1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/sched/mm.h> 26 #include <linux/fsnotify.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/ima.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 if (unlikely(len < 0)) { 152 __putname(result); 153 return ERR_PTR(len); 154 } 155 156 /* 157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 158 * separate struct filename so we can dedicate the entire 159 * names_cache allocation for the pathname, and re-do the copy from 160 * userland. 161 */ 162 if (unlikely(len == EMBEDDED_NAME_MAX)) { 163 const size_t size = offsetof(struct filename, iname[1]); 164 kname = (char *)result; 165 166 /* 167 * size is chosen that way we to guarantee that 168 * result->iname[0] is within the same object and that 169 * kname can't be equal to result->iname, no matter what. 170 */ 171 result = kzalloc(size, GFP_KERNEL); 172 if (unlikely(!result)) { 173 __putname(kname); 174 return ERR_PTR(-ENOMEM); 175 } 176 result->name = kname; 177 len = strncpy_from_user(kname, filename, PATH_MAX); 178 if (unlikely(len < 0)) { 179 __putname(kname); 180 kfree(result); 181 return ERR_PTR(len); 182 } 183 if (unlikely(len == PATH_MAX)) { 184 __putname(kname); 185 kfree(result); 186 return ERR_PTR(-ENAMETOOLONG); 187 } 188 } 189 190 result->refcnt = 1; 191 /* The empty path is special. */ 192 if (unlikely(!len)) { 193 if (empty) 194 *empty = 1; 195 if (!(flags & LOOKUP_EMPTY)) { 196 putname(result); 197 return ERR_PTR(-ENOENT); 198 } 199 } 200 201 result->uptr = filename; 202 result->aname = NULL; 203 audit_getname(result); 204 return result; 205 } 206 207 struct filename * 208 getname_uflags(const char __user *filename, int uflags) 209 { 210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 211 212 return getname_flags(filename, flags, NULL); 213 } 214 215 struct filename * 216 getname(const char __user * filename) 217 { 218 return getname_flags(filename, 0, NULL); 219 } 220 221 struct filename * 222 getname_kernel(const char * filename) 223 { 224 struct filename *result; 225 int len = strlen(filename) + 1; 226 227 result = __getname(); 228 if (unlikely(!result)) 229 return ERR_PTR(-ENOMEM); 230 231 if (len <= EMBEDDED_NAME_MAX) { 232 result->name = (char *)result->iname; 233 } else if (len <= PATH_MAX) { 234 const size_t size = offsetof(struct filename, iname[1]); 235 struct filename *tmp; 236 237 tmp = kmalloc(size, GFP_KERNEL); 238 if (unlikely(!tmp)) { 239 __putname(result); 240 return ERR_PTR(-ENOMEM); 241 } 242 tmp->name = (char *)result; 243 result = tmp; 244 } else { 245 __putname(result); 246 return ERR_PTR(-ENAMETOOLONG); 247 } 248 memcpy((char *)result->name, filename, len); 249 result->uptr = NULL; 250 result->aname = NULL; 251 result->refcnt = 1; 252 audit_getname(result); 253 254 return result; 255 } 256 257 void putname(struct filename *name) 258 { 259 if (IS_ERR(name)) 260 return; 261 262 BUG_ON(name->refcnt <= 0); 263 264 if (--name->refcnt > 0) 265 return; 266 267 if (name->name != name->iname) { 268 __putname(name->name); 269 kfree(name); 270 } else 271 __putname(name); 272 } 273 274 /** 275 * check_acl - perform ACL permission checking 276 * @mnt_userns: user namespace of the mount the inode was found from 277 * @inode: inode to check permissions on 278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 279 * 280 * This function performs the ACL permission checking. Since this function 281 * retrieve POSIX acls it needs to know whether it is called from a blocking or 282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 283 * 284 * If the inode has been found through an idmapped mount the user namespace of 285 * the vfsmount must be passed through @mnt_userns. This function will then take 286 * care to map the inode according to @mnt_userns before checking permissions. 287 * On non-idmapped mounts or if permission checking is to be performed on the 288 * raw inode simply passs init_user_ns. 289 */ 290 static int check_acl(struct user_namespace *mnt_userns, 291 struct inode *inode, int mask) 292 { 293 #ifdef CONFIG_FS_POSIX_ACL 294 struct posix_acl *acl; 295 296 if (mask & MAY_NOT_BLOCK) { 297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 298 if (!acl) 299 return -EAGAIN; 300 /* no ->get_acl() calls in RCU mode... */ 301 if (is_uncached_acl(acl)) 302 return -ECHILD; 303 return posix_acl_permission(mnt_userns, inode, acl, mask); 304 } 305 306 acl = get_acl(inode, ACL_TYPE_ACCESS); 307 if (IS_ERR(acl)) 308 return PTR_ERR(acl); 309 if (acl) { 310 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 311 posix_acl_release(acl); 312 return error; 313 } 314 #endif 315 316 return -EAGAIN; 317 } 318 319 /** 320 * acl_permission_check - perform basic UNIX permission checking 321 * @mnt_userns: user namespace of the mount the inode was found from 322 * @inode: inode to check permissions on 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 324 * 325 * This function performs the basic UNIX permission checking. Since this 326 * function may retrieve POSIX acls it needs to know whether it is called from a 327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 328 * 329 * If the inode has been found through an idmapped mount the user namespace of 330 * the vfsmount must be passed through @mnt_userns. This function will then take 331 * care to map the inode according to @mnt_userns before checking permissions. 332 * On non-idmapped mounts or if permission checking is to be performed on the 333 * raw inode simply passs init_user_ns. 334 */ 335 static int acl_permission_check(struct user_namespace *mnt_userns, 336 struct inode *inode, int mask) 337 { 338 unsigned int mode = inode->i_mode; 339 kuid_t i_uid; 340 341 /* Are we the owner? If so, ACL's don't matter */ 342 i_uid = i_uid_into_mnt(mnt_userns, inode); 343 if (likely(uid_eq(current_fsuid(), i_uid))) { 344 mask &= 7; 345 mode >>= 6; 346 return (mask & ~mode) ? -EACCES : 0; 347 } 348 349 /* Do we have ACL's? */ 350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 351 int error = check_acl(mnt_userns, inode, mask); 352 if (error != -EAGAIN) 353 return error; 354 } 355 356 /* Only RWX matters for group/other mode bits */ 357 mask &= 7; 358 359 /* 360 * Are the group permissions different from 361 * the other permissions in the bits we care 362 * about? Need to check group ownership if so. 363 */ 364 if (mask & (mode ^ (mode >> 3))) { 365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 366 if (in_group_p(kgid)) 367 mode >>= 3; 368 } 369 370 /* Bits in 'mode' clear that we require? */ 371 return (mask & ~mode) ? -EACCES : 0; 372 } 373 374 /** 375 * generic_permission - check for access rights on a Posix-like filesystem 376 * @mnt_userns: user namespace of the mount the inode was found from 377 * @inode: inode to check access rights for 378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 379 * %MAY_NOT_BLOCK ...) 380 * 381 * Used to check for read/write/execute permissions on a file. 382 * We use "fsuid" for this, letting us set arbitrary permissions 383 * for filesystem access without changing the "normal" uids which 384 * are used for other things. 385 * 386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 387 * request cannot be satisfied (eg. requires blocking or too much complexity). 388 * It would then be called again in ref-walk mode. 389 * 390 * If the inode has been found through an idmapped mount the user namespace of 391 * the vfsmount must be passed through @mnt_userns. This function will then take 392 * care to map the inode according to @mnt_userns before checking permissions. 