1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 char * getname(const char __user * filename) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 __putname(tmp); 151 result = ERR_PTR(retval); 152 } 153 } 154 audit_getname(result); 155 return result; 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 /* 170 * This does basic POSIX ACL permission checking 171 */ 172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags, 173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 174 { 175 umode_t mode = inode->i_mode; 176 177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 178 179 if (current_fsuid() == inode->i_uid) 180 mode >>= 6; 181 else { 182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 183 int error = check_acl(inode, mask, flags); 184 if (error != -EAGAIN) 185 return error; 186 } 187 188 if (in_group_p(inode->i_gid)) 189 mode >>= 3; 190 } 191 192 /* 193 * If the DACs are ok we don't need any capability check. 194 */ 195 if ((mask & ~mode) == 0) 196 return 0; 197 return -EACCES; 198 } 199 200 /** 201 * generic_permission - check for access rights on a Posix-like filesystem 202 * @inode: inode to check access rights for 203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 204 * @check_acl: optional callback to check for Posix ACLs 205 * @flags: IPERM_FLAG_ flags. 206 * 207 * Used to check for read/write/execute permissions on a file. 208 * We use "fsuid" for this, letting us set arbitrary permissions 209 * for filesystem access without changing the "normal" uids which 210 * are used for other things. 211 * 212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 213 * request cannot be satisfied (eg. requires blocking or too much complexity). 214 * It would then be called again in ref-walk mode. 215 */ 216 int generic_permission(struct inode *inode, int mask, unsigned int flags, 217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 218 { 219 int ret; 220 221 /* 222 * Do the basic POSIX ACL permission checks. 223 */ 224 ret = acl_permission_check(inode, mask, flags, check_acl); 225 if (ret != -EACCES) 226 return ret; 227 228 /* 229 * Read/write DACs are always overridable. 230 * Executable DACs are overridable if at least one exec bit is set. 231 */ 232 if (!(mask & MAY_EXEC) || execute_ok(inode)) 233 if (capable(CAP_DAC_OVERRIDE)) 234 return 0; 235 236 /* 237 * Searching includes executable on directories, else just read. 238 */ 239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 241 if (capable(CAP_DAC_READ_SEARCH)) 242 return 0; 243 244 return -EACCES; 245 } 246 247 /** 248 * inode_permission - check for access rights to a given inode 249 * @inode: inode to check permission on 250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 251 * 252 * Used to check for read/write/execute permissions on an inode. 253 * We use "fsuid" for this, letting us set arbitrary permissions 254 * for filesystem access without changing the "normal" uids which 255 * are used for other things. 256 */ 257 int inode_permission(struct inode *inode, int mask) 258 { 259 int retval; 260 261 if (mask & MAY_WRITE) { 262 umode_t mode = inode->i_mode; 263 264 /* 265 * Nobody gets write access to a read-only fs. 266 */ 267 if (IS_RDONLY(inode) && 268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 269 return -EROFS; 270 271 /* 272 * Nobody gets write access to an immutable file. 273 */ 274 if (IS_IMMUTABLE(inode)) 275 return -EACCES; 276 } 277 278 if (inode->i_op->permission) 279 retval = inode->i_op->permission(inode, mask, 0); 280 else 281 retval = generic_permission(inode, mask, 0, 282 inode->i_op->check_acl); 283 284 if (retval) 285 return retval; 286 287 retval = devcgroup_inode_permission(inode, mask); 288 if (retval) 289 return retval; 290 291 return security_inode_permission(inode, mask); 292 } 293 294 /** 295 * file_permission - check for additional access rights to a given file 296 * @file: file to check access rights for 297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 298 * 299 * Used to check for read/write/execute permissions on an already opened 300 * file. 301 * 302 * Note: 303 * Do not use this function in new code. All access checks should 304 * be done using inode_permission(). 305 */ 306 int file_permission(struct file *file, int mask) 307 { 308 return inode_permission(file->f_path.dentry->d_inode, mask); 309 } 310 311 /* 312 * get_write_access() gets write permission for a file. 313 * put_write_access() releases this write permission. 314 * This is used for regular files. 315 * We cannot support write (and maybe mmap read-write shared) accesses and 316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 317 * can have the following values: 318 * 0: no writers, no VM_DENYWRITE mappings 319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 320 * > 0: (i_writecount) users are writing to the file. 321 * 322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 323 * except for the cases where we don't hold i_writecount yet. Then we need to 324 * use {get,deny}_write_access() - these functions check the sign and refuse 325 * to do the change if sign is wrong. Exclusion between them is provided by 326 * the inode->i_lock spinlock. 327 */ 328 329 int get_write_access(struct inode * inode) 330 { 331 spin_lock(&inode->i_lock); 332 if (atomic_read(&inode->i_writecount) < 0) { 333 spin_unlock(&inode->i_lock); 334 return -ETXTBSY; 335 } 336 atomic_inc(&inode->i_writecount); 337 spin_unlock(&inode->i_lock); 338 339 return 0; 340 } 341 342 int deny_write_access(struct file * file) 343 { 344 struct inode *inode = file->f_path.dentry->d_inode; 345 346 spin_lock(&inode->i_lock); 347 if (atomic_read(&inode->i_writecount) > 0) { 348 spin_unlock(&inode->i_lock); 349 return -ETXTBSY; 350 } 351 atomic_dec(&inode->i_writecount); 352 spin_unlock(&inode->i_lock); 353 354 return 0; 355 } 356 357 /** 358 * path_get - get a reference to a path 359 * @path: path to get the reference to 360 * 361 * Given a path increment the reference count to the dentry and the vfsmount. 362 */ 363 void path_get(struct path *path) 364 { 365 mntget(path->mnt); 366 dget(path->dentry); 367 } 368 EXPORT_SYMBOL(path_get); 369 370 /** 371 * path_put - put a reference to a path 372 * @path: path to put the reference to 373 * 374 * Given a path decrement the reference count to the dentry and the vfsmount. 375 */ 376 void path_put(struct path *path) 377 { 378 dput(path->dentry); 379 mntput(path->mnt); 380 } 381 EXPORT_SYMBOL(path_put); 382 383 /** 384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk 385 * @nd: nameidata pathwalk data to drop 386 * Returns: 0 on success, -ECHILD on failure 387 * 388 * Path walking has 2 modes, rcu-walk and ref-walk (see 389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt 390 * to drop out of rcu-walk mode and take normal reference counts on dentries 391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take 392 * refcounts at the last known good point before rcu-walk got stuck, so 393 * ref-walk may continue from there. If this is not successful (eg. a seqcount 394 * has changed), then failure is returned and path walk restarts from the 395 * beginning in ref-walk mode. 396 * 397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into 398 * ref-walk. Must be called from rcu-walk context. 399 */ 400 static int nameidata_drop_rcu(struct nameidata *nd) 401 { 402 struct fs_struct *fs = current->fs; 403 struct dentry *dentry = nd->path.dentry; 404 405 BUG_ON(!(nd->flags & LOOKUP_RCU)); 406 if (nd->root.mnt) { 407 spin_lock(&fs->lock); 408 if (nd->root.mnt != fs->root.mnt || 409 nd->root.dentry != fs->root.dentry) 410 goto err_root; 411 } 412 spin_lock(&dentry->d_lock); 413 if (!__d_rcu_to_refcount(dentry, nd->seq)) 414 goto err; 415 BUG_ON(nd->inode != dentry->d_inode); 416 spin_unlock(&dentry->d_lock); 417 if (nd->root.mnt) { 418 path_get(&nd->root); 419 spin_unlock(&fs->lock); 420 } 421 mntget(nd->path.mnt); 422 423 rcu_read_unlock(); 424 br_read_unlock(vfsmount_lock); 425 nd->flags &= ~LOOKUP_RCU; 426 return 0; 427 err: 428 spin_unlock(&dentry->d_lock); 429 err_root: 430 if (nd->root.mnt) 431 spin_unlock(&fs->lock); 432 return -ECHILD; 433 } 434 435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd) 437 { 438 if (nd->flags & LOOKUP_RCU) 439 return nameidata_drop_rcu(nd); 440 return 0; 441 } 442 443 /** 444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk 445 * @nd: nameidata pathwalk data to drop 446 * @dentry: dentry to drop 447 * Returns: 0 on success, -ECHILD on failure 448 * 449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root, 450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on 451 * @nd. Must be called from rcu-walk context. 452 */ 453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry) 454 { 455 struct fs_struct *fs = current->fs; 456 struct dentry *parent = nd->path.dentry; 457 458 /* 459 * It can be possible to revalidate the dentry that we started 460 * the path walk with. force_reval_path may also revalidate the 461 * dentry already committed to the nameidata. 462 */ 463 if (unlikely(parent == dentry)) 464 return nameidata_drop_rcu(nd); 465 466 BUG_ON(!(nd->flags & LOOKUP_RCU)); 467 if (nd->root.mnt) { 468 spin_lock(&fs->lock); 469 if (nd->root.mnt != fs->root.mnt || 470 nd->root.dentry != fs->root.dentry) 471 goto err_root; 472 } 473 spin_lock(&parent->d_lock); 474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 475 if (!__d_rcu_to_refcount(dentry, nd->seq)) 476 goto err; 477 /* 478 * If the sequence check on the child dentry passed, then the child has 479 * not been removed from its parent. This means the parent dentry must 480 * be valid and able to take a reference at this point. 481 */ 482 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 483 BUG_ON(!parent->d_count); 484 parent->d_count++; 485 spin_unlock(&dentry->d_lock); 486 spin_unlock(&parent->d_lock); 487 if (nd->root.mnt) { 488 path_get(&nd->root); 489 spin_unlock(&fs->lock); 490 } 491 mntget(nd->path.mnt); 492 493 rcu_read_unlock(); 494 br_read_unlock(vfsmount_lock); 495 nd->flags &= ~LOOKUP_RCU; 496 return 0; 497 err: 498 spin_unlock(&dentry->d_lock); 499 spin_unlock(&parent->d_lock); 500 err_root: 501 if (nd->root.mnt) 502 spin_unlock(&fs->lock); 503 return -ECHILD; 504 } 505 506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry) 508 { 509 if (nd->flags & LOOKUP_RCU) 510 return nameidata_dentry_drop_rcu(nd, dentry); 511 return 0; 512 } 513 514 /** 515 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk 516 * @nd: nameidata pathwalk data to drop 517 * Returns: 0 on success, -ECHILD on failure 518 * 519 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk. 520 * nd->path should be the final element of the lookup, so nd->root is discarded. 521 * Must be called from rcu-walk context. 522 */ 523 static int nameidata_drop_rcu_last(struct nameidata *nd) 524 { 525 struct dentry *dentry = nd->path.dentry; 526 527 BUG_ON(!(nd->flags & LOOKUP_RCU)); 528 nd->flags &= ~LOOKUP_RCU; 529 nd->root.mnt = NULL; 530 spin_lock(&dentry->d_lock); 531 if (!