1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 static char *getname_flags(const char __user *filename, int flags, int *empty) 121 { 122 char *result = __getname(), *err; 123 int len; 124 125 if (unlikely(!result)) 126 return ERR_PTR(-ENOMEM); 127 128 len = strncpy_from_user(result, filename, PATH_MAX); 129 err = ERR_PTR(len); 130 if (unlikely(len < 0)) 131 goto error; 132 133 /* The empty path is special. */ 134 if (unlikely(!len)) { 135 if (empty) 136 *empty = 1; 137 err = ERR_PTR(-ENOENT); 138 if (!(flags & LOOKUP_EMPTY)) 139 goto error; 140 } 141 142 err = ERR_PTR(-ENAMETOOLONG); 143 if (likely(len < PATH_MAX)) { 144 audit_getname(result); 145 return result; 146 } 147 148 error: 149 __putname(result); 150 return err; 151 } 152 153 char *getname(const char __user * filename) 154 { 155 return getname_flags(filename, 0, NULL); 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 static int check_acl(struct inode *inode, int mask) 170 { 171 #ifdef CONFIG_FS_POSIX_ACL 172 struct posix_acl *acl; 173 174 if (mask & MAY_NOT_BLOCK) { 175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 176 if (!acl) 177 return -EAGAIN; 178 /* no ->get_acl() calls in RCU mode... */ 179 if (acl == ACL_NOT_CACHED) 180 return -ECHILD; 181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 182 } 183 184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 185 186 /* 187 * A filesystem can force a ACL callback by just never filling the 188 * ACL cache. But normally you'd fill the cache either at inode 189 * instantiation time, or on the first ->get_acl call. 190 * 191 * If the filesystem doesn't have a get_acl() function at all, we'll 192 * just create the negative cache entry. 193 */ 194 if (acl == ACL_NOT_CACHED) { 195 if (inode->i_op->get_acl) { 196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 197 if (IS_ERR(acl)) 198 return PTR_ERR(acl); 199 } else { 200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 201 return -EAGAIN; 202 } 203 } 204 205 if (acl) { 206 int error = posix_acl_permission(inode, acl, mask); 207 posix_acl_release(acl); 208 return error; 209 } 210 #endif 211 212 return -EAGAIN; 213 } 214 215 /* 216 * This does the basic permission checking 217 */ 218 static int acl_permission_check(struct inode *inode, int mask) 219 { 220 unsigned int mode = inode->i_mode; 221 222 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 223 mode >>= 6; 224 else { 225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 226 int error = check_acl(inode, mask); 227 if (error != -EAGAIN) 228 return error; 229 } 230 231 if (in_group_p(inode->i_gid)) 232 mode >>= 3; 233 } 234 235 /* 236 * If the DACs are ok we don't need any capability check. 237 */ 238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 239 return 0; 240 return -EACCES; 241 } 242 243 /** 244 * generic_permission - check for access rights on a Posix-like filesystem 245 * @inode: inode to check access rights for 246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 247 * 248 * Used to check for read/write/execute permissions on a file. 249 * We use "fsuid" for this, letting us set arbitrary permissions 250 * for filesystem access without changing the "normal" uids which 251 * are used for other things. 252 * 253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 254 * request cannot be satisfied (eg. requires blocking or too much complexity). 255 * It would then be called again in ref-walk mode. 256 */ 257 int generic_permission(struct inode *inode, int mask) 258 { 259 int ret; 260 261 /* 262 * Do the basic permission checks. 263 */ 264 ret = acl_permission_check(inode, mask); 265 if (ret != -EACCES) 266 return ret; 267 268 if (S_ISDIR(inode->i_mode)) { 269 /* DACs are overridable for directories */ 270 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 271 return 0; 272 if (!(mask & MAY_WRITE)) 273 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 274 return 0; 275 return -EACCES; 276 } 277 /* 278 * Read/write DACs are always overridable. 279 * Executable DACs are overridable when there is 280 * at least one exec bit set. 281 */ 282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 283 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 284 return 0; 285 286 /* 287 * Searching includes executable on directories, else just read. 288 */ 289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 290 if (mask == MAY_READ) 291 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 292 return 0; 293 294 return -EACCES; 295 } 296 297 /* 298 * We _really_ want to just do "generic_permission()" without 299 * even looking at the inode->i_op values. So we keep a cache 300 * flag in inode->i_opflags, that says "this has not special 301 * permission function, use the fast case". 302 */ 303 static inline int do_inode_permission(struct inode *inode, int mask) 304 { 305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 306 if (likely(inode->i_op->permission)) 307 return inode->i_op->permission(inode, mask); 308 309 /* This gets set once for the inode lifetime */ 310 spin_lock(&inode->i_lock); 311 inode->i_opflags |= IOP_FASTPERM; 312 spin_unlock(&inode->i_lock); 313 } 314 return generic_permission(inode, mask); 315 } 316 317 /** 318 * __inode_permission - Check for access rights to a given inode 319 * @inode: Inode to check permission on 320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 321 * 322 * Check for read/write/execute permissions on an inode. 323 * 324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 325 * 326 * This does not check for a read-only file system. You probably want 327 * inode_permission(). 328 */ 329 int __inode_permission(struct inode *inode, int mask) 330 { 331 int retval; 332 333 if (unlikely(mask & MAY_WRITE)) { 334 /* 335 * Nobody gets write access to an immutable file. 336 */ 337 if (IS_IMMUTABLE(inode)) 338 return -EACCES; 339 } 340 341 retval = do_inode_permission(inode, mask); 342 if (retval) 343 return retval; 344 345 retval = devcgroup_inode_permission(inode, mask); 346 if (retval) 347 return retval; 348 349 return security_inode_permission(inode, mask); 350 } 351 352 /** 353 * sb_permission - Check superblock-level permissions 354 * @sb: Superblock of inode to check permission on 355 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 356 * 357 * Separate out file-system wide checks from inode-specific permission checks. 358 */ 359 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 360 { 361 if (unlikely(mask & MAY_WRITE)) { 362 umode_t mode = inode->i_mode; 363 364 /* Nobody gets write access to a read-only fs. */ 365 if ((sb->s_flags & MS_RDONLY) && 366 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 367 return -EROFS; 368 } 369 return 0; 370 } 371 372 /** 373 * inode_permission - Check for access rights to a given inode 374 * @inode: Inode to check permission on 375 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 376 * 377 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 378 * this, letting us set arbitrary permissions for filesystem access without 379 * changing the "normal" UIDs which are used for other things. 380 * 381 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 382 */ 383 int inode_permission(struct inode *inode, int mask) 384 { 385 int retval; 386 387 retval = sb_permission(inode->i_sb, inode, mask); 388 if (retval) 389 return retval; 390 return __inode_permission(inode, mask); 391 } 392 393 /** 394 * path_get - get a reference to a path 395 * @path: path to get the reference to 396 * 397 * Given a path increment the reference count to the dentry and the vfsmount. 398 */ 399 void path_get(struct path *path) 400 { 401 mntget(path->mnt); 402 dget(path->dentry); 403 } 404 EXPORT_SYMBOL(path_get); 405 406 /** 407 * path_put - put a reference to a path 408 * @path: path to put the reference to 409 * 410 * Given a path decrement the reference count to the dentry and the vfsmount. 411 */ 412 void path_put(struct path *path) 413 { 414 dput(path->dentry); 415 mntput(path->mnt); 416 } 417 EXPORT_SYMBOL(path_put); 418 419 /* 420 * Path walking has 2 modes, rcu-walk and ref-walk (see 421 * Documentation/filesystems/path-lookup.txt). In situations when we can't 422 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 423 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 424 * mode. Refcounts are grabbed at the last known good point before rcu-walk 425 * got stuck, so ref-walk may continue from there. If this is not successful 426 * (eg. a seqcount has changed), then failure is returned and it's up to caller 427 * to restart the path walk from the beginning in ref-walk mode. 428 */ 429 430 static inline void lock_rcu_walk(void) 431 { 432 br_read_lock(&vfsmount_lock); 433 rcu_read_lock(); 434 } 435 436 static inline void unlock_rcu_walk(void) 437 { 438 rcu_read_unlock(); 439 br_read_unlock(&vfsmount_lock); 440 } 441 442 /** 443 * unlazy_walk - try to switch to ref-walk mode. 444 * @nd: nameidata pathwalk data 445 * @dentry: child of nd->path.dentry or NULL 446 * Returns: 0 on success, -ECHILD on failure 447 * 448 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 449 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 450 * @nd or NULL. Must be called from rcu-walk context. 451 */ 452 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 453 { 454 struct fs_struct *fs = current->fs; 455 struct dentry *parent = nd->path.dentry; 456 int want_root = 0; 457 458 BUG_ON(!(nd->flags & LOOKUP_RCU)); 459 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 460 want_root = 1; 461 spin_lock(&fs->lock); 462 if (nd->root.mnt != fs->root.mnt || 463 nd->root.dentry != fs->root.dentry) 464 goto err_root; 465 } 466 spin_lock(&parent->d_lock); 467 if (!dentry) { 468 if (!__d_rcu_to_refcount(parent, nd->seq)) 469 goto err_parent; 470 BUG_ON(nd->inode != parent->d_inode); 471 } else { 472 if (dentry->d_parent != parent) 473 goto err_parent; 474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 475 if (!__d_rcu_to_refcount(dentry, nd->seq)) 476 goto err_child; 477 /* 478 * If the sequence check on the child dentry passed, then 479 * the child has not been removed from its parent. This 480 * means the parent dentry must be valid and able to take 481 * a reference at this point. 482 */ 483 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 484 BUG_ON(!parent->d_count); 485 parent->d_count++; 486 spin_unlock(&dentry->d_lock); 487 } 488 spin_unlock(&parent->d_lock); 489 if (want_root) { 490 path_get(&nd->root); 491 spin_unlock(&fs->lock); 492 } 493 mntget(nd->path.mnt); 494 495 unlock_rcu_walk(); 496 nd->flags &= ~LOOKUP_RCU; 497 return 0; 498 499 err_child: 500 spin_unlock(&dentry->d_lock); 501 err_parent: 502 spin_unlock(&parent->d_lock); 503 err_root: 504 if (want_root) 505 spin_unlock(&fs->lock); 506 return -ECHILD; 507 } 508 509 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 510 { 511 return dentry->d_op->d_revalidate(dentry, flags); 512 } 513 514 /** 515 * complete_walk - successful completion of path walk 516 * @nd: pointer nameidata 517 * 518 * If we had been in RCU mode, drop out of it and legitimize nd->path. 519 * Revalidate the final result, unless we'd already done that during 520 * the path walk or the filesystem doesn't ask for it. Return 0 on 521 * success, -error on failure. In case of failure caller does not 522 * need to drop nd->path. 523 */ 524 static int complete_walk(struct nameidata *nd) 525 { 526 struct dentry *dentry = nd->path.dentry; 527 int status; 528 529 if (nd->flags & LOOKUP_RCU) { 530 nd->flags &= ~LOOKUP_RCU; 531 if (!(nd->flags & LOOKUP_ROOT)) 532 nd->root.mnt = NULL; 533 spin_lock(&dentry->d_lock); 534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 535 spin_unlock(&dentry->d_lock); 536 unlock_rcu_walk(); 537 return -ECHILD; 538 } 539 BUG_ON(nd->inode != dentry->d_inode); 540 spin_unlock(&dentry->d_lock); 541 mntget(nd->path.mnt); 542 unlock_rcu_walk(); 543 } 544 545 if (likely(!