393 * On non-idmapped mounts or if permission checking is to be performed on the 394 * raw inode simply passs init_user_ns. 395 */ 396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 397 int mask) 398 { 399 int ret; 400 401 /* 402 * Do the basic permission checks. 403 */ 404 ret = acl_permission_check(mnt_userns, inode, mask); 405 if (ret != -EACCES) 406 return ret; 407 408 if (S_ISDIR(inode->i_mode)) { 409 /* DACs are overridable for directories */ 410 if (!(mask & MAY_WRITE)) 411 if (capable_wrt_inode_uidgid(mnt_userns, inode, 412 CAP_DAC_READ_SEARCH)) 413 return 0; 414 if (capable_wrt_inode_uidgid(mnt_userns, inode, 415 CAP_DAC_OVERRIDE)) 416 return 0; 417 return -EACCES; 418 } 419 420 /* 421 * Searching includes executable on directories, else just read. 422 */ 423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 424 if (mask == MAY_READ) 425 if (capable_wrt_inode_uidgid(mnt_userns, inode, 426 CAP_DAC_READ_SEARCH)) 427 return 0; 428 /* 429 * Read/write DACs are always overridable. 430 * Executable DACs are overridable when there is 431 * at least one exec bit set. 432 */ 433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 434 if (capable_wrt_inode_uidgid(mnt_userns, inode, 435 CAP_DAC_OVERRIDE)) 436 return 0; 437 438 return -EACCES; 439 } 440 EXPORT_SYMBOL(generic_permission); 441 442 /** 443 * do_inode_permission - UNIX permission checking 444 * @mnt_userns: user namespace of the mount the inode was found from 445 * @inode: inode to check permissions on 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 447 * 448 * We _really_ want to just do "generic_permission()" without 449 * even looking at the inode->i_op values. So we keep a cache 450 * flag in inode->i_opflags, that says "this has not special 451 * permission function, use the fast case". 452 */ 453 static inline int do_inode_permission(struct user_namespace *mnt_userns, 454 struct inode *inode, int mask) 455 { 456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 457 if (likely(inode->i_op->permission)) 458 return inode->i_op->permission(mnt_userns, inode, mask); 459 460 /* This gets set once for the inode lifetime */ 461 spin_lock(&inode->i_lock); 462 inode->i_opflags |= IOP_FASTPERM; 463 spin_unlock(&inode->i_lock); 464 } 465 return generic_permission(mnt_userns, inode, mask); 466 } 467 468 /** 469 * sb_permission - Check superblock-level permissions 470 * @sb: Superblock of inode to check permission on 471 * @inode: Inode to check permission on 472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 473 * 474 * Separate out file-system wide checks from inode-specific permission checks. 475 */ 476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 477 { 478 if (unlikely(mask & MAY_WRITE)) { 479 umode_t mode = inode->i_mode; 480 481 /* Nobody gets write access to a read-only fs. */ 482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 483 return -EROFS; 484 } 485 return 0; 486 } 487 488 /** 489 * inode_permission - Check for access rights to a given inode 490 * @mnt_userns: User namespace of the mount the inode was found from 491 * @inode: Inode to check permission on 492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 493 * 494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 495 * this, letting us set arbitrary permissions for filesystem access without 496 * changing the "normal" UIDs which are used for other things. 497 * 498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 499 */ 500 int inode_permission(struct user_namespace *mnt_userns, 501 struct inode *inode, int mask) 502 { 503 int retval; 504 505 retval = sb_permission(inode->i_sb, inode, mask); 506 if (retval) 507 return retval; 508 509 if (unlikely(mask & MAY_WRITE)) { 510 /* 511 * Nobody gets write access to an immutable file. 512 */ 513 if (IS_IMMUTABLE(inode)) 514 return -EPERM; 515 516 /* 517 * Updating mtime will likely cause i_uid and i_gid to be 518 * written back improperly if their true value is unknown 519 * to the vfs. 520 */ 521 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 522 return -EACCES; 523 } 524 525 retval = do_inode_permission(mnt_userns, inode, mask); 526 if (retval) 527 return retval; 528 529 retval = devcgroup_inode_permission(inode, mask); 530 if (retval) 531 return retval; 532 533 return security_inode_permission(inode, mask); 534 } 535 EXPORT_SYMBOL(inode_permission); 536 537 /** 538 * path_get - get a reference to a path 539 * @path: path to get the reference to 540 * 541 * Given a path increment the reference count to the dentry and the vfsmount. 542 */ 543 void path_get(const struct path *path) 544 { 545 mntget(path->mnt); 546 dget(path->dentry); 547 } 548 EXPORT_SYMBOL(path_get); 549 550 /** 551 * path_put - put a reference to a path 552 * @path: path to put the reference to 553 * 554 * Given a path decrement the reference count to the dentry and the vfsmount. 555 */ 556 void path_put(const struct path *path) 557 { 558 dput(path->dentry); 559 mntput(path->mnt); 560 } 561 EXPORT_SYMBOL(path_put); 562 563 #define EMBEDDED_LEVELS 2 564 struct nameidata { 565 struct path path; 566 struct qstr last; 567 struct path root; 568 struct inode *inode; /* path.dentry.d_inode */ 569 unsigned int flags, state; 570 unsigned seq, m_seq, r_seq; 571 int last_type; 572 unsigned depth; 573 int total_link_count; 574 struct saved { 575 struct path link; 576 struct delayed_call done; 577 const char *name; 578 unsigned seq; 579 } *stack, internal[EMBEDDED_LEVELS]; 580 struct filename *name; 581 struct nameidata *saved; 582 unsigned root_seq; 583 int dfd; 584 kuid_t dir_uid; 585 umode_t dir_mode; 586 } __randomize_layout; 587 588 #define ND_ROOT_PRESET 1 589 #define ND_ROOT_GRABBED 2 590 #define ND_JUMPED 4 591 592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 593 { 594 struct nameidata *old = current->nameidata; 595 p->stack = p->internal; 596 p->depth = 0; 597 p->dfd = dfd; 598 p->name = name; 599 p->path.mnt = NULL; 600 p->path.dentry = NULL; 601 p->total_link_count = old ? old->total_link_count : 0; 602 p->saved = old; 603 current->nameidata = p; 604 } 605 606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 607 const struct path *root) 608 { 609 __set_nameidata(p, dfd, name); 610 p->state = 0; 611 if (unlikely(root)) { 612 p->state = ND_ROOT_PRESET; 613 p->root = *root; 614 } 615 } 616 617 static void restore_nameidata(void) 618 { 619 struct nameidata *now = current->nameidata, *old = now->saved; 620 621 current->nameidata = old; 622 if (old) 623 old->total_link_count = now->total_link_count; 624 if (now->stack != now->internal) 625 kfree(now->stack); 626 } 627 628 static bool nd_alloc_stack(struct nameidata *nd) 629 { 630 struct saved *p; 631 632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 634 if (unlikely(!p)) 635 return false; 636 memcpy(p, nd->internal, sizeof(nd->internal)); 637 nd->stack = p; 638 return true; 639 } 640 641 /** 642 * path_connected - Verify that a dentry is below mnt.mnt_root 643 * 644 * Rename can sometimes move a file or directory outside of a bind 645 * mount, path_connected allows those cases to be detected. 646 */ 647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 648 { 649 struct super_block *sb = mnt->mnt_sb; 650 651 /* Bind mounts can have disconnected paths */ 652 if (mnt->mnt_root == sb->s_root) 653 return true; 654 655 return is_subdir(dentry, mnt->mnt_root); 656 } 657 658 static void drop_links(struct nameidata *nd) 659 { 660 int i = nd->depth; 661 while (i--) { 662 struct saved *last = nd->stack + i; 663 do_delayed_call(&last->done); 664 clear_delayed_call(&last->done); 665 } 666 } 667 668 static void terminate_walk(struct nameidata *nd) 669 { 670 drop_links(nd); 671 if (!