1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 /* 152 * Handle both empty path and copy failure in one go. 153 */ 154 if (unlikely(len <= 0)) { 155 if (unlikely(len < 0)) { 156 __putname(result); 157 return ERR_PTR(len); 158 } 159 160 /* The empty path is special. */ 161 if (!(flags & LOOKUP_EMPTY)) { 162 __putname(result); 163 return ERR_PTR(-ENOENT); 164 } 165 } 166 167 /* 168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 169 * separate struct filename so we can dedicate the entire 170 * names_cache allocation for the pathname, and re-do the copy from 171 * userland. 172 */ 173 if (unlikely(len == EMBEDDED_NAME_MAX)) { 174 const size_t size = offsetof(struct filename, iname[1]); 175 kname = (char *)result; 176 177 /* 178 * size is chosen that way we to guarantee that 179 * result->iname[0] is within the same object and that 180 * kname can't be equal to result->iname, no matter what. 181 */ 182 result = kzalloc(size, GFP_KERNEL); 183 if (unlikely(!result)) { 184 __putname(kname); 185 return ERR_PTR(-ENOMEM); 186 } 187 result->name = kname; 188 len = strncpy_from_user(kname, filename, PATH_MAX); 189 if (unlikely(len < 0)) { 190 __putname(kname); 191 kfree(result); 192 return ERR_PTR(len); 193 } 194 /* The empty path is special. */ 195 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 196 __putname(kname); 197 kfree(result); 198 return ERR_PTR(-ENOENT); 199 } 200 if (unlikely(len == PATH_MAX)) { 201 __putname(kname); 202 kfree(result); 203 return ERR_PTR(-ENAMETOOLONG); 204 } 205 } 206 207 atomic_set(&result->refcnt, 1); 208 result->uptr = filename; 209 result->aname = NULL; 210 audit_getname(result); 211 return result; 212 } 213 214 struct filename *getname_uflags(const char __user *filename, int uflags) 215 { 216 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 217 218 return getname_flags(filename, flags); 219 } 220 221 struct filename *getname(const char __user * filename) 222 { 223 return getname_flags(filename, 0); 224 } 225 226 struct filename *__getname_maybe_null(const char __user *pathname) 227 { 228 struct filename *name; 229 char c; 230 231 /* try to save on allocations; loss on um, though */ 232 if (get_user(c, pathname)) 233 return ERR_PTR(-EFAULT); 234 if (!c) 235 return NULL; 236 237 name = getname_flags(pathname, LOOKUP_EMPTY); 238 if (!IS_ERR(name) && !(name->name[0])) { 239 putname(name); 240 name = NULL; 241 } 242 return name; 243 } 244 245 struct filename *getname_kernel(const char * filename) 246 { 247 struct filename *result; 248 int len = strlen(filename) + 1; 249 250 result = __getname(); 251 if (unlikely(!result)) 252 return ERR_PTR(-ENOMEM); 253 254 if (len <= EMBEDDED_NAME_MAX) { 255 result->name = (char *)result->iname; 256 } else if (len <= PATH_MAX) { 257 const size_t size = offsetof(struct filename, iname[1]); 258 struct filename *tmp; 259 260 tmp = kmalloc(size, GFP_KERNEL); 261 if (unlikely(!tmp)) { 262 __putname(result); 263 return ERR_PTR(-ENOMEM); 264 } 265 tmp->name = (char *)result; 266 result = tmp; 267 } else { 268 __putname(result); 269 return ERR_PTR(-ENAMETOOLONG); 270 } 271 memcpy((char *)result->name, filename, len); 272 result->uptr = NULL; 273 result->aname = NULL; 274 atomic_set(&result->refcnt, 1); 275 audit_getname(result); 276 277 return result; 278 } 279 EXPORT_SYMBOL(getname_kernel); 280 281 void putname(struct filename *name) 282 { 283 if (IS_ERR_OR_NULL(name)) 284 return; 285 286 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 287 return; 288 289 if (!atomic_dec_and_test(&name->refcnt)) 290 return; 291 292 if (name->name != name->iname) { 293 __putname(name->name); 294 kfree(name); 295 } else 296 __putname(name); 297 } 298 EXPORT_SYMBOL(putname); 299 300 /** 301 * check_acl - perform ACL permission checking 302 * @idmap: idmap of the mount the inode was found from 303 * @inode: inode to check permissions on 304 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 305 * 306 * This function performs the ACL permission checking. Since this function 307 * retrieve POSIX acls it needs to know whether it is called from a blocking or 308 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 309 * 310 * If the inode has been found through an idmapped mount the idmap of 311 * the vfsmount must be passed through @idmap. This function will then take 312 * care to map the inode according to @idmap before checking permissions. 313 * On non-idmapped mounts or if permission checking is to be performed on the 314 * raw inode simply pass @nop_mnt_idmap. 315 */ 316 static int check_acl(struct mnt_idmap *idmap, 317 struct inode *inode, int mask) 318 { 319 #ifdef CONFIG_FS_POSIX_ACL 320 struct posix_acl *acl; 321 322 if (mask & MAY_NOT_BLOCK) { 323 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 324 if (!acl) 325 return -EAGAIN; 326 /* no ->get_inode_acl() calls in RCU mode... */ 327 if (is_uncached_acl(acl)) 328 return -ECHILD; 329 return posix_acl_permission(idmap, inode, acl, mask); 330 } 331 332 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 333 if (IS_ERR(acl)) 334 return PTR_ERR(acl); 335 if (acl) { 336 int error = posix_acl_permission(idmap, inode, acl, mask); 337 posix_acl_release(acl); 338 return error; 339 } 340 #endif 341 342 return -EAGAIN; 343 } 344 345 /* 346 * Very quick optimistic "we know we have no ACL's" check. 347 * 348 * Note that this is purely for ACL_TYPE_ACCESS, and purely 349 * for the "we have cached that there are no ACLs" case. 350 * 351 * If this returns true, we know there are no ACLs. But if 352 * it returns false, we might still not have ACLs (it could 353 * be the is_uncached_acl() case). 354 */ 355 static inline bool no_acl_inode(struct inode *inode) 356 { 357 #ifdef CONFIG_FS_POSIX_ACL 358 return likely(!READ_ONCE(inode->i_acl)); 359 #else 360 return true; 361 #endif 362 } 363 364 /** 365 * acl_permission_check - perform basic UNIX permission checking 366 * @idmap: idmap of the mount the inode was found from 367 * @inode: inode to check permissions on 368 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 369 * 370 * This function performs the basic UNIX permission checking. Since this 371 * function may retrieve POSIX acls it needs to know whether it is called from a 372 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 373 * 374 * If the inode has been found through an idmapped mount the idmap of 375 * the vfsmount must be passed through @idmap. This function will then take 376 * care to map the inode according to @idmap before checking permissions. 377 * On non-idmapped mounts or if permission checking is to be performed on the 378 * raw inode simply pass @nop_mnt_idmap. 379 */ 380 static int acl_permission_check(struct mnt_idmap *idmap, 381 struct inode *inode, int mask) 382 { 383 unsigned int mode = inode->i_mode; 384 vfsuid_t vfsuid; 385 386 /* 387 * Common cheap case: everybody has the requested 388 * rights, and there are no ACLs to check. No need 389 * to do any owner/group checks in that case. 390 * 391 * - 'mask&7' is the requested permission bit set 392 * - multiplying by 0111 spreads them out to all of ugo 393 * - '& ~mode' looks for missing inode permission bits 394 * - the '!' is for "no missing permissions" 395 * 396 * After that, we just need to check that there are no 397 * ACL's on the inode - do the 'IS_POSIXACL()' check last 398 * because it will dereference the ->i_sb pointer and we 399 * want to avoid that if at all possible. 400 */ 401 if (!((mask & 7) * 0111 & ~mode)) { 402 if (no_acl_inode(inode)) 403 return 0; 404 if (!IS_POSIXACL(inode)) 405 return 0; 406 } 407 408 /* Are we the owner? If so, ACL's don't matter */ 409 vfsuid = i_uid_into_vfsuid(idmap, inode); 410 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 411 mask &= 7; 412 mode >>= 6; 413 return (mask & ~mode) ? -EACCES : 0; 414 } 415 416 /* Do we have ACL's? */ 417 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 418 int error = check_acl(idmap, inode, mask); 419 if (error != -EAGAIN) 420 return error; 421 } 422 423 /* Only RWX matters for group/other mode bits */ 424 mask &= 7; 425 426 /* 427 * Are the group permissions different from 428 * the other permissions in the bits we care 429 * about? Need to check group ownership if so. 430 */ 431 if (mask & (mode ^ (mode >> 3))) { 432 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 433 if (vfsgid_in_group_p(vfsgid)) 434 mode >>= 3; 435 } 436 437 /* Bits in 'mode' clear that we require? */ 438 return (mask & ~mode) ? -EACCES : 0; 439 } 440 441 /** 442 * generic_permission - check for access rights on a Posix-like filesystem 443 * @idmap: idmap of the mount the inode was found from 444 * @inode: inode to check access rights for 445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 446 * %MAY_NOT_BLOCK ...) 447 * 448 * Used to check for read/write/execute permissions on a file. 449 * We use "fsuid" for this, letting us set arbitrary permissions 450 * for filesystem access without changing the "normal" uids which 451 * are used for other things. 452 * 453 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 454 * request cannot be satisfied (eg. requires blocking or too much complexity). 455 * It would then be called again in ref-walk mode. 456 * 457 * If the inode has been found through an idmapped mount the idmap of 458 * the vfsmount must be passed through @idmap. This function will then take 459 * care to map the inode according to @idmap before checking permissions. 460 * On non-idmapped mounts or if permission checking is to be performed on the 461 * raw inode simply pass @nop_mnt_idmap. 462 */ 463 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 464 int mask) 465 { 466 int ret; 467 468 /* 469 * Do the basic permission checks. 470 */ 471 ret = acl_permission_check(idmap, inode, mask); 472 if (ret != -EACCES) 473 return ret; 474 475 if (S_ISDIR(inode->i_mode)) { 476 /* DACs are overridable for directories */ 477 if (!(mask & MAY_WRITE)) 478 if (capable_wrt_inode_uidgid(idmap, inode, 479 CAP_DAC_READ_SEARCH)) 480 return 0; 481 if (capable_wrt_inode_uidgid(idmap, inode, 482 CAP_DAC_OVERRIDE)) 483 return 0; 484 return -EACCES; 485 } 486 487 /* 488 * Searching includes executable on directories, else just read. 489 */ 490 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 491 if (mask == MAY_READ) 492 if (capable_wrt_inode_uidgid(idmap, inode, 493 CAP_DAC_READ_SEARCH)) 494 return 0; 495 /* 496 * Read/write DACs are always overridable. 497 * Executable DACs are overridable when there is 498 * at least one exec bit set. 499 */ 500 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 501 if (capable_wrt_inode_uidgid(idmap, inode, 502 CAP_DAC_OVERRIDE)) 503 return 0; 504 505 return -EACCES; 506 } 507 EXPORT_SYMBOL(generic_permission); 508 509 /** 510 * do_inode_permission - UNIX permission checking 511 * @idmap: idmap of the mount the inode was found from 512 * @inode: inode to check permissions on 513 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 514 * 515 * We _really_ want to just do "generic_permission()" without 516 * even looking at the inode->i_op values. So we keep a cache 517 * flag in inode->i_opflags, that says "this has not special 518 * permission function, use the fast case". 519 */ 520 static inline int do_inode_permission(struct mnt_idmap *idmap, 521 struct inode *inode, int mask) 522 { 523 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 524 if (likely(inode->i_op->permission)) 525 return inode->i_op->permission(idmap, inode, mask); 526 527 /* This gets set once for the inode lifetime */ 528 spin_lock(&inode->i_lock); 529 inode->i_opflags |= IOP_FASTPERM; 530 spin_unlock(&inode->i_lock); 531 } 532 return generic_permission(idmap, inode, mask); 533 } 534 535 /** 536 * sb_permission - Check superblock-level permissions 537 * @sb: Superblock of inode to check permission on 538 * @inode: Inode to check permission on 539 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 540 * 541 * Separate out file-system wide checks from inode-specific permission checks. 542 */ 543 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 544 { 545 if (unlikely(mask & MAY_WRITE)) { 546 umode_t mode = inode->i_mode; 547 548 /* Nobody gets write access to a read-only fs. */ 549 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 550 return -EROFS; 551 } 552 return 0; 553 } 554 555 /** 556 * inode_permission - Check for access rights to a given inode 557 * @idmap: idmap of the mount the inode was found from 558 * @inode: Inode to check permission on 559 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 560 * 561 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 562 * this, letting us set arbitrary permissions for filesystem access without 563 * changing the "normal" UIDs which are used for other things. 564 * 565 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 566 */ 567 int inode_permission(struct mnt_idmap *idmap, 568 struct inode *inode, int mask) 569 { 570 int retval; 571 572 retval = sb_permission(inode->i_sb, inode, mask); 573 if (retval) 574 return retval; 575 576 if (unlikely(mask & MAY_WRITE)) { 577 /* 578 * Nobody gets write access to an immutable file. 579 */ 580 if (IS_IMMUTABLE(inode)) 581 return -EPERM; 582 583 /* 584 * Updating mtime will likely cause i_uid and i_gid to be 585 * written back improperly if their true value is unknown 586 * to the vfs. 587 */ 588 if (HAS_UNMAPPED_ID(idmap, inode)) 589 return -EACCES; 590 } 591 592 retval = do_inode_permission(idmap, inode, mask); 593 if (retval) 594 return retval; 595 596 retval = devcgroup_inode_permission(inode, mask); 597 if (retval) 598 return retval; 599 600 return security_inode_permission(inode, mask); 601 } 602 EXPORT_SYMBOL(inode_permission); 603 604 /** 605 * path_get - get a reference to a path 606 * @path: path to get the reference to 607 * 608 * Given a path increment the reference count to the dentry and the vfsmount. 609 */ 610 void path_get(const struct path *path) 611 { 612 mntget(path->mnt); 613 dget(path->dentry); 614 } 615 EXPORT_SYMBOL(path_get); 616 617 /** 618 * path_put - put a reference to a path 619 * @path: path to put the reference to 620 * 621 * Given a path decrement the reference count to the dentry and the vfsmount. 622 */ 623 void path_put(const struct path *path) 624 { 625 dput(path->dentry); 626 mntput(path->mnt); 627 } 628 EXPORT_SYMBOL(path_put); 629 630 #define EMBEDDED_LEVELS 2 631 struct nameidata { 632 struct path path; 633 struct qstr last; 634 struct path root; 635 struct inode *inode; /* path.dentry.d_inode */ 636 unsigned int flags, state; 637 unsigned seq, next_seq, m_seq, r_seq; 638 int last_type; 639 unsigned depth; 640 int total_link_count; 641 struct saved { 642 struct path link; 643 struct delayed_call done; 644 const char *name; 645 unsigned seq; 646 } *stack, internal[EMBEDDED_LEVELS]; 647 struct filename *name; 648 const char *pathname; 649 struct nameidata *saved; 650 unsigned root_seq; 651 int dfd; 652 vfsuid_t dir_vfsuid; 653 umode_t dir_mode; 654 } __randomize_layout; 655 656 #define ND_ROOT_PRESET 1 657 #define ND_ROOT_GRABBED 2 658 #define ND_JUMPED 4 659 660 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 661 { 662 struct nameidata *old = current->nameidata; 663 p->stack = p->internal; 664 p->depth = 0; 665 p->dfd = dfd; 666 p->name = name; 667 p->pathname = likely(name) ? name->name : ""; 668 p->path.mnt = NULL; 669 p->path.dentry = NULL; 670 p->total_link_count = old ? old->total_link_count : 0; 671 p->saved = old; 672 current->nameidata = p; 673 } 674 675 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 676 const struct path *root) 677 { 678 __set_nameidata(p, dfd, name); 679 p->state = 0; 680 if (unlikely(root)) { 681 p->state = ND_ROOT_PRESET; 682 p->root = *root; 683 } 684 } 685 686 static void restore_nameidata(void) 687 { 688 struct nameidata *now = current->nameidata, *old = now->saved; 689 690 current->nameidata = old; 691 if (old) 692 old->total_link_count = now->total_link_count; 693 if (now->stack != now->internal) 694 kfree(now->stack); 695 } 696 697 static bool nd_alloc_stack(struct nameidata *nd) 698 { 699 struct saved *p; 700 701 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 702 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 703 if (unlikely(!p)) 704 return false; 705 memcpy(p, nd->internal, sizeof(nd->internal)); 706 nd->stack = p; 707 return true; 708 } 709 710 /** 711 * path_connected - Verify that a dentry is below mnt.mnt_root 712 * @mnt: The mountpoint to check. 713 * @dentry: The dentry to check. 714 * 715 * Rename can sometimes move a file or directory outside of a bind 716 * mount, path_connected allows those cases to be detected. 717 */ 718 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 719 { 720 struct super_block *sb = mnt->mnt_sb; 721 722 /* Bind mounts can have disconnected paths */ 723 if (mnt->mnt_root == sb->s_root) 724 return true; 725 726 return is_subdir(dentry, mnt->mnt_root); 727 } 728 729 static void drop_links(struct nameidata *nd) 730 { 731 int i = nd->depth; 732 while (i--) { 733 struct saved *last = nd->stack + i; 734 do_delayed_call(&last->done); 735 clear_delayed_call(&last->done); 736 } 737 } 738 739 static void leave_rcu(struct nameidata *nd) 740 { 741 nd->flags &= ~LOOKUP_RCU; 742 nd->seq = nd->next_seq = 0; 743 rcu_read_unlock(); 744 } 745 746 static void terminate_walk(struct nameidata *nd) 747 { 748 drop_links(nd); 749 if (!(nd->flags & LOOKUP_RCU)) { 750 int i; 751 path_put(&nd->path); 752 for (i = 0; i < nd->depth; i++) 753 path_put(&nd->stack[i].link); 754 if (nd->state & ND_ROOT_GRABBED) { 755 path_put(&nd->root); 756 nd->state &= ~ND_ROOT_GRABBED; 757 } 758 } else { 759 leave_rcu(nd); 760 } 761 nd->depth = 0; 762 nd->path.mnt = NULL; 763 nd->path.dentry = NULL; 764 } 765 766 /* path_put is needed afterwards regardless of success or failure */ 767 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 768 { 769 int res = __legitimize_mnt(path->mnt, mseq); 770 if (unlikely(res)) { 771 if (res > 0) 772 path->mnt = NULL; 773 path->dentry = NULL; 774 return false; 775 } 776 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 777 path->dentry = NULL; 778 return false; 779 } 780 return !read_seqcount_retry(&path->dentry->d_seq, seq); 781 } 782 783 static inline bool legitimize_path(struct nameidata *nd, 784 struct path *path, unsigned seq) 785 { 786 return __legitimize_path(path, seq, nd->m_seq); 787 } 788 789 static bool legitimize_links(struct nameidata *nd) 790 { 791 int i; 792 if (unlikely(nd->flags & LOOKUP_CACHED)) { 793 drop_links(nd); 794 nd->depth = 0; 795 return false; 796 } 797 for (i = 0; i < nd->depth; i++) { 798 struct saved *last = nd->stack + i; 799 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 800 drop_links(nd); 801 nd->depth = i + 1; 802 return false; 803 } 804 } 805 return true; 806 } 807 808 static bool legitimize_root(struct nameidata *nd) 809 { 810 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 811 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 812 return true; 813 nd->state |= ND_ROOT_GRABBED; 814 return legitimize_path(nd, &nd->root, nd->root_seq); 815 } 816 817 /* 818 * Path walking has 2 modes, rcu-walk and ref-walk (see 819 * Documentation/filesystems/path-lookup.txt). In situations when we can't 820 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 821 * normal reference counts on dentries and vfsmounts to transition to ref-walk 822 * mode. Refcounts are grabbed at the last known good point before rcu-walk 823 * got stuck, so ref-walk may continue from there. If this is not successful 824 * (eg. a seqcount has changed), then failure is returned and it's up to caller 825 * to restart the path walk from the beginning in ref-walk mode. 826 */ 827 828 /** 829 * try_to_unlazy - try to switch to ref-walk mode. 830 * @nd: nameidata pathwalk data 831 * Returns: true on success, false on failure 832 * 833 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 834 * for ref-walk mode. 835 * Must be called from rcu-walk context. 