xref: /linux/fs/namei.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 	char *result = __getname(), *err;
123 	int len;
124 
125 	if (unlikely(!result))
126 		return ERR_PTR(-ENOMEM);
127 
128 	len = strncpy_from_user(result, filename, PATH_MAX);
129 	err = ERR_PTR(len);
130 	if (unlikely(len < 0))
131 		goto error;
132 
133 	/* The empty path is special. */
134 	if (unlikely(!len)) {
135 		if (empty)
136 			*empty = 1;
137 		err = ERR_PTR(-ENOENT);
138 		if (!(flags & LOOKUP_EMPTY))
139 			goto error;
140 	}
141 
142 	err = ERR_PTR(-ENAMETOOLONG);
143 	if (likely(len < PATH_MAX)) {
144 		audit_getname(result);
145 		return result;
146 	}
147 
148 error:
149 	__putname(result);
150 	return err;
151 }
152 
153 char *getname(const char __user * filename)
154 {
155 	return getname_flags(filename, 0, NULL);
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 	struct posix_acl *acl;
173 
174 	if (mask & MAY_NOT_BLOCK) {
175 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 	        if (!acl)
177 	                return -EAGAIN;
178 		/* no ->get_acl() calls in RCU mode... */
179 		if (acl == ACL_NOT_CACHED)
180 			return -ECHILD;
181 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 	}
183 
184 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185 
186 	/*
187 	 * A filesystem can force a ACL callback by just never filling the
188 	 * ACL cache. But normally you'd fill the cache either at inode
189 	 * instantiation time, or on the first ->get_acl call.
190 	 *
191 	 * If the filesystem doesn't have a get_acl() function at all, we'll
192 	 * just create the negative cache entry.
193 	 */
194 	if (acl == ACL_NOT_CACHED) {
195 	        if (inode->i_op->get_acl) {
196 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 			if (IS_ERR(acl))
198 				return PTR_ERR(acl);
199 		} else {
200 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 		        return -EAGAIN;
202 		}
203 	}
204 
205 	if (acl) {
206 	        int error = posix_acl_permission(inode, acl, mask);
207 	        posix_acl_release(acl);
208 	        return error;
209 	}
210 #endif
211 
212 	return -EAGAIN;
213 }
214 
215 /*
216  * This does the basic permission checking
217  */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 	unsigned int mode = inode->i_mode;
221 
222 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 		mode >>= 6;
224 	else {
225 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 			int error = check_acl(inode, mask);
227 			if (error != -EAGAIN)
228 				return error;
229 		}
230 
231 		if (in_group_p(inode->i_gid))
232 			mode >>= 3;
233 	}
234 
235 	/*
236 	 * If the DACs are ok we don't need any capability check.
237 	 */
238 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 		return 0;
240 	return -EACCES;
241 }
242 
243 /**
244  * generic_permission -  check for access rights on a Posix-like filesystem
245  * @inode:	inode to check access rights for
246  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247  *
248  * Used to check for read/write/execute permissions on a file.
249  * We use "fsuid" for this, letting us set arbitrary permissions
250  * for filesystem access without changing the "normal" uids which
251  * are used for other things.
252  *
253  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254  * request cannot be satisfied (eg. requires blocking or too much complexity).
255  * It would then be called again in ref-walk mode.
256  */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 	int ret;
260 
261 	/*
262 	 * Do the basic permission checks.
263 	 */
264 	ret = acl_permission_check(inode, mask);
265 	if (ret != -EACCES)
266 		return ret;
267 
268 	if (S_ISDIR(inode->i_mode)) {
269 		/* DACs are overridable for directories */
270 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 			return 0;
272 		if (!(mask & MAY_WRITE))
273 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 				return 0;
275 		return -EACCES;
276 	}
277 	/*
278 	 * Read/write DACs are always overridable.
279 	 * Executable DACs are overridable when there is
280 	 * at least one exec bit set.
281 	 */
282 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 			return 0;
285 
286 	/*
287 	 * Searching includes executable on directories, else just read.
288 	 */
289 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 	if (mask == MAY_READ)
291 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 			return 0;
293 
294 	return -EACCES;
295 }
296 
297 /*
298  * We _really_ want to just do "generic_permission()" without
299  * even looking at the inode->i_op values. So we keep a cache
300  * flag in inode->i_opflags, that says "this has not special
301  * permission function, use the fast case".
302  */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 		if (likely(inode->i_op->permission))
307 			return inode->i_op->permission(inode, mask);
308 
309 		/* This gets set once for the inode lifetime */
310 		spin_lock(&inode->i_lock);
311 		inode->i_opflags |= IOP_FASTPERM;
312 		spin_unlock(&inode->i_lock);
313 	}
314 	return generic_permission(inode, mask);
315 }
316 
317 /**
318  * __inode_permission - Check for access rights to a given inode
319  * @inode: Inode to check permission on
320  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321  *
322  * Check for read/write/execute permissions on an inode.
323  *
324  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325  *
326  * This does not check for a read-only file system.  You probably want
327  * inode_permission().
328  */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 	int retval;
332 
333 	if (unlikely(mask & MAY_WRITE)) {
334 		/*
335 		 * Nobody gets write access to an immutable file.
336 		 */
337 		if (IS_IMMUTABLE(inode))
338 			return -EACCES;
339 	}
340 
341 	retval = do_inode_permission(inode, mask);
342 	if (retval)
343 		return retval;
344 
345 	retval = devcgroup_inode_permission(inode, mask);
346 	if (retval)
347 		return retval;
348 
349 	return security_inode_permission(inode, mask);
350 }
351 
352 /**
353  * sb_permission - Check superblock-level permissions
354  * @sb: Superblock of inode to check permission on
355  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
356  *
357  * Separate out file-system wide checks from inode-specific permission checks.
358  */
359 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
360 {
361 	if (unlikely(mask & MAY_WRITE)) {
362 		umode_t mode = inode->i_mode;
363 
364 		/* Nobody gets write access to a read-only fs. */
365 		if ((sb->s_flags & MS_RDONLY) &&
366 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
367 			return -EROFS;
368 	}
369 	return 0;
370 }
371 
372 /**
373  * inode_permission - Check for access rights to a given inode
374  * @inode: Inode to check permission on
375  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
376  *
377  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
378  * this, letting us set arbitrary permissions for filesystem access without
379  * changing the "normal" UIDs which are used for other things.
380  *
381  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
382  */
383 int inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	retval = sb_permission(inode->i_sb, inode, mask);
388 	if (retval)
389 		return retval;
390 	return __inode_permission(inode, mask);
391 }
392 
393 /**
394  * path_get - get a reference to a path
395  * @path: path to get the reference to
396  *
397  * Given a path increment the reference count to the dentry and the vfsmount.
398  */
399 void path_get(struct path *path)
400 {
401 	mntget(path->mnt);
402 	dget(path->dentry);
403 }
404 EXPORT_SYMBOL(path_get);
405 
406 /**
407  * path_put - put a reference to a path
408  * @path: path to put the reference to
409  *
410  * Given a path decrement the reference count to the dentry and the vfsmount.
411  */
412 void path_put(struct path *path)
413 {
414 	dput(path->dentry);
415 	mntput(path->mnt);
416 }
417 EXPORT_SYMBOL(path_put);
418 
419 /*
420  * Path walking has 2 modes, rcu-walk and ref-walk (see
421  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
422  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
423  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
424  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
425  * got stuck, so ref-walk may continue from there. If this is not successful
426  * (eg. a seqcount has changed), then failure is returned and it's up to caller
427  * to restart the path walk from the beginning in ref-walk mode.
428  */
429 
430 static inline void lock_rcu_walk(void)
431 {
432 	br_read_lock(&vfsmount_lock);
433 	rcu_read_lock();
434 }
435 
436 static inline void unlock_rcu_walk(void)
437 {
438 	rcu_read_unlock();
439 	br_read_unlock(&vfsmount_lock);
440 }
441 
442 /**
443  * unlazy_walk - try to switch to ref-walk mode.
444  * @nd: nameidata pathwalk data
445  * @dentry: child of nd->path.dentry or NULL
446  * Returns: 0 on success, -ECHILD on failure
447  *
448  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
449  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
450  * @nd or NULL.  Must be called from rcu-walk context.
451  */
452 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
453 {
454 	struct fs_struct *fs = current->fs;
455 	struct dentry *parent = nd->path.dentry;
456 	int want_root = 0;
457 
458 	BUG_ON(!(nd->flags & LOOKUP_RCU));
459 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
460 		want_root = 1;
461 		spin_lock(&fs->lock);
462 		if (nd->root.mnt != fs->root.mnt ||
463 				nd->root.dentry != fs->root.dentry)
464 			goto err_root;
465 	}
466 	spin_lock(&parent->d_lock);
467 	if (!dentry) {
468 		if (!__d_rcu_to_refcount(parent, nd->seq))
469 			goto err_parent;
470 		BUG_ON(nd->inode != parent->d_inode);
471 	} else {
472 		if (dentry->d_parent != parent)
473 			goto err_parent;
474 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 		if (!__d_rcu_to_refcount(dentry, nd->seq))
476 			goto err_child;
477 		/*
478 		 * If the sequence check on the child dentry passed, then
479 		 * the child has not been removed from its parent. This
480 		 * means the parent dentry must be valid and able to take
481 		 * a reference at this point.
482 		 */
483 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
484 		BUG_ON(!parent->d_count);
485 		parent->d_count++;
486 		spin_unlock(&dentry->d_lock);
487 	}
488 	spin_unlock(&parent->d_lock);
489 	if (want_root) {
490 		path_get(&nd->root);
491 		spin_unlock(&fs->lock);
492 	}
493 	mntget(nd->path.mnt);
494 
495 	unlock_rcu_walk();
496 	nd->flags &= ~LOOKUP_RCU;
497 	return 0;
498 
499 err_child:
500 	spin_unlock(&dentry->d_lock);
501 err_parent:
502 	spin_unlock(&parent->d_lock);
503 err_root:
504 	if (want_root)
505 		spin_unlock(&fs->lock);
506 	return -ECHILD;
507 }
508 
509 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
510 {
511 	return dentry->d_op->d_revalidate(dentry, flags);
512 }
513 
514 /**
515  * complete_walk - successful completion of path walk
516  * @nd:  pointer nameidata
517  *
518  * If we had been in RCU mode, drop out of it and legitimize nd->path.
519  * Revalidate the final result, unless we'd already done that during
520  * the path walk or the filesystem doesn't ask for it.  Return 0 on
521  * success, -error on failure.  In case of failure caller does not
522  * need to drop nd->path.
523  */
524 static int complete_walk(struct nameidata *nd)
525 {
526 	struct dentry *dentry = nd->path.dentry;
527 	int status;
528 
529 	if (nd->flags & LOOKUP_RCU) {
530 		nd->flags &= ~LOOKUP_RCU;
531 		if (!(nd->flags & LOOKUP_ROOT))
532 			nd->root.mnt = NULL;
533 		spin_lock(&dentry->d_lock);
534 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 			spin_unlock(&dentry->d_lock);
536 			unlock_rcu_walk();
537 			return -ECHILD;
538 		}
539 		BUG_ON(nd->inode != dentry->d_inode);
540 		spin_unlock(&dentry->d_lock);
541 		mntget(nd->path.mnt);
542 		unlock_rcu_walk();
543 	}
544 
545 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
546 		return 0;
547 
548 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
549 		return 0;
550 
551 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
552 		return 0;
553 
554 	/* Note: we do not d_invalidate() */
555 	status = d_revalidate(dentry, nd->flags);
556 	if (status > 0)
557 		return 0;
558 
559 	if (!status)
560 		status = -ESTALE;
561 
562 	path_put(&nd->path);
563 	return status;
564 }
565 
566 static __always_inline void set_root(struct nameidata *nd)
567 {
568 	if (!nd->root.mnt)
569 		get_fs_root(current->fs, &nd->root);
570 }
571 
572 static int link_path_walk(const char *, struct nameidata *);
573 
574 static __always_inline void set_root_rcu(struct nameidata *nd)
575 {
576 	if (!nd->root.mnt) {
577 		struct fs_struct *fs = current->fs;
578 		unsigned seq;
579 
580 		do {
581 			seq = read_seqcount_begin(&fs->seq);
582 			nd->root = fs->root;
583 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
584 		} while (read_seqcount_retry(&fs->seq, seq));
585 	}
586 }
587 
588 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
589 {
590 	int ret;
591 
592 	if (IS_ERR(link))
593 		goto fail;
594 
595 	if (*link == '/') {
596 		set_root(nd);
597 		path_put(&nd->path);
598 		nd->path = nd->root;
599 		path_get(&nd->root);
600 		nd->flags |= LOOKUP_JUMPED;
601 	}
602 	nd->inode = nd->path.dentry->d_inode;
603 
604 	ret = link_path_walk(link, nd);
605 	return ret;
606 fail:
607 	path_put(&nd->path);
608 	return PTR_ERR(link);
609 }
610 
611 static void path_put_conditional(struct path *path, struct nameidata *nd)
612 {
613 	dput(path->dentry);
614 	if (path->mnt != nd->path.mnt)
615 		mntput(path->mnt);
616 }
617 
618 static inline void path_to_nameidata(const struct path *path,
619 					struct nameidata *nd)
620 {
621 	if (!(nd->flags & LOOKUP_RCU)) {
622 		dput(nd->path.dentry);
623 		if (nd->path.mnt != path->mnt)
624 			mntput(nd->path.mnt);
625 	}
626 	nd->path.mnt = path->mnt;
627 	nd->path.dentry = path->dentry;
628 }
629 
630 /*
631  * Helper to directly jump to a known parsed path from ->follow_link,
632  * caller must have taken a reference to path beforehand.