(nd->flags & LOOKUP_RCU)) { 672 int i; 673 path_put(&nd->path); 674 for (i = 0; i < nd->depth; i++) 675 path_put(&nd->stack[i].link); 676 if (nd->state & ND_ROOT_GRABBED) { 677 path_put(&nd->root); 678 nd->state &= ~ND_ROOT_GRABBED; 679 } 680 } else { 681 nd->flags &= ~LOOKUP_RCU; 682 rcu_read_unlock(); 683 } 684 nd->depth = 0; 685 nd->path.mnt = NULL; 686 nd->path.dentry = NULL; 687 } 688 689 /* path_put is needed afterwards regardless of success or failure */ 690 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 691 { 692 int res = __legitimize_mnt(path->mnt, mseq); 693 if (unlikely(res)) { 694 if (res > 0) 695 path->mnt = NULL; 696 path->dentry = NULL; 697 return false; 698 } 699 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 700 path->dentry = NULL; 701 return false; 702 } 703 return !read_seqcount_retry(&path->dentry->d_seq, seq); 704 } 705 706 static inline bool legitimize_path(struct nameidata *nd, 707 struct path *path, unsigned seq) 708 { 709 return __legitimize_path(path, seq, nd->m_seq); 710 } 711 712 static bool legitimize_links(struct nameidata *nd) 713 { 714 int i; 715 if (unlikely(nd->flags & LOOKUP_CACHED)) { 716 drop_links(nd); 717 nd->depth = 0; 718 return false; 719 } 720 for (i = 0; i < nd->depth; i++) { 721 struct saved *last = nd->stack + i; 722 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 723 drop_links(nd); 724 nd->depth = i + 1; 725 return false; 726 } 727 } 728 return true; 729 } 730 731 static bool legitimize_root(struct nameidata *nd) 732 { 733 /* 734 * For scoped-lookups (where nd->root has been zeroed), we need to 735 * restart the whole lookup from scratch -- because set_root() is wrong 736 * for these lookups (nd->dfd is the root, not the filesystem root). 737 */ 738 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 739 return false; 740 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 741 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 742 return true; 743 nd->state |= ND_ROOT_GRABBED; 744 return legitimize_path(nd, &nd->root, nd->root_seq); 745 } 746 747 /* 748 * Path walking has 2 modes, rcu-walk and ref-walk (see 749 * Documentation/filesystems/path-lookup.txt). In situations when we can't 750 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 751 * normal reference counts on dentries and vfsmounts to transition to ref-walk 752 * mode. Refcounts are grabbed at the last known good point before rcu-walk 753 * got stuck, so ref-walk may continue from there. If this is not successful 754 * (eg. a seqcount has changed), then failure is returned and it's up to caller 755 * to restart the path walk from the beginning in ref-walk mode. 756 */ 757 758 /** 759 * try_to_unlazy - try to switch to ref-walk mode. 760 * @nd: nameidata pathwalk data 761 * Returns: true on success, false on failure 762 * 763 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 764 * for ref-walk mode. 765 * Must be called from rcu-walk context. 766 * Nothing should touch nameidata between try_to_unlazy() failure and 767 * terminate_walk(). 768 */ 769 static bool try_to_unlazy(struct nameidata *nd) 770 { 771 struct dentry *parent = nd->path.dentry; 772 773 BUG_ON(!(nd->flags & LOOKUP_RCU)); 774 775 nd->flags &= ~LOOKUP_RCU; 776 if (unlikely(!legitimize_links(nd))) 777 goto out1; 778 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 779 goto out; 780 if (unlikely(!legitimize_root(nd))) 781 goto out; 782 rcu_read_unlock(); 783 BUG_ON(nd->inode != parent->d_inode); 784 return true; 785 786 out1: 787 nd->path.mnt = NULL; 788 nd->path.dentry = NULL; 789 out: 790 rcu_read_unlock(); 791 return false; 792 } 793 794 /** 795 * try_to_unlazy_next - try to switch to ref-walk mode. 796 * @nd: nameidata pathwalk data 797 * @dentry: next dentry to step into 798 * @seq: seq number to check @dentry against 799 * Returns: true on success, false on failure 800 * 801 * Similar to to try_to_unlazy(), but here we have the next dentry already 802 * picked by rcu-walk and want to legitimize that in addition to the current 803 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 804 * Nothing should touch nameidata between try_to_unlazy_next() failure and 805 * terminate_walk(). 806 */ 807 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 808 { 809 BUG_ON(!(nd->flags & LOOKUP_RCU)); 810 811 nd->flags &= ~LOOKUP_RCU; 812 if (unlikely(!legitimize_links(nd))) 813 goto out2; 814 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 815 goto out2; 816 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 817 goto out1; 818 819 /* 820 * We need to move both the parent and the dentry from the RCU domain 821 * to be properly refcounted. And the sequence number in the dentry 822 * validates *both* dentry counters, since we checked the sequence 823 * number of the parent after we got the child sequence number. So we 824 * know the parent must still be valid if the child sequence number is 825 */ 826 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 827 goto out; 828 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 829 goto out_dput; 830 /* 831 * Sequence counts matched. Now make sure that the root is 832 * still valid and get it if required. 833 */ 834 if (unlikely(!legitimize_root(nd))) 835 goto out_dput; 836 rcu_read_unlock(); 837 return true; 838 839 out2: 840 nd->path.mnt = NULL; 841 out1: 842 nd->path.dentry = NULL; 843 out: 844 rcu_read_unlock(); 845 return false; 846 out_dput: 847 rcu_read_unlock(); 848 dput(dentry); 849 return false; 850 } 851 852 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 853 { 854 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 855 return dentry->d_op->d_revalidate(dentry, flags); 856 else 857 return 1; 858 } 859 860 /** 861 * complete_walk - successful completion of path walk 862 * @nd: pointer nameidata 863 * 864 * If we had been in RCU mode, drop out of it and legitimize nd->path. 865 * Revalidate the final result, unless we'd already done that during 866 * the path walk or the filesystem doesn't ask for it. Return 0 on 867 * success, -error on failure. In case of failure caller does not 868 * need to drop nd->path. 869 */ 870 static int complete_walk(struct nameidata *nd) 871 { 872 struct dentry *dentry = nd->path.dentry; 873 int status; 874 875 if (nd->flags & LOOKUP_RCU) { 876 /* 877 * We don't want to zero nd->root for scoped-lookups or 878 * externally-managed nd->root. 879 */ 880 if (!(nd->state & ND_ROOT_PRESET)) 881 if (!(nd->flags & LOOKUP_IS_SCOPED)) 882 nd->root.mnt = NULL; 883 nd->flags &= ~LOOKUP_CACHED; 884 if (!try_to_unlazy(nd)) 885 return -ECHILD; 886 } 887 888 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 889 /* 890 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 891 * ever step outside the root during lookup" and should already 892 * be guaranteed by the rest of namei, we want to avoid a namei 893 * BUG resulting in userspace being given a path that was not 894 * scoped within the root at some point during the lookup. 895 * 896 * So, do a final sanity-check to make sure that in the 897 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 898 * we won't silently return an fd completely outside of the 899 * requested root to userspace. 900 * 901 * Userspace could move the path outside the root after this 902 * check, but as discussed elsewhere this is not a concern (the 903 * resolved file was inside the root at some point). 904 */ 905 if (!path_is_under(&nd->path, &nd->root)) 906 return -EXDEV; 907 } 908 909 if (likely(!