(nd->flags & LOOKUP_JUMPED))) 546 return 0; 547 548 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 549 return 0; 550 551 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 552 return 0; 553 554 /* Note: we do not d_invalidate() */ 555 status = d_revalidate(dentry, nd->flags); 556 if (status > 0) 557 return 0; 558 559 if (!status) 560 status = -ESTALE; 561 562 path_put(&nd->path); 563 return status; 564 } 565 566 static __always_inline void set_root(struct nameidata *nd) 567 { 568 if (!nd->root.mnt) 569 get_fs_root(current->fs, &nd->root); 570 } 571 572 static int link_path_walk(const char *, struct nameidata *); 573 574 static __always_inline void set_root_rcu(struct nameidata *nd) 575 { 576 if (!nd->root.mnt) { 577 struct fs_struct *fs = current->fs; 578 unsigned seq; 579 580 do { 581 seq = read_seqcount_begin(&fs->seq); 582 nd->root = fs->root; 583 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 584 } while (read_seqcount_retry(&fs->seq, seq)); 585 } 586 } 587 588 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 589 { 590 int ret; 591 592 if (IS_ERR(link)) 593 goto fail; 594 595 if (*link == '/') { 596 set_root(nd); 597 path_put(&nd->path); 598 nd->path = nd->root; 599 path_get(&nd->root); 600 nd->flags |= LOOKUP_JUMPED; 601 } 602 nd->inode = nd->path.dentry->d_inode; 603 604 ret = link_path_walk(link, nd); 605 return ret; 606 fail: 607 path_put(&nd->path); 608 return PTR_ERR(link); 609 } 610 611 static void path_put_conditional(struct path *path, struct nameidata *nd) 612 { 613 dput(path->dentry); 614 if (path->mnt != nd->path.mnt) 615 mntput(path->mnt); 616 } 617 618 static inline void path_to_nameidata(const struct path *path, 619 struct nameidata *nd) 620 { 621 if (!(nd->flags & LOOKUP_RCU)) { 622 dput(nd->path.dentry); 623 if (nd->path.mnt != path->mnt) 624 mntput(nd->path.mnt); 625 } 626 nd->path.mnt = path->mnt; 627 nd->path.dentry = path->dentry; 628 } 629 630 /* 631 * Helper to directly jump to a known parsed path from ->follow_link, 632 * caller must have taken a reference to path beforehand. 633 */ 634 void nd_jump_link(struct nameidata *nd, struct path *path) 635 { 636 path_put(&nd->path); 637 638 nd->path = *path; 639 nd->inode = nd->path.dentry->d_inode; 640 nd->flags |= LOOKUP_JUMPED; 641 642 BUG_ON(nd->inode->i_op->follow_link); 643 } 644 645 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 646 { 647 struct inode *inode = link->dentry->d_inode; 648 if (inode->i_op->put_link) 649 inode->i_op->put_link(link->dentry, nd, cookie); 650 path_put(link); 651 } 652 653 static __always_inline int 654 follow_link(struct path *link, struct nameidata *nd, void **p) 655 { 656 struct dentry *dentry = link->dentry; 657 int error; 658 char *s; 659 660 BUG_ON(nd->flags & LOOKUP_RCU); 661 662 if (link->mnt == nd->path.mnt) 663 mntget(link->mnt); 664 665 error = -ELOOP; 666 if (unlikely(current->total_link_count >= 40)) 667 goto out_put_nd_path; 668 669 cond_resched(); 670 current->total_link_count++; 671 672 touch_atime(link); 673 nd_set_link(nd, NULL); 674 675 error = security_inode_follow_link(link->dentry, nd); 676 if (error) 677 goto out_put_nd_path; 678 679 nd->last_type = LAST_BIND; 680 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 681 error = PTR_ERR(*p); 682 if (IS_ERR(*p)) 683 goto out_put_nd_path; 684 685 error = 0; 686 s = nd_get_link(nd); 687 if (s) { 688 error = __vfs_follow_link(nd, s); 689 if (unlikely(error)) 690 put_link(nd, link, *p); 691 } 692 693 return error; 694 695 out_put_nd_path: 696 path_put(&nd->path); 697 path_put(link); 698 return error; 699 } 700 701 static int follow_up_rcu(struct path *path) 702 { 703 struct mount *mnt = real_mount(path->mnt); 704 struct mount *parent; 705 struct dentry *mountpoint; 706 707 parent = mnt->mnt_parent; 708 if (&parent->mnt == path->mnt) 709 return 0; 710 mountpoint = mnt->mnt_mountpoint; 711 path->dentry = mountpoint; 712 path->mnt = &parent->mnt; 713 return 1; 714 } 715 716 /* 717 * follow_up - Find the mountpoint of path's vfsmount 718 * 719 * Given a path, find the mountpoint of its source file system. 720 * Replace @path with the path of the mountpoint in the parent mount. 721 * Up is towards /. 722 * 723 * Return 1 if we went up a level and 0 if we were already at the 724 * root. 725 */ 726 int follow_up(struct path *path) 727 { 728 struct mount *mnt = real_mount(path->mnt); 729 struct mount *parent; 730 struct dentry *mountpoint; 731 732 br_read_lock(&vfsmount_lock); 733 parent = mnt->mnt_parent; 734 if (parent == mnt) { 735 br_read_unlock(&vfsmount_lock); 736 return 0; 737 } 738 mntget(&parent->mnt); 739 mountpoint = dget(mnt->mnt_mountpoint); 740 br_read_unlock(&vfsmount_lock); 741 dput(path->dentry); 742 path->dentry = mountpoint; 743 mntput(path->mnt); 744 path->mnt = &parent->mnt; 745 return 1; 746 } 747 748 /* 749 * Perform an automount 750 * - return -EISDIR to tell follow_managed() to stop and return the path we 751 * were called with. 752 */ 753 static int follow_automount(struct path *path, unsigned flags, 754 bool *need_mntput) 755 { 756 struct vfsmount *mnt; 757 int err; 758 759 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 760 return -EREMOTE; 761 762 /* We don't want to mount if someone's just doing a stat - 763 * unless they're stat'ing a directory and appended a '/' to 764 * the name. 765 * 766 * We do, however, want to mount if someone wants to open or 767 * create a file of any type under the mountpoint, wants to 768 * traverse through the mountpoint or wants to open the 769 * mounted directory. Also, autofs may mark negative dentries 770 * as being automount points. These will need the attentions 771 * of the daemon to instantiate them before they can be used. 772 */ 773 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 774 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 775 path->dentry->d_inode) 776 return -EISDIR; 777 778 current->total_link_count++; 779 if (current->total_link_count >= 40) 780 return -ELOOP; 781 782 mnt = path->dentry->d_op->d_automount(path); 783 if (IS_ERR(mnt)) { 784 /* 785 * The filesystem is allowed to return -EISDIR here to indicate 786 * it doesn't want to automount. For instance, autofs would do 787 * this so that its userspace daemon can mount on this dentry. 788 * 789 * However, we can only permit this if it's a terminal point in 790 * the path being looked up; if it wasn't then the remainder of 791 * the path is inaccessible and we should say so. 792 */ 793 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 794 return -EREMOTE; 795 return PTR_ERR(mnt); 796 } 797 798 if (!mnt) /* mount collision */ 799 return 0; 800 801 if (!*need_mntput) { 802 /* lock_mount() may release path->mnt on error */ 803 mntget(path->mnt); 804 *need_mntput = true; 805 } 806 err = finish_automount(mnt, path); 807 808 switch (err) { 809 case -EBUSY: 810 /* Someone else made a mount here whilst we were busy */ 811 return 0; 812 case 0: 813 path_put(path); 814 path->mnt = mnt; 815 path->dentry = dget(mnt->mnt_root); 816 return 0; 817 default: 818 return err; 819 } 820 821 } 822 823 /* 824 * Handle a dentry that is managed in some way. 825 * - Flagged for transit management (autofs) 826 * - Flagged as mountpoint 827 * - Flagged as automount point 828 * 829 * This may only be called in refwalk mode. 830 * 831 * Serialization is taken care of in namespace.c 832 */ 833 static int follow_managed(struct path *path, unsigned flags) 834 { 835 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 836 unsigned managed; 837 bool need_mntput = false; 838 int ret = 0; 839 840 /* Given that we're not holding a lock here, we retain the value in a 841 * local variable for each dentry as we look at it so that we don't see 842 * the components of that value change under us */ 843 while (managed = ACCESS_ONCE(path->dentry->d_flags), 844 managed &= DCACHE_MANAGED_DENTRY, 845 unlikely(managed != 0)) { 846 /* Allow the filesystem to manage the transit without i_mutex 847 * being held. */ 848 if (managed & DCACHE_MANAGE_TRANSIT) { 849 BUG_ON(!path->dentry->d_op); 850 BUG_ON(!path->dentry->d_op->d_manage); 851 ret = path->dentry->d_op->d_manage(path->dentry, false); 852 if (ret < 0) 853 break; 854 } 855 856 /* Transit to a mounted filesystem. */ 857 if (managed & DCACHE_MOUNTED) { 858 struct vfsmount *mounted = lookup_mnt(path); 859 if (mounted) { 860 dput(path->dentry); 861 if (need_mntput) 862 mntput(path->mnt); 863 path->mnt = mounted; 864 path->dentry = dget(mounted->mnt_root); 865 need_mntput = true; 866 continue; 867 } 868 869 /* Something is mounted on this dentry in another 870 * namespace and/or whatever was mounted there in this 871 * namespace got unmounted before we managed to get the 872 * vfsmount_lock */ 873 } 874 875 /* Handle an automount point */ 876 if (managed & DCACHE_NEED_AUTOMOUNT) { 877 ret = follow_automount(path, flags, &need_mntput); 878 if (ret < 0) 879 break; 880 continue; 881 } 882 883 /* We didn't change the current path point */ 884 break; 885 } 886 887 if (need_mntput && path->mnt == mnt) 888 mntput(path->mnt); 889 if (ret == -EISDIR) 890 ret = 0; 891 return ret < 0 ? ret : need_mntput; 892 } 893 894 int follow_down_one(struct path *path) 895 { 896 struct vfsmount *mounted; 897 898 mounted = lookup_mnt(path); 899 if (mounted) { 900 dput(path->dentry); 901 mntput(path->mnt); 902 path->mnt = mounted; 903 path->dentry = dget(mounted->mnt_root); 904 return 1; 905 } 906 return 0; 907 } 908 909 static inline bool managed_dentry_might_block(struct dentry *dentry) 910 { 911 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 912 dentry->d_op->d_manage(dentry, true) < 0); 913 } 914 915 /* 916 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 917 * we meet a managed dentry that would need blocking. 918 */ 919 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 920 struct inode **inode) 921 { 922 for (;;) { 923 struct mount *mounted; 924 /* 925 * Don't forget we might have a non-mountpoint managed dentry 926 * that wants to block transit. 927 */ 928 if (unlikely(managed_dentry_might_block(path->dentry))) 929 return false; 930 931 if (!d_mountpoint(path->dentry)) 932 break; 933 934 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 935 if (!mounted) 936 break; 937 path->mnt = &mounted->mnt; 938 path->dentry = mounted->mnt.mnt_root; 939 nd->flags |= LOOKUP_JUMPED; 940 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 941 /* 942 * Update the inode too. We don't need to re-check the 943 * dentry sequence number here after this d_inode read, 944 * because a mount-point is always pinned. 945 */ 946 *inode = path->dentry->d_inode; 947 } 948 return true; 949 } 950 951 static void follow_mount_rcu(struct nameidata *nd) 952 { 953 while (d_mountpoint(nd->path.dentry)) { 954 struct mount *mounted; 955 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 956 if (!mounted) 957 break; 958 nd->path.mnt = &mounted->mnt; 959 nd->path.dentry = mounted->mnt.mnt_root; 960 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 961 } 962 } 963 964 static int follow_dotdot_rcu(struct nameidata *nd) 965 { 966 set_root_rcu(nd); 967 968 while (1) { 969 if (nd->path.dentry == nd->root.dentry && 970 nd->path.mnt == nd->root.mnt) { 971 break; 972 } 973 if (nd->path.dentry != nd->path.mnt->mnt_root) { 974 struct dentry *old = nd->path.dentry; 975 struct dentry *parent = old->d_parent; 976 unsigned seq; 977 978 seq = read_seqcount_begin(&parent->d_seq); 979 if (read_seqcount_retry(&old->d_seq, nd->seq)) 980 goto failed; 981 nd->path.dentry = parent; 982 nd->seq = seq; 983 break; 984 } 985 if (!follow_up_rcu(&nd->path)) 986 break; 987 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 988 } 989 follow_mount_rcu(nd); 990 nd->inode = nd->path.dentry->d_inode; 991 return 0; 992 993 failed: 994 nd->flags &= ~LOOKUP_RCU; 995 if (!(nd->flags & LOOKUP_ROOT)) 996 nd->root.mnt = NULL; 997 unlock_rcu_walk(); 998 return -ECHILD; 999 } 1000 1001 /* 1002 * Follow down to the covering mount currently visible to userspace. At each 1003 * point, the filesystem owning that dentry may be queried as to whether the 1004 * caller is permitted to proceed or not. 1005 */ 1006 int follow_down(struct path *path) 1007 { 1008 unsigned managed; 1009 int ret; 1010 1011 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1012 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1013 /* Allow the filesystem to manage the transit without i_mutex 1014 * being held. 1015 * 1016 * We indicate to the filesystem if someone is trying to mount 1017 * something here. This gives autofs the chance to deny anyone 1018 * other than its daemon the right to mount on its 1019 * superstructure. 1020 * 1021 * The filesystem may sleep at this point. 1022 */ 1023 if (managed & DCACHE_MANAGE_TRANSIT) { 1024 BUG_ON(!path->dentry->d_op); 1025 BUG_ON(!path->dentry->d_op->d_manage); 1026 ret = path->dentry->d_op->d_manage( 1027 path->dentry, false); 1028 if (ret < 0) 1029 return ret == -EISDIR ? 