xref: /linux/fs/namei.c (revision d4821902e43453b85b31329441a9f6ac071228a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/fsnotify.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/ima.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 
135 	result = audit_reusename(filename);
136 	if (result)
137 		return result;
138 
139 	result = __getname();
140 	if (unlikely(!result))
141 		return ERR_PTR(-ENOMEM);
142 
143 	/*
144 	 * First, try to embed the struct filename inside the names_cache
145 	 * allocation
146 	 */
147 	kname = (char *)result->iname;
148 	result->name = kname;
149 
150 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 	if (unlikely(len < 0)) {
152 		__putname(result);
153 		return ERR_PTR(len);
154 	}
155 
156 	/*
157 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 	 * separate struct filename so we can dedicate the entire
159 	 * names_cache allocation for the pathname, and re-do the copy from
160 	 * userland.
161 	 */
162 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 		const size_t size = offsetof(struct filename, iname[1]);
164 		kname = (char *)result;
165 
166 		/*
167 		 * size is chosen that way we to guarantee that
168 		 * result->iname[0] is within the same object and that
169 		 * kname can't be equal to result->iname, no matter what.
170 		 */
171 		result = kzalloc(size, GFP_KERNEL);
172 		if (unlikely(!result)) {
173 			__putname(kname);
174 			return ERR_PTR(-ENOMEM);
175 		}
176 		result->name = kname;
177 		len = strncpy_from_user(kname, filename, PATH_MAX);
178 		if (unlikely(len < 0)) {
179 			__putname(kname);
180 			kfree(result);
181 			return ERR_PTR(len);
182 		}
183 		if (unlikely(len == PATH_MAX)) {
184 			__putname(kname);
185 			kfree(result);
186 			return ERR_PTR(-ENAMETOOLONG);
187 		}
188 	}
189 
190 	result->refcnt = 1;
191 	/* The empty path is special. */
192 	if (unlikely(!len)) {
193 		if (empty)
194 			*empty = 1;
195 		if (!(flags & LOOKUP_EMPTY)) {
196 			putname(result);
197 			return ERR_PTR(-ENOENT);
198 		}
199 	}
200 
201 	result->uptr = filename;
202 	result->aname = NULL;
203 	audit_getname(result);
204 	return result;
205 }
206 
207 struct filename *
208 getname_uflags(const char __user *filename, int uflags)
209 {
210 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211 
212 	return getname_flags(filename, flags, NULL);
213 }
214 
215 struct filename *
216 getname(const char __user * filename)
217 {
218 	return getname_flags(filename, 0, NULL);
219 }
220 
221 struct filename *
222 getname_kernel(const char * filename)
223 {
224 	struct filename *result;
225 	int len = strlen(filename) + 1;
226 
227 	result = __getname();
228 	if (unlikely(!result))
229 		return ERR_PTR(-ENOMEM);
230 
231 	if (len <= EMBEDDED_NAME_MAX) {
232 		result->name = (char *)result->iname;
233 	} else if (len <= PATH_MAX) {
234 		const size_t size = offsetof(struct filename, iname[1]);
235 		struct filename *tmp;
236 
237 		tmp = kmalloc(size, GFP_KERNEL);
238 		if (unlikely(!tmp)) {
239 			__putname(result);
240 			return ERR_PTR(-ENOMEM);
241 		}
242 		tmp->name = (char *)result;
243 		result = tmp;
244 	} else {
245 		__putname(result);
246 		return ERR_PTR(-ENAMETOOLONG);
247 	}
248 	memcpy((char *)result->name, filename, len);
249 	result->uptr = NULL;
250 	result->aname = NULL;
251 	result->refcnt = 1;
252 	audit_getname(result);
253 
254 	return result;
255 }
256 
257 void putname(struct filename *name)
258 {
259 	if (IS_ERR(name))
260 		return;
261 
262 	BUG_ON(name->refcnt <= 0);
263 
264 	if (--name->refcnt > 0)
265 		return;
266 
267 	if (name->name != name->iname) {
268 		__putname(name->name);
269 		kfree(name);
270 	} else
271 		__putname(name);
272 }
273 
274 /**
275  * check_acl - perform ACL permission checking
276  * @mnt_userns:	user namespace of the mount the inode was found from
277  * @inode:	inode to check permissions on
278  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
279  *
280  * This function performs the ACL permission checking. Since this function
281  * retrieve POSIX acls it needs to know whether it is called from a blocking or
282  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
283  *
284  * If the inode has been found through an idmapped mount the user namespace of
285  * the vfsmount must be passed through @mnt_userns. This function will then take
286  * care to map the inode according to @mnt_userns before checking permissions.
287  * On non-idmapped mounts or if permission checking is to be performed on the
288  * raw inode simply passs init_user_ns.
289  */
290 static int check_acl(struct user_namespace *mnt_userns,
291 		     struct inode *inode, int mask)
292 {
293 #ifdef CONFIG_FS_POSIX_ACL
294 	struct posix_acl *acl;
295 
296 	if (mask & MAY_NOT_BLOCK) {
297 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
298 	        if (!acl)
299 	                return -EAGAIN;
300 		/* no ->get_acl() calls in RCU mode... */
301 		if (is_uncached_acl(acl))
302 			return -ECHILD;
303 	        return posix_acl_permission(mnt_userns, inode, acl, mask);
304 	}
305 
306 	acl = get_acl(inode, ACL_TYPE_ACCESS);
307 	if (IS_ERR(acl))
308 		return PTR_ERR(acl);
309 	if (acl) {
310 	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
311 	        posix_acl_release(acl);
312 	        return error;
313 	}
314 #endif
315 
316 	return -EAGAIN;
317 }
318 
319 /**
320  * acl_permission_check - perform basic UNIX permission checking
321  * @mnt_userns:	user namespace of the mount the inode was found from
322  * @inode:	inode to check permissions on
323  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
324  *
325  * This function performs the basic UNIX permission checking. Since this
326  * function may retrieve POSIX acls it needs to know whether it is called from a
327  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
328  *
329  * If the inode has been found through an idmapped mount the user namespace of
330  * the vfsmount must be passed through @mnt_userns. This function will then take
331  * care to map the inode according to @mnt_userns before checking permissions.
332  * On non-idmapped mounts or if permission checking is to be performed on the
333  * raw inode simply passs init_user_ns.
334  */
335 static int acl_permission_check(struct user_namespace *mnt_userns,
336 				struct inode *inode, int mask)
337 {
338 	unsigned int mode = inode->i_mode;
339 	kuid_t i_uid;
340 
341 	/* Are we the owner? If so, ACL's don't matter */
342 	i_uid = i_uid_into_mnt(mnt_userns, inode);
343 	if (likely(uid_eq(current_fsuid(), i_uid))) {
344 		mask &= 7;
345 		mode >>= 6;
346 		return (mask & ~mode) ? -EACCES : 0;
347 	}
348 
349 	/* Do we have ACL's? */
350 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
351 		int error = check_acl(mnt_userns, inode, mask);
352 		if (error != -EAGAIN)
353 			return error;
354 	}
355 
356 	/* Only RWX matters for group/other mode bits */
357 	mask &= 7;
358 
359 	/*
360 	 * Are the group permissions different from
361 	 * the other permissions in the bits we care
362 	 * about? Need to check group ownership if so.
363 	 */
364 	if (mask & (mode ^ (mode >> 3))) {
365 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
366 		if (in_group_p(kgid))
367 			mode >>= 3;
368 	}
369 
370 	/* Bits in 'mode' clear that we require? */
371 	return (mask & ~mode) ? -EACCES : 0;
372 }
373 
374 /**
375  * generic_permission -  check for access rights on a Posix-like filesystem
376  * @mnt_userns:	user namespace of the mount the inode was found from
377  * @inode:	inode to check access rights for
378  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
379  *		%MAY_NOT_BLOCK ...)
380  *
381  * Used to check for read/write/execute permissions on a file.
382  * We use "fsuid" for this, letting us set arbitrary permissions
383  * for filesystem access without changing the "normal" uids which
384  * are used for other things.
385  *
386  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
387  * request cannot be satisfied (eg. requires blocking or too much complexity).
388  * It would then be called again in ref-walk mode.
389  *
390  * If the inode has been found through an idmapped mount the user namespace of
391  * the vfsmount must be passed through @mnt_userns. This function will then take
392  * care to map the inode according to @mnt_userns before checking permissions.
393  * On non-idmapped mounts or if permission checking is to be performed on the
394  * raw inode simply passs init_user_ns.
395  */
396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
397 		       int mask)
398 {
399 	int ret;
400 
401 	/*
402 	 * Do the basic permission checks.
403 	 */
404 	ret = acl_permission_check(mnt_userns, inode, mask);
405 	if (ret != -EACCES)
406 		return ret;
407 
408 	if (S_ISDIR(inode->i_mode)) {
409 		/* DACs are overridable for directories */
410 		if (!(mask & MAY_WRITE))
411 			if (capable_wrt_inode_uidgid(mnt_userns, inode,
412 						     CAP_DAC_READ_SEARCH))
413 				return 0;
414 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
415 					     CAP_DAC_OVERRIDE))
416 			return 0;
417 		return -EACCES;
418 	}
419 
420 	/*
421 	 * Searching includes executable on directories, else just read.
422 	 */
423 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
424 	if (mask == MAY_READ)
425 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
426 					     CAP_DAC_READ_SEARCH))
427 			return 0;
428 	/*
429 	 * Read/write DACs are always overridable.
430 	 * Executable DACs are overridable when there is
431 	 * at least one exec bit set.
432 	 */
433 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
434 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
435 					     CAP_DAC_OVERRIDE))
436 			return 0;
437 
438 	return -EACCES;
439 }
440 EXPORT_SYMBOL(generic_permission);
441 
442 /**
443  * do_inode_permission - UNIX permission checking
444  * @mnt_userns:	user namespace of the mount the inode was found from
445  * @inode:	inode to check permissions on
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
447  *
448  * We _really_ want to just do "generic_permission()" without
449  * even looking at the inode->i_op values. So we keep a cache
450  * flag in inode->i_opflags, that says "this has not special
451  * permission function, use the fast case".
452  */
453 static inline int do_inode_permission(struct user_namespace *mnt_userns,
454 				      struct inode *inode, int mask)
455 {
456 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
457 		if (likely(inode->i_op->permission))
458 			return inode->i_op->permission(mnt_userns, inode, mask);
459 
460 		/* This gets set once for the inode lifetime */
461 		spin_lock(&inode->i_lock);
462 		inode->i_opflags |= IOP_FASTPERM;
463 		spin_unlock(&inode->i_lock);
464 	}
465 	return generic_permission(mnt_userns, inode, mask);
466 }
467 
468 /**
469  * sb_permission - Check superblock-level permissions
470  * @sb: Superblock of inode to check permission on
471  * @inode: Inode to check permission on
472  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
473  *
474  * Separate out file-system wide checks from inode-specific permission checks.
475  */
476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
477 {
478 	if (unlikely(mask & MAY_WRITE)) {
479 		umode_t mode = inode->i_mode;
480 
481 		/* Nobody gets write access to a read-only fs. */
482 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
483 			return -EROFS;
484 	}
485 	return 0;
486 }
487 
488 /**
489  * inode_permission - Check for access rights to a given inode
490  * @mnt_userns:	User namespace of the mount the inode was found from
491  * @inode:	Inode to check permission on
492  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
493  *
494  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
495  * this, letting us set arbitrary permissions for filesystem access without
496  * changing the "normal" UIDs which are used for other things.
497  *
498  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
499  */
500 int inode_permission(struct user_namespace *mnt_userns,
501 		     struct inode *inode, int mask)
502 {
503 	int retval;
504 
505 	retval = sb_permission(inode->i_sb, inode, mask);
506 	if (retval)
507 		return retval;
508 
509 	if (unlikely(mask & MAY_WRITE)) {
510 		/*
511 		 * Nobody gets write access to an immutable file.
512 		 */
513 		if (IS_IMMUTABLE(inode))
514 			return -EPERM;
515 
516 		/*
517 		 * Updating mtime will likely cause i_uid and i_gid to be
518 		 * written back improperly if their true value is unknown
519 		 * to the vfs.
520 		 */
521 		if (HAS_UNMAPPED_ID(mnt_userns, inode))
522 			return -EACCES;
523 	}
524 
525 	retval = do_inode_permission(mnt_userns, inode, mask);
526 	if (retval)
527 		return retval;
528 
529 	retval = devcgroup_inode_permission(inode, mask);
530 	if (retval)
531 		return retval;
532 
533 	return security_inode_permission(inode, mask);
534 }
535 EXPORT_SYMBOL(inode_permission);
536 
537 /**
538  * path_get - get a reference to a path
539  * @path: path to get the reference to
540  *
541  * Given a path increment the reference count to the dentry and the vfsmount.
542  */
543 void path_get(const struct path *path)
544 {
545 	mntget(path->mnt);
546 	dget(path->dentry);
547 }
548 EXPORT_SYMBOL(path_get);
549 
550 /**
551  * path_put - put a reference to a path
552  * @path: path to put the reference to
553  *
554  * Given a path decrement the reference count to the dentry and the vfsmount.
555  */
556 void path_put(const struct path *path)
557 {
558 	dput(path->dentry);
559 	mntput(path->mnt);
560 }
561 EXPORT_SYMBOL(path_put);
562 
563 #define EMBEDDED_LEVELS 2
564 struct nameidata {
565 	struct path	path;
566 	struct qstr	last;
567 	struct path	root;
568 	struct inode	*inode; /* path.dentry.d_inode */
569 	unsigned int	flags, state;
570 	unsigned	seq, m_seq, r_seq;
571 	int		last_type;
572 	unsigned	depth;
573 	int		total_link_count;
574 	struct saved {
575 		struct path link;
576 		struct delayed_call done;
577 		const char *name;
578 		unsigned seq;
579 	} *stack, internal[EMBEDDED_LEVELS];
580 	struct filename	*name;
581 	struct nameidata *saved;
582 	unsigned	root_seq;
583 	int		dfd;
584 	kuid_t		dir_uid;
585 	umode_t		dir_mode;
586 } __randomize_layout;
587 
588 #define ND_ROOT_PRESET 1
589 #define ND_ROOT_GRABBED 2
590 #define ND_JUMPED 4
591 
592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
593 {
594 	struct nameidata *old = current->nameidata;
595 	p->stack = p->internal;
596 	p->depth = 0;
597 	p->dfd = dfd;
598 	p->name = name;
599 	p->path.mnt = NULL;
600 	p->path.dentry = NULL;
601 	p->total_link_count = old ? old->total_link_count : 0;
602 	p->saved = old;
603 	current->nameidata = p;
604 }
605 
606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
607 			  const struct path *root)
608 {
609 	__set_nameidata(p, dfd, name);
610 	p->state = 0;
611 	if (unlikely(root)) {
612 		p->state = ND_ROOT_PRESET;
613 		p->root = *root;
614 	}
615 }
616 
617 static void restore_nameidata(void)
618 {
619 	struct nameidata *now = current->nameidata, *old = now->saved;
620 
621 	current->nameidata = old;
622 	if (old)
623 		old->total_link_count = now->total_link_count;
624 	if (now->stack != now->internal)
625 		kfree(now->stack);
626 }
627 
628 static bool nd_alloc_stack(struct nameidata *nd)
629 {
630 	struct saved *p;
631 
632 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
633 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
634 	if (unlikely(!p))
635 		return false;
636 	memcpy(p, nd->internal, sizeof(nd->internal));
637 	nd->stack = p;
638 	return true;
639 }
640 
641 /**
642  * path_connected - Verify that a dentry is below mnt.mnt_root
643  *
644  * Rename can sometimes move a file or directory outside of a bind
645  * mount, path_connected allows those cases to be detected.
646  */
647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 	struct super_block *sb = mnt->mnt_sb;
650 
651 	/* Bind mounts can have disconnected paths */
652 	if (mnt->mnt_root == sb->s_root)
653 		return true;
654 
655 	return is_subdir(dentry, mnt->mnt_root);
656 }
657 
658 static void drop_links(struct nameidata *nd)
659 {
660 	int i = nd->depth;
661 	while (i--) {
662 		struct saved *last = nd->stack + i;
663 		do_delayed_call(&last->done);
664 		clear_delayed_call(&last->done);
665 	}
666 }
667 
668 static void terminate_walk(struct nameidata *nd)
669 {
670 	drop_links(nd);
671 	if (!(nd->flags & LOOKUP_RCU)) {
672 		int i;
673 		path_put(&nd->path);
674 		for (i = 0; i < nd->depth; i++)
675 			path_put(&nd->stack[i].link);
676 		if (nd->state & ND_ROOT_GRABBED) {
677 			path_put(&nd->root);
678 			nd->state &= ~ND_ROOT_GRABBED;
679 		}
680 	} else {
681 		nd->flags &= ~LOOKUP_RCU;
682 		rcu_read_unlock();
683 	}
684 	nd->depth = 0;
685 	nd->path.mnt = NULL;
686 	nd->path.dentry = NULL;
687 }
688 
689 /* path_put is needed afterwards regardless of success or failure */
690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
691 {
692 	int res = __legitimize_mnt(path->mnt, mseq);
693 	if (unlikely(res)) {
694 		if (res > 0)
695 			path->mnt = NULL;
696 		path->dentry = NULL;
697 		return false;
698 	}
699 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
700 		path->dentry = NULL;
701 		return false;
702 	}
703 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
704 }
705 
706 static inline bool legitimize_path(struct nameidata *nd,
707 			    struct path *path, unsigned seq)
708 {
709 	return __legitimize_path(path, seq, nd->m_seq);
710 }
711 
712 static bool legitimize_links(struct nameidata *nd)
713 {
714 	int i;
715 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
716 		drop_links(nd);
717 		nd->depth = 0;
718 		return false;
719 	}
720 	for (i = 0; i < nd->depth; i++) {
721 		struct saved *last = nd->stack + i;
722 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
723 			drop_links(nd);
724 			nd->depth = i + 1;
725 			return false;
726 		}
727 	}
728 	return true;
729 }
730 
731 static bool legitimize_root(struct nameidata *nd)
732 {
733 	/*
734 	 * For scoped-lookups (where nd->root has been zeroed), we need to
735 	 * restart the whole lookup from scratch -- because set_root() is wrong
736 	 * for these lookups (nd->dfd is the root, not the filesystem root).
737 	 */
738 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
739 		return false;
740 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
741 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
742 		return true;
743 	nd->state |= ND_ROOT_GRABBED;
744 	return legitimize_path(nd, &nd->root, nd->root_seq);
745 }
746 
747 /*
748  * Path walking has 2 modes, rcu-walk and ref-walk (see
749  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
750  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
751  * normal reference counts on dentries and vfsmounts to transition to ref-walk
752  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
753  * got stuck, so ref-walk may continue from there. If this is not successful
754  * (eg. a seqcount has changed), then failure is returned and it's up to caller
755  * to restart the path walk from the beginning in ref-walk mode.
756  */
757 
758 /**
759  * try_to_unlazy - try to switch to ref-walk mode.
760  * @nd: nameidata pathwalk data
761  * Returns: true on success, false on failure
762  *
763  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
764  * for ref-walk mode.
765  * Must be called from rcu-walk context.
766  * Nothing should touch nameidata between try_to_unlazy() failure and
767  * terminate_walk().