836 * Nothing should touch nameidata between try_to_unlazy() failure and 837 * terminate_walk(). 838 */ 839 static bool try_to_unlazy(struct nameidata *nd) 840 { 841 struct dentry *parent = nd->path.dentry; 842 843 BUG_ON(!(nd->flags & LOOKUP_RCU)); 844 845 if (unlikely(!legitimize_links(nd))) 846 goto out1; 847 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 848 goto out; 849 if (unlikely(!legitimize_root(nd))) 850 goto out; 851 leave_rcu(nd); 852 BUG_ON(nd->inode != parent->d_inode); 853 return true; 854 855 out1: 856 nd->path.mnt = NULL; 857 nd->path.dentry = NULL; 858 out: 859 leave_rcu(nd); 860 return false; 861 } 862 863 /** 864 * try_to_unlazy_next - try to switch to ref-walk mode. 865 * @nd: nameidata pathwalk data 866 * @dentry: next dentry to step into 867 * Returns: true on success, false on failure 868 * 869 * Similar to try_to_unlazy(), but here we have the next dentry already 870 * picked by rcu-walk and want to legitimize that in addition to the current 871 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 872 * Nothing should touch nameidata between try_to_unlazy_next() failure and 873 * terminate_walk(). 874 */ 875 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 876 { 877 int res; 878 BUG_ON(!(nd->flags & LOOKUP_RCU)); 879 880 if (unlikely(!legitimize_links(nd))) 881 goto out2; 882 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 883 if (unlikely(res)) { 884 if (res > 0) 885 goto out2; 886 goto out1; 887 } 888 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 889 goto out1; 890 891 /* 892 * We need to move both the parent and the dentry from the RCU domain 893 * to be properly refcounted. And the sequence number in the dentry 894 * validates *both* dentry counters, since we checked the sequence 895 * number of the parent after we got the child sequence number. So we 896 * know the parent must still be valid if the child sequence number is 897 */ 898 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 899 goto out; 900 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 901 goto out_dput; 902 /* 903 * Sequence counts matched. Now make sure that the root is 904 * still valid and get it if required. 905 */ 906 if (unlikely(!legitimize_root(nd))) 907 goto out_dput; 908 leave_rcu(nd); 909 return true; 910 911 out2: 912 nd->path.mnt = NULL; 913 out1: 914 nd->path.dentry = NULL; 915 out: 916 leave_rcu(nd); 917 return false; 918 out_dput: 919 leave_rcu(nd); 920 dput(dentry); 921 return false; 922 } 923 924 static inline int d_revalidate(struct inode *dir, const struct qstr *name, 925 struct dentry *dentry, unsigned int flags) 926 { 927 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 928 return dentry->d_op->d_revalidate(dir, name, dentry, flags); 929 else 930 return 1; 931 } 932 933 /** 934 * complete_walk - successful completion of path walk 935 * @nd: pointer nameidata 936 * 937 * If we had been in RCU mode, drop out of it and legitimize nd->path. 938 * Revalidate the final result, unless we'd already done that during 939 * the path walk or the filesystem doesn't ask for it. Return 0 on 940 * success, -error on failure. In case of failure caller does not 941 * need to drop nd->path. 942 */ 943 static int complete_walk(struct nameidata *nd) 944 { 945 struct dentry *dentry = nd->path.dentry; 946 int status; 947 948 if (nd->flags & LOOKUP_RCU) { 949 /* 950 * We don't want to zero nd->root for scoped-lookups or 951 * externally-managed nd->root. 952 */ 953 if (!(nd->state & ND_ROOT_PRESET)) 954 if (!(nd->flags & LOOKUP_IS_SCOPED)) 955 nd->root.mnt = NULL; 956 nd->flags &= ~LOOKUP_CACHED; 957 if (!try_to_unlazy(nd)) 958 return -ECHILD; 959 } 960 961 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 962 /* 963 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 964 * ever step outside the root during lookup" and should already 965 * be guaranteed by the rest of namei, we want to avoid a namei 966 * BUG resulting in userspace being given a path that was not 967 * scoped within the root at some point during the lookup. 968 * 969 * So, do a final sanity-check to make sure that in the 970 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 971 * we won't silently return an fd completely outside of the 972 * requested root to userspace. 973 * 974 * Userspace could move the path outside the root after this 975 * check, but as discussed elsewhere this is not a concern (the 976 * resolved file was inside the root at some point). 977 */ 978 if (!path_is_under(&nd->path, &nd->root)) 979 return -EXDEV; 980 } 981 982 if (likely(!(nd->state & ND_JUMPED))) 983 return 0; 984 985 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 986 return 0; 987 988 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 989 if (status > 0) 990 return 0; 991 992 if (!status) 993 status = -ESTALE; 994 995 return status; 996 } 997 998 static int set_root(struct nameidata *nd) 999 { 1000 struct fs_struct *fs = current->fs; 1001 1002 /* 1003 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 1004 * still have to ensure it doesn't happen because it will cause a breakout 1005 * from the dirfd. 1006 */ 1007 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 1008 return -ENOTRECOVERABLE; 1009 1010 if (nd->flags & LOOKUP_RCU) { 1011 unsigned seq; 1012 1013 do { 1014 seq = read_seqcount_begin(&fs->seq); 1015 nd->root = fs->root; 1016 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 1017 } while (read_seqcount_retry(&fs->seq, seq)); 1018 } else { 1019 get_fs_root(fs, &nd->root); 1020 nd->state |= ND_ROOT_GRABBED; 1021 } 1022 return 0; 1023 } 1024 1025 static int nd_jump_root(struct nameidata *nd) 1026 { 1027 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1028 return -EXDEV; 1029 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1030 /* Absolute path arguments to path_init() are allowed. */ 1031 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 1032 return -EXDEV; 1033 } 1034 if (!nd->root.mnt) { 1035 int error = set_root(nd); 1036 if (error) 1037 return error; 1038 } 1039 if (nd->flags & LOOKUP_RCU) { 1040 struct dentry *d; 1041 nd->path = nd->root; 1042 d = nd->path.dentry; 1043 nd->inode = d->d_inode; 1044 nd->seq = nd->root_seq; 1045 if (read_seqcount_retry(&d->d_seq, nd->seq)) 1046 return -ECHILD; 1047 } else { 1048 path_put(&nd->path); 1049 nd->path = nd->root; 1050 path_get(&nd->path); 1051 nd->inode = nd->path.dentry->d_inode; 1052 } 1053 nd->state |= ND_JUMPED; 1054 return 0; 1055 } 1056 1057 /* 1058 * Helper to directly jump to a known parsed path from ->get_link, 1059 * caller must have taken a reference to path beforehand. 1060 */ 1061 int nd_jump_link(const struct path *path) 1062 { 1063 int error = -ELOOP; 1064 struct nameidata *nd = current->nameidata; 1065 1066 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1067 goto err; 1068 1069 error = -EXDEV; 1070 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1071 if (nd->path.mnt != path->mnt) 1072 goto err; 1073 } 1074 /* Not currently safe for scoped-lookups. */ 1075 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1076 goto err; 1077 1078 path_put(&nd->path); 1079 nd->path = *path; 1080 nd->inode = nd->path.dentry->d_inode; 1081 nd->state |= ND_JUMPED; 1082 return 0; 1083 1084 err: 1085 path_put(path); 1086 return error; 1087 } 1088 1089 static inline void put_link(struct nameidata *nd) 1090 { 1091 struct saved *last = nd->stack + --nd->depth; 1092 do_delayed_call(&last->done); 1093 if (!(nd->flags & LOOKUP_RCU)) 1094 path_put(&last->link); 1095 } 1096 1097 static int sysctl_protected_symlinks __read_mostly; 1098 static int sysctl_protected_hardlinks __read_mostly; 1099 static int sysctl_protected_fifos __read_mostly; 1100 static int sysctl_protected_regular __read_mostly; 1101 1102 #ifdef CONFIG_SYSCTL 1103 static const struct ctl_table namei_sysctls[] = { 1104 { 1105 .procname = "protected_symlinks", 1106 .data = &sysctl_protected_symlinks, 1107 .maxlen = sizeof(int), 1108 .mode = 0644, 1109 .proc_handler = proc_dointvec_minmax, 1110 .extra1 = SYSCTL_ZERO, 1111 .extra2 = SYSCTL_ONE, 1112 }, 1113 { 1114 .procname = "protected_hardlinks", 1115 .data = &sysctl_protected_hardlinks, 1116 .maxlen = sizeof(int), 1117 .mode = 0644, 1118 .proc_handler = proc_dointvec_minmax, 1119 .extra1 = SYSCTL_ZERO, 1120 .extra2 = SYSCTL_ONE, 1121 }, 1122 { 1123 .procname = "protected_fifos", 1124 .data = &sysctl_protected_fifos, 1125 .maxlen = sizeof(int), 1126 .mode = 0644, 1127 .proc_handler = proc_dointvec_minmax, 1128 .extra1 = SYSCTL_ZERO, 1129 .extra2 = SYSCTL_TWO, 1130 }, 1131 { 1132 .procname = "protected_regular", 1133 .data = &sysctl_protected_regular, 1134 .maxlen = sizeof(int), 1135 .mode = 0644, 1136 .proc_handler = proc_dointvec_minmax, 1137 .extra1 = SYSCTL_ZERO, 1138 .extra2 = SYSCTL_TWO, 1139 }, 1140 }; 1141 1142 static int __init init_fs_namei_sysctls(void) 1143 { 1144 register_sysctl_init("fs", namei_sysctls); 1145 return 0; 1146 } 1147 fs_initcall(init_fs_namei_sysctls); 1148 1149 #endif /* CONFIG_SYSCTL */ 1150 1151 /** 1152 * may_follow_link - Check symlink following for unsafe situations 1153 * @nd: nameidata pathwalk data 1154 * @inode: Used for idmapping. 1155 * 1156 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1157 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1158 * in a sticky world-writable directory. This is to protect privileged 1159 * processes from failing races against path names that may change out 1160 * from under them by way of other users creating malicious symlinks. 1161 * It will permit symlinks to be followed only when outside a sticky 1162 * world-writable directory, or when the uid of the symlink and follower 1163 * match, or when the directory owner matches the symlink's owner. 1164 * 1165 * Returns 0 if following the symlink is allowed, -ve on error. 1166 */ 1167 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1168 { 1169 struct mnt_idmap *idmap; 1170 vfsuid_t vfsuid; 1171 1172 if (!sysctl_protected_symlinks) 1173 return 0; 1174 1175 idmap = mnt_idmap(nd->path.mnt); 1176 vfsuid = i_uid_into_vfsuid(idmap, inode); 1177 /* Allowed if owner and follower match. */ 1178 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1179 return 0; 1180 1181 /* Allowed if parent directory not sticky and world-writable. */ 1182 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1183 return 0; 1184 1185 /* Allowed if parent directory and link owner match. */ 1186 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1187 return 0; 1188 1189 if (nd->flags & LOOKUP_RCU) 1190 return -ECHILD; 1191 1192 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1193 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1194 return -EACCES; 1195 } 1196 1197 /** 1198 * safe_hardlink_source - Check for safe hardlink conditions 1199 * @idmap: idmap of the mount the inode was found from 1200 * @inode: the source inode to hardlink from 1201 * 1202 * Return false if at least one of the following conditions: 1203 * - inode is not a regular file 1204 * - inode is setuid 1205 * - inode is setgid and group-exec 1206 * - access failure for read and write 1207 * 1208 * Otherwise returns true. 1209 */ 1210 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1211 struct inode *inode) 1212 { 1213 umode_t mode = inode->i_mode; 1214 1215 /* Special files should not get pinned to the filesystem. */ 1216 if (!S_ISREG(mode)) 1217 return false; 1218 1219 /* Setuid files should not get pinned to the filesystem. */ 1220 if (mode & S_ISUID) 1221 return false; 1222 1223 /* Executable setgid files should not get pinned to the filesystem. */ 1224 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1225 return false; 1226 1227 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1228 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1229 return false; 1230 1231 return true; 1232 } 1233 1234 /** 1235 * may_linkat - Check permissions for creating a hardlink 1236 * @idmap: idmap of the mount the inode was found from 1237 * @link: the source to hardlink from 1238 * 1239 * Block hardlink when all of: 1240 * - sysctl_protected_hardlinks enabled 1241 * - fsuid does not match inode 1242 * - hardlink source is unsafe (see safe_hardlink_source() above) 1243 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1244 * 1245 * If the inode has been found through an idmapped mount the idmap of 1246 * the vfsmount must be passed through @idmap. This function will then take 1247 * care to map the inode according to @idmap before checking permissions. 1248 * On non-idmapped mounts or if permission checking is to be performed on the 1249 * raw inode simply pass @nop_mnt_idmap. 1250 * 1251 * Returns 0 if successful, -ve on error. 1252 */ 1253 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1254 { 1255 struct inode *inode = link->dentry->d_inode; 1256 1257 /* Inode writeback is not safe when the uid or gid are invalid. */ 1258 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1259 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1260 return -EOVERFLOW; 1261 1262 if (!sysctl_protected_hardlinks) 1263 return 0; 1264 1265 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1266 * otherwise, it must be a safe source. 1267 */ 1268 if (safe_hardlink_source(idmap, inode) || 1269 inode_owner_or_capable(idmap, inode)) 1270 return 0; 1271 1272 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1273 return -EPERM; 1274 } 1275 1276 /** 1277 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1278 * should be allowed, or not, on files that already 1279 * exist. 1280 * @idmap: idmap of the mount the inode was found from 1281 * @nd: nameidata pathwalk data 1282 * @inode: the inode of the file to open 1283 * 1284 * Block an O_CREAT open of a FIFO (or a regular file) when: 1285 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1286 * - the file already exists 1287 * - we are in a sticky directory 1288 * - we don't own the file 1289 * - the owner of the directory doesn't own the file 1290 * - the directory is world writable 1291 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1292 * the directory doesn't have to be world writable: being group writable will 1293 * be enough. 1294 * 1295 * If the inode has been found through an idmapped mount the idmap of 1296 * the vfsmount must be passed through @idmap. This function will then take 1297 * care to map the inode according to @idmap before checking permissions. 1298 * On non-idmapped mounts or if permission checking is to be performed on the 1299 * raw inode simply pass @nop_mnt_idmap. 1300 * 1301 * Returns 0 if the open is allowed, -ve on error. 1302 */ 1303 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1304 struct inode *const inode) 1305 { 1306 umode_t dir_mode = nd->dir_mode; 1307 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1308 1309 if (likely(!(dir_mode & S_ISVTX))) 1310 return 0; 1311 1312 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1313 return 0; 1314 1315 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1316 return 0; 1317 1318 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1319 1320 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1321 return 0; 1322 1323 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1324 return 0; 1325 1326 if (likely(dir_mode & 0002)) { 1327 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1328 return -EACCES; 1329 } 1330 1331 if (dir_mode & 0020) { 1332 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1333 audit_log_path_denied(AUDIT_ANOM_CREAT, 1334 "sticky_create_fifo"); 1335 return -EACCES; 1336 } 1337 1338 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1339 audit_log_path_denied(AUDIT_ANOM_CREAT, 1340 "sticky_create_regular"); 1341 return -EACCES; 1342 } 1343 } 1344 1345 return 0; 1346 } 1347 1348 /* 1349 * follow_up - Find the mountpoint of path's vfsmount 1350 * 1351 * Given a path, find the mountpoint of its source file system. 1352 * Replace @path with the path of the mountpoint in the parent mount. 1353 * Up is towards /. 1354 * 1355 * Return 1 if we went up a level and 0 if we were already at the 1356 * root. 1357 */ 1358 int follow_up(struct path *path) 1359 { 1360 struct mount *mnt = real_mount(path->mnt); 1361 struct mount *parent; 1362 struct dentry *mountpoint; 1363 1364 read_seqlock_excl(&mount_lock); 1365 parent = mnt->mnt_parent; 1366 if (parent == mnt) { 1367 read_sequnlock_excl(&mount_lock); 1368 return 0; 1369 } 1370 mntget(&parent->mnt); 1371 mountpoint = dget(mnt->mnt_mountpoint); 1372 read_sequnlock_excl(&mount_lock); 1373 dput(path->dentry); 1374 path->dentry = mountpoint; 1375 mntput(path->mnt); 1376 path->mnt = &parent->mnt; 1377 return 1; 1378 } 1379 EXPORT_SYMBOL(follow_up); 1380 1381 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1382 struct path *path, unsigned *seqp) 1383 { 1384 while (mnt_has_parent(m)) { 1385 struct dentry *mountpoint = m->mnt_mountpoint; 1386 1387 m = m->mnt_parent; 1388 if (unlikely(root->dentry == mountpoint && 1389 root->mnt == &m->mnt)) 1390 break; 1391 if (mountpoint != m->mnt.mnt_root) { 1392 path->mnt = &m->mnt; 1393 path->dentry = mountpoint; 1394 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1395 return true; 1396 } 1397 } 1398 return false; 1399 } 1400 1401 static bool choose_mountpoint(struct mount *m, const struct path *root, 1402 struct path *path) 1403 { 1404 bool found; 1405 1406 rcu_read_lock(); 1407 while (1) { 1408 unsigned seq, mseq = read_seqbegin(&mount_lock); 1409 1410 found = choose_mountpoint_rcu(m, root, path, &seq); 1411 if (unlikely(!found)) { 1412 if (!read_seqretry(&mount_lock, mseq)) 1413 break; 1414 } else { 1415 if (likely(__legitimize_path(path, seq, mseq))) 1416 break; 1417 rcu_read_unlock(); 1418 path_put(path); 1419 rcu_read_lock(); 1420 } 1421 } 1422 rcu_read_unlock(); 1423 return found; 1424 } 1425 1426 /* 1427 * Perform an automount 1428 * - return -EISDIR to tell follow_managed() to stop and return the path we 1429 * were called with. 1430 */ 1431 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1432 { 1433 struct dentry *dentry = path->dentry; 1434 1435 /* We don't want to mount if someone's just doing a stat - 1436 * unless they're stat'ing a directory and appended a '/' to 1437 * the name. 1438 * 1439 * We do, however, want to mount if someone wants to open or 1440 * create a file of any type under the mountpoint, wants to 1441 * traverse through the mountpoint or wants to open the 1442 * mounted directory. Also, autofs may mark negative dentries 1443 * as being automount points. These will need the attentions 1444 * of the daemon to instantiate them before they can be used. 1445 */ 1446 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1447 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1448 dentry->d_inode) 1449 return -EISDIR; 1450 1451 if (count && (*count)++ >= MAXSYMLINKS) 1452 return -ELOOP; 1453 1454 return finish_automount(dentry->d_op->d_automount(path), path); 1455 } 1456 1457 /* 1458 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1459 * dentries are pinned but not locked here, so negative dentry can go 1460 * positive right under us. Use of smp_load_acquire() provides a barrier 1461 * sufficient for ->d_inode and ->d_flags consistency. 