 1490 return -ENOENT; 1491 1492 if (S_ISLNK(inode->i_mode)) 1493 return -ELOOP; 1494 1495 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE)) 1496 return -EISDIR; 1497 1498 error = vfs_permission(nd, acc_mode); 1499 if (error) 1500 return error; 1501 1502 /* 1503 * FIFO's, sockets and device files are special: they don't 1504 * actually live on the filesystem itself, and as such you 1505 * can write to them even if the filesystem is read-only. 1506 */ 1507 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1508 flag &= ~O_TRUNC; 1509 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1510 if (nd->mnt->mnt_flags & MNT_NODEV) 1511 return -EACCES; 1512 1513 flag &= ~O_TRUNC; 1514 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE)) 1515 return -EROFS; 1516 /* 1517 * An append-only file must be opened in append mode for writing. 1518 */ 1519 if (IS_APPEND(inode)) { 1520 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1521 return -EPERM; 1522 if (flag & O_TRUNC) 1523 return -EPERM; 1524 } 1525 1526 /* O_NOATIME can only be set by the owner or superuser */ 1527 if (flag & O_NOATIME) 1528 if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER)) 1529 return -EPERM; 1530 1531 /* 1532 * Ensure there are no outstanding leases on the file. 1533 */ 1534 error = break_lease(inode, flag); 1535 if (error) 1536 return error; 1537 1538 if (flag & O_TRUNC) { 1539 error = get_write_access(inode); 1540 if (error) 1541 return error; 1542 1543 /* 1544 * Refuse to truncate files with mandatory locks held on them. 1545 */ 1546 error = locks_verify_locked(inode); 1547 if (!error) { 1548 DQUOT_INIT(inode); 1549 1550 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL); 1551 } 1552 put_write_access(inode); 1553 if (error) 1554 return error; 1555 } else 1556 if (flag & FMODE_WRITE) 1557 DQUOT_INIT(inode); 1558 1559 return 0; 1560 } 1561 1562 /* 1563 * open_namei() 1564 * 1565 * namei for open - this is in fact almost the whole open-routine. 1566 * 1567 * Note that the low bits of "flag" aren't the same as in the open 1568 * system call - they are 00 - no permissions needed 1569 * 01 - read permission needed 1570 * 10 - write permission needed 1571 * 11 - read/write permissions needed 1572 * which is a lot more logical, and also allows the "no perm" needed 1573 * for symlinks (where the permissions are checked later). 1574 * SMP-safe 1575 */ 1576 int open_namei(int dfd, const char *pathname, int flag, 1577 int mode, struct nameidata *nd) 1578 { 1579 int acc_mode, error; 1580 struct path path; 1581 struct dentry *dir; 1582 int count = 0; 1583 1584 acc_mode = ACC_MODE(flag); 1585 1586 /* O_TRUNC implies we need access checks for write permissions */ 1587 if (flag & O_TRUNC) 1588 acc_mode |= MAY_WRITE; 1589 1590 /* Allow the LSM permission hook to distinguish append 1591 access from general write access. */ 1592 if (flag & O_APPEND) 1593 acc_mode |= MAY_APPEND; 1594 1595 /* 1596 * The simplest case - just a plain lookup. 1597 */ 1598 if (!(flag & O_CREAT)) { 1599 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1600 nd, flag); 1601 if (error) 1602 return error; 1603 goto ok; 1604 } 1605 1606 /* 1607 * Create - we need to know the parent. 1608 */ 1609 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode); 1610 if (error) 1611 return error; 1612 1613 /* 1614 * We have the parent and last component. First of all, check 1615 * that we are not asked to creat(2) an obvious directory - that 1616 * will not do. 1617 */ 1618 error = -EISDIR; 1619 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len]) 1620 goto exit; 1621 1622 dir = nd->dentry; 1623 nd->flags &= ~LOOKUP_PARENT; 1624 mutex_lock(&dir->d_inode->i_mutex); 1625 path.dentry = lookup_hash(nd); 1626 path.mnt = nd->mnt; 1627 1628 do_last: 1629 error = PTR_ERR(path.dentry); 1630 if (IS_ERR(path.dentry)) { 1631 mutex_unlock(&dir->d_inode->i_mutex); 1632 goto exit; 1633 } 1634 1635 if (IS_ERR(nd->intent.open.file)) { 1636 mutex_unlock(&dir->d_inode->i_mutex); 1637 error = PTR_ERR(nd->intent.open.file); 1638 goto exit_dput; 1639 } 1640 1641 /* Negative dentry, just create the file */ 1642 if (!path.dentry->d_inode) { 1643 if (!IS_POSIXACL(dir->d_inode)) 1644 mode &= ~current->fs->umask; 1645 error = vfs_create(dir->d_inode, path.dentry, mode, nd); 1646 mutex_unlock(&dir->d_inode->i_mutex); 1647 dput(nd->dentry); 1648 nd->dentry = path.dentry; 1649 if (error) 1650 goto exit; 1651 /* Don't check for write permission, don't truncate */ 1652 acc_mode = 0; 1653 flag &= ~O_TRUNC; 1654 goto ok; 1655 } 1656 1657 /* 1658 * It already exists. 