xref: /linux/fs/namei.c (revision d75733d51fdab5c99a0d9491b25f22e13b39cdc1)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 		int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask, flags);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  * @flags:	IPERM_FLAG_ flags.
206  *
207  * Used to check for read/write/execute permissions on a file.
208  * We use "fsuid" for this, letting us set arbitrary permissions
209  * for filesystem access without changing the "normal" uids which
210  * are used for other things.
211  *
212  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213  * request cannot be satisfied (eg. requires blocking or too much complexity).
214  * It would then be called again in ref-walk mode.
215  */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 	int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 	int ret;
220 
221 	/*
222 	 * Do the basic POSIX ACL permission checks.
223 	 */
224 	ret = acl_permission_check(inode, mask, flags, check_acl);
225 	if (ret != -EACCES)
226 		return ret;
227 
228 	/*
229 	 * Read/write DACs are always overridable.
230 	 * Executable DACs are overridable if at least one exec bit is set.
231 	 */
232 	if (!(mask & MAY_EXEC) || execute_ok(inode))
233 		if (capable(CAP_DAC_OVERRIDE))
234 			return 0;
235 
236 	/*
237 	 * Searching includes executable on directories, else just read.
238 	 */
239 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 		if (capable(CAP_DAC_READ_SEARCH))
242 			return 0;
243 
244 	return -EACCES;
245 }
246 
247 /**
248  * inode_permission  -  check for access rights to a given inode
249  * @inode:	inode to check permission on
250  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251  *
252  * Used to check for read/write/execute permissions on an inode.
253  * We use "fsuid" for this, letting us set arbitrary permissions
254  * for filesystem access without changing the "normal" uids which
255  * are used for other things.
256  */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 	int retval;
260 
261 	if (mask & MAY_WRITE) {
262 		umode_t mode = inode->i_mode;
263 
264 		/*
265 		 * Nobody gets write access to a read-only fs.
266 		 */
267 		if (IS_RDONLY(inode) &&
268 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 			return -EROFS;
270 
271 		/*
272 		 * Nobody gets write access to an immutable file.
273 		 */
274 		if (IS_IMMUTABLE(inode))
275 			return -EACCES;
276 	}
277 
278 	if (inode->i_op->permission)
279 		retval = inode->i_op->permission(inode, mask, 0);
280 	else
281 		retval = generic_permission(inode, mask, 0,
282 				inode->i_op->check_acl);
283 
284 	if (retval)
285 		return retval;
286 
287 	retval = devcgroup_inode_permission(inode, mask);
288 	if (retval)
289 		return retval;
290 
291 	return security_inode_permission(inode, mask);
292 }
293 
294 /**
295  * file_permission  -  check for additional access rights to a given file
296  * @file:	file to check access rights for
297  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298  *
299  * Used to check for read/write/execute permissions on an already opened
300  * file.
301  *
302  * Note:
303  *	Do not use this function in new code.  All access checks should
304  *	be done using inode_permission().
305  */
306 int file_permission(struct file *file, int mask)
307 {
308 	return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310 
311 /*
312  * get_write_access() gets write permission for a file.
313  * put_write_access() releases this write permission.
314  * This is used for regular files.
315  * We cannot support write (and maybe mmap read-write shared) accesses and
316  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317  * can have the following values:
318  * 0: no writers, no VM_DENYWRITE mappings
319  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320  * > 0: (i_writecount) users are writing to the file.
321  *
322  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323  * except for the cases where we don't hold i_writecount yet. Then we need to
324  * use {get,deny}_write_access() - these functions check the sign and refuse
325  * to do the change if sign is wrong. Exclusion between them is provided by
326  * the inode->i_lock spinlock.
327  */
328 
329 int get_write_access(struct inode * inode)
330 {
331 	spin_lock(&inode->i_lock);
332 	if (atomic_read(&inode->i_writecount) < 0) {
333 		spin_unlock(&inode->i_lock);
334 		return -ETXTBSY;
335 	}
336 	atomic_inc(&inode->i_writecount);
337 	spin_unlock(&inode->i_lock);
338 
339 	return 0;
340 }
341 
342 int deny_write_access(struct file * file)
343 {
344 	struct inode *inode = file->f_path.dentry->d_inode;
345 
346 	spin_lock(&inode->i_lock);
347 	if (atomic_read(&inode->i_writecount) > 0) {
348 		spin_unlock(&inode->i_lock);
349 		return -ETXTBSY;
350 	}
351 	atomic_dec(&inode->i_writecount);
352 	spin_unlock(&inode->i_lock);
353 
354 	return 0;
355 }
356 
357 /**
358  * path_get - get a reference to a path
359  * @path: path to get the reference to
360  *
361  * Given a path increment the reference count to the dentry and the vfsmount.
362  */
363 void path_get(struct path *path)
364 {
365 	mntget(path->mnt);
366 	dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369 
370 /**
371  * path_put - put a reference to a path
372  * @path: path to put the reference to
373  *
374  * Given a path decrement the reference count to the dentry and the vfsmount.
375  */
376 void path_put(struct path *path)
377 {
378 	dput(path->dentry);
379 	mntput(path->mnt);
380 }
381 EXPORT_SYMBOL(path_put);
382 
383 /**
384  * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385  * @nd: nameidata pathwalk data to drop
386  * Returns: 0 on success, -ECHILD on failure
387  *
388  * Path walking has 2 modes, rcu-walk and ref-walk (see
389  * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390  * to drop out of rcu-walk mode and take normal reference counts on dentries
391  * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392  * refcounts at the last known good point before rcu-walk got stuck, so
393  * ref-walk may continue from there. If this is not successful (eg. a seqcount
394  * has changed), then failure is returned and path walk restarts from the
395  * beginning in ref-walk mode.
396  *
397  * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398  * ref-walk. Must be called from rcu-walk context.
399  */
400 static int nameidata_drop_rcu(struct nameidata *nd)
401 {
402 	struct fs_struct *fs = current->fs;
403 	struct dentry *dentry = nd->path.dentry;
404 
405 	BUG_ON(!(nd->flags & LOOKUP_RCU));
406 	if (nd->root.mnt) {
407 		spin_lock(&fs->lock);
408 		if (nd->root.mnt != fs->root.mnt ||
409 				nd->root.dentry != fs->root.dentry)
410 			goto err_root;
411 	}
412 	spin_lock(&dentry->d_lock);
413 	if (!__d_rcu_to_refcount(dentry, nd->seq))
414 		goto err;
415 	BUG_ON(nd->inode != dentry->d_inode);
416 	spin_unlock(&dentry->d_lock);
417 	if (nd->root.mnt) {
418 		path_get(&nd->root);
419 		spin_unlock(&fs->lock);
420 	}
421 	mntget(nd->path.mnt);
422 
423 	rcu_read_unlock();
424 	br_read_unlock(vfsmount_lock);
425 	nd->flags &= ~LOOKUP_RCU;
426 	return 0;
427 err:
428 	spin_unlock(&dentry->d_lock);
429 err_root:
430 	if (nd->root.mnt)
431 		spin_unlock(&fs->lock);
432 	return -ECHILD;
433 }
434 
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
437 {
438 	if (nd->flags & LOOKUP_RCU)
439 		return nameidata_drop_rcu(nd);
440 	return 0;
441 }
442 
443 /**
444  * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445  * @nd: nameidata pathwalk data to drop
446  * @dentry: dentry to drop
447  * Returns: 0 on success, -ECHILD on failure
448  *
449  * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450  * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451  * @nd. Must be called from rcu-walk context.
452  */
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
454 {
455 	struct fs_struct *fs = current->fs;
456 	struct dentry *parent = nd->path.dentry;
457 
458 	/*
459 	 * It can be possible to revalidate the dentry that we started
460 	 * the path walk with. force_reval_path may also revalidate the
461 	 * dentry already committed to the nameidata.
462 	 */
463 	if (unlikely(parent == dentry))
464 		return nameidata_drop_rcu(nd);
465 
466 	BUG_ON(!(nd->flags & LOOKUP_RCU));
467 	if (nd->root.mnt) {
468 		spin_lock(&fs->lock);
469 		if (nd->root.mnt != fs->root.mnt ||
470 				nd->root.dentry != fs->root.dentry)
471 			goto err_root;
472 	}
473 	spin_lock(&parent->d_lock);
474 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 	if (!__d_rcu_to_refcount(dentry, nd->seq))
476 		goto err;
477 	/*
478 	 * If the sequence check on the child dentry passed, then the child has
479 	 * not been removed from its parent. This means the parent dentry must
480 	 * be valid and able to take a reference at this point.
481 	 */
482 	BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
483 	BUG_ON(!parent->d_count);
484 	parent->d_count++;
485 	spin_unlock(&dentry->d_lock);
486 	spin_unlock(&parent->d_lock);
487 	if (nd->root.mnt) {
488 		path_get(&nd->root);
489 		spin_unlock(&fs->lock);
490 	}
491 	mntget(nd->path.mnt);
492 
493 	rcu_read_unlock();
494 	br_read_unlock(vfsmount_lock);
495 	nd->flags &= ~LOOKUP_RCU;
496 	return 0;
497 err:
498 	spin_unlock(&dentry->d_lock);
499 	spin_unlock(&parent->d_lock);
500 err_root:
501 	if (nd->root.mnt)
502 		spin_unlock(&fs->lock);
503 	return -ECHILD;
504 }
505 
506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
508 {
509 	if (nd->flags & LOOKUP_RCU)
510 		return nameidata_dentry_drop_rcu(nd, dentry);
511 	return 0;
512 }
513 
514 /**
515  * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
516  * @nd: nameidata pathwalk data to drop
517  * Returns: 0 on success, -ECHILD on failure
518  *
519  * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
520  * nd->path should be the final element of the lookup, so nd->root is discarded.
521  * Must be called from rcu-walk context.
522  */
523 static int nameidata_drop_rcu_last(struct nameidata *nd)
524 {
525 	struct dentry *dentry = nd->path.dentry;
526 
527 	BUG_ON(!(nd->flags & LOOKUP_RCU));
528 	nd->flags &= ~LOOKUP_RCU;
529 	nd->root.mnt = NULL;
530 	spin_lock(&dentry->d_lock);
531 	if (!__d_rcu_to_refcount(dentry, nd->seq))
532 		goto err_unlock;
533 	BUG_ON(nd->inode != dentry->d_inode);
534 	spin_unlock(&dentry->d_lock);
535 
536 	mntget(nd->path.mnt);
537 
538 	rcu_read_unlock();
539 	br_read_unlock(vfsmount_lock);
540 
541 	return 0;
542 
543 err_unlock:
544 	spin_unlock(&dentry->d_lock);
545 	rcu_read_unlock();
546 	br_read_unlock(vfsmount_lock);
547 	return -ECHILD;
548 }
549 
550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
552 {
553 	if (likely(nd->flags & LOOKUP_RCU))
554 		return nameidata_drop_rcu_last(nd);
555 	return 0;
556 }
557 
558 /**
559  * release_open_intent - free up open intent resources
560  * @nd: pointer to nameidata
561  */
562 void release_open_intent(struct nameidata *nd)
563 {
564 	if (nd->intent.open.file->f_path.dentry == NULL)
565 		put_filp(nd->intent.open.file);
566 	else
567 		fput(nd->intent.open.file);
568 }
569 
570 /*
571  * Call d_revalidate and handle filesystems that request rcu-walk
572  * to be dropped. This may be called and return in rcu-walk mode,
573  * regardless of success or error. If -ECHILD is returned, the caller
574  * must return -ECHILD back up the path walk stack so path walk may
575  * be restarted in ref-walk mode.
576  */
577 static int d_revalidate(struct dentry *dentry, struct nameidata *nd)
578 {
579 	int status;
580 
581 	status = dentry->d_op->d_revalidate(dentry, nd);
582 	if (status == -ECHILD) {
583 		if (nameidata_dentry_drop_rcu(nd, dentry))
584 			return status;
585 		status = dentry->d_op->d_revalidate(dentry, nd);
586 	}
587 
588 	return status;
589 }
590 
591 static inline struct dentry *
592 do_revalidate(struct dentry *dentry, struct nameidata *nd)
593 {
594 	int status;
595 
596 	status = d_revalidate(dentry, nd);
597 	if (unlikely(status <= 0)) {
598 		/*
599 		 * The dentry failed validation.
600 		 * If d_revalidate returned 0 attempt to invalidate
601 		 * the dentry otherwise d_revalidate is asking us
602 		 * to return a fail status.
603 		 */
604 		if (status < 0) {
605 			/* If we're in rcu-walk, we don't have a ref */
606 			if (!(nd->flags & LOOKUP_RCU))
607 				dput(dentry);
608 			dentry = ERR_PTR(status);
609 
610 		} else {
611 			/* Don't d_invalidate in rcu-walk mode */
612 			if (nameidata_dentry_drop_rcu_maybe(nd, dentry))
613 				return ERR_PTR(-ECHILD);
614 			if (!d_invalidate(dentry)) {
615 				dput(dentry);
616 				dentry = NULL;
617 			}
618 		}
619 	}
620 	return dentry;
621 }
622 
623 static inline int need_reval_dot(struct dentry *dentry)
624 {
625 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
626 		return 0;
627 
628 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
629 		return 0;
630 
631 	return 1;
632 }
633 
634 /*
635  * force_reval_path - force revalidation of a dentry
636  *
637  * In some situations the path walking code will trust dentries without
638  * revalidating them. This causes problems for filesystems that depend on
639  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
640  * (which indicates that it's possible for the dentry to go stale), force
641  * a d_revalidate call before proceeding.