(nd->state & ND_JUMPED))) 910 return 0; 911 912 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 913 return 0; 914 915 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 916 if (status > 0) 917 return 0; 918 919 if (!status) 920 status = -ESTALE; 921 922 return status; 923 } 924 925 static int set_root(struct nameidata *nd) 926 { 927 struct fs_struct *fs = current->fs; 928 929 /* 930 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 931 * still have to ensure it doesn't happen because it will cause a breakout 932 * from the dirfd. 933 */ 934 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 935 return -ENOTRECOVERABLE; 936 937 if (nd->flags & LOOKUP_RCU) { 938 unsigned seq; 939 940 do { 941 seq = read_seqcount_begin(&fs->seq); 942 nd->root = fs->root; 943 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 944 } while (read_seqcount_retry(&fs->seq, seq)); 945 } else { 946 get_fs_root(fs, &nd->root); 947 nd->state |= ND_ROOT_GRABBED; 948 } 949 return 0; 950 } 951 952 static int nd_jump_root(struct nameidata *nd) 953 { 954 if (unlikely(nd->flags & LOOKUP_BENEATH)) 955 return -EXDEV; 956 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 957 /* Absolute path arguments to path_init() are allowed. */ 958 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 959 return -EXDEV; 960 } 961 if (!nd->root.mnt) { 962 int error = set_root(nd); 963 if (error) 964 return error; 965 } 966 if (nd->flags & LOOKUP_RCU) { 967 struct dentry *d; 968 nd->path = nd->root; 969 d = nd->path.dentry; 970 nd->inode = d->d_inode; 971 nd->seq = nd->root_seq; 972 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 973 return -ECHILD; 974 } else { 975 path_put(&nd->path); 976 nd->path = nd->root; 977 path_get(&nd->path); 978 nd->inode = nd->path.dentry->d_inode; 979 } 980 nd->state |= ND_JUMPED; 981 return 0; 982 } 983 984 /* 985 * Helper to directly jump to a known parsed path from ->get_link, 986 * caller must have taken a reference to path beforehand. 987 */ 988 int nd_jump_link(struct path *path) 989 { 990 int error = -ELOOP; 991 struct nameidata *nd = current->nameidata; 992 993 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 994 goto err; 995 996 error = -EXDEV; 997 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 998 if (nd->path.mnt != path->mnt) 999 goto err; 1000 } 1001 /* Not currently safe for scoped-lookups. */ 1002 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1003 goto err; 1004 1005 path_put(&nd->path); 1006 nd->path = *path; 1007 nd->inode = nd->path.dentry->d_inode; 1008 nd->state |= ND_JUMPED; 1009 return 0; 1010 1011 err: 1012 path_put(path); 1013 return error; 1014 } 1015 1016 static inline void put_link(struct nameidata *nd) 1017 { 1018 struct saved *last = nd->stack + --nd->depth; 1019 do_delayed_call(&last->done); 1020 if (!(nd->flags & LOOKUP_RCU)) 1021 path_put(&last->link); 1022 } 1023 1024 static int sysctl_protected_symlinks __read_mostly; 1025 static int sysctl_protected_hardlinks __read_mostly; 1026 static int sysctl_protected_fifos __read_mostly; 1027 static int sysctl_protected_regular __read_mostly; 1028 1029 #ifdef CONFIG_SYSCTL 1030 static struct ctl_table namei_sysctls[] = { 1031 { 1032 .procname = "protected_symlinks", 1033 .data = &sysctl_protected_symlinks, 1034 .maxlen = sizeof(int), 1035 .mode = 0644, 1036 .proc_handler = proc_dointvec_minmax, 1037 .extra1 = SYSCTL_ZERO, 1038 .extra2 = SYSCTL_ONE, 1039 }, 1040 { 1041 .procname = "protected_hardlinks", 1042 .data = &sysctl_protected_hardlinks, 1043 .maxlen = sizeof(int), 1044 .mode = 0644, 1045 .proc_handler = proc_dointvec_minmax, 1046 .extra1 = SYSCTL_ZERO, 1047 .extra2 = SYSCTL_ONE, 1048 }, 1049 { 1050 .procname = "protected_fifos", 1051 .data = &sysctl_protected_fifos, 1052 .maxlen = sizeof(int), 1053 .mode = 0644, 1054 .proc_handler = proc_dointvec_minmax, 1055 .extra1 = SYSCTL_ZERO, 1056 .extra2 = SYSCTL_TWO, 1057 }, 1058 { 1059 .procname = "protected_regular", 1060 .data = &sysctl_protected_regular, 1061 .maxlen = sizeof(int), 1062 .mode = 0644, 1063 .proc_handler = proc_dointvec_minmax, 1064 .extra1 = SYSCTL_ZERO, 1065 .extra2 = SYSCTL_TWO, 1066 }, 1067 { } 1068 }; 1069 1070 static int __init init_fs_namei_sysctls(void) 1071 { 1072 register_sysctl_init("fs", namei_sysctls); 1073 return 0; 1074 } 1075 fs_initcall(init_fs_namei_sysctls); 1076 1077 #endif /* CONFIG_SYSCTL */ 1078 1079 /** 1080 * may_follow_link - Check symlink following for unsafe situations 1081 * @nd: nameidata pathwalk data 1082 * 1083 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1084 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1085 * in a sticky world-writable directory. This is to protect privileged 1086 * processes from failing races against path names that may change out 1087 * from under them by way of other users creating malicious symlinks. 1088 * It will permit symlinks to be followed only when outside a sticky 1089 * world-writable directory, or when the uid of the symlink and follower 1090 * match, or when the directory owner matches the symlink's owner. 1091 * 1092 * Returns 0 if following the symlink is allowed, -ve on error. 1093 */ 1094 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1095 { 1096 struct user_namespace *mnt_userns; 1097 kuid_t i_uid; 1098 1099 if (!sysctl_protected_symlinks) 1100 return 0; 1101 1102 mnt_userns = mnt_user_ns(nd->path.mnt); 1103 i_uid = i_uid_into_mnt(mnt_userns, inode); 1104 /* Allowed if owner and follower match. */ 1105 if (uid_eq(current_cred()->fsuid, i_uid)) 1106 return 0; 1107 1108 /* Allowed if parent directory not sticky and world-writable. */ 1109 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1110 return 0; 1111 1112 /* Allowed if parent directory and link owner match. */ 1113 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1114 return 0; 1115 1116 if (nd->flags & LOOKUP_RCU) 1117 return -ECHILD; 1118 1119 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1120 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1121 return -EACCES; 1122 } 1123 1124 /** 1125 * safe_hardlink_source - Check for safe hardlink conditions 1126 * @mnt_userns: user namespace of the mount the inode was found from 1127 * @inode: the source inode to hardlink from 1128 * 1129 * Return false if at least one of the following conditions: 1130 * - inode is not a regular file 1131 * - inode is setuid 1132 * - inode is setgid and group-exec 1133 * - access failure for read and write 1134 * 1135 * Otherwise returns true. 1136 */ 1137 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1138 struct inode *inode) 1139 { 1140 umode_t mode = inode->i_mode; 1141 1142 /* Special files should not get pinned to the filesystem. */ 1143 if (!S_ISREG(mode)) 1144 return false; 1145 1146 /* Setuid files should not get pinned to the filesystem. */ 1147 if (mode & S_ISUID) 1148 return false; 1149 1150 /* Executable setgid files should not get pinned to the filesystem. */ 1151 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1152 return false; 1153 1154 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1155 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1156 return false; 1157 1158 return true; 1159 } 1160 1161 /** 1162 * may_linkat - Check permissions for creating a hardlink 1163 * @mnt_userns: user namespace of the mount the inode was found from 1164 * @link: the source to hardlink from 1165 * 1166 * Block hardlink when all of: 1167 * - sysctl_protected_hardlinks enabled 1168 * - fsuid does not match inode 1169 * - hardlink source is unsafe (see safe_hardlink_source() above) 1170 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1171 * 1172 * If the inode has been found through an idmapped mount the user namespace of 1173 * the vfsmount must be passed through @mnt_userns. This function will then take 1174 * care to map the inode according to @mnt_userns before checking permissions. 