768  */
769 static bool try_to_unlazy(struct nameidata *nd)
770 {
771 	struct dentry *parent = nd->path.dentry;
772 
773 	BUG_ON(!(nd->flags & LOOKUP_RCU));
774 
775 	nd->flags &= ~LOOKUP_RCU;
776 	if (unlikely(!legitimize_links(nd)))
777 		goto out1;
778 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
779 		goto out;
780 	if (unlikely(!legitimize_root(nd)))
781 		goto out;
782 	rcu_read_unlock();
783 	BUG_ON(nd->inode != parent->d_inode);
784 	return true;
785 
786 out1:
787 	nd->path.mnt = NULL;
788 	nd->path.dentry = NULL;
789 out:
790 	rcu_read_unlock();
791 	return false;
792 }
793 
794 /**
795  * try_to_unlazy_next - try to switch to ref-walk mode.
796  * @nd: nameidata pathwalk data
797  * @dentry: next dentry to step into
798  * @seq: seq number to check @dentry against
799  * Returns: true on success, false on failure
800  *
801  * Similar to to try_to_unlazy(), but here we have the next dentry already
802  * picked by rcu-walk and want to legitimize that in addition to the current
803  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
804  * Nothing should touch nameidata between try_to_unlazy_next() failure and
805  * terminate_walk().
806  */
807 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
808 {
809 	BUG_ON(!(nd->flags & LOOKUP_RCU));
810 
811 	nd->flags &= ~LOOKUP_RCU;
812 	if (unlikely(!legitimize_links(nd)))
813 		goto out2;
814 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
815 		goto out2;
816 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
817 		goto out1;
818 
819 	/*
820 	 * We need to move both the parent and the dentry from the RCU domain
821 	 * to be properly refcounted. And the sequence number in the dentry
822 	 * validates *both* dentry counters, since we checked the sequence
823 	 * number of the parent after we got the child sequence number. So we
824 	 * know the parent must still be valid if the child sequence number is
825 	 */
826 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
827 		goto out;
828 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
829 		goto out_dput;
830 	/*
831 	 * Sequence counts matched. Now make sure that the root is
832 	 * still valid and get it if required.
833 	 */
834 	if (unlikely(!legitimize_root(nd)))
835 		goto out_dput;
836 	rcu_read_unlock();
837 	return true;
838 
839 out2:
840 	nd->path.mnt = NULL;
841 out1:
842 	nd->path.dentry = NULL;
843 out:
844 	rcu_read_unlock();
845 	return false;
846 out_dput:
847 	rcu_read_unlock();
848 	dput(dentry);
849 	return false;
850 }
851 
852 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
853 {
854 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
855 		return dentry->d_op->d_revalidate(dentry, flags);
856 	else
857 		return 1;
858 }
859 
860 /**
861  * complete_walk - successful completion of path walk
862  * @nd:  pointer nameidata
863  *
864  * If we had been in RCU mode, drop out of it and legitimize nd->path.
865  * Revalidate the final result, unless we'd already done that during
866  * the path walk or the filesystem doesn't ask for it.  Return 0 on
867  * success, -error on failure.  In case of failure caller does not
868  * need to drop nd->path.
869  */
870 static int complete_walk(struct nameidata *nd)
871 {
872 	struct dentry *dentry = nd->path.dentry;
873 	int status;
874 
875 	if (nd->flags & LOOKUP_RCU) {
876 		/*
877 		 * We don't want to zero nd->root for scoped-lookups or
878 		 * externally-managed nd->root.
879 		 */
880 		if (!(nd->state & ND_ROOT_PRESET))
881 			if (!(nd->flags & LOOKUP_IS_SCOPED))
882 				nd->root.mnt = NULL;
883 		nd->flags &= ~LOOKUP_CACHED;
884 		if (!try_to_unlazy(nd))
885 			return -ECHILD;
886 	}
887 
888 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
889 		/*
890 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
891 		 * ever step outside the root during lookup" and should already
892 		 * be guaranteed by the rest of namei, we want to avoid a namei
893 		 * BUG resulting in userspace being given a path that was not
894 		 * scoped within the root at some point during the lookup.
895 		 *
896 		 * So, do a final sanity-check to make sure that in the
897 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
898 		 * we won't silently return an fd completely outside of the
899 		 * requested root to userspace.
900 		 *
901 		 * Userspace could move the path outside the root after this
902 		 * check, but as discussed elsewhere this is not a concern (the
903 		 * resolved file was inside the root at some point).
904 		 */
905 		if (!path_is_under(&nd->path, &nd->root))
906 			return -EXDEV;
907 	}
908 
909 	if (likely(!(nd->state & ND_JUMPED)))
910 		return 0;
911 
912 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
913 		return 0;
914 
915 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
916 	if (status > 0)
917 		return 0;
918 
919 	if (!status)
920 		status = -ESTALE;
921 
922 	return status;
923 }
924 
925 static int set_root(struct nameidata *nd)
926 {
927 	struct fs_struct *fs = current->fs;
928 
929 	/*
930 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
931 	 * still have to ensure it doesn't happen because it will cause a breakout
932 	 * from the dirfd.
933 	 */
934 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
935 		return -ENOTRECOVERABLE;
936 
937 	if (nd->flags & LOOKUP_RCU) {
938 		unsigned seq;
939 
940 		do {
941 			seq = read_seqcount_begin(&fs->seq);
942 			nd->root = fs->root;
943 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
944 		} while (read_seqcount_retry(&fs->seq, seq));
945 	} else {
946 		get_fs_root(fs, &nd->root);
947 		nd->state |= ND_ROOT_GRABBED;
948 	}
949 	return 0;
950 }
951 
952 static int nd_jump_root(struct nameidata *nd)
953 {
954 	if (unlikely(nd->flags & LOOKUP_BENEATH))
955 		return -EXDEV;
956 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
957 		/* Absolute path arguments to path_init() are allowed. */
958 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
959 			return -EXDEV;
960 	}
961 	if (!nd->root.mnt) {
962 		int error = set_root(nd);
963 		if (error)
964 			return error;
965 	}
966 	if (nd->flags & LOOKUP_RCU) {
967 		struct dentry *d;
968 		nd->path = nd->root;
969 		d = nd->path.dentry;
970 		nd->inode = d->d_inode;
971 		nd->seq = nd->root_seq;
972 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
973 			return -ECHILD;
974 	} else {
975 		path_put(&nd->path);
976 		nd->path = nd->root;
977 		path_get(&nd->path);
978 		nd->inode = nd->path.dentry->d_inode;
979 	}
980 	nd->state |= ND_JUMPED;
981 	return 0;
982 }
983 
984 /*
985  * Helper to directly jump to a known parsed path from ->get_link,
986  * caller must have taken a reference to path beforehand.
987  */
988 int nd_jump_link(struct path *path)
989 {
990 	int error = -ELOOP;
991 	struct nameidata *nd = current->nameidata;
992 
993 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
994 		goto err;
995 
996 	error = -EXDEV;
997 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
998 		if (nd->path.mnt != path->mnt)
999 			goto err;
1000 	}
1001 	/* Not currently safe for scoped-lookups. */
1002 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1003 		goto err;
1004 
1005 	path_put(&nd->path);
1006 	nd->path = *path;
1007 	nd->inode = nd->path.dentry->d_inode;
1008 	nd->state |= ND_JUMPED;
1009 	return 0;
1010 
1011 err:
1012 	path_put(path);
1013 	return error;
1014 }
1015 
1016 static inline void put_link(struct nameidata *nd)
1017 {
1018 	struct saved *last = nd->stack + --nd->depth;
1019 	do_delayed_call(&last->done);
1020 	if (!(nd->flags & LOOKUP_RCU))
1021 		path_put(&last->link);
1022 }
1023 
1024 static int sysctl_protected_symlinks __read_mostly;
1025 static int sysctl_protected_hardlinks __read_mostly;
1026 static int sysctl_protected_fifos __read_mostly;
1027 static int sysctl_protected_regular __read_mostly;
1028 
1029 #ifdef CONFIG_SYSCTL
1030 static struct ctl_table namei_sysctls[] = {
1031 	{
1032 		.procname	= "protected_symlinks",
1033 		.data		= &sysctl_protected_symlinks,
1034 		.maxlen		= sizeof(int),
1035 		.mode		= 0644,
1036 		.proc_handler	= proc_dointvec_minmax,
1037 		.extra1		= SYSCTL_ZERO,
1038 		.extra2		= SYSCTL_ONE,
1039 	},
1040 	{
1041 		.procname	= "protected_hardlinks",
1042 		.data		= &sysctl_protected_hardlinks,
1043 		.maxlen		= sizeof(int),
1044 		.mode		= 0644,
1045 		.proc_handler	= proc_dointvec_minmax,
1046 		.extra1		= SYSCTL_ZERO,
1047 		.extra2		= SYSCTL_ONE,
1048 	},
1049 	{
1050 		.procname	= "protected_fifos",
1051 		.data		= &sysctl_protected_fifos,
1052 		.maxlen		= sizeof(int),
1053 		.mode		= 0644,
1054 		.proc_handler	= proc_dointvec_minmax,
1055 		.extra1		= SYSCTL_ZERO,
1056 		.extra2		= SYSCTL_TWO,
1057 	},
1058 	{
1059 		.procname	= "protected_regular",
1060 		.data		= &sysctl_protected_regular,
1061 		.maxlen		= sizeof(int),
1062 		.mode		= 0644,
1063 		.proc_handler	= proc_dointvec_minmax,
1064 		.extra1		= SYSCTL_ZERO,
1065 		.extra2		= SYSCTL_TWO,
1066 	},
1067 	{ }
1068 };
1069 
1070 static int __init init_fs_namei_sysctls(void)
1071 {
1072 	register_sysctl_init("fs", namei_sysctls);
1073 	return 0;
1074 }
1075 fs_initcall(init_fs_namei_sysctls);
1076 
1077 #endif /* CONFIG_SYSCTL */
1078 
1079 /**
1080  * may_follow_link - Check symlink following for unsafe situations
1081  * @nd: nameidata pathwalk data
1082  *
1083  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1084  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1085  * in a sticky world-writable directory. This is to protect privileged
1086  * processes from failing races against path names that may change out
1087  * from under them by way of other users creating malicious symlinks.
1088  * It will permit symlinks to be followed only when outside a sticky
1089  * world-writable directory, or when the uid of the symlink and follower
1090  * match, or when the directory owner matches the symlink's owner.
1091  *
1092  * Returns 0 if following the symlink is allowed, -ve on error.
1093  */
1094 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1095 {
1096 	struct user_namespace *mnt_userns;
1097 	kuid_t i_uid;
1098 
1099 	if (!sysctl_protected_symlinks)
1100 		return 0;
1101 
1102 	mnt_userns = mnt_user_ns(nd->path.mnt);
1103 	i_uid = i_uid_into_mnt(mnt_userns, inode);
1104 	/* Allowed if owner and follower match. */
1105 	if (uid_eq(current_cred()->fsuid, i_uid))
1106 		return 0;
1107 
1108 	/* Allowed if parent directory not sticky and world-writable. */
1109 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1110 		return 0;
1111 
1112 	/* Allowed if parent directory and link owner match. */
1113 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1114 		return 0;
1115 
1116 	if (nd->flags & LOOKUP_RCU)
1117 		return -ECHILD;
1118 
1119 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1120 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1121 	return -EACCES;
1122 }
1123 
1124 /**
1125  * safe_hardlink_source - Check for safe hardlink conditions
1126  * @mnt_userns:	user namespace of the mount the inode was found from
1127  * @inode: the source inode to hardlink from
1128  *
1129  * Return false if at least one of the following conditions:
1130  *    - inode is not a regular file
1131  *    - inode is setuid
1132  *    - inode is setgid and group-exec
1133  *    - access failure for read and write
1134  *
1135  * Otherwise returns true.
1136  */
1137 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1138 				 struct inode *inode)
1139 {
1140 	umode_t mode = inode->i_mode;
1141 
1142 	/* Special files should not get pinned to the filesystem. */
1143 	if (!S_ISREG(mode))
1144 		return false;
1145 
1146 	/* Setuid files should not get pinned to the filesystem. */
1147 	if (mode & S_ISUID)
1148 		return false;
1149 
1150 	/* Executable setgid files should not get pinned to the filesystem. */
1151 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1152 		return false;
1153 
1154 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1155 	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1156 		return false;
1157 
1158 	return true;
1159 }
1160 
1161 /**
1162  * may_linkat - Check permissions for creating a hardlink
1163  * @mnt_userns:	user namespace of the mount the inode was found from
1164  * @link: the source to hardlink from
1165  *
1166  * Block hardlink when all of:
1167  *  - sysctl_protected_hardlinks enabled
1168  *  - fsuid does not match inode
1169  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1170  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1171  *
1172  * If the inode has been found through an idmapped mount the user namespace of
1173  * the vfsmount must be passed through @mnt_userns. This function will then take
1174  * care to map the inode according to @mnt_userns before checking permissions.
1175  * On non-idmapped mounts or if permission checking is to be performed on the
1176  * raw inode simply passs init_user_ns.
1177  *
1178  * Returns 0 if successful, -ve on error.
1179  */
1180 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1181 {
1182 	struct inode *inode = link->dentry->d_inode;
1183 
1184 	/* Inode writeback is not safe when the uid or gid are invalid. */
1185 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1186 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1187 		return -EOVERFLOW;
1188 
1189 	if (!sysctl_protected_hardlinks)
1190 		return 0;
1191 
1192 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1193 	 * otherwise, it must be a safe source.
1194 	 */
1195 	if (safe_hardlink_source(mnt_userns, inode) ||
1196 	    inode_owner_or_capable(mnt_userns, inode))
1197 		return 0;
1198 
1199 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1200 	return -EPERM;
1201 }
1202 
1203 /**
1204  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1205  *			  should be allowed, or not, on files that already
1206  *			  exist.
1207  * @mnt_userns:	user namespace of the mount the inode was found from
1208  * @nd: nameidata pathwalk data
1209  * @inode: the inode of the file to open
1210  *
1211  * Block an O_CREAT open of a FIFO (or a regular file) when:
1212  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1213  *   - the file already exists
1214  *   - we are in a sticky directory
1215  *   - we don't own the file
1216  *   - the owner of the directory doesn't own the file
1217  *   - the directory is world writable
1218  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1219  * the directory doesn't have to be world writable: being group writable will
1220  * be enough.
1221  *
1222  * If the inode has been found through an idmapped mount the user namespace of
1223  * the vfsmount must be passed through @mnt_userns. This function will then take
1224  * care to map the inode according to @mnt_userns before checking permissions.
1225  * On non-idmapped mounts or if permission checking is to be performed on the
1226  * raw inode simply passs init_user_ns.
1227  *
1228  * Returns 0 if the open is allowed, -ve on error.
1229  */
1230 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1231 				struct nameidata *nd, struct inode *const inode)
1232 {
1233 	umode_t dir_mode = nd->dir_mode;
1234 	kuid_t dir_uid = nd->dir_uid;
1235 
1236 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1237 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1238 	    likely(!(dir_mode & S_ISVTX)) ||
1239 	    uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1240 	    uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1241 		return 0;
1242 
1243 	if (likely(dir_mode & 0002) ||
1244 	    (dir_mode & 0020 &&
1245 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1246 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1247 		const char *operation = S_ISFIFO(inode->i_mode) ?
1248 					"sticky_create_fifo" :
1249 					"sticky_create_regular";
1250 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1251 		return -EACCES;
1252 	}
1253 	return 0;
1254 }
1255 
1256 /*
1257  * follow_up - Find the mountpoint of path's vfsmount
1258  *
1259  * Given a path, find the mountpoint of its source file system.
1260  * Replace @path with the path of the mountpoint in the parent mount.
1261  * Up is towards /.
1262  *
1263  * Return 1 if we went up a level and 0 if we were already at the
1264  * root.
1265  */
1266 int follow_up(struct path *path)
1267 {
1268 	struct mount *mnt = real_mount(path->mnt);
1269 	struct mount *parent;
1270 	struct dentry *mountpoint;
1271 
1272 	read_seqlock_excl(&mount_lock);
1273 	parent = mnt->mnt_parent;
1274 	if (parent == mnt) {
1275 		read_sequnlock_excl(&mount_lock);
1276 		return 0;
1277 	}
1278 	mntget(&parent->mnt);
1279 	mountpoint = dget(mnt->mnt_mountpoint);
1280 	read_sequnlock_excl(&mount_lock);
1281 	dput(path->dentry);
1282 	path->dentry = mountpoint;
1283 	mntput(path->mnt);
1284 	path->mnt = &parent->mnt;
1285 	return 1;
1286 }
1287 EXPORT_SYMBOL(follow_up);
1288 
1289 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1290 				  struct path *path, unsigned *seqp)
1291 {
1292 	while (mnt_has_parent(m)) {
1293 		struct dentry *mountpoint = m->mnt_mountpoint;
1294 
1295 		m = m->mnt_parent;
1296 		if (unlikely(root->dentry == mountpoint &&
1297 			     root->mnt == &m->mnt))
1298 			break;
1299 		if (mountpoint != m->mnt.mnt_root) {
1300 			path->mnt = &m->mnt;
1301 			path->dentry = mountpoint;
1302 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1303 			return true;
1304 		}
1305 	}
1306 	return false;
1307 }
1308 
1309 static bool choose_mountpoint(struct mount *m, const struct path *root,
1310 			      struct path *path)
1311 {
1312 	bool found;
1313 
1314 	rcu_read_lock();
1315 	while (1) {
1316 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1317 
1318 		found = choose_mountpoint_rcu(m, root, path, &seq);
1319 		if (unlikely(!found)) {
1320 			if (!read_seqretry(&mount_lock, mseq))
1321 				break;
1322 		} else {
1323 			if (likely(__legitimize_path(path, seq, mseq)))
1324 				break;
1325 			rcu_read_unlock();
1326 			path_put(path);
1327 			rcu_read_lock();
1328 		}
1329 	}
1330 	rcu_read_unlock();
1331 	return found;
1332 }
1333 
1334 /*
1335  * Perform an automount
1336  * - return -EISDIR to tell follow_managed() to stop and return the path we
1337  *   were called with.
1338  */
1339 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1340 {
1341 	struct dentry *dentry = path->dentry;
1342 
1343 	/* We don't want to mount if someone's just doing a stat -
1344 	 * unless they're stat'ing a directory and appended a '/' to
1345 	 * the name.
1346 	 *
1347 	 * We do, however, want to mount if someone wants to open or
1348 	 * create a file of any type under the mountpoint, wants to
1349 	 * traverse through the mountpoint or wants to open the
1350 	 * mounted directory.  Also, autofs may mark negative dentries
1351 	 * as being automount points.  These will need the attentions
1352 	 * of the daemon to instantiate them before they can be used.
1353 	 */
1354 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1355 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1356 	    dentry->d_inode)
1357 		return -EISDIR;
1358 
1359 	if (count && (*count)++ >= MAXSYMLINKS)
1360 		return -ELOOP;
1361 
1362 	return finish_automount(dentry->d_op->d_automount(path), path);
1363 }
1364 
1365 /*
1366  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1367  * dentries are pinned but not locked here, so negative dentry can go
1368  * positive right under us.  Use of smp_load_acquire() provides a barrier
1369  * sufficient for ->d_inode and ->d_flags consistency.