__d_rcu_to_refcount(dentry, nd->seq)) 532 goto err_unlock; 533 BUG_ON(nd->inode != dentry->d_inode); 534 spin_unlock(&dentry->d_lock); 535 536 mntget(nd->path.mnt); 537 538 rcu_read_unlock(); 539 br_read_unlock(vfsmount_lock); 540 541 return 0; 542 543 err_unlock: 544 spin_unlock(&dentry->d_lock); 545 rcu_read_unlock(); 546 br_read_unlock(vfsmount_lock); 547 return -ECHILD; 548 } 549 550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd) 552 { 553 if (likely(nd->flags & LOOKUP_RCU)) 554 return nameidata_drop_rcu_last(nd); 555 return 0; 556 } 557 558 /** 559 * release_open_intent - free up open intent resources 560 * @nd: pointer to nameidata 561 */ 562 void release_open_intent(struct nameidata *nd) 563 { 564 if (nd->intent.open.file->f_path.dentry == NULL) 565 put_filp(nd->intent.open.file); 566 else 567 fput(nd->intent.open.file); 568 } 569 570 /* 571 * Call d_revalidate and handle filesystems that request rcu-walk 572 * to be dropped. This may be called and return in rcu-walk mode, 573 * regardless of success or error. If -ECHILD is returned, the caller 574 * must return -ECHILD back up the path walk stack so path walk may 575 * be restarted in ref-walk mode. 576 */ 577 static int d_revalidate(struct dentry *dentry, struct nameidata *nd) 578 { 579 int status; 580 581 status = dentry->d_op->d_revalidate(dentry, nd); 582 if (status == -ECHILD) { 583 if (nameidata_dentry_drop_rcu(nd, dentry)) 584 return status; 585 status = dentry->d_op->d_revalidate(dentry, nd); 586 } 587 588 return status; 589 } 590 591 static inline struct dentry * 592 do_revalidate(struct dentry *dentry, struct nameidata *nd) 593 { 594 int status; 595 596 status = d_revalidate(dentry, nd); 597 if (unlikely(status <= 0)) { 598 /* 599 * The dentry failed validation. 600 * If d_revalidate returned 0 attempt to invalidate 601 * the dentry otherwise d_revalidate is asking us 602 * to return a fail status. 603 */ 604 if (status < 0) { 605 /* If we're in rcu-walk, we don't have a ref */ 606 if (!(nd->flags & LOOKUP_RCU)) 607 dput(dentry); 608 dentry = ERR_PTR(status); 609 610 } else { 611 /* Don't d_invalidate in rcu-walk mode */ 612 if (nameidata_dentry_drop_rcu_maybe(nd, dentry)) 613 return ERR_PTR(-ECHILD); 614 if (!d_invalidate(dentry)) { 615 dput(dentry); 616 dentry = NULL; 617 } 618 } 619 } 620 return dentry; 621 } 622 623 static inline int need_reval_dot(struct dentry *dentry) 624 { 625 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 626 return 0; 627 628 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 629 return 0; 630 631 return 1; 632 } 633 634 /* 635 * force_reval_path - force revalidation of a dentry 636 * 637 * In some situations the path walking code will trust dentries without 638 * revalidating them. This causes problems for filesystems that depend on 639 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 640 * (which indicates that it's possible for the dentry to go stale), force 641 * a d_revalidate call before proceeding. 642 * 643 * Returns 0 if the revalidation was successful. If the revalidation fails, 644 * either return the error returned by d_revalidate or -ESTALE if the 645 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 646 * invalidate the dentry. It's up to the caller to handle putting references 647 * to the path if necessary. 648 */ 649 static int 650 force_reval_path(struct path *path, struct nameidata *nd) 651 { 652 int status; 653 struct dentry *dentry = path->dentry; 654 655 /* 656 * only check on filesystems where it's possible for the dentry to 657 * become stale. 658 */ 659 if (!need_reval_dot(dentry)) 660 return 0; 661 662 status = d_revalidate(dentry, nd); 663 if (status > 0) 664 return 0; 665 666 if (!status) { 667 /* Don't d_invalidate in rcu-walk mode */ 668 if (nameidata_drop_rcu(nd)) 669 return -ECHILD; 670 d_invalidate(dentry); 671 status = -ESTALE; 672 } 673 return status; 674 } 675 676 /* 677 * Short-cut version of permission(), for calling on directories 678 * during pathname resolution. Combines parts of permission() 679 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 680 * 681 * If appropriate, check DAC only. If not appropriate, or 682 * short-cut DAC fails, then call ->permission() to do more 683 * complete permission check. 684 */ 685 static inline int exec_permission(struct inode *inode, unsigned int flags) 686 { 687 int ret; 688 689 if (inode->i_op->permission) { 690 ret = inode->i_op->permission(inode, MAY_EXEC, flags); 691 } else { 692 ret = acl_permission_check(inode, MAY_EXEC, flags, 693 inode->i_op->check_acl); 694 } 695 if (likely(!ret)) 696 goto ok; 697 if (ret == -ECHILD) 698 return ret; 699 700 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 701 goto ok; 702 703 return ret; 704 ok: 705 return security_inode_exec_permission(inode, flags); 706 } 707 708 static __always_inline void set_root(struct nameidata *nd) 709 { 710 if (!nd->root.mnt) 711 get_fs_root(current->fs, &nd->root); 712 } 713 714 static int link_path_walk(const char *, struct nameidata *); 715 716 static __always_inline void set_root_rcu(struct nameidata *nd) 717 { 718 if (!nd->root.mnt) { 719 struct fs_struct *fs = current->fs; 720 unsigned seq; 721 722 do { 723 seq = read_seqcount_begin(&fs->seq); 724 nd->root = fs->root; 725 } while (read_seqcount_retry(&fs->seq, seq)); 726 } 727 } 728 729 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 730 { 731 int ret; 732 733 if (IS_ERR(link)) 734 goto fail; 735 736 if (*link == '/') { 737 set_root(nd); 738 path_put(&nd->path); 739 nd->path = nd->root; 740 path_get(&nd->root); 741 } 742 nd->inode = nd->path.dentry->d_inode; 743 744 ret = link_path_walk(link, nd); 745 return ret; 746 fail: 747 path_put(&nd->path); 748 return PTR_ERR(link); 749 } 750 751 static void path_put_conditional(struct path *path, struct nameidata *nd) 752 { 753 dput(path->dentry); 754 if (path->mnt != nd->path.mnt) 755 mntput(path->mnt); 756 } 757 758 static inline void path_to_nameidata(const struct path *path, 759 struct nameidata *nd) 760 { 761 if (!(nd->flags & LOOKUP_RCU)) { 762 dput(nd->path.dentry); 763 if (nd->path.mnt != path->mnt) 764 mntput(nd->path.mnt); 765 } 766 nd->path.mnt = path->mnt; 767 nd->path.dentry = path->dentry; 768 } 769 770 static __always_inline int 771 __do_follow_link(const struct path *link, struct nameidata *nd, void **p) 772 { 773 int error; 774 struct dentry *dentry = link->dentry; 775 776 touch_atime(link->mnt, dentry); 777 nd_set_link(nd, NULL); 778 779 if (link->mnt == nd->path.mnt) 780 mntget(link->mnt); 781 782 nd->last_type = LAST_BIND; 783 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 784 error = PTR_ERR(*p); 785 if (!IS_ERR(*p)) { 786 char *s = nd_get_link(nd); 787 error = 0; 788 if (s) 789 error = __vfs_follow_link(nd, s); 790 else if (nd->last_type == LAST_BIND) { 791 error = force_reval_path(&nd->path, nd); 792 if (error) 793 path_put(&nd->path); 794 } 795 } 796 return error; 797 } 798 799 /* 800 * This limits recursive symlink follows to 8, while 801 * limiting consecutive symlinks to 40. 802 * 803 * Without that kind of total limit, nasty chains of consecutive 804 * symlinks can cause almost arbitrarily long lookups. 805 */ 806 static inline int do_follow_link(struct path *path, struct nameidata *nd) 807 { 808 void *cookie; 809 int err = -ELOOP; 810 if (current->link_count >= MAX_NESTED_LINKS) 811 goto loop; 812 if (current->total_link_count >= 40) 813 goto loop; 814 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 815 cond_resched(); 816 err = security_inode_follow_link(path->dentry, nd); 817 if (err) 818 goto loop; 819 current->link_count++; 820 current->total_link_count++; 821 nd->depth++; 822 err = __do_follow_link(path, nd, &cookie); 823 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link) 824 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie); 825 path_put(path); 826 current->link_count--; 827 nd->depth--; 828 return err; 829 loop: 830 path_put_conditional(path, nd); 831 path_put(&nd->path); 832 return err; 833 } 834 835 static int follow_up_rcu(struct path *path) 836 { 837 struct vfsmount *parent; 838 struct dentry *mountpoint; 839 840 parent = path->mnt->mnt_parent; 841 if (parent == path->mnt) 842 return 0; 843 mountpoint = path->mnt->mnt_mountpoint; 844 path->dentry = mountpoint; 845 path->mnt = parent; 846 return 1; 847 } 848 849 int follow_up(struct path *path) 850 { 851 struct vfsmount *parent; 852 struct dentry *mountpoint; 853 854 br_read_lock(vfsmount_lock); 855 parent = path->mnt->mnt_parent; 856 if (parent == path->mnt) { 857 br_read_unlock(vfsmount_lock); 858 return 0; 859 } 860 mntget(parent); 861 mountpoint = dget(path->mnt->mnt_mountpoint); 862 br_read_unlock(vfsmount_lock); 863 dput(path->dentry); 864 path->dentry = mountpoint; 865 mntput(path->mnt); 866 path->mnt = parent; 867 return 1; 868 } 869 870 /* 871 * Perform an automount 872 * - return -EISDIR to tell follow_managed() to stop and return the path we 873 * were called with. 874 */ 875 static int follow_automount(struct path *path, unsigned flags, 876 bool *need_mntput) 877 { 878 struct vfsmount *mnt; 879 int err; 880 881 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 882 return -EREMOTE; 883 884 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT 885 * and this is the terminal part of the path. 886 */ 887 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE)) 888 return -EISDIR; /* we actually want to stop here */ 889 890 /* We want to mount if someone is trying to open/create a file of any 891 * type under the mountpoint, wants to traverse through the mountpoint 892 * or wants to open the mounted directory. 893 * 894 * We don't want to mount if someone's just doing a stat and they've 895 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and 896 * appended a '/' to the name. 897 */ 898 if (!(flags & LOOKUP_FOLLOW) && 899 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY | 900 LOOKUP_OPEN | LOOKUP_CREATE))) 901 return -EISDIR; 902 903 current->total_link_count++; 904 if (current->total_link_count >= 40) 905 return -ELOOP; 906 907 mnt = path->dentry->d_op->d_automount(path); 908 if (IS_ERR(mnt)) { 909 /* 910 * The filesystem is allowed to return -EISDIR here to indicate 911 * it doesn't want to automount. For instance, autofs would do 912 * this so that its userspace daemon can mount on this dentry. 913 * 914 * However, we can only permit this if it's a terminal point in 915 * the path being looked up; if it wasn't then the remainder of 916 * the path is inaccessible and we should say so. 917 */ 918 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE)) 919 return -EREMOTE; 920 return PTR_ERR(mnt); 921 } 922 923 if (!mnt) /* mount collision */ 924 return 0; 925 926 err = finish_automount(mnt, path); 927 928 switch (err) { 929 case -EBUSY: 930 /* Someone else made a mount here whilst we were busy */ 931 return 0; 932 case 0: 933 dput(path->dentry); 934 if (*need_mntput) 935 mntput(path->mnt); 936 path->mnt = mnt; 937 path->dentry = dget(mnt->mnt_root); 938 *need_mntput = true; 939 return 0; 940 default: 941 return err; 942 } 943 944 } 945 946 /* 947 * Handle a dentry that is managed in some way. 948 * - Flagged for transit management (autofs) 949 * - Flagged as mountpoint 950 * - Flagged as automount point 951 * 952 * This may only be called in refwalk mode. 953 * 954 * Serialization is taken care of in namespace.c 955 */ 956 static int follow_managed(struct path *path, unsigned flags) 957 { 958 unsigned managed; 959 bool need_mntput = false; 960 int ret; 961 962 /* Given that we're not holding a lock here, we retain the value in a 963 * local variable for each dentry as we look at it so that we don't see 964 * the components of that value change under us */ 965 while (managed = ACCESS_ONCE(path->dentry->d_flags), 966 managed &= DCACHE_MANAGED_DENTRY, 967 unlikely(managed != 0)) { 968 /* Allow the filesystem to manage the transit without i_mutex 969 * being held. */ 970 if (managed & DCACHE_MANAGE_TRANSIT) { 971 BUG_ON(!path->dentry->d_op); 972 BUG_ON(!path->dentry->d_op->d_manage); 973 ret = path->dentry->d_op->d_manage(path->dentry, 974 false, false); 975 if (ret < 0) 976 return ret == -EISDIR ? 0 : ret; 977 } 978 979 /* Transit to a mounted filesystem. */ 980 if (managed & DCACHE_MOUNTED) { 981 struct vfsmount *mounted = lookup_mnt(path); 982 if (mounted) { 983 dput(path->dentry); 984 if (need_mntput) 985 mntput(path->mnt); 986 path->mnt = mounted; 987 path->dentry = dget(mounted->mnt_root); 988 need_mntput = true; 989 continue; 990 } 991 992 /* Something is mounted on this dentry in another 993 * namespace and/or whatever was mounted there in this 994 * namespace got unmounted before we managed to get the 995 * vfsmount_lock */ 996 } 997 998 /* Handle an automount point */ 999 if (managed & DCACHE_NEED_AUTOMOUNT) { 1000 ret = follow_automount(path, flags, &need_mntput); 1001 if (ret < 0) 1002 return ret == -EISDIR ? 