1175 * On non-idmapped mounts or if permission checking is to be performed on the 1176 * raw inode simply passs init_user_ns. 1177 * 1178 * Returns 0 if successful, -ve on error. 1179 */ 1180 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1181 { 1182 struct inode *inode = link->dentry->d_inode; 1183 1184 /* Inode writeback is not safe when the uid or gid are invalid. */ 1185 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1186 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1187 return -EOVERFLOW; 1188 1189 if (!sysctl_protected_hardlinks) 1190 return 0; 1191 1192 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1193 * otherwise, it must be a safe source. 1194 */ 1195 if (safe_hardlink_source(mnt_userns, inode) || 1196 inode_owner_or_capable(mnt_userns, inode)) 1197 return 0; 1198 1199 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1200 return -EPERM; 1201 } 1202 1203 /** 1204 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1205 * should be allowed, or not, on files that already 1206 * exist. 1207 * @mnt_userns: user namespace of the mount the inode was found from 1208 * @nd: nameidata pathwalk data 1209 * @inode: the inode of the file to open 1210 * 1211 * Block an O_CREAT open of a FIFO (or a regular file) when: 1212 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1213 * - the file already exists 1214 * - we are in a sticky directory 1215 * - we don't own the file 1216 * - the owner of the directory doesn't own the file 1217 * - the directory is world writable 1218 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1219 * the directory doesn't have to be world writable: being group writable will 1220 * be enough. 1221 * 1222 * If the inode has been found through an idmapped mount the user namespace of 1223 * the vfsmount must be passed through @mnt_userns. This function will then take 1224 * care to map the inode according to @mnt_userns before checking permissions. 1225 * On non-idmapped mounts or if permission checking is to be performed on the 1226 * raw inode simply passs init_user_ns. 1227 * 1228 * Returns 0 if the open is allowed, -ve on error. 1229 */ 1230 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1231 struct nameidata *nd, struct inode *const inode) 1232 { 1233 umode_t dir_mode = nd->dir_mode; 1234 kuid_t dir_uid = nd->dir_uid; 1235 1236 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1237 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1238 likely(!(dir_mode & S_ISVTX)) || 1239 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1240 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1241 return 0; 1242 1243 if (likely(dir_mode & 0002) || 1244 (dir_mode & 0020 && 1245 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1246 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1247 const char *operation = S_ISFIFO(inode->i_mode) ? 1248 "sticky_create_fifo" : 1249 "sticky_create_regular"; 1250 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1251 return -EACCES; 1252 } 1253 return 0; 1254 } 1255 1256 /* 1257 * follow_up - Find the mountpoint of path's vfsmount 1258 * 1259 * Given a path, find the mountpoint of its source file system. 1260 * Replace @path with the path of the mountpoint in the parent mount. 1261 * Up is towards /. 1262 * 1263 * Return 1 if we went up a level and 0 if we were already at the 1264 * root. 1265 */ 1266 int follow_up(struct path *path) 1267 { 1268 struct mount *mnt = real_mount(path->mnt); 1269 struct mount *parent; 1270 struct dentry *mountpoint; 1271 1272 read_seqlock_excl(&mount_lock); 1273 parent = mnt->mnt_parent; 1274 if (parent == mnt) { 1275 read_sequnlock_excl(&mount_lock); 1276 return 0; 1277 } 1278 mntget(&parent->mnt); 1279 mountpoint = dget(mnt->mnt_mountpoint); 1280 read_sequnlock_excl(&mount_lock); 1281 dput(path->dentry); 1282 path->dentry = mountpoint; 1283 mntput(path->mnt); 1284 path->mnt = &parent->mnt; 1285 return 1; 1286 } 1287 EXPORT_SYMBOL(follow_up); 1288 1289 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1290 struct path *path, unsigned *seqp) 1291 { 1292 while (mnt_has_parent(m)) { 1293 struct dentry *mountpoint = m->mnt_mountpoint; 1294 1295 m = m->mnt_parent; 1296 if (unlikely(root->dentry == mountpoint && 1297 root->mnt == &m->mnt)) 1298 break; 1299 if (mountpoint != m->mnt.mnt_root) { 1300 path->mnt = &m->mnt; 1301 path->dentry = mountpoint; 1302 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1303 return true; 1304 } 1305 } 1306 return false; 1307 } 1308 1309 static bool choose_mountpoint(struct mount *m, const struct path *root, 1310 struct path *path) 1311 { 1312 bool found; 1313 1314 rcu_read_lock(); 1315 while (1) { 1316 unsigned seq, mseq = read_seqbegin(&mount_lock); 1317 1318 found = choose_mountpoint_rcu(m, root, path, &seq); 1319 if (unlikely(!found)) { 1320 if (!read_seqretry(&mount_lock, mseq)) 1321 break; 1322 } else { 1323 if (likely(__legitimize_path(path, seq, mseq))) 1324 break; 1325 rcu_read_unlock(); 1326 path_put(path); 1327 rcu_read_lock(); 1328 } 1329 } 1330 rcu_read_unlock(); 1331 return found; 1332 } 1333 1334 /* 1335 * Perform an automount 1336 * - return -EISDIR to tell follow_managed() to stop and return the path we 1337 * were called with. 1338 */ 1339 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1340 { 1341 struct dentry *dentry = path->dentry; 1342 1343 /* We don't want to mount if someone's just doing a stat - 1344 * unless they're stat'ing a directory and appended a '/' to 1345 * the name. 1346 * 1347 * We do, however, want to mount if someone wants to open or 1348 * create a file of any type under the mountpoint, wants to 1349 * traverse through the mountpoint or wants to open the 1350 * mounted directory. Also, autofs may mark negative dentries 1351 * as being automount points. These will need the attentions 1352 * of the daemon to instantiate them before they can be used. 1353 */ 1354 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1355 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1356 dentry->d_inode) 1357 return -EISDIR; 1358 1359 if (count && (*count)++ >= MAXSYMLINKS) 1360 return -ELOOP; 1361 1362 return finish_automount(dentry->d_op->d_automount(path), path); 1363 } 1364 1365 /* 1366 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1367 * dentries are pinned but not locked here, so negative dentry can go 1368 * positive right under us. Use of smp_load_acquire() provides a barrier 1369 * sufficient for ->d_inode and ->d_flags consistency. 