1370  */
1371 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1372 			     int *count, unsigned lookup_flags)
1373 {
1374 	struct vfsmount *mnt = path->mnt;
1375 	bool need_mntput = false;
1376 	int ret = 0;
1377 
1378 	while (flags & DCACHE_MANAGED_DENTRY) {
1379 		/* Allow the filesystem to manage the transit without i_mutex
1380 		 * being held. */
1381 		if (flags & DCACHE_MANAGE_TRANSIT) {
1382 			ret = path->dentry->d_op->d_manage(path, false);
1383 			flags = smp_load_acquire(&path->dentry->d_flags);
1384 			if (ret < 0)
1385 				break;
1386 		}
1387 
1388 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1389 			struct vfsmount *mounted = lookup_mnt(path);
1390 			if (mounted) {		// ... in our namespace
1391 				dput(path->dentry);
1392 				if (need_mntput)
1393 					mntput(path->mnt);
1394 				path->mnt = mounted;
1395 				path->dentry = dget(mounted->mnt_root);
1396 				// here we know it's positive
1397 				flags = path->dentry->d_flags;
1398 				need_mntput = true;
1399 				continue;
1400 			}
1401 		}
1402 
1403 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1404 			break;
1405 
1406 		// uncovered automount point
1407 		ret = follow_automount(path, count, lookup_flags);
1408 		flags = smp_load_acquire(&path->dentry->d_flags);
1409 		if (ret < 0)
1410 			break;
1411 	}
1412 
1413 	if (ret == -EISDIR)
1414 		ret = 0;
1415 	// possible if you race with several mount --move
1416 	if (need_mntput && path->mnt == mnt)
1417 		mntput(path->mnt);
1418 	if (!ret && unlikely(d_flags_negative(flags)))
1419 		ret = -ENOENT;
1420 	*jumped = need_mntput;
1421 	return ret;
1422 }
1423 
1424 static inline int traverse_mounts(struct path *path, bool *jumped,
1425 				  int *count, unsigned lookup_flags)
1426 {
1427 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1428 
1429 	/* fastpath */
1430 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1431 		*jumped = false;
1432 		if (unlikely(d_flags_negative(flags)))
1433 			return -ENOENT;
1434 		return 0;
1435 	}
1436 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1437 }
1438 
1439 int follow_down_one(struct path *path)
1440 {
1441 	struct vfsmount *mounted;
1442 
1443 	mounted = lookup_mnt(path);
1444 	if (mounted) {
1445 		dput(path->dentry);
1446 		mntput(path->mnt);
1447 		path->mnt = mounted;
1448 		path->dentry = dget(mounted->mnt_root);
1449 		return 1;
1450 	}
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL(follow_down_one);
1454 
1455 /*
1456  * Follow down to the covering mount currently visible to userspace.  At each
1457  * point, the filesystem owning that dentry may be queried as to whether the
1458  * caller is permitted to proceed or not.
1459  */
1460 int follow_down(struct path *path)
1461 {
1462 	struct vfsmount *mnt = path->mnt;
1463 	bool jumped;
1464 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1465 
1466 	if (path->mnt != mnt)
1467 		mntput(mnt);
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL(follow_down);
1471 
1472 /*
1473  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1474  * we meet a managed dentry that would need blocking.
1475  */
1476 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1477 			       struct inode **inode, unsigned *seqp)
1478 {
1479 	struct dentry *dentry = path->dentry;
1480 	unsigned int flags = dentry->d_flags;
1481 
1482 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1483 		return true;
1484 
1485 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1486 		return false;
1487 
1488 	for (;;) {
1489 		/*
1490 		 * Don't forget we might have a non-mountpoint managed dentry
1491 		 * that wants to block transit.
1492 		 */
1493 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1494 			int res = dentry->d_op->d_manage(path, true);
1495 			if (res)
1496 				return res == -EISDIR;
1497 			flags = dentry->d_flags;
1498 		}
1499 
1500 		if (flags & DCACHE_MOUNTED) {
1501 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1502 			if (mounted) {
1503 				path->mnt = &mounted->mnt;
1504 				dentry = path->dentry = mounted->mnt.mnt_root;
1505 				nd->state |= ND_JUMPED;
1506 				*seqp = read_seqcount_begin(&dentry->d_seq);
1507 				*inode = dentry->d_inode;
1508 				/*
1509 				 * We don't need to re-check ->d_seq after this
1510 				 * ->d_inode read - there will be an RCU delay
1511 				 * between mount hash removal and ->mnt_root
1512 				 * becoming unpinned.
1513 				 */
1514 				flags = dentry->d_flags;
1515 				continue;
1516 			}
1517 			if (read_seqretry(&mount_lock, nd->m_seq))
1518 				return false;
1519 		}
1520 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1521 	}
1522 }
1523 
1524 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1525 			  struct path *path, struct inode **inode,
1526 			  unsigned int *seqp)
1527 {
1528 	bool jumped;
1529 	int ret;
1530 
1531 	path->mnt = nd->path.mnt;
1532 	path->dentry = dentry;
1533 	if (nd->flags & LOOKUP_RCU) {
1534 		unsigned int seq = *seqp;
1535 		if (unlikely(!*inode))
1536 			return -ENOENT;
1537 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1538 			return 0;
1539 		if (!try_to_unlazy_next(nd, dentry, seq))
1540 			return -ECHILD;
1541 		// *path might've been clobbered by __follow_mount_rcu()
1542 		path->mnt = nd->path.mnt;
1543 		path->dentry = dentry;
1544 	}
1545 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1546 	if (jumped) {
1547 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1548 			ret = -EXDEV;
1549 		else
1550 			nd->state |= ND_JUMPED;
1551 	}
1552 	if (unlikely(ret)) {
1553 		dput(path->dentry);
1554 		if (path->mnt != nd->path.mnt)
1555 			mntput(path->mnt);
1556 	} else {
1557 		*inode = d_backing_inode(path->dentry);
1558 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1559 	}
1560 	return ret;
1561 }
1562 
1563 /*
1564  * This looks up the name in dcache and possibly revalidates the found dentry.
1565  * NULL is returned if the dentry does not exist in the cache.
1566  */
1567 static struct dentry *lookup_dcache(const struct qstr *name,
1568 				    struct dentry *dir,
1569 				    unsigned int flags)
1570 {
1571 	struct dentry *dentry = d_lookup(dir, name);
1572 	if (dentry) {
1573 		int error = d_revalidate(dentry, flags);
1574 		if (unlikely(error <= 0)) {
1575 			if (!error)
1576 				d_invalidate(dentry);
1577 			dput(dentry);
1578 			return ERR_PTR(error);
1579 		}
1580 	}
1581 	return dentry;
1582 }
1583 
1584 /*
1585  * Parent directory has inode locked exclusive.  This is one
1586  * and only case when ->lookup() gets called on non in-lookup
1587  * dentries - as the matter of fact, this only gets called
1588  * when directory is guaranteed to have no in-lookup children
1589  * at all.
1590  */
1591 static struct dentry *__lookup_hash(const struct qstr *name,
1592 		struct dentry *base, unsigned int flags)
1593 {
1594 	struct dentry *dentry = lookup_dcache(name, base, flags);
1595 	struct dentry *old;
1596 	struct inode *dir = base->d_inode;
1597 
1598 	if (dentry)
1599 		return dentry;
1600 
1601 	/* Don't create child dentry for a dead directory. */
1602 	if (unlikely(IS_DEADDIR(dir)))
1603 		return ERR_PTR(-ENOENT);
1604 
1605 	dentry = d_alloc(base, name);
1606 	if (unlikely(!dentry))
1607 		return ERR_PTR(-ENOMEM);
1608 
1609 	old = dir->i_op->lookup(dir, dentry, flags);
1610 	if (unlikely(old)) {
1611 		dput(dentry);
1612 		dentry = old;
1613 	}
1614 	return dentry;
1615 }
1616 
1617 static struct dentry *lookup_fast(struct nameidata *nd,
1618 				  struct inode **inode,
1619 			          unsigned *seqp)
1620 {
1621 	struct dentry *dentry, *parent = nd->path.dentry;
1622 	int status = 1;
1623 
1624 	/*
1625 	 * Rename seqlock is not required here because in the off chance
1626 	 * of a false negative due to a concurrent rename, the caller is
1627 	 * going to fall back to non-racy lookup.
1628 	 */
1629 	if (nd->flags & LOOKUP_RCU) {
1630 		unsigned seq;
1631 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1632 		if (unlikely(!dentry)) {
1633 			if (!try_to_unlazy(nd))
1634 				return ERR_PTR(-ECHILD);
1635 			return NULL;
1636 		}
1637 
1638 		/*
1639 		 * This sequence count validates that the inode matches
1640 		 * the dentry name information from lookup.
1641 		 */
1642 		*inode = d_backing_inode(dentry);
1643 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1644 			return ERR_PTR(-ECHILD);
1645 
1646 		/*
1647 		 * This sequence count validates that the parent had no
1648 		 * changes while we did the lookup of the dentry above.
1649 		 *
1650 		 * The memory barrier in read_seqcount_begin of child is
1651 		 *  enough, we can use __read_seqcount_retry here.
1652 		 */
1653 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1654 			return ERR_PTR(-ECHILD);
1655 
1656 		*seqp = seq;
1657 		status = d_revalidate(dentry, nd->flags);
1658 		if (likely(status > 0))
1659 			return dentry;
1660 		if (!try_to_unlazy_next(nd, dentry, seq))
1661 			return ERR_PTR(-ECHILD);
1662 		if (status == -ECHILD)
1663 			/* we'd been told to redo it in non-rcu mode */
1664 			status = d_revalidate(dentry, nd->flags);
1665 	} else {
1666 		dentry = __d_lookup(parent, &nd->last);
1667 		if (unlikely(!dentry))
1668 			return NULL;
1669 		status = d_revalidate(dentry, nd->flags);
1670 	}
1671 	if (unlikely(status <= 0)) {
1672 		if (!status)
1673 			d_invalidate(dentry);
1674 		dput(dentry);
1675 		return ERR_PTR(status);
1676 	}
1677 	return dentry;
1678 }
1679 
1680 /* Fast lookup failed, do it the slow way */
1681 static struct dentry *__lookup_slow(const struct qstr *name,
1682 				    struct dentry *dir,
1683 				    unsigned int flags)
1684 {
1685 	struct dentry *dentry, *old;
1686 	struct inode *inode = dir->d_inode;
1687 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1688 
1689 	/* Don't go there if it's already dead */
1690 	if (unlikely(IS_DEADDIR(inode)))
1691 		return ERR_PTR(-ENOENT);
1692 again:
1693 	dentry = d_alloc_parallel(dir, name, &wq);
1694 	if (IS_ERR(dentry))
1695 		return dentry;
1696 	if (unlikely(!d_in_lookup(dentry))) {
1697 		int error = d_revalidate(dentry, flags);
1698 		if (unlikely(error <= 0)) {
1699 			if (!error) {
1700 				d_invalidate(dentry);
1701 				dput(dentry);
1702 				goto again;
1703 			}
1704 			dput(dentry);
1705 			dentry = ERR_PTR(error);
1706 		}
1707 	} else {
1708 		old = inode->i_op->lookup(inode, dentry, flags);
1709 		d_lookup_done(dentry);
1710 		if (unlikely(old)) {
1711 			dput(dentry);
1712 			dentry = old;
1713 		}
1714 	}
1715 	return dentry;
1716 }
1717 
1718 static struct dentry *lookup_slow(const struct qstr *name,
1719 				  struct dentry *dir,
1720 				  unsigned int flags)
1721 {
1722 	struct inode *inode = dir->d_inode;
1723 	struct dentry *res;
1724 	inode_lock_shared(inode);
1725 	res = __lookup_slow(name, dir, flags);
1726 	inode_unlock_shared(inode);
1727 	return res;
1728 }
1729 
1730 static inline int may_lookup(struct user_namespace *mnt_userns,
1731 			     struct nameidata *nd)
1732 {
1733 	if (nd->flags & LOOKUP_RCU) {
1734 		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1735 		if (err != -ECHILD || !try_to_unlazy(nd))
1736 			return err;
1737 	}
1738 	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1739 }
1740 
1741 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1742 {
1743 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1744 		return -ELOOP;
1745 
1746 	if (likely(nd->depth != EMBEDDED_LEVELS))
1747 		return 0;
1748 	if (likely(nd->stack != nd->internal))
1749 		return 0;
1750 	if (likely(nd_alloc_stack(nd)))
1751 		return 0;
1752 
1753 	if (nd->flags & LOOKUP_RCU) {
1754 		// we need to grab link before we do unlazy.  And we can't skip
1755 		// unlazy even if we fail to grab the link - cleanup needs it
1756 		bool grabbed_link = legitimize_path(nd, link, seq);
1757 
1758 		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1759 			return -ECHILD;
1760 
1761 		if (nd_alloc_stack(nd))
1762 			return 0;
1763 	}
1764 	return -ENOMEM;
1765 }
1766 
1767 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1768 
1769 static const char *pick_link(struct nameidata *nd, struct path *link,
1770 		     struct inode *inode, unsigned seq, int flags)
1771 {
1772 	struct saved *last;
1773 	const char *res;
1774 	int error = reserve_stack(nd, link, seq);
1775 
1776 	if (unlikely(error)) {
1777 		if (!(nd->flags & LOOKUP_RCU))
1778 			path_put(link);
1779 		return ERR_PTR(error);
1780 	}
1781 	last = nd->stack + nd->depth++;
1782 	last->link = *link;
1783 	clear_delayed_call(&last->done);
1784 	last->seq = seq;
1785 
1786 	if (flags & WALK_TRAILING) {
1787 		error = may_follow_link(nd, inode);
1788 		if (unlikely(error))
1789 			return ERR_PTR(error);
1790 	}
1791 
1792 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1793 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1794 		return ERR_PTR(-ELOOP);
1795 
1796 	if (!(nd->flags & LOOKUP_RCU)) {
1797 		touch_atime(&last->link);
1798 		cond_resched();
1799 	} else if (atime_needs_update(&last->link, inode)) {
1800 		if (!try_to_unlazy(nd))
1801 			return ERR_PTR(-ECHILD);
1802 		touch_atime(&last->link);
1803 	}
1804 
1805 	error = security_inode_follow_link(link->dentry, inode,
1806 					   nd->flags & LOOKUP_RCU);
1807 	if (unlikely(error))
1808 		return ERR_PTR(error);
1809 
1810 	res = READ_ONCE(inode->i_link);
1811 	if (!res) {
1812 		const char * (*get)(struct dentry *, struct inode *,
1813 				struct delayed_call *);
1814 		get = inode->i_op->get_link;
1815 		if (nd->flags & LOOKUP_RCU) {
1816 			res = get(NULL, inode, &last->done);
1817 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1818 				res = get(link->dentry, inode, &last->done);
1819 		} else {
1820 			res = get(link->dentry, inode, &last->done);
1821 		}
1822 		if (!res)
1823 			goto all_done;
1824 		if (IS_ERR(res))
1825 			return res;
1826 	}
1827 	if (*res == '/') {
1828 		error = nd_jump_root(nd);
1829 		if (unlikely(error))
1830 			return ERR_PTR(error);
1831 		while (unlikely(*++res == '/'))
1832 			;
1833 	}
1834 	if (*res)
1835 		return res;
1836 all_done: // pure jump
1837 	put_link(nd);
1838 	return NULL;
1839 }
1840 
1841 /*
1842  * Do we need to follow links? We _really_ want to be able
1843  * to do this check without having to look at inode->i_op,
1844  * so we keep a cache of "no, this doesn't need follow_link"
1845  * for the common case.
1846  */
1847 static const char *step_into(struct nameidata *nd, int flags,
1848 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1849 {
1850 	struct path path;
1851 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1852 
1853 	if (err < 0)
1854 		return ERR_PTR(err);
1855 	if (likely(!d_is_symlink(path.dentry)) ||
1856 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1857 	   (flags & WALK_NOFOLLOW)) {
1858 		/* not a symlink or should not follow */
1859 		if (!(nd->flags & LOOKUP_RCU)) {
1860 			dput(nd->path.dentry);
1861 			if (nd->path.mnt != path.mnt)
1862 				mntput(nd->path.mnt);
1863 		}
1864 		nd->path = path;
1865 		nd->inode = inode;
1866 		nd->seq = seq;
1867 		return NULL;
1868 	}
1869 	if (nd->flags & LOOKUP_RCU) {
1870 		/* make sure that d_is_symlink above matches inode */
1871 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1872 			return ERR_PTR(-ECHILD);
1873 	} else {
1874 		if (path.mnt == nd->path.mnt)
1875 			mntget(path.mnt);
1876 	}
1877 	return pick_link(nd, &path, inode, seq, flags);
1878 }
1879 
1880 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1881 					struct inode **inodep,
1882 					unsigned *seqp)
1883 {
1884 	struct dentry *parent, *old;
1885 
1886 	if (path_equal(&nd->path, &nd->root))
1887 		goto in_root;
1888 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1889 		struct path path;
1890 		unsigned seq;
1891 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1892 					   &nd->root, &path, &seq))
1893 			goto in_root;
1894 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1895 			return ERR_PTR(-ECHILD);
1896 		nd->path = path;
1897 		nd->inode = path.dentry->d_inode;
1898 		nd->seq = seq;
1899 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1900 			return ERR_PTR(-ECHILD);
1901 		/* we know that mountpoint was pinned */
1902 	}
1903 	old = nd->path.dentry;
1904 	parent = old->d_parent;
1905 	*inodep = parent->d_inode;
1906 	*seqp = read_seqcount_begin(&parent->d_seq);
1907 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1908 		return ERR_PTR(-ECHILD);
1909 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1910 		return ERR_PTR(-ECHILD);
1911 	return parent;
1912 in_root:
1913 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1914 		return ERR_PTR(-ECHILD);
1915 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1916 		return ERR_PTR(-ECHILD);
1917 	return NULL;
1918 }
1919 
1920 static struct dentry *follow_dotdot(struct nameidata *nd,
1921 				 struct inode **inodep,
1922 				 unsigned *seqp)
1923 {
1924 	struct dentry *parent;
1925 
1926 	if (path_equal(&nd->path, &nd->root))
1927 		goto in_root;
1928 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1929 		struct path path;
1930 
1931 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1932 				       &nd->root, &path))
1933 			goto in_root;
1934 		path_put(&nd->path);
1935 		nd->path = path;
1936 		nd->inode = path.dentry->d_inode;
1937 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1938 			return ERR_PTR(-EXDEV);
1939 	}
1940 	/* rare case of legitimate dget_parent()... */
1941 	parent = dget_parent(nd->path.dentry);
1942 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1943 		dput(parent);
1944 		return ERR_PTR(-ENOENT);
1945 	}
1946 	*seqp = 0;
1947 	*inodep = parent->d_inode;
1948 	return parent;
1949 
1950 in_root:
1951 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1952 		return ERR_PTR(-EXDEV);
1953 	dget(nd->path.dentry);
1954 	return NULL;
1955 }
1956 
1957 static const char *handle_dots(struct nameidata *nd, int type)
1958 {
1959 	if (type == LAST_DOTDOT) {
1960 		const char *error = NULL;
1961 		struct dentry *parent;
1962 		struct inode *inode;
1963 		unsigned seq;
1964 
1965 		if (!nd->root.mnt) {
1966 			error = ERR_PTR(set_root(nd));
1967 			if (error)
1968 				return error;
1969 		}
1970 		if (nd->flags & LOOKUP_RCU)
1971 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1972 		else
1973 			parent = follow_dotdot(nd, &inode, &seq);
1974 		if (IS_ERR(parent))
1975 			return ERR_CAST(parent);
1976 		if (unlikely(!parent))
1977 			error = step_into(nd, WALK_NOFOLLOW,
1978 					 nd->path.dentry, nd->inode, nd->seq);
1979 		else
1980 			error = step_into(nd, WALK_NOFOLLOW,
1981 					 parent, inode, seq);
1982 		if (unlikely(error))
1983 			return error;
1984 
1985 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1986 			/*
1987 			 * If there was a racing rename or mount along our
1988 			 * path, then we can't be sure that ".." hasn't jumped
1989 			 * above nd->root (and so userspace should retry or use
1990 			 * some fallback).