633  */
634 void nd_jump_link(struct nameidata *nd, struct path *path)
635 {
636 	path_put(&nd->path);
637 
638 	nd->path = *path;
639 	nd->inode = nd->path.dentry->d_inode;
640 	nd->flags |= LOOKUP_JUMPED;
641 
642 	BUG_ON(nd->inode->i_op->follow_link);
643 }
644 
645 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
646 {
647 	struct inode *inode = link->dentry->d_inode;
648 	if (inode->i_op->put_link)
649 		inode->i_op->put_link(link->dentry, nd, cookie);
650 	path_put(link);
651 }
652 
653 static __always_inline int
654 follow_link(struct path *link, struct nameidata *nd, void **p)
655 {
656 	struct dentry *dentry = link->dentry;
657 	int error;
658 	char *s;
659 
660 	BUG_ON(nd->flags & LOOKUP_RCU);
661 
662 	if (link->mnt == nd->path.mnt)
663 		mntget(link->mnt);
664 
665 	error = -ELOOP;
666 	if (unlikely(current->total_link_count >= 40))
667 		goto out_put_nd_path;
668 
669 	cond_resched();
670 	current->total_link_count++;
671 
672 	touch_atime(link);
673 	nd_set_link(nd, NULL);
674 
675 	error = security_inode_follow_link(link->dentry, nd);
676 	if (error)
677 		goto out_put_nd_path;
678 
679 	nd->last_type = LAST_BIND;
680 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
681 	error = PTR_ERR(*p);
682 	if (IS_ERR(*p))
683 		goto out_put_nd_path;
684 
685 	error = 0;
686 	s = nd_get_link(nd);
687 	if (s) {
688 		error = __vfs_follow_link(nd, s);
689 		if (unlikely(error))
690 			put_link(nd, link, *p);
691 	}
692 
693 	return error;
694 
695 out_put_nd_path:
696 	path_put(&nd->path);
697 	path_put(link);
698 	return error;
699 }
700 
701 static int follow_up_rcu(struct path *path)
702 {
703 	struct mount *mnt = real_mount(path->mnt);
704 	struct mount *parent;
705 	struct dentry *mountpoint;
706 
707 	parent = mnt->mnt_parent;
708 	if (&parent->mnt == path->mnt)
709 		return 0;
710 	mountpoint = mnt->mnt_mountpoint;
711 	path->dentry = mountpoint;
712 	path->mnt = &parent->mnt;
713 	return 1;
714 }
715 
716 /*
717  * follow_up - Find the mountpoint of path's vfsmount
718  *
719  * Given a path, find the mountpoint of its source file system.
720  * Replace @path with the path of the mountpoint in the parent mount.
721  * Up is towards /.
722  *
723  * Return 1 if we went up a level and 0 if we were already at the
724  * root.
725  */
726 int follow_up(struct path *path)
727 {
728 	struct mount *mnt = real_mount(path->mnt);
729 	struct mount *parent;
730 	struct dentry *mountpoint;
731 
732 	br_read_lock(&vfsmount_lock);
733 	parent = mnt->mnt_parent;
734 	if (parent == mnt) {
735 		br_read_unlock(&vfsmount_lock);
736 		return 0;
737 	}
738 	mntget(&parent->mnt);
739 	mountpoint = dget(mnt->mnt_mountpoint);
740 	br_read_unlock(&vfsmount_lock);
741 	dput(path->dentry);
742 	path->dentry = mountpoint;
743 	mntput(path->mnt);
744 	path->mnt = &parent->mnt;
745 	return 1;
746 }
747 
748 /*
749  * Perform an automount
750  * - return -EISDIR to tell follow_managed() to stop and return the path we
751  *   were called with.
752  */
753 static int follow_automount(struct path *path, unsigned flags,
754 			    bool *need_mntput)
755 {
756 	struct vfsmount *mnt;
757 	int err;
758 
759 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
760 		return -EREMOTE;
761 
762 	/* We don't want to mount if someone's just doing a stat -
763 	 * unless they're stat'ing a directory and appended a '/' to
764 	 * the name.
765 	 *
766 	 * We do, however, want to mount if someone wants to open or
767 	 * create a file of any type under the mountpoint, wants to
768 	 * traverse through the mountpoint or wants to open the
769 	 * mounted directory.  Also, autofs may mark negative dentries
770 	 * as being automount points.  These will need the attentions
771 	 * of the daemon to instantiate them before they can be used.
772 	 */
773 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
774 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
775 	    path->dentry->d_inode)
776 		return -EISDIR;
777 
778 	current->total_link_count++;
779 	if (current->total_link_count >= 40)
780 		return -ELOOP;
781 
782 	mnt = path->dentry->d_op->d_automount(path);
783 	if (IS_ERR(mnt)) {
784 		/*
785 		 * The filesystem is allowed to return -EISDIR here to indicate
786 		 * it doesn't want to automount.  For instance, autofs would do
787 		 * this so that its userspace daemon can mount on this dentry.
788 		 *
789 		 * However, we can only permit this if it's a terminal point in
790 		 * the path being looked up; if it wasn't then the remainder of
791 		 * the path is inaccessible and we should say so.
792 		 */
793 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
794 			return -EREMOTE;
795 		return PTR_ERR(mnt);
796 	}
797 
798 	if (!mnt) /* mount collision */
799 		return 0;
800 
801 	if (!*need_mntput) {
802 		/* lock_mount() may release path->mnt on error */
803 		mntget(path->mnt);
804 		*need_mntput = true;
805 	}
806 	err = finish_automount(mnt, path);
807 
808 	switch (err) {
809 	case -EBUSY:
810 		/* Someone else made a mount here whilst we were busy */
811 		return 0;
812 	case 0:
813 		path_put(path);
814 		path->mnt = mnt;
815 		path->dentry = dget(mnt->mnt_root);
816 		return 0;
817 	default:
818 		return err;
819 	}
820 
821 }
822 
823 /*
824  * Handle a dentry that is managed in some way.
825  * - Flagged for transit management (autofs)
826  * - Flagged as mountpoint
827  * - Flagged as automount point
828  *
829  * This may only be called in refwalk mode.
830  *
831  * Serialization is taken care of in namespace.c
832  */
833 static int follow_managed(struct path *path, unsigned flags)
834 {
835 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
836 	unsigned managed;
837 	bool need_mntput = false;
838 	int ret = 0;
839 
840 	/* Given that we're not holding a lock here, we retain the value in a
841 	 * local variable for each dentry as we look at it so that we don't see
842 	 * the components of that value change under us */
843 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
844 	       managed &= DCACHE_MANAGED_DENTRY,
845 	       unlikely(managed != 0)) {
846 		/* Allow the filesystem to manage the transit without i_mutex
847 		 * being held. */
848 		if (managed & DCACHE_MANAGE_TRANSIT) {
849 			BUG_ON(!path->dentry->d_op);
850 			BUG_ON(!path->dentry->d_op->d_manage);
851 			ret = path->dentry->d_op->d_manage(path->dentry, false);
852 			if (ret < 0)
853 				break;
854 		}
855 
856 		/* Transit to a mounted filesystem. */
857 		if (managed & DCACHE_MOUNTED) {
858 			struct vfsmount *mounted = lookup_mnt(path);
859 			if (mounted) {
860 				dput(path->dentry);
861 				if (need_mntput)
862 					mntput(path->mnt);
863 				path->mnt = mounted;
864 				path->dentry = dget(mounted->mnt_root);
865 				need_mntput = true;
866 				continue;
867 			}
868 
869 			/* Something is mounted on this dentry in another
870 			 * namespace and/or whatever was mounted there in this
871 			 * namespace got unmounted before we managed to get the
872 			 * vfsmount_lock */
873 		}
874 
875 		/* Handle an automount point */
876 		if (managed & DCACHE_NEED_AUTOMOUNT) {
877 			ret = follow_automount(path, flags, &need_mntput);
878 			if (ret < 0)
879 				break;
880 			continue;
881 		}
882 
883 		/* We didn't change the current path point */
884 		break;
885 	}
886 
887 	if (need_mntput && path->mnt == mnt)
888 		mntput(path->mnt);
889 	if (ret == -EISDIR)
890 		ret = 0;
891 	return ret < 0 ? ret : need_mntput;
892 }
893 
894 int follow_down_one(struct path *path)
895 {
896 	struct vfsmount *mounted;
897 
898 	mounted = lookup_mnt(path);
899 	if (mounted) {
900 		dput(path->dentry);
901 		mntput(path->mnt);
902 		path->mnt = mounted;
903 		path->dentry = dget(mounted->mnt_root);
904 		return 1;
905 	}
906 	return 0;
907 }
908 
909 static inline bool managed_dentry_might_block(struct dentry *dentry)
910 {
911 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
912 		dentry->d_op->d_manage(dentry, true) < 0);
913 }
914 
915 /*
916  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
917  * we meet a managed dentry that would need blocking.
918  */
919 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
920 			       struct inode **inode)
921 {
922 	for (;;) {
923 		struct mount *mounted;
924 		/*
925 		 * Don't forget we might have a non-mountpoint managed dentry
926 		 * that wants to block transit.
927 		 */
928 		if (unlikely(managed_dentry_might_block(path->dentry)))
929 			return false;
930 
931 		if (!d_mountpoint(path->dentry))
932 			break;
933 
934 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
935 		if (!mounted)
936 			break;
937 		path->mnt = &mounted->mnt;
938 		path->dentry = mounted->mnt.mnt_root;
939 		nd->flags |= LOOKUP_JUMPED;
940 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
941 		/*
942 		 * Update the inode too. We don't need to re-check the
943 		 * dentry sequence number here after this d_inode read,
944 		 * because a mount-point is always pinned.
945 		 */
946 		*inode = path->dentry->d_inode;
947 	}
948 	return true;
949 }
950 
951 static void follow_mount_rcu(struct nameidata *nd)
952 {
953 	while (d_mountpoint(nd->path.dentry)) {
954 		struct mount *mounted;
955 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
956 		if (!mounted)
957 			break;
958 		nd->path.mnt = &mounted->mnt;
959 		nd->path.dentry = mounted->mnt.mnt_root;
960 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
961 	}
962 }
963 
964 static int follow_dotdot_rcu(struct nameidata *nd)
965 {
966 	set_root_rcu(nd);
967 
968 	while (1) {
969 		if (nd->path.dentry == nd->root.dentry &&
970 		    nd->path.mnt == nd->root.mnt) {
971 			break;
972 		}
973 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
974 			struct dentry *old = nd->path.dentry;
975 			struct dentry *parent = old->d_parent;
976 			unsigned seq;
977 
978 			seq = read_seqcount_begin(&parent->d_seq);
979 			if (read_seqcount_retry(&old->d_seq, nd->seq))
980 				goto failed;
981 			nd->path.dentry = parent;
982 			nd->seq = seq;
983 			break;
984 		}
985 		if (!follow_up_rcu(&nd->path))
986 			break;
987 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
988 	}
989 	follow_mount_rcu(nd);
990 	nd->inode = nd->path.dentry->d_inode;
991 	return 0;
992 
993 failed:
994 	nd->flags &= ~LOOKUP_RCU;
995 	if (!(nd->flags & LOOKUP_ROOT))
996 		nd->root.mnt = NULL;
997 	unlock_rcu_walk();
998 	return -ECHILD;
999 }
1000 
1001 /*
1002  * Follow down to the covering mount currently visible to userspace.  At each
1003  * point, the filesystem owning that dentry may be queried as to whether the
1004  * caller is permitted to proceed or not.
1005  */
1006 int follow_down(struct path *path)
1007 {
1008 	unsigned managed;
1009 	int ret;
1010 
1011 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1013 		/* Allow the filesystem to manage the transit without i_mutex
1014 		 * being held.
1015 		 *
1016 		 * We indicate to the filesystem if someone is trying to mount
1017 		 * something here.  This gives autofs the chance to deny anyone
1018 		 * other than its daemon the right to mount on its
1019 		 * superstructure.
1020 		 *
1021 		 * The filesystem may sleep at this point.
1022 		 */
1023 		if (managed & DCACHE_MANAGE_TRANSIT) {
1024 			BUG_ON(!path->dentry->d_op);
1025 			BUG_ON(!path->dentry->d_op->d_manage);
1026 			ret = path->dentry->d_op->d_manage(
1027 				path->dentry, false);
1028 			if (ret < 0)
1029 				return ret == -EISDIR ? 0 : ret;
1030 		}
1031 
1032 		/* Transit to a mounted filesystem. */
1033 		if (managed & DCACHE_MOUNTED) {
1034 			struct vfsmount *mounted = lookup_mnt(path);
1035 			if (!mounted)
1036 				break;
1037 			dput(path->dentry);
1038 			mntput(path->mnt);
1039 			path->mnt = mounted;
1040 			path->dentry = dget(mounted->mnt_root);
1041 			continue;
1042 		}
1043 
1044 		/* Don't handle automount points here */
1045 		break;
1046 	}
1047 	return 0;
1048 }
1049 
1050 /*
1051  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1052  */
1053 static void follow_mount(struct path *path)
1054 {
1055 	while (d_mountpoint(path->dentry)) {
1056 		struct vfsmount *mounted = lookup_mnt(path);
1057 		if (!mounted)
1058 			break;
1059 		dput(path->dentry);
1060 		mntput(path->mnt);
1061 		path->mnt = mounted;
1062 		path->dentry = dget(mounted->mnt_root);
1063 	}
1064 }
1065 
1066 static void follow_dotdot(struct nameidata *nd)
1067 {
1068 	set_root(nd);
1069 
1070 	while(1) {
1071 		struct dentry *old = nd->path.dentry;
1072 
1073 		if (nd->path.dentry == nd->root.dentry &&
1074 		    nd->path.mnt == nd->root.mnt) {
1075 			break;
1076 		}
1077 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1078 			/* rare case of legitimate dget_parent()... */
1079 			nd->path.dentry = dget_parent(nd->path.dentry);
1080 			dput(old);
1081 			break;
1082 		}
1083 		if (!follow_up(&nd->path))
1084 			break;
1085 	}
1086 	follow_mount(&nd->path);
1087 	nd->inode = nd->path.dentry->d_inode;
1088 }
1089 
1090 /*
1091  * This looks up the name in dcache, possibly revalidates the old dentry and
1092  * allocates a new one if not found or not valid.  In the need_lookup argument
1093  * returns whether i_op->lookup is necessary.