1370 */ 1371 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1372 int *count, unsigned lookup_flags) 1373 { 1374 struct vfsmount *mnt = path->mnt; 1375 bool need_mntput = false; 1376 int ret = 0; 1377 1378 while (flags & DCACHE_MANAGED_DENTRY) { 1379 /* Allow the filesystem to manage the transit without i_mutex 1380 * being held. */ 1381 if (flags & DCACHE_MANAGE_TRANSIT) { 1382 ret = path->dentry->d_op->d_manage(path, false); 1383 flags = smp_load_acquire(&path->dentry->d_flags); 1384 if (ret < 0) 1385 break; 1386 } 1387 1388 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1389 struct vfsmount *mounted = lookup_mnt(path); 1390 if (mounted) { // ... in our namespace 1391 dput(path->dentry); 1392 if (need_mntput) 1393 mntput(path->mnt); 1394 path->mnt = mounted; 1395 path->dentry = dget(mounted->mnt_root); 1396 // here we know it's positive 1397 flags = path->dentry->d_flags; 1398 need_mntput = true; 1399 continue; 1400 } 1401 } 1402 1403 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1404 break; 1405 1406 // uncovered automount point 1407 ret = follow_automount(path, count, lookup_flags); 1408 flags = smp_load_acquire(&path->dentry->d_flags); 1409 if (ret < 0) 1410 break; 1411 } 1412 1413 if (ret == -EISDIR) 1414 ret = 0; 1415 // possible if you race with several mount --move 1416 if (need_mntput && path->mnt == mnt) 1417 mntput(path->mnt); 1418 if (!ret && unlikely(d_flags_negative(flags))) 1419 ret = -ENOENT; 1420 *jumped = need_mntput; 1421 return ret; 1422 } 1423 1424 static inline int traverse_mounts(struct path *path, bool *jumped, 1425 int *count, unsigned lookup_flags) 1426 { 1427 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1428 1429 /* fastpath */ 1430 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1431 *jumped = false; 1432 if (unlikely(d_flags_negative(flags))) 1433 return -ENOENT; 1434 return 0; 1435 } 1436 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1437 } 1438 1439 int follow_down_one(struct path *path) 1440 { 1441 struct vfsmount *mounted; 1442 1443 mounted = lookup_mnt(path); 1444 if (mounted) { 1445 dput(path->dentry); 1446 mntput(path->mnt); 1447 path->mnt = mounted; 1448 path->dentry = dget(mounted->mnt_root); 1449 return 1; 1450 } 1451 return 0; 1452 } 1453 EXPORT_SYMBOL(follow_down_one); 1454 1455 /* 1456 * Follow down to the covering mount currently visible to userspace. At each 1457 * point, the filesystem owning that dentry may be queried as to whether the 1458 * caller is permitted to proceed or not. 1459 */ 1460 int follow_down(struct path *path) 1461 { 1462 struct vfsmount *mnt = path->mnt; 1463 bool jumped; 1464 int ret = traverse_mounts(path, &jumped, NULL, 0); 1465 1466 if (path->mnt != mnt) 1467 mntput(mnt); 1468 return ret; 1469 } 1470 EXPORT_SYMBOL(follow_down); 1471 1472 /* 1473 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1474 * we meet a managed dentry that would need blocking. 1475 */ 1476 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1477 struct inode **inode, unsigned *seqp) 1478 { 1479 struct dentry *dentry = path->dentry; 1480 unsigned int flags = dentry->d_flags; 1481 1482 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1483 return true; 1484 1485 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1486 return false; 1487 1488 for (;;) { 1489 /* 1490 * Don't forget we might have a non-mountpoint managed dentry 1491 * that wants to block transit. 1492 */ 1493 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1494 int res = dentry->d_op->d_manage(path, true); 1495 if (res) 1496 return res == -EISDIR; 1497 flags = dentry->d_flags; 1498 } 1499 1500 if (flags & DCACHE_MOUNTED) { 1501 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1502 if (mounted) { 1503 path->mnt = &mounted->mnt; 1504 dentry = path->dentry = mounted->mnt.mnt_root; 1505 nd->state |= ND_JUMPED; 1506 *seqp = read_seqcount_begin(&dentry->d_seq); 1507 *inode = dentry->d_inode; 1508 /* 1509 * We don't need to re-check ->d_seq after this 1510 * ->d_inode read - there will be an RCU delay 1511 * between mount hash removal and ->mnt_root 1512 * becoming unpinned. 1513 */ 1514 flags = dentry->d_flags; 1515 continue; 1516 } 1517 if (read_seqretry(&mount_lock, nd->m_seq)) 1518 return false; 1519 } 1520 return !(flags & DCACHE_NEED_AUTOMOUNT); 1521 } 1522 } 1523 1524 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1525 struct path *path, struct inode **inode, 1526 unsigned int *seqp) 1527 { 1528 bool jumped; 1529 int ret; 1530 1531 path->mnt = nd->path.mnt; 1532 path->dentry = dentry; 1533 if (nd->flags & LOOKUP_RCU) { 1534 unsigned int seq = *seqp; 1535 if (unlikely(!*inode)) 1536 return -ENOENT; 1537 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1538 return 0; 1539 if (!try_to_unlazy_next(nd, dentry, seq)) 1540 return -ECHILD; 1541 // *path might've been clobbered by __follow_mount_rcu() 1542 path->mnt = nd->path.mnt; 1543 path->dentry = dentry; 1544 } 1545 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1546 if (jumped) { 1547 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1548 ret = -EXDEV; 1549 else 1550 nd->state |= ND_JUMPED; 1551 } 1552 if (unlikely(ret)) { 1553 dput(path->dentry); 1554 if (path->mnt != nd->path.mnt) 1555 mntput(path->mnt); 1556 } else { 1557 *inode = d_backing_inode(path->dentry); 1558 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1559 } 1560 return ret; 1561 } 1562 1563 /* 1564 * This looks up the name in dcache and possibly revalidates the found dentry. 1565 * NULL is returned if the dentry does not exist in the cache. 1566 */ 1567 static struct dentry *lookup_dcache(const struct qstr *name, 1568 struct dentry *dir, 1569 unsigned int flags) 1570 { 1571 struct dentry *dentry = d_lookup(dir, name); 1572 if (dentry) { 1573 int error = d_revalidate(dentry, flags); 1574 if (unlikely(error <= 0)) { 1575 if (!error) 1576 d_invalidate(dentry); 1577 dput(dentry); 1578 return ERR_PTR(error); 1579 } 1580 } 1581 return dentry; 1582 } 1583 1584 /* 1585 * Parent directory has inode locked exclusive. This is one 1586 * and only case when ->lookup() gets called on non in-lookup 1587 * dentries - as the matter of fact, this only gets called 1588 * when directory is guaranteed to have no in-lookup children 1589 * at all. 1590 */ 1591 static struct dentry *__lookup_hash(const struct qstr *name, 1592 struct dentry *base, unsigned int flags) 1593 { 1594 struct dentry *dentry = lookup_dcache(name, base, flags); 1595 struct dentry *old; 1596 struct inode *dir = base->d_inode; 1597 1598 if (dentry) 1599 return dentry; 1600 1601 /* Don't create child dentry for a dead directory. */ 1602 if (unlikely(IS_DEADDIR(dir))) 1603 return ERR_PTR(-ENOENT); 1604 1605 dentry = d_alloc(base, name); 1606 if (unlikely(!dentry)) 1607 return ERR_PTR(-ENOMEM); 1608 1609 old = dir->i_op->lookup(dir, dentry, flags); 1610 if (unlikely(old)) { 1611 dput(dentry); 1612 dentry = old; 1613 } 1614 return dentry; 1615 } 1616 1617 static struct dentry *lookup_fast(struct nameidata *nd, 1618 struct inode **inode, 1619 unsigned *seqp) 1620 { 1621 struct dentry *dentry, *parent = nd->path.dentry; 1622 int status = 1; 1623 1624 /* 1625 * Rename seqlock is not required here because in the off chance 1626 * of a false negative due to a concurrent rename, the caller is 1627 * going to fall back to non-racy lookup. 1628 */ 1629 if (nd->flags & LOOKUP_RCU) { 1630 unsigned seq; 1631 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1632 if (unlikely(!dentry)) { 1633 if (!try_to_unlazy(nd)) 1634 return ERR_PTR(-ECHILD); 1635 return NULL; 1636 } 1637 1638 /* 1639 * This sequence count validates that the inode matches 1640 * the dentry name information from lookup. 1641 */ 1642 *inode = d_backing_inode(dentry); 1643 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1644 return ERR_PTR(-ECHILD); 1645 1646 /* 1647 * This sequence count validates that the parent had no 1648 * changes while we did the lookup of the dentry above. 