0 : ret; 1003 continue; 1004 } 1005 1006 /* We didn't change the current path point */ 1007 break; 1008 } 1009 return 0; 1010 } 1011 1012 int follow_down_one(struct path *path) 1013 { 1014 struct vfsmount *mounted; 1015 1016 mounted = lookup_mnt(path); 1017 if (mounted) { 1018 dput(path->dentry); 1019 mntput(path->mnt); 1020 path->mnt = mounted; 1021 path->dentry = dget(mounted->mnt_root); 1022 return 1; 1023 } 1024 return 0; 1025 } 1026 1027 /* 1028 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we 1029 * meet a managed dentry and we're not walking to "..". True is returned to 1030 * continue, false to abort. 1031 */ 1032 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1033 struct inode **inode, bool reverse_transit) 1034 { 1035 while (d_mountpoint(path->dentry)) { 1036 struct vfsmount *mounted; 1037 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) && 1038 !reverse_transit && 1039 path->dentry->d_op->d_manage(path->dentry, false, true) < 0) 1040 return false; 1041 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1042 if (!mounted) 1043 break; 1044 path->mnt = mounted; 1045 path->dentry = mounted->mnt_root; 1046 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1047 *inode = path->dentry->d_inode; 1048 } 1049 1050 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1051 return reverse_transit; 1052 return true; 1053 } 1054 1055 static int follow_dotdot_rcu(struct nameidata *nd) 1056 { 1057 struct inode *inode = nd->inode; 1058 1059 set_root_rcu(nd); 1060 1061 while (1) { 1062 if (nd->path.dentry == nd->root.dentry && 1063 nd->path.mnt == nd->root.mnt) { 1064 break; 1065 } 1066 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1067 struct dentry *old = nd->path.dentry; 1068 struct dentry *parent = old->d_parent; 1069 unsigned seq; 1070 1071 seq = read_seqcount_begin(&parent->d_seq); 1072 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1073 return -ECHILD; 1074 inode = parent->d_inode; 1075 nd->path.dentry = parent; 1076 nd->seq = seq; 1077 break; 1078 } 1079 if (!follow_up_rcu(&nd->path)) 1080 break; 1081 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1082 inode = nd->path.dentry->d_inode; 1083 } 1084 __follow_mount_rcu(nd, &nd->path, &inode, true); 1085 nd->inode = inode; 1086 1087 return 0; 1088 } 1089 1090 /* 1091 * Follow down to the covering mount currently visible to userspace. At each 1092 * point, the filesystem owning that dentry may be queried as to whether the 1093 * caller is permitted to proceed or not. 1094 * 1095 * Care must be taken as namespace_sem may be held (indicated by mounting_here 1096 * being true). 1097 */ 1098 int follow_down(struct path *path, bool mounting_here) 1099 { 1100 unsigned managed; 1101 int ret; 1102 1103 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1104 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1105 /* Allow the filesystem to manage the transit without i_mutex 1106 * being held. 1107 * 1108 * We indicate to the filesystem if someone is trying to mount 1109 * something here. This gives autofs the chance to deny anyone 1110 * other than its daemon the right to mount on its 1111 * superstructure. 1112 * 1113 * The filesystem may sleep at this point. 1114 */ 1115 if (managed & DCACHE_MANAGE_TRANSIT) { 1116 BUG_ON(!path->dentry->d_op); 1117 BUG_ON(!path->dentry->d_op->d_manage); 1118 ret = path->dentry->d_op->d_manage( 1119 path->dentry, mounting_here, false); 1120 if (ret < 0) 1121 return ret == -EISDIR ? 0 : ret; 1122 } 1123 1124 /* Transit to a mounted filesystem. */ 1125 if (managed & DCACHE_MOUNTED) { 1126 struct vfsmount *mounted = lookup_mnt(path); 1127 if (!mounted) 1128 break; 1129 dput(path->dentry); 1130 mntput(path->mnt); 1131 path->mnt = mounted; 1132 path->dentry = dget(mounted->mnt_root); 1133 continue; 1134 } 1135 1136 /* Don't handle automount points here */ 1137 break; 1138 } 1139 return 0; 1140 } 1141 1142 /* 1143 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1144 */ 1145 static void follow_mount(struct path *path) 1146 { 1147 while (d_mountpoint(path->dentry)) { 1148 struct vfsmount *mounted = lookup_mnt(path); 1149 if (!mounted) 1150 break; 1151 dput(path->dentry); 1152 mntput(path->mnt); 1153 path->mnt = mounted; 1154 path->dentry = dget(mounted->mnt_root); 1155 } 1156 } 1157 1158 static void follow_dotdot(struct nameidata *nd) 1159 { 1160 set_root(nd); 1161 1162 while(1) { 1163 struct dentry *old = nd->path.dentry; 1164 1165 if (nd->path.dentry == nd->root.dentry && 1166 nd->path.mnt == nd->root.mnt) { 1167 break; 1168 } 1169 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1170 /* rare case of legitimate dget_parent()... */ 1171 nd->path.dentry = dget_parent(nd->path.dentry); 1172 dput(old); 1173 break; 1174 } 1175 if (!follow_up(&nd->path)) 1176 break; 1177 } 1178 follow_mount(&nd->path); 1179 nd->inode = nd->path.dentry->d_inode; 1180 } 1181 1182 /* 1183 * Allocate a dentry with name and parent, and perform a parent 1184 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1185 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1186 * have verified that no child exists while under i_mutex. 1187 */ 1188 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1189 struct qstr *name, struct nameidata *nd) 1190 { 1191 struct inode *inode = parent->d_inode; 1192 struct dentry *dentry; 1193 struct dentry *old; 1194 1195 /* Don't create child dentry for a dead directory. */ 1196 if (unlikely(IS_DEADDIR(inode))) 1197 return ERR_PTR(-ENOENT); 1198 1199 dentry = d_alloc(parent, name); 1200 if (unlikely(!dentry)) 1201 return ERR_PTR(-ENOMEM); 1202 1203 old = inode->i_op->lookup(inode, dentry, nd); 1204 if (unlikely(old)) { 1205 dput(dentry); 1206 dentry = old; 1207 } 1208 return dentry; 1209 } 1210 1211 /* 1212 * It's more convoluted than I'd like it to be, but... it's still fairly 1213 * small and for now I'd prefer to have fast path as straight as possible. 1214 * It _is_ time-critical. 1215 */ 1216 static int do_lookup(struct nameidata *nd, struct qstr *name, 1217 struct path *path, struct inode **inode) 1218 { 1219 struct vfsmount *mnt = nd->path.mnt; 1220 struct dentry *dentry, *parent = nd->path.dentry; 1221 struct inode *dir; 1222 int err; 1223 1224 /* 1225 * See if the low-level filesystem might want 1226 * to use its own hash.. 1227 */ 1228 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1229 err = parent->d_op->d_hash(parent, nd->inode, name); 1230 if (err < 0) 1231 return err; 1232 } 1233 1234 /* 1235 * Rename seqlock is not required here because in the off chance 1236 * of a false negative due to a concurrent rename, we're going to 1237 * do the non-racy lookup, below. 1238 */ 1239 if (nd->flags & LOOKUP_RCU) { 1240 unsigned seq; 1241 1242 *inode = nd->inode; 1243 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1244 if (!dentry) { 1245 if (nameidata_drop_rcu(nd)) 1246 return -ECHILD; 1247 goto need_lookup; 1248 } 1249 /* Memory barrier in read_seqcount_begin of child is enough */ 1250 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1251 return -ECHILD; 1252 1253 nd->seq = seq; 1254 if (dentry->d_flags & DCACHE_OP_REVALIDATE) 1255 goto need_revalidate; 1256 done2: 1257 path->mnt = mnt; 1258 path->dentry = dentry; 1259 if (likely(__follow_mount_rcu(nd, path, inode, false))) 1260 return 0; 1261 if (nameidata_drop_rcu(nd)) 1262 return -ECHILD; 1263 /* fallthru */ 1264 } 1265 dentry = __d_lookup(parent, name); 1266 if (!dentry) 1267 goto need_lookup; 1268 found: 1269 if (dentry->d_flags & DCACHE_OP_REVALIDATE) 1270 goto need_revalidate; 1271 done: 1272 path->mnt = mnt; 1273 path->dentry = dentry; 1274 err = follow_managed(path, nd->flags); 1275 if (unlikely(err < 0)) { 1276 path_put_conditional(path, nd); 1277 return err; 1278 } 1279 *inode = path->dentry->d_inode; 1280 return 0; 1281 1282 need_lookup: 1283 dir = parent->d_inode; 1284 BUG_ON(nd->inode != dir); 1285 1286 mutex_lock(&dir->i_mutex); 1287 /* 1288 * First re-do the cached lookup just in case it was created 1289 * while we waited for the directory semaphore, or the first 1290 * lookup failed due to an unrelated rename. 1291 * 1292 * This could use version numbering or similar to avoid unnecessary 1293 * cache lookups, but then we'd have to do the first lookup in the 1294 * non-racy way. However in the common case here, everything should 1295 * be hot in cache, so would it be a big win? 1296 */ 1297 dentry = d_lookup(parent, name); 1298 if (likely(!dentry)) { 1299 dentry = d_alloc_and_lookup(parent, name, nd); 1300 mutex_unlock(&dir->i_mutex); 1301 if (IS_ERR(dentry)) 1302 goto fail; 1303 goto done; 1304 } 1305 /* 1306 * Uhhuh! Nasty case: the cache was re-populated while 1307 * we waited on the semaphore. Need to revalidate. 1308 */ 1309 mutex_unlock(&dir->i_mutex); 1310 goto found; 1311 1312 need_revalidate: 1313 dentry = do_revalidate(dentry, nd); 1314 if (!dentry) 1315 goto need_lookup; 1316 if (IS_ERR(dentry)) 1317 goto fail; 1318 if (nd->flags & LOOKUP_RCU) 1319 goto done2; 1320 goto done; 1321 1322 fail: 1323 return PTR_ERR(dentry); 1324 } 1325 1326 /* 1327 * Name resolution. 1328 * This is the basic name resolution function, turning a pathname into 1329 * the final dentry. We expect 'base' to be positive and a directory. 1330 * 1331 * Returns 0 and nd will have valid dentry and mnt on success. 1332 * Returns error and drops reference to input namei data on failure. 1333 */ 1334 static int link_path_walk(const char *name, struct nameidata *nd) 1335 { 1336 struct path next; 1337 int err; 1338 unsigned int lookup_flags = nd->flags; 1339 1340 while (*name=='/') 1341 name++; 1342 if (!*name) 1343 goto return_reval; 1344 1345 if (nd->depth) 1346 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 1347 1348 /* At this point we know we have a real path component. */ 1349 for(;;) { 1350 struct inode *inode; 1351 unsigned long hash; 1352 struct qstr this; 1353 unsigned int c; 1354 1355 nd->flags |= LOOKUP_CONTINUE; 1356 if (nd->flags & LOOKUP_RCU) { 1357 err = exec_permission(nd->inode, IPERM_FLAG_RCU); 1358 if (err == -ECHILD) { 1359 if (nameidata_drop_rcu(nd)) 1360 return -ECHILD; 1361 goto exec_again; 1362 } 1363 } else { 1364 exec_again: 1365 err = exec_permission(nd->inode, 0); 1366 } 1367 if (err) 1368 break; 1369 1370 this.name = name; 1371 c = *(const unsigned char *)name; 1372 1373 hash = init_name_hash(); 1374 do { 1375 name++; 1376 hash = partial_name_hash(c, hash); 1377 c = *(const unsigned char *)name; 1378 } while (c && (c != '/')); 1379 this.len = name - (const char *) this.name; 1380 this.hash = end_name_hash(hash); 1381 1382 /* remove trailing slashes? */ 1383 if (!c) 1384 goto last_component; 1385 while (*++name == '/'); 1386 if (!*name) 1387 goto last_with_slashes; 1388 1389 /* 1390 * "." and ".." are special - ".." especially so because it has 1391 * to be able to know about the current root directory and 1392 * parent relationships. 1393 */ 1394 if (this.name[0] == '.') switch (this.len) { 1395 default: 1396 break; 1397 case 2: 1398 if (this.name[1] != '.') 