1094  *
1095  * dir->d_inode->i_mutex must be held
1096  */
1097 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1098 				    unsigned int flags, bool *need_lookup)
1099 {
1100 	struct dentry *dentry;
1101 	int error;
1102 
1103 	*need_lookup = false;
1104 	dentry = d_lookup(dir, name);
1105 	if (dentry) {
1106 		if (d_need_lookup(dentry)) {
1107 			*need_lookup = true;
1108 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1109 			error = d_revalidate(dentry, flags);
1110 			if (unlikely(error <= 0)) {
1111 				if (error < 0) {
1112 					dput(dentry);
1113 					return ERR_PTR(error);
1114 				} else if (!d_invalidate(dentry)) {
1115 					dput(dentry);
1116 					dentry = NULL;
1117 				}
1118 			}
1119 		}
1120 	}
1121 
1122 	if (!dentry) {
1123 		dentry = d_alloc(dir, name);
1124 		if (unlikely(!dentry))
1125 			return ERR_PTR(-ENOMEM);
1126 
1127 		*need_lookup = true;
1128 	}
1129 	return dentry;
1130 }
1131 
1132 /*
1133  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1134  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1135  *
1136  * dir->d_inode->i_mutex must be held
1137  */
1138 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1139 				  unsigned int flags)
1140 {
1141 	struct dentry *old;
1142 
1143 	/* Don't create child dentry for a dead directory. */
1144 	if (unlikely(IS_DEADDIR(dir))) {
1145 		dput(dentry);
1146 		return ERR_PTR(-ENOENT);
1147 	}
1148 
1149 	old = dir->i_op->lookup(dir, dentry, flags);
1150 	if (unlikely(old)) {
1151 		dput(dentry);
1152 		dentry = old;
1153 	}
1154 	return dentry;
1155 }
1156 
1157 static struct dentry *__lookup_hash(struct qstr *name,
1158 		struct dentry *base, unsigned int flags)
1159 {
1160 	bool need_lookup;
1161 	struct dentry *dentry;
1162 
1163 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1164 	if (!need_lookup)
1165 		return dentry;
1166 
1167 	return lookup_real(base->d_inode, dentry, flags);
1168 }
1169 
1170 /*
1171  *  It's more convoluted than I'd like it to be, but... it's still fairly
1172  *  small and for now I'd prefer to have fast path as straight as possible.
1173  *  It _is_ time-critical.
1174  */
1175 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1176 		       struct path *path, struct inode **inode)
1177 {
1178 	struct vfsmount *mnt = nd->path.mnt;
1179 	struct dentry *dentry, *parent = nd->path.dentry;
1180 	int need_reval = 1;
1181 	int status = 1;
1182 	int err;
1183 
1184 	/*
1185 	 * Rename seqlock is not required here because in the off chance
1186 	 * of a false negative due to a concurrent rename, we're going to
1187 	 * do the non-racy lookup, below.
1188 	 */
1189 	if (nd->flags & LOOKUP_RCU) {
1190 		unsigned seq;
1191 		dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1192 		if (!dentry)
1193 			goto unlazy;
1194 
1195 		/*
1196 		 * This sequence count validates that the inode matches
1197 		 * the dentry name information from lookup.
1198 		 */
1199 		*inode = dentry->d_inode;
1200 		if (read_seqcount_retry(&dentry->d_seq, seq))
1201 			return -ECHILD;
1202 
1203 		/*
1204 		 * This sequence count validates that the parent had no
1205 		 * changes while we did the lookup of the dentry above.
1206 		 *
1207 		 * The memory barrier in read_seqcount_begin of child is
1208 		 *  enough, we can use __read_seqcount_retry here.
1209 		 */
1210 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1211 			return -ECHILD;
1212 		nd->seq = seq;
1213 
1214 		if (unlikely(d_need_lookup(dentry)))
1215 			goto unlazy;
1216 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1217 			status = d_revalidate(dentry, nd->flags);
1218 			if (unlikely(status <= 0)) {
1219 				if (status != -ECHILD)
1220 					need_reval = 0;
1221 				goto unlazy;
1222 			}
1223 		}
1224 		path->mnt = mnt;
1225 		path->dentry = dentry;
1226 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1227 			goto unlazy;
1228 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1229 			goto unlazy;
1230 		return 0;
1231 unlazy:
1232 		if (unlazy_walk(nd, dentry))
1233 			return -ECHILD;
1234 	} else {
1235 		dentry = __d_lookup(parent, name);
1236 	}
1237 
1238 	if (unlikely(!dentry))
1239 		goto need_lookup;
1240 
1241 	if (unlikely(d_need_lookup(dentry))) {
1242 		dput(dentry);
1243 		goto need_lookup;
1244 	}
1245 
1246 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1247 		status = d_revalidate(dentry, nd->flags);
1248 	if (unlikely(status <= 0)) {
1249 		if (status < 0) {
1250 			dput(dentry);
1251 			return status;
1252 		}
1253 		if (!d_invalidate(dentry)) {
1254 			dput(dentry);
1255 			goto need_lookup;
1256 		}
1257 	}
1258 
1259 	path->mnt = mnt;
1260 	path->dentry = dentry;
1261 	err = follow_managed(path, nd->flags);
1262 	if (unlikely(err < 0)) {
1263 		path_put_conditional(path, nd);
1264 		return err;
1265 	}
1266 	if (err)
1267 		nd->flags |= LOOKUP_JUMPED;
1268 	*inode = path->dentry->d_inode;
1269 	return 0;
1270 
1271 need_lookup:
1272 	return 1;
1273 }
1274 
1275 /* Fast lookup failed, do it the slow way */
1276 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1277 		       struct path *path)
1278 {
1279 	struct dentry *dentry, *parent;
1280 	int err;
1281 
1282 	parent = nd->path.dentry;
1283 	BUG_ON(nd->inode != parent->d_inode);
1284 
1285 	mutex_lock(&parent->d_inode->i_mutex);
1286 	dentry = __lookup_hash(name, parent, nd->flags);
1287 	mutex_unlock(&parent->d_inode->i_mutex);
1288 	if (IS_ERR(dentry))
1289 		return PTR_ERR(dentry);
1290 	path->mnt = nd->path.mnt;
1291 	path->dentry = dentry;
1292 	err = follow_managed(path, nd->flags);
1293 	if (unlikely(err < 0)) {
1294 		path_put_conditional(path, nd);
1295 		return err;
1296 	}
1297 	if (err)
1298 		nd->flags |= LOOKUP_JUMPED;
1299 	return 0;
1300 }
1301 
1302 static inline int may_lookup(struct nameidata *nd)
1303 {
1304 	if (nd->flags & LOOKUP_RCU) {
1305 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1306 		if (err != -ECHILD)
1307 			return err;
1308 		if (unlazy_walk(nd, NULL))
1309 			return -ECHILD;
1310 	}
1311 	return inode_permission(nd->inode, MAY_EXEC);
1312 }
1313 
1314 static inline int handle_dots(struct nameidata *nd, int type)
1315 {
1316 	if (type == LAST_DOTDOT) {
1317 		if (nd->flags & LOOKUP_RCU) {
1318 			if (follow_dotdot_rcu(nd))
1319 				return -ECHILD;
1320 		} else
1321 			follow_dotdot(nd);
1322 	}
1323 	return 0;
1324 }
1325 
1326 static void terminate_walk(struct nameidata *nd)
1327 {
1328 	if (!(nd->flags & LOOKUP_RCU)) {
1329 		path_put(&nd->path);
1330 	} else {
1331 		nd->flags &= ~LOOKUP_RCU;
1332 		if (!(nd->flags & LOOKUP_ROOT))
1333 			nd->root.mnt = NULL;
1334 		unlock_rcu_walk();
1335 	}
1336 }
1337 
1338 /*
1339  * Do we need to follow links? We _really_ want to be able
1340  * to do this check without having to look at inode->i_op,
1341  * so we keep a cache of "no, this doesn't need follow_link"
1342  * for the common case.
1343  */
1344 static inline int should_follow_link(struct inode *inode, int follow)
1345 {
1346 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1347 		if (likely(inode->i_op->follow_link))
1348 			return follow;
1349 
1350 		/* This gets set once for the inode lifetime */
1351 		spin_lock(&inode->i_lock);
1352 		inode->i_opflags |= IOP_NOFOLLOW;
1353 		spin_unlock(&inode->i_lock);
1354 	}
1355 	return 0;
1356 }
1357 
1358 static inline int walk_component(struct nameidata *nd, struct path *path,
1359 		struct qstr *name, int type, int follow)
1360 {
1361 	struct inode *inode;
1362 	int err;
1363 	/*
1364 	 * "." and ".." are special - ".." especially so because it has
1365 	 * to be able to know about the current root directory and
1366 	 * parent relationships.
1367 	 */
1368 	if (unlikely(type != LAST_NORM))
1369 		return handle_dots(nd, type);
1370 	err = lookup_fast(nd, name, path, &inode);
1371 	if (unlikely(err)) {
1372 		if (err < 0)
1373 			goto out_err;
1374 
1375 		err = lookup_slow(nd, name, path);
1376 		if (err < 0)
1377 			goto out_err;
1378 
1379 		inode = path->dentry->d_inode;
1380 	}
1381 	err = -ENOENT;
1382 	if (!inode)
1383 		goto out_path_put;
1384 
1385 	if (should_follow_link(inode, follow)) {
1386 		if (nd->flags & LOOKUP_RCU) {
1387 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1388 				err = -ECHILD;
1389 				goto out_err;
1390 			}
1391 		}
1392 		BUG_ON(inode != path->dentry->d_inode);
1393 		return 1;
1394 	}
1395 	path_to_nameidata(path, nd);
1396 	nd->inode = inode;
1397 	return 0;
1398 
1399 out_path_put:
1400 	path_to_nameidata(path, nd);
1401 out_err:
1402 	terminate_walk(nd);
1403 	return err;
1404 }
1405 
1406 /*
1407  * This limits recursive symlink follows to 8, while
1408  * limiting consecutive symlinks to 40.
1409  *
1410  * Without that kind of total limit, nasty chains of consecutive
1411  * symlinks can cause almost arbitrarily long lookups.
1412  */
1413 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1414 {
1415 	int res;
1416 
1417 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1418 		path_put_conditional(path, nd);
1419 		path_put(&nd->path);
1420 		return -ELOOP;
1421 	}
1422 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1423 
1424 	nd->depth++;
1425 	current->link_count++;
1426 
1427 	do {
1428 		struct path link = *path;
1429 		void *cookie;
1430 
1431 		res = follow_link(&link, nd, &cookie);
1432 		if (res)
1433 			break;
1434 		res = walk_component(nd, path, &nd->last,
1435 				     nd->last_type, LOOKUP_FOLLOW);
1436 		put_link(nd, &link, cookie);
1437 	} while (res > 0);
1438 
1439 	current->link_count--;
1440 	nd->depth--;
1441 	return res;
1442 }
1443 
1444 /*
1445  * We really don't want to look at inode->i_op->lookup
1446  * when we don't have to. So we keep a cache bit in
1447  * the inode ->i_opflags field that says "yes, we can
1448  * do lookup on this inode".
1449  */
1450 static inline int can_lookup(struct inode *inode)
1451 {
1452 	if (likely(inode->i_opflags & IOP_LOOKUP))
1453 		return 1;
1454 	if (likely(!inode->i_op->lookup))
1455 		return 0;
1456 
1457 	/* We do this once for the lifetime of the inode */
1458 	spin_lock(&inode->i_lock);
1459 	inode->i_opflags |= IOP_LOOKUP;
1460 	spin_unlock(&inode->i_lock);
1461 	return 1;
1462 }
1463 
1464 /*
1465  * We can do the critical dentry name comparison and hashing
1466  * operations one word at a time, but we are limited to:
1467  *
1468  * - Architectures with fast unaligned word accesses. We could
1469  *   do a "get_unaligned()" if this helps and is sufficiently
1470  *   fast.
1471  *
1472  * - Little-endian machines (so that we can generate the mask
1473  *   of low bytes efficiently). Again, we *could* do a byte
1474  *   swapping load on big-endian architectures if that is not
1475  *   expensive enough to make the optimization worthless.
1476  *
1477  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1478  *   do not trap on the (extremely unlikely) case of a page
1479  *   crossing operation.
1480  *
1481  * - Furthermore, we need an efficient 64-bit compile for the
1482  *   64-bit case in order to generate the "number of bytes in
1483  *   the final mask". Again, that could be replaced with a
1484  *   efficient population count instruction or similar.
1485  */
1486 #ifdef CONFIG_DCACHE_WORD_ACCESS
1487 
1488 #include <asm/word-at-a-time.h>
1489 
1490 #ifdef CONFIG_64BIT
1491 
1492 static inline unsigned int fold_hash(unsigned long hash)
1493 {
1494 	hash += hash >> (8*sizeof(int));
1495 	return hash;
1496 }
1497 
1498 #else	/* 32-bit case */
1499 
1500 #define fold_hash(x) (x)
1501 
1502 #endif
1503 
1504 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1505 {
1506 	unsigned long a, mask;
1507 	unsigned long hash = 0;
1508 
1509 	for (;;) {
1510 		a = load_unaligned_zeropad(name);
1511 		if (len < sizeof(unsigned long))
1512 			break;
1513 		hash += a;
1514 		hash *= 9;
1515 		name += sizeof(unsigned long);
1516 		len -= sizeof(unsigned long);
1517 		if (!len)
1518 			goto done;
1519 	}
1520 	mask = ~(~0ul << len*8);
1521 	hash += mask & a;
1522 done:
1523 	return fold_hash(hash);
1524 }
1525 EXPORT_SYMBOL(full_name_hash);
1526 
1527 /*
1528  * Calculate the length and hash of the path component, and
1529  * return the length of the component;
1530  */
1531 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1532 {
1533 	unsigned long a, b, adata, bdata, mask, hash, len;
1534 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1535 
1536 	hash = a = 0;
1537 	len = -sizeof(unsigned long);
1538 	do {
1539 		hash = (hash + a) * 9;
1540 		len += sizeof(unsigned long);
1541 		a = load_unaligned_zeropad(name+len);
1542 		b = a ^ REPEAT_BYTE('/');
1543 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1544 
1545 	adata = prep_zero_mask(a, adata, &constants);
1546 	bdata = prep_zero_mask(b, bdata, &constants);
1547 
1548 	mask = create_zero_mask(adata | bdata);
1549 
1550 	hash += a & zero_bytemask(mask);
1551 	*hashp = fold_hash(hash);
1552 
1553 	return len + find_zero(mask);
1554 }
1555 
1556 #else
1557 
1558 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1559 {
1560 	unsigned long hash = init_name_hash();
1561 	while (len--)
1562 		hash = partial_name_hash(*name++, hash);
1563 	return end_name_hash(hash);
1564 }
1565 EXPORT_SYMBOL(full_name_hash);
1566 
1567 /*
1568  * We know there's a real path component here of at least
1569  * one character.