642  *
643  * Returns 0 if the revalidation was successful. If the revalidation fails,
644  * either return the error returned by d_revalidate or -ESTALE if the
645  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
646  * invalidate the dentry. It's up to the caller to handle putting references
647  * to the path if necessary.
648  */
649 static int
650 force_reval_path(struct path *path, struct nameidata *nd)
651 {
652 	int status;
653 	struct dentry *dentry = path->dentry;
654 
655 	/*
656 	 * only check on filesystems where it's possible for the dentry to
657 	 * become stale.
658 	 */
659 	if (!need_reval_dot(dentry))
660 		return 0;
661 
662 	status = d_revalidate(dentry, nd);
663 	if (status > 0)
664 		return 0;
665 
666 	if (!status) {
667 		/* Don't d_invalidate in rcu-walk mode */
668 		if (nameidata_drop_rcu(nd))
669 			return -ECHILD;
670 		d_invalidate(dentry);
671 		status = -ESTALE;
672 	}
673 	return status;
674 }
675 
676 /*
677  * Short-cut version of permission(), for calling on directories
678  * during pathname resolution.  Combines parts of permission()
679  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
680  *
681  * If appropriate, check DAC only.  If not appropriate, or
682  * short-cut DAC fails, then call ->permission() to do more
683  * complete permission check.
684  */
685 static inline int exec_permission(struct inode *inode, unsigned int flags)
686 {
687 	int ret;
688 
689 	if (inode->i_op->permission) {
690 		ret = inode->i_op->permission(inode, MAY_EXEC, flags);
691 	} else {
692 		ret = acl_permission_check(inode, MAY_EXEC, flags,
693 				inode->i_op->check_acl);
694 	}
695 	if (likely(!ret))
696 		goto ok;
697 	if (ret == -ECHILD)
698 		return ret;
699 
700 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
701 		goto ok;
702 
703 	return ret;
704 ok:
705 	return security_inode_exec_permission(inode, flags);
706 }
707 
708 static __always_inline void set_root(struct nameidata *nd)
709 {
710 	if (!nd->root.mnt)
711 		get_fs_root(current->fs, &nd->root);
712 }
713 
714 static int link_path_walk(const char *, struct nameidata *);
715 
716 static __always_inline void set_root_rcu(struct nameidata *nd)
717 {
718 	if (!nd->root.mnt) {
719 		struct fs_struct *fs = current->fs;
720 		unsigned seq;
721 
722 		do {
723 			seq = read_seqcount_begin(&fs->seq);
724 			nd->root = fs->root;
725 		} while (read_seqcount_retry(&fs->seq, seq));
726 	}
727 }
728 
729 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
730 {
731 	int ret;
732 
733 	if (IS_ERR(link))
734 		goto fail;
735 
736 	if (*link == '/') {
737 		set_root(nd);
738 		path_put(&nd->path);
739 		nd->path = nd->root;
740 		path_get(&nd->root);
741 	}
742 	nd->inode = nd->path.dentry->d_inode;
743 
744 	ret = link_path_walk(link, nd);
745 	return ret;
746 fail:
747 	path_put(&nd->path);
748 	return PTR_ERR(link);
749 }
750 
751 static void path_put_conditional(struct path *path, struct nameidata *nd)
752 {
753 	dput(path->dentry);
754 	if (path->mnt != nd->path.mnt)
755 		mntput(path->mnt);
756 }
757 
758 static inline void path_to_nameidata(const struct path *path,
759 					struct nameidata *nd)
760 {
761 	if (!(nd->flags & LOOKUP_RCU)) {
762 		dput(nd->path.dentry);
763 		if (nd->path.mnt != path->mnt)
764 			mntput(nd->path.mnt);
765 	}
766 	nd->path.mnt = path->mnt;
767 	nd->path.dentry = path->dentry;
768 }
769 
770 static __always_inline int
771 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
772 {
773 	int error;
774 	struct dentry *dentry = link->dentry;
775 
776 	touch_atime(link->mnt, dentry);
777 	nd_set_link(nd, NULL);
778 
779 	if (link->mnt == nd->path.mnt)
780 		mntget(link->mnt);
781 
782 	nd->last_type = LAST_BIND;
783 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
784 	error = PTR_ERR(*p);
785 	if (!IS_ERR(*p)) {
786 		char *s = nd_get_link(nd);
787 		error = 0;
788 		if (s)
789 			error = __vfs_follow_link(nd, s);
790 		else if (nd->last_type == LAST_BIND) {
791 			error = force_reval_path(&nd->path, nd);
792 			if (error)
793 				path_put(&nd->path);
794 		}
795 	}
796 	return error;
797 }
798 
799 /*
800  * This limits recursive symlink follows to 8, while
801  * limiting consecutive symlinks to 40.
802  *
803  * Without that kind of total limit, nasty chains of consecutive
804  * symlinks can cause almost arbitrarily long lookups.
805  */
806 static inline int do_follow_link(struct path *path, struct nameidata *nd)
807 {
808 	void *cookie;
809 	int err = -ELOOP;
810 	if (current->link_count >= MAX_NESTED_LINKS)
811 		goto loop;
812 	if (current->total_link_count >= 40)
813 		goto loop;
814 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
815 	cond_resched();
816 	err = security_inode_follow_link(path->dentry, nd);
817 	if (err)
818 		goto loop;
819 	current->link_count++;
820 	current->total_link_count++;
821 	nd->depth++;
822 	err = __do_follow_link(path, nd, &cookie);
823 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
824 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
825 	path_put(path);
826 	current->link_count--;
827 	nd->depth--;
828 	return err;
829 loop:
830 	path_put_conditional(path, nd);
831 	path_put(&nd->path);
832 	return err;
833 }
834 
835 static int follow_up_rcu(struct path *path)
836 {
837 	struct vfsmount *parent;
838 	struct dentry *mountpoint;
839 
840 	parent = path->mnt->mnt_parent;
841 	if (parent == path->mnt)
842 		return 0;
843 	mountpoint = path->mnt->mnt_mountpoint;
844 	path->dentry = mountpoint;
845 	path->mnt = parent;
846 	return 1;
847 }
848 
849 int follow_up(struct path *path)
850 {
851 	struct vfsmount *parent;
852 	struct dentry *mountpoint;
853 
854 	br_read_lock(vfsmount_lock);
855 	parent = path->mnt->mnt_parent;
856 	if (parent == path->mnt) {
857 		br_read_unlock(vfsmount_lock);
858 		return 0;
859 	}
860 	mntget(parent);
861 	mountpoint = dget(path->mnt->mnt_mountpoint);
862 	br_read_unlock(vfsmount_lock);
863 	dput(path->dentry);
864 	path->dentry = mountpoint;
865 	mntput(path->mnt);
866 	path->mnt = parent;
867 	return 1;
868 }
869 
870 /*
871  * Perform an automount
872  * - return -EISDIR to tell follow_managed() to stop and return the path we
873  *   were called with.
874  */
875 static int follow_automount(struct path *path, unsigned flags,
876 			    bool *need_mntput)
877 {
878 	struct vfsmount *mnt;
879 	int err;
880 
881 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
882 		return -EREMOTE;
883 
884 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
885 	 * and this is the terminal part of the path.
886 	 */
887 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
888 		return -EISDIR; /* we actually want to stop here */
889 
890 	/* We want to mount if someone is trying to open/create a file of any
891 	 * type under the mountpoint, wants to traverse through the mountpoint
892 	 * or wants to open the mounted directory.
893 	 *
894 	 * We don't want to mount if someone's just doing a stat and they've
895 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
896 	 * appended a '/' to the name.
897 	 */
898 	if (!(flags & LOOKUP_FOLLOW) &&
899 	    !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
900 		       LOOKUP_OPEN | LOOKUP_CREATE)))
901 		return -EISDIR;
902 
903 	current->total_link_count++;
904 	if (current->total_link_count >= 40)
905 		return -ELOOP;
906 
907 	mnt = path->dentry->d_op->d_automount(path);
908 	if (IS_ERR(mnt)) {
909 		/*
910 		 * The filesystem is allowed to return -EISDIR here to indicate
911 		 * it doesn't want to automount.  For instance, autofs would do
912 		 * this so that its userspace daemon can mount on this dentry.
913 		 *
914 		 * However, we can only permit this if it's a terminal point in
915 		 * the path being looked up; if it wasn't then the remainder of
916 		 * the path is inaccessible and we should say so.
917 		 */
918 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
919 			return -EREMOTE;
920 		return PTR_ERR(mnt);
921 	}
922 
923 	if (!mnt) /* mount collision */
924 		return 0;
925 
926 	err = finish_automount(mnt, path);
927 
928 	switch (err) {
929 	case -EBUSY:
930 		/* Someone else made a mount here whilst we were busy */
931 		return 0;
932 	case 0:
933 		dput(path->dentry);
934 		if (*need_mntput)
935 			mntput(path->mnt);
936 		path->mnt = mnt;
937 		path->dentry = dget(mnt->mnt_root);
938 		*need_mntput = true;
939 		return 0;
940 	default:
941 		return err;
942 	}
943 
944 }
945 
946 /*
947  * Handle a dentry that is managed in some way.
948  * - Flagged for transit management (autofs)
949  * - Flagged as mountpoint
950  * - Flagged as automount point
951  *
952  * This may only be called in refwalk mode.
953  *
954  * Serialization is taken care of in namespace.c
955  */
956 static int follow_managed(struct path *path, unsigned flags)
957 {
958 	unsigned managed;
959 	bool need_mntput = false;
960 	int ret;
961 
962 	/* Given that we're not holding a lock here, we retain the value in a
963 	 * local variable for each dentry as we look at it so that we don't see
964 	 * the components of that value change under us */
965 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
966 	       managed &= DCACHE_MANAGED_DENTRY,
967 	       unlikely(managed != 0)) {
968 		/* Allow the filesystem to manage the transit without i_mutex
969 		 * being held. */
970 		if (managed & DCACHE_MANAGE_TRANSIT) {
971 			BUG_ON(!path->dentry->d_op);
972 			BUG_ON(!path->dentry->d_op->d_manage);
973 			ret = path->dentry->d_op->d_manage(path->dentry,
974 							   false, false);
975 			if (ret < 0)
976 				return ret == -EISDIR ? 0 : ret;
977 		}
978 
979 		/* Transit to a mounted filesystem. */
980 		if (managed & DCACHE_MOUNTED) {
981 			struct vfsmount *mounted = lookup_mnt(path);
982 			if (mounted) {
983 				dput(path->dentry);
984 				if (need_mntput)
985 					mntput(path->mnt);
986 				path->mnt = mounted;
987 				path->dentry = dget(mounted->mnt_root);
988 				need_mntput = true;
989 				continue;
990 			}
991 
992 			/* Something is mounted on this dentry in another
993 			 * namespace and/or whatever was mounted there in this
994 			 * namespace got unmounted before we managed to get the
995 			 * vfsmount_lock */
996 		}
997 
998 		/* Handle an automount point */
999 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1000 			ret = follow_automount(path, flags, &need_mntput);
1001 			if (ret < 0)
1002 				return ret == -EISDIR ? 0 : ret;
1003 			continue;
1004 		}
1005 
1006 		/* We didn't change the current path point */
1007 		break;
1008 	}
1009 	return 0;
1010 }
1011 
1012 int follow_down_one(struct path *path)
1013 {
1014 	struct vfsmount *mounted;
1015 
1016 	mounted = lookup_mnt(path);
1017 	if (mounted) {
1018 		dput(path->dentry);
1019 		mntput(path->mnt);
1020 		path->mnt = mounted;
1021 		path->dentry = dget(mounted->mnt_root);
1022 		return 1;
1023 	}
1024 	return 0;
1025 }
1026 
1027 /*
1028  * Skip to top of mountpoint pile in rcuwalk mode.  We abort the rcu-walk if we
1029  * meet a managed dentry and we're not walking to "..".  True is returned to
1030  * continue, false to abort.
1031  */
1032 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1033 			       struct inode **inode, bool reverse_transit)
1034 {
1035 	while (d_mountpoint(path->dentry)) {
1036 		struct vfsmount *mounted;
1037 		if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1038 		    !reverse_transit &&
1039 		    path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1040 			return false;
1041 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1042 		if (!mounted)
1043 			break;
1044 		path->mnt = mounted;
1045 		path->dentry = mounted->mnt_root;
1046 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1047 		*inode = path->dentry->d_inode;
1048 	}
1049 
1050 	if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1051 		return reverse_transit;
1052 	return true;
1053 }
1054 
1055 static int follow_dotdot_rcu(struct nameidata *nd)
1056 {
1057 	struct inode *inode = nd->inode;
1058 
1059 	set_root_rcu(nd);
1060 
1061 	while (1) {
1062 		if (nd->path.dentry == nd->root.dentry &&
1063 		    nd->path.mnt == nd->root.mnt) {
1064 			break;
1065 		}
1066 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1067 			struct dentry *old = nd->path.dentry;
1068 			struct dentry *parent = old->d_parent;
1069 			unsigned seq;
1070 
1071 			seq = read_seqcount_begin(&parent->d_seq);
1072 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1073 				return -ECHILD;
1074 			inode = parent->d_inode;
1075 			nd->path.dentry = parent;
1076 			nd->seq = seq;
1077 			break;
1078 		}
1079 		if (!follow_up_rcu(&nd->path))
1080 			break;
1081 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1082 		inode = nd->path.dentry->d_inode;
1083 	}
1084 	__follow_mount_rcu(nd, &nd->path, &inode, true);
1085 	nd->inode = inode;
1086 
1087 	return 0;
1088 }
1089 
1090 /*
1091  * Follow down to the covering mount currently visible to userspace.  At each
1092  * point, the filesystem owning that dentry may be queried as to whether the
1093  * caller is permitted to proceed or not.