1399 break; 1400 if (nd->flags & LOOKUP_RCU) { 1401 if (follow_dotdot_rcu(nd)) 1402 return -ECHILD; 1403 } else 1404 follow_dotdot(nd); 1405 /* fallthrough */ 1406 case 1: 1407 continue; 1408 } 1409 /* This does the actual lookups.. */ 1410 err = do_lookup(nd, &this, &next, &inode); 1411 if (err) 1412 break; 1413 err = -ENOENT; 1414 if (!inode) 1415 goto out_dput; 1416 1417 if (inode->i_op->follow_link) { 1418 /* We commonly drop rcu-walk here */ 1419 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry)) 1420 return -ECHILD; 1421 BUG_ON(inode != next.dentry->d_inode); 1422 err = do_follow_link(&next, nd); 1423 if (err) 1424 goto return_err; 1425 nd->inode = nd->path.dentry->d_inode; 1426 err = -ENOENT; 1427 if (!nd->inode) 1428 break; 1429 } else { 1430 path_to_nameidata(&next, nd); 1431 nd->inode = inode; 1432 } 1433 err = -ENOTDIR; 1434 if (!nd->inode->i_op->lookup) 1435 break; 1436 continue; 1437 /* here ends the main loop */ 1438 1439 last_with_slashes: 1440 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1441 last_component: 1442 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 1443 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 1444 if (lookup_flags & LOOKUP_PARENT) 1445 goto lookup_parent; 1446 if (this.name[0] == '.') switch (this.len) { 1447 default: 1448 break; 1449 case 2: 1450 if (this.name[1] != '.') 1451 break; 1452 if (nd->flags & LOOKUP_RCU) { 1453 if (follow_dotdot_rcu(nd)) 1454 return -ECHILD; 1455 } else 1456 follow_dotdot(nd); 1457 /* fallthrough */ 1458 case 1: 1459 goto return_reval; 1460 } 1461 err = do_lookup(nd, &this, &next, &inode); 1462 if (err) 1463 break; 1464 if (inode && unlikely(inode->i_op->follow_link) && 1465 (lookup_flags & LOOKUP_FOLLOW)) { 1466 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry)) 1467 return -ECHILD; 1468 BUG_ON(inode != next.dentry->d_inode); 1469 err = do_follow_link(&next, nd); 1470 if (err) 1471 goto return_err; 1472 nd->inode = nd->path.dentry->d_inode; 1473 } else { 1474 path_to_nameidata(&next, nd); 1475 nd->inode = inode; 1476 } 1477 err = -ENOENT; 1478 if (!nd->inode) 1479 break; 1480 if (lookup_flags & LOOKUP_DIRECTORY) { 1481 err = -ENOTDIR; 1482 if (!nd->inode->i_op->lookup) 1483 break; 1484 } 1485 goto return_base; 1486 lookup_parent: 1487 nd->last = this; 1488 nd->last_type = LAST_NORM; 1489 if (this.name[0] != '.') 1490 goto return_base; 1491 if (this.len == 1) 1492 nd->last_type = LAST_DOT; 1493 else if (this.len == 2 && this.name[1] == '.') 1494 nd->last_type = LAST_DOTDOT; 1495 else 1496 goto return_base; 1497 return_reval: 1498 /* 1499 * We bypassed the ordinary revalidation routines. 1500 * We may need to check the cached dentry for staleness. 1501 */ 1502 if (need_reval_dot(nd->path.dentry)) { 1503 /* Note: we do not d_invalidate() */ 1504 err = d_revalidate(nd->path.dentry, nd); 1505 if (!err) 1506 err = -ESTALE; 1507 if (err < 0) 1508 break; 1509 } 1510 return_base: 1511 if (nameidata_drop_rcu_last_maybe(nd)) 1512 return -ECHILD; 1513 return 0; 1514 out_dput: 1515 if (!(nd->flags & LOOKUP_RCU)) 1516 path_put_conditional(&next, nd); 1517 break; 1518 } 1519 if (!(nd->flags & LOOKUP_RCU)) 1520 path_put(&nd->path); 1521 return_err: 1522 return err; 1523 } 1524 1525 static inline int path_walk_rcu(const char *name, struct nameidata *nd) 1526 { 1527 current->total_link_count = 0; 1528 1529 return link_path_walk(name, nd); 1530 } 1531 1532 static inline int path_walk_simple(const char *name, struct nameidata *nd) 1533 { 1534 current->total_link_count = 0; 1535 1536 return link_path_walk(name, nd); 1537 } 1538 1539 static int path_walk(const char *name, struct nameidata *nd) 1540 { 1541 struct path save = nd->path; 1542 int result; 1543 1544 current->total_link_count = 0; 1545 1546 /* make sure the stuff we saved doesn't go away */ 1547 path_get(&save); 1548 1549 result = link_path_walk(name, nd); 1550 if (result == -ESTALE) { 1551 /* nd->path had been dropped */ 1552 current->total_link_count = 0; 1553 nd->path = save; 1554 path_get(&nd->path); 1555 nd->flags |= LOOKUP_REVAL; 1556 result = link_path_walk(name, nd); 1557 } 1558 1559 path_put(&save); 1560 1561 return result; 1562 } 1563 1564 static void path_finish_rcu(struct nameidata *nd) 1565 { 1566 if (nd->flags & LOOKUP_RCU) { 1567 /* RCU dangling. Cancel it. */ 1568 nd->flags &= ~LOOKUP_RCU; 1569 nd->root.mnt = NULL; 1570 rcu_read_unlock(); 1571 br_read_unlock(vfsmount_lock); 1572 } 1573 if (nd->file) 1574 fput(nd->file); 1575 } 1576 1577 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1578 { 1579 int retval = 0; 1580 int fput_needed; 1581 struct file *file; 1582 1583 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1584 nd->flags = flags | LOOKUP_RCU; 1585 nd->depth = 0; 1586 nd->root.mnt = NULL; 1587 nd->file = NULL; 1588 1589 if (*name=='/') { 1590 struct fs_struct *fs = current->fs; 1591 unsigned seq; 1592 1593 br_read_lock(vfsmount_lock); 1594 rcu_read_lock(); 1595 1596 do { 1597 seq = read_seqcount_begin(&fs->seq); 1598 nd->root = fs->root; 1599 nd->path = nd->root; 1600 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1601 } while (read_seqcount_retry(&fs->seq, seq)); 1602 1603 } else if (dfd == AT_FDCWD) { 1604 struct fs_struct *fs = current->fs; 1605 unsigned seq; 1606 1607 br_read_lock(vfsmount_lock); 1608 rcu_read_lock(); 1609 1610 do { 1611 seq = read_seqcount_begin(&fs->seq); 1612 nd->path = fs->pwd; 1613 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1614 } while (read_seqcount_retry(&fs->seq, seq)); 1615 1616 } else { 1617 struct dentry *dentry; 1618 1619 file = fget_light(dfd, &fput_needed); 1620 retval = -EBADF; 1621 if (!file) 1622 goto out_fail; 1623 1624 dentry = file->f_path.dentry; 1625 1626 retval = -ENOTDIR; 1627 if (!S_ISDIR(dentry->d_inode->i_mode)) 1628 goto fput_fail; 1629 1630 retval = file_permission(file, MAY_EXEC); 1631 if (retval) 1632 goto fput_fail; 1633 1634 nd->path = file->f_path; 1635 if (fput_needed) 1636 nd->file = file; 1637 1638 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1639 br_read_lock(vfsmount_lock); 1640 rcu_read_lock(); 1641 } 1642 nd->inode = nd->path.dentry->d_inode; 1643 return 0; 1644 1645 fput_fail: 1646 fput_light(file, fput_needed); 1647 out_fail: 1648 return retval; 1649 } 1650 1651 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1652 { 1653 int retval = 0; 1654 int fput_needed; 1655 struct file *file; 1656 1657 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1658 nd->flags = flags; 1659 nd->depth = 0; 1660 nd->root.mnt = NULL; 1661 1662 if (*name=='/') { 1663 set_root(nd); 1664 nd->path = nd->root; 1665 path_get(&nd->root); 1666 } else if (dfd == AT_FDCWD) { 1667 get_fs_pwd(current->fs, &nd->path); 1668 } else { 1669 struct dentry *dentry; 1670 1671 file = fget_light(dfd, &fput_needed); 1672 retval = -EBADF; 1673 if (!file) 1674 goto out_fail; 1675 1676 dentry = file->f_path.dentry; 1677 1678 retval = -ENOTDIR; 1679 if (!S_ISDIR(dentry->d_inode->i_mode)) 1680 goto fput_fail; 1681 1682 retval = file_permission(file, MAY_EXEC); 1683 if (retval) 1684 goto fput_fail; 1685 1686 nd->path = file->f_path; 1687 path_get(&file->f_path); 1688 1689 fput_light(file, fput_needed); 1690 } 1691 nd->inode = nd->path.dentry->d_inode; 1692 return 0; 1693 1694 fput_fail: 1695 fput_light(file, fput_needed); 1696 out_fail: 1697 return retval; 1698 } 1699 1700 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1701 static int do_path_lookup(int dfd, const char *name, 1702 unsigned int flags, struct nameidata *nd) 1703 { 1704 int retval; 1705 1706 /* 1707 * Path walking is largely split up into 2 different synchronisation 1708 * schemes, rcu-walk and ref-walk (explained in 1709 * Documentation/filesystems/path-lookup.txt). These share much of the 1710 * path walk code, but some things particularly setup, cleanup, and 1711 * following mounts are sufficiently divergent that functions are 1712 * duplicated. Typically there is a function foo(), and its RCU 1713 * analogue, foo_rcu(). 1714 * 1715 * -ECHILD is the error number of choice (just to avoid clashes) that 1716 * is returned if some aspect of an rcu-walk fails. Such an error must 1717 * be handled by restarting a traditional ref-walk (which will always 1718 * be able to complete). 1719 */ 1720 retval = path_init_rcu(dfd, name, flags, nd); 1721 if (unlikely(retval)) 1722 return retval; 1723 retval = path_walk_rcu(name, nd); 1724 path_finish_rcu(nd); 1725 if (nd->root.mnt) { 1726 path_put(&nd->root); 1727 nd->root.mnt = NULL; 1728 } 1729 1730 if (unlikely(retval == -ECHILD || retval == -ESTALE)) { 1731 /* slower, locked walk */ 1732 if (retval == -ESTALE) 1733 flags |= LOOKUP_REVAL; 1734 retval = path_init(dfd, name, flags, nd); 1735 if (unlikely(retval)) 1736 return retval; 1737 retval = path_walk(name, nd); 1738 if (nd->root.mnt) { 1739 path_put(&nd->root); 1740 nd->root.mnt = NULL; 1741 } 1742 } 1743 1744 if (likely(!retval)) { 1745 if (unlikely(!audit_dummy_context())) { 1746 if (nd->path.dentry && nd->inode) 1747 audit_inode(name, nd->path.dentry); 1748 } 1749 } 1750 1751 return retval; 1752 } 1753 1754 int path_lookup(const char *name, unsigned int flags, 1755 struct nameidata *nd) 1756 { 1757 return do_path_lookup(AT_FDCWD, name, flags, nd); 1758 } 1759 1760 int kern_path(const char *name, unsigned int flags, struct path *path) 1761 { 1762 struct nameidata nd; 1763 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1764 if (!res) 1765 *path = nd.path; 1766 return res; 1767 } 1768 1769 /** 1770 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1771 * @dentry: pointer to dentry of the base directory 1772 * @mnt: pointer to vfs mount of the base directory 1773 * @name: pointer to file name 1774 * @flags: lookup flags 1775 * @nd: pointer to nameidata 1776 */ 1777 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1778 const char *name, unsigned int flags, 1779 struct nameidata *nd) 1780 { 1781 int retval; 1782 1783 /* same as do_path_lookup */ 1784 nd->last_type = LAST_ROOT; 1785 nd->flags = flags; 1786 nd->depth = 0; 1787 1788 nd->path.dentry = dentry; 1789 nd->path.mnt = mnt; 1790 path_get(&nd->path); 1791 nd->root = nd->path; 1792 path_get(&nd->root); 1793 nd->inode = nd->path.dentry->d_inode; 1794 1795 retval = path_walk(name, nd); 1796 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1797 nd->inode)) 1798 audit_inode(name, nd->path.dentry); 1799 1800 path_put(&nd->root); 1801 nd->root.mnt = NULL; 1802 1803 return retval; 1804 } 1805 1806 static struct dentry *__lookup_hash(struct qstr *name, 1807 struct dentry *base, struct nameidata *nd) 1808 { 1809 struct inode *inode = base->d_inode; 1810 struct dentry *dentry; 1811 int err; 1812 1813 err = exec_permission(inode, 0); 1814 if (err) 1815 return ERR_PTR(err); 1816 1817 /* 1818 * See if the low-level filesystem might want 1819 * to use its own hash.. 1820 */ 1821 if (base->d_flags & DCACHE_OP_HASH) { 1822 err = base->d_op->d_hash(base, inode, name); 1823 dentry = ERR_PTR(err); 1824 if (err < 0) 1825 goto out; 1826 } 1827 1828 /* 1829 * Don't bother with __d_lookup: callers are for creat as 1830 * well as unlink, so a lot of the time it would cost 1831 * a double lookup. 1832 */ 1833 dentry = d_lookup(base, name); 1834 1835 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) 1836 dentry = do_revalidate(dentry, nd); 1837 1838 if (!dentry) 1839 dentry = d_alloc_and_lookup(base, name, nd); 1840 out: 1841 return dentry; 1842 } 1843 1844 /* 1845 * Restricted form of lookup. Doesn't follow links, single-component only, 1846 * needs parent already locked. Doesn't follow mounts. 