1570  */
1571 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1572 {
1573 	unsigned long hash = init_name_hash();
1574 	unsigned long len = 0, c;
1575 
1576 	c = (unsigned char)*name;
1577 	do {
1578 		len++;
1579 		hash = partial_name_hash(c, hash);
1580 		c = (unsigned char)name[len];
1581 	} while (c && c != '/');
1582 	*hashp = end_name_hash(hash);
1583 	return len;
1584 }
1585 
1586 #endif
1587 
1588 /*
1589  * Name resolution.
1590  * This is the basic name resolution function, turning a pathname into
1591  * the final dentry. We expect 'base' to be positive and a directory.
1592  *
1593  * Returns 0 and nd will have valid dentry and mnt on success.
1594  * Returns error and drops reference to input namei data on failure.
1595  */
1596 static int link_path_walk(const char *name, struct nameidata *nd)
1597 {
1598 	struct path next;
1599 	int err;
1600 
1601 	while (*name=='/')
1602 		name++;
1603 	if (!*name)
1604 		return 0;
1605 
1606 	/* At this point we know we have a real path component. */
1607 	for(;;) {
1608 		struct qstr this;
1609 		long len;
1610 		int type;
1611 
1612 		err = may_lookup(nd);
1613  		if (err)
1614 			break;
1615 
1616 		len = hash_name(name, &this.hash);
1617 		this.name = name;
1618 		this.len = len;
1619 
1620 		type = LAST_NORM;
1621 		if (name[0] == '.') switch (len) {
1622 			case 2:
1623 				if (name[1] == '.') {
1624 					type = LAST_DOTDOT;
1625 					nd->flags |= LOOKUP_JUMPED;
1626 				}
1627 				break;
1628 			case 1:
1629 				type = LAST_DOT;
1630 		}
1631 		if (likely(type == LAST_NORM)) {
1632 			struct dentry *parent = nd->path.dentry;
1633 			nd->flags &= ~LOOKUP_JUMPED;
1634 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1635 				err = parent->d_op->d_hash(parent, nd->inode,
1636 							   &this);
1637 				if (err < 0)
1638 					break;
1639 			}
1640 		}
1641 
1642 		if (!name[len])
1643 			goto last_component;
1644 		/*
1645 		 * If it wasn't NUL, we know it was '/'. Skip that
1646 		 * slash, and continue until no more slashes.
1647 		 */
1648 		do {
1649 			len++;
1650 		} while (unlikely(name[len] == '/'));
1651 		if (!name[len])
1652 			goto last_component;
1653 		name += len;
1654 
1655 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1656 		if (err < 0)
1657 			return err;
1658 
1659 		if (err) {
1660 			err = nested_symlink(&next, nd);
1661 			if (err)
1662 				return err;
1663 		}
1664 		if (can_lookup(nd->inode))
1665 			continue;
1666 		err = -ENOTDIR;
1667 		break;
1668 		/* here ends the main loop */
1669 
1670 last_component:
1671 		nd->last = this;
1672 		nd->last_type = type;
1673 		return 0;
1674 	}
1675 	terminate_walk(nd);
1676 	return err;
1677 }
1678 
1679 static int path_init(int dfd, const char *name, unsigned int flags,
1680 		     struct nameidata *nd, struct file **fp)
1681 {
1682 	int retval = 0;
1683 	int fput_needed;
1684 	struct file *file;
1685 
1686 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1687 	nd->flags = flags | LOOKUP_JUMPED;
1688 	nd->depth = 0;
1689 	if (flags & LOOKUP_ROOT) {
1690 		struct inode *inode = nd->root.dentry->d_inode;
1691 		if (*name) {
1692 			if (!inode->i_op->lookup)
1693 				return -ENOTDIR;
1694 			retval = inode_permission(inode, MAY_EXEC);
1695 			if (retval)
1696 				return retval;
1697 		}
1698 		nd->path = nd->root;
1699 		nd->inode = inode;
1700 		if (flags & LOOKUP_RCU) {
1701 			lock_rcu_walk();
1702 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1703 		} else {
1704 			path_get(&nd->path);
1705 		}
1706 		return 0;
1707 	}
1708 
1709 	nd->root.mnt = NULL;
1710 
1711 	if (*name=='/') {
1712 		if (flags & LOOKUP_RCU) {
1713 			lock_rcu_walk();
1714 			set_root_rcu(nd);
1715 		} else {
1716 			set_root(nd);
1717 			path_get(&nd->root);
1718 		}
1719 		nd->path = nd->root;
1720 	} else if (dfd == AT_FDCWD) {
1721 		if (flags & LOOKUP_RCU) {
1722 			struct fs_struct *fs = current->fs;
1723 			unsigned seq;
1724 
1725 			lock_rcu_walk();
1726 
1727 			do {
1728 				seq = read_seqcount_begin(&fs->seq);
1729 				nd->path = fs->pwd;
1730 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1731 			} while (read_seqcount_retry(&fs->seq, seq));
1732 		} else {
1733 			get_fs_pwd(current->fs, &nd->path);
1734 		}
1735 	} else {
1736 		struct dentry *dentry;
1737 
1738 		file = fget_raw_light(dfd, &fput_needed);
1739 		retval = -EBADF;
1740 		if (!file)
1741 			goto out_fail;
1742 
1743 		dentry = file->f_path.dentry;
1744 
1745 		if (*name) {
1746 			retval = -ENOTDIR;
1747 			if (!S_ISDIR(dentry->d_inode->i_mode))
1748 				goto fput_fail;
1749 
1750 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1751 			if (retval)
1752 				goto fput_fail;
1753 		}
1754 
1755 		nd->path = file->f_path;
1756 		if (flags & LOOKUP_RCU) {
1757 			if (fput_needed)
1758 				*fp = file;
1759 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1760 			lock_rcu_walk();
1761 		} else {
1762 			path_get(&file->f_path);
1763 			fput_light(file, fput_needed);
1764 		}
1765 	}
1766 
1767 	nd->inode = nd->path.dentry->d_inode;
1768 	return 0;
1769 
1770 fput_fail:
1771 	fput_light(file, fput_needed);
1772 out_fail:
1773 	return retval;
1774 }
1775 
1776 static inline int lookup_last(struct nameidata *nd, struct path *path)
1777 {
1778 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1779 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1780 
1781 	nd->flags &= ~LOOKUP_PARENT;
1782 	return walk_component(nd, path, &nd->last, nd->last_type,
1783 					nd->flags & LOOKUP_FOLLOW);
1784 }
1785 
1786 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1787 static int path_lookupat(int dfd, const char *name,
1788 				unsigned int flags, struct nameidata *nd)
1789 {
1790 	struct file *base = NULL;
1791 	struct path path;
1792 	int err;
1793 
1794 	/*
1795 	 * Path walking is largely split up into 2 different synchronisation
1796 	 * schemes, rcu-walk and ref-walk (explained in
1797 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1798 	 * path walk code, but some things particularly setup, cleanup, and
1799 	 * following mounts are sufficiently divergent that functions are
1800 	 * duplicated. Typically there is a function foo(), and its RCU
1801 	 * analogue, foo_rcu().
1802 	 *
1803 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1804 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1805 	 * be handled by restarting a traditional ref-walk (which will always
1806 	 * be able to complete).
1807 	 */
1808 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1809 
1810 	if (unlikely(err))
1811 		return err;
1812 
1813 	current->total_link_count = 0;
1814 	err = link_path_walk(name, nd);
1815 
1816 	if (!err && !(flags & LOOKUP_PARENT)) {
1817 		err = lookup_last(nd, &path);
1818 		while (err > 0) {
1819 			void *cookie;
1820 			struct path link = path;
1821 			nd->flags |= LOOKUP_PARENT;
1822 			err = follow_link(&link, nd, &cookie);
1823 			if (err)
1824 				break;
1825 			err = lookup_last(nd, &path);
1826 			put_link(nd, &link, cookie);
1827 		}
1828 	}
1829 
1830 	if (!err)
1831 		err = complete_walk(nd);
1832 
1833 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1834 		if (!nd->inode->i_op->lookup) {
1835 			path_put(&nd->path);
1836 			err = -ENOTDIR;
1837 		}
1838 	}
1839 
1840 	if (base)
1841 		fput(base);
1842 
1843 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1844 		path_put(&nd->root);
1845 		nd->root.mnt = NULL;
1846 	}
1847 	return err;
1848 }
1849 
1850 static int do_path_lookup(int dfd, const char *name,
1851 				unsigned int flags, struct nameidata *nd)
1852 {
1853 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1854 	if (unlikely(retval == -ECHILD))
1855 		retval = path_lookupat(dfd, name, flags, nd);
1856 	if (unlikely(retval == -ESTALE))
1857 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1858 
1859 	if (likely(!retval)) {
1860 		if (unlikely(!audit_dummy_context())) {
1861 			if (nd->path.dentry && nd->inode)
1862 				audit_inode(name, nd->path.dentry);
1863 		}
1864 	}
1865 	return retval;
1866 }
1867 
1868 /* does lookup, returns the object with parent locked */
1869 struct dentry *kern_path_locked(const char *name, struct path *path)
1870 {
1871 	struct nameidata nd;
1872 	struct dentry *d;
1873 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1874 	if (err)
1875 		return ERR_PTR(err);
1876 	if (nd.last_type != LAST_NORM) {
1877 		path_put(&nd.path);
1878 		return ERR_PTR(-EINVAL);
1879 	}
1880 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1881 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
1882 	if (IS_ERR(d)) {
1883 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1884 		path_put(&nd.path);
1885 		return d;
1886 	}
1887 	*path = nd.path;
1888 	return d;
1889 }
1890 
1891 int kern_path(const char *name, unsigned int flags, struct path *path)
1892 {
1893 	struct nameidata nd;
1894 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1895 	if (!res)
1896 		*path = nd.path;
1897 	return res;
1898 }
1899 
1900 /**
1901  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1902  * @dentry:  pointer to dentry of the base directory
1903  * @mnt: pointer to vfs mount of the base directory
1904  * @name: pointer to file name
1905  * @flags: lookup flags
1906  * @path: pointer to struct path to fill
1907  */
1908 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1909 		    const char *name, unsigned int flags,
1910 		    struct path *path)
1911 {
1912 	struct nameidata nd;
1913 	int err;
1914 	nd.root.dentry = dentry;
1915 	nd.root.mnt = mnt;
1916 	BUG_ON(flags & LOOKUP_PARENT);
1917 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1918 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1919 	if (!err)
1920 		*path = nd.path;
1921 	return err;
1922 }
1923 
1924 /*
1925  * Restricted form of lookup. Doesn't follow links, single-component only,
1926  * needs parent already locked. Doesn't follow mounts.
1927  * SMP-safe.
1928  */
1929 static struct dentry *lookup_hash(struct nameidata *nd)
1930 {
1931 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
1932 }
1933 
1934 /**
1935  * lookup_one_len - filesystem helper to lookup single pathname component
1936  * @name:	pathname component to lookup
1937  * @base:	base directory to lookup from
1938  * @len:	maximum length @len should be interpreted to
1939  *
1940  * Note that this routine is purely a helper for filesystem usage and should
1941  * not be called by generic code.  Also note that by using this function the
1942  * nameidata argument is passed to the filesystem methods and a filesystem
1943  * using this helper needs to be prepared for that.
1944  */
1945 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1946 {
1947 	struct qstr this;
1948 	unsigned int c;
1949 	int err;
1950 
1951 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1952 
1953 	this.name = name;
1954 	this.len = len;
1955 	this.hash = full_name_hash(name, len);
1956 	if (!len)
1957 		return ERR_PTR(-EACCES);
1958 
1959 	while (len--) {
1960 		c = *(const unsigned char *)name++;
1961 		if (c == '/' || c == '\0')
1962 			return ERR_PTR(-EACCES);
1963 	}
1964 	/*
1965 	 * See if the low-level filesystem might want
1966 	 * to use its own hash..
1967 	 */
1968 	if (base->d_flags & DCACHE_OP_HASH) {
1969 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1970 		if (err < 0)
1971 			return ERR_PTR(err);
1972 	}
1973 
1974 	err = inode_permission(base->d_inode, MAY_EXEC);
1975 	if (err)
1976 		return ERR_PTR(err);
1977 
1978 	return __lookup_hash(&this, base, 0);
1979 }
1980 
1981 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1982 		 struct path *path, int *empty)
1983 {
1984 	struct nameidata nd;
1985 	char *tmp = getname_flags(name, flags, empty);
1986 	int err = PTR_ERR(tmp);
1987 	if (!IS_ERR(tmp)) {
1988 
1989 		BUG_ON(flags & LOOKUP_PARENT);
1990 
1991 		err = do_path_lookup(dfd, tmp, flags, &nd);
1992 		putname(tmp);
1993 		if (!err)
1994 			*path = nd.path;
1995 	}
1996 	return err;
1997 }
1998 
1999 int user_path_at(int dfd, const char __user *name, unsigned flags,
2000 		 struct path *path)
2001 {
2002 	return user_path_at_empty(dfd, name, flags, path, NULL);
2003 }
2004 
2005 static int user_path_parent(int dfd, const char __user *path,
2006 			struct nameidata *nd, char **name)
2007 {
2008 	char *s = getname(path);
2009 	int error;
2010 
2011 	if (IS_ERR(s))
2012 		return PTR_ERR(s);
2013 
2014 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2015 	if (error)
2016 		putname(s);
2017 	else
2018 		*name = s;
2019 
2020 	return error;
2021 }
2022 
2023 /*
2024  * It's inline, so penalty for filesystems that don't use sticky bit is
2025  * minimal.