0 : ret; 1030 } 1031 1032 /* Transit to a mounted filesystem. */ 1033 if (managed & DCACHE_MOUNTED) { 1034 struct vfsmount *mounted = lookup_mnt(path); 1035 if (!mounted) 1036 break; 1037 dput(path->dentry); 1038 mntput(path->mnt); 1039 path->mnt = mounted; 1040 path->dentry = dget(mounted->mnt_root); 1041 continue; 1042 } 1043 1044 /* Don't handle automount points here */ 1045 break; 1046 } 1047 return 0; 1048 } 1049 1050 /* 1051 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1052 */ 1053 static void follow_mount(struct path *path) 1054 { 1055 while (d_mountpoint(path->dentry)) { 1056 struct vfsmount *mounted = lookup_mnt(path); 1057 if (!mounted) 1058 break; 1059 dput(path->dentry); 1060 mntput(path->mnt); 1061 path->mnt = mounted; 1062 path->dentry = dget(mounted->mnt_root); 1063 } 1064 } 1065 1066 static void follow_dotdot(struct nameidata *nd) 1067 { 1068 set_root(nd); 1069 1070 while(1) { 1071 struct dentry *old = nd->path.dentry; 1072 1073 if (nd->path.dentry == nd->root.dentry && 1074 nd->path.mnt == nd->root.mnt) { 1075 break; 1076 } 1077 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1078 /* rare case of legitimate dget_parent()... */ 1079 nd->path.dentry = dget_parent(nd->path.dentry); 1080 dput(old); 1081 break; 1082 } 1083 if (!follow_up(&nd->path)) 1084 break; 1085 } 1086 follow_mount(&nd->path); 1087 nd->inode = nd->path.dentry->d_inode; 1088 } 1089 1090 /* 1091 * This looks up the name in dcache, possibly revalidates the old dentry and 1092 * allocates a new one if not found or not valid. In the need_lookup argument 1093 * returns whether i_op->lookup is necessary. 1094 * 1095 * dir->d_inode->i_mutex must be held 1096 */ 1097 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1098 unsigned int flags, bool *need_lookup) 1099 { 1100 struct dentry *dentry; 1101 int error; 1102 1103 *need_lookup = false; 1104 dentry = d_lookup(dir, name); 1105 if (dentry) { 1106 if (d_need_lookup(dentry)) { 1107 *need_lookup = true; 1108 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1109 error = d_revalidate(dentry, flags); 1110 if (unlikely(error <= 0)) { 1111 if (error < 0) { 1112 dput(dentry); 1113 return ERR_PTR(error); 1114 } else if (!d_invalidate(dentry)) { 1115 dput(dentry); 1116 dentry = NULL; 1117 } 1118 } 1119 } 1120 } 1121 1122 if (!dentry) { 1123 dentry = d_alloc(dir, name); 1124 if (unlikely(!dentry)) 1125 return ERR_PTR(-ENOMEM); 1126 1127 *need_lookup = true; 1128 } 1129 return dentry; 1130 } 1131 1132 /* 1133 * Call i_op->lookup on the dentry. The dentry must be negative but may be 1134 * hashed if it was pouplated with DCACHE_NEED_LOOKUP. 1135 * 1136 * dir->d_inode->i_mutex must be held 1137 */ 1138 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1139 unsigned int flags) 1140 { 1141 struct dentry *old; 1142 1143 /* Don't create child dentry for a dead directory. */ 1144 if (unlikely(IS_DEADDIR(dir))) { 1145 dput(dentry); 1146 return ERR_PTR(-ENOENT); 1147 } 1148 1149 old = dir->i_op->lookup(dir, dentry, flags); 1150 if (unlikely(old)) { 1151 dput(dentry); 1152 dentry = old; 1153 } 1154 return dentry; 1155 } 1156 1157 static struct dentry *__lookup_hash(struct qstr *name, 1158 struct dentry *base, unsigned int flags) 1159 { 1160 bool need_lookup; 1161 struct dentry *dentry; 1162 1163 dentry = lookup_dcache(name, base, flags, &need_lookup); 1164 if (!need_lookup) 1165 return dentry; 1166 1167 return lookup_real(base->d_inode, dentry, flags); 1168 } 1169 1170 /* 1171 * It's more convoluted than I'd like it to be, but... it's still fairly 1172 * small and for now I'd prefer to have fast path as straight as possible. 1173 * It _is_ time-critical. 1174 */ 1175 static int lookup_fast(struct nameidata *nd, struct qstr *name, 1176 struct path *path, struct inode **inode) 1177 { 1178 struct vfsmount *mnt = nd->path.mnt; 1179 struct dentry *dentry, *parent = nd->path.dentry; 1180 int need_reval = 1; 1181 int status = 1; 1182 int err; 1183 1184 /* 1185 * Rename seqlock is not required here because in the off chance 1186 * of a false negative due to a concurrent rename, we're going to 1187 * do the non-racy lookup, below. 1188 */ 1189 if (nd->flags & LOOKUP_RCU) { 1190 unsigned seq; 1191 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode); 1192 if (!dentry) 1193 goto unlazy; 1194 1195 /* 1196 * This sequence count validates that the inode matches 1197 * the dentry name information from lookup. 1198 */ 1199 *inode = dentry->d_inode; 1200 if (read_seqcount_retry(&dentry->d_seq, seq)) 1201 return -ECHILD; 1202 1203 /* 1204 * This sequence count validates that the parent had no 1205 * changes while we did the lookup of the dentry above. 1206 * 1207 * The memory barrier in read_seqcount_begin of child is 1208 * enough, we can use __read_seqcount_retry here. 1209 */ 1210 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1211 return -ECHILD; 1212 nd->seq = seq; 1213 1214 if (unlikely(d_need_lookup(dentry))) 1215 goto unlazy; 1216 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1217 status = d_revalidate(dentry, nd->flags); 1218 if (unlikely(status <= 0)) { 1219 if (status != -ECHILD) 1220 need_reval = 0; 1221 goto unlazy; 1222 } 1223 } 1224 path->mnt = mnt; 1225 path->dentry = dentry; 1226 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1227 goto unlazy; 1228 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1229 goto unlazy; 1230 return 0; 1231 unlazy: 1232 if (unlazy_walk(nd, dentry)) 1233 return -ECHILD; 1234 } else { 1235 dentry = __d_lookup(parent, name); 1236 } 1237 1238 if (unlikely(!dentry)) 1239 goto need_lookup; 1240 1241 if (unlikely(d_need_lookup(dentry))) { 1242 dput(dentry); 1243 goto need_lookup; 1244 } 1245 1246 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1247 status = d_revalidate(dentry, nd->flags); 1248 if (unlikely(status <= 0)) { 1249 if (status < 0) { 1250 dput(dentry); 1251 return status; 1252 } 1253 if (!d_invalidate(dentry)) { 1254 dput(dentry); 1255 goto need_lookup; 1256 } 1257 } 1258 1259 path->mnt = mnt; 1260 path->dentry = dentry; 1261 err = follow_managed(path, nd->flags); 1262 if (unlikely(err < 0)) { 1263 path_put_conditional(path, nd); 1264 return err; 1265 } 1266 if (err) 1267 nd->flags |= LOOKUP_JUMPED; 1268 *inode = path->dentry->d_inode; 1269 return 0; 1270 1271 need_lookup: 1272 return 1; 1273 } 1274 1275 /* Fast lookup failed, do it the slow way */ 1276 static int lookup_slow(struct nameidata *nd, struct qstr *name, 1277 struct path *path) 1278 { 1279 struct dentry *dentry, *parent; 1280 int err; 1281 1282 parent = nd->path.dentry; 1283 BUG_ON(nd->inode != parent->d_inode); 1284 1285 mutex_lock(&parent->d_inode->i_mutex); 1286 dentry = __lookup_hash(name, parent, nd->flags); 1287 mutex_unlock(&parent->d_inode->i_mutex); 1288 if (IS_ERR(dentry)) 1289 return PTR_ERR(dentry); 1290 path->mnt = nd->path.mnt; 1291 path->dentry = dentry; 1292 err = follow_managed(path, nd->flags); 1293 if (unlikely(err < 0)) { 1294 path_put_conditional(path, nd); 1295 return err; 1296 } 1297 if (err) 1298 nd->flags |= LOOKUP_JUMPED; 1299 return 0; 1300 } 1301 1302 static inline int may_lookup(struct nameidata *nd) 1303 { 1304 if (nd->flags & LOOKUP_RCU) { 1305 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1306 if (err != -ECHILD) 1307 return err; 1308 if (unlazy_walk(nd, NULL)) 1309 return -ECHILD; 1310 } 1311 return inode_permission(nd->inode, MAY_EXEC); 1312 } 1313 1314 static inline int handle_dots(struct nameidata *nd, int type) 1315 { 1316 if (type == LAST_DOTDOT) { 1317 if (nd->flags & LOOKUP_RCU) { 1318 if (follow_dotdot_rcu(nd)) 1319 return -ECHILD; 1320 } else 1321 follow_dotdot(nd); 1322 } 1323 return 0; 1324 } 1325 1326 static void terminate_walk(struct nameidata *nd) 1327 { 1328 if (!(nd->flags & LOOKUP_RCU)) { 1329 path_put(&nd->path); 1330 } else { 1331 nd->flags &= ~LOOKUP_RCU; 1332 if (!(nd->flags & LOOKUP_ROOT)) 1333 nd->root.mnt = NULL; 1334 unlock_rcu_walk(); 1335 } 1336 } 1337 1338 /* 1339 * Do we need to follow links? We _really_ want to be able 1340 * to do this check without having to look at inode->i_op, 1341 * so we keep a cache of "no, this doesn't need follow_link" 1342 * for the common case. 1343 */ 1344 static inline int should_follow_link(struct inode *inode, int follow) 1345 { 1346 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1347 if (likely(inode->i_op->follow_link)) 1348 return follow; 1349 1350 /* This gets set once for the inode lifetime */ 1351 spin_lock(&inode->i_lock); 1352 inode->i_opflags |= IOP_NOFOLLOW; 1353 spin_unlock(&inode->i_lock); 1354 } 1355 return 0; 1356 } 1357 1358 static inline int walk_component(struct nameidata *nd, struct path *path, 1359 struct qstr *name, int type, int follow) 1360 { 1361 struct inode *inode; 1362 int err; 1363 /* 1364 * "." and ".." are special - ".." especially so because it has 1365 * to be able to know about the current root directory and 1366 * parent relationships. 1367 */ 1368 if (unlikely(type != LAST_NORM)) 1369 return handle_dots(nd, type); 1370 err = lookup_fast(nd, name, path, &inode); 1371 if (unlikely(err)) { 1372 if (err < 0) 1373 goto out_err; 1374 1375 err = lookup_slow(nd, name, path); 1376 if (err < 0) 1377 goto out_err; 1378 1379 inode = path->dentry->d_inode; 1380 } 1381 err = -ENOENT; 1382 if (!inode) 1383 goto out_path_put; 1384 1385 if (should_follow_link(inode, follow)) { 1386 if (nd->flags & LOOKUP_RCU) { 1387 if (unlikely(unlazy_walk(nd, path->dentry))) { 1388 err = -ECHILD; 1389 goto out_err; 1390 } 1391 } 1392 BUG_ON(inode != path->dentry->d_inode); 1393 return 1; 1394 } 1395 path_to_nameidata(path, nd); 1396 nd->inode = inode; 1397 return 0; 1398 1399 out_path_put: 1400 path_to_nameidata(path, nd); 1401 out_err: 1402 terminate_walk(nd); 1403 return err; 1404 } 1405 1406 /* 1407 * This limits recursive symlink follows to 8, while 1408 * limiting consecutive symlinks to 40. 1409 * 1410 * Without that kind of total limit, nasty chains of consecutive 1411 * symlinks can cause almost arbitrarily long lookups. 1412 */ 1413 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1414 { 1415 int res; 1416 1417 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1418 path_put_conditional(path, nd); 1419 path_put(&nd->path); 1420 return -ELOOP; 1421 } 1422 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1423 1424 nd->depth++; 1425 current->link_count++; 1426 1427 do { 1428 struct path link = *path; 1429 void *cookie; 1430 1431 res = follow_link(&link, nd, &cookie); 1432 if (res) 1433 break; 1434 res = walk_component(nd, path, &nd->last, 1435 nd->last_type, LOOKUP_FOLLOW); 1436 put_link(nd, &link, cookie); 1437 } while (res > 0); 1438 1439 current->link_count--; 1440 nd->depth--; 1441 return res; 1442 } 1443 1444 /* 1445 * We really don't want to look at inode->i_op->lookup 1446 * when we don't have to. So we keep a cache bit in 1447 * the inode ->i_opflags field that says "yes, we can 1448 * do lookup on this inode". 1449 */ 1450 static inline int can_lookup(struct inode *inode) 1451 { 1452 if (likely(inode->i_opflags & IOP_LOOKUP)) 1453 return 1; 1454 if (likely(!inode->i_op->lookup)) 1455 return 0; 1456 1457 /* We do this once for the lifetime of the inode */ 1458 spin_lock(&inode->i_lock); 1459 inode->i_opflags |= IOP_LOOKUP; 1460 spin_unlock(&inode->i_lock); 1461 return 1; 1462 } 1463 1464 /* 1465 * We can do the critical dentry name comparison and hashing 1466 * operations one word at a time, but we are limited to: 1467 * 1468 * - Architectures with fast unaligned word accesses. We could 1469 * do a "get_unaligned()" if this helps and is sufficiently 1470 * fast. 1471 * 1472 * - Little-endian machines (so that we can generate the mask 1473 * of low bytes efficiently). Again, we *could* do a byte 1474 * swapping load on big-endian architectures if that is not 1475 * expensive enough to make the optimization worthless. 1476 * 1477 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1478 * do not trap on the (extremely unlikely) case of a page 1479 * crossing operation. 1480 * 1481 * - Furthermore, we need an efficient 64-bit compile for the 1482 * 64-bit case in order to generate the "number of bytes in 1483 * the final mask". Again, that could be replaced with a 1484 * efficient population count instruction or similar. 