1991 			 */
1992 			smp_rmb();
1993 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1994 				return ERR_PTR(-EAGAIN);
1995 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1996 				return ERR_PTR(-EAGAIN);
1997 		}
1998 	}
1999 	return NULL;
2000 }
2001 
2002 static const char *walk_component(struct nameidata *nd, int flags)
2003 {
2004 	struct dentry *dentry;
2005 	struct inode *inode;
2006 	unsigned seq;
2007 	/*
2008 	 * "." and ".." are special - ".." especially so because it has
2009 	 * to be able to know about the current root directory and
2010 	 * parent relationships.
2011 	 */
2012 	if (unlikely(nd->last_type != LAST_NORM)) {
2013 		if (!(flags & WALK_MORE) && nd->depth)
2014 			put_link(nd);
2015 		return handle_dots(nd, nd->last_type);
2016 	}
2017 	dentry = lookup_fast(nd, &inode, &seq);
2018 	if (IS_ERR(dentry))
2019 		return ERR_CAST(dentry);
2020 	if (unlikely(!dentry)) {
2021 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2022 		if (IS_ERR(dentry))
2023 			return ERR_CAST(dentry);
2024 	}
2025 	if (!(flags & WALK_MORE) && nd->depth)
2026 		put_link(nd);
2027 	return step_into(nd, flags, dentry, inode, seq);
2028 }
2029 
2030 /*
2031  * We can do the critical dentry name comparison and hashing
2032  * operations one word at a time, but we are limited to:
2033  *
2034  * - Architectures with fast unaligned word accesses. We could
2035  *   do a "get_unaligned()" if this helps and is sufficiently
2036  *   fast.
2037  *
2038  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2039  *   do not trap on the (extremely unlikely) case of a page
2040  *   crossing operation.
2041  *
2042  * - Furthermore, we need an efficient 64-bit compile for the
2043  *   64-bit case in order to generate the "number of bytes in
2044  *   the final mask". Again, that could be replaced with a
2045  *   efficient population count instruction or similar.
2046  */
2047 #ifdef CONFIG_DCACHE_WORD_ACCESS
2048 
2049 #include <asm/word-at-a-time.h>
2050 
2051 #ifdef HASH_MIX
2052 
2053 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2054 
2055 #elif defined(CONFIG_64BIT)
2056 /*
2057  * Register pressure in the mixing function is an issue, particularly
2058  * on 32-bit x86, but almost any function requires one state value and
2059  * one temporary.  Instead, use a function designed for two state values
2060  * and no temporaries.
2061  *
2062  * This function cannot create a collision in only two iterations, so
2063  * we have two iterations to achieve avalanche.  In those two iterations,
2064  * we have six layers of mixing, which is enough to spread one bit's
2065  * influence out to 2^6 = 64 state bits.
2066  *
2067  * Rotate constants are scored by considering either 64 one-bit input
2068  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2069  * probability of that delta causing a change to each of the 128 output
2070  * bits, using a sample of random initial states.
2071  *
2072  * The Shannon entropy of the computed probabilities is then summed
2073  * to produce a score.  Ideally, any input change has a 50% chance of
2074  * toggling any given output bit.
2075  *
2076  * Mixing scores (in bits) for (12,45):
2077  * Input delta: 1-bit      2-bit
2078  * 1 round:     713.3    42542.6
2079  * 2 rounds:   2753.7   140389.8
2080  * 3 rounds:   5954.1   233458.2
2081  * 4 rounds:   7862.6   256672.2
2082  * Perfect:    8192     258048
2083  *            (64*128) (64*63/2 * 128)
2084  */
2085 #define HASH_MIX(x, y, a)	\
2086 	(	x ^= (a),	\
2087 	y ^= x,	x = rol64(x,12),\
2088 	x += y,	y = rol64(y,45),\
2089 	y *= 9			)
2090 
2091 /*
2092  * Fold two longs into one 32-bit hash value.  This must be fast, but
2093  * latency isn't quite as critical, as there is a fair bit of additional
2094  * work done before the hash value is used.
2095  */
2096 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2097 {
2098 	y ^= x * GOLDEN_RATIO_64;
2099 	y *= GOLDEN_RATIO_64;
2100 	return y >> 32;
2101 }
2102 
2103 #else	/* 32-bit case */
2104 
2105 /*
2106  * Mixing scores (in bits) for (7,20):
2107  * Input delta: 1-bit      2-bit
2108  * 1 round:     330.3     9201.6
2109  * 2 rounds:   1246.4    25475.4
2110  * 3 rounds:   1907.1    31295.1
2111  * 4 rounds:   2042.3    31718.6
2112  * Perfect:    2048      31744
2113  *            (32*64)   (32*31/2 * 64)
2114  */
2115 #define HASH_MIX(x, y, a)	\
2116 	(	x ^= (a),	\
2117 	y ^= x,	x = rol32(x, 7),\
2118 	x += y,	y = rol32(y,20),\
2119 	y *= 9			)
2120 
2121 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2122 {
2123 	/* Use arch-optimized multiply if one exists */
2124 	return __hash_32(y ^ __hash_32(x));
2125 }
2126 
2127 #endif
2128 
2129 /*
2130  * Return the hash of a string of known length.  This is carfully
2131  * designed to match hash_name(), which is the more critical function.
2132  * In particular, we must end by hashing a final word containing 0..7
2133  * payload bytes, to match the way that hash_name() iterates until it
2134  * finds the delimiter after the name.
2135  */
2136 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2137 {
2138 	unsigned long a, x = 0, y = (unsigned long)salt;
2139 
2140 	for (;;) {
2141 		if (!len)
2142 			goto done;
2143 		a = load_unaligned_zeropad(name);
2144 		if (len < sizeof(unsigned long))
2145 			break;
2146 		HASH_MIX(x, y, a);
2147 		name += sizeof(unsigned long);
2148 		len -= sizeof(unsigned long);
2149 	}
2150 	x ^= a & bytemask_from_count(len);
2151 done:
2152 	return fold_hash(x, y);
2153 }
2154 EXPORT_SYMBOL(full_name_hash);
2155 
2156 /* Return the "hash_len" (hash and length) of a null-terminated string */
2157 u64 hashlen_string(const void *salt, const char *name)
2158 {
2159 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2160 	unsigned long adata, mask, len;
2161 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2162 
2163 	len = 0;
2164 	goto inside;
2165 
2166 	do {
2167 		HASH_MIX(x, y, a);
2168 		len += sizeof(unsigned long);
2169 inside:
2170 		a = load_unaligned_zeropad(name+len);
2171 	} while (!has_zero(a, &adata, &constants));
2172 
2173 	adata = prep_zero_mask(a, adata, &constants);
2174 	mask = create_zero_mask(adata);
2175 	x ^= a & zero_bytemask(mask);
2176 
2177 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2178 }
2179 EXPORT_SYMBOL(hashlen_string);
2180 
2181 /*
2182  * Calculate the length and hash of the path component, and
2183  * return the "hash_len" as the result.
2184  */
2185 static inline u64 hash_name(const void *salt, const char *name)
2186 {
2187 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2188 	unsigned long adata, bdata, mask, len;
2189 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2190 
2191 	len = 0;
2192 	goto inside;
2193 
2194 	do {
2195 		HASH_MIX(x, y, a);
2196 		len += sizeof(unsigned long);
2197 inside:
2198 		a = load_unaligned_zeropad(name+len);
2199 		b = a ^ REPEAT_BYTE('/');
2200 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2201 
2202 	adata = prep_zero_mask(a, adata, &constants);
2203 	bdata = prep_zero_mask(b, bdata, &constants);
2204 	mask = create_zero_mask(adata | bdata);
2205 	x ^= a & zero_bytemask(mask);
2206 
2207 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2208 }
2209 
2210 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2211 
2212 /* Return the hash of a string of known length */
2213 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2214 {
2215 	unsigned long hash = init_name_hash(salt);
2216 	while (len--)
2217 		hash = partial_name_hash((unsigned char)*name++, hash);
2218 	return end_name_hash(hash);
2219 }
2220 EXPORT_SYMBOL(full_name_hash);
2221 
2222 /* Return the "hash_len" (hash and length) of a null-terminated string */
2223 u64 hashlen_string(const void *salt, const char *name)
2224 {
2225 	unsigned long hash = init_name_hash(salt);
2226 	unsigned long len = 0, c;
2227 
2228 	c = (unsigned char)*name;
2229 	while (c) {
2230 		len++;
2231 		hash = partial_name_hash(c, hash);
2232 		c = (unsigned char)name[len];
2233 	}
2234 	return hashlen_create(end_name_hash(hash), len);
2235 }
2236 EXPORT_SYMBOL(hashlen_string);
2237 
2238 /*
2239  * We know there's a real path component here of at least
2240  * one character.
2241  */
2242 static inline u64 hash_name(const void *salt, const char *name)
2243 {
2244 	unsigned long hash = init_name_hash(salt);
2245 	unsigned long len = 0, c;
2246 
2247 	c = (unsigned char)*name;
2248 	do {
2249 		len++;
2250 		hash = partial_name_hash(c, hash);
2251 		c = (unsigned char)name[len];
2252 	} while (c && c != '/');
2253 	return hashlen_create(end_name_hash(hash), len);
2254 }
2255 
2256 #endif
2257 
2258 /*
2259  * Name resolution.
2260  * This is the basic name resolution function, turning a pathname into
2261  * the final dentry. We expect 'base' to be positive and a directory.
2262  *
2263  * Returns 0 and nd will have valid dentry and mnt on success.
2264  * Returns error and drops reference to input namei data on failure.
2265  */
2266 static int link_path_walk(const char *name, struct nameidata *nd)
2267 {
2268 	int depth = 0; // depth <= nd->depth
2269 	int err;
2270 
2271 	nd->last_type = LAST_ROOT;
2272 	nd->flags |= LOOKUP_PARENT;
2273 	if (IS_ERR(name))
2274 		return PTR_ERR(name);
2275 	while (*name=='/')
2276 		name++;
2277 	if (!*name) {
2278 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2279 		return 0;
2280 	}
2281 
2282 	/* At this point we know we have a real path component. */
2283 	for(;;) {
2284 		struct user_namespace *mnt_userns;
2285 		const char *link;
2286 		u64 hash_len;
2287 		int type;
2288 
2289 		mnt_userns = mnt_user_ns(nd->path.mnt);
2290 		err = may_lookup(mnt_userns, nd);
2291 		if (err)
2292 			return err;
2293 
2294 		hash_len = hash_name(nd->path.dentry, name);
2295 
2296 		type = LAST_NORM;
2297 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2298 			case 2:
2299 				if (name[1] == '.') {
2300 					type = LAST_DOTDOT;
2301 					nd->state |= ND_JUMPED;
2302 				}
2303 				break;
2304 			case 1:
2305 				type = LAST_DOT;
2306 		}
2307 		if (likely(type == LAST_NORM)) {
2308 			struct dentry *parent = nd->path.dentry;
2309 			nd->state &= ~ND_JUMPED;
2310 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2311 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2312 				err = parent->d_op->d_hash(parent, &this);
2313 				if (err < 0)
2314 					return err;
2315 				hash_len = this.hash_len;
2316 				name = this.name;
2317 			}
2318 		}
2319 
2320 		nd->last.hash_len = hash_len;
2321 		nd->last.name = name;
2322 		nd->last_type = type;
2323 
2324 		name += hashlen_len(hash_len);
2325 		if (!*name)
2326 			goto OK;
2327 		/*
2328 		 * If it wasn't NUL, we know it was '/'. Skip that
2329 		 * slash, and continue until no more slashes.
2330 		 */
2331 		do {
2332 			name++;
2333 		} while (unlikely(*name == '/'));
2334 		if (unlikely(!*name)) {
2335 OK:
2336 			/* pathname or trailing symlink, done */
2337 			if (!depth) {
2338 				nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2339 				nd->dir_mode = nd->inode->i_mode;
2340 				nd->flags &= ~LOOKUP_PARENT;
2341 				return 0;
2342 			}
2343 			/* last component of nested symlink */
2344 			name = nd->stack[--depth].name;
2345 			link = walk_component(nd, 0);
2346 		} else {
2347 			/* not the last component */
2348 			link = walk_component(nd, WALK_MORE);
2349 		}
2350 		if (unlikely(link)) {
2351 			if (IS_ERR(link))
2352 				return PTR_ERR(link);
2353 			/* a symlink to follow */
2354 			nd->stack[depth++].name = name;
2355 			name = link;
2356 			continue;
2357 		}
2358 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2359 			if (nd->flags & LOOKUP_RCU) {
2360 				if (!try_to_unlazy(nd))
2361 					return -ECHILD;
2362 			}
2363 			return -ENOTDIR;
2364 		}
2365 	}
2366 }
2367 
2368 /* must be paired with terminate_walk() */
2369 static const char *path_init(struct nameidata *nd, unsigned flags)
2370 {
2371 	int error;
2372 	const char *s = nd->name->name;
2373 
2374 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2375 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2376 		return ERR_PTR(-EAGAIN);
2377 
2378 	if (!*s)
2379 		flags &= ~LOOKUP_RCU;
2380 	if (flags & LOOKUP_RCU)
2381 		rcu_read_lock();
2382 
2383 	nd->flags = flags;
2384 	nd->state |= ND_JUMPED;
2385 
2386 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2387 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2388 	smp_rmb();
2389 
2390 	if (nd->state & ND_ROOT_PRESET) {
2391 		struct dentry *root = nd->root.dentry;
2392 		struct inode *inode = root->d_inode;
2393 		if (*s && unlikely(!d_can_lookup(root)))
2394 			return ERR_PTR(-ENOTDIR);
2395 		nd->path = nd->root;
2396 		nd->inode = inode;
2397 		if (flags & LOOKUP_RCU) {
2398 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2399 			nd->root_seq = nd->seq;
2400 		} else {
2401 			path_get(&nd->path);
2402 		}
2403 		return s;
2404 	}
2405 
2406 	nd->root.mnt = NULL;
2407 
2408 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2409 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2410 		error = nd_jump_root(nd);
2411 		if (unlikely(error))
2412 			return ERR_PTR(error);
2413 		return s;
2414 	}
2415 
2416 	/* Relative pathname -- get the starting-point it is relative to. */
2417 	if (nd->dfd == AT_FDCWD) {
2418 		if (flags & LOOKUP_RCU) {
2419 			struct fs_struct *fs = current->fs;
2420 			unsigned seq;
2421 
2422 			do {
2423 				seq = read_seqcount_begin(&fs->seq);
2424 				nd->path = fs->pwd;
2425 				nd->inode = nd->path.dentry->d_inode;
2426 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2427 			} while (read_seqcount_retry(&fs->seq, seq));
2428 		} else {
2429 			get_fs_pwd(current->fs, &nd->path);
2430 			nd->inode = nd->path.dentry->d_inode;
2431 		}
2432 	} else {
2433 		/* Caller must check execute permissions on the starting path component */
2434 		struct fd f = fdget_raw(nd->dfd);
2435 		struct dentry *dentry;
2436 
2437 		if (!f.file)
2438 			return ERR_PTR(-EBADF);
2439 
2440 		dentry = f.file->f_path.dentry;
2441 
2442 		if (*s && unlikely(!d_can_lookup(dentry))) {
2443 			fdput(f);
2444 			return ERR_PTR(-ENOTDIR);
2445 		}
2446 
2447 		nd->path = f.file->f_path;
2448 		if (flags & LOOKUP_RCU) {
2449 			nd->inode = nd->path.dentry->d_inode;
2450 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2451 		} else {
2452 			path_get(&nd->path);
2453 			nd->inode = nd->path.dentry->d_inode;
2454 		}
2455 		fdput(f);
2456 	}
2457 
2458 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2459 	if (flags & LOOKUP_IS_SCOPED) {
2460 		nd->root = nd->path;
2461 		if (flags & LOOKUP_RCU) {
2462 			nd->root_seq = nd->seq;
2463 		} else {
2464 			path_get(&nd->root);
2465 			nd->state |= ND_ROOT_GRABBED;
2466 		}
2467 	}
2468 	return s;
2469 }
2470 
2471 static inline const char *lookup_last(struct nameidata *nd)
2472 {
2473 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2474 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2475 
2476 	return walk_component(nd, WALK_TRAILING);
2477 }
2478 
2479 static int handle_lookup_down(struct nameidata *nd)
2480 {
2481 	if (!(nd->flags & LOOKUP_RCU))
2482 		dget(nd->path.dentry);
2483 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2484 			nd->path.dentry, nd->inode, nd->seq));
2485 }
2486 
2487 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2488 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2489 {
2490 	const char *s = path_init(nd, flags);
2491 	int err;
2492 
2493 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2494 		err = handle_lookup_down(nd);
2495 		if (unlikely(err < 0))
2496 			s = ERR_PTR(err);
2497 	}
2498 
2499 	while (!(err = link_path_walk(s, nd)) &&
2500 	       (s = lookup_last(nd)) != NULL)
2501 		;
2502 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2503 		err = handle_lookup_down(nd);
2504 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2505 	}
2506 	if (!err)
2507 		err = complete_walk(nd);
2508 
2509 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2510 		if (!d_can_lookup(nd->path.dentry))
2511 			err = -ENOTDIR;
2512 	if (!err) {
2513 		*path = nd->path;
2514 		nd->path.mnt = NULL;
2515 		nd->path.dentry = NULL;
2516 	}
2517 	terminate_walk(nd);
2518 	return err;
2519 }
2520 
2521 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2522 		    struct path *path, struct path *root)
2523 {
2524 	int retval;
2525 	struct nameidata nd;
2526 	if (IS_ERR(name))
2527 		return PTR_ERR(name);
2528 	set_nameidata(&nd, dfd, name, root);
2529 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2530 	if (unlikely(retval == -ECHILD))
2531 		retval = path_lookupat(&nd, flags, path);
2532 	if (unlikely(retval == -ESTALE))
2533 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2534 
2535 	if (likely(!retval))
2536 		audit_inode(name, path->dentry,
2537 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2538 	restore_nameidata();
2539 	return retval;
2540 }
2541 
2542 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2543 static int path_parentat(struct nameidata *nd, unsigned flags,
2544 				struct path *parent)
2545 {
2546 	const char *s = path_init(nd, flags);
2547 	int err = link_path_walk(s, nd);
2548 	if (!err)
2549 		err = complete_walk(nd);
2550 	if (!err) {
2551 		*parent = nd->path;
2552 		nd->path.mnt = NULL;
2553 		nd->path.dentry = NULL;
2554 	}
2555 	terminate_walk(nd);
2556 	return err;
2557 }
2558 
2559 /* Note: this does not consume "name" */
2560 static int filename_parentat(int dfd, struct filename *name,
2561 			     unsigned int flags, struct path *parent,
2562 			     struct qstr *last, int *type)
2563 {
2564 	int retval;
2565 	struct nameidata nd;
2566 
2567 	if (IS_ERR(name))
2568 		return PTR_ERR(name);
2569 	set_nameidata(&nd, dfd, name, NULL);
2570 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2571 	if (unlikely(retval == -ECHILD))
2572 		retval = path_parentat(&nd, flags, parent);
2573 	if (unlikely(retval == -ESTALE))
2574 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2575 	if (likely(!retval)) {
2576 		*last = nd.last;
2577 		*type = nd.last_type;
2578 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2579 	}
2580 	restore_nameidata();
2581 	return retval;
2582 }
2583 
2584 /* does lookup, returns the object with parent locked */
2585 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2586 {
2587 	struct dentry *d;
2588 	struct qstr last;
2589 	int type, error;
2590 
2591 	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2592 	if (error)
2593 		return ERR_PTR(error);
2594 	if (unlikely(type != LAST_NORM)) {
2595 		path_put(path);
2596 		return ERR_PTR(-EINVAL);
2597 	}
2598 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2599 	d = __lookup_hash(&last, path->dentry, 0);
2600 	if (IS_ERR(d)) {
2601 		inode_unlock(path->dentry->d_inode);
2602 		path_put(path);
2603 	}
2604 	return d;
2605 }
2606 
2607 struct dentry *kern_path_locked(const char *name, struct path *path)
2608 {
2609 	struct filename *filename = getname_kernel(name);
2610 	struct dentry *res = __kern_path_locked(filename, path);
2611 
2612 	putname(filename);
2613 	return res;
2614 }
2615 
2616 int kern_path(const char *name, unsigned int flags, struct path *path)
2617 {
2618 	struct filename *filename = getname_kernel(name);
2619 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2620 
2621 	putname(filename);
2622 	return ret;
2623 
2624 }
2625 EXPORT_SYMBOL(kern_path);
2626 
2627 /**
2628  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2629  * @dentry:  pointer to dentry of the base directory
2630  * @mnt: pointer to vfs mount of the base directory
2631  * @name: pointer to file name
2632  * @flags: lookup flags
2633  * @path: pointer to struct path to fill
2634  */
2635 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2636 		    const char *name, unsigned int flags,
2637 		    struct path *path)
2638 {
2639 	struct filename *filename;
2640 	struct path root = {.mnt = mnt, .dentry = dentry};
2641 	int ret;
2642 
2643 	filename = getname_kernel(name);
2644 	/* the first argument of filename_lookup() is ignored with root */
2645 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2646 	putname(filename);
2647 	return ret;
2648 }
2649 EXPORT_SYMBOL(vfs_path_lookup);
2650 
2651 static int lookup_one_common(struct user_namespace *mnt_userns,
2652 			     const char *name, struct dentry *base, int len,
2653 			     struct qstr *this)
2654 {
2655 	this->name = name;
2656 	this->len = len;
2657 	this->hash = full_name_hash(base, name, len);
2658 	if (!len)
2659 		return -EACCES;
2660 
2661 	if (unlikely(name[0] == '.')) {
2662 		if (len < 2 || (len == 2 && name[1] == '.'))