1659 */ 1660 mutex_unlock(&dir->d_inode->i_mutex); 1661 1662 error = -EEXIST; 1663 if (flag & O_EXCL) 1664 goto exit_dput; 1665 1666 if (__follow_mount(&path)) { 1667 error = -ELOOP; 1668 if (flag & O_NOFOLLOW) 1669 goto exit_dput; 1670 } 1671 error = -ENOENT; 1672 if (!path.dentry->d_inode) 1673 goto exit_dput; 1674 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) 1675 goto do_link; 1676 1677 path_to_nameidata(&path, nd); 1678 error = -EISDIR; 1679 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1680 goto exit; 1681 ok: 1682 error = may_open(nd, acc_mode, flag); 1683 if (error) 1684 goto exit; 1685 return 0; 1686 1687 exit_dput: 1688 dput_path(&path, nd); 1689 exit: 1690 if (!IS_ERR(nd->intent.open.file)) 1691 release_open_intent(nd); 1692 path_release(nd); 1693 return error; 1694 1695 do_link: 1696 error = -ELOOP; 1697 if (flag & O_NOFOLLOW) 1698 goto exit_dput; 1699 /* 1700 * This is subtle. Instead of calling do_follow_link() we do the 1701 * thing by hands. The reason is that this way we have zero link_count 1702 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1703 * After that we have the parent and last component, i.e. 1704 * we are in the same situation as after the first path_walk(). 1705 * Well, almost - if the last component is normal we get its copy 1706 * stored in nd->last.name and we will have to putname() it when we 1707 * are done. Procfs-like symlinks just set LAST_BIND. 1708 */ 1709 nd->flags |= LOOKUP_PARENT; 1710 error = security_inode_follow_link(path.dentry, nd); 1711 if (error) 1712 goto exit_dput; 1713 error = __do_follow_link(&path, nd); 1714 if (error) 1715 return error; 1716 nd->flags &= ~LOOKUP_PARENT; 1717 if (nd->last_type == LAST_BIND) 1718 goto ok; 1719 error = -EISDIR; 1720 if (nd->last_type != LAST_NORM) 1721 goto exit; 1722 if (nd->last.name[nd->last.len]) { 1723 __putname(nd->last.name); 1724 goto exit; 1725 } 1726 error = -ELOOP; 1727 if (count++==32) { 1728 __putname(nd->last.name); 1729 goto exit; 1730 } 1731 dir = nd->dentry; 1732 mutex_lock(&dir->d_inode->i_mutex); 1733 path.dentry = lookup_hash(nd); 1734 path.mnt = nd->mnt; 1735 __putname(nd->last.name); 1736 goto do_last; 1737 } 1738 1739 /** 1740 * lookup_create - lookup a dentry, creating it if it doesn't exist 1741 * @nd: nameidata info 1742 * @is_dir: directory flag 1743 * 1744 * Simple function to lookup and return a dentry and create it 1745 * if it doesn't exist. Is SMP-safe. 1746 * 1747 * Returns with nd->dentry->d_inode->i_mutex locked. 1748 */ 1749 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1750 { 1751 struct dentry *dentry = ERR_PTR(-EEXIST); 1752 1753 mutex_lock(&nd->dentry->d_inode->i_mutex); 1754 /* 1755 * Yucky last component or no last component at all? 1756 * (foo/., foo/.., /////) 1757 */ 1758 if (nd->last_type != LAST_NORM) 1759 goto fail; 1760 nd->flags &= ~LOOKUP_PARENT; 1761 1762 /* 1763 * Do the final lookup. 1764 */ 1765 dentry = lookup_hash(nd); 1766 if (IS_ERR(dentry)) 1767 goto fail; 1768 1769 /* 1770 * Special case - lookup gave negative, but... we had foo/bar/ 1771 * From the vfs_mknod() POV we just have a negative dentry - 1772 * all is fine. Let's be bastards - you had / on the end, you've 1773 * been asking for (non-existent) directory. -ENOENT for you. 1774 */ 1775 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode) 1776 goto enoent; 1777 return dentry; 1778 enoent: 1779 dput(dentry); 1780 dentry = ERR_PTR(-ENOENT); 1781 fail: 1782 return dentry; 1783 } 1784 EXPORT_SYMBOL_GPL(lookup_create); 1785 1786 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1787 { 1788 int error = may_create(dir, dentry, NULL); 1789 1790 if (error) 1791 return error; 1792 1793 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1794 return -EPERM; 1795 1796 if (!dir->i_op || !dir->i_op->mknod) 1797 return -EPERM; 1798 1799 error = security_inode_mknod(dir, dentry, mode, dev); 