1094  *
1095  * Care must be taken as namespace_sem may be held (indicated by mounting_here
1096  * being true).
1097  */
1098 int follow_down(struct path *path, bool mounting_here)
1099 {
1100 	unsigned managed;
1101 	int ret;
1102 
1103 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1104 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1105 		/* Allow the filesystem to manage the transit without i_mutex
1106 		 * being held.
1107 		 *
1108 		 * We indicate to the filesystem if someone is trying to mount
1109 		 * something here.  This gives autofs the chance to deny anyone
1110 		 * other than its daemon the right to mount on its
1111 		 * superstructure.
1112 		 *
1113 		 * The filesystem may sleep at this point.
1114 		 */
1115 		if (managed & DCACHE_MANAGE_TRANSIT) {
1116 			BUG_ON(!path->dentry->d_op);
1117 			BUG_ON(!path->dentry->d_op->d_manage);
1118 			ret = path->dentry->d_op->d_manage(
1119 				path->dentry, mounting_here, false);
1120 			if (ret < 0)
1121 				return ret == -EISDIR ? 0 : ret;
1122 		}
1123 
1124 		/* Transit to a mounted filesystem. */
1125 		if (managed & DCACHE_MOUNTED) {
1126 			struct vfsmount *mounted = lookup_mnt(path);
1127 			if (!mounted)
1128 				break;
1129 			dput(path->dentry);
1130 			mntput(path->mnt);
1131 			path->mnt = mounted;
1132 			path->dentry = dget(mounted->mnt_root);
1133 			continue;
1134 		}
1135 
1136 		/* Don't handle automount points here */
1137 		break;
1138 	}
1139 	return 0;
1140 }
1141 
1142 /*
1143  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1144  */
1145 static void follow_mount(struct path *path)
1146 {
1147 	while (d_mountpoint(path->dentry)) {
1148 		struct vfsmount *mounted = lookup_mnt(path);
1149 		if (!mounted)
1150 			break;
1151 		dput(path->dentry);
1152 		mntput(path->mnt);
1153 		path->mnt = mounted;
1154 		path->dentry = dget(mounted->mnt_root);
1155 	}
1156 }
1157 
1158 static void follow_dotdot(struct nameidata *nd)
1159 {
1160 	set_root(nd);
1161 
1162 	while(1) {
1163 		struct dentry *old = nd->path.dentry;
1164 
1165 		if (nd->path.dentry == nd->root.dentry &&
1166 		    nd->path.mnt == nd->root.mnt) {
1167 			break;
1168 		}
1169 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1170 			/* rare case of legitimate dget_parent()... */
1171 			nd->path.dentry = dget_parent(nd->path.dentry);
1172 			dput(old);
1173 			break;
1174 		}
1175 		if (!follow_up(&nd->path))
1176 			break;
1177 	}
1178 	follow_mount(&nd->path);
1179 	nd->inode = nd->path.dentry->d_inode;
1180 }
1181 
1182 /*
1183  * Allocate a dentry with name and parent, and perform a parent
1184  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1185  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1186  * have verified that no child exists while under i_mutex.
1187  */
1188 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1189 				struct qstr *name, struct nameidata *nd)
1190 {
1191 	struct inode *inode = parent->d_inode;
1192 	struct dentry *dentry;
1193 	struct dentry *old;
1194 
1195 	/* Don't create child dentry for a dead directory. */
1196 	if (unlikely(IS_DEADDIR(inode)))
1197 		return ERR_PTR(-ENOENT);
1198 
1199 	dentry = d_alloc(parent, name);
1200 	if (unlikely(!dentry))
1201 		return ERR_PTR(-ENOMEM);
1202 
1203 	old = inode->i_op->lookup(inode, dentry, nd);
1204 	if (unlikely(old)) {
1205 		dput(dentry);
1206 		dentry = old;
1207 	}
1208 	return dentry;
1209 }
1210 
1211 /*
1212  *  It's more convoluted than I'd like it to be, but... it's still fairly
1213  *  small and for now I'd prefer to have fast path as straight as possible.
1214  *  It _is_ time-critical.
1215  */
1216 static int do_lookup(struct nameidata *nd, struct qstr *name,
1217 			struct path *path, struct inode **inode)
1218 {
1219 	struct vfsmount *mnt = nd->path.mnt;
1220 	struct dentry *dentry, *parent = nd->path.dentry;
1221 	struct inode *dir;
1222 	int err;
1223 
1224 	/*
1225 	 * See if the low-level filesystem might want
1226 	 * to use its own hash..
1227 	 */
1228 	if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1229 		err = parent->d_op->d_hash(parent, nd->inode, name);
1230 		if (err < 0)
1231 			return err;
1232 	}
1233 
1234 	/*
1235 	 * Rename seqlock is not required here because in the off chance
1236 	 * of a false negative due to a concurrent rename, we're going to
1237 	 * do the non-racy lookup, below.
1238 	 */
1239 	if (nd->flags & LOOKUP_RCU) {
1240 		unsigned seq;
1241 
1242 		*inode = nd->inode;
1243 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1244 		if (!dentry) {
1245 			if (nameidata_drop_rcu(nd))
1246 				return -ECHILD;
1247 			goto need_lookup;
1248 		}
1249 		/* Memory barrier in read_seqcount_begin of child is enough */
1250 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1251 			return -ECHILD;
1252 
1253 		nd->seq = seq;
1254 		if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1255 			goto need_revalidate;
1256 done2:
1257 		path->mnt = mnt;
1258 		path->dentry = dentry;
1259 		if (likely(__follow_mount_rcu(nd, path, inode, false)))
1260 			return 0;
1261 		if (nameidata_drop_rcu(nd))
1262 			return -ECHILD;
1263 		/* fallthru */
1264 	}
1265 	dentry = __d_lookup(parent, name);
1266 	if (!dentry)
1267 		goto need_lookup;
1268 found:
1269 	if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1270 		goto need_revalidate;
1271 done:
1272 	path->mnt = mnt;
1273 	path->dentry = dentry;
1274 	err = follow_managed(path, nd->flags);
1275 	if (unlikely(err < 0)) {
1276 		path_put_conditional(path, nd);
1277 		return err;
1278 	}
1279 	*inode = path->dentry->d_inode;
1280 	return 0;
1281 
1282 need_lookup:
1283 	dir = parent->d_inode;
1284 	BUG_ON(nd->inode != dir);
1285 
1286 	mutex_lock(&dir->i_mutex);
1287 	/*
1288 	 * First re-do the cached lookup just in case it was created
1289 	 * while we waited for the directory semaphore, or the first
1290 	 * lookup failed due to an unrelated rename.
1291 	 *
1292 	 * This could use version numbering or similar to avoid unnecessary
1293 	 * cache lookups, but then we'd have to do the first lookup in the
1294 	 * non-racy way. However in the common case here, everything should
1295 	 * be hot in cache, so would it be a big win?
1296 	 */
1297 	dentry = d_lookup(parent, name);
1298 	if (likely(!dentry)) {
1299 		dentry = d_alloc_and_lookup(parent, name, nd);
1300 		mutex_unlock(&dir->i_mutex);
1301 		if (IS_ERR(dentry))
1302 			goto fail;
1303 		goto done;
1304 	}
1305 	/*
1306 	 * Uhhuh! Nasty case: the cache was re-populated while
1307 	 * we waited on the semaphore. Need to revalidate.
1308 	 */
1309 	mutex_unlock(&dir->i_mutex);
1310 	goto found;
1311 
1312 need_revalidate:
1313 	dentry = do_revalidate(dentry, nd);
1314 	if (!dentry)
1315 		goto need_lookup;
1316 	if (IS_ERR(dentry))
1317 		goto fail;
1318 	if (nd->flags & LOOKUP_RCU)
1319 		goto done2;
1320 	goto done;
1321 
1322 fail:
1323 	return PTR_ERR(dentry);
1324 }
1325 
1326 /*
1327  * Name resolution.
1328  * This is the basic name resolution function, turning a pathname into
1329  * the final dentry. We expect 'base' to be positive and a directory.
1330  *
1331  * Returns 0 and nd will have valid dentry and mnt on success.
1332  * Returns error and drops reference to input namei data on failure.
1333  */
1334 static int link_path_walk(const char *name, struct nameidata *nd)
1335 {
1336 	struct path next;
1337 	int err;
1338 	unsigned int lookup_flags = nd->flags;
1339 
1340 	while (*name=='/')
1341 		name++;
1342 	if (!*name)
1343 		goto return_reval;
1344 
1345 	if (nd->depth)
1346 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1347 
1348 	/* At this point we know we have a real path component. */
1349 	for(;;) {
1350 		struct inode *inode;
1351 		unsigned long hash;
1352 		struct qstr this;
1353 		unsigned int c;
1354 
1355 		nd->flags |= LOOKUP_CONTINUE;
1356 		if (nd->flags & LOOKUP_RCU) {
1357 			err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1358 			if (err == -ECHILD) {
1359 				if (nameidata_drop_rcu(nd))
1360 					return -ECHILD;
1361 				goto exec_again;
1362 			}
1363 		} else {
1364 exec_again:
1365 			err = exec_permission(nd->inode, 0);
1366 		}
1367  		if (err)
1368 			break;
1369 
1370 		this.name = name;
1371 		c = *(const unsigned char *)name;
1372 
1373 		hash = init_name_hash();
1374 		do {
1375 			name++;
1376 			hash = partial_name_hash(c, hash);
1377 			c = *(const unsigned char *)name;
1378 		} while (c && (c != '/'));
1379 		this.len = name - (const char *) this.name;
1380 		this.hash = end_name_hash(hash);
1381 
1382 		/* remove trailing slashes? */
1383 		if (!c)
1384 			goto last_component;
1385 		while (*++name == '/');
1386 		if (!*name)
1387 			goto last_with_slashes;
1388 
1389 		/*
1390 		 * "." and ".." are special - ".." especially so because it has
1391 		 * to be able to know about the current root directory and
1392 		 * parent relationships.
1393 		 */
1394 		if (this.name[0] == '.') switch (this.len) {
1395 			default:
1396 				break;
1397 			case 2:
1398 				if (this.name[1] != '.')
1399 					break;
1400 				if (nd->flags & LOOKUP_RCU) {
1401 					if (follow_dotdot_rcu(nd))
1402 						return -ECHILD;
1403 				} else
1404 					follow_dotdot(nd);
1405 				/* fallthrough */
1406 			case 1:
1407 				continue;
1408 		}
1409 		/* This does the actual lookups.. */
1410 		err = do_lookup(nd, &this, &next, &inode);
1411 		if (err)
1412 			break;
1413 		err = -ENOENT;
1414 		if (!inode)
1415 			goto out_dput;
1416 
1417 		if (inode->i_op->follow_link) {
1418 			/* We commonly drop rcu-walk here */
1419 			if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1420 				return -ECHILD;
1421 			BUG_ON(inode != next.dentry->d_inode);
1422 			err = do_follow_link(&next, nd);
1423 			if (err)
1424 				goto return_err;
1425 			nd->inode = nd->path.dentry->d_inode;
1426 			err = -ENOENT;
1427 			if (!nd->inode)
1428 				break;
1429 		} else {
1430 			path_to_nameidata(&next, nd);
1431 			nd->inode = inode;
1432 		}
1433 		err = -ENOTDIR;
1434 		if (!nd->inode->i_op->lookup)
1435 			break;
1436 		continue;
1437 		/* here ends the main loop */
1438 
1439 last_with_slashes:
1440 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1441 last_component:
1442 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
1443 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1444 		if (lookup_flags & LOOKUP_PARENT)
1445 			goto lookup_parent;
1446 		if (this.name[0] == '.') switch (this.len) {
1447 			default:
1448 				break;
1449 			case 2:
1450 				if (this.name[1] != '.')
1451 					break;
1452 				if (nd->flags & LOOKUP_RCU) {
1453 					if (follow_dotdot_rcu(nd))
1454 						return -ECHILD;
1455 				} else
1456 					follow_dotdot(nd);
1457 				/* fallthrough */
1458 			case 1:
1459 				goto return_reval;
1460 		}
1461 		err = do_lookup(nd, &this, &next, &inode);
1462 		if (err)
1463 			break;
1464 		if (inode && unlikely(inode->i_op->follow_link) &&
1465 		    (lookup_flags & LOOKUP_FOLLOW)) {
1466 			if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1467 				return -ECHILD;
1468 			BUG_ON(inode != next.dentry->d_inode);
1469 			err = do_follow_link(&next, nd);
1470 			if (err)
1471 				goto return_err;
1472 			nd->inode = nd->path.dentry->d_inode;
1473 		} else {
1474 			path_to_nameidata(&next, nd);
1475 			nd->inode = inode;
1476 		}
1477 		err = -ENOENT;
1478 		if (!nd->inode)
1479 			break;
1480 		if (lookup_flags & LOOKUP_DIRECTORY) {
1481 			err = -ENOTDIR;
1482 			if (!nd->inode->i_op->lookup)
1483 				break;
1484 		}
1485 		goto return_base;
1486 lookup_parent:
1487 		nd->last = this;
1488 		nd->last_type = LAST_NORM;
1489 		if (this.name[0] != '.')