2663 			return -EACCES;
2664 	}
2665 
2666 	while (len--) {
2667 		unsigned int c = *(const unsigned char *)name++;
2668 		if (c == '/' || c == '\0')
2669 			return -EACCES;
2670 	}
2671 	/*
2672 	 * See if the low-level filesystem might want
2673 	 * to use its own hash..
2674 	 */
2675 	if (base->d_flags & DCACHE_OP_HASH) {
2676 		int err = base->d_op->d_hash(base, this);
2677 		if (err < 0)
2678 			return err;
2679 	}
2680 
2681 	return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2682 }
2683 
2684 /**
2685  * try_lookup_one_len - filesystem helper to lookup single pathname component
2686  * @name:	pathname component to lookup
2687  * @base:	base directory to lookup from
2688  * @len:	maximum length @len should be interpreted to
2689  *
2690  * Look up a dentry by name in the dcache, returning NULL if it does not
2691  * currently exist.  The function does not try to create a dentry.
2692  *
2693  * Note that this routine is purely a helper for filesystem usage and should
2694  * not be called by generic code.
2695  *
2696  * The caller must hold base->i_mutex.
2697  */
2698 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2699 {
2700 	struct qstr this;
2701 	int err;
2702 
2703 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2704 
2705 	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2706 	if (err)
2707 		return ERR_PTR(err);
2708 
2709 	return lookup_dcache(&this, base, 0);
2710 }
2711 EXPORT_SYMBOL(try_lookup_one_len);
2712 
2713 /**
2714  * lookup_one_len - filesystem helper to lookup single pathname component
2715  * @name:	pathname component to lookup
2716  * @base:	base directory to lookup from
2717  * @len:	maximum length @len should be interpreted to
2718  *
2719  * Note that this routine is purely a helper for filesystem usage and should
2720  * not be called by generic code.
2721  *
2722  * The caller must hold base->i_mutex.
2723  */
2724 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2725 {
2726 	struct dentry *dentry;
2727 	struct qstr this;
2728 	int err;
2729 
2730 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2731 
2732 	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2733 	if (err)
2734 		return ERR_PTR(err);
2735 
2736 	dentry = lookup_dcache(&this, base, 0);
2737 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2738 }
2739 EXPORT_SYMBOL(lookup_one_len);
2740 
2741 /**
2742  * lookup_one - filesystem helper to lookup single pathname component
2743  * @mnt_userns:	user namespace of the mount the lookup is performed from
2744  * @name:	pathname component to lookup
2745  * @base:	base directory to lookup from
2746  * @len:	maximum length @len should be interpreted to
2747  *
2748  * Note that this routine is purely a helper for filesystem usage and should
2749  * not be called by generic code.
2750  *
2751  * The caller must hold base->i_mutex.
2752  */
2753 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2754 			  struct dentry *base, int len)
2755 {
2756 	struct dentry *dentry;
2757 	struct qstr this;
2758 	int err;
2759 
2760 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2761 
2762 	err = lookup_one_common(mnt_userns, name, base, len, &this);
2763 	if (err)
2764 		return ERR_PTR(err);
2765 
2766 	dentry = lookup_dcache(&this, base, 0);
2767 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2768 }
2769 EXPORT_SYMBOL(lookup_one);
2770 
2771 /**
2772  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2773  * @mnt_userns:	idmapping of the mount the lookup is performed from
2774  * @name:	pathname component to lookup
2775  * @base:	base directory to lookup from
2776  * @len:	maximum length @len should be interpreted to
2777  *
2778  * Note that this routine is purely a helper for filesystem usage and should
2779  * not be called by generic code.
2780  *
2781  * Unlike lookup_one_len, it should be called without the parent
2782  * i_mutex held, and will take the i_mutex itself if necessary.
2783  */
2784 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2785 				   const char *name, struct dentry *base,
2786 				   int len)
2787 {
2788 	struct qstr this;
2789 	int err;
2790 	struct dentry *ret;
2791 
2792 	err = lookup_one_common(mnt_userns, name, base, len, &this);
2793 	if (err)
2794 		return ERR_PTR(err);
2795 
2796 	ret = lookup_dcache(&this, base, 0);
2797 	if (!ret)
2798 		ret = lookup_slow(&this, base, 0);
2799 	return ret;
2800 }
2801 EXPORT_SYMBOL(lookup_one_unlocked);
2802 
2803 /**
2804  * lookup_one_positive_unlocked - filesystem helper to lookup single
2805  *				  pathname component
2806  * @mnt_userns:	idmapping of the mount the lookup is performed from
2807  * @name:	pathname component to lookup
2808  * @base:	base directory to lookup from
2809  * @len:	maximum length @len should be interpreted to
2810  *
2811  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2812  * known positive or ERR_PTR(). This is what most of the users want.
2813  *
2814  * Note that pinned negative with unlocked parent _can_ become positive at any
2815  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2816  * positives have >d_inode stable, so this one avoids such problems.
2817  *
2818  * Note that this routine is purely a helper for filesystem usage and should
2819  * not be called by generic code.
2820  *
2821  * The helper should be called without i_mutex held.
2822  */
2823 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2824 					    const char *name,
2825 					    struct dentry *base, int len)
2826 {
2827 	struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2828 
2829 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2830 		dput(ret);
2831 		ret = ERR_PTR(-ENOENT);
2832 	}
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2836 
2837 /**
2838  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2839  * @name:	pathname component to lookup
2840  * @base:	base directory to lookup from
2841  * @len:	maximum length @len should be interpreted to
2842  *
2843  * Note that this routine is purely a helper for filesystem usage and should
2844  * not be called by generic code.
2845  *
2846  * Unlike lookup_one_len, it should be called without the parent
2847  * i_mutex held, and will take the i_mutex itself if necessary.
2848  */
2849 struct dentry *lookup_one_len_unlocked(const char *name,
2850 				       struct dentry *base, int len)
2851 {
2852 	return lookup_one_unlocked(&init_user_ns, name, base, len);
2853 }
2854 EXPORT_SYMBOL(lookup_one_len_unlocked);
2855 
2856 /*
2857  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2858  * on negatives.  Returns known positive or ERR_PTR(); that's what
2859  * most of the users want.  Note that pinned negative with unlocked parent
2860  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2861  * need to be very careful; pinned positives have ->d_inode stable, so
2862  * this one avoids such problems.
2863  */
2864 struct dentry *lookup_positive_unlocked(const char *name,
2865 				       struct dentry *base, int len)
2866 {
2867 	return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2868 }
2869 EXPORT_SYMBOL(lookup_positive_unlocked);
2870 
2871 #ifdef CONFIG_UNIX98_PTYS
2872 int path_pts(struct path *path)
2873 {
2874 	/* Find something mounted on "pts" in the same directory as
2875 	 * the input path.
2876 	 */
2877 	struct dentry *parent = dget_parent(path->dentry);
2878 	struct dentry *child;
2879 	struct qstr this = QSTR_INIT("pts", 3);
2880 
2881 	if (unlikely(!path_connected(path->mnt, parent))) {
2882 		dput(parent);
2883 		return -ENOENT;
2884 	}
2885 	dput(path->dentry);
2886 	path->dentry = parent;
2887 	child = d_hash_and_lookup(parent, &this);
2888 	if (!child)
2889 		return -ENOENT;
2890 
2891 	path->dentry = child;
2892 	dput(parent);
2893 	follow_down(path);
2894 	return 0;
2895 }
2896 #endif
2897 
2898 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2899 		 struct path *path, int *empty)
2900 {
2901 	struct filename *filename = getname_flags(name, flags, empty);
2902 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2903 
2904 	putname(filename);
2905 	return ret;
2906 }
2907 EXPORT_SYMBOL(user_path_at_empty);
2908 
2909 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2910 		   struct inode *inode)
2911 {
2912 	kuid_t fsuid = current_fsuid();
2913 
2914 	if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2915 		return 0;
2916 	if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2917 		return 0;
2918 	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2919 }
2920 EXPORT_SYMBOL(__check_sticky);
2921 
2922 /*
2923  *	Check whether we can remove a link victim from directory dir, check
2924  *  whether the type of victim is right.
2925  *  1. We can't do it if dir is read-only (done in permission())
2926  *  2. We should have write and exec permissions on dir
2927  *  3. We can't remove anything from append-only dir
2928  *  4. We can't do anything with immutable dir (done in permission())
2929  *  5. If the sticky bit on dir is set we should either
2930  *	a. be owner of dir, or
2931  *	b. be owner of victim, or
2932  *	c. have CAP_FOWNER capability
2933  *  6. If the victim is append-only or immutable we can't do antyhing with
2934  *     links pointing to it.
2935  *  7. If the victim has an unknown uid or gid we can't change the inode.
2936  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2937  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2938  * 10. We can't remove a root or mountpoint.
2939  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2940  *     nfs_async_unlink().
2941  */
2942 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2943 		      struct dentry *victim, bool isdir)
2944 {
2945 	struct inode *inode = d_backing_inode(victim);
2946 	int error;
2947 
2948 	if (d_is_negative(victim))
2949 		return -ENOENT;
2950 	BUG_ON(!inode);
2951 
2952 	BUG_ON(victim->d_parent->d_inode != dir);
2953 
2954 	/* Inode writeback is not safe when the uid or gid are invalid. */
2955 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2956 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2957 		return -EOVERFLOW;
2958 
2959 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2960 
2961 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2962 	if (error)
2963 		return error;
2964 	if (IS_APPEND(dir))
2965 		return -EPERM;
2966 
2967 	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2968 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2969 	    HAS_UNMAPPED_ID(mnt_userns, inode))
2970 		return -EPERM;
2971 	if (isdir) {
2972 		if (!d_is_dir(victim))
2973 			return -ENOTDIR;
2974 		if (IS_ROOT(victim))
2975 			return -EBUSY;
2976 	} else if (d_is_dir(victim))
2977 		return -EISDIR;
2978 	if (IS_DEADDIR(dir))
2979 		return -ENOENT;
2980 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2981 		return -EBUSY;
2982 	return 0;
2983 }
2984 
2985 /*	Check whether we can create an object with dentry child in directory
2986  *  dir.
2987  *  1. We can't do it if child already exists (open has special treatment for
2988  *     this case, but since we are inlined it's OK)
2989  *  2. We can't do it if dir is read-only (done in permission())
2990  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2991  *  4. We should have write and exec permissions on dir
2992  *  5. We can't do it if dir is immutable (done in permission())
2993  */
2994 static inline int may_create(struct user_namespace *mnt_userns,
2995 			     struct inode *dir, struct dentry *child)
2996 {
2997 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2998 	if (child->d_inode)
2999 		return -EEXIST;
3000 	if (IS_DEADDIR(dir))
3001 		return -ENOENT;
3002 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
3003 		return -EOVERFLOW;
3004 
3005 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3006 }
3007 
3008 /*
3009  * p1 and p2 should be directories on the same fs.
3010  */
3011 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3012 {
3013 	struct dentry *p;
3014 
3015 	if (p1 == p2) {
3016 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3017 		return NULL;
3018 	}
3019 
3020 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3021 
3022 	p = d_ancestor(p2, p1);
3023 	if (p) {
3024 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3025 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3026 		return p;
3027 	}
3028 
3029 	p = d_ancestor(p1, p2);
3030 	if (p) {
3031 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3032 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3033 		return p;
3034 	}
3035 
3036 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3037 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3038 	return NULL;
3039 }
3040 EXPORT_SYMBOL(lock_rename);
3041 
3042 void unlock_rename(struct dentry *p1, struct dentry *p2)
3043 {
3044 	inode_unlock(p1->d_inode);
3045 	if (p1 != p2) {
3046 		inode_unlock(p2->d_inode);
3047 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3048 	}
3049 }
3050 EXPORT_SYMBOL(unlock_rename);
3051 
3052 /**
3053  * vfs_create - create new file
3054  * @mnt_userns:	user namespace of the mount the inode was found from
3055  * @dir:	inode of @dentry
3056  * @dentry:	pointer to dentry of the base directory
3057  * @mode:	mode of the new file
3058  * @want_excl:	whether the file must not yet exist
3059  *
3060  * Create a new file.
3061  *
3062  * If the inode has been found through an idmapped mount the user namespace of
3063  * the vfsmount must be passed through @mnt_userns. This function will then take
3064  * care to map the inode according to @mnt_userns before checking permissions.
3065  * On non-idmapped mounts or if permission checking is to be performed on the
3066  * raw inode simply passs init_user_ns.
3067  */
3068 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3069 	       struct dentry *dentry, umode_t mode, bool want_excl)
3070 {
3071 	int error = may_create(mnt_userns, dir, dentry);
3072 	if (error)
3073 		return error;
3074 
3075 	if (!dir->i_op->create)
3076 		return -EACCES;	/* shouldn't it be ENOSYS? */
3077 	mode &= S_IALLUGO;
3078 	mode |= S_IFREG;
3079 	error = security_inode_create(dir, dentry, mode);
3080 	if (error)
3081 		return error;
3082 	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3083 	if (!error)
3084 		fsnotify_create(dir, dentry);
3085 	return error;
3086 }
3087 EXPORT_SYMBOL(vfs_create);
3088 
3089 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3090 		int (*f)(struct dentry *, umode_t, void *),
3091 		void *arg)
3092 {
3093 	struct inode *dir = dentry->d_parent->d_inode;
3094 	int error = may_create(&init_user_ns, dir, dentry);
3095 	if (error)
3096 		return error;
3097 
3098 	mode &= S_IALLUGO;
3099 	mode |= S_IFREG;
3100 	error = security_inode_create(dir, dentry, mode);
3101 	if (error)
3102 		return error;
3103 	error = f(dentry, mode, arg);
3104 	if (!error)
3105 		fsnotify_create(dir, dentry);
3106 	return error;
3107 }
3108 EXPORT_SYMBOL(vfs_mkobj);
3109 
3110 bool may_open_dev(const struct path *path)
3111 {
3112 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3113 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3114 }
3115 
3116 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3117 		    int acc_mode, int flag)
3118 {
3119 	struct dentry *dentry = path->dentry;
3120 	struct inode *inode = dentry->d_inode;
3121 	int error;
3122 
3123 	if (!inode)
3124 		return -ENOENT;
3125 
3126 	switch (inode->i_mode & S_IFMT) {
3127 	case S_IFLNK:
3128 		return -ELOOP;
3129 	case S_IFDIR:
3130 		if (acc_mode & MAY_WRITE)
3131 			return -EISDIR;
3132 		if (acc_mode & MAY_EXEC)
3133 			return -EACCES;
3134 		break;
3135 	case S_IFBLK:
3136 	case S_IFCHR:
3137 		if (!may_open_dev(path))
3138 			return -EACCES;
3139 		fallthrough;
3140 	case S_IFIFO:
3141 	case S_IFSOCK:
3142 		if (acc_mode & MAY_EXEC)
3143 			return -EACCES;
3144 		flag &= ~O_TRUNC;
3145 		break;
3146 	case S_IFREG:
3147 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3148 			return -EACCES;
3149 		break;
3150 	}
3151 
3152 	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3153 	if (error)
3154 		return error;
3155 
3156 	/*
3157 	 * An append-only file must be opened in append mode for writing.
3158 	 */
3159 	if (IS_APPEND(inode)) {
3160 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3161 			return -EPERM;
3162 		if (flag & O_TRUNC)
3163 			return -EPERM;
3164 	}
3165 
3166 	/* O_NOATIME can only be set by the owner or superuser */
3167 	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3168 		return -EPERM;
3169 
3170 	return 0;
3171 }
3172 
3173 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3174 {
3175 	const struct path *path = &filp->f_path;
3176 	struct inode *inode = path->dentry->d_inode;
3177 	int error = get_write_access(inode);
3178 	if (error)
3179 		return error;
3180 
3181 	error = security_path_truncate(path);
3182 	if (!error) {
3183 		error = do_truncate(mnt_userns, path->dentry, 0,
3184 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3185 				    filp);
3186 	}
3187 	put_write_access(inode);
3188 	return error;
3189 }
3190 
3191 static inline int open_to_namei_flags(int flag)
3192 {
3193 	if ((flag & O_ACCMODE) == 3)
3194 		flag--;
3195 	return flag;
3196 }
3197 
3198 static int may_o_create(struct user_namespace *mnt_userns,
3199 			const struct path *dir, struct dentry *dentry,
3200 			umode_t mode)
3201 {
3202 	int error = security_path_mknod(dir, dentry, mode, 0);
3203 	if (error)
3204 		return error;
3205 
3206 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3207 		return -EOVERFLOW;
3208 
3209 	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3210 				 MAY_WRITE | MAY_EXEC);
3211 	if (error)
3212 		return error;
3213 
3214 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3215 }
3216 
3217 /*
3218  * Attempt to atomically look up, create and open a file from a negative
3219  * dentry.
3220  *
3221  * Returns 0 if successful.  The file will have been created and attached to
3222  * @file by the filesystem calling finish_open().
3223  *
3224  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3225  * be set.  The caller will need to perform the open themselves.  @path will
3226  * have been updated to point to the new dentry.  This may be negative.
3227  *
3228  * Returns an error code otherwise.