2026  */
2027 static inline int check_sticky(struct inode *dir, struct inode *inode)
2028 {
2029 	kuid_t fsuid = current_fsuid();
2030 
2031 	if (!(dir->i_mode & S_ISVTX))
2032 		return 0;
2033 	if (uid_eq(inode->i_uid, fsuid))
2034 		return 0;
2035 	if (uid_eq(dir->i_uid, fsuid))
2036 		return 0;
2037 	return !inode_capable(inode, CAP_FOWNER);
2038 }
2039 
2040 /*
2041  *	Check whether we can remove a link victim from directory dir, check
2042  *  whether the type of victim is right.
2043  *  1. We can't do it if dir is read-only (done in permission())
2044  *  2. We should have write and exec permissions on dir
2045  *  3. We can't remove anything from append-only dir
2046  *  4. We can't do anything with immutable dir (done in permission())
2047  *  5. If the sticky bit on dir is set we should either
2048  *	a. be owner of dir, or
2049  *	b. be owner of victim, or
2050  *	c. have CAP_FOWNER capability
2051  *  6. If the victim is append-only or immutable we can't do antyhing with
2052  *     links pointing to it.
2053  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2054  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2055  *  9. We can't remove a root or mountpoint.
2056  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2057  *     nfs_async_unlink().
2058  */
2059 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2060 {
2061 	int error;
2062 
2063 	if (!victim->d_inode)
2064 		return -ENOENT;
2065 
2066 	BUG_ON(victim->d_parent->d_inode != dir);
2067 	audit_inode_child(victim, dir);
2068 
2069 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2070 	if (error)
2071 		return error;
2072 	if (IS_APPEND(dir))
2073 		return -EPERM;
2074 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2075 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2076 		return -EPERM;
2077 	if (isdir) {
2078 		if (!S_ISDIR(victim->d_inode->i_mode))
2079 			return -ENOTDIR;
2080 		if (IS_ROOT(victim))
2081 			return -EBUSY;
2082 	} else if (S_ISDIR(victim->d_inode->i_mode))
2083 		return -EISDIR;
2084 	if (IS_DEADDIR(dir))
2085 		return -ENOENT;
2086 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2087 		return -EBUSY;
2088 	return 0;
2089 }
2090 
2091 /*	Check whether we can create an object with dentry child in directory
2092  *  dir.
2093  *  1. We can't do it if child already exists (open has special treatment for
2094  *     this case, but since we are inlined it's OK)
2095  *  2. We can't do it if dir is read-only (done in permission())
2096  *  3. We should have write and exec permissions on dir
2097  *  4. We can't do it if dir is immutable (done in permission())
2098  */
2099 static inline int may_create(struct inode *dir, struct dentry *child)
2100 {
2101 	if (child->d_inode)
2102 		return -EEXIST;
2103 	if (IS_DEADDIR(dir))
2104 		return -ENOENT;
2105 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2106 }
2107 
2108 /*
2109  * p1 and p2 should be directories on the same fs.
2110  */
2111 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2112 {
2113 	struct dentry *p;
2114 
2115 	if (p1 == p2) {
2116 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2117 		return NULL;
2118 	}
2119 
2120 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2121 
2122 	p = d_ancestor(p2, p1);
2123 	if (p) {
2124 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2125 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2126 		return p;
2127 	}
2128 
2129 	p = d_ancestor(p1, p2);
2130 	if (p) {
2131 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2132 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2133 		return p;
2134 	}
2135 
2136 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2137 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2138 	return NULL;
2139 }
2140 
2141 void unlock_rename(struct dentry *p1, struct dentry *p2)
2142 {
2143 	mutex_unlock(&p1->d_inode->i_mutex);
2144 	if (p1 != p2) {
2145 		mutex_unlock(&p2->d_inode->i_mutex);
2146 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2147 	}
2148 }
2149 
2150 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2151 		bool want_excl)
2152 {
2153 	int error = may_create(dir, dentry);
2154 	if (error)
2155 		return error;
2156 
2157 	if (!dir->i_op->create)
2158 		return -EACCES;	/* shouldn't it be ENOSYS? */
2159 	mode &= S_IALLUGO;
2160 	mode |= S_IFREG;
2161 	error = security_inode_create(dir, dentry, mode);
2162 	if (error)
2163 		return error;
2164 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2165 	if (!error)
2166 		fsnotify_create(dir, dentry);
2167 	return error;
2168 }
2169 
2170 static int may_open(struct path *path, int acc_mode, int flag)
2171 {
2172 	struct dentry *dentry = path->dentry;
2173 	struct inode *inode = dentry->d_inode;
2174 	int error;
2175 
2176 	/* O_PATH? */
2177 	if (!acc_mode)
2178 		return 0;
2179 
2180 	if (!inode)
2181 		return -ENOENT;
2182 
2183 	switch (inode->i_mode & S_IFMT) {
2184 	case S_IFLNK:
2185 		return -ELOOP;
2186 	case S_IFDIR:
2187 		if (acc_mode & MAY_WRITE)
2188 			return -EISDIR;
2189 		break;
2190 	case S_IFBLK:
2191 	case S_IFCHR:
2192 		if (path->mnt->mnt_flags & MNT_NODEV)
2193 			return -EACCES;
2194 		/*FALLTHRU*/
2195 	case S_IFIFO:
2196 	case S_IFSOCK:
2197 		flag &= ~O_TRUNC;
2198 		break;
2199 	}
2200 
2201 	error = inode_permission(inode, acc_mode);
2202 	if (error)
2203 		return error;
2204 
2205 	/*
2206 	 * An append-only file must be opened in append mode for writing.
2207 	 */
2208 	if (IS_APPEND(inode)) {
2209 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2210 			return -EPERM;
2211 		if (flag & O_TRUNC)
2212 			return -EPERM;
2213 	}
2214 
2215 	/* O_NOATIME can only be set by the owner or superuser */
2216 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2217 		return -EPERM;
2218 
2219 	return 0;
2220 }
2221 
2222 static int handle_truncate(struct file *filp)
2223 {
2224 	struct path *path = &filp->f_path;
2225 	struct inode *inode = path->dentry->d_inode;
2226 	int error = get_write_access(inode);
2227 	if (error)
2228 		return error;
2229 	/*
2230 	 * Refuse to truncate files with mandatory locks held on them.
2231 	 */
2232 	error = locks_verify_locked(inode);
2233 	if (!error)
2234 		error = security_path_truncate(path);
2235 	if (!error) {
2236 		error = do_truncate(path->dentry, 0,
2237 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2238 				    filp);
2239 	}
2240 	put_write_access(inode);
2241 	return error;
2242 }
2243 
2244 static inline int open_to_namei_flags(int flag)
2245 {
2246 	if ((flag & O_ACCMODE) == 3)
2247 		flag--;
2248 	return flag;
2249 }
2250 
2251 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2252 {
2253 	int error = security_path_mknod(dir, dentry, mode, 0);
2254 	if (error)
2255 		return error;
2256 
2257 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2258 	if (error)
2259 		return error;
2260 
2261 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2262 }
2263 
2264 /*
2265  * Attempt to atomically look up, create and open a file from a negative
2266  * dentry.
2267  *
2268  * Returns 0 if successful.  The file will have been created and attached to
2269  * @file by the filesystem calling finish_open().
2270  *
2271  * Returns 1 if the file was looked up only or didn't need creating.  The
2272  * caller will need to perform the open themselves.  @path will have been
2273  * updated to point to the new dentry.  This may be negative.
2274  *
2275  * Returns an error code otherwise.
2276  */
2277 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2278 			struct path *path, struct file *file,
2279 			const struct open_flags *op,
2280 			bool *want_write, bool need_lookup,
2281 			int *opened)
2282 {
2283 	struct inode *dir =  nd->path.dentry->d_inode;
2284 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2285 	umode_t mode;
2286 	int error;
2287 	int acc_mode;
2288 	int create_error = 0;
2289 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2290 
2291 	BUG_ON(dentry->d_inode);
2292 
2293 	/* Don't create child dentry for a dead directory. */
2294 	if (unlikely(IS_DEADDIR(dir))) {
2295 		error = -ENOENT;
2296 		goto out;
2297 	}
2298 
2299 	mode = op->mode & S_IALLUGO;
2300 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2301 		mode &= ~current_umask();
2302 
2303 	if (open_flag & O_EXCL) {
2304 		open_flag &= ~O_TRUNC;
2305 		*opened |= FILE_CREATED;
2306 	}
2307 
2308 	/*
2309 	 * Checking write permission is tricky, bacuse we don't know if we are
2310 	 * going to actually need it: O_CREAT opens should work as long as the
2311 	 * file exists.  But checking existence breaks atomicity.  The trick is
2312 	 * to check access and if not granted clear O_CREAT from the flags.
2313 	 *
2314 	 * Another problem is returing the "right" error value (e.g. for an
2315 	 * O_EXCL open we want to return EEXIST not EROFS).
2316 	 */
2317 	if ((open_flag & (O_CREAT | O_TRUNC)) ||
2318 	    (open_flag & O_ACCMODE) != O_RDONLY) {
2319 		error = mnt_want_write(nd->path.mnt);
2320 		if (!error) {
2321 			*want_write = true;
2322 		} else if (!(open_flag & O_CREAT)) {
2323 			/*
2324 			 * No O_CREATE -> atomicity not a requirement -> fall
2325 			 * back to lookup + open
2326 			 */
2327 			goto no_open;
2328 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2329 			/* Fall back and fail with the right error */
2330 			create_error = error;
2331 			goto no_open;
2332 		} else {
2333 			/* No side effects, safe to clear O_CREAT */
2334 			create_error = error;
2335 			open_flag &= ~O_CREAT;
2336 		}
2337 	}
2338 
2339 	if (open_flag & O_CREAT) {
2340 		error = may_o_create(&nd->path, dentry, op->mode);
2341 		if (error) {
2342 			create_error = error;
2343 			if (open_flag & O_EXCL)
2344 				goto no_open;
2345 			open_flag &= ~O_CREAT;
2346 		}
2347 	}
2348 
2349 	if (nd->flags & LOOKUP_DIRECTORY)
2350 		open_flag |= O_DIRECTORY;
2351 
2352 	file->f_path.dentry = DENTRY_NOT_SET;
2353 	file->f_path.mnt = nd->path.mnt;
2354 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2355 				      opened);
2356 	if (error < 0) {
2357 		if (create_error && error == -ENOENT)
2358 			error = create_error;
2359 		goto out;
2360 	}
2361 
2362 	acc_mode = op->acc_mode;
2363 	if (*opened & FILE_CREATED) {
2364 		fsnotify_create(dir, dentry);
2365 		acc_mode = MAY_OPEN;
2366 	}
2367 
2368 	if (error) {	/* returned 1, that is */
2369 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2370 			error = -EIO;
2371 			goto out;
2372 		}
2373 		if (file->f_path.dentry) {
2374 			dput(dentry);
2375 			dentry = file->f_path.dentry;
2376 		}
2377 		goto looked_up;
2378 	}
2379 
2380 	/*
2381 	 * We didn't have the inode before the open, so check open permission
2382 	 * here.
2383 	 */
2384 	error = may_open(&file->f_path, acc_mode, open_flag);
2385 	if (error)
2386 		fput(file);
2387 
2388 out:
2389 	dput(dentry);
2390 	return error;
2391 
2392 no_open:
2393 	if (need_lookup) {
2394 		dentry = lookup_real(dir, dentry, nd->flags);
2395 		if (IS_ERR(dentry))
2396 			return PTR_ERR(dentry);
2397 
2398 		if (create_error) {
2399 			int open_flag = op->open_flag;
2400 
2401 			error = create_error;
2402 			if ((open_flag & O_EXCL)) {
2403 				if (!dentry->d_inode)
2404 					goto out;
2405 			} else if (!dentry->d_inode) {
2406 				goto out;
2407 			} else if ((open_flag & O_TRUNC) &&
2408 				   S_ISREG(dentry->d_inode->i_mode)) {
2409 				goto out;
2410 			}
2411 			/* will fail later, go on to get the right error */
2412 		}
2413 	}
2414 looked_up:
2415 	path->dentry = dentry;
2416 	path->mnt = nd->path.mnt;
2417 	return 1;
2418 }
2419 
2420 /*
2421  * Look up and maybe create and open the last component.
2422  *
2423  * Must be called with i_mutex held on parent.
2424  *
2425  * Returns 0 if the file was successfully atomically created (if necessary) and
2426  * opened.  In this case the file will be returned attached to @file.
2427  *
2428  * Returns 1 if the file was not completely opened at this time, though lookups
2429  * and creations will have been performed and the dentry returned in @path will
2430  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2431  * specified then a negative dentry may be returned.
2432  *
2433  * An error code is returned otherwise.
2434  *
2435  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2436  * cleared otherwise prior to returning.
2437  */
2438 static int lookup_open(struct nameidata *nd, struct path *path,
2439 			struct file *file,
2440 			const struct open_flags *op,
2441 			bool *want_write, int *opened)
2442 {
2443 	struct dentry *dir = nd->path.dentry;
2444 	struct inode *dir_inode = dir->d_inode;
2445 	struct dentry *dentry;
2446 	int error;
2447 	bool need_lookup;
2448 
2449 	*opened &= ~FILE_CREATED;
2450 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2451 	if (IS_ERR(dentry))
2452 		return PTR_ERR(dentry);
2453 
2454 	/* Cached positive dentry: will open in f_op->open */
2455 	if (!need_lookup && dentry->d_inode)
2456 		goto out_no_open;
2457 
2458 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2459 		return atomic_open(nd, dentry, path, file, op, want_write,
2460 				   need_lookup, opened);
2461 	}
2462 
2463 	if (need_lookup) {
2464 		BUG_ON(dentry->d_inode);
2465 
2466 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2467 		if (IS_ERR(dentry))
2468 			return PTR_ERR(dentry);
2469 	}
2470 
2471 	/* Negative dentry, just create the file */
2472 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2473 		umode_t mode = op->mode;
2474 		if (!IS_POSIXACL(dir->d_inode))
2475 			mode &= ~current_umask();
2476 		/*
2477 		 * This write is needed to ensure that a
2478 		 * rw->ro transition does not occur between
2479 		 * the time when the file is created and when
2480 		 * a permanent write count is taken through
2481 		 * the 'struct file' in finish_open().