1800 if (error) 1801 return error; 1802 1803 DQUOT_INIT(dir); 1804 error = dir->i_op->mknod(dir, dentry, mode, dev); 1805 if (!error) 1806 fsnotify_create(dir, dentry); 1807 return error; 1808 } 1809 1810 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode, 1811 unsigned dev) 1812 { 1813 int error = 0; 1814 char * tmp; 1815 struct dentry * dentry; 1816 struct nameidata nd; 1817 1818 if (S_ISDIR(mode)) 1819 return -EPERM; 1820 tmp = getname(filename); 1821 if (IS_ERR(tmp)) 1822 return PTR_ERR(tmp); 1823 1824 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1825 if (error) 1826 goto out; 1827 dentry = lookup_create(&nd, 0); 1828 error = PTR_ERR(dentry); 1829 1830 if (!IS_POSIXACL(nd.dentry->d_inode)) 1831 mode &= ~current->fs->umask; 1832 if (!IS_ERR(dentry)) { 1833 switch (mode & S_IFMT) { 1834 case 0: case S_IFREG: 1835 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd); 1836 break; 1837 case S_IFCHR: case S_IFBLK: 1838 error = vfs_mknod(nd.dentry->d_inode,dentry,mode, 1839 new_decode_dev(dev)); 1840 break; 1841 case S_IFIFO: case S_IFSOCK: 1842 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0); 1843 break; 1844 case S_IFDIR: 1845 error = -EPERM; 1846 break; 1847 default: 1848 error = -EINVAL; 1849 } 1850 dput(dentry); 1851 } 1852 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1853 path_release(&nd); 1854 out: 1855 putname(tmp); 1856 1857 return error; 1858 } 1859 1860 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev) 1861 { 1862 return sys_mknodat(AT_FDCWD, filename, mode, dev); 1863 } 1864 1865 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1866 { 1867 int error = may_create(dir, dentry, NULL); 1868 1869 if (error) 1870 return error; 1871 1872 if (!dir->i_op || !dir->i_op->mkdir) 1873 return -EPERM; 1874 1875 mode &= (S_IRWXUGO|S_ISVTX); 1876 error = security_inode_mkdir(dir, dentry, mode); 1877 if (error) 1878 return error; 1879 1880 DQUOT_INIT(dir); 1881 error = dir->i_op->mkdir(dir, dentry, mode); 1882 if (!error) 1883 fsnotify_mkdir(dir, dentry); 1884 return error; 1885 } 1886 1887 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode) 1888 { 1889 int error = 0; 1890 char * tmp; 1891 1892 tmp = getname(pathname); 1893 error = PTR_ERR(tmp); 1894 if (!IS_ERR(tmp)) { 1895 struct dentry *dentry; 1896 struct nameidata nd; 1897 1898 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 1899 if (error) 1900 goto out; 1901 dentry = lookup_create(&nd, 1); 1902 error = PTR_ERR(dentry); 1903 if (!IS_ERR(dentry)) { 1904 if (!IS_POSIXACL(nd.dentry->d_inode)) 1905 mode &= ~current->fs->umask; 1906 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode); 1907 dput(dentry); 1908 } 1909 mutex_unlock(&nd.dentry->d_inode->i_mutex); 1910 path_release(&nd); 1911 out: 1912 putname(tmp); 1913 } 1914 1915 return error; 1916 } 1917 1918 asmlinkage long sys_mkdir(const char __user *pathname, int mode) 1919 { 1920 return sys_mkdirat(AT_FDCWD, pathname, mode); 1921 } 1922 1923 /* 1924 * We try to drop the dentry early: we should have 1925 * a usage count of 2 if we're the only user of this 1926 * dentry, and if that is true (possibly after pruning 1927 * the dcache), then we drop the dentry now. 1928 * 1929 * A low-level filesystem can, if it choses, legally 1930 * do a 1931 * 1932 * if (!d_unhashed(dentry)) 1933 * return -EBUSY; 1934 * 1935 * if it cannot handle the case of removing a directory 1936 * that is still in use by something else.. 1937 */ 1938 void dentry_unhash(struct dentry *dentry) 1939 { 1940 dget(dentry); 1941 if (atomic_read(&dentry->d_count)) 1942 shrink_dcache_parent(dentry); 1943 spin_lock(&dcache_lock); 1944 spin_lock(&dentry->d_lock); 1945 if (atomic_read(&dentry->d_count) == 2) 1946 __d_drop(dentry); 1947 spin_unlock(&dentry->d_lock); 1948 spin_unlock(&dcache_lock); 1949 } 1950 1951 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 1952 { 1953 int error = may_delete(dir, dentry, 1); 1954 1955 if (error) 1956 return error; 1957 1958 if (!dir->i_op || !dir->i_op->rmdir) 1959 return -EPERM; 1960 1961 DQUOT_INIT(dir); 1962 1963 mutex_lock(&dentry->d_inode->i_mutex); 1964 dentry_unhash(dentry); 1965 if (d_mountpoint(dentry)) 1966 error = -EBUSY; 1967 else { 1968 error = security_inode_rmdir(dir, dentry); 