1485 */ 1486 #ifdef CONFIG_DCACHE_WORD_ACCESS 1487 1488 #include <asm/word-at-a-time.h> 1489 1490 #ifdef CONFIG_64BIT 1491 1492 static inline unsigned int fold_hash(unsigned long hash) 1493 { 1494 hash += hash >> (8*sizeof(int)); 1495 return hash; 1496 } 1497 1498 #else /* 32-bit case */ 1499 1500 #define fold_hash(x) (x) 1501 1502 #endif 1503 1504 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1505 { 1506 unsigned long a, mask; 1507 unsigned long hash = 0; 1508 1509 for (;;) { 1510 a = load_unaligned_zeropad(name); 1511 if (len < sizeof(unsigned long)) 1512 break; 1513 hash += a; 1514 hash *= 9; 1515 name += sizeof(unsigned long); 1516 len -= sizeof(unsigned long); 1517 if (!len) 1518 goto done; 1519 } 1520 mask = ~(~0ul << len*8); 1521 hash += mask & a; 1522 done: 1523 return fold_hash(hash); 1524 } 1525 EXPORT_SYMBOL(full_name_hash); 1526 1527 /* 1528 * Calculate the length and hash of the path component, and 1529 * return the length of the component; 1530 */ 1531 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1532 { 1533 unsigned long a, b, adata, bdata, mask, hash, len; 1534 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1535 1536 hash = a = 0; 1537 len = -sizeof(unsigned long); 1538 do { 1539 hash = (hash + a) * 9; 1540 len += sizeof(unsigned long); 1541 a = load_unaligned_zeropad(name+len); 1542 b = a ^ REPEAT_BYTE('/'); 1543 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1544 1545 adata = prep_zero_mask(a, adata, &constants); 1546 bdata = prep_zero_mask(b, bdata, &constants); 1547 1548 mask = create_zero_mask(adata | bdata); 1549 1550 hash += a & zero_bytemask(mask); 1551 *hashp = fold_hash(hash); 1552 1553 return len + find_zero(mask); 1554 } 1555 1556 #else 1557 1558 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1559 { 1560 unsigned long hash = init_name_hash(); 1561 while (len--) 1562 hash = partial_name_hash(*name++, hash); 1563 return end_name_hash(hash); 1564 } 1565 EXPORT_SYMBOL(full_name_hash); 1566 1567 /* 1568 * We know there's a real path component here of at least 1569 * one character. 1570 */ 1571 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1572 { 1573 unsigned long hash = init_name_hash(); 1574 unsigned long len = 0, c; 1575 1576 c = (unsigned char)*name; 1577 do { 1578 len++; 1579 hash = partial_name_hash(c, hash); 1580 c = (unsigned char)name[len]; 1581 } while (c && c != '/'); 1582 *hashp = end_name_hash(hash); 1583 return len; 1584 } 1585 1586 #endif 1587 1588 /* 1589 * Name resolution. 1590 * This is the basic name resolution function, turning a pathname into 1591 * the final dentry. We expect 'base' to be positive and a directory. 1592 * 1593 * Returns 0 and nd will have valid dentry and mnt on success. 1594 * Returns error and drops reference to input namei data on failure. 1595 */ 1596 static int link_path_walk(const char *name, struct nameidata *nd) 1597 { 1598 struct path next; 1599 int err; 1600 1601 while (*name=='/') 1602 name++; 1603 if (!*name) 1604 return 0; 1605 1606 /* At this point we know we have a real path component. */ 1607 for(;;) { 1608 struct qstr this; 1609 long len; 1610 int type; 1611 1612 err = may_lookup(nd); 1613 if (err) 1614 break; 1615 1616 len = hash_name(name, &this.hash); 1617 this.name = name; 1618 this.len = len; 1619 1620 type = LAST_NORM; 1621 if (name[0] == '.') switch (len) { 1622 case 2: 1623 if (name[1] == '.') { 1624 type = LAST_DOTDOT; 1625 nd->flags |= LOOKUP_JUMPED; 1626 } 1627 break; 1628 case 1: 1629 type = LAST_DOT; 1630 } 1631 if (likely(type == LAST_NORM)) { 1632 struct dentry *parent = nd->path.dentry; 1633 nd->flags &= ~LOOKUP_JUMPED; 1634 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1635 err = parent->d_op->d_hash(parent, nd->inode, 1636 &this); 1637 if (err < 0) 1638 break; 1639 } 1640 } 1641 1642 if (!name[len]) 1643 goto last_component; 1644 /* 1645 * If it wasn't NUL, we know it was '/'. Skip that 1646 * slash, and continue until no more slashes. 1647 */ 1648 do { 1649 len++; 1650 } while (unlikely(name[len] == '/')); 1651 if (!name[len]) 1652 goto last_component; 1653 name += len; 1654 1655 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1656 if (err < 0) 1657 return err; 1658 1659 if (err) { 1660 err = nested_symlink(&next, nd); 1661 if (err) 1662 return err; 1663 } 1664 if (can_lookup(nd->inode)) 1665 continue; 1666 err = -ENOTDIR; 1667 break; 1668 /* here ends the main loop */ 1669 1670 last_component: 1671 nd->last = this; 1672 nd->last_type = type; 1673 return 0; 1674 } 1675 terminate_walk(nd); 1676 return err; 1677 } 1678 1679 static int path_init(int dfd, const char *name, unsigned int flags, 1680 struct nameidata *nd, struct file **fp) 1681 { 1682 int retval = 0; 1683 int fput_needed; 1684 struct file *file; 1685 1686 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1687 nd->flags = flags | LOOKUP_JUMPED; 1688 nd->depth = 0; 1689 if (flags & LOOKUP_ROOT) { 1690 struct inode *inode = nd->root.dentry->d_inode; 1691 if (*name) { 1692 if (!inode->i_op->lookup) 1693 return -ENOTDIR; 1694 retval = inode_permission(inode, MAY_EXEC); 1695 if (retval) 1696 return retval; 1697 } 1698 nd->path = nd->root; 1699 nd->inode = inode; 1700 if (flags & LOOKUP_RCU) { 1701 lock_rcu_walk(); 1702 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1703 } else { 1704 path_get(&nd->path); 1705 } 1706 return 0; 1707 } 1708 1709 nd->root.mnt = NULL; 1710 1711 if (*name=='/') { 1712 if (flags & LOOKUP_RCU) { 1713 lock_rcu_walk(); 1714 set_root_rcu(nd); 1715 } else { 1716 set_root(nd); 1717 path_get(&nd->root); 1718 } 1719 nd->path = nd->root; 1720 } else if (dfd == AT_FDCWD) { 1721 if (flags & LOOKUP_RCU) { 1722 struct fs_struct *fs = current->fs; 1723 unsigned seq; 1724 1725 lock_rcu_walk(); 1726 1727 do { 1728 seq = read_seqcount_begin(&fs->seq); 1729 nd->path = fs->pwd; 1730 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1731 } while (read_seqcount_retry(&fs->seq, seq)); 1732 } else { 1733 get_fs_pwd(current->fs, &nd->path); 1734 } 1735 } else { 1736 struct dentry *dentry; 1737 1738 file = fget_raw_light(dfd, &fput_needed); 1739 retval = -EBADF; 1740 if (!file) 1741 goto out_fail; 1742 1743 dentry = file->f_path.dentry; 1744 1745 if (*name) { 1746 retval = -ENOTDIR; 1747 if (!S_ISDIR(dentry->d_inode->i_mode)) 1748 goto fput_fail; 1749 1750 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1751 if (retval) 1752 goto fput_fail; 1753 } 1754 1755 nd->path = file->f_path; 1756 if (flags & LOOKUP_RCU) { 1757 if (fput_needed) 1758 *fp = file; 1759 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1760 lock_rcu_walk(); 1761 } else { 1762 path_get(&file->f_path); 1763 fput_light(file, fput_needed); 1764 } 1765 } 1766 1767 nd->inode = nd->path.dentry->d_inode; 1768 return 0; 1769 1770 fput_fail: 1771 fput_light(file, fput_needed); 1772 out_fail: 1773 return retval; 1774 } 1775 1776 static inline int lookup_last(struct nameidata *nd, struct path *path) 1777 { 1778 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1779 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1780 1781 nd->flags &= ~LOOKUP_PARENT; 1782 return walk_component(nd, path, &nd->last, nd->last_type, 1783 nd->flags & LOOKUP_FOLLOW); 1784 } 1785 1786 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1787 static int path_lookupat(int dfd, const char *name, 1788 unsigned int flags, struct nameidata *nd) 1789 { 1790 struct file *base = NULL; 1791 struct path path; 1792 int err; 1793 1794 /* 1795 * Path walking is largely split up into 2 different synchronisation 1796 * schemes, rcu-walk and ref-walk (explained in 1797 * Documentation/filesystems/path-lookup.txt). These share much of the 1798 * path walk code, but some things particularly setup, cleanup, and 1799 * following mounts are sufficiently divergent that functions are 1800 * duplicated. Typically there is a function foo(), and its RCU 1801 * analogue, foo_rcu(). 1802 * 1803 * -ECHILD is the error number of choice (just to avoid clashes) that 1804 * is returned if some aspect of an rcu-walk fails. Such an error must 1805 * be handled by restarting a traditional ref-walk (which will always 1806 * be able to complete). 1807 */ 1808 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1809 1810 if (unlikely(err)) 1811 return err; 1812 1813 current->total_link_count = 0; 1814 err = link_path_walk(name, nd); 1815 1816 if (!err && !(flags & LOOKUP_PARENT)) { 1817 err = lookup_last(nd, &path); 1818 while (err > 0) { 1819 void *cookie; 1820 struct path link = path; 1821 nd->flags |= LOOKUP_PARENT; 1822 err = follow_link(&link, nd, &cookie); 1823 if (err) 1824 break; 1825 err = lookup_last(nd, &path); 1826 put_link(nd, &link, cookie); 1827 } 1828 } 1829 1830 if (!err) 1831 err = complete_walk(nd); 1832 1833 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1834 if (!nd->inode->i_op->lookup) { 1835 path_put(&nd->path); 1836 err = -ENOTDIR; 1837 } 1838 } 1839 1840 if (base) 1841 fput(base); 1842 1843 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1844 path_put(&nd->root); 1845 nd->root.mnt = NULL; 1846 } 1847 return err; 1848 } 1849 1850 static int do_path_lookup(int dfd, const char *name, 1851 unsigned int flags, struct nameidata *nd) 1852 { 1853 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1854 if (unlikely(retval == -ECHILD)) 1855 retval = path_lookupat(dfd, name, flags, nd); 1856 if (unlikely(retval == -ESTALE)) 1857 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1858 1859 if (likely(!retval)) { 1860 if (unlikely(!audit_dummy_context())) { 1861 if (nd->path.dentry && nd->inode) 1862 audit_inode(name, nd->path.dentry); 1863 } 1864 } 1865 return retval; 1866 } 1867 1868 /* does lookup, returns the object with parent locked */ 1869 struct dentry *kern_path_locked(const char *name, struct path *path) 1870 { 1871 struct nameidata nd; 1872 struct dentry *d; 1873 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 1874 if (err) 1875 return ERR_PTR(err); 1876 if (nd.last_type != LAST_NORM) { 1877 path_put(&nd.path); 1878 return ERR_PTR(-EINVAL); 1879 } 1880 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1881 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 1882 if (IS_ERR(d)) { 1883 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 1884 path_put(&nd.path); 1885 return d; 1886 } 1887 *path = nd.path; 1888 return d; 1889 } 1890 1891 int kern_path(const char *name, unsigned int flags, struct path *path) 1892 { 1893 struct nameidata nd; 1894 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1895 if (!res) 1896 *path = nd.path; 1897 return res; 1898 } 1899 1900 /** 1901 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1902 * @dentry: pointer to dentry of the base directory 1903 * @mnt: pointer to vfs mount of the base directory 1904 * @name: pointer to file name 1905 * @flags: lookup flags 1906 * @path: pointer to struct path to fill 1907 */ 1908 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1909 const char *name, unsigned int flags, 1910 struct path *path) 1911 { 1912 struct nameidata nd; 1913 int err; 1914 nd.root.dentry = dentry; 1915 nd.root.mnt = mnt; 1916 BUG_ON(flags & LOOKUP_PARENT); 1917 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1918 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 1919 if (!err) 1920 *path = nd.path; 1921 return err; 1922 } 1923 1924 /* 1925 * Restricted form of lookup. Doesn't follow links, single-component only, 1926 * needs parent already locked. Doesn't follow mounts. 1927 * SMP-safe. 1928 */ 1929 static struct dentry *lookup_hash(struct nameidata *nd) 1930 { 1931 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 1932 } 1933 1934 /** 1935 * lookup_one_len - filesystem helper to lookup single pathname component 1936 * @name: pathname component to lookup 1937 * @base: base directory to lookup from 1938 * @len: maximum length @len should be interpreted to 1939 * 1940 * Note that this routine is purely a helper for filesystem usage and should 1941 * not be called by generic code. Also note that by using this function the 1942 * nameidata argument is passed to the filesystem methods and a filesystem 1943 * using this helper needs to be prepared for that. 1944 */ 1945 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1946 { 1947 struct qstr this; 1948 unsigned int c; 1949 int err; 1950 1951 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1952 1953 this.name = name; 1954 this.len = len; 1955 this.hash = full_name_hash(name, len); 1956 if (!len) 1957 return ERR_PTR(-EACCES); 1958 1959 while (len--) { 1960 c = *(const unsigned char *)name++; 1961 if (c == '/' || c == '\0') 1962 return ERR_PTR(-EACCES); 1963 } 1964 /* 1965 * See if the low-level filesystem might want 1966 * to use its own hash.. 1967 */ 1968 if (base->d_flags & DCACHE_OP_HASH) { 1969 int err = base->d_op->d_hash(base, base->d_inode, &this); 1970 if (err < 0) 1971 return ERR_PTR(err); 1972 } 1973 1974 err = inode_permission(base->d_inode, MAY_EXEC); 1975 if (err) 1976 return ERR_PTR(err); 1977 1978 return __lookup_hash(&this, base, 0); 1979 } 1980 1981 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 1982 struct path *path, int *empty) 1983 { 1984 struct nameidata nd; 1985 char *tmp = getname_flags(name, flags, empty); 1986 int err = PTR_ERR(tmp); 1987 if (!IS_ERR(tmp)) { 1988 1989 BUG_ON(flags & LOOKUP_PARENT); 1990 1991 err = do_path_lookup(dfd, tmp, flags, &nd); 1992 putname(tmp); 1993 if (!err) 1994 *path = nd.path; 1995 } 1996 return err; 1997 } 1998 1999 int user_path_at(int dfd, const char __user *name, unsigned flags, 2000 struct path *path) 2001 { 2002 return user_path_at_empty(dfd, name, flags, path, NULL); 2003 } 2004 2005 static int user_path_parent(int dfd, const char __user *path, 2006 struct nameidata *nd, char **name) 2007 { 2008 char *s = getname(path); 2009 int error; 2010 2011 if (IS_ERR(s)) 2012 return PTR_ERR(s); 2013 2014 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 2015 if (error) 2016 putname(s); 2017 else 2018 *name = s; 2019 2020 return error; 2021 } 2022 2023 /* 2024 * It's inline, so penalty for filesystems that don't use sticky bit is 2025 * minimal. 