1462 */ 1463 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1464 int *count, unsigned lookup_flags) 1465 { 1466 struct vfsmount *mnt = path->mnt; 1467 bool need_mntput = false; 1468 int ret = 0; 1469 1470 while (flags & DCACHE_MANAGED_DENTRY) { 1471 /* Allow the filesystem to manage the transit without i_mutex 1472 * being held. */ 1473 if (flags & DCACHE_MANAGE_TRANSIT) { 1474 ret = path->dentry->d_op->d_manage(path, false); 1475 flags = smp_load_acquire(&path->dentry->d_flags); 1476 if (ret < 0) 1477 break; 1478 } 1479 1480 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1481 struct vfsmount *mounted = lookup_mnt(path); 1482 if (mounted) { // ... in our namespace 1483 dput(path->dentry); 1484 if (need_mntput) 1485 mntput(path->mnt); 1486 path->mnt = mounted; 1487 path->dentry = dget(mounted->mnt_root); 1488 // here we know it's positive 1489 flags = path->dentry->d_flags; 1490 need_mntput = true; 1491 continue; 1492 } 1493 } 1494 1495 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1496 break; 1497 1498 // uncovered automount point 1499 ret = follow_automount(path, count, lookup_flags); 1500 flags = smp_load_acquire(&path->dentry->d_flags); 1501 if (ret < 0) 1502 break; 1503 } 1504 1505 if (ret == -EISDIR) 1506 ret = 0; 1507 // possible if you race with several mount --move 1508 if (need_mntput && path->mnt == mnt) 1509 mntput(path->mnt); 1510 if (!ret && unlikely(d_flags_negative(flags))) 1511 ret = -ENOENT; 1512 *jumped = need_mntput; 1513 return ret; 1514 } 1515 1516 static inline int traverse_mounts(struct path *path, bool *jumped, 1517 int *count, unsigned lookup_flags) 1518 { 1519 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1520 1521 /* fastpath */ 1522 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1523 *jumped = false; 1524 if (unlikely(d_flags_negative(flags))) 1525 return -ENOENT; 1526 return 0; 1527 } 1528 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1529 } 1530 1531 int follow_down_one(struct path *path) 1532 { 1533 struct vfsmount *mounted; 1534 1535 mounted = lookup_mnt(path); 1536 if (mounted) { 1537 dput(path->dentry); 1538 mntput(path->mnt); 1539 path->mnt = mounted; 1540 path->dentry = dget(mounted->mnt_root); 1541 return 1; 1542 } 1543 return 0; 1544 } 1545 EXPORT_SYMBOL(follow_down_one); 1546 1547 /* 1548 * Follow down to the covering mount currently visible to userspace. At each 1549 * point, the filesystem owning that dentry may be queried as to whether the 1550 * caller is permitted to proceed or not. 1551 */ 1552 int follow_down(struct path *path, unsigned int flags) 1553 { 1554 struct vfsmount *mnt = path->mnt; 1555 bool jumped; 1556 int ret = traverse_mounts(path, &jumped, NULL, flags); 1557 1558 if (path->mnt != mnt) 1559 mntput(mnt); 1560 return ret; 1561 } 1562 EXPORT_SYMBOL(follow_down); 1563 1564 /* 1565 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1566 * we meet a managed dentry that would need blocking. 1567 */ 1568 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1569 { 1570 struct dentry *dentry = path->dentry; 1571 unsigned int flags = dentry->d_flags; 1572 1573 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1574 return true; 1575 1576 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1577 return false; 1578 1579 for (;;) { 1580 /* 1581 * Don't forget we might have a non-mountpoint managed dentry 1582 * that wants to block transit. 1583 */ 1584 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1585 int res = dentry->d_op->d_manage(path, true); 1586 if (res) 1587 return res == -EISDIR; 1588 flags = dentry->d_flags; 1589 } 1590 1591 if (flags & DCACHE_MOUNTED) { 1592 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1593 if (mounted) { 1594 path->mnt = &mounted->mnt; 1595 dentry = path->dentry = mounted->mnt.mnt_root; 1596 nd->state |= ND_JUMPED; 1597 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1598 flags = dentry->d_flags; 1599 // makes sure that non-RCU pathwalk could reach 1600 // this state. 1601 if (read_seqretry(&mount_lock, nd->m_seq)) 1602 return false; 1603 continue; 1604 } 1605 if (read_seqretry(&mount_lock, nd->m_seq)) 1606 return false; 1607 } 1608 return !(flags & DCACHE_NEED_AUTOMOUNT); 1609 } 1610 } 1611 1612 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1613 struct path *path) 1614 { 1615 bool jumped; 1616 int ret; 1617 1618 path->mnt = nd->path.mnt; 1619 path->dentry = dentry; 1620 if (nd->flags & LOOKUP_RCU) { 1621 unsigned int seq = nd->next_seq; 1622 if (likely(__follow_mount_rcu(nd, path))) 1623 return 0; 1624 // *path and nd->next_seq might've been clobbered 1625 path->mnt = nd->path.mnt; 1626 path->dentry = dentry; 1627 nd->next_seq = seq; 1628 if (!try_to_unlazy_next(nd, dentry)) 1629 return -ECHILD; 1630 } 1631 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1632 if (jumped) { 1633 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1634 ret = -EXDEV; 1635 else 1636 nd->state |= ND_JUMPED; 1637 } 1638 if (unlikely(ret)) { 1639 dput(path->dentry); 1640 if (path->mnt != nd->path.mnt) 1641 mntput(path->mnt); 1642 } 1643 return ret; 1644 } 1645 1646 /* 1647 * This looks up the name in dcache and possibly revalidates the found dentry. 1648 * NULL is returned if the dentry does not exist in the cache. 1649 */ 1650 static struct dentry *lookup_dcache(const struct qstr *name, 1651 struct dentry *dir, 1652 unsigned int flags) 1653 { 1654 struct dentry *dentry = d_lookup(dir, name); 1655 if (dentry) { 1656 int error = d_revalidate(dir->d_inode, name, dentry, flags); 1657 if (unlikely(error <= 0)) { 1658 if (!error) 1659 d_invalidate(dentry); 1660 dput(dentry); 1661 return ERR_PTR(error); 1662 } 1663 } 1664 return dentry; 1665 } 1666 1667 /* 1668 * Parent directory has inode locked exclusive. This is one 1669 * and only case when ->lookup() gets called on non in-lookup 1670 * dentries - as the matter of fact, this only gets called 1671 * when directory is guaranteed to have no in-lookup children 1672 * at all. 1673 */ 1674 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1675 struct dentry *base, 1676 unsigned int flags) 1677 { 1678 struct dentry *dentry = lookup_dcache(name, base, flags); 1679 struct dentry *old; 1680 struct inode *dir = base->d_inode; 1681 1682 if (dentry) 1683 return dentry; 1684 1685 /* Don't create child dentry for a dead directory. */ 1686 if (unlikely(IS_DEADDIR(dir))) 1687 return ERR_PTR(-ENOENT); 1688 1689 dentry = d_alloc(base, name); 1690 if (unlikely(!dentry)) 1691 return ERR_PTR(-ENOMEM); 1692 1693 old = dir->i_op->lookup(dir, dentry, flags); 1694 if (unlikely(old)) { 1695 dput(dentry); 1696 dentry = old; 1697 } 1698 return dentry; 1699 } 1700 EXPORT_SYMBOL(lookup_one_qstr_excl); 1701 1702 /** 1703 * lookup_fast - do fast lockless (but racy) lookup of a dentry 1704 * @nd: current nameidata 1705 * 1706 * Do a fast, but racy lookup in the dcache for the given dentry, and 1707 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't 1708 * found. On error, an ERR_PTR will be returned. 1709 * 1710 * If this function returns a valid dentry and the walk is no longer 1711 * lazy, the dentry will carry a reference that must later be put. If 1712 * RCU mode is still in force, then this is not the case and the dentry 1713 * must be legitimized before use. If this returns NULL, then the walk 1714 * will no longer be in RCU mode. 1715 */ 1716 static struct dentry *lookup_fast(struct nameidata *nd) 1717 { 1718 struct dentry *dentry, *parent = nd->path.dentry; 1719 int status = 1; 1720 1721 /* 1722 * Rename seqlock is not required here because in the off chance 1723 * of a false negative due to a concurrent rename, the caller is 1724 * going to fall back to non-racy lookup. 1725 */ 1726 if (nd->flags & LOOKUP_RCU) { 1727 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1728 if (unlikely(!dentry)) { 1729 if (!try_to_unlazy(nd)) 1730 return ERR_PTR(-ECHILD); 1731 return NULL; 1732 } 1733 1734 /* 1735 * This sequence count validates that the parent had no 1736 * changes while we did the lookup of the dentry above. 1737 */ 1738 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1739 return ERR_PTR(-ECHILD); 1740 1741 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1742 if (likely(status > 0)) 1743 return dentry; 1744 if (!try_to_unlazy_next(nd, dentry)) 1745 return ERR_PTR(-ECHILD); 1746 if (status == -ECHILD) 1747 /* we'd been told to redo it in non-rcu mode */ 1748 status = d_revalidate(nd->inode, &nd->last, 1749 dentry, nd->flags); 1750 } else { 1751 dentry = __d_lookup(parent, &nd->last); 1752 if (unlikely(!dentry)) 1753 return NULL; 1754 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags); 1755 } 1756 if (unlikely(status <= 0)) { 1757 if (!status) 1758 d_invalidate(dentry); 1759 dput(dentry); 1760 return ERR_PTR(status); 1761 } 1762 return dentry; 1763 } 1764 1765 /* Fast lookup failed, do it the slow way */ 1766 static struct dentry *__lookup_slow(const struct qstr *name, 1767 struct dentry *dir, 1768 unsigned int flags) 1769 { 1770 struct dentry *dentry, *old; 1771 struct inode *inode = dir->d_inode; 1772 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1773 1774 /* Don't go there if it's already dead */ 1775 if (unlikely(IS_DEADDIR(inode))) 1776 return ERR_PTR(-ENOENT); 1777 again: 1778 dentry = d_alloc_parallel(dir, name, &wq); 1779 if (IS_ERR(dentry)) 1780 return dentry; 1781 if (unlikely(!d_in_lookup(dentry))) { 1782 int error = d_revalidate(inode, name, dentry, flags); 1783 if (unlikely(error <= 0)) { 1784 if (!error) { 1785 d_invalidate(dentry); 1786 dput(dentry); 1787 goto again; 1788 } 1789 dput(dentry); 1790 dentry = ERR_PTR(error); 1791 } 1792 } else { 1793 old = inode->i_op->lookup(inode, dentry, flags); 1794 d_lookup_done(dentry); 1795 if (unlikely(old)) { 1796 dput(dentry); 1797 dentry = old; 1798 } 1799 } 1800 return dentry; 1801 } 1802 1803 static struct dentry *lookup_slow(const struct qstr *name, 1804 struct dentry *dir, 1805 unsigned int flags) 1806 { 1807 struct inode *inode = dir->d_inode; 1808 struct dentry *res; 1809 inode_lock_shared(inode); 1810 res = __lookup_slow(name, dir, flags); 1811 inode_unlock_shared(inode); 1812 return res; 1813 } 1814 1815 static inline int may_lookup(struct mnt_idmap *idmap, 1816 struct nameidata *restrict nd) 1817 { 1818 int err, mask; 1819 1820 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1821 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1822 if (likely(!err)) 1823 return 0; 1824 1825 // If we failed, and we weren't in LOOKUP_RCU, it's final 1826 if (!(nd->flags & LOOKUP_RCU)) 1827 return err; 1828 1829 // Drop out of RCU mode to make sure it wasn't transient 1830 if (!try_to_unlazy(nd)) 1831 return -ECHILD; // redo it all non-lazy 1832 1833 if (err != -ECHILD) // hard error 1834 return err; 1835 1836 return inode_permission(idmap, nd->inode, MAY_EXEC); 1837 } 1838 1839 static int reserve_stack(struct nameidata *nd, struct path *link) 1840 { 1841 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1842 return -ELOOP; 1843 1844 if (likely(nd->depth != EMBEDDED_LEVELS)) 1845 return 0; 1846 if (likely(nd->stack != nd->internal)) 1847 return 0; 1848 if (likely(nd_alloc_stack(nd))) 1849 return 0; 1850 1851 if (nd->flags & LOOKUP_RCU) { 1852 // we need to grab link before we do unlazy. And we can't skip 1853 // unlazy even if we fail to grab the link - cleanup needs it 1854 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1855 1856 if (!try_to_unlazy(nd) || !grabbed_link) 1857 return -ECHILD; 1858 1859 if (nd_alloc_stack(nd)) 1860 return 0; 1861 } 1862 return -ENOMEM; 1863 } 1864 1865 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1866 1867 static const char *pick_link(struct nameidata *nd, struct path *link, 1868 struct inode *inode, int flags) 1869 { 1870 struct saved *last; 1871 const char *res; 1872 int error = reserve_stack(nd, link); 1873 1874 if (unlikely(error)) { 1875 if (!(nd->flags & LOOKUP_RCU)) 1876 path_put(link); 1877 return ERR_PTR(error); 1878 } 1879 last = nd->stack + nd->depth++; 1880 last->link = *link; 1881 clear_delayed_call(&last->done); 1882 last->seq = nd->next_seq; 1883 1884 if (flags & WALK_TRAILING) { 1885 error = may_follow_link(nd, inode); 1886 if (unlikely(error)) 1887 return ERR_PTR(error); 1888 } 1889 1890 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1891 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1892 return ERR_PTR(-ELOOP); 1893 1894 if (!(nd->flags & LOOKUP_RCU)) { 1895 touch_atime(&last->link); 1896 cond_resched(); 1897 } else if (atime_needs_update(&last->link, inode)) { 1898 if (!try_to_unlazy(nd)) 1899 return ERR_PTR(-ECHILD); 1900 touch_atime(&last->link); 1901 } 1902 1903 error = security_inode_follow_link(link->dentry, inode, 1904 nd->flags & LOOKUP_RCU); 1905 if (unlikely(error)) 1906 return ERR_PTR(error); 1907 1908 res = READ_ONCE(inode->i_link); 1909 if (!res) { 1910 const char * (*get)(struct dentry *, struct inode *, 1911 struct delayed_call *); 1912 get = inode->i_op->get_link; 1913 if (nd->flags & LOOKUP_RCU) { 1914 res = get(NULL, inode, &last->done); 1915 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1916 res = get(link->dentry, inode, &last->done); 1917 } else { 1918 res = get(link->dentry, inode, &last->done); 1919 } 1920 if (!res) 1921 goto all_done; 1922 if (IS_ERR(res)) 1923 return res; 1924 } 1925 if (*res == '/') { 1926 error = nd_jump_root(nd); 1927 if (unlikely(error)) 1928 return ERR_PTR(error); 1929 while (unlikely(*++res == '/')) 1930 ; 1931 } 1932 if (*res) 1933 return res; 1934 all_done: // pure jump 1935 put_link(nd); 1936 return NULL; 1937 } 1938 1939 /* 1940 * Do we need to follow links? We _really_ want to be able 1941 * to do this check without having to look at inode->i_op, 1942 * so we keep a cache of "no, this doesn't need follow_link" 1943 * for the common case. 1944 * 1945 * NOTE: dentry must be what nd->next_seq had been sampled from. 1946 */ 1947 static const char *step_into(struct nameidata *nd, int flags, 1948 struct dentry *dentry) 1949 { 1950 struct path path; 1951 struct inode *inode; 1952 int err = handle_mounts(nd, dentry, &path); 1953 1954 if (err < 0) 1955 return ERR_PTR(err); 1956 inode = path.dentry->d_inode; 1957 if (likely(!d_is_symlink(path.dentry)) || 1958 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1959 (flags & WALK_NOFOLLOW)) { 1960 /* not a symlink or should not follow */ 1961 if (nd->flags & LOOKUP_RCU) { 1962 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1963 return ERR_PTR(-ECHILD); 1964 if (unlikely(!inode)) 1965 return ERR_PTR(-ENOENT); 1966 } else { 1967 dput(nd->path.dentry); 1968 if (nd->path.mnt != path.mnt) 1969 mntput(nd->path.mnt); 1970 } 1971 nd->path = path; 1972 nd->inode = inode; 1973 nd->seq = nd->next_seq; 1974 return NULL; 1975 } 1976 if (nd->flags & LOOKUP_RCU) { 1977 /* make sure that d_is_symlink above matches inode */ 1978 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1979 return ERR_PTR(-ECHILD); 1980 } else { 1981 if (path.mnt == nd->path.mnt) 1982 mntget(path.mnt); 1983 } 1984 return pick_link(nd, &path, inode, flags); 1985 } 1986 1987 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1988 { 1989 struct dentry *parent, *old; 1990 1991 if (path_equal(&nd->path, &nd->root)) 1992 goto in_root; 1993 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1994 struct path path; 1995 unsigned seq; 1996 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1997 &nd->root, &path, &seq)) 1998 goto in_root; 1999 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2000 return ERR_PTR(-ECHILD); 2001 nd->path = path; 2002 nd->inode = path.dentry->d_inode; 2003 nd->seq = seq; 2004 // makes sure that non-RCU pathwalk could reach this state 2005 if (read_seqretry(&mount_lock, nd->m_seq)) 2006 return ERR_PTR(-ECHILD); 2007 /* we know that mountpoint was pinned */ 2008 } 2009 old = nd->path.dentry; 2010 parent = old->d_parent; 2011 nd->next_seq = read_seqcount_begin(&parent->d_seq); 2012 // makes sure that non-RCU pathwalk could reach this state 2013 if (read_seqcount_retry(&old->d_seq, nd->seq)) 2014 return ERR_PTR(-ECHILD); 2015 if (unlikely(!path_connected(nd->path.mnt, parent))) 2016 return ERR_PTR(-ECHILD); 2017 return parent; 2018 in_root: 2019 if (read_seqretry(&mount_lock, nd->m_seq)) 2020 return ERR_PTR(-ECHILD); 2021 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2022 return ERR_PTR(-ECHILD); 2023 nd->next_seq = nd->seq; 2024 return nd->path.dentry; 2025 } 2026 2027 static struct dentry *follow_dotdot(struct nameidata *nd) 2028 { 2029 struct dentry *parent; 2030 2031 if (path_equal(&nd->path, &nd->root)) 2032 goto in_root; 2033 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2034 struct path path; 2035 2036 if (!choose_mountpoint(real_mount(nd->path.mnt), 2037 &nd->root, &path)) 2038 goto in_root; 2039 path_put(&nd->path); 2040 nd->path = path; 2041 nd->inode = path.dentry->d_inode; 2042 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2043 return ERR_PTR(-EXDEV); 2044 } 2045 /* rare case of legitimate dget_parent()... */ 2046 parent = dget_parent(nd->path.dentry); 2047 if (unlikely(!path_connected(nd->path.mnt, parent))) { 2048 dput(parent); 2049 return ERR_PTR(-ENOENT); 2050 } 2051 return parent; 2052 2053 in_root: 2054 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2055 return ERR_PTR(-EXDEV); 2056 return dget(nd->path.dentry); 2057 } 2058 2059 static const char *handle_dots(struct nameidata *nd, int type) 2060 { 2061 if (type == LAST_DOTDOT) { 2062 const char *error = NULL; 2063 struct dentry *parent; 2064 2065 if (!nd->root.mnt) { 2066 error = ERR_PTR(set_root(nd)); 2067 if (error) 2068 return error; 2069 } 2070 if (nd->flags & LOOKUP_RCU) 2071 parent = follow_dotdot_rcu(nd); 2072 else 2073 parent = follow_dotdot(nd); 2074 if (IS_ERR(parent)) 2075 return ERR_CAST(parent); 2076 error = step_into(nd, WALK_NOFOLLOW, parent); 2077 if (unlikely(error)) 2078 return error; 2079 2080 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2081 /* 2082 * If there was a racing rename or mount along our 2083 * path, then we can't be sure that ".." hasn't jumped 2084 * above nd->root (and so userspace should retry or use 2085 * some fallback). 2086 */ 2087 smp_rmb(); 2088 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2089 return ERR_PTR(-EAGAIN); 2090 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2091 return ERR_PTR(-EAGAIN); 2092 } 2093 } 2094 return NULL; 2095 } 2096 2097 static const char *walk_component(struct nameidata *nd, int flags) 2098 { 2099 struct dentry *dentry; 2100 /* 2101 * "." and ".." are special - ".." especially so because it has 2102 * to be able to know about the current root directory and 2103 * parent relationships. 2104 */ 2105 if (unlikely(nd->last_type != LAST_NORM)) { 2106 if (!(flags & WALK_MORE) && nd->depth) 2107 put_link(nd); 2108 return handle_dots(nd, nd->last_type); 2109 } 2110 dentry = lookup_fast(nd); 2111 if (IS_ERR(dentry)) 2112 return ERR_CAST(dentry); 2113 if (unlikely(!dentry)) { 2114 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2115 if (IS_ERR(dentry)) 2116 return ERR_CAST(dentry); 2117 } 2118 if (!(flags & WALK_MORE) && nd->depth) 2119 put_link(nd); 2120 return step_into(nd, flags, dentry); 2121 } 2122 2123 /* 2124 * We can do the critical dentry name comparison and hashing 2125 * operations one word at a time, but we are limited to: 2126 * 2127 * - Architectures with fast unaligned word accesses. We could 2128 * do a "get_unaligned()" if this helps and is sufficiently 2129 * fast. 2130 * 2131 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2132 * do not trap on the (extremely unlikely) case of a page 2133 * crossing operation. 2134 * 2135 * - Furthermore, we need an efficient 64-bit compile for the 2136 * 64-bit case in order to generate the "number of bytes in 2137 * the final mask". Again, that could be replaced with a 2138 * efficient population count instruction or similar. 