1847 * SMP-safe. 1848 */ 1849 static struct dentry *lookup_hash(struct nameidata *nd) 1850 { 1851 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1852 } 1853 1854 static int __lookup_one_len(const char *name, struct qstr *this, 1855 struct dentry *base, int len) 1856 { 1857 unsigned long hash; 1858 unsigned int c; 1859 1860 this->name = name; 1861 this->len = len; 1862 if (!len) 1863 return -EACCES; 1864 1865 hash = init_name_hash(); 1866 while (len--) { 1867 c = *(const unsigned char *)name++; 1868 if (c == '/' || c == '\0') 1869 return -EACCES; 1870 hash = partial_name_hash(c, hash); 1871 } 1872 this->hash = end_name_hash(hash); 1873 return 0; 1874 } 1875 1876 /** 1877 * lookup_one_len - filesystem helper to lookup single pathname component 1878 * @name: pathname component to lookup 1879 * @base: base directory to lookup from 1880 * @len: maximum length @len should be interpreted to 1881 * 1882 * Note that this routine is purely a helper for filesystem usage and should 1883 * not be called by generic code. Also note that by using this function the 1884 * nameidata argument is passed to the filesystem methods and a filesystem 1885 * using this helper needs to be prepared for that. 1886 */ 1887 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1888 { 1889 int err; 1890 struct qstr this; 1891 1892 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1893 1894 err = __lookup_one_len(name, &this, base, len); 1895 if (err) 1896 return ERR_PTR(err); 1897 1898 return __lookup_hash(&this, base, NULL); 1899 } 1900 1901 int user_path_at(int dfd, const char __user *name, unsigned flags, 1902 struct path *path) 1903 { 1904 struct nameidata nd; 1905 char *tmp = getname(name); 1906 int err = PTR_ERR(tmp); 1907 if (!IS_ERR(tmp)) { 1908 1909 BUG_ON(flags & LOOKUP_PARENT); 1910 1911 err = do_path_lookup(dfd, tmp, flags, &nd); 1912 putname(tmp); 1913 if (!err) 1914 *path = nd.path; 1915 } 1916 return err; 1917 } 1918 1919 static int user_path_parent(int dfd, const char __user *path, 1920 struct nameidata *nd, char **name) 1921 { 1922 char *s = getname(path); 1923 int error; 1924 1925 if (IS_ERR(s)) 1926 return PTR_ERR(s); 1927 1928 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1929 if (error) 1930 putname(s); 1931 else 1932 *name = s; 1933 1934 return error; 1935 } 1936 1937 /* 1938 * It's inline, so penalty for filesystems that don't use sticky bit is 1939 * minimal. 1940 */ 1941 static inline int check_sticky(struct inode *dir, struct inode *inode) 1942 { 1943 uid_t fsuid = current_fsuid(); 1944 1945 if (!(dir->i_mode & S_ISVTX)) 1946 return 0; 1947 if (inode->i_uid == fsuid) 1948 return 0; 1949 if (dir->i_uid == fsuid) 1950 return 0; 1951 return !capable(CAP_FOWNER); 1952 } 1953 1954 /* 1955 * Check whether we can remove a link victim from directory dir, check 1956 * whether the type of victim is right. 1957 * 1. We can't do it if dir is read-only (done in permission()) 1958 * 2. We should have write and exec permissions on dir 1959 * 3. We can't remove anything from append-only dir 1960 * 4. We can't do anything with immutable dir (done in permission()) 1961 * 5. If the sticky bit on dir is set we should either 1962 * a. be owner of dir, or 1963 * b. be owner of victim, or 1964 * c. have CAP_FOWNER capability 1965 * 6. If the victim is append-only or immutable we can't do antyhing with 1966 * links pointing to it. 1967 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1968 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1969 * 9. We can't remove a root or mountpoint. 1970 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1971 * nfs_async_unlink(). 1972 */ 1973 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1974 { 1975 int error; 1976 1977 if (!victim->d_inode) 1978 return -ENOENT; 1979 1980 BUG_ON(victim->d_parent->d_inode != dir); 1981 audit_inode_child(victim, dir); 1982 1983 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1984 if (error) 1985 return error; 1986 if (IS_APPEND(dir)) 1987 return -EPERM; 1988 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1989 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1990 return -EPERM; 1991 if (isdir) { 1992 if (!S_ISDIR(victim->d_inode->i_mode)) 1993 return -ENOTDIR; 1994 if (IS_ROOT(victim)) 1995 return -EBUSY; 1996 } else if (S_ISDIR(victim->d_inode->i_mode)) 1997 return -EISDIR; 1998 if (IS_DEADDIR(dir)) 1999 return -ENOENT; 2000 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2001 return -EBUSY; 2002 return 0; 2003 } 2004 2005 /* Check whether we can create an object with dentry child in directory 2006 * dir. 2007 * 1. We can't do it if child already exists (open has special treatment for 2008 * this case, but since we are inlined it's OK) 2009 * 2. We can't do it if dir is read-only (done in permission()) 2010 * 3. We should have write and exec permissions on dir 2011 * 4. We can't do it if dir is immutable (done in permission()) 2012 */ 2013 static inline int may_create(struct inode *dir, struct dentry *child) 2014 { 2015 if (child->d_inode) 2016 return -EEXIST; 2017 if (IS_DEADDIR(dir)) 2018 return -ENOENT; 2019 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2020 } 2021 2022 /* 2023 * p1 and p2 should be directories on the same fs. 2024 */ 2025 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2026 { 2027 struct dentry *p; 2028 2029 if (p1 == p2) { 2030 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2031 return NULL; 2032 } 2033 2034 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2035 2036 p = d_ancestor(p2, p1); 2037 if (p) { 2038 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2039 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2040 return p; 2041 } 2042 2043 p = d_ancestor(p1, p2); 2044 if (p) { 2045 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2046 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2047 return p; 2048 } 2049 2050 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2051 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2052 return NULL; 2053 } 2054 2055 void unlock_rename(struct dentry *p1, struct dentry *p2) 2056 { 2057 mutex_unlock(&p1->d_inode->i_mutex); 2058 if (p1 != p2) { 2059 mutex_unlock(&p2->d_inode->i_mutex); 2060 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2061 } 2062 } 2063 2064 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 2065 struct nameidata *nd) 2066 { 2067 int error = may_create(dir, dentry); 2068 2069 if (error) 2070 return error; 2071 2072 if (!dir->i_op->create) 2073 return -EACCES; /* shouldn't it be ENOSYS? */ 2074 mode &= S_IALLUGO; 2075 mode |= S_IFREG; 2076 error = security_inode_create(dir, dentry, mode); 2077 if (error) 2078 return error; 2079 error = dir->i_op->create(dir, dentry, mode, nd); 2080 if (!error) 2081 fsnotify_create(dir, dentry); 2082 return error; 2083 } 2084 2085 int may_open(struct path *path, int acc_mode, int flag) 2086 { 2087 struct dentry *dentry = path->dentry; 2088 struct inode *inode = dentry->d_inode; 2089 int error; 2090 2091 if (!inode) 2092 return -ENOENT; 2093 2094 switch (inode->i_mode & S_IFMT) { 2095 case S_IFLNK: 2096 return -ELOOP; 2097 case S_IFDIR: 2098 if (acc_mode & MAY_WRITE) 2099 return -EISDIR; 2100 break; 2101 case S_IFBLK: 2102 case S_IFCHR: 2103 if (path->mnt->mnt_flags & MNT_NODEV) 2104 return -EACCES; 2105 /*FALLTHRU*/ 2106 case S_IFIFO: 2107 case S_IFSOCK: 2108 flag &= ~O_TRUNC; 2109 break; 2110 } 2111 2112 error = inode_permission(inode, acc_mode); 2113 if (error) 2114 return error; 2115 2116 /* 2117 * An append-only file must be opened in append mode for writing. 2118 */ 2119 if (IS_APPEND(inode)) { 2120 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2121 return -EPERM; 2122 if (flag & O_TRUNC) 2123 return -EPERM; 2124 } 2125 2126 /* O_NOATIME can only be set by the owner or superuser */ 2127 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 2128 return -EPERM; 2129 2130 /* 2131 * Ensure there are no outstanding leases on the file. 2132 */ 2133 return break_lease(inode, flag); 2134 } 2135 2136 static int handle_truncate(struct file *filp) 2137 { 2138 struct path *path = &filp->f_path; 2139 struct inode *inode = path->dentry->d_inode; 2140 int error = get_write_access(inode); 2141 if (error) 2142 return error; 2143 /* 2144 * Refuse to truncate files with mandatory locks held on them. 2145 */ 2146 error = locks_verify_locked(inode); 2147 if (!error) 2148 error = security_path_truncate(path); 2149 if (!error) { 2150 error = do_truncate(path->dentry, 0, 2151 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2152 filp); 2153 } 2154 put_write_access(inode); 2155 return error; 2156 } 2157 2158 /* 2159 * Be careful about ever adding any more callers of this 2160 * function. Its flags must be in the namei format, not 2161 * what get passed to sys_open(). 2162 */ 2163 static int __open_namei_create(struct nameidata *nd, struct path *path, 2164 int open_flag, int mode) 2165 { 2166 int error; 2167 struct dentry *dir = nd->path.dentry; 2168 2169 if (!IS_POSIXACL(dir->d_inode)) 2170 mode &= ~current_umask(); 2171 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 2172 if (error) 2173 goto out_unlock; 2174 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 2175 out_unlock: 2176 mutex_unlock(&dir->d_inode->i_mutex); 2177 dput(nd->path.dentry); 2178 nd->path.dentry = path->dentry; 2179 2180 if (error) 2181 return error; 2182 /* Don't check for write permission, don't truncate */ 2183 return may_open(&nd->path, 0, open_flag & ~O_TRUNC); 2184 } 2185 2186 /* 2187 * Note that while the flag value (low two bits) for sys_open means: 2188 * 00 - read-only 2189 * 01 - write-only 2190 * 10 - read-write 2191 * 11 - special 2192 * it is changed into 2193 * 00 - no permissions needed 2194 * 01 - read-permission 2195 * 10 - write-permission 2196 * 11 - read-write 2197 * for the internal routines (ie open_namei()/follow_link() etc) 2198 * This is more logical, and also allows the 00 "no perm needed" 2199 * to be used for symlinks (where the permissions are checked 2200 * later). 2201 * 2202 */ 2203 static inline int open_to_namei_flags(int flag) 2204 { 2205 if ((flag+1) & O_ACCMODE) 2206 flag++; 2207 return flag; 2208 } 2209 2210 static int open_will_truncate(int flag, struct inode *inode) 2211 { 2212 /* 2213 * We'll never write to the fs underlying 2214 * a device file. 2215 */ 2216 if (special_file(inode->i_mode)) 2217 return 0; 2218 return (flag & O_TRUNC); 2219 } 2220 2221 static struct file *finish_open(struct nameidata *nd, 2222 int open_flag, int acc_mode) 2223 { 2224 struct file *filp; 2225 int will_truncate; 2226 int error; 2227 2228 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode); 2229 if (will_truncate) { 2230 error = mnt_want_write(nd->path.mnt); 2231 if (error) 2232 goto exit; 2233 } 2234 error = may_open(&nd->path, acc_mode, open_flag); 2235 if (error) { 2236 if (will_truncate) 2237 mnt_drop_write(nd->path.mnt); 2238 goto exit; 2239 } 2240 filp = nameidata_to_filp(nd); 2241 if (!IS_ERR(filp)) { 2242 error = ima_file_check(filp, acc_mode); 2243 if (error) { 2244 fput(filp); 2245 filp = ERR_PTR(error); 2246 } 2247 } 2248 if (!IS_ERR(filp)) { 2249 if (will_truncate) { 2250 error = handle_truncate(filp); 2251 if (error) { 2252 fput(filp); 2253 filp = ERR_PTR(error); 2254 } 2255 } 2256 } 2257 /* 2258 * It is now safe to drop the mnt write 2259 * because the filp has had a write taken 2260 * on its behalf. 2261 */ 2262 if (will_truncate) 2263 mnt_drop_write(nd->path.mnt); 2264 path_put(&nd->path); 2265 return filp; 2266 2267 exit: 2268 if (!IS_ERR(nd->intent.open.file)) 2269 release_open_intent(nd); 2270 path_put(&nd->path); 2271 return ERR_PTR(error); 2272 } 2273 2274 /* 2275 * Handle O_CREAT case for do_filp_open 2276 */ 2277 static struct file *do_last(struct nameidata *nd, struct path *path, 2278 int open_flag, int acc_mode, 2279 int mode, const char *pathname) 2280 { 2281 struct dentry *dir = nd->path.dentry; 2282 struct file *filp; 2283 int error = -EISDIR; 2284 2285 switch (nd->last_type) { 2286 case LAST_DOTDOT: 2287 follow_dotdot(nd); 2288 dir = nd->path.dentry; 2289 case LAST_DOT: 2290 if (need_reval_dot(dir)) { 2291 int status = d_revalidate(nd->path.dentry, nd); 2292 if (!status) 2293 status = -ESTALE; 2294 if (status < 0) { 2295 error = status; 2296 goto exit; 2297 } 2298 } 2299 /* fallthrough */ 2300 case LAST_ROOT: 2301 goto exit; 2302 case LAST_BIND: 2303 audit_inode(pathname, dir); 2304 goto ok; 2305 } 2306 2307 /* trailing slashes? */ 2308 if (nd->last.name[nd->last.len]) 2309 goto exit; 2310 2311 mutex_lock(&dir->d_inode->i_mutex); 2312 2313 path->dentry = lookup_hash(nd); 2314 path->mnt = nd->path.mnt; 2315 2316 error = PTR_ERR(path->dentry); 2317 if (IS_ERR(path->dentry)) { 2318 mutex_unlock(&dir->d_inode->i_mutex); 2319 goto exit; 2320 } 2321 2322 if (IS_ERR(nd->intent.open.file)) { 2323 error = PTR_ERR(nd->intent.open.file); 2324 goto exit_mutex_unlock; 2325 } 2326 2327 /* Negative dentry, just create the file */ 2328 if (!path->dentry->d_inode) { 2329 /* 2330 * This write is needed to ensure that a 2331 * ro->rw transition does not occur between 2332 * the time when the file is created and when 2333 * a permanent write count is taken through 2334 * the 'struct file' in nameidata_to_filp(). 