2482 		 */
2483 		error = mnt_want_write(nd->path.mnt);
2484 		if (error)
2485 			goto out_dput;
2486 		*want_write = true;
2487 		*opened |= FILE_CREATED;
2488 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2489 		if (error)
2490 			goto out_dput;
2491 		error = vfs_create(dir->d_inode, dentry, mode,
2492 				   nd->flags & LOOKUP_EXCL);
2493 		if (error)
2494 			goto out_dput;
2495 	}
2496 out_no_open:
2497 	path->dentry = dentry;
2498 	path->mnt = nd->path.mnt;
2499 	return 1;
2500 
2501 out_dput:
2502 	dput(dentry);
2503 	return error;
2504 }
2505 
2506 /*
2507  * Handle the last step of open()
2508  */
2509 static int do_last(struct nameidata *nd, struct path *path,
2510 		   struct file *file, const struct open_flags *op,
2511 		   int *opened, const char *pathname)
2512 {
2513 	struct dentry *dir = nd->path.dentry;
2514 	int open_flag = op->open_flag;
2515 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2516 	bool want_write = false;
2517 	int acc_mode = op->acc_mode;
2518 	struct inode *inode;
2519 	bool symlink_ok = false;
2520 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2521 	bool retried = false;
2522 	int error;
2523 
2524 	nd->flags &= ~LOOKUP_PARENT;
2525 	nd->flags |= op->intent;
2526 
2527 	switch (nd->last_type) {
2528 	case LAST_DOTDOT:
2529 	case LAST_DOT:
2530 		error = handle_dots(nd, nd->last_type);
2531 		if (error)
2532 			return error;
2533 		/* fallthrough */
2534 	case LAST_ROOT:
2535 		error = complete_walk(nd);
2536 		if (error)
2537 			return error;
2538 		audit_inode(pathname, nd->path.dentry);
2539 		if (open_flag & O_CREAT) {
2540 			error = -EISDIR;
2541 			goto out;
2542 		}
2543 		goto finish_open;
2544 	case LAST_BIND:
2545 		error = complete_walk(nd);
2546 		if (error)
2547 			return error;
2548 		audit_inode(pathname, dir);
2549 		goto finish_open;
2550 	}
2551 
2552 	if (!(open_flag & O_CREAT)) {
2553 		if (nd->last.name[nd->last.len])
2554 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2555 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2556 			symlink_ok = true;
2557 		/* we _can_ be in RCU mode here */
2558 		error = lookup_fast(nd, &nd->last, path, &inode);
2559 		if (likely(!error))
2560 			goto finish_lookup;
2561 
2562 		if (error < 0)
2563 			goto out;
2564 
2565 		BUG_ON(nd->inode != dir->d_inode);
2566 	} else {
2567 		/* create side of things */
2568 		/*
2569 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2570 		 * has been cleared when we got to the last component we are
2571 		 * about to look up
2572 		 */
2573 		error = complete_walk(nd);
2574 		if (error)
2575 			return error;
2576 
2577 		audit_inode(pathname, dir);
2578 		error = -EISDIR;
2579 		/* trailing slashes? */
2580 		if (nd->last.name[nd->last.len])
2581 			goto out;
2582 	}
2583 
2584 retry_lookup:
2585 	mutex_lock(&dir->d_inode->i_mutex);
2586 	error = lookup_open(nd, path, file, op, &want_write, opened);
2587 	mutex_unlock(&dir->d_inode->i_mutex);
2588 
2589 	if (error <= 0) {
2590 		if (error)
2591 			goto out;
2592 
2593 		if ((*opened & FILE_CREATED) ||
2594 		    !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2595 			will_truncate = false;
2596 
2597 		audit_inode(pathname, file->f_path.dentry);
2598 		goto opened;
2599 	}
2600 
2601 	if (*opened & FILE_CREATED) {
2602 		/* Don't check for write permission, don't truncate */
2603 		open_flag &= ~O_TRUNC;
2604 		will_truncate = false;
2605 		acc_mode = MAY_OPEN;
2606 		path_to_nameidata(path, nd);
2607 		goto finish_open_created;
2608 	}
2609 
2610 	/*
2611 	 * It already exists.
2612 	 */
2613 	audit_inode(pathname, path->dentry);
2614 
2615 	/*
2616 	 * If atomic_open() acquired write access it is dropped now due to
2617 	 * possible mount and symlink following (this might be optimized away if
2618 	 * necessary...)
2619 	 */
2620 	if (want_write) {
2621 		mnt_drop_write(nd->path.mnt);
2622 		want_write = false;
2623 	}
2624 
2625 	error = -EEXIST;
2626 	if (open_flag & O_EXCL)
2627 		goto exit_dput;
2628 
2629 	error = follow_managed(path, nd->flags);
2630 	if (error < 0)
2631 		goto exit_dput;
2632 
2633 	if (error)
2634 		nd->flags |= LOOKUP_JUMPED;
2635 
2636 	BUG_ON(nd->flags & LOOKUP_RCU);
2637 	inode = path->dentry->d_inode;
2638 finish_lookup:
2639 	/* we _can_ be in RCU mode here */
2640 	error = -ENOENT;
2641 	if (!inode) {
2642 		path_to_nameidata(path, nd);
2643 		goto out;
2644 	}
2645 
2646 	if (should_follow_link(inode, !symlink_ok)) {
2647 		if (nd->flags & LOOKUP_RCU) {
2648 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2649 				error = -ECHILD;
2650 				goto out;
2651 			}
2652 		}
2653 		BUG_ON(inode != path->dentry->d_inode);
2654 		return 1;
2655 	}
2656 
2657 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2658 		path_to_nameidata(path, nd);
2659 	} else {
2660 		save_parent.dentry = nd->path.dentry;
2661 		save_parent.mnt = mntget(path->mnt);
2662 		nd->path.dentry = path->dentry;
2663 
2664 	}
2665 	nd->inode = inode;
2666 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2667 	error = complete_walk(nd);
2668 	if (error) {
2669 		path_put(&save_parent);
2670 		return error;
2671 	}
2672 	error = -EISDIR;
2673 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2674 		goto out;
2675 	error = -ENOTDIR;
2676 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2677 		goto out;
2678 	audit_inode(pathname, nd->path.dentry);
2679 finish_open:
2680 	if (!S_ISREG(nd->inode->i_mode))
2681 		will_truncate = false;
2682 
2683 	if (will_truncate) {
2684 		error = mnt_want_write(nd->path.mnt);
2685 		if (error)
2686 			goto out;
2687 		want_write = true;
2688 	}
2689 finish_open_created:
2690 	error = may_open(&nd->path, acc_mode, open_flag);
2691 	if (error)
2692 		goto out;
2693 	file->f_path.mnt = nd->path.mnt;
2694 	error = finish_open(file, nd->path.dentry, NULL, opened);
2695 	if (error) {
2696 		if (error == -EOPENSTALE)
2697 			goto stale_open;
2698 		goto out;
2699 	}
2700 opened:
2701 	error = open_check_o_direct(file);
2702 	if (error)
2703 		goto exit_fput;
2704 	error = ima_file_check(file, op->acc_mode);
2705 	if (error)
2706 		goto exit_fput;
2707 
2708 	if (will_truncate) {
2709 		error = handle_truncate(file);
2710 		if (error)
2711 			goto exit_fput;
2712 	}
2713 out:
2714 	if (want_write)
2715 		mnt_drop_write(nd->path.mnt);
2716 	path_put(&save_parent);
2717 	terminate_walk(nd);
2718 	return error;
2719 
2720 exit_dput:
2721 	path_put_conditional(path, nd);
2722 	goto out;
2723 exit_fput:
2724 	fput(file);
2725 	goto out;
2726 
2727 stale_open:
2728 	/* If no saved parent or already retried then can't retry */
2729 	if (!save_parent.dentry || retried)
2730 		goto out;
2731 
2732 	BUG_ON(save_parent.dentry != dir);
2733 	path_put(&nd->path);
2734 	nd->path = save_parent;
2735 	nd->inode = dir->d_inode;
2736 	save_parent.mnt = NULL;
2737 	save_parent.dentry = NULL;
2738 	if (want_write) {
2739 		mnt_drop_write(nd->path.mnt);
2740 		want_write = false;
2741 	}
2742 	retried = true;
2743 	goto retry_lookup;
2744 }
2745 
2746 static struct file *path_openat(int dfd, const char *pathname,
2747 		struct nameidata *nd, const struct open_flags *op, int flags)
2748 {
2749 	struct file *base = NULL;
2750 	struct file *file;
2751 	struct path path;
2752 	int opened = 0;
2753 	int error;
2754 
2755 	file = get_empty_filp();
2756 	if (!file)
2757 		return ERR_PTR(-ENFILE);
2758 
2759 	file->f_flags = op->open_flag;
2760 
2761 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2762 	if (unlikely(error))
2763 		goto out;
2764 
2765 	current->total_link_count = 0;
2766 	error = link_path_walk(pathname, nd);
2767 	if (unlikely(error))
2768 		goto out;
2769 
2770 	error = do_last(nd, &path, file, op, &opened, pathname);
2771 	while (unlikely(error > 0)) { /* trailing symlink */
2772 		struct path link = path;
2773 		void *cookie;
2774 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2775 			path_put_conditional(&path, nd);
2776 			path_put(&nd->path);
2777 			error = -ELOOP;
2778 			break;
2779 		}
2780 		nd->flags |= LOOKUP_PARENT;
2781 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2782 		error = follow_link(&link, nd, &cookie);
2783 		if (unlikely(error))
2784 			break;
2785 		error = do_last(nd, &path, file, op, &opened, pathname);
2786 		put_link(nd, &link, cookie);
2787 	}
2788 out:
2789 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2790 		path_put(&nd->root);
2791 	if (base)
2792 		fput(base);
2793 	if (!(opened & FILE_OPENED)) {
2794 		BUG_ON(!error);
2795 		put_filp(file);
2796 	}
2797 	if (unlikely(error)) {
2798 		if (error == -EOPENSTALE) {
2799 			if (flags & LOOKUP_RCU)
2800 				error = -ECHILD;
2801 			else
2802 				error = -ESTALE;
2803 		}
2804 		file = ERR_PTR(error);
2805 	}
2806 	return file;
2807 }
2808 
2809 struct file *do_filp_open(int dfd, const char *pathname,
2810 		const struct open_flags *op, int flags)
2811 {
2812 	struct nameidata nd;
2813 	struct file *filp;
2814 
2815 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2816 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2817 		filp = path_openat(dfd, pathname, &nd, op, flags);
2818 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2819 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2820 	return filp;
2821 }
2822 
2823 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2824 		const char *name, const struct open_flags *op, int flags)
2825 {
2826 	struct nameidata nd;
2827 	struct file *file;
2828 
2829 	nd.root.mnt = mnt;
2830 	nd.root.dentry = dentry;
2831 
2832 	flags |= LOOKUP_ROOT;
2833 
2834 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2835 		return ERR_PTR(-ELOOP);
2836 
2837 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2838 	if (unlikely(file == ERR_PTR(-ECHILD)))
2839 		file = path_openat(-1, name, &nd, op, flags);
2840 	if (unlikely(file == ERR_PTR(-ESTALE)))
2841 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2842 	return file;
2843 }
2844 
2845 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2846 {
2847 	struct dentry *dentry = ERR_PTR(-EEXIST);
2848 	struct nameidata nd;
2849 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2850 	if (error)
2851 		return ERR_PTR(error);
2852 
2853 	/*
2854 	 * Yucky last component or no last component at all?
2855 	 * (foo/., foo/.., /////)
2856 	 */
2857 	if (nd.last_type != LAST_NORM)
2858 		goto out;
2859 	nd.flags &= ~LOOKUP_PARENT;
2860 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2861 
2862 	/*
2863 	 * Do the final lookup.
2864 	 */
2865 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2866 	dentry = lookup_hash(&nd);
2867 	if (IS_ERR(dentry))
2868 		goto fail;
2869 
2870 	if (dentry->d_inode)
2871 		goto eexist;
2872 	/*
2873 	 * Special case - lookup gave negative, but... we had foo/bar/
2874 	 * From the vfs_mknod() POV we just have a negative dentry -
2875 	 * all is fine. Let's be bastards - you had / on the end, you've
2876 	 * been asking for (non-existent) directory. -ENOENT for you.