1490 			goto return_base;
1491 		if (this.len == 1)
1492 			nd->last_type = LAST_DOT;
1493 		else if (this.len == 2 && this.name[1] == '.')
1494 			nd->last_type = LAST_DOTDOT;
1495 		else
1496 			goto return_base;
1497 return_reval:
1498 		/*
1499 		 * We bypassed the ordinary revalidation routines.
1500 		 * We may need to check the cached dentry for staleness.
1501 		 */
1502 		if (need_reval_dot(nd->path.dentry)) {
1503 			/* Note: we do not d_invalidate() */
1504 			err = d_revalidate(nd->path.dentry, nd);
1505 			if (!err)
1506 				err = -ESTALE;
1507 			if (err < 0)
1508 				break;
1509 		}
1510 return_base:
1511 		if (nameidata_drop_rcu_last_maybe(nd))
1512 			return -ECHILD;
1513 		return 0;
1514 out_dput:
1515 		if (!(nd->flags & LOOKUP_RCU))
1516 			path_put_conditional(&next, nd);
1517 		break;
1518 	}
1519 	if (!(nd->flags & LOOKUP_RCU))
1520 		path_put(&nd->path);
1521 return_err:
1522 	return err;
1523 }
1524 
1525 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1526 {
1527 	current->total_link_count = 0;
1528 
1529 	return link_path_walk(name, nd);
1530 }
1531 
1532 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1533 {
1534 	current->total_link_count = 0;
1535 
1536 	return link_path_walk(name, nd);
1537 }
1538 
1539 static int path_walk(const char *name, struct nameidata *nd)
1540 {
1541 	struct path save = nd->path;
1542 	int result;
1543 
1544 	current->total_link_count = 0;
1545 
1546 	/* make sure the stuff we saved doesn't go away */
1547 	path_get(&save);
1548 
1549 	result = link_path_walk(name, nd);
1550 	if (result == -ESTALE) {
1551 		/* nd->path had been dropped */
1552 		current->total_link_count = 0;
1553 		nd->path = save;
1554 		path_get(&nd->path);
1555 		nd->flags |= LOOKUP_REVAL;
1556 		result = link_path_walk(name, nd);
1557 	}
1558 
1559 	path_put(&save);
1560 
1561 	return result;
1562 }
1563 
1564 static void path_finish_rcu(struct nameidata *nd)
1565 {
1566 	if (nd->flags & LOOKUP_RCU) {
1567 		/* RCU dangling. Cancel it. */
1568 		nd->flags &= ~LOOKUP_RCU;
1569 		nd->root.mnt = NULL;
1570 		rcu_read_unlock();
1571 		br_read_unlock(vfsmount_lock);
1572 	}
1573 	if (nd->file)
1574 		fput(nd->file);
1575 }
1576 
1577 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1578 {
1579 	int retval = 0;
1580 	int fput_needed;
1581 	struct file *file;
1582 
1583 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1584 	nd->flags = flags | LOOKUP_RCU;
1585 	nd->depth = 0;
1586 	nd->root.mnt = NULL;
1587 	nd->file = NULL;
1588 
1589 	if (*name=='/') {
1590 		struct fs_struct *fs = current->fs;
1591 		unsigned seq;
1592 
1593 		br_read_lock(vfsmount_lock);
1594 		rcu_read_lock();
1595 
1596 		do {
1597 			seq = read_seqcount_begin(&fs->seq);
1598 			nd->root = fs->root;
1599 			nd->path = nd->root;
1600 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1601 		} while (read_seqcount_retry(&fs->seq, seq));
1602 
1603 	} else if (dfd == AT_FDCWD) {
1604 		struct fs_struct *fs = current->fs;
1605 		unsigned seq;
1606 
1607 		br_read_lock(vfsmount_lock);
1608 		rcu_read_lock();
1609 
1610 		do {
1611 			seq = read_seqcount_begin(&fs->seq);
1612 			nd->path = fs->pwd;
1613 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1614 		} while (read_seqcount_retry(&fs->seq, seq));
1615 
1616 	} else {
1617 		struct dentry *dentry;
1618 
1619 		file = fget_light(dfd, &fput_needed);
1620 		retval = -EBADF;
1621 		if (!file)
1622 			goto out_fail;
1623 
1624 		dentry = file->f_path.dentry;
1625 
1626 		retval = -ENOTDIR;
1627 		if (!S_ISDIR(dentry->d_inode->i_mode))
1628 			goto fput_fail;
1629 
1630 		retval = file_permission(file, MAY_EXEC);
1631 		if (retval)
1632 			goto fput_fail;
1633 
1634 		nd->path = file->f_path;
1635 		if (fput_needed)
1636 			nd->file = file;
1637 
1638 		nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1639 		br_read_lock(vfsmount_lock);
1640 		rcu_read_lock();
1641 	}
1642 	nd->inode = nd->path.dentry->d_inode;
1643 	return 0;
1644 
1645 fput_fail:
1646 	fput_light(file, fput_needed);
1647 out_fail:
1648 	return retval;
1649 }
1650 
1651 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1652 {
1653 	int retval = 0;
1654 	int fput_needed;
1655 	struct file *file;
1656 
1657 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1658 	nd->flags = flags;
1659 	nd->depth = 0;
1660 	nd->root.mnt = NULL;
1661 
1662 	if (*name=='/') {
1663 		set_root(nd);
1664 		nd->path = nd->root;
1665 		path_get(&nd->root);
1666 	} else if (dfd == AT_FDCWD) {
1667 		get_fs_pwd(current->fs, &nd->path);
1668 	} else {
1669 		struct dentry *dentry;
1670 
1671 		file = fget_light(dfd, &fput_needed);
1672 		retval = -EBADF;
1673 		if (!file)
1674 			goto out_fail;
1675 
1676 		dentry = file->f_path.dentry;
1677 
1678 		retval = -ENOTDIR;
1679 		if (!S_ISDIR(dentry->d_inode->i_mode))
1680 			goto fput_fail;
1681 
1682 		retval = file_permission(file, MAY_EXEC);
1683 		if (retval)
1684 			goto fput_fail;
1685 
1686 		nd->path = file->f_path;
1687 		path_get(&file->f_path);
1688 
1689 		fput_light(file, fput_needed);
1690 	}
1691 	nd->inode = nd->path.dentry->d_inode;
1692 	return 0;
1693 
1694 fput_fail:
1695 	fput_light(file, fput_needed);
1696 out_fail:
1697 	return retval;
1698 }
1699 
1700 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1701 static int do_path_lookup(int dfd, const char *name,
1702 				unsigned int flags, struct nameidata *nd)
1703 {
1704 	int retval;
1705 
1706 	/*
1707 	 * Path walking is largely split up into 2 different synchronisation
1708 	 * schemes, rcu-walk and ref-walk (explained in
1709 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1710 	 * path walk code, but some things particularly setup, cleanup, and
1711 	 * following mounts are sufficiently divergent that functions are
1712 	 * duplicated. Typically there is a function foo(), and its RCU
1713 	 * analogue, foo_rcu().
1714 	 *
1715 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1716 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1717 	 * be handled by restarting a traditional ref-walk (which will always
1718 	 * be able to complete).
1719 	 */
1720 	retval = path_init_rcu(dfd, name, flags, nd);
1721 	if (unlikely(retval))
1722 		return retval;
1723 	retval = path_walk_rcu(name, nd);
1724 	path_finish_rcu(nd);
1725 	if (nd->root.mnt) {
1726 		path_put(&nd->root);
1727 		nd->root.mnt = NULL;
1728 	}
1729 
1730 	if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1731 		/* slower, locked walk */
1732 		if (retval == -ESTALE)
1733 			flags |= LOOKUP_REVAL;
1734 		retval = path_init(dfd, name, flags, nd);
1735 		if (unlikely(retval))
1736 			return retval;
1737 		retval = path_walk(name, nd);
1738 		if (nd->root.mnt) {
1739 			path_put(&nd->root);
1740 			nd->root.mnt = NULL;
1741 		}
1742 	}
1743 
1744 	if (likely(!retval)) {
1745 		if (unlikely(!audit_dummy_context())) {
1746 			if (nd->path.dentry && nd->inode)
1747 				audit_inode(name, nd->path.dentry);
1748 		}
1749 	}
1750 
1751 	return retval;
1752 }
1753 
1754 int path_lookup(const char *name, unsigned int flags,
1755 			struct nameidata *nd)
1756 {
1757 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1758 }
1759 
1760 int kern_path(const char *name, unsigned int flags, struct path *path)
1761 {
1762 	struct nameidata nd;
1763 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1764 	if (!res)
1765 		*path = nd.path;
1766 	return res;
1767 }
1768 
1769 /**
1770  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1771  * @dentry:  pointer to dentry of the base directory
1772  * @mnt: pointer to vfs mount of the base directory
1773  * @name: pointer to file name
1774  * @flags: lookup flags
1775  * @nd: pointer to nameidata
1776  */
1777 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1778 		    const char *name, unsigned int flags,
1779 		    struct nameidata *nd)
1780 {
1781 	int retval;
1782 
1783 	/* same as do_path_lookup */
1784 	nd->last_type = LAST_ROOT;
1785 	nd->flags = flags;
1786 	nd->depth = 0;
1787 
1788 	nd->path.dentry = dentry;
1789 	nd->path.mnt = mnt;
1790 	path_get(&nd->path);
1791 	nd->root = nd->path;
1792 	path_get(&nd->root);
1793 	nd->inode = nd->path.dentry->d_inode;
1794 
1795 	retval = path_walk(name, nd);
1796 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1797 				nd->inode))
1798 		audit_inode(name, nd->path.dentry);
1799 
1800 	path_put(&nd->root);
1801 	nd->root.mnt = NULL;
1802 
1803 	return retval;
1804 }
1805 
1806 static struct dentry *__lookup_hash(struct qstr *name,
1807 		struct dentry *base, struct nameidata *nd)
1808 {
1809 	struct inode *inode = base->d_inode;
1810 	struct dentry *dentry;
1811 	int err;
1812 
1813 	err = exec_permission(inode, 0);
1814 	if (err)
1815 		return ERR_PTR(err);
1816 
1817 	/*
1818 	 * See if the low-level filesystem might want
1819 	 * to use its own hash..
1820 	 */
1821 	if (base->d_flags & DCACHE_OP_HASH) {
1822 		err = base->d_op->d_hash(base, inode, name);
1823 		dentry = ERR_PTR(err);
1824 		if (err < 0)
1825 			goto out;
1826 	}
1827 
1828 	/*
1829 	 * Don't bother with __d_lookup: callers are for creat as
1830 	 * well as unlink, so a lot of the time it would cost
1831 	 * a double lookup.
1832 	 */
1833 	dentry = d_lookup(base, name);
1834 
1835 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1836 		dentry = do_revalidate(dentry, nd);
1837 
1838 	if (!dentry)
1839 		dentry = d_alloc_and_lookup(base, name, nd);
1840 out:
1841 	return dentry;
1842 }
1843 
1844 /*
1845  * Restricted form of lookup. Doesn't follow links, single-component only,
1846  * needs parent already locked. Doesn't follow mounts.
1847  * SMP-safe.
1848  */
1849 static struct dentry *lookup_hash(struct nameidata *nd)
1850 {
1851 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1852 }
1853 
1854 static int __lookup_one_len(const char *name, struct qstr *this,
1855 		struct dentry *base, int len)
1856 {
1857 	unsigned long hash;
1858 	unsigned int c;
1859 
1860 	this->name = name;
1861 	this->len = len;
1862 	if (!len)
1863 		return -EACCES;
1864 
1865 	hash = init_name_hash();
1866 	while (len--) {
1867 		c = *(const unsigned char *)name++;
1868 		if (c == '/' || c == '\0')
1869 			return -EACCES;
1870 		hash = partial_name_hash(c, hash);
1871 	}
1872 	this->hash = end_name_hash(hash);
1873 	return 0;
1874 }
1875 
1876 /**
1877  * lookup_one_len - filesystem helper to lookup single pathname component
1878  * @name:	pathname component to lookup
1879  * @base:	base directory to lookup from
1880  * @len:	maximum length @len should be interpreted to
1881  *
1882  * Note that this routine is purely a helper for filesystem usage and should
1883  * not be called by generic code.  Also note that by using this function the
1884  * nameidata argument is passed to the filesystem methods and a filesystem
1885  * using this helper needs to be prepared for that.