2335 */ 2336 error = mnt_want_write(nd->path.mnt); 2337 if (error) 2338 goto exit_mutex_unlock; 2339 error = __open_namei_create(nd, path, open_flag, mode); 2340 if (error) { 2341 mnt_drop_write(nd->path.mnt); 2342 goto exit; 2343 } 2344 filp = nameidata_to_filp(nd); 2345 mnt_drop_write(nd->path.mnt); 2346 path_put(&nd->path); 2347 if (!IS_ERR(filp)) { 2348 error = ima_file_check(filp, acc_mode); 2349 if (error) { 2350 fput(filp); 2351 filp = ERR_PTR(error); 2352 } 2353 } 2354 return filp; 2355 } 2356 2357 /* 2358 * It already exists. 2359 */ 2360 mutex_unlock(&dir->d_inode->i_mutex); 2361 audit_inode(pathname, path->dentry); 2362 2363 error = -EEXIST; 2364 if (open_flag & O_EXCL) 2365 goto exit_dput; 2366 2367 error = follow_managed(path, nd->flags); 2368 if (error < 0) 2369 goto exit_dput; 2370 2371 error = -ENOENT; 2372 if (!path->dentry->d_inode) 2373 goto exit_dput; 2374 2375 if (path->dentry->d_inode->i_op->follow_link) 2376 return NULL; 2377 2378 path_to_nameidata(path, nd); 2379 nd->inode = path->dentry->d_inode; 2380 error = -EISDIR; 2381 if (S_ISDIR(nd->inode->i_mode)) 2382 goto exit; 2383 ok: 2384 filp = finish_open(nd, open_flag, acc_mode); 2385 return filp; 2386 2387 exit_mutex_unlock: 2388 mutex_unlock(&dir->d_inode->i_mutex); 2389 exit_dput: 2390 path_put_conditional(path, nd); 2391 exit: 2392 if (!IS_ERR(nd->intent.open.file)) 2393 release_open_intent(nd); 2394 path_put(&nd->path); 2395 return ERR_PTR(error); 2396 } 2397 2398 /* 2399 * Note that the low bits of the passed in "open_flag" 2400 * are not the same as in the local variable "flag". See 2401 * open_to_namei_flags() for more details. 2402 */ 2403 struct file *do_filp_open(int dfd, const char *pathname, 2404 int open_flag, int mode, int acc_mode) 2405 { 2406 struct file *filp; 2407 struct nameidata nd; 2408 int error; 2409 struct path path; 2410 int count = 0; 2411 int flag = open_to_namei_flags(open_flag); 2412 int flags; 2413 2414 if (!(open_flag & O_CREAT)) 2415 mode = 0; 2416 2417 /* Must never be set by userspace */ 2418 open_flag &= ~FMODE_NONOTIFY; 2419 2420 /* 2421 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 2422 * check for O_DSYNC if the need any syncing at all we enforce it's 2423 * always set instead of having to deal with possibly weird behaviour 2424 * for malicious applications setting only __O_SYNC. 2425 */ 2426 if (open_flag & __O_SYNC) 2427 open_flag |= O_DSYNC; 2428 2429 if (!acc_mode) 2430 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 2431 2432 /* O_TRUNC implies we need access checks for write permissions */ 2433 if (open_flag & O_TRUNC) 2434 acc_mode |= MAY_WRITE; 2435 2436 /* Allow the LSM permission hook to distinguish append 2437 access from general write access. */ 2438 if (open_flag & O_APPEND) 2439 acc_mode |= MAY_APPEND; 2440 2441 flags = LOOKUP_OPEN; 2442 if (open_flag & O_CREAT) { 2443 flags |= LOOKUP_CREATE; 2444 if (open_flag & O_EXCL) 2445 flags |= LOOKUP_EXCL; 2446 } 2447 if (open_flag & O_DIRECTORY) 2448 flags |= LOOKUP_DIRECTORY; 2449 if (!(open_flag & O_NOFOLLOW)) 2450 flags |= LOOKUP_FOLLOW; 2451 2452 filp = get_empty_filp(); 2453 if (!filp) 2454 return ERR_PTR(-ENFILE); 2455 2456 filp->f_flags = open_flag; 2457 nd.intent.open.file = filp; 2458 nd.intent.open.flags = flag; 2459 nd.intent.open.create_mode = mode; 2460 2461 if (open_flag & O_CREAT) 2462 goto creat; 2463 2464 /* !O_CREAT, simple open */ 2465 error = do_path_lookup(dfd, pathname, flags, &nd); 2466 if (unlikely(error)) 2467 goto out_filp; 2468 error = -ELOOP; 2469 if (!(nd.flags & LOOKUP_FOLLOW)) { 2470 if (nd.inode->i_op->follow_link) 2471 goto out_path; 2472 } 2473 error = -ENOTDIR; 2474 if (nd.flags & LOOKUP_DIRECTORY) { 2475 if (!nd.inode->i_op->lookup) 2476 goto out_path; 2477 } 2478 audit_inode(pathname, nd.path.dentry); 2479 filp = finish_open(&nd, open_flag, acc_mode); 2480 return filp; 2481 2482 creat: 2483 /* OK, have to create the file. Find the parent. */ 2484 error = path_init_rcu(dfd, pathname, 2485 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd); 2486 if (error) 2487 goto out_filp; 2488 error = path_walk_rcu(pathname, &nd); 2489 path_finish_rcu(&nd); 2490 if (unlikely(error == -ECHILD || error == -ESTALE)) { 2491 /* slower, locked walk */ 2492 if (error == -ESTALE) { 2493 reval: 2494 flags |= LOOKUP_REVAL; 2495 } 2496 error = path_init(dfd, pathname, 2497 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd); 2498 if (error) 2499 goto out_filp; 2500 2501 error = path_walk_simple(pathname, &nd); 2502 } 2503 if (unlikely(error)) 2504 goto out_filp; 2505 if (unlikely(!audit_dummy_context())) 2506 audit_inode(pathname, nd.path.dentry); 2507 2508 /* 2509 * We have the parent and last component. 2510 */ 2511 nd.flags = flags; 2512 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 2513 while (unlikely(!filp)) { /* trailing symlink */ 2514 struct path link = path; 2515 struct inode *linki = link.dentry->d_inode; 2516 void *cookie; 2517 error = -ELOOP; 2518 if (!(nd.flags & LOOKUP_FOLLOW)) 2519 goto exit_dput; 2520 if (count++ == 32) 2521 goto exit_dput; 2522 /* 2523 * This is subtle. Instead of calling do_follow_link() we do 2524 * the thing by hands. The reason is that this way we have zero 2525 * link_count and path_walk() (called from ->follow_link) 2526 * honoring LOOKUP_PARENT. After that we have the parent and 2527 * last component, i.e. we are in the same situation as after 2528 * the first path_walk(). Well, almost - if the last component 2529 * is normal we get its copy stored in nd->last.name and we will 2530 * have to putname() it when we are done. Procfs-like symlinks 2531 * just set LAST_BIND. 2532 */ 2533 nd.flags |= LOOKUP_PARENT; 2534 error = security_inode_follow_link(link.dentry, &nd); 2535 if (error) 2536 goto exit_dput; 2537 error = __do_follow_link(&link, &nd, &cookie); 2538 if (unlikely(error)) { 2539 if (!IS_ERR(cookie) && linki->i_op->put_link) 2540 linki->i_op->put_link(link.dentry, &nd, cookie); 2541 /* nd.path had been dropped */ 2542 nd.path = link; 2543 goto out_path; 2544 } 2545 nd.flags &= ~LOOKUP_PARENT; 2546 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 2547 if (linki->i_op->put_link) 2548 linki->i_op->put_link(link.dentry, &nd, cookie); 2549 path_put(&link); 2550 } 2551 out: 2552 if (nd.root.mnt) 2553 path_put(&nd.root); 2554 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL)) 2555 goto reval; 2556 return filp; 2557 2558 exit_dput: 2559 path_put_conditional(&path, &nd); 2560 out_path: 2561 path_put(&nd.path); 2562 out_filp: 2563 if (!IS_ERR(nd.intent.open.file)) 2564 release_open_intent(&nd); 2565 filp = ERR_PTR(error); 2566 goto out; 2567 } 2568 2569 /** 2570 * filp_open - open file and return file pointer 2571 * 2572 * @filename: path to open 2573 * @flags: open flags as per the open(2) second argument 2574 * @mode: mode for the new file if O_CREAT is set, else ignored 2575 * 2576 * This is the helper to open a file from kernelspace if you really 2577 * have to. But in generally you should not do this, so please move 2578 * along, nothing to see here.. 2579 */ 2580 struct file *filp_open(const char *filename, int flags, int mode) 2581 { 2582 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 2583 } 2584 EXPORT_SYMBOL(filp_open); 2585 2586 /** 2587 * lookup_create - lookup a dentry, creating it if it doesn't exist 2588 * @nd: nameidata info 2589 * @is_dir: directory flag 2590 * 2591 * Simple function to lookup and return a dentry and create it 2592 * if it doesn't exist. Is SMP-safe. 2593 * 2594 * Returns with nd->path.dentry->d_inode->i_mutex locked. 2595 */ 2596 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 2597 { 2598 struct dentry *dentry = ERR_PTR(-EEXIST); 2599 2600 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2601 /* 2602 * Yucky last component or no last component at all? 2603 * (foo/., foo/.., /////) 2604 */ 2605 if (nd->last_type != LAST_NORM) 2606 goto fail; 2607 nd->flags &= ~LOOKUP_PARENT; 2608 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2609 nd->intent.open.flags = O_EXCL; 2610 2611 /* 2612 * Do the final lookup. 2613 */ 2614 dentry = lookup_hash(nd); 2615 if (IS_ERR(dentry)) 2616 goto fail; 2617 2618 if (dentry->d_inode) 2619 goto eexist; 2620 /* 2621 * Special case - lookup gave negative, but... we had foo/bar/ 2622 * From the vfs_mknod() POV we just have a negative dentry - 2623 * all is fine. Let's be bastards - you had / on the end, you've 2624 * been asking for (non-existent) directory. -ENOENT for you. 2625 */ 2626 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 2627 dput(dentry); 2628 dentry = ERR_PTR(-ENOENT); 2629 } 2630 return dentry; 2631 eexist: 2632 dput(dentry); 2633 dentry = ERR_PTR(-EEXIST); 2634 fail: 2635 return dentry; 2636 } 2637 EXPORT_SYMBOL_GPL(lookup_create); 2638 2639 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2640 { 2641 int error = may_create(dir, dentry); 2642 2643 if (error) 2644 return error; 2645 2646 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 2647 return -EPERM; 2648 2649 if (!dir->i_op->mknod) 2650 return -EPERM; 2651 2652 error = devcgroup_inode_mknod(mode, dev); 2653 if (error) 2654 return error; 2655 2656 error = security_inode_mknod(dir, dentry, mode, dev); 2657 if (error) 2658 return error; 2659 2660 error = dir->i_op->mknod(dir, dentry, mode, dev); 2661 if (!error) 2662 fsnotify_create(dir, dentry); 2663 return error; 2664 } 2665 2666 static int may_mknod(mode_t mode) 2667 { 2668 switch (mode & S_IFMT) { 2669 case S_IFREG: 2670 case S_IFCHR: 2671 case S_IFBLK: 2672 case S_IFIFO: 2673 case S_IFSOCK: 2674 case 0: /* zero mode translates to S_IFREG */ 2675 return 0; 2676 case S_IFDIR: 2677 return -EPERM; 2678 default: 2679 return -EINVAL; 2680 } 2681 } 2682 2683 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2684 unsigned, dev) 2685 { 2686 int error; 2687 char *tmp; 2688 struct dentry *dentry; 2689 struct nameidata nd; 2690 2691 if (S_ISDIR(mode)) 2692 return -EPERM; 2693 2694 error = user_path_parent(dfd, filename, &nd, &tmp); 2695 if (error) 2696 return error; 2697 2698 dentry = lookup_create(&nd, 0); 2699 if (IS_ERR(dentry)) { 2700 error = PTR_ERR(dentry); 2701 goto out_unlock; 2702 } 2703 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2704 mode &= ~current_umask(); 2705 error = may_mknod(mode); 2706 if (error) 2707 goto out_dput; 2708 error = mnt_want_write(nd.path.mnt); 2709 if (error) 2710 goto out_dput; 2711 error = security_path_mknod(&nd.path, dentry, mode, dev); 2712 if (error) 2713 goto out_drop_write; 2714 switch (mode & S_IFMT) { 2715 case 0: case S_IFREG: 2716 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2717 break; 2718 case S_IFCHR: case S_IFBLK: 2719 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2720 new_decode_dev(dev)); 2721 break; 2722 case S_IFIFO: case S_IFSOCK: 2723 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2724 break; 2725 } 2726 out_drop_write: 2727 mnt_drop_write(nd.path.mnt); 2728 out_dput: 2729 dput(dentry); 2730 out_unlock: 2731 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2732 path_put(&nd.path); 2733 putname(tmp); 2734 2735 return error; 2736 } 2737 2738 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2739 { 2740 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2741 } 2742 2743 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2744 { 2745 int error = may_create(dir, dentry); 2746 2747 if (error) 2748 return error; 2749 2750 if (!dir->i_op->mkdir) 2751 return -EPERM; 2752 2753 mode &= (S_IRWXUGO|S_ISVTX); 2754 error = security_inode_mkdir(dir, dentry, mode); 2755 if (error) 2756 return error; 2757 2758 error = dir->i_op->mkdir(dir, dentry, mode); 2759 if (!error) 2760 fsnotify_mkdir(dir, dentry); 2761 return error; 2762 } 2763 2764 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2765 { 2766 int error = 0; 2767 char * tmp; 2768 struct dentry *dentry; 2769 struct nameidata nd; 2770 2771 error = user_path_parent(dfd, pathname, &nd, &tmp); 2772 if (error) 2773 goto out_err; 2774 2775 dentry = lookup_create(&nd, 1); 2776 error = PTR_ERR(dentry); 2777 if (IS_ERR(dentry)) 2778 goto out_unlock; 2779 2780 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2781 mode &= ~current_umask(); 2782 error = mnt_want_write(nd.path.mnt); 2783 if (error) 2784 goto out_dput; 2785 error = security_path_mkdir(&nd.path, dentry, mode); 2786 if (error) 2787 goto out_drop_write; 2788 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2789 out_drop_write: 2790 mnt_drop_write(nd.path.mnt); 2791 out_dput: 2792 dput(dentry); 2793 out_unlock: 2794 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2795 path_put(&nd.path); 2796 putname(tmp); 2797 out_err: 2798 return error; 2799 } 2800 2801 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2802 { 2803 return sys_mkdirat(AT_FDCWD, pathname, mode); 2804 } 2805 2806 /* 2807 * We try to drop the dentry early: we should have 2808 * a usage count of 2 if we're the only user of this 2809 * dentry, and if that is true (possibly after pruning 2810 * the dcache), then we drop the dentry now. 2811 * 2812 * A low-level filesystem can, if it choses, legally 2813 * do a 2814 * 2815 * if (!d_unhashed(dentry)) 2816 * return -EBUSY; 2817 * 2818 * if it cannot handle the case of removing a directory 2819 * that is still in use by something else.. 2820 */ 2821 void dentry_unhash(struct dentry *dentry) 2822 { 2823 dget(dentry); 2824 shrink_dcache_parent(dentry); 2825 spin_lock(&dentry->d_lock); 2826 if (dentry->d_count == 2) 2827 __d_drop(dentry); 2828 spin_unlock(&dentry->d_lock); 2829 } 2830 2831 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2832 { 2833 int error = may_delete(dir, dentry, 1); 2834 2835 if (error) 2836 return error; 2837 2838 if (!dir->i_op->rmdir) 2839 return -EPERM; 2840 2841 mutex_lock(&dentry->d_inode->i_mutex); 2842 dentry_unhash(dentry); 2843 if (d_mountpoint(dentry)) 2844 error = -EBUSY; 2845 else { 2846 error = security_inode_rmdir(dir, dentry); 2847 if (!error) { 2848 error = dir->i_op->rmdir(dir, dentry); 2849 if (!error) { 2850 dentry->d_inode->i_flags |= S_DEAD; 2851 dont_mount(dentry); 2852 } 2853 } 2854 } 2855 mutex_unlock(&dentry->d_inode->i_mutex); 2856 if (!error) { 2857 d_delete(dentry); 2858 } 2859 dput(dentry); 2860 2861 return error; 2862 } 2863 2864 static long do_rmdir(int dfd, const char __user *pathname) 2865 { 2866 int error = 0; 2867 char * name; 2868 struct dentry *dentry; 2869 struct nameidata nd; 2870 2871 error = user_path_parent(dfd, pathname, &nd, &name); 2872 if (error) 2873 return error; 2874 2875 switch(nd.last_type) { 2876 case LAST_DOTDOT: 2877 error = -ENOTEMPTY; 2878 goto exit1; 2879 case LAST_DOT: 2880 error = -EINVAL; 2881 goto exit1; 2882 case LAST_ROOT: 2883 error = -EBUSY; 2884 goto exit1; 2885 } 2886 2887 nd.flags &= ~LOOKUP_PARENT; 2888 2889 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2890 dentry = lookup_hash(&nd); 2891 error = PTR_ERR(dentry); 2892 if (IS_ERR(dentry)) 2893 goto exit2; 2894 error = mnt_want_write(nd.path.mnt); 2895 if (error) 2896 goto exit3; 2897 error = security_path_rmdir(&nd.path, dentry); 2898 if (error) 2899 goto exit4; 2900 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2901 exit4: 2902 mnt_drop_write(nd.path.mnt); 2903 exit3: 2904 dput(dentry); 2905 exit2: 2906 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2907 exit1: 2908 path_put(&nd.path); 2909 putname(name); 2910 return error; 2911 } 2912 2913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2914 { 2915 return do_rmdir(AT_FDCWD, pathname); 2916 } 2917 2918 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2919 { 2920 int error = may_delete(dir, dentry, 0); 2921 2922 if (error) 2923 return error; 2924 2925 if (!dir->i_op->unlink) 2926 return -EPERM; 2927 2928 mutex_lock(&dentry->d_inode->i_mutex); 2929 if (d_mountpoint(dentry)) 2930 error = -EBUSY; 2931 else { 2932 error = security_inode_unlink(dir, dentry); 2933 if (!error) { 2934 error = dir->i_op->unlink(dir, dentry); 2935 if (!error) 2936 dont_mount(dentry); 2937 } 2938 } 2939 mutex_unlock(&dentry->d_inode->i_mutex); 2940 2941 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2942 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2943 fsnotify_link_count(dentry->d_inode); 2944 d_delete(dentry); 2945 } 2946 2947 return error; 2948 } 2949 2950 /* 2951 * Make sure that the actual truncation of the file will occur outside its 2952 * directory's i_mutex. Truncate can take a long time if there is a lot of 2953 * writeout happening, and we don't want to prevent access to the directory 2954 * while waiting on the I/O. 2955 */ 2956 static long do_unlinkat(int dfd, const char __user *pathname) 2957 { 2958 int error; 2959 char *name; 2960 struct dentry *dentry; 2961 struct nameidata nd; 2962 struct inode *inode = NULL; 2963 2964 error = user_path_parent(dfd, pathname, &nd, &name); 2965 if (error) 2966 return error; 2967 2968 error = -EISDIR; 2969 if (nd.last_type != LAST_NORM) 2970 goto exit1; 2971 2972 nd.flags &= ~LOOKUP_PARENT; 2973 2974 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2975 dentry = lookup_hash(&nd); 2976 error = PTR_ERR(dentry); 2977 if (!IS_ERR(dentry)) { 2978 /* Why not before? Because we want correct error value */ 2979 if (nd.last.name[nd.last.len]) 2980 goto slashes; 2981 inode = dentry->d_inode; 2982 if (inode) 2983 ihold(inode); 2984 error = mnt_want_write(nd.path.mnt); 2985 if (error) 2986 goto exit2; 2987 error = security_path_unlink(&nd.path, dentry); 2988 if (error) 2989 goto exit3; 2990 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2991 exit3: 2992 mnt_drop_write(nd.path.mnt); 2993 exit2: 2994 dput(dentry); 2995 } 2996 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2997 if (inode) 2998 iput(inode); /* truncate the inode here */ 2999 exit1: 3000 path_put(&nd.path); 3001 putname(name); 3002 return error; 3003 3004 slashes: 3005 error = !dentry->d_inode ? -ENOENT : 3006 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3007 goto exit2; 3008 } 3009 3010 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3011 { 3012 if ((flag & ~AT_REMOVEDIR) != 0) 3013 return -EINVAL; 3014 3015 if (flag & AT_REMOVEDIR) 3016 return do_rmdir(dfd, pathname); 3017 3018 return do_unlinkat(dfd, pathname); 3019 } 3020 3021 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3022 { 3023 return do_unlinkat(AT_FDCWD, pathname); 3024 } 3025 3026 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3027 { 3028 int error = may_create(dir, dentry); 3029 3030 if (error) 3031 return error; 3032 3033 if (!dir->i_op->symlink) 3034 return -EPERM; 3035 3036 error = security_inode_symlink(dir, dentry, oldname); 3037 if (error) 3038 return error; 3039 3040 error = dir->i_op->symlink(dir, dentry, oldname); 3041 if (!error) 3042 fsnotify_create(dir, dentry); 3043 return error; 3044 } 3045 3046 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3047 int, newdfd, const char __user *, newname) 3048 { 3049 int error; 3050 char *from; 3051 char *to; 3052 struct dentry *dentry; 3053 struct nameidata nd; 3054 3055 from = getname(oldname); 3056 if (IS_ERR(from)) 3057 return PTR_ERR(from); 3058 3059 error = user_path_parent(newdfd, newname, &nd, &to); 3060 if (error) 3061 goto out_putname; 3062 3063 dentry = lookup_create(&nd, 0); 3064 error = PTR_ERR(dentry); 3065 if (IS_ERR(dentry)) 3066 goto out_unlock; 3067 3068 error = mnt_want_write(nd.path.mnt); 3069 if (error) 3070 goto out_dput; 3071 error = security_path_symlink(&nd.path, dentry, from); 3072 if (error) 3073 goto out_drop_write; 3074 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 3075 out_drop_write: 3076 mnt_drop_write(nd.path.mnt); 3077 out_dput: 3078 dput(dentry); 3079 out_unlock: 3080 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3081 path_put(&nd.path); 3082 putname(to); 3083 out_putname: 3084 putname(from); 3085 return error; 3086 } 3087 3088 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3089 { 3090 return sys_symlinkat(oldname, AT_FDCWD, newname); 3091 } 3092 3093 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3094 { 3095 struct inode *inode = old_dentry->d_inode; 3096 int error; 3097 3098 if (!inode) 3099 return -ENOENT; 3100 3101 error = may_create(dir, new_dentry); 3102 if (error) 3103 return error; 3104 3105 if (dir->i_sb != inode->i_sb) 3106 return -EXDEV; 3107 3108 /* 3109 * A link to an append-only or immutable file cannot be created. 3110 */ 3111 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3112 return -EPERM; 3113 if (!dir->i_op->link) 3114 return -EPERM; 3115 if (S_ISDIR(inode->i_mode)) 3116 return -EPERM; 3117 3118 error = security_inode_link(old_dentry, dir, new_dentry); 3119 if (error) 3120 return error; 3121 3122 mutex_lock(&inode->i_mutex); 3123 error = dir->i_op->link(old_dentry, dir, new_dentry); 3124 mutex_unlock(&inode->i_mutex); 3125 if (!error) 3126 fsnotify_link(dir, inode, new_dentry); 3127 return error; 3128 } 3129 3130 /* 3131 * Hardlinks are often used in delicate situations. We avoid 3132 * security-related surprises by not following symlinks on the 3133 * newname. --KAB 3134 * 3135 * We don't follow them on the oldname either to be compatible 3136 * with linux 2.0, and to avoid hard-linking to directories 3137 * and other special files. --ADM 3138 */ 3139 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3140 int, newdfd, const char __user *, newname, int, flags) 3141 { 3142 struct dentry *new_dentry; 3143 struct nameidata nd; 3144 struct path old_path; 3145 int error; 3146 char *to; 3147 3148 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 3149 return -EINVAL; 3150 3151 error = user_path_at(olddfd, oldname, 3152 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 3153 &old_path); 3154 if (error) 3155 return error; 3156 3157 error = user_path_parent(newdfd, newname, &nd, &to); 3158 if (error) 3159 goto out; 3160 error = -EXDEV; 3161 if (old_path.mnt != nd.path.mnt) 3162 goto out_release; 3163 new_dentry = lookup_create(&nd, 0); 3164 error = PTR_ERR(new_dentry); 3165 if (IS_ERR(new_dentry)) 3166 goto out_unlock; 3167 error = mnt_want_write(nd.path.mnt); 3168 if (error) 3169 goto out_dput; 3170 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 3171 if (error) 3172 goto out_drop_write; 3173 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 3174 out_drop_write: 3175 mnt_drop_write(nd.path.mnt); 3176 out_dput: 3177 dput(new_dentry); 3178 out_unlock: 3179 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3180 out_release: 3181 path_put(&nd.path); 3182 putname(to); 3183 out: 3184 path_put(&old_path); 3185 3186 return error; 3187 } 3188 3189 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3190 { 3191 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3192 } 3193 3194 /* 3195 * The worst of all namespace operations - renaming directory. "Perverted" 3196 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3197 * Problems: 3198 * a) we can get into loop creation. Check is done in is_subdir(). 3199 * b) race potential - two innocent renames can create a loop together. 