2877 	 */
2878 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2879 		dput(dentry);
2880 		dentry = ERR_PTR(-ENOENT);
2881 		goto fail;
2882 	}
2883 	*path = nd.path;
2884 	return dentry;
2885 eexist:
2886 	dput(dentry);
2887 	dentry = ERR_PTR(-EEXIST);
2888 fail:
2889 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2890 out:
2891 	path_put(&nd.path);
2892 	return dentry;
2893 }
2894 EXPORT_SYMBOL(kern_path_create);
2895 
2896 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2897 {
2898 	char *tmp = getname(pathname);
2899 	struct dentry *res;
2900 	if (IS_ERR(tmp))
2901 		return ERR_CAST(tmp);
2902 	res = kern_path_create(dfd, tmp, path, is_dir);
2903 	putname(tmp);
2904 	return res;
2905 }
2906 EXPORT_SYMBOL(user_path_create);
2907 
2908 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2909 {
2910 	int error = may_create(dir, dentry);
2911 
2912 	if (error)
2913 		return error;
2914 
2915 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2916 		return -EPERM;
2917 
2918 	if (!dir->i_op->mknod)
2919 		return -EPERM;
2920 
2921 	error = devcgroup_inode_mknod(mode, dev);
2922 	if (error)
2923 		return error;
2924 
2925 	error = security_inode_mknod(dir, dentry, mode, dev);
2926 	if (error)
2927 		return error;
2928 
2929 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2930 	if (!error)
2931 		fsnotify_create(dir, dentry);
2932 	return error;
2933 }
2934 
2935 static int may_mknod(umode_t mode)
2936 {
2937 	switch (mode & S_IFMT) {
2938 	case S_IFREG:
2939 	case S_IFCHR:
2940 	case S_IFBLK:
2941 	case S_IFIFO:
2942 	case S_IFSOCK:
2943 	case 0: /* zero mode translates to S_IFREG */
2944 		return 0;
2945 	case S_IFDIR:
2946 		return -EPERM;
2947 	default:
2948 		return -EINVAL;
2949 	}
2950 }
2951 
2952 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2953 		unsigned, dev)
2954 {
2955 	struct dentry *dentry;
2956 	struct path path;
2957 	int error;
2958 
2959 	if (S_ISDIR(mode))
2960 		return -EPERM;
2961 
2962 	dentry = user_path_create(dfd, filename, &path, 0);
2963 	if (IS_ERR(dentry))
2964 		return PTR_ERR(dentry);
2965 
2966 	if (!IS_POSIXACL(path.dentry->d_inode))
2967 		mode &= ~current_umask();
2968 	error = may_mknod(mode);
2969 	if (error)
2970 		goto out_dput;
2971 	error = mnt_want_write(path.mnt);
2972 	if (error)
2973 		goto out_dput;
2974 	error = security_path_mknod(&path, dentry, mode, dev);
2975 	if (error)
2976 		goto out_drop_write;
2977 	switch (mode & S_IFMT) {
2978 		case 0: case S_IFREG:
2979 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
2980 			break;
2981 		case S_IFCHR: case S_IFBLK:
2982 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2983 					new_decode_dev(dev));
2984 			break;
2985 		case S_IFIFO: case S_IFSOCK:
2986 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2987 			break;
2988 	}
2989 out_drop_write:
2990 	mnt_drop_write(path.mnt);
2991 out_dput:
2992 	dput(dentry);
2993 	mutex_unlock(&path.dentry->d_inode->i_mutex);
2994 	path_put(&path);
2995 
2996 	return error;
2997 }
2998 
2999 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3000 {
3001 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3002 }
3003 
3004 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3005 {
3006 	int error = may_create(dir, dentry);
3007 	unsigned max_links = dir->i_sb->s_max_links;
3008 
3009 	if (error)
3010 		return error;
3011 
3012 	if (!dir->i_op->mkdir)
3013 		return -EPERM;
3014 
3015 	mode &= (S_IRWXUGO|S_ISVTX);
3016 	error = security_inode_mkdir(dir, dentry, mode);
3017 	if (error)
3018 		return error;
3019 
3020 	if (max_links && dir->i_nlink >= max_links)
3021 		return -EMLINK;
3022 
3023 	error = dir->i_op->mkdir(dir, dentry, mode);
3024 	if (!error)
3025 		fsnotify_mkdir(dir, dentry);
3026 	return error;
3027 }
3028 
3029 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3030 {
3031 	struct dentry *dentry;
3032 	struct path path;
3033 	int error;
3034 
3035 	dentry = user_path_create(dfd, pathname, &path, 1);
3036 	if (IS_ERR(dentry))
3037 		return PTR_ERR(dentry);
3038 
3039 	if (!IS_POSIXACL(path.dentry->d_inode))
3040 		mode &= ~current_umask();
3041 	error = mnt_want_write(path.mnt);
3042 	if (error)
3043 		goto out_dput;
3044 	error = security_path_mkdir(&path, dentry, mode);
3045 	if (error)
3046 		goto out_drop_write;
3047 	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3048 out_drop_write:
3049 	mnt_drop_write(path.mnt);
3050 out_dput:
3051 	dput(dentry);
3052 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3053 	path_put(&path);
3054 	return error;
3055 }
3056 
3057 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3058 {
3059 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3060 }
3061 
3062 /*
3063  * The dentry_unhash() helper will try to drop the dentry early: we
3064  * should have a usage count of 1 if we're the only user of this
3065  * dentry, and if that is true (possibly after pruning the dcache),
3066  * then we drop the dentry now.
3067  *
3068  * A low-level filesystem can, if it choses, legally
3069  * do a
3070  *
3071  *	if (!d_unhashed(dentry))
3072  *		return -EBUSY;
3073  *
3074  * if it cannot handle the case of removing a directory
3075  * that is still in use by something else..
3076  */
3077 void dentry_unhash(struct dentry *dentry)
3078 {
3079 	shrink_dcache_parent(dentry);
3080 	spin_lock(&dentry->d_lock);
3081 	if (dentry->d_count == 1)
3082 		__d_drop(dentry);
3083 	spin_unlock(&dentry->d_lock);
3084 }
3085 
3086 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3087 {
3088 	int error = may_delete(dir, dentry, 1);
3089 
3090 	if (error)
3091 		return error;
3092 
3093 	if (!dir->i_op->rmdir)
3094 		return -EPERM;
3095 
3096 	dget(dentry);
3097 	mutex_lock(&dentry->d_inode->i_mutex);
3098 
3099 	error = -EBUSY;
3100 	if (d_mountpoint(dentry))
3101 		goto out;
3102 
3103 	error = security_inode_rmdir(dir, dentry);
3104 	if (error)
3105 		goto out;
3106 
3107 	shrink_dcache_parent(dentry);
3108 	error = dir->i_op->rmdir(dir, dentry);
3109 	if (error)
3110 		goto out;
3111 
3112 	dentry->d_inode->i_flags |= S_DEAD;
3113 	dont_mount(dentry);
3114 
3115 out:
3116 	mutex_unlock(&dentry->d_inode->i_mutex);
3117 	dput(dentry);
3118 	if (!error)
3119 		d_delete(dentry);
3120 	return error;
3121 }
3122 
3123 static long do_rmdir(int dfd, const char __user *pathname)
3124 {
3125 	int error = 0;
3126 	char * name;
3127 	struct dentry *dentry;
3128 	struct nameidata nd;
3129 
3130 	error = user_path_parent(dfd, pathname, &nd, &name);
3131 	if (error)
3132 		return error;
3133 
3134 	switch(nd.last_type) {
3135 	case LAST_DOTDOT:
3136 		error = -ENOTEMPTY;
3137 		goto exit1;
3138 	case LAST_DOT:
3139 		error = -EINVAL;
3140 		goto exit1;
3141 	case LAST_ROOT:
3142 		error = -EBUSY;
3143 		goto exit1;
3144 	}
3145 
3146 	nd.flags &= ~LOOKUP_PARENT;
3147 
3148 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3149 	dentry = lookup_hash(&nd);
3150 	error = PTR_ERR(dentry);
3151 	if (IS_ERR(dentry))
3152 		goto exit2;
3153 	if (!dentry->d_inode) {
3154 		error = -ENOENT;
3155 		goto exit3;
3156 	}
3157 	error = mnt_want_write(nd.path.mnt);
3158 	if (error)
3159 		goto exit3;
3160 	error = security_path_rmdir(&nd.path, dentry);
3161 	if (error)
3162 		goto exit4;
3163 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3164 exit4:
3165 	mnt_drop_write(nd.path.mnt);
3166 exit3:
3167 	dput(dentry);
3168 exit2:
3169 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3170 exit1:
3171 	path_put(&nd.path);
3172 	putname(name);
3173 	return error;
3174 }
3175 
3176 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3177 {
3178 	return do_rmdir(AT_FDCWD, pathname);
3179 }
3180 
3181 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3182 {
3183 	int error = may_delete(dir, dentry, 0);
3184 
3185 	if (error)
3186 		return error;
3187 
3188 	if (!dir->i_op->unlink)
3189 		return -EPERM;
3190 
3191 	mutex_lock(&dentry->d_inode->i_mutex);
3192 	if (d_mountpoint(dentry))
3193 		error = -EBUSY;
3194 	else {
3195 		error = security_inode_unlink(dir, dentry);
3196 		if (!error) {
3197 			error = dir->i_op->unlink(dir, dentry);
3198 			if (!error)
3199 				dont_mount(dentry);
3200 		}
3201 	}
3202 	mutex_unlock(&dentry->d_inode->i_mutex);
3203 
3204 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3205 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3206 		fsnotify_link_count(dentry->d_inode);
3207 		d_delete(dentry);
3208 	}
3209 
3210 	return error;
3211 }
3212 
3213 /*
3214  * Make sure that the actual truncation of the file will occur outside its
3215  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3216  * writeout happening, and we don't want to prevent access to the directory
3217  * while waiting on the I/O.
3218  */
3219 static long do_unlinkat(int dfd, const char __user *pathname)
3220 {
3221 	int error;
3222 	char *name;
3223 	struct dentry *dentry;
3224 	struct nameidata nd;
3225 	struct inode *inode = NULL;
3226 
3227 	error = user_path_parent(dfd, pathname, &nd, &name);
3228 	if (error)
3229 		return error;
3230 
3231 	error = -EISDIR;
3232 	if (nd.last_type != LAST_NORM)
3233 		goto exit1;
3234 
3235 	nd.flags &= ~LOOKUP_PARENT;
3236 
3237 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3238 	dentry = lookup_hash(&nd);
3239 	error = PTR_ERR(dentry);
3240 	if (!IS_ERR(dentry)) {
3241 		/* Why not before? Because we want correct error value */
3242 		if (nd.last.name[nd.last.len])
3243 			goto slashes;
3244 		inode = dentry->d_inode;
3245 		if (!inode)
3246 			goto slashes;
3247 		ihold(inode);
3248 		error = mnt_want_write(nd.path.mnt);
3249 		if (error)
3250 			goto exit2;
3251 		error = security_path_unlink(&nd.path, dentry);
3252 		if (error)
3253 			goto exit3;
3254 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3255 exit3:
3256 		mnt_drop_write(nd.path.mnt);
3257 	exit2:
3258 		dput(dentry);
3259 	}
3260 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3261 	if (inode)
3262 		iput(inode);	/* truncate the inode here */
3263 exit1:
3264 	path_put(&nd.path);
3265 	putname(name);
3266 	return error;
3267 
3268 slashes:
3269 	error = !dentry->d_inode ? -ENOENT :
3270 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3271 	goto exit2;
3272 }
3273 
3274 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3275 {
3276 	if ((flag & ~AT_REMOVEDIR) != 0)
3277 		return -EINVAL;
3278 
3279 	if (flag & AT_REMOVEDIR)
3280 		return do_rmdir(dfd, pathname);
3281 
3282 	return do_unlinkat(dfd, pathname);
3283 }
3284 
3285 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3286 {
3287 	return do_unlinkat(AT_FDCWD, pathname);
3288 }
3289 
3290 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3291 {
3292 	int error = may_create(dir, dentry);
3293 
3294 	if (error)
3295 		return error;
3296 
3297 	if (!dir->i_op->symlink)
3298 		return -EPERM;
3299 
3300 	error = security_inode_symlink(dir, dentry, oldname);
3301 	if (error)
3302 		return error;
3303 
3304 	error = dir->i_op->symlink(dir, dentry, oldname);
3305 	if (!error)
3306 		fsnotify_create(dir, dentry);
3307 	return error;
3308 }
3309 
3310 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3311 		int, newdfd, const char __user *, newname)
3312 {
3313 	int error;
3314 	char *from;
3315 	struct dentry *dentry;
3316 	struct path path;
3317 
3318 	from = getname(oldname);
3319 	if (IS_ERR(from))
3320 		return PTR_ERR(from);
3321 
3322 	dentry = user_path_create(newdfd, newname, &path, 0);
3323 	error = PTR_ERR(dentry);
3324 	if (IS_ERR(dentry))
3325 		goto out_putname;
3326 
3327 	error = mnt_want_write(path.mnt);
3328 	if (error)
3329 		goto out_dput;
3330 	error = security_path_symlink(&path, dentry, from);
3331 	if (error)
3332 		goto out_drop_write;
3333 	error = vfs_symlink(path.dentry->d_inode, dentry, from);
3334 out_drop_write:
3335 	mnt_drop_write(path.mnt);
3336 out_dput:
3337 	dput(dentry);
3338 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3339 	path_put(&path);
3340 out_putname:
3341 	putname(from);
3342 	return error;
3343 }
3344 
3345 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3346 {
3347 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3348 }
3349 
3350 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3351 {
3352 	struct inode *inode = old_dentry->d_inode;
3353 	unsigned max_links = dir->i_sb->s_max_links;
3354 	int error;
3355 
3356 	if (!inode)
3357 		return -ENOENT;
3358 
3359 	error = may_create(dir, new_dentry);
3360 	if (error)
3361 		return error;
3362 
3363 	if (dir->i_sb != inode->i_sb)
3364 		return -EXDEV;
3365 
3366 	/*
3367 	 * A link to an append-only or immutable file cannot be created.
3368 	 */
3369 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3370 		return -EPERM;
3371 	if (!dir->i_op->link)
3372 		return -EPERM;
3373 	if (S_ISDIR(inode->i_mode))
3374 		return -EPERM;
3375 
3376 	error = security_inode_link(old_dentry, dir, new_dentry);
3377 	if (error)
3378 		return error;
3379 
3380 	mutex_lock(&inode->i_mutex);
3381 	/* Make sure we don't allow creating hardlink to an unlinked file */
3382 	if (inode->i_nlink == 0)
3383 		error =  -ENOENT;
3384 	else if (max_links && inode->i_nlink >= max_links)
3385 		error = -EMLINK;
3386 	else
3387 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3388 	mutex_unlock(&inode->i_mutex);
3389 	if (!error)
3390 		fsnotify_link(dir, inode, new_dentry);
3391 	return error;
3392 }
3393 
3394 /*
3395  * Hardlinks are often used in delicate situations.  We avoid
3396  * security-related surprises by not following symlinks on the
3397  * newname.  --KAB
3398  *
3399  * We don't follow them on the oldname either to be compatible
3400  * with linux 2.0, and to avoid hard-linking to directories
3401  * and other special files.  --ADM
3402  */
3403 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3404 		int, newdfd, const char __user *, newname, int, flags)
3405 {
3406 	struct dentry *new_dentry;
3407 	struct path old_path, new_path;
3408 	int how = 0;
3409 	int error;
3410 
3411 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3412 		return -EINVAL;
3413 	/*
3414 	 * To use null names we require CAP_DAC_READ_SEARCH
3415 	 * This ensures that not everyone will be able to create
3416 	 * handlink using the passed filedescriptor.