1969 if (!error) { 1970 error = dir->i_op->rmdir(dir, dentry); 1971 if (!error) 1972 dentry->d_inode->i_flags |= S_DEAD; 1973 } 1974 } 1975 mutex_unlock(&dentry->d_inode->i_mutex); 1976 if (!error) { 1977 d_delete(dentry); 1978 } 1979 dput(dentry); 1980 1981 return error; 1982 } 1983 1984 static long do_rmdir(int dfd, const char __user *pathname) 1985 { 1986 int error = 0; 1987 char * name; 1988 struct dentry *dentry; 1989 struct nameidata nd; 1990 1991 name = getname(pathname); 1992 if(IS_ERR(name)) 1993 return PTR_ERR(name); 1994 1995 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 1996 if (error) 1997 goto exit; 1998 1999 switch(nd.last_type) { 2000 case LAST_DOTDOT: 2001 error = -ENOTEMPTY; 2002 goto exit1; 2003 case LAST_DOT: 2004 error = -EINVAL; 2005 goto exit1; 2006 case LAST_ROOT: 2007 error = -EBUSY; 2008 goto exit1; 2009 } 2010 mutex_lock(&nd.dentry->d_inode->i_mutex); 2011 dentry = lookup_hash(&nd); 2012 error = PTR_ERR(dentry); 2013 if (!IS_ERR(dentry)) { 2014 error = vfs_rmdir(nd.dentry->d_inode, dentry); 2015 dput(dentry); 2016 } 2017 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2018 exit1: 2019 path_release(&nd); 2020 exit: 2021 putname(name); 2022 return error; 2023 } 2024 2025 asmlinkage long sys_rmdir(const char __user *pathname) 2026 { 2027 return do_rmdir(AT_FDCWD, pathname); 2028 } 2029 2030 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2031 { 2032 int error = may_delete(dir, dentry, 0); 2033 2034 if (error) 2035 return error; 2036 2037 if (!dir->i_op || !dir->i_op->unlink) 2038 return -EPERM; 2039 2040 DQUOT_INIT(dir); 2041 2042 mutex_lock(&dentry->d_inode->i_mutex); 2043 if (d_mountpoint(dentry)) 2044 error = -EBUSY; 2045 else { 2046 error = security_inode_unlink(dir, dentry); 2047 if (!error) 2048 error = dir->i_op->unlink(dir, dentry); 2049 } 2050 mutex_unlock(&dentry->d_inode->i_mutex); 2051 2052 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2053 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2054 d_delete(dentry); 2055 } 2056 2057 return error; 2058 } 2059 2060 /* 2061 * Make sure that the actual truncation of the file will occur outside its 2062 * directory's i_mutex. Truncate can take a long time if there is a lot of 2063 * writeout happening, and we don't want to prevent access to the directory 2064 * while waiting on the I/O. 2065 */ 2066 static long do_unlinkat(int dfd, const char __user *pathname) 2067 { 2068 int error = 0; 2069 char * name; 2070 struct dentry *dentry; 2071 struct nameidata nd; 2072 struct inode *inode = NULL; 2073 2074 name = getname(pathname); 2075 if(IS_ERR(name)) 2076 return PTR_ERR(name); 2077 2078 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2079 if (error) 2080 goto exit; 2081 error = -EISDIR; 2082 if (nd.last_type != LAST_NORM) 2083 goto exit1; 2084 mutex_lock(&nd.dentry->d_inode->i_mutex); 2085 dentry = lookup_hash(&nd); 2086 error = PTR_ERR(dentry); 2087 if (!IS_ERR(dentry)) { 2088 /* Why not before? Because we want correct error value */ 2089 if (nd.last.name[nd.last.len]) 2090 goto slashes; 2091 inode = dentry->d_inode; 2092 if (inode) 2093 atomic_inc(&inode->i_count); 2094 error = vfs_unlink(nd.dentry->d_inode, dentry); 2095 exit2: 2096 dput(dentry); 2097 } 2098 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2099 if (inode) 2100 iput(inode); /* truncate the inode here */ 2101 exit1: 2102 path_release(&nd); 2103 exit: 2104 putname(name); 2105 return error; 2106 2107 slashes: 2108 error = !dentry->d_inode ? -ENOENT : 2109 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2110 goto exit2; 2111 } 2112 2113 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag) 2114 { 2115 if ((flag & ~AT_REMOVEDIR) != 0) 2116 return -EINVAL; 2117 2118 if (flag & AT_REMOVEDIR) 2119 return do_rmdir(dfd, pathname); 2120 2121 return do_unlinkat(dfd, pathname); 2122 } 2123 2124 asmlinkage long sys_unlink(const char __user *pathname) 2125 { 2126 return do_unlinkat(AT_FDCWD, pathname); 2127 } 2128 2129 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode) 2130 { 2131 int error = may_create(dir, dentry, NULL); 2132 2133 if (error) 2134 return error; 2135 2136 if (!dir->i_op || !dir->i_op->symlink) 2137 return -EPERM; 2138 2139 error = security_inode_symlink(dir, dentry, oldname); 2140 if (error) 2141 return error; 2142 2143 DQUOT_INIT(dir); 2144 error = dir->i_op->symlink(dir, dentry, oldname); 2145 if (!error) 2146 fsnotify_create(dir, dentry); 2147 return error; 2148 } 2149 2150 asmlinkage long sys_symlinkat(const char __user *oldname, 2151 int newdfd, const char __user *newname) 2152 { 2153 int error = 0; 2154 char * from; 2155 char * to; 2156 2157 from = getname(oldname); 2158 if(IS_ERR(from)) 2159 return PTR_ERR(from); 2160 to = getname(newname); 2161 error = PTR_ERR(to); 2162 if (!IS_ERR(to)) { 2163 struct dentry *dentry; 2164 struct nameidata nd; 2165 2166 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2167 if (error) 2168 goto out; 2169 dentry = lookup_create(&nd, 0); 2170 error = PTR_ERR(dentry); 2171 if (!IS_ERR(dentry)) { 2172 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO); 2173 dput(dentry); 2174 } 2175 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2176 path_release(&nd); 2177 out: 2178 putname(to); 2179 } 2180 putname(from); 2181 return error; 2182 } 2183 2184 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname) 2185 { 2186 return sys_symlinkat(oldname, AT_FDCWD, newname); 2187 } 2188 2189 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2190 { 2191 struct inode *inode = old_dentry->d_inode; 2192 int error; 2193 2194 if (!inode) 2195 return -ENOENT; 2196 2197 error = may_create(dir, new_dentry, NULL); 2198 if (error) 2199 return error; 2200 2201 if (dir->i_sb != inode->i_sb) 2202 return -EXDEV; 2203 2204 /* 2205 * A link to an append-only or immutable file cannot be created. 2206 */ 2207 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2208 return -EPERM; 2209 if (!dir->i_op || !dir->i_op->link) 2210 return -EPERM; 2211 if (S_ISDIR(old_dentry->d_inode->i_mode)) 2212 return -EPERM; 2213 2214 error = security_inode_link(old_dentry, dir, new_dentry); 2215 if (error) 2216 return error; 2217 2218 mutex_lock(&old_dentry->d_inode->i_mutex); 2219 DQUOT_INIT(dir); 2220 error = dir->i_op->link(old_dentry, dir, new_dentry); 2221 mutex_unlock(&old_dentry->d_inode->i_mutex); 2222 if (!error) 2223 fsnotify_create(dir, new_dentry); 2224 return error; 2225 } 2226 2227 /* 2228 * Hardlinks are often used in delicate situations. We avoid 2229 * security-related surprises by not following symlinks on the 2230 * newname. --KAB 2231 * 2232 * We don't follow them on the oldname either to be compatible 2233 * with linux 2.0, and to avoid hard-linking to directories 2234 * and other special files. --ADM 2235 */ 2236 asmlinkage long sys_linkat(int olddfd, const char __user *oldname, 2237 int newdfd, const char __user *newname, 2238 int flags) 2239 { 2240 struct dentry *new_dentry; 2241 struct nameidata nd, old_nd; 2242 int error; 2243 char * to; 2244 2245 if (flags != 0) 2246 return -EINVAL; 2247 2248 to = getname(newname); 2249 if (IS_ERR(to)) 2250 return PTR_ERR(to); 2251 2252 error = __user_walk_fd(olddfd, oldname, 0, &old_nd); 2253 if (error) 2254 goto exit; 2255 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2256 if (error) 2257 goto out; 2258 error = -EXDEV; 2259 if (old_nd.mnt != nd.mnt) 2260 goto out_release; 2261 new_dentry = lookup_create(&nd, 0); 2262 error = PTR_ERR(new_dentry); 2263 if (!IS_ERR(new_dentry)) { 2264 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry); 2265 dput(new_dentry); 2266 } 2267 mutex_unlock(&nd.dentry->d_inode->i_mutex); 2268 out_release: 2269 path_release(&nd); 2270 out: 2271 path_release(&old_nd); 2272 exit: 2273 putname(to); 2274 2275 return error; 2276 } 2277 2278 asmlinkage long sys_link(const char __user *oldname, const char __user *newname) 2279 { 2280 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2281 } 2282 2283 /* 2284 * The worst of all namespace operations - renaming directory. "Perverted" 2285 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2286 * Problems: 2287 * a) we can get into loop creation. Check is done in is_subdir(). 2288 * b) race potential - two innocent renames can create a loop together. 2289 * That's where 4.4 screws up. Current fix: serialization on 2290 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2291 * story. 2292 * c) we have to lock _three_ objects - parents and victim (if it exists). 