3200 * That's where 4.4 screws up. Current fix: serialization on 3201 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3202 * story. 3203 * c) we have to lock _three_ objects - parents and victim (if it exists). 3204 * And that - after we got ->i_mutex on parents (until then we don't know 3205 * whether the target exists). Solution: try to be smart with locking 3206 * order for inodes. We rely on the fact that tree topology may change 3207 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3208 * move will be locked. Thus we can rank directories by the tree 3209 * (ancestors first) and rank all non-directories after them. 3210 * That works since everybody except rename does "lock parent, lookup, 3211 * lock child" and rename is under ->s_vfs_rename_mutex. 3212 * HOWEVER, it relies on the assumption that any object with ->lookup() 3213 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3214 * we'd better make sure that there's no link(2) for them. 3215 * d) some filesystems don't support opened-but-unlinked directories, 3216 * either because of layout or because they are not ready to deal with 3217 * all cases correctly. The latter will be fixed (taking this sort of 3218 * stuff into VFS), but the former is not going away. Solution: the same 3219 * trick as in rmdir(). 3220 * e) conversion from fhandle to dentry may come in the wrong moment - when 3221 * we are removing the target. Solution: we will have to grab ->i_mutex 3222 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3223 * ->i_mutex on parents, which works but leads to some truly excessive 3224 * locking]. 3225 */ 3226 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3227 struct inode *new_dir, struct dentry *new_dentry) 3228 { 3229 int error = 0; 3230 struct inode *target; 3231 3232 /* 3233 * If we are going to change the parent - check write permissions, 3234 * we'll need to flip '..'. 3235 */ 3236 if (new_dir != old_dir) { 3237 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3238 if (error) 3239 return error; 3240 } 3241 3242 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3243 if (error) 3244 return error; 3245 3246 target = new_dentry->d_inode; 3247 if (target) 3248 mutex_lock(&target->i_mutex); 3249 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3250 error = -EBUSY; 3251 else { 3252 if (target) 3253 dentry_unhash(new_dentry); 3254 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3255 } 3256 if (target) { 3257 if (!error) { 3258 target->i_flags |= S_DEAD; 3259 dont_mount(new_dentry); 3260 } 3261 mutex_unlock(&target->i_mutex); 3262 if (d_unhashed(new_dentry)) 3263 d_rehash(new_dentry); 3264 dput(new_dentry); 3265 } 3266 if (!error) 3267 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3268 d_move(old_dentry,new_dentry); 3269 return error; 3270 } 3271 3272 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3273 struct inode *new_dir, struct dentry *new_dentry) 3274 { 3275 struct inode *target; 3276 int error; 3277 3278 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3279 if (error) 3280 return error; 3281 3282 dget(new_dentry); 3283 target = new_dentry->d_inode; 3284 if (target) 3285 mutex_lock(&target->i_mutex); 3286 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3287 error = -EBUSY; 3288 else 3289 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3290 if (!error) { 3291 if (target) 3292 dont_mount(new_dentry); 3293 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3294 d_move(old_dentry, new_dentry); 3295 } 3296 if (target) 3297 mutex_unlock(&target->i_mutex); 3298 dput(new_dentry); 3299 return error; 3300 } 3301 3302 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3303 struct inode *new_dir, struct dentry *new_dentry) 3304 { 3305 int error; 3306 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3307 const unsigned char *old_name; 3308 3309 if (old_dentry->d_inode == new_dentry->d_inode) 3310 return 0; 3311 3312 error = may_delete(old_dir, old_dentry, is_dir); 3313 if (error) 3314 return error; 3315 3316 if (!new_dentry->d_inode) 3317 error = may_create(new_dir, new_dentry); 3318 else 3319 error = may_delete(new_dir, new_dentry, is_dir); 3320 if (error) 3321 return error; 3322 3323 if (!old_dir->i_op->rename) 3324 return -EPERM; 3325 3326 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3327 3328 if (is_dir) 3329 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3330 else 3331 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3332 if (!error) 3333 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3334 new_dentry->d_inode, old_dentry); 3335 fsnotify_oldname_free(old_name); 3336 3337 return error; 3338 } 3339 3340 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3341 int, newdfd, const char __user *, newname) 3342 { 3343 struct dentry *old_dir, *new_dir; 3344 struct dentry *old_dentry, *new_dentry; 3345 struct dentry *trap; 3346 struct nameidata oldnd, newnd; 3347 char *from; 3348 char *to; 3349 int error; 3350 3351 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3352 if (error) 3353 goto exit; 3354 3355 error = user_path_parent(newdfd, newname, &newnd, &to); 3356 if (error) 3357 goto exit1; 3358 3359 error = -EXDEV; 3360 if (oldnd.path.mnt != newnd.path.mnt) 3361 goto exit2; 3362 3363 old_dir = oldnd.path.dentry; 3364 error = -EBUSY; 3365 if (oldnd.last_type != LAST_NORM) 3366 goto exit2; 3367 3368 new_dir = newnd.path.dentry; 3369 if (newnd.last_type != LAST_NORM) 3370 goto exit2; 3371 3372 oldnd.flags &= ~LOOKUP_PARENT; 3373 newnd.flags &= ~LOOKUP_PARENT; 3374 newnd.flags |= LOOKUP_RENAME_TARGET; 3375 3376 trap = lock_rename(new_dir, old_dir); 3377 3378 old_dentry = lookup_hash(&oldnd); 3379 error = PTR_ERR(old_dentry); 3380 if (IS_ERR(old_dentry)) 3381 goto exit3; 3382 /* source must exist */ 3383 error = -ENOENT; 3384 if (!old_dentry->d_inode) 3385 goto exit4; 3386 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3387 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3388 error = -ENOTDIR; 3389 if (oldnd.last.name[oldnd.last.len]) 3390 goto exit4; 3391 if (newnd.last.name[newnd.last.len]) 3392 goto exit4; 3393 } 3394 /* source should not be ancestor of target */ 3395 error = -EINVAL; 3396 if (old_dentry == trap) 3397 goto exit4; 3398 new_dentry = lookup_hash(&newnd); 3399 error = PTR_ERR(new_dentry); 3400 if (IS_ERR(new_dentry)) 3401 goto exit4; 3402 /* target should not be an ancestor of source */ 3403 error = -ENOTEMPTY; 3404 if (new_dentry == trap) 3405 goto exit5; 3406 3407 error = mnt_want_write(oldnd.path.mnt); 3408 if (error) 3409 goto exit5; 3410 error = security_path_rename(&oldnd.path, old_dentry, 3411 &newnd.path, new_dentry); 3412 if (error) 3413 goto exit6; 3414 error = vfs_rename(old_dir->d_inode, old_dentry, 3415 new_dir->d_inode, new_dentry); 3416 exit6: 3417 mnt_drop_write(oldnd.path.mnt); 3418 exit5: 3419 dput(new_dentry); 3420 exit4: 3421 dput(old_dentry); 3422 exit3: 3423 unlock_rename(new_dir, old_dir); 3424 exit2: 3425 path_put(&newnd.path); 3426 putname(to); 3427 exit1: 3428 path_put(&oldnd.path); 3429 putname(from); 3430 exit: 3431 return error; 3432 } 3433 3434 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3435 { 3436 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3437 } 3438 3439 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3440 { 3441 int len; 3442 3443 len = PTR_ERR(link); 3444 if (IS_ERR(link)) 3445 goto out; 3446 3447 len = strlen(link); 3448 if (len > (unsigned) buflen) 3449 len = buflen; 3450 if (copy_to_user(buffer, link, len)) 3451 len = -EFAULT; 3452 out: 3453 return len; 3454 } 3455 3456 /* 3457 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3458 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3459 * using) it for any given inode is up to filesystem. 3460 */ 3461 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3462 { 3463 struct nameidata nd; 3464 void *cookie; 3465 int res; 3466 3467 nd.depth = 0; 3468 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3469 if (IS_ERR(cookie)) 3470 return PTR_ERR(cookie); 3471 3472 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3473 if (dentry->d_inode->i_op->put_link) 3474 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3475 return res; 3476 } 3477 3478 int vfs_follow_link(struct nameidata *nd, const char *link) 3479 { 3480 return __vfs_follow_link(nd, link); 3481 } 3482 3483 /* get the link contents into pagecache */ 3484 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3485 { 3486 char *kaddr; 3487 struct page *page; 3488 struct address_space *mapping = dentry->d_inode->i_mapping; 3489 page = read_mapping_page(mapping, 0, NULL); 3490 if (IS_ERR(page)) 3491 return (char*)page; 3492 *ppage = page; 3493 kaddr = kmap(page); 3494 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3495 return kaddr; 3496 } 3497 3498 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3499 { 3500 struct page *page = NULL; 3501 char *s = page_getlink(dentry, &page); 3502 int res = vfs_readlink(dentry,buffer,buflen,s); 3503 if (page) { 3504 kunmap(page); 3505 page_cache_release(page); 3506 } 3507 return res; 3508 } 3509 3510 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3511 { 3512 struct page *page = NULL; 3513 nd_set_link(nd, page_getlink(dentry, &page)); 3514 return page; 3515 } 3516 3517 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3518 { 3519 struct page *page = cookie; 3520 3521 if (page) { 3522 kunmap(page); 3523 page_cache_release(page); 3524 } 3525 } 3526 3527 /* 3528 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3529 */ 3530 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3531 { 3532 struct address_space *mapping = inode->i_mapping; 3533 struct page *page; 3534 void *fsdata; 3535 int err; 3536 char *kaddr; 3537 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3538 if (nofs) 3539 flags |= AOP_FLAG_NOFS; 3540 3541 retry: 3542 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3543 flags, &page, &fsdata); 3544 if (err) 3545 goto fail; 3546 3547 kaddr = kmap_atomic(page, KM_USER0); 3548 memcpy(kaddr, symname, len-1); 3549 kunmap_atomic(kaddr, KM_USER0); 3550 3551 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3552 page, fsdata); 3553 if (err < 0) 3554 goto fail; 3555 if (err < len-1) 3556 goto retry; 3557 3558 mark_inode_dirty(inode); 3559 return 0; 3560 fail: 3561 return err; 3562 } 3563 3564 int page_symlink(struct inode *inode, const char *symname, int len) 3565 { 3566 return __page_symlink(inode, symname, len, 3567 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3568 } 3569 3570 const struct inode_operations page_symlink_inode_operations = { 3571 .readlink = generic_readlink, 3572 .follow_link = page_follow_link_light, 3573 .put_link = page_put_link, 3574 }; 3575 3576 EXPORT_SYMBOL(user_path_at); 3577 EXPORT_SYMBOL(follow_down_one); 3578 EXPORT_SYMBOL(follow_down); 3579 EXPORT_SYMBOL(follow_up); 3580 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3581 EXPORT_SYMBOL(getname); 3582 EXPORT_SYMBOL(lock_rename); 3583 EXPORT_SYMBOL(lookup_one_len); 3584 EXPORT_SYMBOL(page_follow_link_light); 3585 EXPORT_SYMBOL(page_put_link); 3586 EXPORT_SYMBOL(page_readlink); 3587 EXPORT_SYMBOL(__page_symlink); 3588 EXPORT_SYMBOL(page_symlink); 3589 EXPORT_SYMBOL(page_symlink_inode_operations); 3590 EXPORT_SYMBOL(path_lookup); 3591 EXPORT_SYMBOL(kern_path); 3592 EXPORT_SYMBOL(vfs_path_lookup); 3593 EXPORT_SYMBOL(inode_permission); 3594 EXPORT_SYMBOL(file_permission); 3595 EXPORT_SYMBOL(unlock_rename); 3596 EXPORT_SYMBOL(vfs_create); 3597 EXPORT_SYMBOL(vfs_follow_link); 3598 EXPORT_SYMBOL(vfs_link); 3599 EXPORT_SYMBOL(vfs_mkdir); 3600 EXPORT_SYMBOL(vfs_mknod); 3601 EXPORT_SYMBOL(generic_permission); 3602 EXPORT_SYMBOL(vfs_readlink); 3603 EXPORT_SYMBOL(vfs_rename); 3604 EXPORT_SYMBOL(vfs_rmdir); 3605 EXPORT_SYMBOL(vfs_symlink); 3606 EXPORT_SYMBOL(vfs_unlink); 3607 EXPORT_SYMBOL(dentry_unhash); 3608 EXPORT_SYMBOL(generic_readlink); 3609