2139 */ 2140 #ifdef CONFIG_DCACHE_WORD_ACCESS 2141 2142 #include <asm/word-at-a-time.h> 2143 2144 #ifdef HASH_MIX 2145 2146 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2147 2148 #elif defined(CONFIG_64BIT) 2149 /* 2150 * Register pressure in the mixing function is an issue, particularly 2151 * on 32-bit x86, but almost any function requires one state value and 2152 * one temporary. Instead, use a function designed for two state values 2153 * and no temporaries. 2154 * 2155 * This function cannot create a collision in only two iterations, so 2156 * we have two iterations to achieve avalanche. In those two iterations, 2157 * we have six layers of mixing, which is enough to spread one bit's 2158 * influence out to 2^6 = 64 state bits. 2159 * 2160 * Rotate constants are scored by considering either 64 one-bit input 2161 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2162 * probability of that delta causing a change to each of the 128 output 2163 * bits, using a sample of random initial states. 2164 * 2165 * The Shannon entropy of the computed probabilities is then summed 2166 * to produce a score. Ideally, any input change has a 50% chance of 2167 * toggling any given output bit. 2168 * 2169 * Mixing scores (in bits) for (12,45): 2170 * Input delta: 1-bit 2-bit 2171 * 1 round: 713.3 42542.6 2172 * 2 rounds: 2753.7 140389.8 2173 * 3 rounds: 5954.1 233458.2 2174 * 4 rounds: 7862.6 256672.2 2175 * Perfect: 8192 258048 2176 * (64*128) (64*63/2 * 128) 2177 */ 2178 #define HASH_MIX(x, y, a) \ 2179 ( x ^= (a), \ 2180 y ^= x, x = rol64(x,12),\ 2181 x += y, y = rol64(y,45),\ 2182 y *= 9 ) 2183 2184 /* 2185 * Fold two longs into one 32-bit hash value. This must be fast, but 2186 * latency isn't quite as critical, as there is a fair bit of additional 2187 * work done before the hash value is used. 2188 */ 2189 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2190 { 2191 y ^= x * GOLDEN_RATIO_64; 2192 y *= GOLDEN_RATIO_64; 2193 return y >> 32; 2194 } 2195 2196 #else /* 32-bit case */ 2197 2198 /* 2199 * Mixing scores (in bits) for (7,20): 2200 * Input delta: 1-bit 2-bit 2201 * 1 round: 330.3 9201.6 2202 * 2 rounds: 1246.4 25475.4 2203 * 3 rounds: 1907.1 31295.1 2204 * 4 rounds: 2042.3 31718.6 2205 * Perfect: 2048 31744 2206 * (32*64) (32*31/2 * 64) 2207 */ 2208 #define HASH_MIX(x, y, a) \ 2209 ( x ^= (a), \ 2210 y ^= x, x = rol32(x, 7),\ 2211 x += y, y = rol32(y,20),\ 2212 y *= 9 ) 2213 2214 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2215 { 2216 /* Use arch-optimized multiply if one exists */ 2217 return __hash_32(y ^ __hash_32(x)); 2218 } 2219 2220 #endif 2221 2222 /* 2223 * Return the hash of a string of known length. This is carfully 2224 * designed to match hash_name(), which is the more critical function. 2225 * In particular, we must end by hashing a final word containing 0..7 2226 * payload bytes, to match the way that hash_name() iterates until it 2227 * finds the delimiter after the name. 2228 */ 2229 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2230 { 2231 unsigned long a, x = 0, y = (unsigned long)salt; 2232 2233 for (;;) { 2234 if (!len) 2235 goto done; 2236 a = load_unaligned_zeropad(name); 2237 if (len < sizeof(unsigned long)) 2238 break; 2239 HASH_MIX(x, y, a); 2240 name += sizeof(unsigned long); 2241 len -= sizeof(unsigned long); 2242 } 2243 x ^= a & bytemask_from_count(len); 2244 done: 2245 return fold_hash(x, y); 2246 } 2247 EXPORT_SYMBOL(full_name_hash); 2248 2249 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2250 u64 hashlen_string(const void *salt, const char *name) 2251 { 2252 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2253 unsigned long adata, mask, len; 2254 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2255 2256 len = 0; 2257 goto inside; 2258 2259 do { 2260 HASH_MIX(x, y, a); 2261 len += sizeof(unsigned long); 2262 inside: 2263 a = load_unaligned_zeropad(name+len); 2264 } while (!has_zero(a, &adata, &constants)); 2265 2266 adata = prep_zero_mask(a, adata, &constants); 2267 mask = create_zero_mask(adata); 2268 x ^= a & zero_bytemask(mask); 2269 2270 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2271 } 2272 EXPORT_SYMBOL(hashlen_string); 2273 2274 /* 2275 * Calculate the length and hash of the path component, and 2276 * return the length as the result. 2277 */ 2278 static inline const char *hash_name(struct nameidata *nd, 2279 const char *name, 2280 unsigned long *lastword) 2281 { 2282 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2283 unsigned long adata, bdata, mask, len; 2284 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2285 2286 /* 2287 * The first iteration is special, because it can result in 2288 * '.' and '..' and has no mixing other than the final fold. 2289 */ 2290 a = load_unaligned_zeropad(name); 2291 b = a ^ REPEAT_BYTE('/'); 2292 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2293 adata = prep_zero_mask(a, adata, &constants); 2294 bdata = prep_zero_mask(b, bdata, &constants); 2295 mask = create_zero_mask(adata | bdata); 2296 a &= zero_bytemask(mask); 2297 *lastword = a; 2298 len = find_zero(mask); 2299 nd->last.hash = fold_hash(a, y); 2300 nd->last.len = len; 2301 return name + len; 2302 } 2303 2304 len = 0; 2305 x = 0; 2306 do { 2307 HASH_MIX(x, y, a); 2308 len += sizeof(unsigned long); 2309 a = load_unaligned_zeropad(name+len); 2310 b = a ^ REPEAT_BYTE('/'); 2311 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2312 2313 adata = prep_zero_mask(a, adata, &constants); 2314 bdata = prep_zero_mask(b, bdata, &constants); 2315 mask = create_zero_mask(adata | bdata); 2316 a &= zero_bytemask(mask); 2317 x ^= a; 2318 len += find_zero(mask); 2319 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2320 2321 nd->last.hash = fold_hash(x, y); 2322 nd->last.len = len; 2323 return name + len; 2324 } 2325 2326 /* 2327 * Note that the 'last' word is always zero-masked, but 2328 * was loaded as a possibly big-endian word. 2329 */ 2330 #ifdef __BIG_ENDIAN 2331 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2332 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2333 #endif 2334 2335 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2336 2337 /* Return the hash of a string of known length */ 2338 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2339 { 2340 unsigned long hash = init_name_hash(salt); 2341 while (len--) 2342 hash = partial_name_hash((unsigned char)*name++, hash); 2343 return end_name_hash(hash); 2344 } 2345 EXPORT_SYMBOL(full_name_hash); 2346 2347 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2348 u64 hashlen_string(const void *salt, const char *name) 2349 { 2350 unsigned long hash = init_name_hash(salt); 2351 unsigned long len = 0, c; 2352 2353 c = (unsigned char)*name; 2354 while (c) { 2355 len++; 2356 hash = partial_name_hash(c, hash); 2357 c = (unsigned char)name[len]; 2358 } 2359 return hashlen_create(end_name_hash(hash), len); 2360 } 2361 EXPORT_SYMBOL(hashlen_string); 2362 2363 /* 2364 * We know there's a real path component here of at least 2365 * one character. 2366 */ 2367 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2368 { 2369 unsigned long hash = init_name_hash(nd->path.dentry); 2370 unsigned long len = 0, c, last = 0; 2371 2372 c = (unsigned char)*name; 2373 do { 2374 last = (last << 8) + c; 2375 len++; 2376 hash = partial_name_hash(c, hash); 2377 c = (unsigned char)name[len]; 2378 } while (c && c != '/'); 2379 2380 // This is reliable for DOT or DOTDOT, since the component 2381 // cannot contain NUL characters - top bits being zero means 2382 // we cannot have had any other pathnames. 2383 *lastword = last; 2384 nd->last.hash = end_name_hash(hash); 2385 nd->last.len = len; 2386 return name + len; 2387 } 2388 2389 #endif 2390 2391 #ifndef LAST_WORD_IS_DOT 2392 #define LAST_WORD_IS_DOT 0x2e 2393 #define LAST_WORD_IS_DOTDOT 0x2e2e 2394 #endif 2395 2396 /* 2397 * Name resolution. 2398 * This is the basic name resolution function, turning a pathname into 2399 * the final dentry. We expect 'base' to be positive and a directory. 2400 * 2401 * Returns 0 and nd will have valid dentry and mnt on success. 2402 * Returns error and drops reference to input namei data on failure. 2403 */ 2404 static int link_path_walk(const char *name, struct nameidata *nd) 2405 { 2406 int depth = 0; // depth <= nd->depth 2407 int err; 2408 2409 nd->last_type = LAST_ROOT; 2410 nd->flags |= LOOKUP_PARENT; 2411 if (IS_ERR(name)) 2412 return PTR_ERR(name); 2413 while (*name=='/') 2414 name++; 2415 if (!*name) { 2416 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2417 return 0; 2418 } 2419 2420 /* At this point we know we have a real path component. */ 2421 for(;;) { 2422 struct mnt_idmap *idmap; 2423 const char *link; 2424 unsigned long lastword; 2425 2426 idmap = mnt_idmap(nd->path.mnt); 2427 err = may_lookup(idmap, nd); 2428 if (err) 2429 return err; 2430 2431 nd->last.name = name; 2432 name = hash_name(nd, name, &lastword); 2433 2434 switch(lastword) { 2435 case LAST_WORD_IS_DOTDOT: 2436 nd->last_type = LAST_DOTDOT; 2437 nd->state |= ND_JUMPED; 2438 break; 2439 2440 case LAST_WORD_IS_DOT: 2441 nd->last_type = LAST_DOT; 2442 break; 2443 2444 default: 2445 nd->last_type = LAST_NORM; 2446 nd->state &= ~ND_JUMPED; 2447 2448 struct dentry *parent = nd->path.dentry; 2449 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2450 err = parent->d_op->d_hash(parent, &nd->last); 2451 if (err < 0) 2452 return err; 2453 } 2454 } 2455 2456 if (!*name) 2457 goto OK; 2458 /* 2459 * If it wasn't NUL, we know it was '/'. Skip that 2460 * slash, and continue until no more slashes. 2461 */ 2462 do { 2463 name++; 2464 } while (unlikely(*name == '/')); 2465 if (unlikely(!*name)) { 2466 OK: 2467 /* pathname or trailing symlink, done */ 2468 if (!depth) { 2469 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2470 nd->dir_mode = nd->inode->i_mode; 2471 nd->flags &= ~LOOKUP_PARENT; 2472 return 0; 2473 } 2474 /* last component of nested symlink */ 2475 name = nd->stack[--depth].name; 2476 link = walk_component(nd, 0); 2477 } else { 2478 /* not the last component */ 2479 link = walk_component(nd, WALK_MORE); 2480 } 2481 if (unlikely(link)) { 2482 if (IS_ERR(link)) 2483 return PTR_ERR(link); 2484 /* a symlink to follow */ 2485 nd->stack[depth++].name = name; 2486 name = link; 2487 continue; 2488 } 2489 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2490 if (nd->flags & LOOKUP_RCU) { 2491 if (!try_to_unlazy(nd)) 2492 return -ECHILD; 2493 } 2494 return -ENOTDIR; 2495 } 2496 } 2497 } 2498 2499 /* must be paired with terminate_walk() */ 2500 static const char *path_init(struct nameidata *nd, unsigned flags) 2501 { 2502 int error; 2503 const char *s = nd->pathname; 2504 2505 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2506 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2507 return ERR_PTR(-EAGAIN); 2508 2509 if (!*s) 2510 flags &= ~LOOKUP_RCU; 2511 if (flags & LOOKUP_RCU) 2512 rcu_read_lock(); 2513 else 2514 nd->seq = nd->next_seq = 0; 2515 2516 nd->flags = flags; 2517 nd->state |= ND_JUMPED; 2518 2519 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2520 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2521 smp_rmb(); 2522 2523 if (nd->state & ND_ROOT_PRESET) { 2524 struct dentry *root = nd->root.dentry; 2525 struct inode *inode = root->d_inode; 2526 if (*s && unlikely(!d_can_lookup(root))) 2527 return ERR_PTR(-ENOTDIR); 2528 nd->path = nd->root; 2529 nd->inode = inode; 2530 if (flags & LOOKUP_RCU) { 2531 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2532 nd->root_seq = nd->seq; 2533 } else { 2534 path_get(&nd->path); 2535 } 2536 return s; 2537 } 2538 2539 nd->root.mnt = NULL; 2540 2541 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2542 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2543 error = nd_jump_root(nd); 2544 if (unlikely(error)) 2545 return ERR_PTR(error); 2546 return s; 2547 } 2548 2549 /* Relative pathname -- get the starting-point it is relative to. */ 2550 if (nd->dfd == AT_FDCWD) { 2551 if (flags & LOOKUP_RCU) { 2552 struct fs_struct *fs = current->fs; 2553 unsigned seq; 2554 2555 do { 2556 seq = read_seqcount_begin(&fs->seq); 2557 nd->path = fs->pwd; 2558 nd->inode = nd->path.dentry->d_inode; 2559 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2560 } while (read_seqcount_retry(&fs->seq, seq)); 2561 } else { 2562 get_fs_pwd(current->fs, &nd->path); 2563 nd->inode = nd->path.dentry->d_inode; 2564 } 2565 } else { 2566 /* Caller must check execute permissions on the starting path component */ 2567 CLASS(fd_raw, f)(nd->dfd); 2568 struct dentry *dentry; 2569 2570 if (fd_empty(f)) 2571 return ERR_PTR(-EBADF); 2572 2573 if (flags & LOOKUP_LINKAT_EMPTY) { 2574 if (fd_file(f)->f_cred != current_cred() && 2575 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) 2576 return ERR_PTR(-ENOENT); 2577 } 2578 2579 dentry = fd_file(f)->f_path.dentry; 2580 2581 if (*s && unlikely(!d_can_lookup(dentry))) 2582 return ERR_PTR(-ENOTDIR); 2583 2584 nd->path = fd_file(f)->f_path; 2585 if (flags & LOOKUP_RCU) { 2586 nd->inode = nd->path.dentry->d_inode; 2587 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2588 } else { 2589 path_get(&nd->path); 2590 nd->inode = nd->path.dentry->d_inode; 2591 } 2592 } 2593 2594 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2595 if (flags & LOOKUP_IS_SCOPED) { 2596 nd->root = nd->path; 2597 if (flags & LOOKUP_RCU) { 2598 nd->root_seq = nd->seq; 2599 } else { 2600 path_get(&nd->root); 2601 nd->state |= ND_ROOT_GRABBED; 2602 } 2603 } 2604 return s; 2605 } 2606 2607 static inline const char *lookup_last(struct nameidata *nd) 2608 { 2609 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2610 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2611 2612 return walk_component(nd, WALK_TRAILING); 2613 } 2614 2615 static int handle_lookup_down(struct nameidata *nd) 2616 { 2617 if (!(nd->flags & LOOKUP_RCU)) 2618 dget(nd->path.dentry); 2619 nd->next_seq = nd->seq; 2620 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2621 } 2622 2623 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2624 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2625 { 2626 const char *s = path_init(nd, flags); 2627 int err; 2628 2629 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2630 err = handle_lookup_down(nd); 2631 if (unlikely(err < 0)) 2632 s = ERR_PTR(err); 2633 } 2634 2635 while (!(err = link_path_walk(s, nd)) && 2636 (s = lookup_last(nd)) != NULL) 2637 ; 2638 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2639 err = handle_lookup_down(nd); 2640 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2641 } 2642 if (!err) 2643 err = complete_walk(nd); 2644 2645 if (!err && nd->flags & LOOKUP_DIRECTORY) 2646 if (!d_can_lookup(nd->path.dentry)) 2647 err = -ENOTDIR; 2648 if (!err) { 2649 *path = nd->path; 2650 nd->path.mnt = NULL; 2651 nd->path.dentry = NULL; 2652 } 2653 terminate_walk(nd); 2654 return err; 2655 } 2656 2657 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2658 struct path *path, struct path *root) 2659 { 2660 int retval; 2661 struct nameidata nd; 2662 if (IS_ERR(name)) 2663 return PTR_ERR(name); 2664 set_nameidata(&nd, dfd, name, root); 2665 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2666 if (unlikely(retval == -ECHILD)) 2667 retval = path_lookupat(&nd, flags, path); 2668 if (unlikely(retval == -ESTALE)) 2669 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2670 2671 if (likely(!retval)) 2672 audit_inode(name, path->dentry, 2673 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2674 restore_nameidata(); 2675 return retval; 2676 } 2677 2678 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2679 static int path_parentat(struct nameidata *nd, unsigned flags, 2680 struct path *parent) 2681 { 2682 const char *s = path_init(nd, flags); 2683 int err = link_path_walk(s, nd); 2684 if (!err) 2685 err = complete_walk(nd); 2686 if (!err) { 2687 *parent = nd->path; 2688 nd->path.mnt = NULL; 2689 nd->path.dentry = NULL; 2690 } 2691 terminate_walk(nd); 2692 return err; 2693 } 2694 2695 /* Note: this does not consume "name" */ 2696 static int __filename_parentat(int dfd, struct filename *name, 2697 unsigned int flags, struct path *parent, 2698 struct qstr *last, int *type, 2699 const struct path *root) 2700 { 2701 int retval; 2702 struct nameidata nd; 2703 2704 if (IS_ERR(name)) 2705 return PTR_ERR(name); 2706 set_nameidata(&nd, dfd, name, root); 2707 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2708 if (unlikely(retval == -ECHILD)) 2709 retval = path_parentat(&nd, flags, parent); 2710 if (unlikely(retval == -ESTALE)) 2711 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2712 if (likely(!retval)) { 2713 *last = nd.last; 2714 *type = nd.last_type; 2715 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2716 } 2717 restore_nameidata(); 2718 return retval; 2719 } 2720 2721 static int filename_parentat(int dfd, struct filename *name, 2722 unsigned int flags, struct path *parent, 2723 struct qstr *last, int *type) 2724 { 2725 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2726 } 2727 2728 /* does lookup, returns the object with parent locked */ 2729 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2730 { 2731 struct dentry *d; 2732 struct qstr last; 2733 int type, error; 2734 2735 error = filename_parentat(dfd, name, 0, path, &last, &type); 2736 if (error) 2737 return ERR_PTR(error); 2738 if (unlikely(type != LAST_NORM)) { 2739 path_put(path); 2740 return ERR_PTR(-EINVAL); 2741 } 2742 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2743 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2744 if (IS_ERR(d)) { 2745 inode_unlock(path->dentry->d_inode); 2746 path_put(path); 2747 } 2748 return d; 2749 } 2750 2751 struct dentry *kern_path_locked(const char *name, struct path *path) 2752 { 2753 struct filename *filename = getname_kernel(name); 2754 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2755 2756 putname(filename); 2757 return res; 2758 } 2759 2760 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2761 { 2762 struct filename *filename = getname(name); 2763 struct dentry *res = __kern_path_locked(dfd, filename, path); 2764 2765 putname(filename); 2766 return res; 2767 } 2768 EXPORT_SYMBOL(user_path_locked_at); 2769 2770 int kern_path(const char *name, unsigned int flags, struct path *path) 2771 { 2772 struct filename *filename = getname_kernel(name); 2773 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2774 2775 putname(filename); 2776 return ret; 2777 2778 } 2779 EXPORT_SYMBOL(kern_path); 2780 2781 /** 2782 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2783 * @filename: filename structure 2784 * @flags: lookup flags 2785 * @parent: pointer to struct path to fill 2786 * @last: last component 2787 * @type: type of the last component 2788 * @root: pointer to struct path of the base directory 2789 */ 2790 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2791 struct path *parent, struct qstr *last, int *type, 2792 const struct path *root) 2793 { 2794 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2795 type, root); 2796 } 2797 EXPORT_SYMBOL(vfs_path_parent_lookup); 2798 2799 /** 2800 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2801 * @dentry: pointer to dentry of the base directory 2802 * @mnt: pointer to vfs mount of the base directory 2803 * @name: pointer to file name 2804 * @flags: lookup flags 2805 * @path: pointer to struct path to fill 2806 */ 2807 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2808 const char *name, unsigned int flags, 2809 struct path *path) 2810 { 2811 struct filename *filename; 2812 struct path root = {.mnt = mnt, .dentry = dentry}; 2813 int ret; 2814 2815 filename = getname_kernel(name); 2816 /* the first argument of filename_lookup() is ignored with root */ 2817 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2818 putname(filename); 2819 return ret; 2820 } 2821 EXPORT_SYMBOL(vfs_path_lookup); 2822 2823 static int lookup_one_common(struct mnt_idmap *idmap, 2824 const char *name, struct dentry *base, int len, 2825 struct qstr *this) 2826 { 2827 this->name = name; 2828 this->len = len; 2829 this->hash = full_name_hash(base, name, len); 2830 if (!len) 2831 return -EACCES; 2832 2833 if (is_dot_dotdot(name, len)) 2834 return -EACCES; 2835 2836 while (len--) { 2837 unsigned int c = *(const unsigned char *)name++; 2838 if (c == '/' || c == '\0') 2839 return -EACCES; 2840 } 2841 /* 2842 * See if the low-level filesystem might want 2843 * to use its own hash.. 2844 */ 2845 if (base->d_flags & DCACHE_OP_HASH) { 2846 int err = base->d_op->d_hash(base, this); 2847 if (err < 0) 2848 return err; 2849 } 2850 2851 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2852 } 2853 2854 /** 2855 * try_lookup_one_len - filesystem helper to lookup single pathname component 2856 * @name: pathname component to lookup 2857 * @base: base directory to lookup from 2858 * @len: maximum length @len should be interpreted to 2859 * 2860 * Look up a dentry by name in the dcache, returning NULL if it does not 2861 * currently exist. The function does not try to create a dentry. 