3229  */
3230 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3231 				  struct file *file,
3232 				  int open_flag, umode_t mode)
3233 {
3234 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3235 	struct inode *dir =  nd->path.dentry->d_inode;
3236 	int error;
3237 
3238 	if (nd->flags & LOOKUP_DIRECTORY)
3239 		open_flag |= O_DIRECTORY;
3240 
3241 	file->f_path.dentry = DENTRY_NOT_SET;
3242 	file->f_path.mnt = nd->path.mnt;
3243 	error = dir->i_op->atomic_open(dir, dentry, file,
3244 				       open_to_namei_flags(open_flag), mode);
3245 	d_lookup_done(dentry);
3246 	if (!error) {
3247 		if (file->f_mode & FMODE_OPENED) {
3248 			if (unlikely(dentry != file->f_path.dentry)) {
3249 				dput(dentry);
3250 				dentry = dget(file->f_path.dentry);
3251 			}
3252 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3253 			error = -EIO;
3254 		} else {
3255 			if (file->f_path.dentry) {
3256 				dput(dentry);
3257 				dentry = file->f_path.dentry;
3258 			}
3259 			if (unlikely(d_is_negative(dentry)))
3260 				error = -ENOENT;
3261 		}
3262 	}
3263 	if (error) {
3264 		dput(dentry);
3265 		dentry = ERR_PTR(error);
3266 	}
3267 	return dentry;
3268 }
3269 
3270 /*
3271  * Look up and maybe create and open the last component.
3272  *
3273  * Must be called with parent locked (exclusive in O_CREAT case).
3274  *
3275  * Returns 0 on success, that is, if
3276  *  the file was successfully atomically created (if necessary) and opened, or
3277  *  the file was not completely opened at this time, though lookups and
3278  *  creations were performed.
3279  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3280  * In the latter case dentry returned in @path might be negative if O_CREAT
3281  * hadn't been specified.
3282  *
3283  * An error code is returned on failure.
3284  */
3285 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3286 				  const struct open_flags *op,
3287 				  bool got_write)
3288 {
3289 	struct user_namespace *mnt_userns;
3290 	struct dentry *dir = nd->path.dentry;
3291 	struct inode *dir_inode = dir->d_inode;
3292 	int open_flag = op->open_flag;
3293 	struct dentry *dentry;
3294 	int error, create_error = 0;
3295 	umode_t mode = op->mode;
3296 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3297 
3298 	if (unlikely(IS_DEADDIR(dir_inode)))
3299 		return ERR_PTR(-ENOENT);
3300 
3301 	file->f_mode &= ~FMODE_CREATED;
3302 	dentry = d_lookup(dir, &nd->last);
3303 	for (;;) {
3304 		if (!dentry) {
3305 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3306 			if (IS_ERR(dentry))
3307 				return dentry;
3308 		}
3309 		if (d_in_lookup(dentry))
3310 			break;
3311 
3312 		error = d_revalidate(dentry, nd->flags);
3313 		if (likely(error > 0))
3314 			break;
3315 		if (error)
3316 			goto out_dput;
3317 		d_invalidate(dentry);
3318 		dput(dentry);
3319 		dentry = NULL;
3320 	}
3321 	if (dentry->d_inode) {
3322 		/* Cached positive dentry: will open in f_op->open */
3323 		return dentry;
3324 	}
3325 
3326 	/*
3327 	 * Checking write permission is tricky, bacuse we don't know if we are
3328 	 * going to actually need it: O_CREAT opens should work as long as the
3329 	 * file exists.  But checking existence breaks atomicity.  The trick is
3330 	 * to check access and if not granted clear O_CREAT from the flags.
3331 	 *
3332 	 * Another problem is returing the "right" error value (e.g. for an
3333 	 * O_EXCL open we want to return EEXIST not EROFS).
3334 	 */
3335 	if (unlikely(!got_write))
3336 		open_flag &= ~O_TRUNC;
3337 	mnt_userns = mnt_user_ns(nd->path.mnt);
3338 	if (open_flag & O_CREAT) {
3339 		if (open_flag & O_EXCL)
3340 			open_flag &= ~O_TRUNC;
3341 		if (!IS_POSIXACL(dir->d_inode))
3342 			mode &= ~current_umask();
3343 		if (likely(got_write))
3344 			create_error = may_o_create(mnt_userns, &nd->path,
3345 						    dentry, mode);
3346 		else
3347 			create_error = -EROFS;
3348 	}
3349 	if (create_error)
3350 		open_flag &= ~O_CREAT;
3351 	if (dir_inode->i_op->atomic_open) {
3352 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3353 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3354 			dentry = ERR_PTR(create_error);
3355 		return dentry;
3356 	}
3357 
3358 	if (d_in_lookup(dentry)) {
3359 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3360 							     nd->flags);
3361 		d_lookup_done(dentry);
3362 		if (unlikely(res)) {
3363 			if (IS_ERR(res)) {
3364 				error = PTR_ERR(res);
3365 				goto out_dput;
3366 			}
3367 			dput(dentry);
3368 			dentry = res;
3369 		}
3370 	}
3371 
3372 	/* Negative dentry, just create the file */
3373 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3374 		file->f_mode |= FMODE_CREATED;
3375 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3376 		if (!dir_inode->i_op->create) {
3377 			error = -EACCES;
3378 			goto out_dput;
3379 		}
3380 
3381 		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3382 						mode, open_flag & O_EXCL);
3383 		if (error)
3384 			goto out_dput;
3385 	}
3386 	if (unlikely(create_error) && !dentry->d_inode) {
3387 		error = create_error;
3388 		goto out_dput;
3389 	}
3390 	return dentry;
3391 
3392 out_dput:
3393 	dput(dentry);
3394 	return ERR_PTR(error);
3395 }
3396 
3397 static const char *open_last_lookups(struct nameidata *nd,
3398 		   struct file *file, const struct open_flags *op)
3399 {
3400 	struct dentry *dir = nd->path.dentry;
3401 	int open_flag = op->open_flag;
3402 	bool got_write = false;
3403 	unsigned seq;
3404 	struct inode *inode;
3405 	struct dentry *dentry;
3406 	const char *res;
3407 
3408 	nd->flags |= op->intent;
3409 
3410 	if (nd->last_type != LAST_NORM) {
3411 		if (nd->depth)
3412 			put_link(nd);
3413 		return handle_dots(nd, nd->last_type);
3414 	}
3415 
3416 	if (!(open_flag & O_CREAT)) {
3417 		if (nd->last.name[nd->last.len])
3418 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3419 		/* we _can_ be in RCU mode here */
3420 		dentry = lookup_fast(nd, &inode, &seq);
3421 		if (IS_ERR(dentry))
3422 			return ERR_CAST(dentry);
3423 		if (likely(dentry))
3424 			goto finish_lookup;
3425 
3426 		BUG_ON(nd->flags & LOOKUP_RCU);
3427 	} else {
3428 		/* create side of things */
3429 		if (nd->flags & LOOKUP_RCU) {
3430 			if (!try_to_unlazy(nd))
3431 				return ERR_PTR(-ECHILD);
3432 		}
3433 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3434 		/* trailing slashes? */
3435 		if (unlikely(nd->last.name[nd->last.len]))
3436 			return ERR_PTR(-EISDIR);
3437 	}
3438 
3439 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3440 		got_write = !mnt_want_write(nd->path.mnt);
3441 		/*
3442 		 * do _not_ fail yet - we might not need that or fail with
3443 		 * a different error; let lookup_open() decide; we'll be
3444 		 * dropping this one anyway.
3445 		 */
3446 	}
3447 	if (open_flag & O_CREAT)
3448 		inode_lock(dir->d_inode);
3449 	else
3450 		inode_lock_shared(dir->d_inode);
3451 	dentry = lookup_open(nd, file, op, got_write);
3452 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3453 		fsnotify_create(dir->d_inode, dentry);
3454 	if (open_flag & O_CREAT)
3455 		inode_unlock(dir->d_inode);
3456 	else
3457 		inode_unlock_shared(dir->d_inode);
3458 
3459 	if (got_write)
3460 		mnt_drop_write(nd->path.mnt);
3461 
3462 	if (IS_ERR(dentry))
3463 		return ERR_CAST(dentry);
3464 
3465 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3466 		dput(nd->path.dentry);
3467 		nd->path.dentry = dentry;
3468 		return NULL;
3469 	}
3470 
3471 finish_lookup:
3472 	if (nd->depth)
3473 		put_link(nd);
3474 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3475 	if (unlikely(res))
3476 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3477 	return res;
3478 }
3479 
3480 /*
3481  * Handle the last step of open()
3482  */
3483 static int do_open(struct nameidata *nd,
3484 		   struct file *file, const struct open_flags *op)
3485 {
3486 	struct user_namespace *mnt_userns;
3487 	int open_flag = op->open_flag;
3488 	bool do_truncate;
3489 	int acc_mode;
3490 	int error;
3491 
3492 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3493 		error = complete_walk(nd);
3494 		if (error)
3495 			return error;
3496 	}
3497 	if (!(file->f_mode & FMODE_CREATED))
3498 		audit_inode(nd->name, nd->path.dentry, 0);
3499 	mnt_userns = mnt_user_ns(nd->path.mnt);
3500 	if (open_flag & O_CREAT) {
3501 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3502 			return -EEXIST;
3503 		if (d_is_dir(nd->path.dentry))
3504 			return -EISDIR;
3505 		error = may_create_in_sticky(mnt_userns, nd,
3506 					     d_backing_inode(nd->path.dentry));
3507 		if (unlikely(error))
3508 			return error;
3509 	}
3510 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3511 		return -ENOTDIR;
3512 
3513 	do_truncate = false;
3514 	acc_mode = op->acc_mode;
3515 	if (file->f_mode & FMODE_CREATED) {
3516 		/* Don't check for write permission, don't truncate */
3517 		open_flag &= ~O_TRUNC;
3518 		acc_mode = 0;
3519 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3520 		error = mnt_want_write(nd->path.mnt);
3521 		if (error)
3522 			return error;
3523 		do_truncate = true;
3524 	}
3525 	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3526 	if (!error && !(file->f_mode & FMODE_OPENED))
3527 		error = vfs_open(&nd->path, file);
3528 	if (!error)
3529 		error = ima_file_check(file, op->acc_mode);
3530 	if (!error && do_truncate)
3531 		error = handle_truncate(mnt_userns, file);
3532 	if (unlikely(error > 0)) {
3533 		WARN_ON(1);
3534 		error = -EINVAL;
3535 	}
3536 	if (do_truncate)
3537 		mnt_drop_write(nd->path.mnt);
3538 	return error;
3539 }
3540 
3541 /**
3542  * vfs_tmpfile - create tmpfile
3543  * @mnt_userns:	user namespace of the mount the inode was found from
3544  * @dentry:	pointer to dentry of the base directory
3545  * @mode:	mode of the new tmpfile
3546  * @open_flag:	flags
3547  *
3548  * Create a temporary file.
3549  *
3550  * If the inode has been found through an idmapped mount the user namespace of
3551  * the vfsmount must be passed through @mnt_userns. This function will then take
3552  * care to map the inode according to @mnt_userns before checking permissions.
3553  * On non-idmapped mounts or if permission checking is to be performed on the
3554  * raw inode simply passs init_user_ns.
3555  */
3556 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3557 			   struct dentry *dentry, umode_t mode, int open_flag)
3558 {
3559 	struct dentry *child = NULL;
3560 	struct inode *dir = dentry->d_inode;
3561 	struct inode *inode;
3562 	int error;
3563 
3564 	/* we want directory to be writable */
3565 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3566 	if (error)
3567 		goto out_err;
3568 	error = -EOPNOTSUPP;
3569 	if (!dir->i_op->tmpfile)
3570 		goto out_err;
3571 	error = -ENOMEM;
3572 	child = d_alloc(dentry, &slash_name);
3573 	if (unlikely(!child))
3574 		goto out_err;
3575 	error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3576 	if (error)
3577 		goto out_err;
3578 	error = -ENOENT;
3579 	inode = child->d_inode;
3580 	if (unlikely(!inode))
3581 		goto out_err;
3582 	if (!(open_flag & O_EXCL)) {
3583 		spin_lock(&inode->i_lock);
3584 		inode->i_state |= I_LINKABLE;
3585 		spin_unlock(&inode->i_lock);
3586 	}
3587 	ima_post_create_tmpfile(mnt_userns, inode);
3588 	return child;
3589 
3590 out_err:
3591 	dput(child);
3592 	return ERR_PTR(error);
3593 }
3594 EXPORT_SYMBOL(vfs_tmpfile);
3595 
3596 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3597 		const struct open_flags *op,
3598 		struct file *file)
3599 {
3600 	struct user_namespace *mnt_userns;
3601 	struct dentry *child;
3602 	struct path path;
3603 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3604 	if (unlikely(error))
3605 		return error;
3606 	error = mnt_want_write(path.mnt);
3607 	if (unlikely(error))
3608 		goto out;
3609 	mnt_userns = mnt_user_ns(path.mnt);
3610 	child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3611 	error = PTR_ERR(child);
3612 	if (IS_ERR(child))
3613 		goto out2;
3614 	dput(path.dentry);
3615 	path.dentry = child;
3616 	audit_inode(nd->name, child, 0);
3617 	/* Don't check for other permissions, the inode was just created */
3618 	error = may_open(mnt_userns, &path, 0, op->open_flag);
3619 	if (!error)
3620 		error = vfs_open(&path, file);
3621 out2:
3622 	mnt_drop_write(path.mnt);
3623 out:
3624 	path_put(&path);
3625 	return error;
3626 }
3627 
3628 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3629 {
3630 	struct path path;
3631 	int error = path_lookupat(nd, flags, &path);
3632 	if (!error) {
3633 		audit_inode(nd->name, path.dentry, 0);
3634 		error = vfs_open(&path, file);
3635 		path_put(&path);
3636 	}
3637 	return error;
3638 }
3639 
3640 static struct file *path_openat(struct nameidata *nd,
3641 			const struct open_flags *op, unsigned flags)
3642 {
3643 	struct file *file;
3644 	int error;
3645 
3646 	file = alloc_empty_file(op->open_flag, current_cred());
3647 	if (IS_ERR(file))
3648 		return file;
3649 
3650 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3651 		error = do_tmpfile(nd, flags, op, file);
3652 	} else if (unlikely(file->f_flags & O_PATH)) {
3653 		error = do_o_path(nd, flags, file);
3654 	} else {
3655 		const char *s = path_init(nd, flags);
3656 		while (!(error = link_path_walk(s, nd)) &&
3657 		       (s = open_last_lookups(nd, file, op)) != NULL)
3658 			;
3659 		if (!error)
3660 			error = do_open(nd, file, op);
3661 		terminate_walk(nd);
3662 	}
3663 	if (likely(!error)) {
3664 		if (likely(file->f_mode & FMODE_OPENED))
3665 			return file;
3666 		WARN_ON(1);
3667 		error = -EINVAL;
3668 	}
3669 	fput(file);
3670 	if (error == -EOPENSTALE) {
3671 		if (flags & LOOKUP_RCU)
3672 			error = -ECHILD;
3673 		else
3674 			error = -ESTALE;
3675 	}
3676 	return ERR_PTR(error);
3677 }
3678 
3679 struct file *do_filp_open(int dfd, struct filename *pathname,
3680 		const struct open_flags *op)
3681 {
3682 	struct nameidata nd;
3683 	int flags = op->lookup_flags;
3684 	struct file *filp;
3685 
3686 	set_nameidata(&nd, dfd, pathname, NULL);
3687 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3688 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3689 		filp = path_openat(&nd, op, flags);
3690 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3691 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3692 	restore_nameidata();
3693 	return filp;
3694 }
3695 
3696 struct file *do_file_open_root(const struct path *root,
3697 		const char *name, const struct open_flags *op)
3698 {
3699 	struct nameidata nd;
3700 	struct file *file;
3701 	struct filename *filename;
3702 	int flags = op->lookup_flags;
3703 
3704 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3705 		return ERR_PTR(-ELOOP);
3706 
3707 	filename = getname_kernel(name);
3708 	if (IS_ERR(filename))
3709 		return ERR_CAST(filename);
3710 
3711 	set_nameidata(&nd, -1, filename, root);
3712 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3713 	if (unlikely(file == ERR_PTR(-ECHILD)))
3714 		file = path_openat(&nd, op, flags);
3715 	if (unlikely(file == ERR_PTR(-ESTALE)))
3716 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3717 	restore_nameidata();
3718 	putname(filename);
3719 	return file;
3720 }
3721 
3722 static struct dentry *filename_create(int dfd, struct filename *name,
3723 				      struct path *path, unsigned int lookup_flags)
3724 {
3725 	struct dentry *dentry = ERR_PTR(-EEXIST);
3726 	struct qstr last;
3727 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3728 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3729 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3730 	int type;
3731 	int err2;
3732 	int error;
3733 
3734 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3735 	if (error)
3736 		return ERR_PTR(error);
3737 
3738 	/*
3739 	 * Yucky last component or no last component at all?
3740 	 * (foo/., foo/.., /////)
3741 	 */
3742 	if (unlikely(type != LAST_NORM))
3743 		goto out;
3744 
3745 	/* don't fail immediately if it's r/o, at least try to report other errors */
3746 	err2 = mnt_want_write(path->mnt);
3747 	/*
3748 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3749 	 * '/', and a directory wasn't requested.
3750 	 */
3751 	if (last.name[last.len] && !want_dir)
3752 		create_flags = 0;
3753 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3754 	dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3755 	if (IS_ERR(dentry))
3756 		goto unlock;
3757 
3758 	error = -EEXIST;
3759 	if (d_is_positive(dentry))
3760 		goto fail;
3761 
3762 	/*
3763 	 * Special case - lookup gave negative, but... we had foo/bar/
3764 	 * From the vfs_mknod() POV we just have a negative dentry -
3765 	 * all is fine. Let's be bastards - you had / on the end, you've
3766 	 * been asking for (non-existent) directory. -ENOENT for you.
3767 	 */
3768 	if (unlikely(!create_flags)) {
3769 		error = -ENOENT;
3770 		goto fail;
3771 	}
3772 	if (unlikely(err2)) {
3773 		error = err2;
3774 		goto fail;
3775 	}
3776 	return dentry;
3777 fail:
3778 	dput(dentry);
3779 	dentry = ERR_PTR(error);
3780 unlock:
3781 	inode_unlock(path->dentry->d_inode);
3782 	if (!err2)
3783 		mnt_drop_write(path->mnt);
3784 out:
3785 	path_put(path);
3786 	return dentry;
3787 }
3788 
3789 struct dentry *kern_path_create(int dfd, const char *pathname,
3790 				struct path *path, unsigned int lookup_flags)
3791 {
3792 	struct filename *filename = getname_kernel(pathname);
3793 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3794 
3795 	putname(filename);
3796 	return res;
3797 }
3798 EXPORT_SYMBOL(kern_path_create);
3799 
3800 void done_path_create(struct path *path, struct dentry *dentry)
3801 {
3802 	dput(dentry);
3803 	inode_unlock(path->dentry->d_inode);
3804 	mnt_drop_write(path->mnt);
3805 	path_put(path);
3806 }
3807 EXPORT_SYMBOL(done_path_create);
3808 
3809 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3810 				struct path *path, unsigned int lookup_flags)
3811 {
3812 	struct filename *filename = getname(pathname);
3813 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3814 
3815 	putname(filename);
3816 	return res;
3817 }
3818 EXPORT_SYMBOL(user_path_create);
3819 
3820 /**
3821  * vfs_mknod - create device node or file
3822  * @mnt_userns:	user namespace of the mount the inode was found from
3823  * @dir:	inode of @dentry
3824  * @dentry:	pointer to dentry of the base directory
3825  * @mode:	mode of the new device node or file
3826  * @dev:	device number of device to create
3827  *
3828  * Create a device node or file.
3829  *
3830  * If the inode has been found through an idmapped mount the user namespace of
3831  * the vfsmount must be passed through @mnt_userns. This function will then take
3832  * care to map the inode according to @mnt_userns before checking permissions.
3833  * On non-idmapped mounts or if permission checking is to be performed on the
3834  * raw inode simply passs init_user_ns.