2026 */ 2027 static inline int check_sticky(struct inode *dir, struct inode *inode) 2028 { 2029 kuid_t fsuid = current_fsuid(); 2030 2031 if (!(dir->i_mode & S_ISVTX)) 2032 return 0; 2033 if (uid_eq(inode->i_uid, fsuid)) 2034 return 0; 2035 if (uid_eq(dir->i_uid, fsuid)) 2036 return 0; 2037 return !inode_capable(inode, CAP_FOWNER); 2038 } 2039 2040 /* 2041 * Check whether we can remove a link victim from directory dir, check 2042 * whether the type of victim is right. 2043 * 1. We can't do it if dir is read-only (done in permission()) 2044 * 2. We should have write and exec permissions on dir 2045 * 3. We can't remove anything from append-only dir 2046 * 4. We can't do anything with immutable dir (done in permission()) 2047 * 5. If the sticky bit on dir is set we should either 2048 * a. be owner of dir, or 2049 * b. be owner of victim, or 2050 * c. have CAP_FOWNER capability 2051 * 6. If the victim is append-only or immutable we can't do antyhing with 2052 * links pointing to it. 2053 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2054 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2055 * 9. We can't remove a root or mountpoint. 2056 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2057 * nfs_async_unlink(). 2058 */ 2059 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 2060 { 2061 int error; 2062 2063 if (!victim->d_inode) 2064 return -ENOENT; 2065 2066 BUG_ON(victim->d_parent->d_inode != dir); 2067 audit_inode_child(victim, dir); 2068 2069 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2070 if (error) 2071 return error; 2072 if (IS_APPEND(dir)) 2073 return -EPERM; 2074 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 2075 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 2076 return -EPERM; 2077 if (isdir) { 2078 if (!S_ISDIR(victim->d_inode->i_mode)) 2079 return -ENOTDIR; 2080 if (IS_ROOT(victim)) 2081 return -EBUSY; 2082 } else if (S_ISDIR(victim->d_inode->i_mode)) 2083 return -EISDIR; 2084 if (IS_DEADDIR(dir)) 2085 return -ENOENT; 2086 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2087 return -EBUSY; 2088 return 0; 2089 } 2090 2091 /* Check whether we can create an object with dentry child in directory 2092 * dir. 2093 * 1. We can't do it if child already exists (open has special treatment for 2094 * this case, but since we are inlined it's OK) 2095 * 2. We can't do it if dir is read-only (done in permission()) 2096 * 3. We should have write and exec permissions on dir 2097 * 4. We can't do it if dir is immutable (done in permission()) 2098 */ 2099 static inline int may_create(struct inode *dir, struct dentry *child) 2100 { 2101 if (child->d_inode) 2102 return -EEXIST; 2103 if (IS_DEADDIR(dir)) 2104 return -ENOENT; 2105 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2106 } 2107 2108 /* 2109 * p1 and p2 should be directories on the same fs. 2110 */ 2111 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2112 { 2113 struct dentry *p; 2114 2115 if (p1 == p2) { 2116 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2117 return NULL; 2118 } 2119 2120 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2121 2122 p = d_ancestor(p2, p1); 2123 if (p) { 2124 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2125 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2126 return p; 2127 } 2128 2129 p = d_ancestor(p1, p2); 2130 if (p) { 2131 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2132 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2133 return p; 2134 } 2135 2136 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2137 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2138 return NULL; 2139 } 2140 2141 void unlock_rename(struct dentry *p1, struct dentry *p2) 2142 { 2143 mutex_unlock(&p1->d_inode->i_mutex); 2144 if (p1 != p2) { 2145 mutex_unlock(&p2->d_inode->i_mutex); 2146 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2147 } 2148 } 2149 2150 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2151 bool want_excl) 2152 { 2153 int error = may_create(dir, dentry); 2154 if (error) 2155 return error; 2156 2157 if (!dir->i_op->create) 2158 return -EACCES; /* shouldn't it be ENOSYS? */ 2159 mode &= S_IALLUGO; 2160 mode |= S_IFREG; 2161 error = security_inode_create(dir, dentry, mode); 2162 if (error) 2163 return error; 2164 error = dir->i_op->create(dir, dentry, mode, want_excl); 2165 if (!error) 2166 fsnotify_create(dir, dentry); 2167 return error; 2168 } 2169 2170 static int may_open(struct path *path, int acc_mode, int flag) 2171 { 2172 struct dentry *dentry = path->dentry; 2173 struct inode *inode = dentry->d_inode; 2174 int error; 2175 2176 /* O_PATH? */ 2177 if (!acc_mode) 2178 return 0; 2179 2180 if (!inode) 2181 return -ENOENT; 2182 2183 switch (inode->i_mode & S_IFMT) { 2184 case S_IFLNK: 2185 return -ELOOP; 2186 case S_IFDIR: 2187 if (acc_mode & MAY_WRITE) 2188 return -EISDIR; 2189 break; 2190 case S_IFBLK: 2191 case S_IFCHR: 2192 if (path->mnt->mnt_flags & MNT_NODEV) 2193 return -EACCES; 2194 /*FALLTHRU*/ 2195 case S_IFIFO: 2196 case S_IFSOCK: 2197 flag &= ~O_TRUNC; 2198 break; 2199 } 2200 2201 error = inode_permission(inode, acc_mode); 2202 if (error) 2203 return error; 2204 2205 /* 2206 * An append-only file must be opened in append mode for writing. 2207 */ 2208 if (IS_APPEND(inode)) { 2209 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2210 return -EPERM; 2211 if (flag & O_TRUNC) 2212 return -EPERM; 2213 } 2214 2215 /* O_NOATIME can only be set by the owner or superuser */ 2216 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2217 return -EPERM; 2218 2219 return 0; 2220 } 2221 2222 static int handle_truncate(struct file *filp) 2223 { 2224 struct path *path = &filp->f_path; 2225 struct inode *inode = path->dentry->d_inode; 2226 int error = get_write_access(inode); 2227 if (error) 2228 return error; 2229 /* 2230 * Refuse to truncate files with mandatory locks held on them. 2231 */ 2232 error = locks_verify_locked(inode); 2233 if (!error) 2234 error = security_path_truncate(path); 2235 if (!error) { 2236 error = do_truncate(path->dentry, 0, 2237 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2238 filp); 2239 } 2240 put_write_access(inode); 2241 return error; 2242 } 2243 2244 static inline int open_to_namei_flags(int flag) 2245 { 2246 if ((flag & O_ACCMODE) == 3) 2247 flag--; 2248 return flag; 2249 } 2250 2251 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2252 { 2253 int error = security_path_mknod(dir, dentry, mode, 0); 2254 if (error) 2255 return error; 2256 2257 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2258 if (error) 2259 return error; 2260 2261 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2262 } 2263 2264 /* 2265 * Attempt to atomically look up, create and open a file from a negative 2266 * dentry. 2267 * 2268 * Returns 0 if successful. The file will have been created and attached to 2269 * @file by the filesystem calling finish_open(). 2270 * 2271 * Returns 1 if the file was looked up only or didn't need creating. The 2272 * caller will need to perform the open themselves. @path will have been 2273 * updated to point to the new dentry. This may be negative. 2274 * 2275 * Returns an error code otherwise. 2276 */ 2277 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2278 struct path *path, struct file *file, 2279 const struct open_flags *op, 2280 bool *want_write, bool need_lookup, 2281 int *opened) 2282 { 2283 struct inode *dir = nd->path.dentry->d_inode; 2284 unsigned open_flag = open_to_namei_flags(op->open_flag); 2285 umode_t mode; 2286 int error; 2287 int acc_mode; 2288 int create_error = 0; 2289 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2290 2291 BUG_ON(dentry->d_inode); 2292 2293 /* Don't create child dentry for a dead directory. */ 2294 if (unlikely(IS_DEADDIR(dir))) { 2295 error = -ENOENT; 2296 goto out; 2297 } 2298 2299 mode = op->mode & S_IALLUGO; 2300 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2301 mode &= ~current_umask(); 2302 2303 if (open_flag & O_EXCL) { 2304 open_flag &= ~O_TRUNC; 2305 *opened |= FILE_CREATED; 2306 } 2307 2308 /* 2309 * Checking write permission is tricky, bacuse we don't know if we are 2310 * going to actually need it: O_CREAT opens should work as long as the 2311 * file exists. But checking existence breaks atomicity. The trick is 2312 * to check access and if not granted clear O_CREAT from the flags. 2313 * 2314 * Another problem is returing the "right" error value (e.g. for an 2315 * O_EXCL open we want to return EEXIST not EROFS). 2316 */ 2317 if ((open_flag & (O_CREAT | O_TRUNC)) || 2318 (open_flag & O_ACCMODE) != O_RDONLY) { 2319 error = mnt_want_write(nd->path.mnt); 2320 if (!error) { 2321 *want_write = true; 2322 } else if (!(open_flag & O_CREAT)) { 2323 /* 2324 * No O_CREATE -> atomicity not a requirement -> fall 2325 * back to lookup + open 2326 */ 2327 goto no_open; 2328 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2329 /* Fall back and fail with the right error */ 2330 create_error = error; 2331 goto no_open; 2332 } else { 2333 /* No side effects, safe to clear O_CREAT */ 2334 create_error = error; 2335 open_flag &= ~O_CREAT; 2336 } 2337 } 2338 2339 if (open_flag & O_CREAT) { 2340 error = may_o_create(&nd->path, dentry, op->mode); 2341 if (error) { 2342 create_error = error; 2343 if (open_flag & O_EXCL) 2344 goto no_open; 2345 open_flag &= ~O_CREAT; 2346 } 2347 } 2348 2349 if (nd->flags & LOOKUP_DIRECTORY) 2350 open_flag |= O_DIRECTORY; 2351 2352 file->f_path.dentry = DENTRY_NOT_SET; 2353 file->f_path.mnt = nd->path.mnt; 2354 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2355 opened); 2356 if (error < 0) { 2357 if (create_error && error == -ENOENT) 2358 error = create_error; 2359 goto out; 2360 } 2361 2362 acc_mode = op->acc_mode; 2363 if (*opened & FILE_CREATED) { 2364 fsnotify_create(dir, dentry); 2365 acc_mode = MAY_OPEN; 2366 } 2367 2368 if (error) { /* returned 1, that is */ 2369 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2370 error = -EIO; 2371 goto out; 2372 } 2373 if (file->f_path.dentry) { 2374 dput(dentry); 2375 dentry = file->f_path.dentry; 2376 } 2377 goto looked_up; 2378 } 2379 2380 /* 2381 * We didn't have the inode before the open, so check open permission 2382 * here. 2383 */ 2384 error = may_open(&file->f_path, acc_mode, open_flag); 2385 if (error) 2386 fput(file); 2387 2388 out: 2389 dput(dentry); 2390 return error; 2391 2392 no_open: 2393 if (need_lookup) { 2394 dentry = lookup_real(dir, dentry, nd->flags); 2395 if (IS_ERR(dentry)) 2396 return PTR_ERR(dentry); 2397 2398 if (create_error) { 2399 int open_flag = op->open_flag; 2400 2401 error = create_error; 2402 if ((open_flag & O_EXCL)) { 2403 if (!dentry->d_inode) 2404 goto out; 2405 } else if (!dentry->d_inode) { 2406 goto out; 2407 } else if ((open_flag & O_TRUNC) && 2408 S_ISREG(dentry->d_inode->i_mode)) { 2409 goto out; 2410 } 2411 /* will fail later, go on to get the right error */ 2412 } 2413 } 2414 looked_up: 2415 path->dentry = dentry; 2416 path->mnt = nd->path.mnt; 2417 return 1; 2418 } 2419 2420 /* 2421 * Look up and maybe create and open the last component. 2422 * 2423 * Must be called with i_mutex held on parent. 2424 * 2425 * Returns 0 if the file was successfully atomically created (if necessary) and 2426 * opened. In this case the file will be returned attached to @file. 2427 * 2428 * Returns 1 if the file was not completely opened at this time, though lookups 2429 * and creations will have been performed and the dentry returned in @path will 2430 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2431 * specified then a negative dentry may be returned. 2432 * 2433 * An error code is returned otherwise. 2434 * 2435 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2436 * cleared otherwise prior to returning. 