1649 * 1650 * The memory barrier in read_seqcount_begin of child is 1651 * enough, we can use __read_seqcount_retry here. 1652 */ 1653 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1654 return ERR_PTR(-ECHILD); 1655 1656 *seqp = seq; 1657 status = d_revalidate(dentry, nd->flags); 1658 if (likely(status > 0)) 1659 return dentry; 1660 if (!try_to_unlazy_next(nd, dentry, seq)) 1661 return ERR_PTR(-ECHILD); 1662 if (status == -ECHILD) 1663 /* we'd been told to redo it in non-rcu mode */ 1664 status = d_revalidate(dentry, nd->flags); 1665 } else { 1666 dentry = __d_lookup(parent, &nd->last); 1667 if (unlikely(!dentry)) 1668 return NULL; 1669 status = d_revalidate(dentry, nd->flags); 1670 } 1671 if (unlikely(status <= 0)) { 1672 if (!status) 1673 d_invalidate(dentry); 1674 dput(dentry); 1675 return ERR_PTR(status); 1676 } 1677 return dentry; 1678 } 1679 1680 /* Fast lookup failed, do it the slow way */ 1681 static struct dentry *__lookup_slow(const struct qstr *name, 1682 struct dentry *dir, 1683 unsigned int flags) 1684 { 1685 struct dentry *dentry, *old; 1686 struct inode *inode = dir->d_inode; 1687 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1688 1689 /* Don't go there if it's already dead */ 1690 if (unlikely(IS_DEADDIR(inode))) 1691 return ERR_PTR(-ENOENT); 1692 again: 1693 dentry = d_alloc_parallel(dir, name, &wq); 1694 if (IS_ERR(dentry)) 1695 return dentry; 1696 if (unlikely(!d_in_lookup(dentry))) { 1697 int error = d_revalidate(dentry, flags); 1698 if (unlikely(error <= 0)) { 1699 if (!error) { 1700 d_invalidate(dentry); 1701 dput(dentry); 1702 goto again; 1703 } 1704 dput(dentry); 1705 dentry = ERR_PTR(error); 1706 } 1707 } else { 1708 old = inode->i_op->lookup(inode, dentry, flags); 1709 d_lookup_done(dentry); 1710 if (unlikely(old)) { 1711 dput(dentry); 1712 dentry = old; 1713 } 1714 } 1715 return dentry; 1716 } 1717 1718 static struct dentry *lookup_slow(const struct qstr *name, 1719 struct dentry *dir, 1720 unsigned int flags) 1721 { 1722 struct inode *inode = dir->d_inode; 1723 struct dentry *res; 1724 inode_lock_shared(inode); 1725 res = __lookup_slow(name, dir, flags); 1726 inode_unlock_shared(inode); 1727 return res; 1728 } 1729 1730 static inline int may_lookup(struct user_namespace *mnt_userns, 1731 struct nameidata *nd) 1732 { 1733 if (nd->flags & LOOKUP_RCU) { 1734 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1735 if (err != -ECHILD || !try_to_unlazy(nd)) 1736 return err; 1737 } 1738 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1739 } 1740 1741 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1742 { 1743 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1744 return -ELOOP; 1745 1746 if (likely(nd->depth != EMBEDDED_LEVELS)) 1747 return 0; 1748 if (likely(nd->stack != nd->internal)) 1749 return 0; 1750 if (likely(nd_alloc_stack(nd))) 1751 return 0; 1752 1753 if (nd->flags & LOOKUP_RCU) { 1754 // we need to grab link before we do unlazy. And we can't skip 1755 // unlazy even if we fail to grab the link - cleanup needs it 1756 bool grabbed_link = legitimize_path(nd, link, seq); 1757 1758 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1759 return -ECHILD; 1760 1761 if (nd_alloc_stack(nd)) 1762 return 0; 1763 } 1764 return -ENOMEM; 1765 } 1766 1767 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1768 1769 static const char *pick_link(struct nameidata *nd, struct path *link, 1770 struct inode *inode, unsigned seq, int flags) 1771 { 1772 struct saved *last; 1773 const char *res; 1774 int error = reserve_stack(nd, link, seq); 1775 1776 if (unlikely(error)) { 1777 if (!(nd->flags & LOOKUP_RCU)) 1778 path_put(link); 1779 return ERR_PTR(error); 1780 } 1781 last = nd->stack + nd->depth++; 1782 last->link = *link; 1783 clear_delayed_call(&last->done); 1784 last->seq = seq; 1785 1786 if (flags & WALK_TRAILING) { 1787 error = may_follow_link(nd, inode); 1788 if (unlikely(error)) 1789 return ERR_PTR(error); 1790 } 1791 1792 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1793 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1794 return ERR_PTR(-ELOOP); 1795 1796 if (!(nd->flags & LOOKUP_RCU)) { 1797 touch_atime(&last->link); 1798 cond_resched(); 1799 } else if (atime_needs_update(&last->link, inode)) { 1800 if (!try_to_unlazy(nd)) 1801 return ERR_PTR(-ECHILD); 1802 touch_atime(&last->link); 1803 } 1804 1805 error = security_inode_follow_link(link->dentry, inode, 1806 nd->flags & LOOKUP_RCU); 1807 if (unlikely(error)) 1808 return ERR_PTR(error); 1809 1810 res = READ_ONCE(inode->i_link); 1811 if (!res) { 1812 const char * (*get)(struct dentry *, struct inode *, 1813 struct delayed_call *); 1814 get = inode->i_op->get_link; 1815 if (nd->flags & LOOKUP_RCU) { 1816 res = get(NULL, inode, &last->done); 1817 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1818 res = get(link->dentry, inode, &last->done); 1819 } else { 1820 res = get(link->dentry, inode, &last->done); 1821 } 1822 if (!res) 1823 goto all_done; 1824 if (IS_ERR(res)) 1825 return res; 1826 } 1827 if (*res == '/') { 1828 error = nd_jump_root(nd); 1829 if (unlikely(error)) 1830 return ERR_PTR(error); 1831 while (unlikely(*++res == '/')) 1832 ; 1833 } 1834 if (*res) 1835 return res; 1836 all_done: // pure jump 1837 put_link(nd); 1838 return NULL; 1839 } 1840 1841 /* 1842 * Do we need to follow links? We _really_ want to be able 1843 * to do this check without having to look at inode->i_op, 1844 * so we keep a cache of "no, this doesn't need follow_link" 1845 * for the common case. 1846 */ 1847 static const char *step_into(struct nameidata *nd, int flags, 1848 struct dentry *dentry, struct inode *inode, unsigned seq) 1849 { 1850 struct path path; 1851 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1852 1853 if (err < 0) 1854 return ERR_PTR(err); 1855 if (likely(!d_is_symlink(path.dentry)) || 1856 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1857 (flags & WALK_NOFOLLOW)) { 1858 /* not a symlink or should not follow */ 1859 if (!(nd->flags & LOOKUP_RCU)) { 1860 dput(nd->path.dentry); 1861 if (nd->path.mnt != path.mnt) 1862 mntput(nd->path.mnt); 1863 } 1864 nd->path = path; 1865 nd->inode = inode; 1866 nd->seq = seq; 1867 return NULL; 1868 } 1869 if (nd->flags & LOOKUP_RCU) { 1870 /* make sure that d_is_symlink above matches inode */ 1871 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1872 return ERR_PTR(-ECHILD); 1873 } else { 1874 if (path.mnt == nd->path.mnt) 1875 mntget(path.mnt); 1876 } 1877 return pick_link(nd, &path, inode, seq, flags); 1878 } 1879 1880 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1881 struct inode **inodep, 1882 unsigned *seqp) 1883 { 1884 struct dentry *parent, *old; 1885 1886 if (path_equal(&nd->path, &nd->root)) 1887 goto in_root; 1888 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1889 struct path path; 1890 unsigned seq; 1891 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1892 &nd->root, &path, &seq)) 1893 goto in_root; 1894 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1895 return ERR_PTR(-ECHILD); 1896 nd->path = path; 1897 nd->inode = path.dentry->d_inode; 1898 nd->seq = seq; 1899 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1900 return ERR_PTR(-ECHILD); 1901 /* we know that mountpoint was pinned */ 1902 } 1903 old = nd->path.dentry; 1904 parent = old->d_parent; 1905 *inodep = parent->d_inode; 1906 *seqp = read_seqcount_begin(&parent->d_seq); 1907 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1908 return ERR_PTR(-ECHILD); 1909 if (unlikely(!path_connected(nd->path.mnt, parent))) 1910 return ERR_PTR(-ECHILD); 1911 return parent; 1912 in_root: 1913 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1914 return ERR_PTR(-ECHILD); 1915 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1916 return ERR_PTR(-ECHILD); 1917 return NULL; 1918 } 1919 1920 static struct dentry *follow_dotdot(struct nameidata *nd, 1921 struct inode **inodep, 1922 