1886  */
1887 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1888 {
1889 	int err;
1890 	struct qstr this;
1891 
1892 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1893 
1894 	err = __lookup_one_len(name, &this, base, len);
1895 	if (err)
1896 		return ERR_PTR(err);
1897 
1898 	return __lookup_hash(&this, base, NULL);
1899 }
1900 
1901 int user_path_at(int dfd, const char __user *name, unsigned flags,
1902 		 struct path *path)
1903 {
1904 	struct nameidata nd;
1905 	char *tmp = getname(name);
1906 	int err = PTR_ERR(tmp);
1907 	if (!IS_ERR(tmp)) {
1908 
1909 		BUG_ON(flags & LOOKUP_PARENT);
1910 
1911 		err = do_path_lookup(dfd, tmp, flags, &nd);
1912 		putname(tmp);
1913 		if (!err)
1914 			*path = nd.path;
1915 	}
1916 	return err;
1917 }
1918 
1919 static int user_path_parent(int dfd, const char __user *path,
1920 			struct nameidata *nd, char **name)
1921 {
1922 	char *s = getname(path);
1923 	int error;
1924 
1925 	if (IS_ERR(s))
1926 		return PTR_ERR(s);
1927 
1928 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1929 	if (error)
1930 		putname(s);
1931 	else
1932 		*name = s;
1933 
1934 	return error;
1935 }
1936 
1937 /*
1938  * It's inline, so penalty for filesystems that don't use sticky bit is
1939  * minimal.
1940  */
1941 static inline int check_sticky(struct inode *dir, struct inode *inode)
1942 {
1943 	uid_t fsuid = current_fsuid();
1944 
1945 	if (!(dir->i_mode & S_ISVTX))
1946 		return 0;
1947 	if (inode->i_uid == fsuid)
1948 		return 0;
1949 	if (dir->i_uid == fsuid)
1950 		return 0;
1951 	return !capable(CAP_FOWNER);
1952 }
1953 
1954 /*
1955  *	Check whether we can remove a link victim from directory dir, check
1956  *  whether the type of victim is right.
1957  *  1. We can't do it if dir is read-only (done in permission())
1958  *  2. We should have write and exec permissions on dir
1959  *  3. We can't remove anything from append-only dir
1960  *  4. We can't do anything with immutable dir (done in permission())
1961  *  5. If the sticky bit on dir is set we should either
1962  *	a. be owner of dir, or
1963  *	b. be owner of victim, or
1964  *	c. have CAP_FOWNER capability
1965  *  6. If the victim is append-only or immutable we can't do antyhing with
1966  *     links pointing to it.
1967  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1968  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1969  *  9. We can't remove a root or mountpoint.
1970  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1971  *     nfs_async_unlink().
1972  */
1973 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1974 {
1975 	int error;
1976 
1977 	if (!victim->d_inode)
1978 		return -ENOENT;
1979 
1980 	BUG_ON(victim->d_parent->d_inode != dir);
1981 	audit_inode_child(victim, dir);
1982 
1983 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1984 	if (error)
1985 		return error;
1986 	if (IS_APPEND(dir))
1987 		return -EPERM;
1988 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1989 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1990 		return -EPERM;
1991 	if (isdir) {
1992 		if (!S_ISDIR(victim->d_inode->i_mode))
1993 			return -ENOTDIR;
1994 		if (IS_ROOT(victim))
1995 			return -EBUSY;
1996 	} else if (S_ISDIR(victim->d_inode->i_mode))
1997 		return -EISDIR;
1998 	if (IS_DEADDIR(dir))
1999 		return -ENOENT;
2000 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2001 		return -EBUSY;
2002 	return 0;
2003 }
2004 
2005 /*	Check whether we can create an object with dentry child in directory
2006  *  dir.
2007  *  1. We can't do it if child already exists (open has special treatment for
2008  *     this case, but since we are inlined it's OK)
2009  *  2. We can't do it if dir is read-only (done in permission())
2010  *  3. We should have write and exec permissions on dir
2011  *  4. We can't do it if dir is immutable (done in permission())
2012  */
2013 static inline int may_create(struct inode *dir, struct dentry *child)
2014 {
2015 	if (child->d_inode)
2016 		return -EEXIST;
2017 	if (IS_DEADDIR(dir))
2018 		return -ENOENT;
2019 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2020 }
2021 
2022 /*
2023  * p1 and p2 should be directories on the same fs.
2024  */
2025 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2026 {
2027 	struct dentry *p;
2028 
2029 	if (p1 == p2) {
2030 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2031 		return NULL;
2032 	}
2033 
2034 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2035 
2036 	p = d_ancestor(p2, p1);
2037 	if (p) {
2038 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2039 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2040 		return p;
2041 	}
2042 
2043 	p = d_ancestor(p1, p2);
2044 	if (p) {
2045 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2046 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2047 		return p;
2048 	}
2049 
2050 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2051 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2052 	return NULL;
2053 }
2054 
2055 void unlock_rename(struct dentry *p1, struct dentry *p2)
2056 {
2057 	mutex_unlock(&p1->d_inode->i_mutex);
2058 	if (p1 != p2) {
2059 		mutex_unlock(&p2->d_inode->i_mutex);
2060 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2061 	}
2062 }
2063 
2064 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2065 		struct nameidata *nd)
2066 {
2067 	int error = may_create(dir, dentry);
2068 
2069 	if (error)
2070 		return error;
2071 
2072 	if (!dir->i_op->create)
2073 		return -EACCES;	/* shouldn't it be ENOSYS? */
2074 	mode &= S_IALLUGO;
2075 	mode |= S_IFREG;
2076 	error = security_inode_create(dir, dentry, mode);
2077 	if (error)
2078 		return error;
2079 	error = dir->i_op->create(dir, dentry, mode, nd);
2080 	if (!error)
2081 		fsnotify_create(dir, dentry);
2082 	return error;
2083 }
2084 
2085 int may_open(struct path *path, int acc_mode, int flag)
2086 {
2087 	struct dentry *dentry = path->dentry;
2088 	struct inode *inode = dentry->d_inode;
2089 	int error;
2090 
2091 	if (!inode)
2092 		return -ENOENT;
2093 
2094 	switch (inode->i_mode & S_IFMT) {
2095 	case S_IFLNK:
2096 		return -ELOOP;
2097 	case S_IFDIR:
2098 		if (acc_mode & MAY_WRITE)
2099 			return -EISDIR;
2100 		break;
2101 	case S_IFBLK:
2102 	case S_IFCHR:
2103 		if (path->mnt->mnt_flags & MNT_NODEV)
2104 			return -EACCES;
2105 		/*FALLTHRU*/
2106 	case S_IFIFO:
2107 	case S_IFSOCK:
2108 		flag &= ~O_TRUNC;
2109 		break;
2110 	}
2111 
2112 	error = inode_permission(inode, acc_mode);
2113 	if (error)
2114 		return error;
2115 
2116 	/*
2117 	 * An append-only file must be opened in append mode for writing.
2118 	 */
2119 	if (IS_APPEND(inode)) {
2120 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2121 			return -EPERM;
2122 		if (flag & O_TRUNC)
2123 			return -EPERM;
2124 	}
2125 
2126 	/* O_NOATIME can only be set by the owner or superuser */
2127 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
2128 		return -EPERM;
2129 
2130 	/*
2131 	 * Ensure there are no outstanding leases on the file.
2132 	 */
2133 	return break_lease(inode, flag);
2134 }
2135 
2136 static int handle_truncate(struct file *filp)
2137 {
2138 	struct path *path = &filp->f_path;
2139 	struct inode *inode = path->dentry->d_inode;
2140 	int error = get_write_access(inode);
2141 	if (error)
2142 		return error;
2143 	/*
2144 	 * Refuse to truncate files with mandatory locks held on them.
2145 	 */
2146 	error = locks_verify_locked(inode);
2147 	if (!error)
2148 		error = security_path_truncate(path);
2149 	if (!error) {
2150 		error = do_truncate(path->dentry, 0,
2151 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2152 				    filp);
2153 	}
2154 	put_write_access(inode);
2155 	return error;
2156 }
2157 
2158 /*
2159  * Be careful about ever adding any more callers of this
2160  * function.  Its flags must be in the namei format, not
2161  * what get passed to sys_open().
2162  */
2163 static int __open_namei_create(struct nameidata *nd, struct path *path,
2164 				int open_flag, int mode)
2165 {
2166 	int error;
2167 	struct dentry *dir = nd->path.dentry;
2168 
2169 	if (!IS_POSIXACL(dir->d_inode))
2170 		mode &= ~current_umask();
2171 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2172 	if (error)
2173 		goto out_unlock;
2174 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2175 out_unlock:
2176 	mutex_unlock(&dir->d_inode->i_mutex);
2177 	dput(nd->path.dentry);
2178 	nd->path.dentry = path->dentry;
2179 
2180 	if (error)
2181 		return error;
2182 	/* Don't check for write permission, don't truncate */
2183 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2184 }
2185 
2186 /*
2187  * Note that while the flag value (low two bits) for sys_open means:
2188  *	00 - read-only
2189  *	01 - write-only
2190  *	10 - read-write
2191  *	11 - special
2192  * it is changed into
2193  *	00 - no permissions needed
2194  *	01 - read-permission
2195  *	10 - write-permission
2196  *	11 - read-write
2197  * for the internal routines (ie open_namei()/follow_link() etc)
2198  * This is more logical, and also allows the 00 "no perm needed"
2199  * to be used for symlinks (where the permissions are checked
2200  * later).
2201  *
2202 */
2203 static inline int open_to_namei_flags(int flag)
2204 {
2205 	if ((flag+1) & O_ACCMODE)
2206 		flag++;
2207 	return flag;
2208 }
2209 
2210 static int open_will_truncate(int flag, struct inode *inode)
2211 {
2212 	/*
2213 	 * We'll never write to the fs underlying
2214 	 * a device file.
2215 	 */
2216 	if (special_file(inode->i_mode))
2217 		return 0;
2218 	return (flag & O_TRUNC);
2219 }
2220 
2221 static struct file *finish_open(struct nameidata *nd,
2222 				int open_flag, int acc_mode)
2223 {
2224 	struct file *filp;
2225 	int will_truncate;
2226 	int error;
2227 
2228 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2229 	if (will_truncate) {
2230 		error = mnt_want_write(nd->path.mnt);
2231 		if (error)
2232 			goto exit;
2233 	}
2234 	error = may_open(&nd->path, acc_mode, open_flag);
2235 	if (error) {
2236 		if (will_truncate)
2237 			mnt_drop_write(nd->path.mnt);
2238 		goto exit;
2239 	}
2240 	filp = nameidata_to_filp(nd);
2241 	if (!IS_ERR(filp)) {
2242 		error = ima_file_check(filp, acc_mode);
2243 		if (error) {
2244 			fput(filp);
2245 			filp = ERR_PTR(error);
2246 		}
2247 	}
2248 	if (!IS_ERR(filp)) {
2249 		if (will_truncate) {
2250 			error = handle_truncate(filp);
2251 			if (error) {
2252 				fput(filp);
2253 				filp = ERR_PTR(error);
2254 			}
2255 		}
2256 	}
2257 	/*
2258 	 * It is now safe to drop the mnt write
2259 	 * because the filp has had a write taken
2260 	 * on its behalf.
2261 	 */
2262 	if (will_truncate)
2263 		mnt_drop_write(nd->path.mnt);
2264 	path_put(&nd->path);
2265 	return filp;
2266 
2267 exit:
2268 	if (!IS_ERR(nd->intent.open.file))
2269 		release_open_intent(nd);
2270 	path_put(&nd->path);
2271 	return ERR_PTR(error);
2272 }
2273 
2274 /*
2275  * Handle O_CREAT case for do_filp_open
2276  */
2277 static struct file *do_last(struct nameidata *nd, struct path *path,
2278 			    int open_flag, int acc_mode,
2279 			    int mode, const char *pathname)
2280 {
2281 	struct dentry *dir = nd->path.dentry;
2282 	struct file *filp;
2283 	int error = -EISDIR;
2284 
2285 	switch (nd->last_type) {
2286 	case LAST_DOTDOT:
2287 		follow_dotdot(nd);
2288 		dir = nd->path.dentry;
2289 	case LAST_DOT:
2290 		if (need_reval_dot(dir)) {
2291 			int status = d_revalidate(nd->path.dentry, nd);
2292 			if (!status)
2293 				status = -ESTALE;
2294 			if (status < 0) {
2295 				error = status;
2296 				goto exit;
2297 			}
2298 		}
2299 		/* fallthrough */
2300 	case LAST_ROOT:
2301 		goto exit;
2302 	case LAST_BIND:
2303 		audit_inode(pathname, dir);
2304 		goto ok;
2305 	}
2306 
2307 	/* trailing slashes? */
2308 	if (nd->last.name[nd->last.len])
2309 		goto exit;
2310 
2311 	mutex_lock(&dir->d_inode->i_mutex);
2312 
2313 	path->dentry = lookup_hash(nd);
2314 	path->mnt = nd->path.mnt;
2315 
2316 	error = PTR_ERR(path->dentry);
2317 	if (IS_ERR(path->dentry)) {
2318 		mutex_unlock(&dir->d_inode->i_mutex);
2319 		goto exit;
2320 	}
2321 
2322 	if (IS_ERR(nd->intent.open.file)) {
2323 		error = PTR_ERR(nd->intent.open.file);
2324 		goto exit_mutex_unlock;
2325 	}
2326 
2327 	/* Negative dentry, just create the file */
2328 	if (!path->dentry->d_inode) {
2329 		/*
2330 		 * This write is needed to ensure that a
2331 		 * ro->rw transition does not occur between
2332 		 * the time when the file is created and when
2333 		 * a permanent write count is taken through
2334 		 * the 'struct file' in nameidata_to_filp().