3417 	 */
3418 	if (flags & AT_EMPTY_PATH) {
3419 		if (!capable(CAP_DAC_READ_SEARCH))
3420 			return -ENOENT;
3421 		how = LOOKUP_EMPTY;
3422 	}
3423 
3424 	if (flags & AT_SYMLINK_FOLLOW)
3425 		how |= LOOKUP_FOLLOW;
3426 
3427 	error = user_path_at(olddfd, oldname, how, &old_path);
3428 	if (error)
3429 		return error;
3430 
3431 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3432 	error = PTR_ERR(new_dentry);
3433 	if (IS_ERR(new_dentry))
3434 		goto out;
3435 
3436 	error = -EXDEV;
3437 	if (old_path.mnt != new_path.mnt)
3438 		goto out_dput;
3439 	error = mnt_want_write(new_path.mnt);
3440 	if (error)
3441 		goto out_dput;
3442 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3443 	if (error)
3444 		goto out_drop_write;
3445 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3446 out_drop_write:
3447 	mnt_drop_write(new_path.mnt);
3448 out_dput:
3449 	dput(new_dentry);
3450 	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3451 	path_put(&new_path);
3452 out:
3453 	path_put(&old_path);
3454 
3455 	return error;
3456 }
3457 
3458 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3459 {
3460 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3461 }
3462 
3463 /*
3464  * The worst of all namespace operations - renaming directory. "Perverted"
3465  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3466  * Problems:
3467  *	a) we can get into loop creation. Check is done in is_subdir().
3468  *	b) race potential - two innocent renames can create a loop together.
3469  *	   That's where 4.4 screws up. Current fix: serialization on
3470  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3471  *	   story.
3472  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3473  *	   And that - after we got ->i_mutex on parents (until then we don't know
3474  *	   whether the target exists).  Solution: try to be smart with locking
3475  *	   order for inodes.  We rely on the fact that tree topology may change
3476  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3477  *	   move will be locked.  Thus we can rank directories by the tree
3478  *	   (ancestors first) and rank all non-directories after them.
3479  *	   That works since everybody except rename does "lock parent, lookup,
3480  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3481  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3482  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3483  *	   we'd better make sure that there's no link(2) for them.
3484  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3485  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3486  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3487  *	   ->i_mutex on parents, which works but leads to some truly excessive
3488  *	   locking].
3489  */
3490 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3491 			  struct inode *new_dir, struct dentry *new_dentry)
3492 {
3493 	int error = 0;
3494 	struct inode *target = new_dentry->d_inode;
3495 	unsigned max_links = new_dir->i_sb->s_max_links;
3496 
3497 	/*
3498 	 * If we are going to change the parent - check write permissions,
3499 	 * we'll need to flip '..'.
3500 	 */
3501 	if (new_dir != old_dir) {
3502 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3503 		if (error)
3504 			return error;
3505 	}
3506 
3507 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3508 	if (error)
3509 		return error;
3510 
3511 	dget(new_dentry);
3512 	if (target)
3513 		mutex_lock(&target->i_mutex);
3514 
3515 	error = -EBUSY;
3516 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3517 		goto out;
3518 
3519 	error = -EMLINK;
3520 	if (max_links && !target && new_dir != old_dir &&
3521 	    new_dir->i_nlink >= max_links)
3522 		goto out;
3523 
3524 	if (target)
3525 		shrink_dcache_parent(new_dentry);
3526 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3527 	if (error)
3528 		goto out;
3529 
3530 	if (target) {
3531 		target->i_flags |= S_DEAD;
3532 		dont_mount(new_dentry);
3533 	}
3534 out:
3535 	if (target)
3536 		mutex_unlock(&target->i_mutex);
3537 	dput(new_dentry);
3538 	if (!error)
3539 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3540 			d_move(old_dentry,new_dentry);
3541 	return error;
3542 }
3543 
3544 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3545 			    struct inode *new_dir, struct dentry *new_dentry)
3546 {
3547 	struct inode *target = new_dentry->d_inode;
3548 	int error;
3549 
3550 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3551 	if (error)
3552 		return error;
3553 
3554 	dget(new_dentry);
3555 	if (target)
3556 		mutex_lock(&target->i_mutex);
3557 
3558 	error = -EBUSY;
3559 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3560 		goto out;
3561 
3562 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3563 	if (error)
3564 		goto out;
3565 
3566 	if (target)
3567 		dont_mount(new_dentry);
3568 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3569 		d_move(old_dentry, new_dentry);
3570 out:
3571 	if (target)
3572 		mutex_unlock(&target->i_mutex);
3573 	dput(new_dentry);
3574 	return error;
3575 }
3576 
3577 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3578 	       struct inode *new_dir, struct dentry *new_dentry)
3579 {
3580 	int error;
3581 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3582 	const unsigned char *old_name;
3583 
3584 	if (old_dentry->d_inode == new_dentry->d_inode)
3585  		return 0;
3586 
3587 	error = may_delete(old_dir, old_dentry, is_dir);
3588 	if (error)
3589 		return error;
3590 
3591 	if (!new_dentry->d_inode)
3592 		error = may_create(new_dir, new_dentry);
3593 	else
3594 		error = may_delete(new_dir, new_dentry, is_dir);
3595 	if (error)
3596 		return error;
3597 
3598 	if (!old_dir->i_op->rename)
3599 		return -EPERM;
3600 
3601 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3602 
3603 	if (is_dir)
3604 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3605 	else
3606 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3607 	if (!error)
3608 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3609 			      new_dentry->d_inode, old_dentry);
3610 	fsnotify_oldname_free(old_name);
3611 
3612 	return error;
3613 }
3614 
3615 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3616 		int, newdfd, const char __user *, newname)
3617 {
3618 	struct dentry *old_dir, *new_dir;
3619 	struct dentry *old_dentry, *new_dentry;
3620 	struct dentry *trap;
3621 	struct nameidata oldnd, newnd;
3622 	char *from;
3623 	char *to;
3624 	int error;
3625 
3626 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3627 	if (error)
3628 		goto exit;
3629 
3630 	error = user_path_parent(newdfd, newname, &newnd, &to);
3631 	if (error)
3632 		goto exit1;
3633 
3634 	error = -EXDEV;
3635 	if (oldnd.path.mnt != newnd.path.mnt)
3636 		goto exit2;
3637 
3638 	old_dir = oldnd.path.dentry;
3639 	error = -EBUSY;
3640 	if (oldnd.last_type != LAST_NORM)
3641 		goto exit2;
3642 
3643 	new_dir = newnd.path.dentry;
3644 	if (newnd.last_type != LAST_NORM)
3645 		goto exit2;
3646 
3647 	oldnd.flags &= ~LOOKUP_PARENT;
3648 	newnd.flags &= ~LOOKUP_PARENT;
3649 	newnd.flags |= LOOKUP_RENAME_TARGET;
3650 
3651 	trap = lock_rename(new_dir, old_dir);
3652 
3653 	old_dentry = lookup_hash(&oldnd);
3654 	error = PTR_ERR(old_dentry);
3655 	if (IS_ERR(old_dentry))
3656 		goto exit3;
3657 	/* source must exist */
3658 	error = -ENOENT;
3659 	if (!old_dentry->d_inode)
3660 		goto exit4;
3661 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3662 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3663 		error = -ENOTDIR;
3664 		if (oldnd.last.name[oldnd.last.len])
3665 			goto exit4;
3666 		if (newnd.last.name[newnd.last.len])
3667 			goto exit4;
3668 	}
3669 	/* source should not be ancestor of target */
3670 	error = -EINVAL;
3671 	if (old_dentry == trap)
3672 		goto exit4;
3673 	new_dentry = lookup_hash(&newnd);
3674 	error = PTR_ERR(new_dentry);
3675 	if (IS_ERR(new_dentry))
3676 		goto exit4;
3677 	/* target should not be an ancestor of source */
3678 	error = -ENOTEMPTY;
3679 	if (new_dentry == trap)
3680 		goto exit5;
3681 
3682 	error = mnt_want_write(oldnd.path.mnt);
3683 	if (error)
3684 		goto exit5;
3685 	error = security_path_rename(&oldnd.path, old_dentry,
3686 				     &newnd.path, new_dentry);
3687 	if (error)
3688 		goto exit6;
3689 	error = vfs_rename(old_dir->d_inode, old_dentry,
3690 				   new_dir->d_inode, new_dentry);
3691 exit6:
3692 	mnt_drop_write(oldnd.path.mnt);
3693 exit5:
3694 	dput(new_dentry);
3695 exit4:
3696 	dput(old_dentry);
3697 exit3:
3698 	unlock_rename(new_dir, old_dir);
3699 exit2:
3700 	path_put(&newnd.path);
3701 	putname(to);
3702 exit1:
3703 	path_put(&oldnd.path);
3704 	putname(from);
3705 exit:
3706 	return error;
3707 }
3708 
3709 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3710 {
3711 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3712 }
3713 
3714 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3715 {
3716 	int len;
3717 
3718 	len = PTR_ERR(link);
3719 	if (IS_ERR(link))
3720 		goto out;
3721 
3722 	len = strlen(link);
3723 	if (len > (unsigned) buflen)
3724 		len = buflen;
3725 	if (copy_to_user(buffer, link, len))
3726 		len = -EFAULT;
3727 out:
3728 	return len;
3729 }
3730 
3731 /*
3732  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3733  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3734  * using) it for any given inode is up to filesystem.
3735  */
3736 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3737 {
3738 	struct nameidata nd;
3739 	void *cookie;
3740 	int res;
3741 
3742 	nd.depth = 0;
3743 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3744 	if (IS_ERR(cookie))
3745 		return PTR_ERR(cookie);
3746 
3747 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3748 	if (dentry->d_inode->i_op->put_link)
3749 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3750 	return res;
3751 }
3752 
3753 int vfs_follow_link(struct nameidata *nd, const char *link)
3754 {
3755 	return __vfs_follow_link(nd, link);
3756 }
3757 
3758 /* get the link contents into pagecache */
3759 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3760 {
3761 	char *kaddr;
3762 	struct page *page;
3763 	struct address_space *mapping = dentry->d_inode->i_mapping;
3764 	page = read_mapping_page(mapping, 0, NULL);
3765 	if (IS_ERR(page))
3766 		return (char*)page;
3767 	*ppage = page;
3768 	kaddr = kmap(page);
3769 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3770 	return kaddr;
3771 }
3772 
3773 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3774 {
3775 	struct page *page = NULL;
3776 	char *s = page_getlink(dentry, &page);
3777 	int res = vfs_readlink(dentry,buffer,buflen,s);
3778 	if (page) {
3779 		kunmap(page);
3780 		page_cache_release(page);
3781 	}
3782 	return res;
3783 }
3784 
3785 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3786 {
3787 	struct page *page = NULL;
3788 	nd_set_link(nd, page_getlink(dentry, &page));
3789 	return page;
3790 }
3791 
3792 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3793 {
3794 	struct page *page = cookie;
3795 
3796 	if (page) {
3797 		kunmap(page);
3798 		page_cache_release(page);
3799 	}
3800 }
3801 
3802 /*
3803  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3804  */
3805 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3806 {
3807 	struct address_space *mapping = inode->i_mapping;
3808 	struct page *page;
3809 	void *fsdata;
3810 	int err;
3811 	char *kaddr;
3812 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3813 	if (nofs)
3814 		flags |= AOP_FLAG_NOFS;
3815 
3816 retry:
3817 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3818 				flags, &page, &fsdata);
3819 	if (err)
3820 		goto fail;
3821 
3822 	kaddr = kmap_atomic(page);
3823 	memcpy(kaddr, symname, len-1);
3824 	kunmap_atomic(kaddr);
3825 
3826 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3827 							page, fsdata);
3828 	if (err < 0)
3829 		goto fail;
3830 	if (err < len-1)
3831 		goto retry;
3832 
3833 	mark_inode_dirty(inode);
3834 	return 0;
3835 fail:
3836 	return err;
3837 }
3838 
3839 int page_symlink(struct inode *inode, const char *symname, int len)
3840 {
3841 	return __page_symlink(inode, symname, len,
3842 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3843 }
3844 
3845 const struct inode_operations page_symlink_inode_operations = {
3846 	.readlink	= generic_readlink,
3847 	.follow_link	= page_follow_link_light,
3848 	.put_link	= page_put_link,
3849 };
3850 
3851 EXPORT_SYMBOL(user_path_at);
3852 EXPORT_SYMBOL(follow_down_one);
3853 EXPORT_SYMBOL(follow_down);
3854 EXPORT_SYMBOL(follow_up);
3855 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3856 EXPORT_SYMBOL(getname);
3857 EXPORT_SYMBOL(lock_rename);
3858 EXPORT_SYMBOL(lookup_one_len);
3859 EXPORT_SYMBOL(page_follow_link_light);
3860 EXPORT_SYMBOL(page_put_link);
3861 EXPORT_SYMBOL(page_readlink);
3862 EXPORT_SYMBOL(__page_symlink);
3863 EXPORT_SYMBOL(page_symlink);
3864 EXPORT_SYMBOL(page_symlink_inode_operations);
3865 EXPORT_SYMBOL(kern_path);
3866 EXPORT_SYMBOL(vfs_path_lookup);
3867 EXPORT_SYMBOL(inode_permission);
3868 EXPORT_SYMBOL(unlock_rename);
3869 EXPORT_SYMBOL(vfs_create);
3870 EXPORT_SYMBOL(vfs_follow_link);
3871 EXPORT_SYMBOL(vfs_link);
3872 EXPORT_SYMBOL(vfs_mkdir);
3873 EXPORT_SYMBOL(vfs_mknod);
3874 EXPORT_SYMBOL(generic_permission);
3875 EXPORT_SYMBOL(vfs_readlink);
3876 EXPORT_SYMBOL(vfs_rename);
3877 EXPORT_SYMBOL(vfs_rmdir);
3878 EXPORT_SYMBOL(vfs_symlink);
3879 EXPORT_SYMBOL(vfs_unlink);
3880 EXPORT_SYMBOL(dentry_unhash);
3881 EXPORT_SYMBOL(generic_readlink);
3882