2862 * 2863 * Note that this routine is purely a helper for filesystem usage and should 2864 * not be called by generic code. 2865 * 2866 * The caller must hold base->i_mutex. 2867 */ 2868 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2869 { 2870 struct qstr this; 2871 int err; 2872 2873 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2874 2875 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2876 if (err) 2877 return ERR_PTR(err); 2878 2879 return lookup_dcache(&this, base, 0); 2880 } 2881 EXPORT_SYMBOL(try_lookup_one_len); 2882 2883 /** 2884 * lookup_one_len - filesystem helper to lookup single pathname component 2885 * @name: pathname component to lookup 2886 * @base: base directory to lookup from 2887 * @len: maximum length @len should be interpreted to 2888 * 2889 * Note that this routine is purely a helper for filesystem usage and should 2890 * not be called by generic code. 2891 * 2892 * The caller must hold base->i_mutex. 2893 */ 2894 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2895 { 2896 struct dentry *dentry; 2897 struct qstr this; 2898 int err; 2899 2900 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2901 2902 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2903 if (err) 2904 return ERR_PTR(err); 2905 2906 dentry = lookup_dcache(&this, base, 0); 2907 return dentry ? dentry : __lookup_slow(&this, base, 0); 2908 } 2909 EXPORT_SYMBOL(lookup_one_len); 2910 2911 /** 2912 * lookup_one - filesystem helper to lookup single pathname component 2913 * @idmap: idmap of the mount the lookup is performed from 2914 * @name: pathname component to lookup 2915 * @base: base directory to lookup from 2916 * @len: maximum length @len should be interpreted to 2917 * 2918 * Note that this routine is purely a helper for filesystem usage and should 2919 * not be called by generic code. 2920 * 2921 * The caller must hold base->i_mutex. 2922 */ 2923 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2924 struct dentry *base, int len) 2925 { 2926 struct dentry *dentry; 2927 struct qstr this; 2928 int err; 2929 2930 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2931 2932 err = lookup_one_common(idmap, name, base, len, &this); 2933 if (err) 2934 return ERR_PTR(err); 2935 2936 dentry = lookup_dcache(&this, base, 0); 2937 return dentry ? dentry : __lookup_slow(&this, base, 0); 2938 } 2939 EXPORT_SYMBOL(lookup_one); 2940 2941 /** 2942 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2943 * @idmap: idmap of the mount the lookup is performed from 2944 * @name: pathname component to lookup 2945 * @base: base directory to lookup from 2946 * @len: maximum length @len should be interpreted to 2947 * 2948 * Note that this routine is purely a helper for filesystem usage and should 2949 * not be called by generic code. 2950 * 2951 * Unlike lookup_one_len, it should be called without the parent 2952 * i_mutex held, and will take the i_mutex itself if necessary. 2953 */ 2954 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2955 const char *name, struct dentry *base, 2956 int len) 2957 { 2958 struct qstr this; 2959 int err; 2960 struct dentry *ret; 2961 2962 err = lookup_one_common(idmap, name, base, len, &this); 2963 if (err) 2964 return ERR_PTR(err); 2965 2966 ret = lookup_dcache(&this, base, 0); 2967 if (!ret) 2968 ret = lookup_slow(&this, base, 0); 2969 return ret; 2970 } 2971 EXPORT_SYMBOL(lookup_one_unlocked); 2972 2973 /** 2974 * lookup_one_positive_unlocked - filesystem helper to lookup single 2975 * pathname component 2976 * @idmap: idmap of the mount the lookup is performed from 2977 * @name: pathname component to lookup 2978 * @base: base directory to lookup from 2979 * @len: maximum length @len should be interpreted to 2980 * 2981 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2982 * known positive or ERR_PTR(). This is what most of the users want. 2983 * 2984 * Note that pinned negative with unlocked parent _can_ become positive at any 2985 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2986 * positives have >d_inode stable, so this one avoids such problems. 2987 * 2988 * Note that this routine is purely a helper for filesystem usage and should 2989 * not be called by generic code. 2990 * 2991 * The helper should be called without i_mutex held. 2992 */ 2993 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2994 const char *name, 2995 struct dentry *base, int len) 2996 { 2997 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2998 2999 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 3000 dput(ret); 3001 ret = ERR_PTR(-ENOENT); 3002 } 3003 return ret; 3004 } 3005 EXPORT_SYMBOL(lookup_one_positive_unlocked); 3006 3007 /** 3008 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 3009 * @name: pathname component to lookup 3010 * @base: base directory to lookup from 3011 * @len: maximum length @len should be interpreted to 3012 * 3013 * Note that this routine is purely a helper for filesystem usage and should 3014 * not be called by generic code. 3015 * 3016 * Unlike lookup_one_len, it should be called without the parent 3017 * i_mutex held, and will take the i_mutex itself if necessary. 3018 */ 3019 struct dentry *lookup_one_len_unlocked(const char *name, 3020 struct dentry *base, int len) 3021 { 3022 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 3023 } 3024 EXPORT_SYMBOL(lookup_one_len_unlocked); 3025 3026 /* 3027 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 3028 * on negatives. Returns known positive or ERR_PTR(); that's what 3029 * most of the users want. Note that pinned negative with unlocked parent 3030 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 3031 * need to be very careful; pinned positives have ->d_inode stable, so 3032 * this one avoids such problems. 3033 */ 3034 struct dentry *lookup_positive_unlocked(const char *name, 3035 struct dentry *base, int len) 3036 { 3037 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 3038 } 3039 EXPORT_SYMBOL(lookup_positive_unlocked); 3040 3041 #ifdef CONFIG_UNIX98_PTYS 3042 int path_pts(struct path *path) 3043 { 3044 /* Find something mounted on "pts" in the same directory as 3045 * the input path. 3046 */ 3047 struct dentry *parent = dget_parent(path->dentry); 3048 struct dentry *child; 3049 struct qstr this = QSTR_INIT("pts", 3); 3050 3051 if (unlikely(!path_connected(path->mnt, parent))) { 3052 dput(parent); 3053 return -ENOENT; 3054 } 3055 dput(path->dentry); 3056 path->dentry = parent; 3057 child = d_hash_and_lookup(parent, &this); 3058 if (IS_ERR_OR_NULL(child)) 3059 return -ENOENT; 3060 3061 path->dentry = child; 3062 dput(parent); 3063 follow_down(path, 0); 3064 return 0; 3065 } 3066 #endif 3067 3068 int user_path_at(int dfd, const char __user *name, unsigned flags, 3069 struct path *path) 3070 { 3071 struct filename *filename = getname_flags(name, flags); 3072 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3073 3074 putname(filename); 3075 return ret; 3076 } 3077 EXPORT_SYMBOL(user_path_at); 3078 3079 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3080 struct inode *inode) 3081 { 3082 kuid_t fsuid = current_fsuid(); 3083 3084 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3085 return 0; 3086 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3087 return 0; 3088 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3089 } 3090 EXPORT_SYMBOL(__check_sticky); 3091 3092 /* 3093 * Check whether we can remove a link victim from directory dir, check 3094 * whether the type of victim is right. 3095 * 1. We can't do it if dir is read-only (done in permission()) 3096 * 2. We should have write and exec permissions on dir 3097 * 3. We can't remove anything from append-only dir 3098 * 4. We can't do anything with immutable dir (done in permission()) 3099 * 5. If the sticky bit on dir is set we should either 3100 * a. be owner of dir, or 3101 * b. be owner of victim, or 3102 * c. have CAP_FOWNER capability 3103 * 6. If the victim is append-only or immutable we can't do antyhing with 3104 * links pointing to it. 3105 * 7. If the victim has an unknown uid or gid we can't change the inode. 3106 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3107 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3108 * 10. We can't remove a root or mountpoint. 3109 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3110 * nfs_async_unlink(). 3111 */ 3112 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3113 struct dentry *victim, bool isdir) 3114 { 3115 struct inode *inode = d_backing_inode(victim); 3116 int error; 3117 3118 if (d_is_negative(victim)) 3119 return -ENOENT; 3120 BUG_ON(!inode); 3121 3122 BUG_ON(victim->d_parent->d_inode != dir); 3123 3124 /* Inode writeback is not safe when the uid or gid are invalid. */ 3125 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3126 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3127 return -EOVERFLOW; 3128 3129 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3130 3131 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3132 if (error) 3133 return error; 3134 if (IS_APPEND(dir)) 3135 return -EPERM; 3136 3137 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3138 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3139 HAS_UNMAPPED_ID(idmap, inode)) 3140 return -EPERM; 3141 if (isdir) { 3142 if (!d_is_dir(victim)) 3143 return -ENOTDIR; 3144 if (IS_ROOT(victim)) 3145 return -EBUSY; 3146 } else if (d_is_dir(victim)) 3147 return -EISDIR; 3148 if (IS_DEADDIR(dir)) 3149 return -ENOENT; 3150 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3151 return -EBUSY; 3152 return 0; 3153 } 3154 3155 /* Check whether we can create an object with dentry child in directory 3156 * dir. 3157 * 1. We can't do it if child already exists (open has special treatment for 3158 * this case, but since we are inlined it's OK) 3159 * 2. We can't do it if dir is read-only (done in permission()) 3160 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3161 * 4. We should have write and exec permissions on dir 3162 * 5. We can't do it if dir is immutable (done in permission()) 3163 */ 3164 static inline int may_create(struct mnt_idmap *idmap, 3165 struct inode *dir, struct dentry *child) 3166 { 3167 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3168 if (child->d_inode) 3169 return -EEXIST; 3170 if (IS_DEADDIR(dir)) 3171 return -ENOENT; 3172 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3173 return -EOVERFLOW; 3174 3175 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3176 } 3177 3178 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3179 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3180 { 3181 struct dentry *p = p1, *q = p2, *r; 3182 3183 while ((r = p->d_parent) != p2 && r != p) 3184 p = r; 3185 if (r == p2) { 3186 // p is a child of p2 and an ancestor of p1 or p1 itself 3187 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3188 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3189 return p; 3190 } 3191 // p is the root of connected component that contains p1 3192 // p2 does not occur on the path from p to p1 3193 while ((r = q->d_parent) != p1 && r != p && r != q) 3194 q = r; 3195 if (r == p1) { 3196 // q is a child of p1 and an ancestor of p2 or p2 itself 3197 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3198 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3199 return q; 3200 } else if (likely(r == p)) { 3201 // both p2 and p1 are descendents of p 3202 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3203 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3204 return NULL; 3205 } else { // no common ancestor at the time we'd been called 3206 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3207 return ERR_PTR(-EXDEV); 3208 } 3209 } 3210 3211 /* 3212 * p1 and p2 should be directories on the same fs. 3213 */ 3214 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3215 { 3216 if (p1 == p2) { 3217 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3218 return NULL; 3219 } 3220 3221 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3222 return lock_two_directories(p1, p2); 3223 } 3224 EXPORT_SYMBOL(lock_rename); 3225 3226 /* 3227 * c1 and p2 should be on the same fs. 3228 */ 3229 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3230 { 3231 if (READ_ONCE(c1->d_parent) == p2) { 3232 /* 3233 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3234 */ 3235 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3236 /* 3237 * now that p2 is locked, nobody can move in or out of it, 3238 * so the test below is safe. 3239 */ 3240 if (likely(c1->d_parent == p2)) 3241 return NULL; 3242 3243 /* 3244 * c1 got moved out of p2 while we'd been taking locks; 3245 * unlock and fall back to slow case. 3246 */ 3247 inode_unlock(p2->d_inode); 3248 } 3249 3250 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3251 /* 3252 * nobody can move out of any directories on this fs. 3253 */ 3254 if (likely(c1->d_parent != p2)) 3255 return lock_two_directories(c1->d_parent, p2); 3256 3257 /* 3258 * c1 got moved into p2 while we were taking locks; 3259 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3260 * for consistency with lock_rename(). 3261 */ 3262 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3263 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3264 return NULL; 3265 } 3266 EXPORT_SYMBOL(lock_rename_child); 3267 3268 void unlock_rename(struct dentry *p1, struct dentry *p2) 3269 { 3270 inode_unlock(p1->d_inode); 3271 if (p1 != p2) { 3272 inode_unlock(p2->d_inode); 3273 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3274 } 3275 } 3276 EXPORT_SYMBOL(unlock_rename); 3277 3278 /** 3279 * vfs_prepare_mode - prepare the mode to be used for a new inode 3280 * @idmap: idmap of the mount the inode was found from 3281 * @dir: parent directory of the new inode 3282 * @mode: mode of the new inode 3283 * @mask_perms: allowed permission by the vfs 3284 * @type: type of file to be created 3285 * 3286 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3287 * object to be created. 3288 * 3289 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3290 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3291 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3292 * POSIX ACL supporting filesystems. 3293 * 3294 * Note that it's currently valid for @type to be 0 if a directory is created. 3295 * Filesystems raise that flag individually and we need to check whether each 3296 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3297 * non-zero type. 3298 * 3299 * Returns: mode to be passed to the filesystem 3300 */ 3301 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3302 const struct inode *dir, umode_t mode, 3303 umode_t mask_perms, umode_t type) 3304 { 3305 mode = mode_strip_sgid(idmap, dir, mode); 3306 mode = mode_strip_umask(dir, mode); 3307 3308 /* 3309 * Apply the vfs mandated allowed permission mask and set the type of 3310 * file to be created before we call into the filesystem. 3311 */ 3312 mode &= (mask_perms & ~S_IFMT); 3313 mode |= (type & S_IFMT); 3314 3315 return mode; 3316 } 3317 3318 /** 3319 * vfs_create - create new file 3320 * @idmap: idmap of the mount the inode was found from 3321 * @dir: inode of the parent directory 3322 * @dentry: dentry of the child file 3323 * @mode: mode of the child file 3324 * @want_excl: whether the file must not yet exist 3325 * 3326 * Create a new file. 3327 * 3328 * If the inode has been found through an idmapped mount the idmap of 3329 * the vfsmount must be passed through @idmap. This function will then take 3330 * care to map the inode according to @idmap before checking permissions. 3331 * On non-idmapped mounts or if permission checking is to be performed on the 3332 * raw inode simply pass @nop_mnt_idmap. 3333 */ 3334 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3335 struct dentry *dentry, umode_t mode, bool want_excl) 3336 { 3337 int error; 3338 3339 error = may_create(idmap, dir, dentry); 3340 if (error) 3341 return error; 3342 3343 if (!dir->i_op->create) 3344 return -EACCES; /* shouldn't it be ENOSYS? */ 3345 3346 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3347 error = security_inode_create(dir, dentry, mode); 3348 if (error) 3349 return error; 3350 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3351 if (!error) 3352 fsnotify_create(dir, dentry); 3353 return error; 3354 } 3355 EXPORT_SYMBOL(vfs_create); 3356 3357 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3358 int (*f)(struct dentry *, umode_t, void *), 3359 void *arg) 3360 { 3361 struct inode *dir = dentry->d_parent->d_inode; 3362 int error = may_create(&nop_mnt_idmap, dir, dentry); 3363 if (error) 3364 return error; 3365 3366 mode &= S_IALLUGO; 3367 mode |= S_IFREG; 3368 error = security_inode_create(dir, dentry, mode); 3369 if (error) 3370 return error; 3371 error = f(dentry, mode, arg); 3372 if (!error) 3373 fsnotify_create(dir, dentry); 3374 return error; 3375 } 3376 EXPORT_SYMBOL(vfs_mkobj); 3377 3378 bool may_open_dev(const struct path *path) 3379 { 3380 return !(path->mnt->mnt_flags & MNT_NODEV) && 3381 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3382 } 3383 3384 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3385 int acc_mode, int flag) 3386 { 3387 struct dentry *dentry = path->dentry; 3388 struct inode *inode = dentry->d_inode; 3389 int error; 3390 3391 if (!inode) 3392 return -ENOENT; 3393 3394 switch (inode->i_mode & S_IFMT) { 3395 case S_IFLNK: 3396 return -ELOOP; 3397 case S_IFDIR: 3398 if (acc_mode & MAY_WRITE) 3399 return -EISDIR; 3400 if (acc_mode & MAY_EXEC) 3401 return -EACCES; 3402 break; 3403 case S_IFBLK: 3404 case S_IFCHR: 3405 if (!may_open_dev(path)) 3406 return -EACCES; 3407 fallthrough; 3408 case S_IFIFO: 3409 case S_IFSOCK: 3410 if (acc_mode & MAY_EXEC) 3411 return -EACCES; 3412 flag &= ~O_TRUNC; 3413 break; 3414 case S_IFREG: 3415 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3416 return -EACCES; 3417 break; 3418 } 3419 3420 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3421 if (error) 3422 return error; 3423 3424 /* 3425 * An append-only file must be opened in append mode for writing. 