2293 * And that - after we got ->i_mutex on parents (until then we don't know 2294 * whether the target exists). Solution: try to be smart with locking 2295 * order for inodes. We rely on the fact that tree topology may change 2296 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2297 * move will be locked. Thus we can rank directories by the tree 2298 * (ancestors first) and rank all non-directories after them. 2299 * That works since everybody except rename does "lock parent, lookup, 2300 * lock child" and rename is under ->s_vfs_rename_mutex. 2301 * HOWEVER, it relies on the assumption that any object with ->lookup() 2302 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2303 * we'd better make sure that there's no link(2) for them. 2304 * d) some filesystems don't support opened-but-unlinked directories, 2305 * either because of layout or because they are not ready to deal with 2306 * all cases correctly. The latter will be fixed (taking this sort of 2307 * stuff into VFS), but the former is not going away. Solution: the same 2308 * trick as in rmdir(). 2309 * e) conversion from fhandle to dentry may come in the wrong moment - when 2310 * we are removing the target. Solution: we will have to grab ->i_mutex 2311 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2312 * ->i_mutex on parents, which works but leads to some truely excessive 2313 * locking]. 2314 */ 2315 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2316 struct inode *new_dir, struct dentry *new_dentry) 2317 { 2318 int error = 0; 2319 struct inode *target; 2320 2321 /* 2322 * If we are going to change the parent - check write permissions, 2323 * we'll need to flip '..'. 2324 */ 2325 if (new_dir != old_dir) { 2326 error = permission(old_dentry->d_inode, MAY_WRITE, NULL); 2327 if (error) 2328 return error; 2329 } 2330 2331 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2332 if (error) 2333 return error; 2334 2335 target = new_dentry->d_inode; 2336 if (target) { 2337 mutex_lock(&target->i_mutex); 2338 dentry_unhash(new_dentry); 2339 } 2340 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2341 error = -EBUSY; 2342 else 2343 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2344 if (target) { 2345 if (!error) 2346 target->i_flags |= S_DEAD; 2347 mutex_unlock(&target->i_mutex); 2348 if (d_unhashed(new_dentry)) 2349 d_rehash(new_dentry); 2350 dput(new_dentry); 2351 } 2352 if (!error) 2353 d_move(old_dentry,new_dentry); 2354 return error; 2355 } 2356 2357 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2358 struct inode *new_dir, struct dentry *new_dentry) 2359 { 2360 struct inode *target; 2361 int error; 2362 2363 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2364 if (error) 2365 return error; 2366 2367 dget(new_dentry); 2368 target = new_dentry->d_inode; 2369 if (target) 2370 mutex_lock(&target->i_mutex); 2371 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2372 error = -EBUSY; 2373 else 2374 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2375 if (!error) { 2376 /* The following d_move() should become unconditional */ 2377 if (!(old_dir->i_sb->s_type->fs_flags & FS_ODD_RENAME)) 2378 d_move(old_dentry, new_dentry); 2379 } 2380 if (target) 2381 mutex_unlock(&target->i_mutex); 2382 dput(new_dentry); 2383 return error; 2384 } 2385 2386 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2387 struct inode *new_dir, struct dentry *new_dentry) 2388 { 2389 int error; 2390 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2391 const char *old_name; 2392 2393 if (old_dentry->d_inode == new_dentry->d_inode) 2394 return 0; 2395 2396 error = may_delete(old_dir, old_dentry, is_dir); 2397 if (error) 2398 return error; 2399 2400 if (!new_dentry->d_inode) 2401 error = may_create(new_dir, new_dentry, NULL); 2402 else 2403 error = may_delete(new_dir, new_dentry, is_dir); 2404 if (error) 2405 return error; 2406 2407 if (!old_dir->i_op || !old_dir->i_op->rename) 2408 return -EPERM; 2409 2410 DQUOT_INIT(old_dir); 2411 DQUOT_INIT(new_dir); 2412 2413 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2414 2415 if (is_dir) 2416 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2417 else 2418 