2437 */ 2438 static int lookup_open(struct nameidata *nd, struct path *path, 2439 struct file *file, 2440 const struct open_flags *op, 2441 bool *want_write, int *opened) 2442 { 2443 struct dentry *dir = nd->path.dentry; 2444 struct inode *dir_inode = dir->d_inode; 2445 struct dentry *dentry; 2446 int error; 2447 bool need_lookup; 2448 2449 *opened &= ~FILE_CREATED; 2450 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2451 if (IS_ERR(dentry)) 2452 return PTR_ERR(dentry); 2453 2454 /* Cached positive dentry: will open in f_op->open */ 2455 if (!need_lookup && dentry->d_inode) 2456 goto out_no_open; 2457 2458 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2459 return atomic_open(nd, dentry, path, file, op, want_write, 2460 need_lookup, opened); 2461 } 2462 2463 if (need_lookup) { 2464 BUG_ON(dentry->d_inode); 2465 2466 dentry = lookup_real(dir_inode, dentry, nd->flags); 2467 if (IS_ERR(dentry)) 2468 return PTR_ERR(dentry); 2469 } 2470 2471 /* Negative dentry, just create the file */ 2472 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2473 umode_t mode = op->mode; 2474 if (!IS_POSIXACL(dir->d_inode)) 2475 mode &= ~current_umask(); 2476 /* 2477 * This write is needed to ensure that a 2478 * rw->ro transition does not occur between 2479 * the time when the file is created and when 2480 * a permanent write count is taken through 2481 * the 'struct file' in finish_open(). 2482 */ 2483 error = mnt_want_write(nd->path.mnt); 2484 if (error) 2485 goto out_dput; 2486 *want_write = true; 2487 *opened |= FILE_CREATED; 2488 error = security_path_mknod(&nd->path, dentry, mode, 0); 2489 if (error) 2490 goto out_dput; 2491 error = vfs_create(dir->d_inode, dentry, mode, 2492 nd->flags & LOOKUP_EXCL); 2493 if (error) 2494 goto out_dput; 2495 } 2496 out_no_open: 2497 path->dentry = dentry; 2498 path->mnt = nd->path.mnt; 2499 return 1; 2500 2501 out_dput: 2502 dput(dentry); 2503 return error; 2504 } 2505 2506 /* 2507 * Handle the last step of open() 2508 */ 2509 static int do_last(struct nameidata *nd, struct path *path, 2510 struct file *file, const struct open_flags *op, 2511 int *opened, const char *pathname) 2512 { 2513 struct dentry *dir = nd->path.dentry; 2514 int open_flag = op->open_flag; 2515 bool will_truncate = (open_flag & O_TRUNC) != 0; 2516 bool want_write = false; 2517 int acc_mode = op->acc_mode; 2518 struct inode *inode; 2519 bool symlink_ok = false; 2520 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2521 bool retried = false; 2522 int error; 2523 2524 nd->flags &= ~LOOKUP_PARENT; 2525 nd->flags |= op->intent; 2526 2527 switch (nd->last_type) { 2528 case LAST_DOTDOT: 2529 case LAST_DOT: 2530 error = handle_dots(nd, nd->last_type); 2531 if (error) 2532 return error; 2533 /* fallthrough */ 2534 case LAST_ROOT: 2535 error = complete_walk(nd); 2536 if (error) 2537 return error; 2538 audit_inode(pathname, nd->path.dentry); 2539 if (open_flag & O_CREAT) { 2540 error = -EISDIR; 2541 goto out; 2542 } 2543 goto finish_open; 2544 case LAST_BIND: 2545 error = complete_walk(nd); 2546 if (error) 2547 return error; 2548 audit_inode(pathname, dir); 2549 goto finish_open; 2550 } 2551 2552 if (!(open_flag & O_CREAT)) { 2553 if (nd->last.name[nd->last.len]) 2554 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2555 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2556 symlink_ok = true; 2557 /* we _can_ be in RCU mode here */ 2558 error = lookup_fast(nd, &nd->last, path, &inode); 2559 if (likely(!error)) 2560 goto finish_lookup; 2561 2562 if (error < 0) 2563 goto out; 2564 2565 BUG_ON(nd->inode != dir->d_inode); 2566 } else { 2567 /* create side of things */ 2568 /* 2569 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2570 * has been cleared when we got to the last component we are 2571 * about to look up 2572 */ 2573 error = complete_walk(nd); 2574 if (error) 2575 return error; 2576 2577 audit_inode(pathname, dir); 2578 error = -EISDIR; 2579 /* trailing slashes? */ 2580 if (nd->last.name[nd->last.len]) 2581 goto out; 2582 } 2583 2584 retry_lookup: 2585 mutex_lock(&dir->d_inode->i_mutex); 2586 error = lookup_open(nd, path, file, op, &want_write, opened); 2587 mutex_unlock(&dir->d_inode->i_mutex); 2588 2589 if (error <= 0) { 2590 if (error) 2591 goto out; 2592 2593 if ((*opened & FILE_CREATED) || 2594 !S_ISREG(file->f_path.dentry->d_inode->i_mode)) 2595 will_truncate = false; 2596 2597 audit_inode(pathname, file->f_path.dentry); 2598 goto opened; 2599 } 2600 2601 if (*opened & FILE_CREATED) { 2602 /* Don't check for write permission, don't truncate */ 2603 open_flag &= ~O_TRUNC; 2604 will_truncate = false; 2605 acc_mode = MAY_OPEN; 2606 path_to_nameidata(path, nd); 2607 goto finish_open_created; 2608 } 2609 2610 /* 2611 * It already exists. 2612 */ 2613 audit_inode(pathname, path->dentry); 2614 2615 /* 2616 * If atomic_open() acquired write access it is dropped now due to 2617 * possible mount and symlink following (this might be optimized away if 2618 * necessary...) 2619 */ 2620 if (want_write) { 2621 mnt_drop_write(nd->path.mnt); 2622 want_write = false; 2623 } 2624 2625 error = -EEXIST; 2626 if (open_flag & O_EXCL) 2627 goto exit_dput; 2628 2629 error = follow_managed(path, nd->flags); 2630 if (error < 0) 2631 goto exit_dput; 2632 2633 if (error) 2634 nd->flags |= LOOKUP_JUMPED; 2635 2636 BUG_ON(nd->flags & LOOKUP_RCU); 2637 inode = path->dentry->d_inode; 2638 finish_lookup: 2639 /* we _can_ be in RCU mode here */ 2640 error = -ENOENT; 2641 if (!inode) { 2642 path_to_nameidata(path, nd); 2643 goto out; 2644 } 2645 2646 if (should_follow_link(inode, !symlink_ok)) { 2647 if (nd->flags & LOOKUP_RCU) { 2648 if (unlikely(unlazy_walk(nd, path->dentry))) { 2649 error = -ECHILD; 2650 goto out; 2651 } 2652 } 2653 BUG_ON(inode != path->dentry->d_inode); 2654 return 1; 2655 } 2656 2657 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 2658 path_to_nameidata(path, nd); 2659 } else { 2660 save_parent.dentry = nd->path.dentry; 2661 save_parent.mnt = mntget(path->mnt); 2662 nd->path.dentry = path->dentry; 2663 2664 } 2665 nd->inode = inode; 2666 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2667 error = complete_walk(nd); 2668 if (error) { 2669 path_put(&save_parent); 2670 return error; 2671 } 2672 error = -EISDIR; 2673 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode)) 2674 goto out; 2675 error = -ENOTDIR; 2676 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup) 2677 goto out; 2678 audit_inode(pathname, nd->path.dentry); 2679 finish_open: 2680 if (!S_ISREG(nd->inode->i_mode)) 2681 will_truncate = false; 2682 2683 if (will_truncate) { 2684 error = mnt_want_write(nd->path.mnt); 2685 if (error) 2686 goto out; 2687 want_write = true; 2688 } 2689 finish_open_created: 2690 error = may_open(&nd->path, acc_mode, open_flag); 2691 if (error) 2692 goto out; 2693 file->f_path.mnt = nd->path.mnt; 2694 error = finish_open(file, nd->path.dentry, NULL, opened); 2695 if (error) { 2696 if (error == -EOPENSTALE) 2697 goto stale_open; 2698 goto out; 2699 } 2700 opened: 2701 error = open_check_o_direct(file); 2702 if (error) 2703 goto exit_fput; 2704 error = ima_file_check(file, op->acc_mode); 2705 if (error) 2706 goto exit_fput; 2707 2708 if (will_truncate) { 2709 error = handle_truncate(file); 2710 if (error) 2711 goto exit_fput; 2712 } 2713 out: 2714 if (want_write) 2715 mnt_drop_write(nd->path.mnt); 2716 path_put(&save_parent); 2717 terminate_walk(nd); 2718 return error; 2719 2720 exit_dput: 2721 path_put_conditional(path, nd); 2722 goto out; 2723 exit_fput: 2724 fput(file); 2725 goto out; 2726 2727 stale_open: 2728 /* If no saved parent or already retried then can't retry */ 2729 if (!save_parent.dentry || retried) 2730 goto out; 2731 2732 BUG_ON(save_parent.dentry != dir); 2733 path_put(&nd->path); 2734 nd->path = save_parent; 2735 nd->inode = dir->d_inode; 2736 save_parent.mnt = NULL; 2737 save_parent.dentry = NULL; 2738 if (want_write) { 2739 mnt_drop_write(nd->path.mnt); 2740 want_write = false; 2741 } 2742 retried = true; 2743 goto retry_lookup; 2744 } 2745 2746 static struct file *path_openat(int dfd, const char *pathname, 2747 struct nameidata *nd, const struct open_flags *op, int flags) 2748 { 2749 struct file *base = NULL; 2750 struct file *file; 2751 struct path path; 2752 int opened = 0; 2753 int error; 2754 2755 file = get_empty_filp(); 2756 if (!file) 2757 return ERR_PTR(-ENFILE); 2758 2759 file->f_flags = op->open_flag; 2760 2761 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2762 if (unlikely(error)) 2763 goto out; 2764 2765 current->total_link_count = 0; 2766 error = link_path_walk(pathname, nd); 2767 if (unlikely(error)) 2768 goto out; 2769 2770 error = do_last(nd, &path, file, op, &opened, pathname); 2771 while (unlikely(error > 0)) { /* trailing symlink */ 2772 struct path link = path; 2773 void *cookie; 2774 if (!(nd->flags & LOOKUP_FOLLOW)) { 2775 path_put_conditional(&path, nd); 2776 path_put(&nd->path); 2777 error = -ELOOP; 2778 break; 2779 } 2780 nd->flags |= LOOKUP_PARENT; 2781 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2782 error = follow_link(&link, nd, &cookie); 2783 if (unlikely(error)) 2784 break; 2785 error = do_last(nd, &path, file, op, &opened, pathname); 2786 put_link(nd, &link, cookie); 2787 } 2788 out: 2789 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2790 path_put(&nd->root); 2791 if (base) 2792 fput(base); 2793 if (!(opened & FILE_OPENED)) { 2794 BUG_ON(!error); 2795 put_filp(file); 2796 } 2797 if (unlikely(error)) { 2798 if (error == -EOPENSTALE) { 2799 if (flags & LOOKUP_RCU) 2800 error = -ECHILD; 2801 else 2802 error = -ESTALE; 2803 } 2804 file = ERR_PTR(error); 2805 } 2806 return file; 2807 } 2808 2809 struct file *do_filp_open(int dfd, const char *pathname, 2810 const struct open_flags *op, int flags) 2811 { 2812 struct nameidata nd; 2813 struct file *filp; 2814 2815 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2816 if (unlikely(filp == ERR_PTR(-ECHILD))) 2817 filp = path_openat(dfd, pathname, &nd, op, flags); 2818 if (unlikely(filp == ERR_PTR(-ESTALE))) 2819 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2820 return filp; 2821 } 2822 2823 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2824 const char *name, const struct open_flags *op, int flags) 2825 { 2826 struct nameidata nd; 2827 struct file *file; 2828 2829 nd.root.mnt = mnt; 2830 nd.root.dentry = dentry; 2831 2832 flags |= LOOKUP_ROOT; 2833 2834 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2835 return ERR_PTR(-ELOOP); 2836 2837 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2838 if (unlikely(file == ERR_PTR(-ECHILD))) 2839 file = path_openat(-1, name, &nd, op, flags); 2840 if (unlikely(file == ERR_PTR(-ESTALE))) 2841 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2842 return file; 2843 } 2844 2845 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2846 { 2847 struct dentry *dentry = ERR_PTR(-EEXIST); 2848 struct nameidata nd; 2849 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2850 if (error) 2851 return ERR_PTR(error); 2852 2853 /* 2854 * Yucky last component or no last component at all? 2855 * (foo/., foo/.., /////) 2856 */ 2857 if (nd.last_type != LAST_NORM) 2858 goto out; 2859 nd.flags &= ~LOOKUP_PARENT; 2860 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2861 2862 /* 2863 * Do the final lookup. 