3426 */ 3427 if (IS_APPEND(inode)) { 3428 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3429 return -EPERM; 3430 if (flag & O_TRUNC) 3431 return -EPERM; 3432 } 3433 3434 /* O_NOATIME can only be set by the owner or superuser */ 3435 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3436 return -EPERM; 3437 3438 return 0; 3439 } 3440 3441 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3442 { 3443 const struct path *path = &filp->f_path; 3444 struct inode *inode = path->dentry->d_inode; 3445 int error = get_write_access(inode); 3446 if (error) 3447 return error; 3448 3449 error = security_file_truncate(filp); 3450 if (!error) { 3451 error = do_truncate(idmap, path->dentry, 0, 3452 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3453 filp); 3454 } 3455 put_write_access(inode); 3456 return error; 3457 } 3458 3459 static inline int open_to_namei_flags(int flag) 3460 { 3461 if ((flag & O_ACCMODE) == 3) 3462 flag--; 3463 return flag; 3464 } 3465 3466 static int may_o_create(struct mnt_idmap *idmap, 3467 const struct path *dir, struct dentry *dentry, 3468 umode_t mode) 3469 { 3470 int error = security_path_mknod(dir, dentry, mode, 0); 3471 if (error) 3472 return error; 3473 3474 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3475 return -EOVERFLOW; 3476 3477 error = inode_permission(idmap, dir->dentry->d_inode, 3478 MAY_WRITE | MAY_EXEC); 3479 if (error) 3480 return error; 3481 3482 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3483 } 3484 3485 /* 3486 * Attempt to atomically look up, create and open a file from a negative 3487 * dentry. 3488 * 3489 * Returns 0 if successful. The file will have been created and attached to 3490 * @file by the filesystem calling finish_open(). 3491 * 3492 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3493 * be set. The caller will need to perform the open themselves. @path will 3494 * have been updated to point to the new dentry. This may be negative. 3495 * 3496 * Returns an error code otherwise. 3497 */ 3498 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3499 struct file *file, 3500 int open_flag, umode_t mode) 3501 { 3502 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3503 struct inode *dir = nd->path.dentry->d_inode; 3504 int error; 3505 3506 if (nd->flags & LOOKUP_DIRECTORY) 3507 open_flag |= O_DIRECTORY; 3508 3509 file->f_path.dentry = DENTRY_NOT_SET; 3510 file->f_path.mnt = nd->path.mnt; 3511 error = dir->i_op->atomic_open(dir, dentry, file, 3512 open_to_namei_flags(open_flag), mode); 3513 d_lookup_done(dentry); 3514 if (!error) { 3515 if (file->f_mode & FMODE_OPENED) { 3516 if (unlikely(dentry != file->f_path.dentry)) { 3517 dput(dentry); 3518 dentry = dget(file->f_path.dentry); 3519 } 3520 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3521 error = -EIO; 3522 } else { 3523 if (file->f_path.dentry) { 3524 dput(dentry); 3525 dentry = file->f_path.dentry; 3526 } 3527 if (unlikely(d_is_negative(dentry))) 3528 error = -ENOENT; 3529 } 3530 } 3531 if (error) { 3532 dput(dentry); 3533 dentry = ERR_PTR(error); 3534 } 3535 return dentry; 3536 } 3537 3538 /* 3539 * Look up and maybe create and open the last component. 3540 * 3541 * Must be called with parent locked (exclusive in O_CREAT case). 3542 * 3543 * Returns 0 on success, that is, if 3544 * the file was successfully atomically created (if necessary) and opened, or 3545 * the file was not completely opened at this time, though lookups and 3546 * creations were performed. 3547 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3548 * In the latter case dentry returned in @path might be negative if O_CREAT 3549 * hadn't been specified. 3550 * 3551 * An error code is returned on failure. 3552 */ 3553 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3554 const struct open_flags *op, 3555 bool got_write) 3556 { 3557 struct mnt_idmap *idmap; 3558 struct dentry *dir = nd->path.dentry; 3559 struct inode *dir_inode = dir->d_inode; 3560 int open_flag = op->open_flag; 3561 struct dentry *dentry; 3562 int error, create_error = 0; 3563 umode_t mode = op->mode; 3564 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3565 3566 if (unlikely(IS_DEADDIR(dir_inode))) 3567 return ERR_PTR(-ENOENT); 3568 3569 file->f_mode &= ~FMODE_CREATED; 3570 dentry = d_lookup(dir, &nd->last); 3571 for (;;) { 3572 if (!dentry) { 3573 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3574 if (IS_ERR(dentry)) 3575 return dentry; 3576 } 3577 if (d_in_lookup(dentry)) 3578 break; 3579 3580 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags); 3581 if (likely(error > 0)) 3582 break; 3583 if (error) 3584 goto out_dput; 3585 d_invalidate(dentry); 3586 dput(dentry); 3587 dentry = NULL; 3588 } 3589 if (dentry->d_inode) { 3590 /* Cached positive dentry: will open in f_op->open */ 3591 return dentry; 3592 } 3593 3594 if (open_flag & O_CREAT) 3595 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3596 3597 /* 3598 * Checking write permission is tricky, bacuse we don't know if we are 3599 * going to actually need it: O_CREAT opens should work as long as the 3600 * file exists. But checking existence breaks atomicity. The trick is 3601 * to check access and if not granted clear O_CREAT from the flags. 3602 * 3603 * Another problem is returing the "right" error value (e.g. for an 3604 * O_EXCL open we want to return EEXIST not EROFS). 3605 */ 3606 if (unlikely(!got_write)) 3607 open_flag &= ~O_TRUNC; 3608 idmap = mnt_idmap(nd->path.mnt); 3609 if (open_flag & O_CREAT) { 3610 if (open_flag & O_EXCL) 3611 open_flag &= ~O_TRUNC; 3612 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3613 if (likely(got_write)) 3614 create_error = may_o_create(idmap, &nd->path, 3615 dentry, mode); 3616 else 3617 create_error = -EROFS; 3618 } 3619 if (create_error) 3620 open_flag &= ~O_CREAT; 3621 if (dir_inode->i_op->atomic_open) { 3622 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3623 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3624 dentry = ERR_PTR(create_error); 3625 return dentry; 3626 } 3627 3628 if (d_in_lookup(dentry)) { 3629 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3630 nd->flags); 3631 d_lookup_done(dentry); 3632 if (unlikely(res)) { 3633 if (IS_ERR(res)) { 3634 error = PTR_ERR(res); 3635 goto out_dput; 3636 } 3637 dput(dentry); 3638 dentry = res; 3639 } 3640 } 3641 3642 /* Negative dentry, just create the file */ 3643 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3644 file->f_mode |= FMODE_CREATED; 3645 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3646 if (!dir_inode->i_op->create) { 3647 error = -EACCES; 3648 goto out_dput; 3649 } 3650 3651 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3652 mode, open_flag & O_EXCL); 3653 if (error) 3654 goto out_dput; 3655 } 3656 if (unlikely(create_error) && !dentry->d_inode) { 3657 error = create_error; 3658 goto out_dput; 3659 } 3660 return dentry; 3661 3662 out_dput: 3663 dput(dentry); 3664 return ERR_PTR(error); 3665 } 3666 3667 static inline bool trailing_slashes(struct nameidata *nd) 3668 { 3669 return (bool)nd->last.name[nd->last.len]; 3670 } 3671 3672 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) 3673 { 3674 struct dentry *dentry; 3675 3676 if (open_flag & O_CREAT) { 3677 if (trailing_slashes(nd)) 3678 return ERR_PTR(-EISDIR); 3679 3680 /* Don't bother on an O_EXCL create */ 3681 if (open_flag & O_EXCL) 3682 return NULL; 3683 } 3684 3685 if (trailing_slashes(nd)) 3686 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3687 3688 dentry = lookup_fast(nd); 3689 if (IS_ERR_OR_NULL(dentry)) 3690 return dentry; 3691 3692 if (open_flag & O_CREAT) { 3693 /* Discard negative dentries. Need inode_lock to do the create */ 3694 if (!dentry->d_inode) { 3695 if (!(nd->flags & LOOKUP_RCU)) 3696 dput(dentry); 3697 dentry = NULL; 3698 } 3699 } 3700 return dentry; 3701 } 3702 3703 static const char *open_last_lookups(struct nameidata *nd, 3704 struct file *file, const struct open_flags *op) 3705 { 3706 struct dentry *dir = nd->path.dentry; 3707 int open_flag = op->open_flag; 3708 bool got_write = false; 3709 struct dentry *dentry; 3710 const char *res; 3711 3712 nd->flags |= op->intent; 3713 3714 if (nd->last_type != LAST_NORM) { 3715 if (nd->depth) 3716 put_link(nd); 3717 return handle_dots(nd, nd->last_type); 3718 } 3719 3720 /* We _can_ be in RCU mode here */ 3721 dentry = lookup_fast_for_open(nd, open_flag); 3722 if (IS_ERR(dentry)) 3723 return ERR_CAST(dentry); 3724 3725 if (likely(dentry)) 3726 goto finish_lookup; 3727 3728 if (!(open_flag & O_CREAT)) { 3729 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3730 return ERR_PTR(-ECHILD); 3731 } else { 3732 if (nd->flags & LOOKUP_RCU) { 3733 if (!try_to_unlazy(nd)) 3734 return ERR_PTR(-ECHILD); 3735 } 3736 } 3737 3738 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3739 got_write = !mnt_want_write(nd->path.mnt); 3740 /* 3741 * do _not_ fail yet - we might not need that or fail with 3742 * a different error; let lookup_open() decide; we'll be 3743 * dropping this one anyway. 3744 */ 3745 } 3746 if (open_flag & O_CREAT) 3747 inode_lock(dir->d_inode); 3748 else 3749 inode_lock_shared(dir->d_inode); 3750 dentry = lookup_open(nd, file, op, got_write); 3751 if (!IS_ERR(dentry)) { 3752 if (file->f_mode & FMODE_CREATED) 3753 fsnotify_create(dir->d_inode, dentry); 3754 if (file->f_mode & FMODE_OPENED) 3755 fsnotify_open(file); 3756 } 3757 if (open_flag & O_CREAT) 3758 inode_unlock(dir->d_inode); 3759 else 3760 inode_unlock_shared(dir->d_inode); 3761 3762 if (got_write) 3763 mnt_drop_write(nd->path.mnt); 3764 3765 if (IS_ERR(dentry)) 3766 return ERR_CAST(dentry); 3767 3768 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3769 dput(nd->path.dentry); 3770 nd->path.dentry = dentry; 3771 return NULL; 3772 } 3773 3774 finish_lookup: 3775 if (nd->depth) 3776 put_link(nd); 3777 res = step_into(nd, WALK_TRAILING, dentry); 3778 if (unlikely(res)) 3779 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3780 return res; 3781 } 3782 3783 /* 3784 * Handle the last step of open() 3785 */ 3786 static int do_open(struct nameidata *nd, 3787 struct file *file, const struct open_flags *op) 3788 { 3789 struct mnt_idmap *idmap; 3790 int open_flag = op->open_flag; 3791 bool do_truncate; 3792 int acc_mode; 3793 int error; 3794 3795 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3796 error = complete_walk(nd); 3797 if (error) 3798 return error; 3799 } 3800 if (!(file->f_mode & FMODE_CREATED)) 3801 audit_inode(nd->name, nd->path.dentry, 0); 3802 idmap = mnt_idmap(nd->path.mnt); 3803 if (open_flag & O_CREAT) { 3804 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3805 return -EEXIST; 3806 if (d_is_dir(nd->path.dentry)) 3807 return -EISDIR; 3808 error = may_create_in_sticky(idmap, nd, 3809 d_backing_inode(nd->path.dentry)); 3810 if (unlikely(error)) 3811 return error; 3812 } 3813 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3814 return -ENOTDIR; 3815 3816 do_truncate = false; 3817 acc_mode = op->acc_mode; 3818 if (file->f_mode & FMODE_CREATED) { 3819 /* Don't check for write permission, don't truncate */ 3820 open_flag &= ~O_TRUNC; 3821 acc_mode = 0; 3822 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3823 error = mnt_want_write(nd->path.mnt); 3824 if (error) 3825 return error; 3826 do_truncate = true; 3827 } 3828 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3829 if (!error && !(file->f_mode & FMODE_OPENED)) 3830 error = vfs_open(&nd->path, file); 3831 if (!error) 3832 error = security_file_post_open(file, op->acc_mode); 3833 if (!error && do_truncate) 3834 error = handle_truncate(idmap, file); 3835 if (unlikely(error > 0)) { 3836 WARN_ON(1); 3837 error = -EINVAL; 3838 } 3839 if (do_truncate) 3840 mnt_drop_write(nd->path.mnt); 3841 return error; 3842 } 3843 3844 /** 3845 * vfs_tmpfile - create tmpfile 3846 * @idmap: idmap of the mount the inode was found from 3847 * @parentpath: pointer to the path of the base directory 3848 * @file: file descriptor of the new tmpfile 3849 * @mode: mode of the new tmpfile 3850 * 3851 * Create a temporary file. 3852 * 3853 * If the inode has been found through an idmapped mount the idmap of 3854 * the vfsmount must be passed through @idmap. This function will then take 3855 * care to map the inode according to @idmap before checking permissions. 3856 * On non-idmapped mounts or if permission checking is to be performed on the 3857 * raw inode simply pass @nop_mnt_idmap. 3858 */ 3859 int vfs_tmpfile(struct mnt_idmap *idmap, 3860 const struct path *parentpath, 3861 struct file *file, umode_t mode) 3862 { 3863 struct dentry *child; 3864 struct inode *dir = d_inode(parentpath->dentry); 3865 struct inode *inode; 3866 int error; 3867 int open_flag = file->f_flags; 3868 3869 /* we want directory to be writable */ 3870 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3871 if (error) 3872 return error; 3873 if (!dir->i_op->tmpfile) 3874 return -EOPNOTSUPP; 3875 child = d_alloc(parentpath->dentry, &slash_name); 3876 if (unlikely(!child)) 3877 return -ENOMEM; 3878 file->f_path.mnt = parentpath->mnt; 3879 file->f_path.dentry = child; 3880 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3881 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3882 dput(child); 3883 if (file->f_mode & FMODE_OPENED) 3884 fsnotify_open(file); 3885 if (error) 3886 return error; 3887 /* Don't check for other permissions, the inode was just created */ 3888 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3889 if (error) 3890 return error; 3891 inode = file_inode(file); 3892 if (!(open_flag & O_EXCL)) { 3893 spin_lock(&inode->i_lock); 3894 inode->i_state |= I_LINKABLE; 3895 spin_unlock(&inode->i_lock); 3896 } 3897 security_inode_post_create_tmpfile(idmap, inode); 3898 return 0; 3899 } 3900 3901 /** 3902 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3903 * @idmap: idmap of the mount the inode was found from 3904 * @parentpath: path of the base directory 3905 * @mode: mode of the new tmpfile 3906 * @open_flag: flags 3907 * @cred: credentials for open 3908 * 3909 * Create and open a temporary file. The file is not accounted in nr_files, 3910 * hence this is only for kernel internal use, and must not be installed into 3911 * file tables or such. 3912 */ 3913 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3914 const struct path *parentpath, 3915 umode_t mode, int open_flag, 3916 const struct cred *cred) 3917 { 3918 struct file *file; 3919 int error; 3920 3921 file = alloc_empty_file_noaccount(open_flag, cred); 3922 if (IS_ERR(file)) 3923 return file; 3924 3925 error = vfs_tmpfile(idmap, parentpath, file, mode); 3926 if (error) { 3927 fput(file); 3928 file = ERR_PTR(error); 3929 } 3930 return file; 3931 } 3932 EXPORT_SYMBOL(kernel_tmpfile_open); 3933 3934 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3935 const struct open_flags *op, 3936 struct file *file) 3937 { 3938 struct path path; 3939 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3940 3941 if (unlikely(error)) 3942 return error; 3943 error = mnt_want_write(path.mnt); 3944 if (unlikely(error)) 3945 goto out; 3946 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3947 if (error) 3948 goto out2; 3949 audit_inode(nd->name, file->f_path.dentry, 0); 3950 out2: 3951 mnt_drop_write(path.mnt); 3952 out: 3953 path_put(&path); 3954 return error; 3955 } 3956 3957 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3958 { 3959 struct path path; 3960 int error = path_lookupat(nd, flags, &path); 3961 if (!error) { 3962 audit_inode(nd->name, path.dentry, 0); 3963 error = vfs_open(&path, file); 3964 path_put(&path); 3965 } 3966 return error; 3967 } 3968 3969 static struct file *path_openat(struct nameidata *nd, 3970 const struct open_flags *op, unsigned flags) 3971 { 3972 struct file *file; 3973 int error; 3974 3975 file = alloc_empty_file(op->open_flag, current_cred()); 3976 if (IS_ERR(file)) 3977 return file; 3978 3979 if (unlikely(file->f_flags & __O_TMPFILE)) { 3980 error = do_tmpfile(nd, flags, op, file); 3981 } else if (unlikely(file->f_flags & O_PATH)) { 3982 error = do_o_path(nd, flags, file); 3983 } else { 3984 const char *s = path_init(nd, flags); 3985 while (!(error = link_path_walk(s, nd)) && 3986 (s = open_last_lookups(nd, file, op)) != NULL) 3987 ; 3988 if (!error) 3989 error = do_open(nd, file, op); 3990 terminate_walk(nd); 3991 } 3992 if (likely(!error)) { 3993 if (likely(file->f_mode & FMODE_OPENED)) 3994 return file; 3995 WARN_ON(1); 3996 error = -EINVAL; 3997 } 3998 fput(file); 3999 if (error == -EOPENSTALE) { 4000 if (flags & LOOKUP_RCU) 4001 error = -ECHILD; 4002 else 4003 error = -ESTALE; 4004 } 4005 return ERR_PTR(error); 4006 } 4007 4008 struct file *do_filp_open(int dfd, struct filename *pathname, 4009 const struct open_flags *op) 4010 { 4011 struct nameidata nd; 4012 int flags = op->lookup_flags; 4013 struct file *filp; 4014 4015 set_nameidata(&nd, dfd, pathname, NULL); 4016 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 4017 if (unlikely(filp == ERR_PTR(-ECHILD))) 4018 filp = path_openat(&nd, op, flags); 4019 if (unlikely(filp == ERR_PTR(-ESTALE))) 4020 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 4021 restore_nameidata(); 4022 return filp; 4023 } 4024 4025 struct file *do_file_open_root(const struct path *root, 4026 const char *name, const struct open_flags *op) 4027 { 4028 struct nameidata nd; 4029 struct file *file; 4030 struct filename *filename; 4031 int flags = op->lookup_flags; 4032 4033 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 4034 return ERR_PTR(-ELOOP); 4035 4036 filename = getname_kernel(name); 4037 if (IS_ERR(filename)) 4038 return ERR_CAST(filename); 4039 4040 set_nameidata(&nd, -1, filename, root); 4041 file = path_openat(&nd, op, flags | LOOKUP_RCU); 4042 if (unlikely(file == ERR_PTR(-ECHILD))) 4043 file = path_openat(&nd, op, flags); 4044 if (unlikely(file == ERR_PTR(-ESTALE))) 4045 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 4046 restore_nameidata(); 4047 putname(filename); 4048 return file; 4049 } 4050 4051 static struct dentry *filename_create(int dfd, struct filename *name, 4052 struct path *path, unsigned int lookup_flags) 4053 { 4054 struct dentry *dentry = ERR_PTR(-EEXIST); 4055 struct qstr last; 4056 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 4057 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 4058 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 4059 int type; 4060 int err2; 4061 int error; 4062 4063 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 4064 if (error) 4065 return ERR_PTR(error); 4066 4067 /* 4068 * Yucky last component or no last component at all? 4069 * (foo/., foo/.., /////) 4070 */ 4071 if (unlikely(type != LAST_NORM)) 4072 goto out; 4073 4074 /* don't fail immediately if it's r/o, at least try to report other errors */ 4075 err2 = mnt_want_write(path->mnt); 4076 /* 4077 * Do the final lookup. Suppress 'create' if there is a trailing 4078 * '/', and a directory wasn't requested. 