2335 		 */
2336 		error = mnt_want_write(nd->path.mnt);
2337 		if (error)
2338 			goto exit_mutex_unlock;
2339 		error = __open_namei_create(nd, path, open_flag, mode);
2340 		if (error) {
2341 			mnt_drop_write(nd->path.mnt);
2342 			goto exit;
2343 		}
2344 		filp = nameidata_to_filp(nd);
2345 		mnt_drop_write(nd->path.mnt);
2346 		path_put(&nd->path);
2347 		if (!IS_ERR(filp)) {
2348 			error = ima_file_check(filp, acc_mode);
2349 			if (error) {
2350 				fput(filp);
2351 				filp = ERR_PTR(error);
2352 			}
2353 		}
2354 		return filp;
2355 	}
2356 
2357 	/*
2358 	 * It already exists.
2359 	 */
2360 	mutex_unlock(&dir->d_inode->i_mutex);
2361 	audit_inode(pathname, path->dentry);
2362 
2363 	error = -EEXIST;
2364 	if (open_flag & O_EXCL)
2365 		goto exit_dput;
2366 
2367 	error = follow_managed(path, nd->flags);
2368 	if (error < 0)
2369 		goto exit_dput;
2370 
2371 	error = -ENOENT;
2372 	if (!path->dentry->d_inode)
2373 		goto exit_dput;
2374 
2375 	if (path->dentry->d_inode->i_op->follow_link)
2376 		return NULL;
2377 
2378 	path_to_nameidata(path, nd);
2379 	nd->inode = path->dentry->d_inode;
2380 	error = -EISDIR;
2381 	if (S_ISDIR(nd->inode->i_mode))
2382 		goto exit;
2383 ok:
2384 	filp = finish_open(nd, open_flag, acc_mode);
2385 	return filp;
2386 
2387 exit_mutex_unlock:
2388 	mutex_unlock(&dir->d_inode->i_mutex);
2389 exit_dput:
2390 	path_put_conditional(path, nd);
2391 exit:
2392 	if (!IS_ERR(nd->intent.open.file))
2393 		release_open_intent(nd);
2394 	path_put(&nd->path);
2395 	return ERR_PTR(error);
2396 }
2397 
2398 /*
2399  * Note that the low bits of the passed in "open_flag"
2400  * are not the same as in the local variable "flag". See
2401  * open_to_namei_flags() for more details.
2402  */
2403 struct file *do_filp_open(int dfd, const char *pathname,
2404 		int open_flag, int mode, int acc_mode)
2405 {
2406 	struct file *filp;
2407 	struct nameidata nd;
2408 	int error;
2409 	struct path path;
2410 	int count = 0;
2411 	int flag = open_to_namei_flags(open_flag);
2412 	int flags;
2413 
2414 	if (!(open_flag & O_CREAT))
2415 		mode = 0;
2416 
2417 	/* Must never be set by userspace */
2418 	open_flag &= ~FMODE_NONOTIFY;
2419 
2420 	/*
2421 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
2422 	 * check for O_DSYNC if the need any syncing at all we enforce it's
2423 	 * always set instead of having to deal with possibly weird behaviour
2424 	 * for malicious applications setting only __O_SYNC.
2425 	 */
2426 	if (open_flag & __O_SYNC)
2427 		open_flag |= O_DSYNC;
2428 
2429 	if (!acc_mode)
2430 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2431 
2432 	/* O_TRUNC implies we need access checks for write permissions */
2433 	if (open_flag & O_TRUNC)
2434 		acc_mode |= MAY_WRITE;
2435 
2436 	/* Allow the LSM permission hook to distinguish append
2437 	   access from general write access. */
2438 	if (open_flag & O_APPEND)
2439 		acc_mode |= MAY_APPEND;
2440 
2441 	flags = LOOKUP_OPEN;
2442 	if (open_flag & O_CREAT) {
2443 		flags |= LOOKUP_CREATE;
2444 		if (open_flag & O_EXCL)
2445 			flags |= LOOKUP_EXCL;
2446 	}
2447 	if (open_flag & O_DIRECTORY)
2448 		flags |= LOOKUP_DIRECTORY;
2449 	if (!(open_flag & O_NOFOLLOW))
2450 		flags |= LOOKUP_FOLLOW;
2451 
2452 	filp = get_empty_filp();
2453 	if (!filp)
2454 		return ERR_PTR(-ENFILE);
2455 
2456 	filp->f_flags = open_flag;
2457 	nd.intent.open.file = filp;
2458 	nd.intent.open.flags = flag;
2459 	nd.intent.open.create_mode = mode;
2460 
2461 	if (open_flag & O_CREAT)
2462 		goto creat;
2463 
2464 	/* !O_CREAT, simple open */
2465 	error = do_path_lookup(dfd, pathname, flags, &nd);
2466 	if (unlikely(error))
2467 		goto out_filp;
2468 	error = -ELOOP;
2469 	if (!(nd.flags & LOOKUP_FOLLOW)) {
2470 		if (nd.inode->i_op->follow_link)
2471 			goto out_path;
2472 	}
2473 	error = -ENOTDIR;
2474 	if (nd.flags & LOOKUP_DIRECTORY) {
2475 		if (!nd.inode->i_op->lookup)
2476 			goto out_path;
2477 	}
2478 	audit_inode(pathname, nd.path.dentry);
2479 	filp = finish_open(&nd, open_flag, acc_mode);
2480 	return filp;
2481 
2482 creat:
2483 	/* OK, have to create the file. Find the parent. */
2484 	error = path_init_rcu(dfd, pathname,
2485 			LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2486 	if (error)
2487 		goto out_filp;
2488 	error = path_walk_rcu(pathname, &nd);
2489 	path_finish_rcu(&nd);
2490 	if (unlikely(error == -ECHILD || error == -ESTALE)) {
2491 		/* slower, locked walk */
2492 		if (error == -ESTALE) {
2493 reval:
2494 			flags |= LOOKUP_REVAL;
2495 		}
2496 		error = path_init(dfd, pathname,
2497 				LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2498 		if (error)
2499 			goto out_filp;
2500 
2501 		error = path_walk_simple(pathname, &nd);
2502 	}
2503 	if (unlikely(error))
2504 		goto out_filp;
2505 	if (unlikely(!audit_dummy_context()))
2506 		audit_inode(pathname, nd.path.dentry);
2507 
2508 	/*
2509 	 * We have the parent and last component.
2510 	 */
2511 	nd.flags = flags;
2512 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2513 	while (unlikely(!filp)) { /* trailing symlink */
2514 		struct path link = path;
2515 		struct inode *linki = link.dentry->d_inode;
2516 		void *cookie;
2517 		error = -ELOOP;
2518 		if (!(nd.flags & LOOKUP_FOLLOW))
2519 			goto exit_dput;
2520 		if (count++ == 32)
2521 			goto exit_dput;
2522 		/*
2523 		 * This is subtle. Instead of calling do_follow_link() we do
2524 		 * the thing by hands. The reason is that this way we have zero
2525 		 * link_count and path_walk() (called from ->follow_link)
2526 		 * honoring LOOKUP_PARENT.  After that we have the parent and
2527 		 * last component, i.e. we are in the same situation as after
2528 		 * the first path_walk().  Well, almost - if the last component
2529 		 * is normal we get its copy stored in nd->last.name and we will
2530 		 * have to putname() it when we are done. Procfs-like symlinks
2531 		 * just set LAST_BIND.
2532 		 */
2533 		nd.flags |= LOOKUP_PARENT;
2534 		error = security_inode_follow_link(link.dentry, &nd);
2535 		if (error)
2536 			goto exit_dput;
2537 		error = __do_follow_link(&link, &nd, &cookie);
2538 		if (unlikely(error)) {
2539 			if (!IS_ERR(cookie) && linki->i_op->put_link)
2540 				linki->i_op->put_link(link.dentry, &nd, cookie);
2541 			/* nd.path had been dropped */
2542 			nd.path = link;
2543 			goto out_path;
2544 		}
2545 		nd.flags &= ~LOOKUP_PARENT;
2546 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2547 		if (linki->i_op->put_link)
2548 			linki->i_op->put_link(link.dentry, &nd, cookie);
2549 		path_put(&link);
2550 	}
2551 out:
2552 	if (nd.root.mnt)
2553 		path_put(&nd.root);
2554 	if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2555 		goto reval;
2556 	return filp;
2557 
2558 exit_dput:
2559 	path_put_conditional(&path, &nd);
2560 out_path:
2561 	path_put(&nd.path);
2562 out_filp:
2563 	if (!IS_ERR(nd.intent.open.file))
2564 		release_open_intent(&nd);
2565 	filp = ERR_PTR(error);
2566 	goto out;
2567 }
2568 
2569 /**
2570  * filp_open - open file and return file pointer
2571  *
2572  * @filename:	path to open
2573  * @flags:	open flags as per the open(2) second argument
2574  * @mode:	mode for the new file if O_CREAT is set, else ignored
2575  *
2576  * This is the helper to open a file from kernelspace if you really
2577  * have to.  But in generally you should not do this, so please move
2578  * along, nothing to see here..
2579  */
2580 struct file *filp_open(const char *filename, int flags, int mode)
2581 {
2582 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2583 }
2584 EXPORT_SYMBOL(filp_open);
2585 
2586 /**
2587  * lookup_create - lookup a dentry, creating it if it doesn't exist
2588  * @nd: nameidata info
2589  * @is_dir: directory flag
2590  *
2591  * Simple function to lookup and return a dentry and create it
2592  * if it doesn't exist.  Is SMP-safe.
2593  *
2594  * Returns with nd->path.dentry->d_inode->i_mutex locked.
2595  */
2596 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2597 {
2598 	struct dentry *dentry = ERR_PTR(-EEXIST);
2599 
2600 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2601 	/*
2602 	 * Yucky last component or no last component at all?
2603 	 * (foo/., foo/.., /////)
2604 	 */
2605 	if (nd->last_type != LAST_NORM)
2606 		goto fail;
2607 	nd->flags &= ~LOOKUP_PARENT;
2608 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2609 	nd->intent.open.flags = O_EXCL;
2610 
2611 	/*
2612 	 * Do the final lookup.
2613 	 */
2614 	dentry = lookup_hash(nd);
2615 	if (IS_ERR(dentry))
2616 		goto fail;
2617 
2618 	if (dentry->d_inode)
2619 		goto eexist;
2620 	/*
2621 	 * Special case - lookup gave negative, but... we had foo/bar/
2622 	 * From the vfs_mknod() POV we just have a negative dentry -
2623 	 * all is fine. Let's be bastards - you had / on the end, you've
2624 	 * been asking for (non-existent) directory. -ENOENT for you.
2625 	 */
2626 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2627 		dput(dentry);
2628 		dentry = ERR_PTR(-ENOENT);
2629 	}
2630 	return dentry;
2631 eexist:
2632 	dput(dentry);
2633 	dentry = ERR_PTR(-EEXIST);
2634 fail:
2635 	return dentry;
2636 }
2637 EXPORT_SYMBOL_GPL(lookup_create);
2638 
2639 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2640 {
2641 	int error = may_create(dir, dentry);
2642 
2643 	if (error)
2644 		return error;
2645 
2646 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2647 		return -EPERM;
2648 
2649 	if (!dir->i_op->mknod)
2650 		return -EPERM;
2651 
2652 	error = devcgroup_inode_mknod(mode, dev);
2653 	if (error)
2654 		return error;
2655 
2656 	error = security_inode_mknod(dir, dentry, mode, dev);
2657 	if (error)
2658 		return error;
2659 
2660 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2661 	if (!error)
2662 		fsnotify_create(dir, dentry);
2663 	return error;
2664 }
2665 
2666 static int may_mknod(mode_t mode)
2667 {
2668 	switch (mode & S_IFMT) {
2669 	case S_IFREG:
2670 	case S_IFCHR:
2671 	case S_IFBLK:
2672 	case S_IFIFO:
2673 	case S_IFSOCK:
2674 	case 0: /* zero mode translates to S_IFREG */
2675 		return 0;
2676 	case S_IFDIR:
2677 		return -EPERM;
2678 	default:
2679 		return -EINVAL;
2680 	}
2681 }
2682 
2683 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2684 		unsigned, dev)
2685 {
2686 	int error;
2687 	char *tmp;
2688 	struct dentry *dentry;
2689 	struct nameidata nd;
2690 
2691 	if (S_ISDIR(mode))
2692 		return -EPERM;
2693 
2694 	error = user_path_parent(dfd, filename, &nd, &tmp);
2695 	if (error)
2696 		return error;
2697 
2698 	dentry = lookup_create(&nd, 0);
2699 	if (IS_ERR(dentry)) {
2700 		error = PTR_ERR(dentry);
2701 		goto out_unlock;
2702 	}
2703 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2704 		mode &= ~current_umask();
2705 	error = may_mknod(mode);
2706 	if (error)
2707 		goto out_dput;
2708 	error = mnt_want_write(nd.path.mnt);
2709 	if (error)
2710 		goto out_dput;
2711 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2712 	if (error)
2713 		goto out_drop_write;
2714 	switch (mode & S_IFMT) {
2715 		case 0: case S_IFREG:
2716 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2717 			break;
2718 		case S_IFCHR: case S_IFBLK:
2719 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2720 					new_decode_dev(dev));
2721 			break;
2722 		case S_IFIFO: case S_IFSOCK:
2723 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2724 			break;
2725 	}
2726 out_drop_write:
2727 	mnt_drop_write(nd.path.mnt);
2728 out_dput:
2729 	dput(dentry);
2730 out_unlock:
2731 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2732 	path_put(&nd.path);
2733 	putname(tmp);
2734 
2735 	return error;
2736 }
2737 
2738 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2739 {
2740 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2741 }
2742 
2743 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2744 {
2745 	int error = may_create(dir, dentry);
2746 
2747 	if (error)
2748 		return error;
2749 
2750 	if (!dir->i_op->mkdir)
2751 		return -EPERM;
2752 
2753 	mode &= (S_IRWXUGO|S_ISVTX);
2754 	error = security_inode_mkdir(dir, dentry, mode);
2755 	if (error)
2756 		return error;
2757 
2758 	error = dir->i_op->mkdir(dir, dentry, mode);
2759 	if (!error)
2760 		fsnotify_mkdir(dir, dentry);
2761 	return error;
2762 }
2763 
2764 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2765 {
2766 	int error = 0;
2767 	char * tmp;
2768 	struct dentry *dentry;
2769 	struct nameidata nd;
2770 
2771 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2772 	if (error)
2773 		goto out_err;
2774 
2775 	dentry = lookup_create(&nd, 1);
2776 	error = PTR_ERR(dentry);
2777 	if (IS_ERR(dentry))
2778 		goto out_unlock;
2779 
2780 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2781 		mode &= ~current_umask();
2782 	error = mnt_want_write(nd.path.mnt);
2783 	if (error)
2784 		goto out_dput;
2785 	error = security_path_mkdir(&nd.path, dentry, mode);
2786 	if (error)
2787 		goto out_drop_write;
2788 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2789 out_drop_write:
2790 	mnt_drop_write(nd.path.mnt);
2791 out_dput:
2792 	dput(dentry);
2793 out_unlock:
2794 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2795 	path_put(&nd.path);
2796 	putname(tmp);
2797 out_err:
2798 	return error;
2799 }
2800 
2801 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2802 {
2803 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2804 }
2805 
2806 /*
2807  * We try to drop the dentry early: we should have
2808  * a usage count of 2 if we're the only user of this
2809  * dentry, and if that is true (possibly after pruning
2810  * the dcache), then we drop the dentry now.