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2419 if (!error) { 2420 const char *new_name = old_dentry->d_name.name; 2421 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2422 new_dentry->d_inode, old_dentry->d_inode); 2423 } 2424 fsnotify_oldname_free(old_name); 2425 2426 return error; 2427 } 2428 2429 static int do_rename(int olddfd, const char *oldname, 2430 int newdfd, const char *newname) 2431 { 2432 int error = 0; 2433 struct dentry * old_dir, * new_dir; 2434 struct dentry * old_dentry, *new_dentry; 2435 struct dentry * trap; 2436 struct nameidata oldnd, newnd; 2437 2438 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd); 2439 if (error) 2440 goto exit; 2441 2442 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd); 2443 if (error) 2444 goto exit1; 2445 2446 error = -EXDEV; 2447 if (oldnd.mnt != newnd.mnt) 2448 goto exit2; 2449 2450 old_dir = oldnd.dentry; 2451 error = -EBUSY; 2452 if (oldnd.last_type != LAST_NORM) 2453 goto exit2; 2454 2455 new_dir = newnd.dentry; 2456 if (newnd.last_type != LAST_NORM) 2457 goto exit2; 2458 2459 trap = lock_rename(new_dir, old_dir); 2460 2461 old_dentry = lookup_hash(&oldnd); 2462 error = PTR_ERR(old_dentry); 2463 if (IS_ERR(old_dentry)) 2464 goto exit3; 2465 /* source must exist */ 2466 error = -ENOENT; 2467 if (!old_dentry->d_inode) 2468 goto exit4; 2469 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2470 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2471 error = -ENOTDIR; 2472 if (oldnd.last.name[oldnd.last.len]) 2473 goto exit4; 2474 if (newnd.last.name[newnd.last.len]) 2475 goto exit4; 2476 } 2477 /* source should not be ancestor of target */ 2478 error = -EINVAL; 2479 if (old_dentry == trap) 2480 goto exit4; 2481 new_dentry = lookup_hash(&newnd); 2482 error = PTR_ERR(new_dentry); 2483 if (IS_ERR(new_dentry)) 2484 goto exit4; 2485 /* target should not be an ancestor of source */ 2486 error = -ENOTEMPTY; 2487 if (new_dentry == trap) 2488 goto exit5; 2489 2490 error = vfs_rename(old_dir->d_inode, old_dentry, 2491 new_dir->d_inode, new_dentry); 2492 exit5: 2493 dput(new_dentry); 2494 exit4: 2495 dput(old_dentry); 2496 exit3: 2497 unlock_rename(new_dir, old_dir); 2498 exit2: 2499 path_release(&newnd); 2500 exit1: 2501 path_release(&oldnd); 2502 exit: 2503 return error; 2504 } 2505 2506 asmlinkage long sys_renameat(int olddfd, const char __user *oldname, 2507 int newdfd, const char __user *newname) 2508 { 2509 int error; 2510 char * from; 2511 char * to; 2512 2513 from = getname(oldname); 2514 if(IS_ERR(from)) 2515 return PTR_ERR(from); 2516 to = getname(newname); 2517 error = PTR_ERR(to); 2518 if (!IS_ERR(to)) { 2519 error = do_rename(olddfd, from, newdfd, to); 2520 putname(to); 2521 } 2522 putname(from); 2523 return error; 2524 } 2525 2526 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname) 2527 { 2528 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2529 } 2530 2531 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2532 { 2533 int len; 2534 2535 len = PTR_ERR(link); 2536 if (IS_ERR(link)) 2537 goto out; 2538 2539 len = strlen(link); 2540 if (len > (unsigned) buflen) 2541 len = buflen; 2542 if (copy_to_user(buffer, link, len)) 2543 len = -EFAULT; 2544 out: 2545 return len; 2546 } 2547 2548 /* 2549 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2550 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2551 * using) it for any given inode is up to filesystem. 2552 */ 2553 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2554 { 2555 struct nameidata nd; 2556 void *cookie; 2557 2558 nd.depth = 0; 2559 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2560 if (!IS_ERR(cookie)) { 2561 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2562 if (dentry->d_inode->i_op->put_link) 2563 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2564 cookie = ERR_PTR(res); 2565 } 2566 return PTR_ERR(cookie); 2567 } 2568 2569 int vfs_follow_link(struct nameidata *nd, const char *link) 2570 { 2571 return __vfs_follow_link(nd, link); 2572 } 2573 2574 /* get the link contents into pagecache */ 2575 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2576 { 2577 struct page * page; 2578 struct address_space *mapping = dentry->d_inode->i_mapping; 2579 page = read_cache_page(mapping, 