4079 */ 4080 if (last.name[last.len] && !want_dir) 4081 create_flags = 0; 4082 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 4083 dentry = lookup_one_qstr_excl(&last, path->dentry, 4084 reval_flag | create_flags); 4085 if (IS_ERR(dentry)) 4086 goto unlock; 4087 4088 error = -EEXIST; 4089 if (d_is_positive(dentry)) 4090 goto fail; 4091 4092 /* 4093 * Special case - lookup gave negative, but... we had foo/bar/ 4094 * From the vfs_mknod() POV we just have a negative dentry - 4095 * all is fine. Let's be bastards - you had / on the end, you've 4096 * been asking for (non-existent) directory. -ENOENT for you. 4097 */ 4098 if (unlikely(!create_flags)) { 4099 error = -ENOENT; 4100 goto fail; 4101 } 4102 if (unlikely(err2)) { 4103 error = err2; 4104 goto fail; 4105 } 4106 return dentry; 4107 fail: 4108 dput(dentry); 4109 dentry = ERR_PTR(error); 4110 unlock: 4111 inode_unlock(path->dentry->d_inode); 4112 if (!err2) 4113 mnt_drop_write(path->mnt); 4114 out: 4115 path_put(path); 4116 return dentry; 4117 } 4118 4119 struct dentry *kern_path_create(int dfd, const char *pathname, 4120 struct path *path, unsigned int lookup_flags) 4121 { 4122 struct filename *filename = getname_kernel(pathname); 4123 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4124 4125 putname(filename); 4126 return res; 4127 } 4128 EXPORT_SYMBOL(kern_path_create); 4129 4130 void done_path_create(struct path *path, struct dentry *dentry) 4131 { 4132 dput(dentry); 4133 inode_unlock(path->dentry->d_inode); 4134 mnt_drop_write(path->mnt); 4135 path_put(path); 4136 } 4137 EXPORT_SYMBOL(done_path_create); 4138 4139 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4140 struct path *path, unsigned int lookup_flags) 4141 { 4142 struct filename *filename = getname(pathname); 4143 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4144 4145 putname(filename); 4146 return res; 4147 } 4148 EXPORT_SYMBOL(user_path_create); 4149 4150 /** 4151 * vfs_mknod - create device node or file 4152 * @idmap: idmap of the mount the inode was found from 4153 * @dir: inode of the parent directory 4154 * @dentry: dentry of the child device node 4155 * @mode: mode of the child device node 4156 * @dev: device number of device to create 4157 * 4158 * Create a device node or file. 4159 * 4160 * If the inode has been found through an idmapped mount the idmap of 4161 * the vfsmount must be passed through @idmap. This function will then take 4162 * care to map the inode according to @idmap before checking permissions. 4163 * On non-idmapped mounts or if permission checking is to be performed on the 4164 * raw inode simply pass @nop_mnt_idmap. 4165 */ 4166 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4167 struct dentry *dentry, umode_t mode, dev_t dev) 4168 { 4169 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4170 int error = may_create(idmap, dir, dentry); 4171 4172 if (error) 4173 return error; 4174 4175 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4176 !capable(CAP_MKNOD)) 4177 return -EPERM; 4178 4179 if (!dir->i_op->mknod) 4180 return -EPERM; 4181 4182 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4183 error = devcgroup_inode_mknod(mode, dev); 4184 if (error) 4185 return error; 4186 4187 error = security_inode_mknod(dir, dentry, mode, dev); 4188 if (error) 4189 return error; 4190 4191 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4192 if (!error) 4193 fsnotify_create(dir, dentry); 4194 return error; 4195 } 4196 EXPORT_SYMBOL(vfs_mknod); 4197 4198 static int may_mknod(umode_t mode) 4199 { 4200 switch (mode & S_IFMT) { 4201 case S_IFREG: 4202 case S_IFCHR: 4203 case S_IFBLK: 4204 case S_IFIFO: 4205 case S_IFSOCK: 4206 case 0: /* zero mode translates to S_IFREG */ 4207 return 0; 4208 case S_IFDIR: 4209 return -EPERM; 4210 default: 4211 return -EINVAL; 4212 } 4213 } 4214 4215 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4216 unsigned int dev) 4217 { 4218 struct mnt_idmap *idmap; 4219 struct dentry *dentry; 4220 struct path path; 4221 int error; 4222 unsigned int lookup_flags = 0; 4223 4224 error = may_mknod(mode); 4225 if (error) 4226 goto out1; 4227 retry: 4228 dentry = filename_create(dfd, name, &path, lookup_flags); 4229 error = PTR_ERR(dentry); 4230 if (IS_ERR(dentry)) 4231 goto out1; 4232 4233 error = security_path_mknod(&path, dentry, 4234 mode_strip_umask(path.dentry->d_inode, mode), dev); 4235 if (error) 4236 goto out2; 4237 4238 idmap = mnt_idmap(path.mnt); 4239 switch (mode & S_IFMT) { 4240 case 0: case S_IFREG: 4241 error = vfs_create(idmap, path.dentry->d_inode, 4242 dentry, mode, true); 4243 if (!error) 4244 security_path_post_mknod(idmap, dentry); 4245 break; 4246 case S_IFCHR: case S_IFBLK: 4247 error = vfs_mknod(idmap, path.dentry->d_inode, 4248 dentry, mode, new_decode_dev(dev)); 4249 break; 4250 case S_IFIFO: case S_IFSOCK: 4251 error = vfs_mknod(idmap, path.dentry->d_inode, 4252 dentry, mode, 0); 4253 break; 4254 } 4255 out2: 4256 done_path_create(&path, dentry); 4257 if (retry_estale(error, lookup_flags)) { 4258 lookup_flags |= LOOKUP_REVAL; 4259 goto retry; 4260 } 4261 out1: 4262 putname(name); 4263 return error; 4264 } 4265 4266 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4267 unsigned int, dev) 4268 { 4269 return do_mknodat(dfd, getname(filename), mode, dev); 4270 } 4271 4272 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4273 { 4274 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4275 } 4276 4277 /** 4278 * vfs_mkdir - create directory 4279 * @idmap: idmap of the mount the inode was found from 4280 * @dir: inode of the parent directory 4281 * @dentry: dentry of the child directory 4282 * @mode: mode of the child directory 4283 * 4284 * Create a directory. 4285 * 4286 * If the inode has been found through an idmapped mount the idmap of 4287 * the vfsmount must be passed through @idmap. This function will then take 4288 * care to map the inode according to @idmap before checking permissions. 4289 * On non-idmapped mounts or if permission checking is to be performed on the 4290 * raw inode simply pass @nop_mnt_idmap. 4291 */ 4292 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4293 struct dentry *dentry, umode_t mode) 4294 { 4295 int error; 4296 unsigned max_links = dir->i_sb->s_max_links; 4297 4298 error = may_create(idmap, dir, dentry); 4299 if (error) 4300 return error; 4301 4302 if (!dir->i_op->mkdir) 4303 return -EPERM; 4304 4305 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4306 error = security_inode_mkdir(dir, dentry, mode); 4307 if (error) 4308 return error; 4309 4310 if (max_links && dir->i_nlink >= max_links) 4311 return -EMLINK; 4312 4313 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4314 if (!error) 4315 fsnotify_mkdir(dir, dentry); 4316 return error; 4317 } 4318 EXPORT_SYMBOL(vfs_mkdir); 4319 4320 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4321 { 4322 struct dentry *dentry; 4323 struct path path; 4324 int error; 4325 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4326 4327 retry: 4328 dentry = filename_create(dfd, name, &path, lookup_flags); 4329 error = PTR_ERR(dentry); 4330 if (IS_ERR(dentry)) 4331 goto out_putname; 4332 4333 error = security_path_mkdir(&path, dentry, 4334 mode_strip_umask(path.dentry->d_inode, mode)); 4335 if (!error) { 4336 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4337 dentry, mode); 4338 } 4339 done_path_create(&path, dentry); 4340 if (retry_estale(error, lookup_flags)) { 4341 lookup_flags |= LOOKUP_REVAL; 4342 goto retry; 4343 } 4344 out_putname: 4345 putname(name); 4346 return error; 4347 } 4348 4349 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4350 { 4351 return do_mkdirat(dfd, getname(pathname), mode); 4352 } 4353 4354 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4355 { 4356 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4357 } 4358 4359 /** 4360 * vfs_rmdir - remove directory 4361 * @idmap: idmap of the mount the inode was found from 4362 * @dir: inode of the parent directory 4363 * @dentry: dentry of the child directory 4364 * 4365 * Remove a directory. 4366 * 4367 * If the inode has been found through an idmapped mount the idmap of 4368 * the vfsmount must be passed through @idmap. This function will then take 4369 * care to map the inode according to @idmap before checking permissions. 4370 * On non-idmapped mounts or if permission checking is to be performed on the 4371 * raw inode simply pass @nop_mnt_idmap. 4372 */ 4373 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4374 struct dentry *dentry) 4375 { 4376 int error = may_delete(idmap, dir, dentry, 1); 4377 4378 if (error) 4379 return error; 4380 4381 if (!dir->i_op->rmdir) 4382 return -EPERM; 4383 4384 dget(dentry); 4385 inode_lock(dentry->d_inode); 4386 4387 error = -EBUSY; 4388 if (is_local_mountpoint(dentry) || 4389 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4390 goto out; 4391 4392 error = security_inode_rmdir(dir, dentry); 4393 if (error) 4394 goto out; 4395 4396 error = dir->i_op->rmdir(dir, dentry); 4397 if (error) 4398 goto out; 4399 4400 shrink_dcache_parent(dentry); 4401 dentry->d_inode->i_flags |= S_DEAD; 4402 dont_mount(dentry); 4403 detach_mounts(dentry); 4404 4405 out: 4406 inode_unlock(dentry->d_inode); 4407 dput(dentry); 4408 if (!error) 4409 d_delete_notify(dir, dentry); 4410 return error; 4411 } 4412 EXPORT_SYMBOL(vfs_rmdir); 4413 4414 int do_rmdir(int dfd, struct filename *name) 4415 { 4416 int error; 4417 struct dentry *dentry; 4418 struct path path; 4419 struct qstr last; 4420 int type; 4421 unsigned int lookup_flags = 0; 4422 retry: 4423 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4424 if (error) 4425 goto exit1; 4426 4427 switch (type) { 4428 case LAST_DOTDOT: 4429 error = -ENOTEMPTY; 4430 goto exit2; 4431 case LAST_DOT: 4432 error = -EINVAL; 4433 goto exit2; 4434 case LAST_ROOT: 4435 error = -EBUSY; 4436 goto exit2; 4437 } 4438 4439 error = mnt_want_write(path.mnt); 4440 if (error) 4441 goto exit2; 4442 4443 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4444 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4445 error = PTR_ERR(dentry); 4446 if (IS_ERR(dentry)) 4447 goto exit3; 4448 if (!dentry->d_inode) { 4449 error = -ENOENT; 4450 goto exit4; 4451 } 4452 error = security_path_rmdir(&path, dentry); 4453 if (error) 4454 goto exit4; 4455 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4456 exit4: 4457 dput(dentry); 4458 exit3: 4459 inode_unlock(path.dentry->d_inode); 4460 mnt_drop_write(path.mnt); 4461 exit2: 4462 path_put(&path); 4463 if (retry_estale(error, lookup_flags)) { 4464 lookup_flags |= LOOKUP_REVAL; 4465 goto retry; 4466 } 4467 exit1: 4468 putname(name); 4469 return error; 4470 } 4471 4472 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4473 { 4474 return do_rmdir(AT_FDCWD, getname(pathname)); 4475 } 4476 4477 /** 4478 * vfs_unlink - unlink a filesystem object 4479 * @idmap: idmap of the mount the inode was found from 4480 * @dir: parent directory 4481 * @dentry: victim 4482 * @delegated_inode: returns victim inode, if the inode is delegated. 4483 * 4484 * The caller must hold dir->i_mutex. 4485 * 4486 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4487 * return a reference to the inode in delegated_inode. The caller 4488 * should then break the delegation on that inode and retry. Because 4489 * breaking a delegation may take a long time, the caller should drop 4490 * dir->i_mutex before doing so. 4491 * 4492 * Alternatively, a caller may pass NULL for delegated_inode. This may 4493 * be appropriate for callers that expect the underlying filesystem not 4494 * to be NFS exported. 4495 * 4496 * If the inode has been found through an idmapped mount the idmap of 4497 * the vfsmount must be passed through @idmap. This function will then take 4498 * care to map the inode according to @idmap before checking permissions. 4499 * On non-idmapped mounts or if permission checking is to be performed on the 4500 * raw inode simply pass @nop_mnt_idmap. 4501 */ 4502 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4503 struct dentry *dentry, struct inode **delegated_inode) 4504 { 4505 struct inode *target = dentry->d_inode; 4506 int error = may_delete(idmap, dir, dentry, 0); 4507 4508 if (error) 4509 return error; 4510 4511 if (!dir->i_op->unlink) 4512 return -EPERM; 4513 4514 inode_lock(target); 4515 if (IS_SWAPFILE(target)) 4516 error = -EPERM; 4517 else if (is_local_mountpoint(dentry)) 4518 error = -EBUSY; 4519 else { 4520 error = security_inode_unlink(dir, dentry); 4521 if (!error) { 4522 error = try_break_deleg(target, delegated_inode); 4523 if (error) 4524 goto out; 4525 error = dir->i_op->unlink(dir, dentry); 4526 if (!error) { 4527 dont_mount(dentry); 4528 detach_mounts(dentry); 4529 } 4530 } 4531 } 4532 out: 4533 inode_unlock(target); 4534 4535 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4536 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4537 fsnotify_unlink(dir, dentry); 4538 } else if (!error) { 4539 fsnotify_link_count(target); 4540 d_delete_notify(dir, dentry); 4541 } 4542 4543 return error; 4544 } 4545 EXPORT_SYMBOL(vfs_unlink); 4546 4547 /* 4548 * Make sure that the actual truncation of the file will occur outside its 4549 * directory's i_mutex. Truncate can take a long time if there is a lot of 4550 * writeout happening, and we don't want to prevent access to the directory 4551 * while waiting on the I/O. 4552 */ 4553 int do_unlinkat(int dfd, struct filename *name) 4554 { 4555 int error; 4556 struct dentry *dentry; 4557 struct path path; 4558 struct qstr last; 4559 int type; 4560 struct inode *inode = NULL; 4561 struct inode *delegated_inode = NULL; 4562 unsigned int lookup_flags = 0; 4563 retry: 4564 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4565 if (error) 4566 goto exit1; 4567 4568 error = -EISDIR; 4569 if (type != LAST_NORM) 4570 goto exit2; 4571 4572 error = mnt_want_write(path.mnt); 4573 if (error) 4574 goto exit2; 4575 retry_deleg: 4576 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4577 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4578 error = PTR_ERR(dentry); 4579 if (!IS_ERR(dentry)) { 4580 4581 /* Why not before? Because we want correct error value */ 4582 if (last.name[last.len] || d_is_negative(dentry)) 4583 goto slashes; 4584 inode = dentry->d_inode; 4585 ihold(inode); 4586 error = security_path_unlink(&path, dentry); 4587 if (error) 4588 goto exit3; 4589 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4590 dentry, &delegated_inode); 4591 exit3: 4592 dput(dentry); 4593 } 4594 inode_unlock(path.dentry->d_inode); 4595 if (inode) 4596 iput(inode); /* truncate the inode here */ 4597 inode = NULL; 4598 if (delegated_inode) { 4599 error = break_deleg_wait(&delegated_inode); 4600 if (!error) 4601 goto retry_deleg; 4602 } 4603 mnt_drop_write(path.mnt); 4604 exit2: 4605 path_put(&path); 4606 if (retry_estale(error, lookup_flags)) { 4607 lookup_flags |= LOOKUP_REVAL; 4608 inode = NULL; 4609 goto retry; 4610 } 4611 exit1: 4612 putname(name); 4613 return error; 4614 4615 slashes: 4616 if (d_is_negative(dentry)) 4617 error = -ENOENT; 4618 else if (d_is_dir(dentry)) 4619 error = -EISDIR; 4620 else 4621 error = -ENOTDIR; 4622 goto exit3; 4623 } 4624 4625 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4626 { 4627 if ((flag & ~AT_REMOVEDIR) != 0) 4628 return -EINVAL; 4629 4630 if (flag & AT_REMOVEDIR) 4631 return do_rmdir(dfd, getname(pathname)); 4632 return do_unlinkat(dfd, getname(pathname)); 4633 } 4634 4635 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4636 { 4637 return do_unlinkat(AT_FDCWD, getname(pathname)); 4638 } 4639 4640 /** 4641 * vfs_symlink - create symlink 4642 * @idmap: idmap of the mount the inode was found from 4643 * @dir: inode of the parent directory 4644 * @dentry: dentry of the child symlink file 4645 * @oldname: name of the file to link to 4646 * 4647 * Create a symlink. 4648 * 4649 * If the inode has been found through an idmapped mount the idmap of 4650 * the vfsmount must be passed through @idmap. This function will then take 4651 * care to map the inode according to @idmap before checking permissions. 4652 * On non-idmapped mounts or if permission checking is to be performed on the 4653 * raw inode simply pass @nop_mnt_idmap. 4654 */ 4655 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4656 struct dentry *dentry, const char *oldname) 4657 { 4658 int error; 4659 4660 error = may_create(idmap, dir, dentry); 4661 if (error) 4662 return error; 4663 4664 if (!dir->i_op->symlink) 4665 return -EPERM; 4666 4667 error = security_inode_symlink(dir, dentry, oldname); 4668 if (error) 4669 return error; 4670 4671 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4672 if (!error) 4673 fsnotify_create(dir, dentry); 4674 return error; 4675 } 4676 EXPORT_SYMBOL(vfs_symlink); 4677 4678 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4679 { 4680 int error; 4681 struct dentry *dentry; 4682 struct path path; 4683 unsigned int lookup_flags = 0; 4684 4685 if (IS_ERR(from)) { 4686 error = PTR_ERR(from); 4687 goto out_putnames; 4688 } 4689 retry: 4690 dentry = filename_create(newdfd, to, &path, lookup_flags); 4691 error = PTR_ERR(dentry); 4692 if (IS_ERR(dentry)) 4693 goto out_putnames; 4694 4695 error = security_path_symlink(&path, dentry, from->name); 4696 if (!error) 4697 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4698 dentry, from->name); 4699 done_path_create(&path, dentry); 4700 if (retry_estale(error, lookup_flags)) { 4701 lookup_flags |= LOOKUP_REVAL; 4702 goto retry; 4703 } 4704 out_putnames: 4705 putname(to); 4706 putname(from); 4707 return error; 4708 } 4709 4710 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4711 int, newdfd, const char __user *, newname) 4712 { 4713 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4714 } 4715 4716 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4717 { 4718 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4719 } 4720 4721 /** 4722 * vfs_link - create a new link 4723 * @old_dentry: object to be linked 4724 * @idmap: idmap of the mount 4725 * @dir: new parent 4726 * @new_dentry: where to create the new link 4727 * @delegated_inode: returns inode needing a delegation break 4728 * 4729 * The caller must hold dir->i_mutex 4730 * 4731 * If vfs_link discovers a delegation on the to-be-linked file in need 4732 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4733 * inode in delegated_inode. The caller should then break the delegation 4734 * and retry. Because breaking a delegation may take a long time, the 4735 * caller should drop the i_mutex before doing so. 4736 * 4737 * Alternatively, a caller may pass NULL for delegated_inode. This may 4738 * be appropriate for callers that expect the underlying filesystem not 4739 * to be NFS exported. 4740 * 4741 * If the inode has been found through an idmapped mount the idmap of 4742 * the vfsmount must be passed through @idmap. This function will then take 4743 * care to map the inode according to @idmap before checking permissions. 4744 * On non-idmapped mounts or if permission checking is to be performed on the 4745 * raw inode simply pass @nop_mnt_idmap. 4746 */ 4747 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4748 struct inode *dir, struct dentry *new_dentry, 4749 struct inode **delegated_inode) 4750 { 4751 struct inode *inode = old_dentry->d_inode; 4752 unsigned max_links = dir->i_sb->s_max_links; 4753 int error; 4754 4755 if (!inode) 4756 return -ENOENT; 4757 4758 error = may_create(idmap, dir, new_dentry); 4759 if (error) 4760 return error; 4761 4762 if (dir->i_sb != inode->i_sb) 4763 return -EXDEV; 4764 4765 /* 4766 * A link to an append-only or immutable file cannot be created. 