2811  *
2812  * A low-level filesystem can, if it choses, legally
2813  * do a
2814  *
2815  *	if (!d_unhashed(dentry))
2816  *		return -EBUSY;
2817  *
2818  * if it cannot handle the case of removing a directory
2819  * that is still in use by something else..
2820  */
2821 void dentry_unhash(struct dentry *dentry)
2822 {
2823 	dget(dentry);
2824 	shrink_dcache_parent(dentry);
2825 	spin_lock(&dentry->d_lock);
2826 	if (dentry->d_count == 2)
2827 		__d_drop(dentry);
2828 	spin_unlock(&dentry->d_lock);
2829 }
2830 
2831 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2832 {
2833 	int error = may_delete(dir, dentry, 1);
2834 
2835 	if (error)
2836 		return error;
2837 
2838 	if (!dir->i_op->rmdir)
2839 		return -EPERM;
2840 
2841 	mutex_lock(&dentry->d_inode->i_mutex);
2842 	dentry_unhash(dentry);
2843 	if (d_mountpoint(dentry))
2844 		error = -EBUSY;
2845 	else {
2846 		error = security_inode_rmdir(dir, dentry);
2847 		if (!error) {
2848 			error = dir->i_op->rmdir(dir, dentry);
2849 			if (!error) {
2850 				dentry->d_inode->i_flags |= S_DEAD;
2851 				dont_mount(dentry);
2852 			}
2853 		}
2854 	}
2855 	mutex_unlock(&dentry->d_inode->i_mutex);
2856 	if (!error) {
2857 		d_delete(dentry);
2858 	}
2859 	dput(dentry);
2860 
2861 	return error;
2862 }
2863 
2864 static long do_rmdir(int dfd, const char __user *pathname)
2865 {
2866 	int error = 0;
2867 	char * name;
2868 	struct dentry *dentry;
2869 	struct nameidata nd;
2870 
2871 	error = user_path_parent(dfd, pathname, &nd, &name);
2872 	if (error)
2873 		return error;
2874 
2875 	switch(nd.last_type) {
2876 	case LAST_DOTDOT:
2877 		error = -ENOTEMPTY;
2878 		goto exit1;
2879 	case LAST_DOT:
2880 		error = -EINVAL;
2881 		goto exit1;
2882 	case LAST_ROOT:
2883 		error = -EBUSY;
2884 		goto exit1;
2885 	}
2886 
2887 	nd.flags &= ~LOOKUP_PARENT;
2888 
2889 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2890 	dentry = lookup_hash(&nd);
2891 	error = PTR_ERR(dentry);
2892 	if (IS_ERR(dentry))
2893 		goto exit2;
2894 	error = mnt_want_write(nd.path.mnt);
2895 	if (error)
2896 		goto exit3;
2897 	error = security_path_rmdir(&nd.path, dentry);
2898 	if (error)
2899 		goto exit4;
2900 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2901 exit4:
2902 	mnt_drop_write(nd.path.mnt);
2903 exit3:
2904 	dput(dentry);
2905 exit2:
2906 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2907 exit1:
2908 	path_put(&nd.path);
2909 	putname(name);
2910 	return error;
2911 }
2912 
2913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2914 {
2915 	return do_rmdir(AT_FDCWD, pathname);
2916 }
2917 
2918 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2919 {
2920 	int error = may_delete(dir, dentry, 0);
2921 
2922 	if (error)
2923 		return error;
2924 
2925 	if (!dir->i_op->unlink)
2926 		return -EPERM;
2927 
2928 	mutex_lock(&dentry->d_inode->i_mutex);
2929 	if (d_mountpoint(dentry))
2930 		error = -EBUSY;
2931 	else {
2932 		error = security_inode_unlink(dir, dentry);
2933 		if (!error) {
2934 			error = dir->i_op->unlink(dir, dentry);
2935 			if (!error)
2936 				dont_mount(dentry);
2937 		}
2938 	}
2939 	mutex_unlock(&dentry->d_inode->i_mutex);
2940 
2941 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2942 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2943 		fsnotify_link_count(dentry->d_inode);
2944 		d_delete(dentry);
2945 	}
2946 
2947 	return error;
2948 }
2949 
2950 /*
2951  * Make sure that the actual truncation of the file will occur outside its
2952  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2953  * writeout happening, and we don't want to prevent access to the directory
2954  * while waiting on the I/O.
2955  */
2956 static long do_unlinkat(int dfd, const char __user *pathname)
2957 {
2958 	int error;
2959 	char *name;
2960 	struct dentry *dentry;
2961 	struct nameidata nd;
2962 	struct inode *inode = NULL;
2963 
2964 	error = user_path_parent(dfd, pathname, &nd, &name);
2965 	if (error)
2966 		return error;
2967 
2968 	error = -EISDIR;
2969 	if (nd.last_type != LAST_NORM)
2970 		goto exit1;
2971 
2972 	nd.flags &= ~LOOKUP_PARENT;
2973 
2974 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2975 	dentry = lookup_hash(&nd);
2976 	error = PTR_ERR(dentry);
2977 	if (!IS_ERR(dentry)) {
2978 		/* Why not before? Because we want correct error value */
2979 		if (nd.last.name[nd.last.len])
2980 			goto slashes;
2981 		inode = dentry->d_inode;
2982 		if (inode)
2983 			ihold(inode);
2984 		error = mnt_want_write(nd.path.mnt);
2985 		if (error)
2986 			goto exit2;
2987 		error = security_path_unlink(&nd.path, dentry);
2988 		if (error)
2989 			goto exit3;
2990 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2991 exit3:
2992 		mnt_drop_write(nd.path.mnt);
2993 	exit2:
2994 		dput(dentry);
2995 	}
2996 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2997 	if (inode)
2998 		iput(inode);	/* truncate the inode here */
2999 exit1:
3000 	path_put(&nd.path);
3001 	putname(name);
3002 	return error;
3003 
3004 slashes:
3005 	error = !dentry->d_inode ? -ENOENT :
3006 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3007 	goto exit2;
3008 }
3009 
3010 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3011 {
3012 	if ((flag & ~AT_REMOVEDIR) != 0)
3013 		return -EINVAL;
3014 
3015 	if (flag & AT_REMOVEDIR)
3016 		return do_rmdir(dfd, pathname);
3017 
3018 	return do_unlinkat(dfd, pathname);
3019 }
3020 
3021 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3022 {
3023 	return do_unlinkat(AT_FDCWD, pathname);
3024 }
3025 
3026 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3027 {
3028 	int error = may_create(dir, dentry);
3029 
3030 	if (error)
3031 		return error;
3032 
3033 	if (!dir->i_op->symlink)
3034 		return -EPERM;
3035 
3036 	error = security_inode_symlink(dir, dentry, oldname);
3037 	if (error)
3038 		return error;
3039 
3040 	error = dir->i_op->symlink(dir, dentry, oldname);
3041 	if (!error)
3042 		fsnotify_create(dir, dentry);
3043 	return error;
3044 }
3045 
3046 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3047 		int, newdfd, const char __user *, newname)
3048 {
3049 	int error;
3050 	char *from;
3051 	char *to;
3052 	struct dentry *dentry;
3053 	struct nameidata nd;
3054 
3055 	from = getname(oldname);
3056 	if (IS_ERR(from))
3057 		return PTR_ERR(from);
3058 
3059 	error = user_path_parent(newdfd, newname, &nd, &to);
3060 	if (error)
3061 		goto out_putname;
3062 
3063 	dentry = lookup_create(&nd, 0);
3064 	error = PTR_ERR(dentry);
3065 	if (IS_ERR(dentry))
3066 		goto out_unlock;
3067 
3068 	error = mnt_want_write(nd.path.mnt);
3069 	if (error)
3070 		goto out_dput;
3071 	error = security_path_symlink(&nd.path, dentry, from);
3072 	if (error)
3073 		goto out_drop_write;
3074 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3075 out_drop_write:
3076 	mnt_drop_write(nd.path.mnt);
3077 out_dput:
3078 	dput(dentry);
3079 out_unlock:
3080 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3081 	path_put(&nd.path);
3082 	putname(to);
3083 out_putname:
3084 	putname(from);
3085 	return error;
3086 }
3087 
3088 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3089 {
3090 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3091 }
3092 
3093 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3094 {
3095 	struct inode *inode = old_dentry->d_inode;
3096 	int error;
3097 
3098 	if (!inode)
3099 		return -ENOENT;
3100 
3101 	error = may_create(dir, new_dentry);
3102 	if (error)
3103 		return error;
3104 
3105 	if (dir->i_sb != inode->i_sb)
3106 		return -EXDEV;
3107 
3108 	/*
3109 	 * A link to an append-only or immutable file cannot be created.
3110 	 */
3111 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3112 		return -EPERM;
3113 	if (!dir->i_op->link)
3114 		return -EPERM;
3115 	if (S_ISDIR(inode->i_mode))
3116 		return -EPERM;
3117 
3118 	error = security_inode_link(old_dentry, dir, new_dentry);
3119 	if (error)
3120 		return error;
3121 
3122 	mutex_lock(&inode->i_mutex);
3123 	error = dir->i_op->link(old_dentry, dir, new_dentry);
3124 	mutex_unlock(&inode->i_mutex);
3125 	if (!error)
3126 		fsnotify_link(dir, inode, new_dentry);
3127 	return error;
3128 }
3129 
3130 /*
3131  * Hardlinks are often used in delicate situations.  We avoid
3132  * security-related surprises by not following symlinks on the
3133  * newname.  --KAB
3134  *
3135  * We don't follow them on the oldname either to be compatible
3136  * with linux 2.0, and to avoid hard-linking to directories
3137  * and other special files.  --ADM
3138  */
3139 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3140 		int, newdfd, const char __user *, newname, int, flags)
3141 {
3142 	struct dentry *new_dentry;
3143 	struct nameidata nd;
3144 	struct path old_path;
3145 	int error;
3146 	char *to;
3147 
3148 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3149 		return -EINVAL;
3150 
3151 	error = user_path_at(olddfd, oldname,
3152 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3153 			     &old_path);
3154 	if (error)
3155 		return error;
3156 
3157 	error = user_path_parent(newdfd, newname, &nd, &to);
3158 	if (error)
3159 		goto out;
3160 	error = -EXDEV;
3161 	if (old_path.mnt != nd.path.mnt)
3162 		goto out_release;
3163 	new_dentry = lookup_create(&nd, 0);
3164 	error = PTR_ERR(new_dentry);
3165 	if (IS_ERR(new_dentry))
3166 		goto out_unlock;
3167 	error = mnt_want_write(nd.path.mnt);
3168 	if (error)
3169 		goto out_dput;
3170 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3171 	if (error)
3172 		goto out_drop_write;
3173 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3174 out_drop_write:
3175 	mnt_drop_write(nd.path.mnt);
3176 out_dput:
3177 	dput(new_dentry);
3178 out_unlock:
3179 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3180 out_release:
3181 	path_put(&nd.path);
3182 	putname(to);
3183 out:
3184 	path_put(&old_path);
3185 
3186 	return error;
3187 }
3188 
3189 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3190 {
3191 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3192 }
3193 
3194 /*
3195  * The worst of all namespace operations - renaming directory. "Perverted"
3196  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3197  * Problems:
3198  *	a) we can get into loop creation. Check is done in is_subdir().