2864 */ 2865 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2866 dentry = lookup_hash(&nd); 2867 if (IS_ERR(dentry)) 2868 goto fail; 2869 2870 if (dentry->d_inode) 2871 goto eexist; 2872 /* 2873 * Special case - lookup gave negative, but... we had foo/bar/ 2874 * From the vfs_mknod() POV we just have a negative dentry - 2875 * all is fine. Let's be bastards - you had / on the end, you've 2876 * been asking for (non-existent) directory. -ENOENT for you. 2877 */ 2878 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 2879 dput(dentry); 2880 dentry = ERR_PTR(-ENOENT); 2881 goto fail; 2882 } 2883 *path = nd.path; 2884 return dentry; 2885 eexist: 2886 dput(dentry); 2887 dentry = ERR_PTR(-EEXIST); 2888 fail: 2889 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2890 out: 2891 path_put(&nd.path); 2892 return dentry; 2893 } 2894 EXPORT_SYMBOL(kern_path_create); 2895 2896 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 2897 { 2898 char *tmp = getname(pathname); 2899 struct dentry *res; 2900 if (IS_ERR(tmp)) 2901 return ERR_CAST(tmp); 2902 res = kern_path_create(dfd, tmp, path, is_dir); 2903 putname(tmp); 2904 return res; 2905 } 2906 EXPORT_SYMBOL(user_path_create); 2907 2908 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2909 { 2910 int error = may_create(dir, dentry); 2911 2912 if (error) 2913 return error; 2914 2915 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 2916 return -EPERM; 2917 2918 if (!dir->i_op->mknod) 2919 return -EPERM; 2920 2921 error = devcgroup_inode_mknod(mode, dev); 2922 if (error) 2923 return error; 2924 2925 error = security_inode_mknod(dir, dentry, mode, dev); 2926 if (error) 2927 return error; 2928 2929 error = dir->i_op->mknod(dir, dentry, mode, dev); 2930 if (!error) 2931 fsnotify_create(dir, dentry); 2932 return error; 2933 } 2934 2935 static int may_mknod(umode_t mode) 2936 { 2937 switch (mode & S_IFMT) { 2938 case S_IFREG: 2939 case S_IFCHR: 2940 case S_IFBLK: 2941 case S_IFIFO: 2942 case S_IFSOCK: 2943 case 0: /* zero mode translates to S_IFREG */ 2944 return 0; 2945 case S_IFDIR: 2946 return -EPERM; 2947 default: 2948 return -EINVAL; 2949 } 2950 } 2951 2952 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 2953 unsigned, dev) 2954 { 2955 struct dentry *dentry; 2956 struct path path; 2957 int error; 2958 2959 if (S_ISDIR(mode)) 2960 return -EPERM; 2961 2962 dentry = user_path_create(dfd, filename, &path, 0); 2963 if (IS_ERR(dentry)) 2964 return PTR_ERR(dentry); 2965 2966 if (!IS_POSIXACL(path.dentry->d_inode)) 2967 mode &= ~current_umask(); 2968 error = may_mknod(mode); 2969 if (error) 2970 goto out_dput; 2971 error = mnt_want_write(path.mnt); 2972 if (error) 2973 goto out_dput; 2974 error = security_path_mknod(&path, dentry, mode, dev); 2975 if (error) 2976 goto out_drop_write; 2977 switch (mode & S_IFMT) { 2978 case 0: case S_IFREG: 2979 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 2980 break; 2981 case S_IFCHR: case S_IFBLK: 2982 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 2983 new_decode_dev(dev)); 2984 break; 2985 case S_IFIFO: case S_IFSOCK: 2986 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 2987 break; 2988 } 2989 out_drop_write: 2990 mnt_drop_write(path.mnt); 2991 out_dput: 2992 dput(dentry); 2993 mutex_unlock(&path.dentry->d_inode->i_mutex); 2994 path_put(&path); 2995 2996 return error; 2997 } 2998 2999 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3000 { 3001 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3002 } 3003 3004 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3005 { 3006 int error = may_create(dir, dentry); 3007 unsigned max_links = dir->i_sb->s_max_links; 3008 3009 if (error) 3010 return error; 3011 3012 if (!dir->i_op->mkdir) 3013 return -EPERM; 3014 3015 mode &= (S_IRWXUGO|S_ISVTX); 3016 error = security_inode_mkdir(dir, dentry, mode); 3017 if (error) 3018 return error; 3019 3020 if (max_links && dir->i_nlink >= max_links) 3021 return -EMLINK; 3022 3023 error = dir->i_op->mkdir(dir, dentry, mode); 3024 if (!error) 3025 fsnotify_mkdir(dir, dentry); 3026 return error; 3027 } 3028 3029 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3030 { 3031 struct dentry *dentry; 3032 struct path path; 3033 int error; 3034 3035 dentry = user_path_create(dfd, pathname, &path, 1); 3036 if (IS_ERR(dentry)) 3037 return PTR_ERR(dentry); 3038 3039 if (!IS_POSIXACL(path.dentry->d_inode)) 3040 mode &= ~current_umask(); 3041 error = mnt_want_write(path.mnt); 3042 if (error) 3043 goto out_dput; 3044 error = security_path_mkdir(&path, dentry, mode); 3045 if (error) 3046 goto out_drop_write; 3047 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3048 out_drop_write: 3049 mnt_drop_write(path.mnt); 3050 out_dput: 3051 dput(dentry); 3052 mutex_unlock(&path.dentry->d_inode->i_mutex); 3053 path_put(&path); 3054 return error; 3055 } 3056 3057 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3058 { 3059 return sys_mkdirat(AT_FDCWD, pathname, mode); 3060 } 3061 3062 /* 3063 * The dentry_unhash() helper will try to drop the dentry early: we 3064 * should have a usage count of 1 if we're the only user of this 3065 * dentry, and if that is true (possibly after pruning the dcache), 3066 * then we drop the dentry now. 3067 * 3068 * A low-level filesystem can, if it choses, legally 3069 * do a 3070 * 3071 * if (!d_unhashed(dentry)) 3072 * return -EBUSY; 3073 * 3074 * if it cannot handle the case of removing a directory 3075 * that is still in use by something else.. 3076 */ 3077 void dentry_unhash(struct dentry *dentry) 3078 { 3079 shrink_dcache_parent(dentry); 3080 spin_lock(&dentry->d_lock); 3081 if (dentry->d_count == 1) 3082 __d_drop(dentry); 3083 spin_unlock(&dentry->d_lock); 3084 } 3085 3086 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3087 { 3088 int error = may_delete(dir, dentry, 1); 3089 3090 if (error) 3091 return error; 3092 3093 if (!dir->i_op->rmdir) 3094 return -EPERM; 3095 3096 dget(dentry); 3097 mutex_lock(&dentry->d_inode->i_mutex); 3098 3099 error = -EBUSY; 3100 if (d_mountpoint(dentry)) 3101 goto out; 3102 3103 error = security_inode_rmdir(dir, dentry); 3104 if (error) 3105 goto out; 3106 3107 shrink_dcache_parent(dentry); 3108 error = dir->i_op->rmdir(dir, dentry); 3109 if (error) 3110 goto out; 3111 3112 dentry->d_inode->i_flags |= S_DEAD; 3113 dont_mount(dentry); 3114 3115 out: 3116 mutex_unlock(&dentry->d_inode->i_mutex); 3117 dput(dentry); 3118 if (!error) 3119 d_delete(dentry); 3120 return error; 3121 } 3122 3123 static long do_rmdir(int dfd, const char __user *pathname) 3124 { 3125 int error = 0; 3126 char * name; 3127 struct dentry *dentry; 3128 struct nameidata nd; 3129 3130 error = user_path_parent(dfd, pathname, &nd, &name); 3131 if (error) 3132 return error; 3133 3134 switch(nd.last_type) { 3135 case LAST_DOTDOT: 3136 error = -ENOTEMPTY; 3137 goto exit1; 3138 case LAST_DOT: 3139 error = -EINVAL; 3140 goto exit1; 3141 case LAST_ROOT: 3142 error = -EBUSY; 3143 goto exit1; 3144 } 3145 3146 nd.flags &= ~LOOKUP_PARENT; 3147 3148 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3149 dentry = lookup_hash(&nd); 3150 error = PTR_ERR(dentry); 3151 if (IS_ERR(dentry)) 3152 goto exit2; 3153 if (!dentry->d_inode) { 3154 error = -ENOENT; 3155 goto exit3; 3156 } 3157 error = mnt_want_write(nd.path.mnt); 3158 if (error) 3159 goto exit3; 3160 error = security_path_rmdir(&nd.path, dentry); 3161 if (error) 3162 goto exit4; 3163 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3164 exit4: 3165 mnt_drop_write(nd.path.mnt); 3166 exit3: 3167 dput(dentry); 3168 exit2: 3169 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3170 exit1: 3171 path_put(&nd.path); 3172 putname(name); 3173 return error; 3174 } 3175 3176 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3177 { 3178 return do_rmdir(AT_FDCWD, pathname); 3179 } 3180 3181 int vfs_unlink(struct inode *dir, struct dentry *dentry) 3182 { 3183 int error = may_delete(dir, dentry, 0); 3184 3185 if (error) 3186 return error; 3187 3188 if (!dir->i_op->unlink) 3189 return -EPERM; 3190 3191 mutex_lock(&dentry->d_inode->i_mutex); 3192 if (d_mountpoint(dentry)) 3193 error = -EBUSY; 3194 else { 3195 error = security_inode_unlink(dir, dentry); 3196 if (!error) { 3197 error = dir->i_op->unlink(dir, dentry); 3198 if (!error) 3199 dont_mount(dentry); 3200 } 3201 } 3202 mutex_unlock(&dentry->d_inode->i_mutex); 3203 3204 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3205 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3206 fsnotify_link_count(dentry->d_inode); 3207 d_delete(dentry); 3208 } 3209 3210 return error; 3211 } 3212 3213 /* 3214 * Make sure that the actual truncation of the file will occur outside its 3215 * directory's i_mutex. Truncate can take a long time if there is a lot of 3216 * writeout happening, and we don't want to prevent access to the directory 3217 * while waiting on the I/O. 3218 */ 3219 static long do_unlinkat(int dfd, const char __user *pathname) 3220 { 3221 int error; 3222 char *name; 3223 struct dentry *dentry; 3224 struct nameidata nd; 3225 struct inode *inode = NULL; 3226 3227 error = user_path_parent(dfd, pathname, &nd, &name); 3228 if (error) 3229 return error; 3230 3231 error = -EISDIR; 3232 if (nd.last_type != LAST_NORM) 3233 goto exit1; 3234 3235 nd.flags &= ~LOOKUP_PARENT; 3236 3237 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3238 dentry = lookup_hash(&nd); 3239 error = PTR_ERR(dentry); 3240 if (!IS_ERR(dentry)) { 3241 /* Why not before? Because we want correct error value */ 3242 if (nd.last.name[nd.last.len]) 3243 goto slashes; 3244 inode = dentry->d_inode; 3245 if (!inode) 3246 goto slashes; 3247 ihold(inode); 3248 error = mnt_want_write(nd.path.mnt); 3249 if (error) 3250 goto exit2; 3251 error = security_path_unlink(&nd.path, dentry); 3252 if (error) 3253 goto exit3; 3254 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 3255 exit3: 3256 mnt_drop_write(nd.path.mnt); 3257 exit2: 3258 dput(dentry); 3259 } 3260 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3261 if (inode) 3262 iput(inode); /* truncate the inode here */ 3263 exit1: 3264 path_put(&nd.path); 3265 putname(name); 3266 return error; 3267 3268 slashes: 3269 error = !dentry->d_inode ? -ENOENT : 3270 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3271 goto exit2; 3272 } 3273 3274 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3275 { 3276 if ((flag & ~AT_REMOVEDIR) != 0) 3277 return -EINVAL; 3278 3279 if (flag & AT_REMOVEDIR) 3280 return do_rmdir(dfd, pathname); 3281 3282 return do_unlinkat(dfd, pathname); 3283 } 3284 3285 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3286 { 3287 return do_unlinkat(AT_FDCWD, pathname); 3288 } 3289 3290 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3291 { 3292 int error = may_create(dir, dentry); 3293 3294 if (error) 3295 return error; 3296 3297 if (!dir->i_op->symlink) 3298 return -EPERM; 3299 3300 error = security_inode_symlink(dir, dentry, oldname); 3301 if (error) 3302 return error; 3303 3304 error = dir->i_op->symlink(dir, dentry, oldname); 3305 if (!error) 3306 fsnotify_create(dir, dentry); 3307 return error; 3308 } 3309 3310 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3311 int, newdfd, const char __user *, newname) 3312 { 3313 int error; 3314 char *from; 3315 struct dentry *dentry; 3316 struct path path; 3317 3318 from = getname(oldname); 3319 if (IS_ERR(from)) 3320 return PTR_ERR(from); 3321 3322 dentry = user_path_create(newdfd, newname, &path, 0); 3323 error = PTR_ERR(dentry); 3324 if (IS_ERR(dentry)) 3325 goto out_putname; 3326 3327 error = mnt_want_write(path.mnt); 3328 if (error) 3329 goto out_dput; 3330 error = security_path_symlink(&path, dentry, from); 3331 if (error) 3332 goto out_drop_write; 3333 error = vfs_symlink(path.dentry->d_inode, dentry, from); 3334 out_drop_write: 3335 mnt_drop_write(path.mnt); 3336 out_dput: 3337 dput(dentry); 3338 mutex_unlock(&path.dentry->d_inode->i_mutex); 3339 path_put(&path); 3340 out_putname: 3341 putname(from); 3342 return error; 3343 } 3344 3345 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3346 { 3347 return sys_symlinkat(oldname, AT_FDCWD, newname); 3348 } 3349 3350 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3351 { 3352 struct inode *inode = old_dentry->d_inode; 3353 unsigned max_links = dir->i_sb->s_max_links; 3354 int error; 3355 3356 if (!inode) 3357 return -ENOENT; 3358 3359 error = may_create(dir, new_dentry); 3360 if (error) 3361 return error; 3362 3363 if (dir->i_sb != inode->i_sb) 3364 return -EXDEV; 3365 3366 /* 3367 * A link to an append-only or immutable file cannot be created. 3368 */ 3369 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3370 return -EPERM; 3371 if (!dir->i_op->link) 3372 return -EPERM; 3373 if (S_ISDIR(inode->i_mode)) 3374 return -EPERM; 3375 3376 error = security_inode_link(old_dentry, dir, new_dentry); 3377 if (error) 3378 return error; 3379 3380 mutex_lock(&inode->i_mutex); 3381 /* Make sure we don't allow creating hardlink to an unlinked file */ 3382 if (inode->i_nlink == 0) 3383 error = -ENOENT; 3384 else if (max_links && inode->i_nlink >= max_links) 3385 error = -EMLINK; 3386 else 3387 error = dir->i_op->link(old_dentry, dir, new_dentry); 3388 mutex_unlock(&inode->i_mutex); 3389 if (!error) 3390 fsnotify_link(dir, inode, new_dentry); 3391 return error; 3392 } 3393 3394 /* 3395 * Hardlinks are often used in delicate situations. We avoid 3396 * security-related surprises by not following symlinks on the 3397 * newname. --KAB 3398 * 3399 * We don't follow them on the oldname either to be compatible 3400 * with linux 2.0, and to avoid hard-linking to directories 3401 * and other special files. --ADM 3402 */ 3403 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3404 int, newdfd, const char __user *, newname, int, flags) 3405 { 3406 struct dentry *new_dentry; 3407 struct path old_path, new_path; 3408 int how = 0; 3409 int error; 3410 3411 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3412 return -EINVAL; 3413 /* 3414 * To use null names we require CAP_DAC_READ_SEARCH 3415 * This ensures that not everyone will be able to create 3416 * handlink using the passed filedescriptor. 