4767 */ 4768 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4769 return -EPERM; 4770 /* 4771 * Updating the link count will likely cause i_uid and i_gid to 4772 * be writen back improperly if their true value is unknown to 4773 * the vfs. 4774 */ 4775 if (HAS_UNMAPPED_ID(idmap, inode)) 4776 return -EPERM; 4777 if (!dir->i_op->link) 4778 return -EPERM; 4779 if (S_ISDIR(inode->i_mode)) 4780 return -EPERM; 4781 4782 error = security_inode_link(old_dentry, dir, new_dentry); 4783 if (error) 4784 return error; 4785 4786 inode_lock(inode); 4787 /* Make sure we don't allow creating hardlink to an unlinked file */ 4788 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4789 error = -ENOENT; 4790 else if (max_links && inode->i_nlink >= max_links) 4791 error = -EMLINK; 4792 else { 4793 error = try_break_deleg(inode, delegated_inode); 4794 if (!error) 4795 error = dir->i_op->link(old_dentry, dir, new_dentry); 4796 } 4797 4798 if (!error && (inode->i_state & I_LINKABLE)) { 4799 spin_lock(&inode->i_lock); 4800 inode->i_state &= ~I_LINKABLE; 4801 spin_unlock(&inode->i_lock); 4802 } 4803 inode_unlock(inode); 4804 if (!error) 4805 fsnotify_link(dir, inode, new_dentry); 4806 return error; 4807 } 4808 EXPORT_SYMBOL(vfs_link); 4809 4810 /* 4811 * Hardlinks are often used in delicate situations. We avoid 4812 * security-related surprises by not following symlinks on the 4813 * newname. --KAB 4814 * 4815 * We don't follow them on the oldname either to be compatible 4816 * with linux 2.0, and to avoid hard-linking to directories 4817 * and other special files. --ADM 4818 */ 4819 int do_linkat(int olddfd, struct filename *old, int newdfd, 4820 struct filename *new, int flags) 4821 { 4822 struct mnt_idmap *idmap; 4823 struct dentry *new_dentry; 4824 struct path old_path, new_path; 4825 struct inode *delegated_inode = NULL; 4826 int how = 0; 4827 int error; 4828 4829 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4830 error = -EINVAL; 4831 goto out_putnames; 4832 } 4833 /* 4834 * To use null names we require CAP_DAC_READ_SEARCH or 4835 * that the open-time creds of the dfd matches current. 4836 * This ensures that not everyone will be able to create 4837 * a hardlink using the passed file descriptor. 4838 */ 4839 if (flags & AT_EMPTY_PATH) 4840 how |= LOOKUP_LINKAT_EMPTY; 4841 4842 if (flags & AT_SYMLINK_FOLLOW) 4843 how |= LOOKUP_FOLLOW; 4844 retry: 4845 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4846 if (error) 4847 goto out_putnames; 4848 4849 new_dentry = filename_create(newdfd, new, &new_path, 4850 (how & LOOKUP_REVAL)); 4851 error = PTR_ERR(new_dentry); 4852 if (IS_ERR(new_dentry)) 4853 goto out_putpath; 4854 4855 error = -EXDEV; 4856 if (old_path.mnt != new_path.mnt) 4857 goto out_dput; 4858 idmap = mnt_idmap(new_path.mnt); 4859 error = may_linkat(idmap, &old_path); 4860 if (unlikely(error)) 4861 goto out_dput; 4862 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4863 if (error) 4864 goto out_dput; 4865 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4866 new_dentry, &delegated_inode); 4867 out_dput: 4868 done_path_create(&new_path, new_dentry); 4869 if (delegated_inode) { 4870 error = break_deleg_wait(&delegated_inode); 4871 if (!error) { 4872 path_put(&old_path); 4873 goto retry; 4874 } 4875 } 4876 if (retry_estale(error, how)) { 4877 path_put(&old_path); 4878 how |= LOOKUP_REVAL; 4879 goto retry; 4880 } 4881 out_putpath: 4882 path_put(&old_path); 4883 out_putnames: 4884 putname(old); 4885 putname(new); 4886 4887 return error; 4888 } 4889 4890 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4891 int, newdfd, const char __user *, newname, int, flags) 4892 { 4893 return do_linkat(olddfd, getname_uflags(oldname, flags), 4894 newdfd, getname(newname), flags); 4895 } 4896 4897 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4898 { 4899 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4900 } 4901 4902 /** 4903 * vfs_rename - rename a filesystem object 4904 * @rd: pointer to &struct renamedata info 4905 * 4906 * The caller must hold multiple mutexes--see lock_rename()). 4907 * 4908 * If vfs_rename discovers a delegation in need of breaking at either 4909 * the source or destination, it will return -EWOULDBLOCK and return a 4910 * reference to the inode in delegated_inode. The caller should then 4911 * break the delegation and retry. Because breaking a delegation may 4912 * take a long time, the caller should drop all locks before doing 4913 * so. 4914 * 4915 * Alternatively, a caller may pass NULL for delegated_inode. This may 4916 * be appropriate for callers that expect the underlying filesystem not 4917 * to be NFS exported. 4918 * 4919 * The worst of all namespace operations - renaming directory. "Perverted" 4920 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4921 * Problems: 4922 * 4923 * a) we can get into loop creation. 4924 * b) race potential - two innocent renames can create a loop together. 4925 * That's where 4.4BSD screws up. Current fix: serialization on 4926 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4927 * story. 4928 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4929 * and source (if it's a non-directory or a subdirectory that moves to 4930 * different parent). 4931 * And that - after we got ->i_mutex on parents (until then we don't know 4932 * whether the target exists). Solution: try to be smart with locking 4933 * order for inodes. We rely on the fact that tree topology may change 4934 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4935 * move will be locked. Thus we can rank directories by the tree 4936 * (ancestors first) and rank all non-directories after them. 4937 * That works since everybody except rename does "lock parent, lookup, 4938 * lock child" and rename is under ->s_vfs_rename_mutex. 4939 * HOWEVER, it relies on the assumption that any object with ->lookup() 4940 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4941 * we'd better make sure that there's no link(2) for them. 4942 * d) conversion from fhandle to dentry may come in the wrong moment - when 4943 * we are removing the target. Solution: we will have to grab ->i_mutex 4944 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4945 * ->i_mutex on parents, which works but leads to some truly excessive 4946 * locking]. 4947 */ 4948 int vfs_rename(struct renamedata *rd) 4949 { 4950 int error; 4951 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4952 struct dentry *old_dentry = rd->old_dentry; 4953 struct dentry *new_dentry = rd->new_dentry; 4954 struct inode **delegated_inode = rd->delegated_inode; 4955 unsigned int flags = rd->flags; 4956 bool is_dir = d_is_dir(old_dentry); 4957 struct inode *source = old_dentry->d_inode; 4958 struct inode *target = new_dentry->d_inode; 4959 bool new_is_dir = false; 4960 unsigned max_links = new_dir->i_sb->s_max_links; 4961 struct name_snapshot old_name; 4962 bool lock_old_subdir, lock_new_subdir; 4963 4964 if (source == target) 4965 return 0; 4966 4967 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4968 if (error) 4969 return error; 4970 4971 if (!target) { 4972 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4973 } else { 4974 new_is_dir = d_is_dir(new_dentry); 4975 4976 if (!(flags & RENAME_EXCHANGE)) 4977 error = may_delete(rd->new_mnt_idmap, new_dir, 4978 new_dentry, is_dir); 4979 else 4980 error = may_delete(rd->new_mnt_idmap, new_dir, 4981 new_dentry, new_is_dir); 4982 } 4983 if (error) 4984 return error; 4985 4986 if (!old_dir->i_op->rename) 4987 return -EPERM; 4988 4989 /* 4990 * If we are going to change the parent - check write permissions, 4991 * we'll need to flip '..'. 4992 */ 4993 if (new_dir != old_dir) { 4994 if (is_dir) { 4995 error = inode_permission(rd->old_mnt_idmap, source, 4996 MAY_WRITE); 4997 if (error) 4998 return error; 4999 } 5000 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 5001 error = inode_permission(rd->new_mnt_idmap, target, 5002 MAY_WRITE); 5003 if (error) 5004 return error; 5005 } 5006 } 5007 5008 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 5009 flags); 5010 if (error) 5011 return error; 5012 5013 take_dentry_name_snapshot(&old_name, old_dentry); 5014 dget(new_dentry); 5015 /* 5016 * Lock children. 5017 * The source subdirectory needs to be locked on cross-directory 5018 * rename or cross-directory exchange since its parent changes. 5019 * The target subdirectory needs to be locked on cross-directory 5020 * exchange due to parent change and on any rename due to becoming 5021 * a victim. 5022 * Non-directories need locking in all cases (for NFS reasons); 5023 * they get locked after any subdirectories (in inode address order). 5024 * 5025 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 5026 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 5027 */ 5028 lock_old_subdir = new_dir != old_dir; 5029 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 5030 if (is_dir) { 5031 if (lock_old_subdir) 5032 inode_lock_nested(source, I_MUTEX_CHILD); 5033 if (target && (!new_is_dir || lock_new_subdir)) 5034 inode_lock(target); 5035 } else if (new_is_dir) { 5036 if (lock_new_subdir) 5037 inode_lock_nested(target, I_MUTEX_CHILD); 5038 inode_lock(source); 5039 } else { 5040 lock_two_nondirectories(source, target); 5041 } 5042 5043 error = -EPERM; 5044 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 5045 goto out; 5046 5047 error = -EBUSY; 5048 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 5049 goto out; 5050 5051 if (max_links && new_dir != old_dir) { 5052 error = -EMLINK; 5053 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 5054 goto out; 5055 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 5056 old_dir->i_nlink >= max_links) 5057 goto out; 5058 } 5059 if (!is_dir) { 5060 error = try_break_deleg(source, delegated_inode); 5061 if (error) 5062 goto out; 5063 } 5064 if (target && !new_is_dir) { 5065 error = try_break_deleg(target, delegated_inode); 5066 if (error) 5067 goto out; 5068 } 5069 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 5070 new_dir, new_dentry, flags); 5071 if (error) 5072 goto out; 5073 5074 if (!(flags & RENAME_EXCHANGE) && target) { 5075 if (is_dir) { 5076 shrink_dcache_parent(new_dentry); 5077 target->i_flags |= S_DEAD; 5078 } 5079 dont_mount(new_dentry); 5080 detach_mounts(new_dentry); 5081 } 5082 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 5083 if (!(flags & RENAME_EXCHANGE)) 5084 d_move(old_dentry, new_dentry); 5085 else 5086 d_exchange(old_dentry, new_dentry); 5087 } 5088 out: 5089 if (!is_dir || lock_old_subdir) 5090 inode_unlock(source); 5091 if (target && (!new_is_dir || lock_new_subdir)) 5092 inode_unlock(target); 5093 dput(new_dentry); 5094 if (!error) { 5095 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 5096 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 5097 if (flags & RENAME_EXCHANGE) { 5098 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 5099 new_is_dir, NULL, new_dentry); 5100 } 5101 } 5102 release_dentry_name_snapshot(&old_name); 5103 5104 return error; 5105 } 5106 EXPORT_SYMBOL(vfs_rename); 5107 5108 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5109 struct filename *to, unsigned int flags) 5110 { 5111 struct renamedata rd; 5112 struct dentry *old_dentry, *new_dentry; 5113 struct dentry *trap; 5114 struct path old_path, new_path; 5115 struct qstr old_last, new_last; 5116 int old_type, new_type; 5117 struct inode *delegated_inode = NULL; 5118 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 5119 bool should_retry = false; 5120 int error = -EINVAL; 5121 5122 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5123 goto put_names; 5124 5125 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5126 (flags & RENAME_EXCHANGE)) 5127 goto put_names; 5128 5129 if (flags & RENAME_EXCHANGE) 5130 target_flags = 0; 5131 5132 retry: 5133 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5134 &old_last, &old_type); 5135 if (error) 5136 goto put_names; 5137 5138 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5139 &new_type); 5140 if (error) 5141 goto exit1; 5142 5143 error = -EXDEV; 5144 if (old_path.mnt != new_path.mnt) 5145 goto exit2; 5146 5147 error = -EBUSY; 5148 if (old_type != LAST_NORM) 5149 goto exit2; 5150 5151 if (flags & RENAME_NOREPLACE) 5152 error = -EEXIST; 5153 if (new_type != LAST_NORM) 5154 goto exit2; 5155 5156 error = mnt_want_write(old_path.mnt); 5157 if (error) 5158 goto exit2; 5159 5160 retry_deleg: 5161 trap = lock_rename(new_path.dentry, old_path.dentry); 5162 if (IS_ERR(trap)) { 5163 error = PTR_ERR(trap); 5164 goto exit_lock_rename; 5165 } 5166 5167 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5168 lookup_flags); 5169 error = PTR_ERR(old_dentry); 5170 if (IS_ERR(old_dentry)) 5171 goto exit3; 5172 /* source must exist */ 5173 error = -ENOENT; 5174 if (d_is_negative(old_dentry)) 5175 goto exit4; 5176 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5177 lookup_flags | target_flags); 5178 error = PTR_ERR(new_dentry); 5179 if (IS_ERR(new_dentry)) 5180 goto exit4; 5181 error = -EEXIST; 5182 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 5183 goto exit5; 5184 if (flags & RENAME_EXCHANGE) { 5185 error = -ENOENT; 5186 if (d_is_negative(new_dentry)) 5187 goto exit5; 5188 5189 if (!d_is_dir(new_dentry)) { 5190 error = -ENOTDIR; 5191 if (new_last.name[new_last.len]) 5192 goto exit5; 5193 } 5194 } 5195 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5196 if (!d_is_dir(old_dentry)) { 5197 error = -ENOTDIR; 5198 if (old_last.name[old_last.len]) 5199 goto exit5; 5200 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5201 goto exit5; 5202 } 5203 /* source should not be ancestor of target */ 5204 error = -EINVAL; 5205 if (old_dentry == trap) 5206 goto exit5; 5207 /* target should not be an ancestor of source */ 5208 if (!(flags & RENAME_EXCHANGE)) 5209 error = -ENOTEMPTY; 5210 if (new_dentry == trap) 5211 goto exit5; 5212 5213 error = security_path_rename(&old_path, old_dentry, 5214 &new_path, new_dentry, flags); 5215 if (error) 5216 goto exit5; 5217 5218 rd.old_dir = old_path.dentry->d_inode; 5219 rd.old_dentry = old_dentry; 5220 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5221 rd.new_dir = new_path.dentry->d_inode; 5222 rd.new_dentry = new_dentry; 5223 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5224 rd.delegated_inode = &delegated_inode; 5225 rd.flags = flags; 5226 error = vfs_rename(&rd); 5227 exit5: 5228 dput(new_dentry); 5229 exit4: 5230 dput(old_dentry); 5231 exit3: 5232 unlock_rename(new_path.dentry, old_path.dentry); 5233 exit_lock_rename: 5234 if (delegated_inode) { 5235 error = break_deleg_wait(&delegated_inode); 5236 if (!error) 5237 goto retry_deleg; 5238 } 5239 mnt_drop_write(old_path.mnt); 5240 exit2: 5241 if (retry_estale(error, lookup_flags)) 5242 should_retry = true; 5243 path_put(&new_path); 5244 exit1: 5245 path_put(&old_path); 5246 if (should_retry) { 5247 should_retry = false; 5248 lookup_flags |= LOOKUP_REVAL; 5249 goto retry; 5250 } 5251 put_names: 5252 putname(from); 5253 putname(to); 5254 return error; 5255 } 5256 5257 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5258 int, newdfd, const char __user *, newname, unsigned int, flags) 5259 { 5260 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5261 flags); 5262 } 5263 5264 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5265 int, newdfd, const char __user *, newname) 5266 { 5267 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5268 0); 5269 } 5270 5271 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5272 { 5273 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5274 getname(newname), 0); 5275 } 5276 5277 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen) 5278 { 5279 int copylen; 5280 5281 copylen = linklen; 5282 if (unlikely(copylen > (unsigned) buflen)) 5283 copylen = buflen; 5284 if (copy_to_user(buffer, link, copylen)) 5285 copylen = -EFAULT; 5286 return copylen; 5287 } 5288 5289 /** 5290 * vfs_readlink - copy symlink body into userspace buffer 5291 * @dentry: dentry on which to get symbolic link 5292 * @buffer: user memory pointer 5293 * @buflen: size of buffer 5294 * 5295 * Does not touch atime. That's up to the caller if necessary 5296 * 5297 * Does not call security hook. 5298 */ 5299 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5300 { 5301 struct inode *inode = d_inode(dentry); 5302 DEFINE_DELAYED_CALL(done); 5303 const char *link; 5304 int res; 5305 5306 if (inode->i_opflags & IOP_CACHED_LINK) 5307 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen); 5308 5309 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5310 if (unlikely(inode->i_op->readlink)) 5311 return inode->i_op->readlink(dentry, buffer, buflen); 5312 5313 if (!d_is_symlink(dentry)) 5314 return -EINVAL; 5315 5316 spin_lock(&inode->i_lock); 5317 inode->i_opflags |= IOP_DEFAULT_READLINK; 5318 spin_unlock(&inode->i_lock); 5319 } 5320 5321 link = READ_ONCE(inode->i_link); 5322 if (!link) { 5323 link = inode->i_op->get_link(dentry, inode, &done); 5324 if (IS_ERR(link)) 5325 return PTR_ERR(link); 5326 } 5327 res = readlink_copy(buffer, buflen, link, strlen(link)); 5328 do_delayed_call(&done); 5329 return res; 5330 } 5331 EXPORT_SYMBOL(vfs_readlink); 5332 5333 /** 5334 * vfs_get_link - get symlink body 5335 * @dentry: dentry on which to get symbolic link 5336 * @done: caller needs to free returned data with this 5337 * 5338 * Calls security hook and i_op->get_link() on the supplied inode. 5339 * 5340 * It does not touch atime. That's up to the caller if necessary. 5341 * 5342 * Does not work on "special" symlinks like /proc/$$/fd/N 5343 */ 5344 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5345 { 5346 const char *res = ERR_PTR(-EINVAL); 5347 struct inode *inode = d_inode(dentry); 5348 5349 if (d_is_symlink(dentry)) { 5350 res = ERR_PTR(security_inode_readlink(dentry)); 5351 if (!res) 5352 res = inode->i_op->get_link(dentry, inode, done); 5353 } 5354 return res; 5355 } 5356 EXPORT_SYMBOL(vfs_get_link); 5357 5358 /* get the link contents into pagecache */ 5359 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5360 struct delayed_call *callback) 5361 { 5362 char *kaddr; 5363 struct page *page; 5364 struct address_space *mapping = inode->i_mapping; 5365 5366 if (!dentry) { 5367 page = find_get_page(mapping, 0); 5368 if (!page) 5369 return ERR_PTR(-ECHILD); 5370 if (!PageUptodate(page)) { 5371 put_page(page); 5372 return ERR_PTR(-ECHILD); 5373 } 5374 } else { 5375 page = read_mapping_page(mapping, 0, NULL); 5376 if (IS_ERR(page)) 5377 return (char*)page; 5378 } 5379 set_delayed_call(callback, page_put_link, page); 5380 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5381 kaddr = page_address(page); 5382 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5383 return kaddr; 5384 } 5385 5386 EXPORT_SYMBOL(page_get_link); 5387 5388 void page_put_link(void *arg) 5389 { 5390 put_page(arg); 5391 } 5392 EXPORT_SYMBOL(page_put_link); 5393 5394 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5395 { 5396 const char *link; 5397 int res; 5398 5399 DEFINE_DELAYED_CALL(done); 5400 link = page_get_link(dentry, d_inode(dentry), &done); 5401 res = PTR_ERR(link); 5402 if (!IS_ERR(link)) 5403 res = readlink_copy(buffer, buflen, link, strlen(link)); 5404 do_delayed_call(&done); 5405 return res; 5406 } 5407 EXPORT_SYMBOL(page_readlink); 5408 5409 int page_symlink(struct inode *inode, const char *symname, int len) 5410 { 5411 struct address_space *mapping = inode->i_mapping; 5412 const struct address_space_operations *aops = mapping->a_ops; 5413 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5414 struct folio *folio; 5415 void *fsdata = NULL; 5416 int err; 5417 unsigned int flags; 5418 5419 retry: 5420 if (nofs) 5421 flags = memalloc_nofs_save(); 5422 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); 5423 if (nofs) 5424 memalloc_nofs_restore(flags); 5425 if (err) 5426 goto fail; 5427 5428 memcpy(folio_address(folio), symname, len - 1); 5429 5430 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, 5431 folio, fsdata); 5432 if (err < 0) 5433 goto fail; 5434 if (err < len-1) 5435 goto retry; 5436 5437 mark_inode_dirty(inode); 5438 return 0; 5439 fail: 5440 return err; 5441 } 5442 EXPORT_SYMBOL(page_symlink); 5443 5444 const struct inode_operations page_symlink_inode_operations = { 5445 .get_link = page_get_link, 5446 }; 5447 EXPORT_SYMBOL(page_symlink_inode_operations); 5448