3835  */
3836 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3837 	      struct dentry *dentry, umode_t mode, dev_t dev)
3838 {
3839 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3840 	int error = may_create(mnt_userns, dir, dentry);
3841 
3842 	if (error)
3843 		return error;
3844 
3845 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3846 	    !capable(CAP_MKNOD))
3847 		return -EPERM;
3848 
3849 	if (!dir->i_op->mknod)
3850 		return -EPERM;
3851 
3852 	error = devcgroup_inode_mknod(mode, dev);
3853 	if (error)
3854 		return error;
3855 
3856 	error = security_inode_mknod(dir, dentry, mode, dev);
3857 	if (error)
3858 		return error;
3859 
3860 	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3861 	if (!error)
3862 		fsnotify_create(dir, dentry);
3863 	return error;
3864 }
3865 EXPORT_SYMBOL(vfs_mknod);
3866 
3867 static int may_mknod(umode_t mode)
3868 {
3869 	switch (mode & S_IFMT) {
3870 	case S_IFREG:
3871 	case S_IFCHR:
3872 	case S_IFBLK:
3873 	case S_IFIFO:
3874 	case S_IFSOCK:
3875 	case 0: /* zero mode translates to S_IFREG */
3876 		return 0;
3877 	case S_IFDIR:
3878 		return -EPERM;
3879 	default:
3880 		return -EINVAL;
3881 	}
3882 }
3883 
3884 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3885 		unsigned int dev)
3886 {
3887 	struct user_namespace *mnt_userns;
3888 	struct dentry *dentry;
3889 	struct path path;
3890 	int error;
3891 	unsigned int lookup_flags = 0;
3892 
3893 	error = may_mknod(mode);
3894 	if (error)
3895 		goto out1;
3896 retry:
3897 	dentry = filename_create(dfd, name, &path, lookup_flags);
3898 	error = PTR_ERR(dentry);
3899 	if (IS_ERR(dentry))
3900 		goto out1;
3901 
3902 	if (!IS_POSIXACL(path.dentry->d_inode))
3903 		mode &= ~current_umask();
3904 	error = security_path_mknod(&path, dentry, mode, dev);
3905 	if (error)
3906 		goto out2;
3907 
3908 	mnt_userns = mnt_user_ns(path.mnt);
3909 	switch (mode & S_IFMT) {
3910 		case 0: case S_IFREG:
3911 			error = vfs_create(mnt_userns, path.dentry->d_inode,
3912 					   dentry, mode, true);
3913 			if (!error)
3914 				ima_post_path_mknod(mnt_userns, dentry);
3915 			break;
3916 		case S_IFCHR: case S_IFBLK:
3917 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3918 					  dentry, mode, new_decode_dev(dev));
3919 			break;
3920 		case S_IFIFO: case S_IFSOCK:
3921 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3922 					  dentry, mode, 0);
3923 			break;
3924 	}
3925 out2:
3926 	done_path_create(&path, dentry);
3927 	if (retry_estale(error, lookup_flags)) {
3928 		lookup_flags |= LOOKUP_REVAL;
3929 		goto retry;
3930 	}
3931 out1:
3932 	putname(name);
3933 	return error;
3934 }
3935 
3936 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3937 		unsigned int, dev)
3938 {
3939 	return do_mknodat(dfd, getname(filename), mode, dev);
3940 }
3941 
3942 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3943 {
3944 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3945 }
3946 
3947 /**
3948  * vfs_mkdir - create directory
3949  * @mnt_userns:	user namespace of the mount the inode was found from
3950  * @dir:	inode of @dentry
3951  * @dentry:	pointer to dentry of the base directory
3952  * @mode:	mode of the new directory
3953  *
3954  * Create a directory.
3955  *
3956  * If the inode has been found through an idmapped mount the user namespace of
3957  * the vfsmount must be passed through @mnt_userns. This function will then take
3958  * care to map the inode according to @mnt_userns before checking permissions.
3959  * On non-idmapped mounts or if permission checking is to be performed on the
3960  * raw inode simply passs init_user_ns.
3961  */
3962 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3963 	      struct dentry *dentry, umode_t mode)
3964 {
3965 	int error = may_create(mnt_userns, dir, dentry);
3966 	unsigned max_links = dir->i_sb->s_max_links;
3967 
3968 	if (error)
3969 		return error;
3970 
3971 	if (!dir->i_op->mkdir)
3972 		return -EPERM;
3973 
3974 	mode &= (S_IRWXUGO|S_ISVTX);
3975 	error = security_inode_mkdir(dir, dentry, mode);
3976 	if (error)
3977 		return error;
3978 
3979 	if (max_links && dir->i_nlink >= max_links)
3980 		return -EMLINK;
3981 
3982 	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3983 	if (!error)
3984 		fsnotify_mkdir(dir, dentry);
3985 	return error;
3986 }
3987 EXPORT_SYMBOL(vfs_mkdir);
3988 
3989 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
3990 {
3991 	struct dentry *dentry;
3992 	struct path path;
3993 	int error;
3994 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3995 
3996 retry:
3997 	dentry = filename_create(dfd, name, &path, lookup_flags);
3998 	error = PTR_ERR(dentry);
3999 	if (IS_ERR(dentry))
4000 		goto out_putname;
4001 
4002 	if (!IS_POSIXACL(path.dentry->d_inode))
4003 		mode &= ~current_umask();
4004 	error = security_path_mkdir(&path, dentry, mode);
4005 	if (!error) {
4006 		struct user_namespace *mnt_userns;
4007 		mnt_userns = mnt_user_ns(path.mnt);
4008 		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4009 				  mode);
4010 	}
4011 	done_path_create(&path, dentry);
4012 	if (retry_estale(error, lookup_flags)) {
4013 		lookup_flags |= LOOKUP_REVAL;
4014 		goto retry;
4015 	}
4016 out_putname:
4017 	putname(name);
4018 	return error;
4019 }
4020 
4021 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4022 {
4023 	return do_mkdirat(dfd, getname(pathname), mode);
4024 }
4025 
4026 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4027 {
4028 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4029 }
4030 
4031 /**
4032  * vfs_rmdir - remove directory
4033  * @mnt_userns:	user namespace of the mount the inode was found from
4034  * @dir:	inode of @dentry
4035  * @dentry:	pointer to dentry of the base directory
4036  *
4037  * Remove a directory.
4038  *
4039  * If the inode has been found through an idmapped mount the user namespace of
4040  * the vfsmount must be passed through @mnt_userns. This function will then take
4041  * care to map the inode according to @mnt_userns before checking permissions.
4042  * On non-idmapped mounts or if permission checking is to be performed on the
4043  * raw inode simply passs init_user_ns.
4044  */
4045 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4046 		     struct dentry *dentry)
4047 {
4048 	int error = may_delete(mnt_userns, dir, dentry, 1);
4049 
4050 	if (error)
4051 		return error;
4052 
4053 	if (!dir->i_op->rmdir)
4054 		return -EPERM;
4055 
4056 	dget(dentry);
4057 	inode_lock(dentry->d_inode);
4058 
4059 	error = -EBUSY;
4060 	if (is_local_mountpoint(dentry) ||
4061 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4062 		goto out;
4063 
4064 	error = security_inode_rmdir(dir, dentry);
4065 	if (error)
4066 		goto out;
4067 
4068 	error = dir->i_op->rmdir(dir, dentry);
4069 	if (error)
4070 		goto out;
4071 
4072 	shrink_dcache_parent(dentry);
4073 	dentry->d_inode->i_flags |= S_DEAD;
4074 	dont_mount(dentry);
4075 	detach_mounts(dentry);
4076 
4077 out:
4078 	inode_unlock(dentry->d_inode);
4079 	dput(dentry);
4080 	if (!error)
4081 		d_delete_notify(dir, dentry);
4082 	return error;
4083 }
4084 EXPORT_SYMBOL(vfs_rmdir);
4085 
4086 int do_rmdir(int dfd, struct filename *name)
4087 {
4088 	struct user_namespace *mnt_userns;
4089 	int error;
4090 	struct dentry *dentry;
4091 	struct path path;
4092 	struct qstr last;
4093 	int type;
4094 	unsigned int lookup_flags = 0;
4095 retry:
4096 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4097 	if (error)
4098 		goto exit1;
4099 
4100 	switch (type) {
4101 	case LAST_DOTDOT:
4102 		error = -ENOTEMPTY;
4103 		goto exit2;
4104 	case LAST_DOT:
4105 		error = -EINVAL;
4106 		goto exit2;
4107 	case LAST_ROOT:
4108 		error = -EBUSY;
4109 		goto exit2;
4110 	}
4111 
4112 	error = mnt_want_write(path.mnt);
4113 	if (error)
4114 		goto exit2;
4115 
4116 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4117 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4118 	error = PTR_ERR(dentry);
4119 	if (IS_ERR(dentry))
4120 		goto exit3;
4121 	if (!dentry->d_inode) {
4122 		error = -ENOENT;
4123 		goto exit4;
4124 	}
4125 	error = security_path_rmdir(&path, dentry);
4126 	if (error)
4127 		goto exit4;
4128 	mnt_userns = mnt_user_ns(path.mnt);
4129 	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4130 exit4:
4131 	dput(dentry);
4132 exit3:
4133 	inode_unlock(path.dentry->d_inode);
4134 	mnt_drop_write(path.mnt);
4135 exit2:
4136 	path_put(&path);
4137 	if (retry_estale(error, lookup_flags)) {
4138 		lookup_flags |= LOOKUP_REVAL;
4139 		goto retry;
4140 	}
4141 exit1:
4142 	putname(name);
4143 	return error;
4144 }
4145 
4146 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4147 {
4148 	return do_rmdir(AT_FDCWD, getname(pathname));
4149 }
4150 
4151 /**
4152  * vfs_unlink - unlink a filesystem object
4153  * @mnt_userns:	user namespace of the mount the inode was found from
4154  * @dir:	parent directory
4155  * @dentry:	victim
4156  * @delegated_inode: returns victim inode, if the inode is delegated.
4157  *
4158  * The caller must hold dir->i_mutex.
4159  *
4160  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4161  * return a reference to the inode in delegated_inode.  The caller
4162  * should then break the delegation on that inode and retry.  Because
4163  * breaking a delegation may take a long time, the caller should drop
4164  * dir->i_mutex before doing so.
4165  *
4166  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4167  * be appropriate for callers that expect the underlying filesystem not
4168  * to be NFS exported.
4169  *
4170  * If the inode has been found through an idmapped mount the user namespace of
4171  * the vfsmount must be passed through @mnt_userns. This function will then take
4172  * care to map the inode according to @mnt_userns before checking permissions.
4173  * On non-idmapped mounts or if permission checking is to be performed on the
4174  * raw inode simply passs init_user_ns.
4175  */
4176 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4177 	       struct dentry *dentry, struct inode **delegated_inode)
4178 {
4179 	struct inode *target = dentry->d_inode;
4180 	int error = may_delete(mnt_userns, dir, dentry, 0);
4181 
4182 	if (error)
4183 		return error;
4184 
4185 	if (!dir->i_op->unlink)
4186 		return -EPERM;
4187 
4188 	inode_lock(target);
4189 	if (IS_SWAPFILE(target))
4190 		error = -EPERM;
4191 	else if (is_local_mountpoint(dentry))
4192 		error = -EBUSY;
4193 	else {
4194 		error = security_inode_unlink(dir, dentry);
4195 		if (!error) {
4196 			error = try_break_deleg(target, delegated_inode);
4197 			if (error)
4198 				goto out;
4199 			error = dir->i_op->unlink(dir, dentry);
4200 			if (!error) {
4201 				dont_mount(dentry);
4202 				detach_mounts(dentry);
4203 			}
4204 		}
4205 	}
4206 out:
4207 	inode_unlock(target);
4208 
4209 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4210 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4211 		fsnotify_unlink(dir, dentry);
4212 	} else if (!error) {
4213 		fsnotify_link_count(target);
4214 		d_delete_notify(dir, dentry);
4215 	}
4216 
4217 	return error;
4218 }
4219 EXPORT_SYMBOL(vfs_unlink);
4220 
4221 /*
4222  * Make sure that the actual truncation of the file will occur outside its
4223  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4224  * writeout happening, and we don't want to prevent access to the directory
4225  * while waiting on the I/O.
4226  */
4227 int do_unlinkat(int dfd, struct filename *name)
4228 {
4229 	int error;
4230 	struct dentry *dentry;
4231 	struct path path;
4232 	struct qstr last;
4233 	int type;
4234 	struct inode *inode = NULL;
4235 	struct inode *delegated_inode = NULL;
4236 	unsigned int lookup_flags = 0;
4237 retry:
4238 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4239 	if (error)
4240 		goto exit1;
4241 
4242 	error = -EISDIR;
4243 	if (type != LAST_NORM)
4244 		goto exit2;
4245 
4246 	error = mnt_want_write(path.mnt);
4247 	if (error)
4248 		goto exit2;
4249 retry_deleg:
4250 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4251 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4252 	error = PTR_ERR(dentry);
4253 	if (!IS_ERR(dentry)) {
4254 		struct user_namespace *mnt_userns;
4255 
4256 		/* Why not before? Because we want correct error value */
4257 		if (last.name[last.len])
4258 			goto slashes;
4259 		inode = dentry->d_inode;
4260 		if (d_is_negative(dentry))
4261 			goto slashes;
4262 		ihold(inode);
4263 		error = security_path_unlink(&path, dentry);
4264 		if (error)
4265 			goto exit3;
4266 		mnt_userns = mnt_user_ns(path.mnt);
4267 		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4268 				   &delegated_inode);
4269 exit3:
4270 		dput(dentry);
4271 	}
4272 	inode_unlock(path.dentry->d_inode);
4273 	if (inode)
4274 		iput(inode);	/* truncate the inode here */
4275 	inode = NULL;
4276 	if (delegated_inode) {
4277 		error = break_deleg_wait(&delegated_inode);
4278 		if (!error)
4279 			goto retry_deleg;
4280 	}
4281 	mnt_drop_write(path.mnt);
4282 exit2:
4283 	path_put(&path);
4284 	if (retry_estale(error, lookup_flags)) {
4285 		lookup_flags |= LOOKUP_REVAL;
4286 		inode = NULL;
4287 		goto retry;
4288 	}
4289 exit1:
4290 	putname(name);
4291 	return error;
4292 
4293 slashes:
4294 	if (d_is_negative(dentry))
4295 		error = -ENOENT;
4296 	else if (d_is_dir(dentry))
4297 		error = -EISDIR;
4298 	else
4299 		error = -ENOTDIR;
4300 	goto exit3;
4301 }
4302 
4303 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4304 {
4305 	if ((flag & ~AT_REMOVEDIR) != 0)
4306 		return -EINVAL;
4307 
4308 	if (flag & AT_REMOVEDIR)
4309 		return do_rmdir(dfd, getname(pathname));
4310 	return do_unlinkat(dfd, getname(pathname));
4311 }
4312 
4313 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4314 {
4315 	return do_unlinkat(AT_FDCWD, getname(pathname));
4316 }
4317 
4318 /**
4319  * vfs_symlink - create symlink
4320  * @mnt_userns:	user namespace of the mount the inode was found from
4321  * @dir:	inode of @dentry
4322  * @dentry:	pointer to dentry of the base directory
4323  * @oldname:	name of the file to link to
4324  *
4325  * Create a symlink.
4326  *
4327  * If the inode has been found through an idmapped mount the user namespace of
4328  * the vfsmount must be passed through @mnt_userns. This function will then take
4329  * care to map the inode according to @mnt_userns before checking permissions.
4330  * On non-idmapped mounts or if permission checking is to be performed on the
4331  * raw inode simply passs init_user_ns.
4332  */
4333 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4334 		struct dentry *dentry, const char *oldname)
4335 {
4336 	int error = may_create(mnt_userns, dir, dentry);
4337 
4338 	if (error)
4339 		return error;
4340 
4341 	if (!dir->i_op->symlink)
4342 		return -EPERM;
4343 
4344 	error = security_inode_symlink(dir, dentry, oldname);
4345 	if (error)
4346 		return error;
4347 
4348 	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4349 	if (!error)
4350 		fsnotify_create(dir, dentry);
4351 	return error;
4352 }
4353 EXPORT_SYMBOL(vfs_symlink);
4354 
4355 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4356 {
4357 	int error;
4358 	struct dentry *dentry;
4359 	struct path path;
4360 	unsigned int lookup_flags = 0;
4361 
4362 	if (IS_ERR(from)) {
4363 		error = PTR_ERR(from);
4364 		goto out_putnames;
4365 	}
4366 retry:
4367 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4368 	error = PTR_ERR(dentry);
4369 	if (IS_ERR(dentry))
4370 		goto out_putnames;
4371 
4372 	error = security_path_symlink(&path, dentry, from->name);
4373 	if (!error) {
4374 		struct user_namespace *mnt_userns;
4375 
4376 		mnt_userns = mnt_user_ns(path.mnt);
4377 		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4378 				    from->name);
4379 	}
4380 	done_path_create(&path, dentry);
4381 	if (retry_estale(error, lookup_flags)) {
4382 		lookup_flags |= LOOKUP_REVAL;
4383 		goto retry;
4384 	}
4385 out_putnames:
4386 	putname(to);
4387 	putname(from);
4388 	return error;
4389 }
4390 
4391 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4392 		int, newdfd, const char __user *, newname)
4393 {
4394 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4395 }
4396 
4397 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4398 {
4399 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4400 }
4401 
4402 /**
4403  * vfs_link - create a new link
4404  * @old_dentry:	object to be linked
4405  * @mnt_userns:	the user namespace of the mount
4406  * @dir:	new parent
4407  * @new_dentry:	where to create the new link
4408  * @delegated_inode: returns inode needing a delegation break
4409  *
4410  * The caller must hold dir->i_mutex
4411  *
4412  * If vfs_link discovers a delegation on the to-be-linked file in need
4413  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4414  * inode in delegated_inode.  The caller should then break the delegation
4415  * and retry.  Because breaking a delegation may take a long time, the
4416  * caller should drop the i_mutex before doing so.
4417  *
4418  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4419  * be appropriate for callers that expect the underlying filesystem not
4420  * to be NFS exported.
4421  *
4422  * If the inode has been found through an idmapped mount the user namespace of
4423  * the vfsmount must be passed through @mnt_userns. This function will then take
4424  * care to map the inode according to @mnt_userns before checking permissions.
4425  * On non-idmapped mounts or if permission checking is to be performed on the
4426  * raw inode simply passs init_user_ns.
4427  */
4428 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4429 	     struct inode *dir, struct dentry *new_dentry,
4430 	     struct inode **delegated_inode)
4431 {
4432 	struct inode *inode = old_dentry->d_inode;
4433 	unsigned max_links = dir->i_sb->s_max_links;
4434 	int error;
4435 
4436 	if (!inode)
4437 		return -ENOENT;
4438 
4439 	error = may_create(mnt_userns, dir, new_dentry);
4440 	if (error)
4441 		return error;
4442 
4443 	if (dir->i_sb != inode->i_sb)
4444 		return -EXDEV;
4445 
4446 	/*
4447 	 * A link to an append-only or immutable file cannot be created.
4448 	 */
4449 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4450 		return -EPERM;
4451 	/*
4452 	 * Updating the link count will likely cause i_uid and i_gid to
4453 	 * be writen back improperly if their true value is unknown to
4454 	 * the vfs.