3199  *	b) race potential - two innocent renames can create a loop together.
3200  *	   That's where 4.4 screws up. Current fix: serialization on
3201  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3202  *	   story.
3203  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3204  *	   And that - after we got ->i_mutex on parents (until then we don't know
3205  *	   whether the target exists).  Solution: try to be smart with locking
3206  *	   order for inodes.  We rely on the fact that tree topology may change
3207  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3208  *	   move will be locked.  Thus we can rank directories by the tree
3209  *	   (ancestors first) and rank all non-directories after them.
3210  *	   That works since everybody except rename does "lock parent, lookup,
3211  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3212  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3213  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3214  *	   we'd better make sure that there's no link(2) for them.
3215  *	d) some filesystems don't support opened-but-unlinked directories,
3216  *	   either because of layout or because they are not ready to deal with
3217  *	   all cases correctly. The latter will be fixed (taking this sort of
3218  *	   stuff into VFS), but the former is not going away. Solution: the same
3219  *	   trick as in rmdir().
3220  *	e) conversion from fhandle to dentry may come in the wrong moment - when
3221  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3222  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3223  *	   ->i_mutex on parents, which works but leads to some truly excessive
3224  *	   locking].
3225  */
3226 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3227 			  struct inode *new_dir, struct dentry *new_dentry)
3228 {
3229 	int error = 0;
3230 	struct inode *target;
3231 
3232 	/*
3233 	 * If we are going to change the parent - check write permissions,
3234 	 * we'll need to flip '..'.
3235 	 */
3236 	if (new_dir != old_dir) {
3237 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3238 		if (error)
3239 			return error;
3240 	}
3241 
3242 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3243 	if (error)
3244 		return error;
3245 
3246 	target = new_dentry->d_inode;
3247 	if (target)
3248 		mutex_lock(&target->i_mutex);
3249 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3250 		error = -EBUSY;
3251 	else {
3252 		if (target)
3253 			dentry_unhash(new_dentry);
3254 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3255 	}
3256 	if (target) {
3257 		if (!error) {
3258 			target->i_flags |= S_DEAD;
3259 			dont_mount(new_dentry);
3260 		}
3261 		mutex_unlock(&target->i_mutex);
3262 		if (d_unhashed(new_dentry))
3263 			d_rehash(new_dentry);
3264 		dput(new_dentry);
3265 	}
3266 	if (!error)
3267 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3268 			d_move(old_dentry,new_dentry);
3269 	return error;
3270 }
3271 
3272 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3273 			    struct inode *new_dir, struct dentry *new_dentry)
3274 {
3275 	struct inode *target;
3276 	int error;
3277 
3278 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3279 	if (error)
3280 		return error;
3281 
3282 	dget(new_dentry);
3283 	target = new_dentry->d_inode;
3284 	if (target)
3285 		mutex_lock(&target->i_mutex);
3286 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3287 		error = -EBUSY;
3288 	else
3289 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3290 	if (!error) {
3291 		if (target)
3292 			dont_mount(new_dentry);
3293 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3294 			d_move(old_dentry, new_dentry);
3295 	}
3296 	if (target)
3297 		mutex_unlock(&target->i_mutex);
3298 	dput(new_dentry);
3299 	return error;
3300 }
3301 
3302 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3303 	       struct inode *new_dir, struct dentry *new_dentry)
3304 {
3305 	int error;
3306 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3307 	const unsigned char *old_name;
3308 
3309 	if (old_dentry->d_inode == new_dentry->d_inode)
3310  		return 0;
3311 
3312 	error = may_delete(old_dir, old_dentry, is_dir);
3313 	if (error)
3314 		return error;
3315 
3316 	if (!new_dentry->d_inode)
3317 		error = may_create(new_dir, new_dentry);
3318 	else
3319 		error = may_delete(new_dir, new_dentry, is_dir);
3320 	if (error)
3321 		return error;
3322 
3323 	if (!old_dir->i_op->rename)
3324 		return -EPERM;
3325 
3326 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3327 
3328 	if (is_dir)
3329 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3330 	else
3331 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3332 	if (!error)
3333 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3334 			      new_dentry->d_inode, old_dentry);
3335 	fsnotify_oldname_free(old_name);
3336 
3337 	return error;
3338 }
3339 
3340 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3341 		int, newdfd, const char __user *, newname)
3342 {
3343 	struct dentry *old_dir, *new_dir;
3344 	struct dentry *old_dentry, *new_dentry;
3345 	struct dentry *trap;
3346 	struct nameidata oldnd, newnd;
3347 	char *from;
3348 	char *to;
3349 	int error;
3350 
3351 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3352 	if (error)
3353 		goto exit;
3354 
3355 	error = user_path_parent(newdfd, newname, &newnd, &to);
3356 	if (error)
3357 		goto exit1;
3358 
3359 	error = -EXDEV;
3360 	if (oldnd.path.mnt != newnd.path.mnt)
3361 		goto exit2;
3362 
3363 	old_dir = oldnd.path.dentry;
3364 	error = -EBUSY;
3365 	if (oldnd.last_type != LAST_NORM)
3366 		goto exit2;
3367 
3368 	new_dir = newnd.path.dentry;
3369 	if (newnd.last_type != LAST_NORM)
3370 		goto exit2;
3371 
3372 	oldnd.flags &= ~LOOKUP_PARENT;
3373 	newnd.flags &= ~LOOKUP_PARENT;
3374 	newnd.flags |= LOOKUP_RENAME_TARGET;
3375 
3376 	trap = lock_rename(new_dir, old_dir);
3377 
3378 	old_dentry = lookup_hash(&oldnd);
3379 	error = PTR_ERR(old_dentry);
3380 	if (IS_ERR(old_dentry))
3381 		goto exit3;
3382 	/* source must exist */
3383 	error = -ENOENT;
3384 	if (!old_dentry->d_inode)
3385 		goto exit4;
3386 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3387 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3388 		error = -ENOTDIR;
3389 		if (oldnd.last.name[oldnd.last.len])
3390 			goto exit4;
3391 		if (newnd.last.name[newnd.last.len])
3392 			goto exit4;
3393 	}
3394 	/* source should not be ancestor of target */
3395 	error = -EINVAL;
3396 	if (old_dentry == trap)
3397 		goto exit4;
3398 	new_dentry = lookup_hash(&newnd);
3399 	error = PTR_ERR(new_dentry);
3400 	if (IS_ERR(new_dentry))
3401 		goto exit4;
3402 	/* target should not be an ancestor of source */
3403 	error = -ENOTEMPTY;
3404 	if (new_dentry == trap)
3405 		goto exit5;
3406 
3407 	error = mnt_want_write(oldnd.path.mnt);
3408 	if (error)
3409 		goto exit5;
3410 	error = security_path_rename(&oldnd.path, old_dentry,
3411 				     &newnd.path, new_dentry);
3412 	if (error)
3413 		goto exit6;
3414 	error = vfs_rename(old_dir->d_inode, old_dentry,
3415 				   new_dir->d_inode, new_dentry);
3416 exit6:
3417 	mnt_drop_write(oldnd.path.mnt);
3418 exit5:
3419 	dput(new_dentry);
3420 exit4:
3421 	dput(old_dentry);
3422 exit3:
3423 	unlock_rename(new_dir, old_dir);
3424 exit2:
3425 	path_put(&newnd.path);
3426 	putname(to);
3427 exit1:
3428 	path_put(&oldnd.path);
3429 	putname(from);
3430 exit:
3431 	return error;
3432 }
3433 
3434 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3435 {
3436 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3437 }
3438 
3439 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3440 {
3441 	int len;
3442 
3443 	len = PTR_ERR(link);
3444 	if (IS_ERR(link))
3445 		goto out;
3446 
3447 	len = strlen(link);
3448 	if (len > (unsigned) buflen)
3449 		len = buflen;
3450 	if (copy_to_user(buffer, link, len))
3451 		len = -EFAULT;
3452 out:
3453 	return len;
3454 }
3455 
3456 /*
3457  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3458  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3459  * using) it for any given inode is up to filesystem.
3460  */
3461 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3462 {
3463 	struct nameidata nd;
3464 	void *cookie;
3465 	int res;
3466 
3467 	nd.depth = 0;
3468 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3469 	if (IS_ERR(cookie))
3470 		return PTR_ERR(cookie);
3471 
3472 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3473 	if (dentry->d_inode->i_op->put_link)
3474 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3475 	return res;
3476 }
3477 
3478 int vfs_follow_link(struct nameidata *nd, const char *link)
3479 {
3480 	return __vfs_follow_link(nd, link);
3481 }
3482 
3483 /* get the link contents into pagecache */
3484 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3485 {
3486 	char *kaddr;
3487 	struct page *page;
3488 	struct address_space *mapping = dentry->d_inode->i_mapping;
3489 	page = read_mapping_page(mapping, 0, NULL);
3490 	if (IS_ERR(page))
3491 		return (char*)page;
3492 	*ppage = page;
3493 	kaddr = kmap(page);
3494 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3495 	return kaddr;
3496 }
3497 
3498 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3499 {
3500 	struct page *page = NULL;
3501 	char *s = page_getlink(dentry, &page);
3502 	int res = vfs_readlink(dentry,buffer,buflen,s);
3503 	if (page) {
3504 		kunmap(page);
3505 		page_cache_release(page);
3506 	}
3507 	return res;
3508 }
3509 
3510 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3511 {
3512 	struct page *page = NULL;
3513 	nd_set_link(nd, page_getlink(dentry, &page));
3514 	return page;
3515 }
3516 
3517 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3518 {
3519 	struct page *page = cookie;
3520 
3521 	if (page) {
3522 		kunmap(page);
3523 		page_cache_release(page);
3524 	}
3525 }
3526 
3527 /*
3528  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3529  */
3530 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3531 {
3532 	struct address_space *mapping = inode->i_mapping;
3533 	struct page *page;
3534 	void *fsdata;
3535 	int err;
3536 	char *kaddr;
3537 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3538 	if (nofs)
3539 		flags |= AOP_FLAG_NOFS;
3540 
3541 retry:
3542 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3543 				flags, &page, &fsdata);
3544 	if (err)
3545 		goto fail;
3546 
3547 	kaddr = kmap_atomic(page, KM_USER0);
3548 	memcpy(kaddr, symname, len-1);
3549 	kunmap_atomic(kaddr, KM_USER0);
3550 
3551 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3552 							page, fsdata);
3553 	if (err < 0)
3554 		goto fail;
3555 	if (err < len-1)
3556 		goto retry;
3557 
3558 	mark_inode_dirty(inode);
3559 	return 0;
3560 fail:
3561 	return err;
3562 }
3563 
3564 int page_symlink(struct inode *inode, const char *symname, int len)
3565 {
3566 	return __page_symlink(inode, symname, len,
3567 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3568 }
3569 
3570 const struct inode_operations page_symlink_inode_operations = {
3571 	.readlink	= generic_readlink,
3572 	.follow_link	= page_follow_link_light,
3573 	.put_link	= page_put_link,
3574 };
3575 
3576 EXPORT_SYMBOL(user_path_at);
3577 EXPORT_SYMBOL(follow_down_one);
3578 EXPORT_SYMBOL(follow_down);
3579 EXPORT_SYMBOL(follow_up);
3580 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3581 EXPORT_SYMBOL(getname);
3582 EXPORT_SYMBOL(lock_rename);
3583 EXPORT_SYMBOL(lookup_one_len);
3584 EXPORT_SYMBOL(page_follow_link_light);
3585 EXPORT_SYMBOL(page_put_link);
3586 EXPORT_SYMBOL(page_readlink);
3587 EXPORT_SYMBOL(__page_symlink);
3588 EXPORT_SYMBOL(page_symlink);
3589 EXPORT_SYMBOL(page_symlink_inode_operations);
3590 EXPORT_SYMBOL(path_lookup);
3591 EXPORT_SYMBOL(kern_path);
3592 EXPORT_SYMBOL(vfs_path_lookup);
3593 EXPORT_SYMBOL(inode_permission);
3594 EXPORT_SYMBOL(file_permission);
3595 EXPORT_SYMBOL(unlock_rename);
3596 EXPORT_SYMBOL(vfs_create);
3597 EXPORT_SYMBOL(vfs_follow_link);
3598 EXPORT_SYMBOL(vfs_link);
3599 EXPORT_SYMBOL(vfs_mkdir);
3600 EXPORT_SYMBOL(vfs_mknod);
3601 EXPORT_SYMBOL(generic_permission);
3602 EXPORT_SYMBOL(vfs_readlink);
3603 EXPORT_SYMBOL(vfs_rename);
3604 EXPORT_SYMBOL(vfs_rmdir);
3605 EXPORT_SYMBOL(vfs_symlink);
3606 EXPORT_SYMBOL(vfs_unlink);
3607 EXPORT_SYMBOL(dentry_unhash);
3608 EXPORT_SYMBOL(generic_readlink);
3609