0, (filler_t *)mapping->a_ops->readpage, 2580 NULL); 2581 if (IS_ERR(page)) 2582 goto sync_fail; 2583 wait_on_page_locked(page); 2584 if (!PageUptodate(page)) 2585 goto async_fail; 2586 *ppage = page; 2587 return kmap(page); 2588 2589 async_fail: 2590 page_cache_release(page); 2591 return ERR_PTR(-EIO); 2592 2593 sync_fail: 2594 return (char*)page; 2595 } 2596 2597 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2598 { 2599 struct page *page = NULL; 2600 char *s = page_getlink(dentry, &page); 2601 int res = vfs_readlink(dentry,buffer,buflen,s); 2602 if (page) { 2603 kunmap(page); 2604 page_cache_release(page); 2605 } 2606 return res; 2607 } 2608 2609 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2610 { 2611 struct page *page = NULL; 2612 nd_set_link(nd, page_getlink(dentry, &page)); 2613 return page; 2614 } 2615 2616 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2617 { 2618 struct page *page = cookie; 2619 2620 if (page) { 2621 kunmap(page); 2622 page_cache_release(page); 2623 } 2624 } 2625 2626 int __page_symlink(struct inode *inode, const char *symname, int len, 2627 gfp_t gfp_mask) 2628 { 2629 struct address_space *mapping = inode->i_mapping; 2630 struct page *page; 2631 int err = -ENOMEM; 2632 char *kaddr; 2633 2634 retry: 2635 page = find_or_create_page(mapping, 0, gfp_mask); 2636 if (!page) 2637 goto fail; 2638 err = mapping->a_ops->prepare_write(NULL, page, 0, len-1); 2639 if (err == AOP_TRUNCATED_PAGE) { 2640 page_cache_release(page); 2641 goto retry; 2642 } 2643 if (err) 2644 goto fail_map; 2645 kaddr = kmap_atomic(page, KM_USER0); 2646 memcpy(kaddr, symname, len-1); 2647 kunmap_atomic(kaddr, KM_USER0); 2648 err = mapping->a_ops->commit_write(NULL, page, 0, len-1); 2649 if (err == AOP_TRUNCATED_PAGE) { 2650 page_cache_release(page); 2651 goto retry; 2652 } 2653 if (err) 2654 goto fail_map; 2655 /* 2656 * Notice that we are _not_ going to block here - end of page is 2657 * unmapped, so this will only try to map the rest of page, see 2658 * that it is unmapped (typically even will not look into inode - 2659 * ->i_size will be enough for everything) and zero it out. 2660 * OTOH it's obviously correct and should make the page up-to-date. 2661 */ 2662 if (!PageUptodate(page)) { 2663 err = mapping->a_ops->readpage(NULL, page); 2664 if (err != AOP_TRUNCATED_PAGE) 2665 wait_on_page_locked(page); 2666 } else { 2667 unlock_page(page); 2668 } 2669 page_cache_release(page); 2670 if (err < 0) 2671 goto fail; 2672 mark_inode_dirty(inode); 2673 return 0; 2674 fail_map: 2675 unlock_page(page); 2676 page_cache_release(page); 2677 fail: 2678 return err; 2679 } 2680 2681 int page_symlink(struct inode *inode, const char *symname, int len) 2682 { 2683 return __page_symlink(inode, symname, len, 2684 mapping_gfp_mask(inode->i_mapping)); 2685 } 2686 2687 struct inode_operations page_symlink_inode_operations = { 2688 .readlink = generic_readlink, 2689 .follow_link = page_follow_link_light, 2690 .put_link = page_put_link, 2691 }; 2692 2693 EXPORT_SYMBOL(__user_walk); 2694 EXPORT_SYMBOL(__user_walk_fd); 2695 EXPORT_SYMBOL(follow_down); 2696 EXPORT_SYMBOL(follow_up); 2697 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2698 EXPORT_SYMBOL(getname); 2699 EXPORT_SYMBOL(lock_rename); 2700 EXPORT_SYMBOL(lookup_hash); 2701 EXPORT_SYMBOL(lookup_one_len); 2702 EXPORT_SYMBOL(page_follow_link_light); 2703 EXPORT_SYMBOL(page_put_link); 2704 EXPORT_SYMBOL(page_readlink); 2705 EXPORT_SYMBOL(__page_symlink); 2706 EXPORT_SYMBOL(page_symlink); 2707 EXPORT_SYMBOL(page_symlink_inode_operations); 2708 EXPORT_SYMBOL(path_lookup); 2709 EXPORT_SYMBOL(path_release); 2710 EXPORT_SYMBOL(path_walk); 2711 EXPORT_SYMBOL(permission); 2712 EXPORT_SYMBOL(vfs_permission); 2713 EXPORT_SYMBOL(file_permission); 2714 EXPORT_SYMBOL(unlock_rename); 2715 EXPORT_SYMBOL(vfs_create); 2716 EXPORT_SYMBOL(vfs_follow_link); 2717 EXPORT_SYMBOL(vfs_link); 2718 EXPORT_SYMBOL(vfs_mkdir); 2719 EXPORT_SYMBOL(vfs_mknod); 2720 EXPORT_SYMBOL(generic_permission); 2721 EXPORT_SYMBOL(vfs_readlink); 2722 EXPORT_SYMBOL(vfs_rename); 2723 EXPORT_SYMBOL(vfs_rmdir); 2724 EXPORT_SYMBOL(vfs_symlink); 2725 EXPORT_SYMBOL(vfs_unlink); 2726 EXPORT_SYMBOL(dentry_unhash); 2727 EXPORT_SYMBOL(generic_readlink); 2728