4455 	 */
4456 	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4457 		return -EPERM;
4458 	if (!dir->i_op->link)
4459 		return -EPERM;
4460 	if (S_ISDIR(inode->i_mode))
4461 		return -EPERM;
4462 
4463 	error = security_inode_link(old_dentry, dir, new_dentry);
4464 	if (error)
4465 		return error;
4466 
4467 	inode_lock(inode);
4468 	/* Make sure we don't allow creating hardlink to an unlinked file */
4469 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4470 		error =  -ENOENT;
4471 	else if (max_links && inode->i_nlink >= max_links)
4472 		error = -EMLINK;
4473 	else {
4474 		error = try_break_deleg(inode, delegated_inode);
4475 		if (!error)
4476 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4477 	}
4478 
4479 	if (!error && (inode->i_state & I_LINKABLE)) {
4480 		spin_lock(&inode->i_lock);
4481 		inode->i_state &= ~I_LINKABLE;
4482 		spin_unlock(&inode->i_lock);
4483 	}
4484 	inode_unlock(inode);
4485 	if (!error)
4486 		fsnotify_link(dir, inode, new_dentry);
4487 	return error;
4488 }
4489 EXPORT_SYMBOL(vfs_link);
4490 
4491 /*
4492  * Hardlinks are often used in delicate situations.  We avoid
4493  * security-related surprises by not following symlinks on the
4494  * newname.  --KAB
4495  *
4496  * We don't follow them on the oldname either to be compatible
4497  * with linux 2.0, and to avoid hard-linking to directories
4498  * and other special files.  --ADM
4499  */
4500 int do_linkat(int olddfd, struct filename *old, int newdfd,
4501 	      struct filename *new, int flags)
4502 {
4503 	struct user_namespace *mnt_userns;
4504 	struct dentry *new_dentry;
4505 	struct path old_path, new_path;
4506 	struct inode *delegated_inode = NULL;
4507 	int how = 0;
4508 	int error;
4509 
4510 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4511 		error = -EINVAL;
4512 		goto out_putnames;
4513 	}
4514 	/*
4515 	 * To use null names we require CAP_DAC_READ_SEARCH
4516 	 * This ensures that not everyone will be able to create
4517 	 * handlink using the passed filedescriptor.
4518 	 */
4519 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4520 		error = -ENOENT;
4521 		goto out_putnames;
4522 	}
4523 
4524 	if (flags & AT_SYMLINK_FOLLOW)
4525 		how |= LOOKUP_FOLLOW;
4526 retry:
4527 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4528 	if (error)
4529 		goto out_putnames;
4530 
4531 	new_dentry = filename_create(newdfd, new, &new_path,
4532 					(how & LOOKUP_REVAL));
4533 	error = PTR_ERR(new_dentry);
4534 	if (IS_ERR(new_dentry))
4535 		goto out_putpath;
4536 
4537 	error = -EXDEV;
4538 	if (old_path.mnt != new_path.mnt)
4539 		goto out_dput;
4540 	mnt_userns = mnt_user_ns(new_path.mnt);
4541 	error = may_linkat(mnt_userns, &old_path);
4542 	if (unlikely(error))
4543 		goto out_dput;
4544 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4545 	if (error)
4546 		goto out_dput;
4547 	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4548 			 new_dentry, &delegated_inode);
4549 out_dput:
4550 	done_path_create(&new_path, new_dentry);
4551 	if (delegated_inode) {
4552 		error = break_deleg_wait(&delegated_inode);
4553 		if (!error) {
4554 			path_put(&old_path);
4555 			goto retry;
4556 		}
4557 	}
4558 	if (retry_estale(error, how)) {
4559 		path_put(&old_path);
4560 		how |= LOOKUP_REVAL;
4561 		goto retry;
4562 	}
4563 out_putpath:
4564 	path_put(&old_path);
4565 out_putnames:
4566 	putname(old);
4567 	putname(new);
4568 
4569 	return error;
4570 }
4571 
4572 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4573 		int, newdfd, const char __user *, newname, int, flags)
4574 {
4575 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4576 		newdfd, getname(newname), flags);
4577 }
4578 
4579 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4580 {
4581 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4582 }
4583 
4584 /**
4585  * vfs_rename - rename a filesystem object
4586  * @rd:		pointer to &struct renamedata info
4587  *
4588  * The caller must hold multiple mutexes--see lock_rename()).
4589  *
4590  * If vfs_rename discovers a delegation in need of breaking at either
4591  * the source or destination, it will return -EWOULDBLOCK and return a
4592  * reference to the inode in delegated_inode.  The caller should then
4593  * break the delegation and retry.  Because breaking a delegation may
4594  * take a long time, the caller should drop all locks before doing
4595  * so.
4596  *
4597  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4598  * be appropriate for callers that expect the underlying filesystem not
4599  * to be NFS exported.
4600  *
4601  * The worst of all namespace operations - renaming directory. "Perverted"
4602  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4603  * Problems:
4604  *
4605  *	a) we can get into loop creation.
4606  *	b) race potential - two innocent renames can create a loop together.
4607  *	   That's where 4.4 screws up. Current fix: serialization on
4608  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4609  *	   story.
4610  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4611  *	   and source (if it is not a directory).
4612  *	   And that - after we got ->i_mutex on parents (until then we don't know
4613  *	   whether the target exists).  Solution: try to be smart with locking
4614  *	   order for inodes.  We rely on the fact that tree topology may change
4615  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4616  *	   move will be locked.  Thus we can rank directories by the tree
4617  *	   (ancestors first) and rank all non-directories after them.
4618  *	   That works since everybody except rename does "lock parent, lookup,
4619  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4620  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4621  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4622  *	   we'd better make sure that there's no link(2) for them.
4623  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4624  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4625  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4626  *	   ->i_mutex on parents, which works but leads to some truly excessive
4627  *	   locking].
4628  */
4629 int vfs_rename(struct renamedata *rd)
4630 {
4631 	int error;
4632 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4633 	struct dentry *old_dentry = rd->old_dentry;
4634 	struct dentry *new_dentry = rd->new_dentry;
4635 	struct inode **delegated_inode = rd->delegated_inode;
4636 	unsigned int flags = rd->flags;
4637 	bool is_dir = d_is_dir(old_dentry);
4638 	struct inode *source = old_dentry->d_inode;
4639 	struct inode *target = new_dentry->d_inode;
4640 	bool new_is_dir = false;
4641 	unsigned max_links = new_dir->i_sb->s_max_links;
4642 	struct name_snapshot old_name;
4643 
4644 	if (source == target)
4645 		return 0;
4646 
4647 	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4648 	if (error)
4649 		return error;
4650 
4651 	if (!target) {
4652 		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4653 	} else {
4654 		new_is_dir = d_is_dir(new_dentry);
4655 
4656 		if (!(flags & RENAME_EXCHANGE))
4657 			error = may_delete(rd->new_mnt_userns, new_dir,
4658 					   new_dentry, is_dir);
4659 		else
4660 			error = may_delete(rd->new_mnt_userns, new_dir,
4661 					   new_dentry, new_is_dir);
4662 	}
4663 	if (error)
4664 		return error;
4665 
4666 	if (!old_dir->i_op->rename)
4667 		return -EPERM;
4668 
4669 	/*
4670 	 * If we are going to change the parent - check write permissions,
4671 	 * we'll need to flip '..'.
4672 	 */
4673 	if (new_dir != old_dir) {
4674 		if (is_dir) {
4675 			error = inode_permission(rd->old_mnt_userns, source,
4676 						 MAY_WRITE);
4677 			if (error)
4678 				return error;
4679 		}
4680 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4681 			error = inode_permission(rd->new_mnt_userns, target,
4682 						 MAY_WRITE);
4683 			if (error)
4684 				return error;
4685 		}
4686 	}
4687 
4688 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4689 				      flags);
4690 	if (error)
4691 		return error;
4692 
4693 	take_dentry_name_snapshot(&old_name, old_dentry);
4694 	dget(new_dentry);
4695 	if (!is_dir || (flags & RENAME_EXCHANGE))
4696 		lock_two_nondirectories(source, target);
4697 	else if (target)
4698 		inode_lock(target);
4699 
4700 	error = -EPERM;
4701 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4702 		goto out;
4703 
4704 	error = -EBUSY;
4705 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4706 		goto out;
4707 
4708 	if (max_links && new_dir != old_dir) {
4709 		error = -EMLINK;
4710 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4711 			goto out;
4712 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4713 		    old_dir->i_nlink >= max_links)
4714 			goto out;
4715 	}
4716 	if (!is_dir) {
4717 		error = try_break_deleg(source, delegated_inode);
4718 		if (error)
4719 			goto out;
4720 	}
4721 	if (target && !new_is_dir) {
4722 		error = try_break_deleg(target, delegated_inode);
4723 		if (error)
4724 			goto out;
4725 	}
4726 	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4727 				      new_dir, new_dentry, flags);
4728 	if (error)
4729 		goto out;
4730 
4731 	if (!(flags & RENAME_EXCHANGE) && target) {
4732 		if (is_dir) {
4733 			shrink_dcache_parent(new_dentry);
4734 			target->i_flags |= S_DEAD;
4735 		}
4736 		dont_mount(new_dentry);
4737 		detach_mounts(new_dentry);
4738 	}
4739 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4740 		if (!(flags & RENAME_EXCHANGE))
4741 			d_move(old_dentry, new_dentry);
4742 		else
4743 			d_exchange(old_dentry, new_dentry);
4744 	}
4745 out:
4746 	if (!is_dir || (flags & RENAME_EXCHANGE))
4747 		unlock_two_nondirectories(source, target);
4748 	else if (target)
4749 		inode_unlock(target);
4750 	dput(new_dentry);
4751 	if (!error) {
4752 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4753 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4754 		if (flags & RENAME_EXCHANGE) {
4755 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4756 				      new_is_dir, NULL, new_dentry);
4757 		}
4758 	}
4759 	release_dentry_name_snapshot(&old_name);
4760 
4761 	return error;
4762 }
4763 EXPORT_SYMBOL(vfs_rename);
4764 
4765 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4766 		 struct filename *to, unsigned int flags)
4767 {
4768 	struct renamedata rd;
4769 	struct dentry *old_dentry, *new_dentry;
4770 	struct dentry *trap;
4771 	struct path old_path, new_path;
4772 	struct qstr old_last, new_last;
4773 	int old_type, new_type;
4774 	struct inode *delegated_inode = NULL;
4775 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4776 	bool should_retry = false;
4777 	int error = -EINVAL;
4778 
4779 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4780 		goto put_names;
4781 
4782 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4783 	    (flags & RENAME_EXCHANGE))
4784 		goto put_names;
4785 
4786 	if (flags & RENAME_EXCHANGE)
4787 		target_flags = 0;
4788 
4789 retry:
4790 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4791 				  &old_last, &old_type);
4792 	if (error)
4793 		goto put_names;
4794 
4795 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4796 				  &new_type);
4797 	if (error)
4798 		goto exit1;
4799 
4800 	error = -EXDEV;
4801 	if (old_path.mnt != new_path.mnt)
4802 		goto exit2;
4803 
4804 	error = -EBUSY;
4805 	if (old_type != LAST_NORM)
4806 		goto exit2;
4807 
4808 	if (flags & RENAME_NOREPLACE)
4809 		error = -EEXIST;
4810 	if (new_type != LAST_NORM)
4811 		goto exit2;
4812 
4813 	error = mnt_want_write(old_path.mnt);
4814 	if (error)
4815 		goto exit2;
4816 
4817 retry_deleg:
4818 	trap = lock_rename(new_path.dentry, old_path.dentry);
4819 
4820 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4821 	error = PTR_ERR(old_dentry);
4822 	if (IS_ERR(old_dentry))
4823 		goto exit3;
4824 	/* source must exist */
4825 	error = -ENOENT;
4826 	if (d_is_negative(old_dentry))
4827 		goto exit4;
4828 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4829 	error = PTR_ERR(new_dentry);
4830 	if (IS_ERR(new_dentry))
4831 		goto exit4;
4832 	error = -EEXIST;
4833 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4834 		goto exit5;
4835 	if (flags & RENAME_EXCHANGE) {
4836 		error = -ENOENT;
4837 		if (d_is_negative(new_dentry))
4838 			goto exit5;
4839 
4840 		if (!d_is_dir(new_dentry)) {
4841 			error = -ENOTDIR;
4842 			if (new_last.name[new_last.len])
4843 				goto exit5;
4844 		}
4845 	}
4846 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4847 	if (!d_is_dir(old_dentry)) {
4848 		error = -ENOTDIR;
4849 		if (old_last.name[old_last.len])
4850 			goto exit5;
4851 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4852 			goto exit5;
4853 	}
4854 	/* source should not be ancestor of target */
4855 	error = -EINVAL;
4856 	if (old_dentry == trap)
4857 		goto exit5;
4858 	/* target should not be an ancestor of source */
4859 	if (!(flags & RENAME_EXCHANGE))
4860 		error = -ENOTEMPTY;
4861 	if (new_dentry == trap)
4862 		goto exit5;
4863 
4864 	error = security_path_rename(&old_path, old_dentry,
4865 				     &new_path, new_dentry, flags);
4866 	if (error)
4867 		goto exit5;
4868 
4869 	rd.old_dir	   = old_path.dentry->d_inode;
4870 	rd.old_dentry	   = old_dentry;
4871 	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4872 	rd.new_dir	   = new_path.dentry->d_inode;
4873 	rd.new_dentry	   = new_dentry;
4874 	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4875 	rd.delegated_inode = &delegated_inode;
4876 	rd.flags	   = flags;
4877 	error = vfs_rename(&rd);
4878 exit5:
4879 	dput(new_dentry);
4880 exit4:
4881 	dput(old_dentry);
4882 exit3:
4883 	unlock_rename(new_path.dentry, old_path.dentry);
4884 	if (delegated_inode) {
4885 		error = break_deleg_wait(&delegated_inode);
4886 		if (!error)
4887 			goto retry_deleg;
4888 	}
4889 	mnt_drop_write(old_path.mnt);
4890 exit2:
4891 	if (retry_estale(error, lookup_flags))
4892 		should_retry = true;
4893 	path_put(&new_path);
4894 exit1:
4895 	path_put(&old_path);
4896 	if (should_retry) {
4897 		should_retry = false;
4898 		lookup_flags |= LOOKUP_REVAL;
4899 		goto retry;
4900 	}
4901 put_names:
4902 	putname(from);
4903 	putname(to);
4904 	return error;
4905 }
4906 
4907 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4908 		int, newdfd, const char __user *, newname, unsigned int, flags)
4909 {
4910 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4911 				flags);
4912 }
4913 
4914 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4915 		int, newdfd, const char __user *, newname)
4916 {
4917 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4918 				0);
4919 }
4920 
4921 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4922 {
4923 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4924 				getname(newname), 0);
4925 }
4926 
4927 int readlink_copy(char __user *buffer, int buflen, const char *link)
4928 {
4929 	int len = PTR_ERR(link);
4930 	if (IS_ERR(link))
4931 		goto out;
4932 
4933 	len = strlen(link);
4934 	if (len > (unsigned) buflen)
4935 		len = buflen;
4936 	if (copy_to_user(buffer, link, len))
4937 		len = -EFAULT;
4938 out:
4939 	return len;
4940 }
4941 
4942 /**
4943  * vfs_readlink - copy symlink body into userspace buffer
4944  * @dentry: dentry on which to get symbolic link
4945  * @buffer: user memory pointer
4946  * @buflen: size of buffer
4947  *
4948  * Does not touch atime.  That's up to the caller if necessary
4949  *
4950  * Does not call security hook.
4951  */
4952 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4953 {
4954 	struct inode *inode = d_inode(dentry);
4955 	DEFINE_DELAYED_CALL(done);
4956 	const char *link;
4957 	int res;
4958 
4959 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4960 		if (unlikely(inode->i_op->readlink))
4961 			return inode->i_op->readlink(dentry, buffer, buflen);
4962 
4963 		if (!d_is_symlink(dentry))
4964 			return -EINVAL;
4965 
4966 		spin_lock(&inode->i_lock);
4967 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4968 		spin_unlock(&inode->i_lock);
4969 	}
4970 
4971 	link = READ_ONCE(inode->i_link);
4972 	if (!link) {
4973 		link = inode->i_op->get_link(dentry, inode, &done);
4974 		if (IS_ERR(link))
4975 			return PTR_ERR(link);
4976 	}
4977 	res = readlink_copy(buffer, buflen, link);
4978 	do_delayed_call(&done);
4979 	return res;
4980 }
4981 EXPORT_SYMBOL(vfs_readlink);
4982 
4983 /**
4984  * vfs_get_link - get symlink body
4985  * @dentry: dentry on which to get symbolic link
4986  * @done: caller needs to free returned data with this
4987  *
4988  * Calls security hook and i_op->get_link() on the supplied inode.
4989  *
4990  * It does not touch atime.  That's up to the caller if necessary.
4991  *
4992  * Does not work on "special" symlinks like /proc/$$/fd/N
4993  */
4994 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4995 {
4996 	const char *res = ERR_PTR(-EINVAL);
4997 	struct inode *inode = d_inode(dentry);
4998 
4999 	if (d_is_symlink(dentry)) {
5000 		res = ERR_PTR(security_inode_readlink(dentry));
5001 		if (!res)
5002 			res = inode->i_op->get_link(dentry, inode, done);
5003 	}
5004 	return res;
5005 }
5006 EXPORT_SYMBOL(vfs_get_link);
5007 
5008 /* get the link contents into pagecache */
5009 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5010 			  struct delayed_call *callback)
5011 {
5012 	char *kaddr;
5013 	struct page *page;
5014 	struct address_space *mapping = inode->i_mapping;
5015 
5016 	if (!dentry) {
5017 		page = find_get_page(mapping, 0);
5018 		if (!page)
5019 			return ERR_PTR(-ECHILD);
5020 		if (!PageUptodate(page)) {
5021 			put_page(page);
5022 			return ERR_PTR(-ECHILD);
5023 		}
5024 	} else {
5025 		page = read_mapping_page(mapping, 0, NULL);
5026 		if (IS_ERR(page))
5027 			return (char*)page;
5028 	}
5029 	set_delayed_call(callback, page_put_link, page);
5030 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5031 	kaddr = page_address(page);
5032 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5033 	return kaddr;
5034 }
5035 
5036 EXPORT_SYMBOL(page_get_link);
5037 
5038 void page_put_link(void *arg)
5039 {
5040 	put_page(arg);
5041 }
5042 EXPORT_SYMBOL(page_put_link);
5043 
5044 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5045 {
5046 	DEFINE_DELAYED_CALL(done);
5047 	int res = readlink_copy(buffer, buflen,
5048 				page_get_link(dentry, d_inode(dentry),
5049 					      &done));
5050 	do_delayed_call(&done);
5051 	return res;
5052 }
5053 EXPORT_SYMBOL(page_readlink);
5054 
5055 int page_symlink(struct inode *inode, const char *symname, int len)
5056 {
5057 	struct address_space *mapping = inode->i_mapping;
5058 	const struct address_space_operations *aops = mapping->a_ops;
5059 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5060 	struct page *page;
5061 	void *fsdata;
5062 	int err;
5063 	unsigned int flags;
5064 
5065 retry:
5066 	if (nofs)
5067 		flags = memalloc_nofs_save();
5068 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5069 	if (nofs)
5070 		memalloc_nofs_restore(flags);
5071 	if (err)
5072 		goto fail;
5073 
5074 	memcpy(page_address(page), symname, len-1);
5075 
5076 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5077 							page, fsdata);
5078 	if (err < 0)
5079 		goto fail;
5080 	if (err < len-1)
5081 		goto retry;
5082 
5083 	mark_inode_dirty(inode);
5084 	return 0;
5085 fail:
5086 	return err;
5087 }
5088 EXPORT_SYMBOL(page_symlink);
5089 
5090 const struct inode_operations page_symlink_inode_operations = {
5091 	.get_link	= page_get_link,
5092 };
5093 EXPORT_SYMBOL(page_symlink_inode_operations);
5094