3417 */ 3418 if (flags & AT_EMPTY_PATH) { 3419 if (!capable(CAP_DAC_READ_SEARCH)) 3420 return -ENOENT; 3421 how = LOOKUP_EMPTY; 3422 } 3423 3424 if (flags & AT_SYMLINK_FOLLOW) 3425 how |= LOOKUP_FOLLOW; 3426 3427 error = user_path_at(olddfd, oldname, how, &old_path); 3428 if (error) 3429 return error; 3430 3431 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 3432 error = PTR_ERR(new_dentry); 3433 if (IS_ERR(new_dentry)) 3434 goto out; 3435 3436 error = -EXDEV; 3437 if (old_path.mnt != new_path.mnt) 3438 goto out_dput; 3439 error = mnt_want_write(new_path.mnt); 3440 if (error) 3441 goto out_dput; 3442 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3443 if (error) 3444 goto out_drop_write; 3445 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3446 out_drop_write: 3447 mnt_drop_write(new_path.mnt); 3448 out_dput: 3449 dput(new_dentry); 3450 mutex_unlock(&new_path.dentry->d_inode->i_mutex); 3451 path_put(&new_path); 3452 out: 3453 path_put(&old_path); 3454 3455 return error; 3456 } 3457 3458 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3459 { 3460 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3461 } 3462 3463 /* 3464 * The worst of all namespace operations - renaming directory. "Perverted" 3465 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3466 * Problems: 3467 * a) we can get into loop creation. Check is done in is_subdir(). 3468 * b) race potential - two innocent renames can create a loop together. 3469 * That's where 4.4 screws up. Current fix: serialization on 3470 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3471 * story. 3472 * c) we have to lock _three_ objects - parents and victim (if it exists). 3473 * And that - after we got ->i_mutex on parents (until then we don't know 3474 * whether the target exists). Solution: try to be smart with locking 3475 * order for inodes. We rely on the fact that tree topology may change 3476 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3477 * move will be locked. Thus we can rank directories by the tree 3478 * (ancestors first) and rank all non-directories after them. 3479 * That works since everybody except rename does "lock parent, lookup, 3480 * lock child" and rename is under ->s_vfs_rename_mutex. 3481 * HOWEVER, it relies on the assumption that any object with ->lookup() 3482 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3483 * we'd better make sure that there's no link(2) for them. 3484 * d) conversion from fhandle to dentry may come in the wrong moment - when 3485 * we are removing the target. Solution: we will have to grab ->i_mutex 3486 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3487 * ->i_mutex on parents, which works but leads to some truly excessive 3488 * locking]. 3489 */ 3490 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3491 struct inode *new_dir, struct dentry *new_dentry) 3492 { 3493 int error = 0; 3494 struct inode *target = new_dentry->d_inode; 3495 unsigned max_links = new_dir->i_sb->s_max_links; 3496 3497 /* 3498 * If we are going to change the parent - check write permissions, 3499 * we'll need to flip '..'. 3500 */ 3501 if (new_dir != old_dir) { 3502 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3503 if (error) 3504 return error; 3505 } 3506 3507 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3508 if (error) 3509 return error; 3510 3511 dget(new_dentry); 3512 if (target) 3513 mutex_lock(&target->i_mutex); 3514 3515 error = -EBUSY; 3516 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3517 goto out; 3518 3519 error = -EMLINK; 3520 if (max_links && !target && new_dir != old_dir && 3521 new_dir->i_nlink >= max_links) 3522 goto out; 3523 3524 if (target) 3525 shrink_dcache_parent(new_dentry); 3526 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3527 if (error) 3528 goto out; 3529 3530 if (target) { 3531 target->i_flags |= S_DEAD; 3532 dont_mount(new_dentry); 3533 } 3534 out: 3535 if (target) 3536 mutex_unlock(&target->i_mutex); 3537 dput(new_dentry); 3538 if (!error) 3539 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3540 d_move(old_dentry,new_dentry); 3541 return error; 3542 } 3543 3544 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3545 struct inode *new_dir, struct dentry *new_dentry) 3546 { 3547 struct inode *target = new_dentry->d_inode; 3548 int error; 3549 3550 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3551 if (error) 3552 return error; 3553 3554 dget(new_dentry); 3555 if (target) 3556 mutex_lock(&target->i_mutex); 3557 3558 error = -EBUSY; 3559 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3560 goto out; 3561 3562 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3563 if (error) 3564 goto out; 3565 3566 if (target) 3567 dont_mount(new_dentry); 3568 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3569 d_move(old_dentry, new_dentry); 3570 out: 3571 if (target) 3572 mutex_unlock(&target->i_mutex); 3573 dput(new_dentry); 3574 return error; 3575 } 3576 3577 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3578 struct inode *new_dir, struct dentry *new_dentry) 3579 { 3580 int error; 3581 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3582 const unsigned char *old_name; 3583 3584 if (old_dentry->d_inode == new_dentry->d_inode) 3585 return 0; 3586 3587 error = may_delete(old_dir, old_dentry, is_dir); 3588 if (error) 3589 return error; 3590 3591 if (!new_dentry->d_inode) 3592 error = may_create(new_dir, new_dentry); 3593 else 3594 error = may_delete(new_dir, new_dentry, is_dir); 3595 if (error) 3596 return error; 3597 3598 if (!old_dir->i_op->rename) 3599 return -EPERM; 3600 3601 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3602 3603 if (is_dir) 3604 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3605 else 3606 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3607 if (!error) 3608 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3609 new_dentry->d_inode, old_dentry); 3610 fsnotify_oldname_free(old_name); 3611 3612 return error; 3613 } 3614 3615 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3616 int, newdfd, const char __user *, newname) 3617 { 3618 struct dentry *old_dir, *new_dir; 3619 struct dentry *old_dentry, *new_dentry; 3620 struct dentry *trap; 3621 struct nameidata oldnd, newnd; 3622 char *from; 3623 char *to; 3624 int error; 3625 3626 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3627 if (error) 3628 goto exit; 3629 3630 error = user_path_parent(newdfd, newname, &newnd, &to); 3631 if (error) 3632 goto exit1; 3633 3634 error = -EXDEV; 3635 if (oldnd.path.mnt != newnd.path.mnt) 3636 goto exit2; 3637 3638 old_dir = oldnd.path.dentry; 3639 error = -EBUSY; 3640 if (oldnd.last_type != LAST_NORM) 3641 goto exit2; 3642 3643 new_dir = newnd.path.dentry; 3644 if (newnd.last_type != LAST_NORM) 3645 goto exit2; 3646 3647 oldnd.flags &= ~LOOKUP_PARENT; 3648 newnd.flags &= ~LOOKUP_PARENT; 3649 newnd.flags |= LOOKUP_RENAME_TARGET; 3650 3651 trap = lock_rename(new_dir, old_dir); 3652 3653 old_dentry = lookup_hash(&oldnd); 3654 error = PTR_ERR(old_dentry); 3655 if (IS_ERR(old_dentry)) 3656 goto exit3; 3657 /* source must exist */ 3658 error = -ENOENT; 3659 if (!old_dentry->d_inode) 3660 goto exit4; 3661 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3662 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3663 error = -ENOTDIR; 3664 if (oldnd.last.name[oldnd.last.len]) 3665 goto exit4; 3666 if (newnd.last.name[newnd.last.len]) 3667 goto exit4; 3668 } 3669 /* source should not be ancestor of target */ 3670 error = -EINVAL; 3671 if (old_dentry == trap) 3672 goto exit4; 3673 new_dentry = lookup_hash(&newnd); 3674 error = PTR_ERR(new_dentry); 3675 if (IS_ERR(new_dentry)) 3676 goto exit4; 3677 /* target should not be an ancestor of source */ 3678 error = -ENOTEMPTY; 3679 if (new_dentry == trap) 3680 goto exit5; 3681 3682 error = mnt_want_write(oldnd.path.mnt); 3683 if (error) 3684 goto exit5; 3685 error = security_path_rename(&oldnd.path, old_dentry, 3686 &newnd.path, new_dentry); 3687 if (error) 3688 goto exit6; 3689 error = vfs_rename(old_dir->d_inode, old_dentry, 3690 new_dir->d_inode, new_dentry); 3691 exit6: 3692 mnt_drop_write(oldnd.path.mnt); 3693 exit5: 3694 dput(new_dentry); 3695 exit4: 3696 dput(old_dentry); 3697 exit3: 3698 unlock_rename(new_dir, old_dir); 3699 exit2: 3700 path_put(&newnd.path); 3701 putname(to); 3702 exit1: 3703 path_put(&oldnd.path); 3704 putname(from); 3705 exit: 3706 return error; 3707 } 3708 3709 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3710 { 3711 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3712 } 3713 3714 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3715 { 3716 int len; 3717 3718 len = PTR_ERR(link); 3719 if (IS_ERR(link)) 3720 goto out; 3721 3722 len = strlen(link); 3723 if (len > (unsigned) buflen) 3724 len = buflen; 3725 if (copy_to_user(buffer, link, len)) 3726 len = -EFAULT; 3727 out: 3728 return len; 3729 } 3730 3731 /* 3732 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3733 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3734 * using) it for any given inode is up to filesystem. 3735 */ 3736 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3737 { 3738 struct nameidata nd; 3739 void *cookie; 3740 int res; 3741 3742 nd.depth = 0; 3743 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3744 if (IS_ERR(cookie)) 3745 return PTR_ERR(cookie); 3746 3747 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3748 if (dentry->d_inode->i_op->put_link) 3749 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3750 return res; 3751 } 3752 3753 int vfs_follow_link(struct nameidata *nd, const char *link) 3754 { 3755 return __vfs_follow_link(nd, link); 3756 } 3757 3758 /* get the link contents into pagecache */ 3759 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3760 { 3761 char *kaddr; 3762 struct page *page; 3763 struct address_space *mapping = dentry->d_inode->i_mapping; 3764 page = read_mapping_page(mapping, 0, NULL); 3765 if (IS_ERR(page)) 3766 return (char*)page; 3767 *ppage = page; 3768 kaddr = kmap(page); 3769 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3770 return kaddr; 3771 } 3772 3773 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3774 { 3775 struct page *page = NULL; 3776 char *s = page_getlink(dentry, &page); 3777 int res = vfs_readlink(dentry,buffer,buflen,s); 3778 if (page) { 3779 kunmap(page); 3780 page_cache_release(page); 3781 } 3782 return res; 3783 } 3784 3785 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3786 { 3787 struct page *page = NULL; 3788 nd_set_link(nd, page_getlink(dentry, &page)); 3789 return page; 3790 } 3791 3792 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3793 { 3794 struct page *page = cookie; 3795 3796 if (page) { 3797 kunmap(page); 3798 page_cache_release(page); 3799 } 3800 } 3801 3802 /* 3803 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3804 */ 3805 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3806 { 3807 struct address_space *mapping = inode->i_mapping; 3808 struct page *page; 3809 void *fsdata; 3810 int err; 3811 char *kaddr; 3812 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3813 if (nofs) 3814 flags |= AOP_FLAG_NOFS; 3815 3816 retry: 3817 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3818 flags, &page, &fsdata); 3819 if (err) 3820 goto fail; 3821 3822 kaddr = kmap_atomic(page); 3823 memcpy(kaddr, symname, len-1); 3824 kunmap_atomic(kaddr); 3825 3826 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3827 page, fsdata); 3828 if (err < 0) 3829 goto fail; 3830 if (err < len-1) 3831 goto retry; 3832 3833 mark_inode_dirty(inode); 3834 return 0; 3835 fail: 3836 return err; 3837 } 3838 3839 int page_symlink(struct inode *inode, const char *symname, int len) 3840 { 3841 return __page_symlink(inode, symname, len, 3842 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3843 } 3844 3845 const struct inode_operations page_symlink_inode_operations = { 3846 .readlink = generic_readlink, 3847 .follow_link = page_follow_link_light, 3848 .put_link = page_put_link, 3849 }; 3850 3851 EXPORT_SYMBOL(user_path_at); 3852 EXPORT_SYMBOL(follow_down_one); 3853 EXPORT_SYMBOL(follow_down); 3854 EXPORT_SYMBOL(follow_up); 3855 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3856 EXPORT_SYMBOL(getname); 3857 EXPORT_SYMBOL(lock_rename); 3858 EXPORT_SYMBOL(lookup_one_len); 3859 EXPORT_SYMBOL(page_follow_link_light); 3860 EXPORT_SYMBOL(page_put_link); 3861 EXPORT_SYMBOL(page_readlink); 3862 EXPORT_SYMBOL(__page_symlink); 3863 EXPORT_SYMBOL(page_symlink); 3864 EXPORT_SYMBOL(page_symlink_inode_operations); 3865 EXPORT_SYMBOL(kern_path); 3866 EXPORT_SYMBOL(vfs_path_lookup); 3867 EXPORT_SYMBOL(inode_permission); 3868 EXPORT_SYMBOL(unlock_rename); 3869 EXPORT_SYMBOL(vfs_create); 3870 EXPORT_SYMBOL(vfs_follow_link); 3871 EXPORT_SYMBOL(vfs_link); 3872 EXPORT_SYMBOL(vfs_mkdir); 3873 EXPORT_SYMBOL(vfs_mknod); 3874 EXPORT_SYMBOL(generic_permission); 3875 EXPORT_SYMBOL(vfs_readlink); 3876 EXPORT_SYMBOL(vfs_rename); 3877 EXPORT_SYMBOL(vfs_rmdir); 3878 EXPORT_SYMBOL(vfs_symlink); 3879 EXPORT_SYMBOL(vfs_unlink); 3880 EXPORT_SYMBOL(dentry_unhash); 3881 EXPORT_SYMBOL(generic_readlink); 3882