unsigned *seqp) 1923 { 1924 struct dentry *parent; 1925 1926 if (path_equal(&nd->path, &nd->root)) 1927 goto in_root; 1928 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1929 struct path path; 1930 1931 if (!choose_mountpoint(real_mount(nd->path.mnt), 1932 &nd->root, &path)) 1933 goto in_root; 1934 path_put(&nd->path); 1935 nd->path = path; 1936 nd->inode = path.dentry->d_inode; 1937 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1938 return ERR_PTR(-EXDEV); 1939 } 1940 /* rare case of legitimate dget_parent()... */ 1941 parent = dget_parent(nd->path.dentry); 1942 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1943 dput(parent); 1944 return ERR_PTR(-ENOENT); 1945 } 1946 *seqp = 0; 1947 *inodep = parent->d_inode; 1948 return parent; 1949 1950 in_root: 1951 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1952 return ERR_PTR(-EXDEV); 1953 dget(nd->path.dentry); 1954 return NULL; 1955 } 1956 1957 static const char *handle_dots(struct nameidata *nd, int type) 1958 { 1959 if (type == LAST_DOTDOT) { 1960 const char *error = NULL; 1961 struct dentry *parent; 1962 struct inode *inode; 1963 unsigned seq; 1964 1965 if (!nd->root.mnt) { 1966 error = ERR_PTR(set_root(nd)); 1967 if (error) 1968 return error; 1969 } 1970 if (nd->flags & LOOKUP_RCU) 1971 parent = follow_dotdot_rcu(nd, &inode, &seq); 1972 else 1973 parent = follow_dotdot(nd, &inode, &seq); 1974 if (IS_ERR(parent)) 1975 return ERR_CAST(parent); 1976 if (unlikely(!parent)) 1977 error = step_into(nd, WALK_NOFOLLOW, 1978 nd->path.dentry, nd->inode, nd->seq); 1979 else 1980 error = step_into(nd, WALK_NOFOLLOW, 1981 parent, inode, seq); 1982 if (unlikely(error)) 1983 return error; 1984 1985 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1986 /* 1987 * If there was a racing rename or mount along our 1988 * path, then we can't be sure that ".." hasn't jumped 1989 * above nd->root (and so userspace should retry or use 1990 * some fallback). 1991 */ 1992 smp_rmb(); 1993 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1994 return ERR_PTR(-EAGAIN); 1995 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1996 return ERR_PTR(-EAGAIN); 1997 } 1998 } 1999 return NULL; 2000 } 2001 2002 static const char *walk_component(struct nameidata *nd, int flags) 2003 { 2004 struct dentry *dentry; 2005 struct inode *inode; 2006 unsigned seq; 2007 /* 2008 * "." and ".." are special - ".." especially so because it has 2009 * to be able to know about the current root directory and 2010 * parent relationships. 2011 */ 2012 if (unlikely(nd->last_type != LAST_NORM)) { 2013 if (!(flags & WALK_MORE) && nd->depth) 2014 put_link(nd); 2015 return handle_dots(nd, nd->last_type); 2016 } 2017 dentry = lookup_fast(nd, &inode, &seq); 2018 if (IS_ERR(dentry)) 2019 return ERR_CAST(dentry); 2020 if (unlikely(!dentry)) { 2021 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2022 if (IS_ERR(dentry)) 2023 return ERR_CAST(dentry); 2024 } 2025 if (!(flags & WALK_MORE) && nd->depth) 2026 put_link(nd); 2027 return step_into(nd, flags, dentry, inode, seq); 2028 } 2029 2030 /* 2031 * We can do the critical dentry name comparison and hashing 2032 * operations one word at a time, but we are limited to: 2033 * 2034 * - Architectures with fast unaligned word accesses. We could 2035 * do a "get_unaligned()" if this helps and is sufficiently 2036 * fast. 2037 * 2038 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2039 * do not trap on the (extremely unlikely) case of a page 2040 * crossing operation. 2041 * 2042 * - Furthermore, we need an efficient 64-bit compile for the 2043 * 64-bit case in order to generate the "number of bytes in 2044 * the final mask". Again, that could be replaced with a 2045 * efficient population count instruction or similar. 2046 */ 2047 #ifdef CONFIG_DCACHE_WORD_ACCESS 2048 2049 #include <asm/word-at-a-time.h> 2050 2051 #ifdef HASH_MIX 2052 2053 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2054 2055 #elif defined(CONFIG_64BIT) 2056 /* 2057 * Register pressure in the mixing function is an issue, particularly 2058 * on 32-bit x86, but almost any function requires one state value and 2059 * one temporary. Instead, use a function designed for two state values 2060 * and no temporaries. 2061 * 2062 * This function cannot create a collision in only two iterations, so 2063 * we have two iterations to achieve avalanche. In those two iterations, 2064 * we have six layers of mixing, which is enough to spread one bit's 2065 * influence out to 2^6 = 64 state bits. 2066 * 2067 * Rotate constants are scored by considering either 64 one-bit input 2068 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2069 * probability of that delta causing a change to each of the 128 output 2070 * bits, using a sample of random initial states. 2071 * 2072 * The Shannon entropy of the computed probabilities is then summed 2073 * to produce a score. Ideally, any input change has a 50% chance of 2074 * toggling any given output bit. 2075 * 2076 * Mixing scores (in bits) for (12,45): 2077 * Input delta: 1-bit 2-bit 2078 * 1 round: 713.3 42542.6 2079 * 2 rounds: 2753.7 140389.8 2080 * 3 rounds: 5954.1 233458.2 2081 * 4 rounds: 7862.6 256672.2 2082 * Perfect: 8192 258048 2083 * (64*128) (64*63/2 * 128) 2084 */ 2085 #define HASH_MIX(x, y, a) \ 2086 ( x ^= (a), \ 2087 y ^= x, x = rol64(x,12),\ 2088 x += y, y = rol64(y,45),\ 2089 y *= 9 ) 2090 2091 /* 2092 * Fold two longs into one 32-bit hash value. This must be fast, but 2093 * latency isn't quite as critical, as there is a fair bit of additional 2094 * work done before the hash value is used. 2095 */ 2096 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2097 { 2098 y ^= x * GOLDEN_RATIO_64; 2099 y *= GOLDEN_RATIO_64; 2100 return y >> 32; 2101 } 2102 2103 #else /* 32-bit case */ 2104 2105 /* 2106 * Mixing scores (in bits) for (7,20): 2107 * Input delta: 1-bit 2-bit 2108 * 1 round: 330.3 9201.6 2109 * 2 rounds: 1246.4 25475.4 2110 * 3 rounds: 1907.1 31295.1 2111 * 4 rounds: 2042.3 31718.6 2112 * Perfect: 2048 31744 2113 * (32*64) (32*31/2 * 64) 2114 */ 2115 #define HASH_MIX(x, y, a) \ 2116 ( x ^= (a), \ 2117 y ^= x, x = rol32(x, 7),\ 2118 x += y, y = rol32(y,20),\ 2119 y *= 9 ) 2120 2121 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2122 { 2123 /* Use arch-optimized multiply if one exists */ 2124 return __hash_32(y ^ __hash_32(x)); 2125 } 2126 2127 #endif 2128 2129 /* 2130 * Return the hash of a string of known length. This is carfully 2131 * designed to match hash_name(), which is the more critical function. 2132 * In particular, we must end by hashing a final word containing 0..7 2133 * payload bytes, to match the way that hash_name() iterates until it 2134 * finds the delimiter after the name. 2135 */ 2136 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2137 { 2138 unsigned long a, x = 0, y = (unsigned long)salt; 2139 2140 for (;;) { 2141 if (!len) 2142 goto done; 2143 a = load_unaligned_zeropad(name); 2144 if (len < sizeof(unsigned long)) 2145 break; 2146 HASH_MIX(x, y, a); 2147 name += sizeof(unsigned long); 2148 len -= sizeof(unsigned long); 2149 } 2150 x ^= a & bytemask_from_count(len); 2151 done: 2152 return fold_hash(x, y); 2153 } 2154 EXPORT_SYMBOL(full_name_hash); 2155 2156 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2157 u64 hashlen_string(const void *salt, const char *name) 2158 { 2159 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2160 unsigned long adata, mask, len; 2161 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2162 2163 len = 0; 2164 goto inside; 2165 2166 do { 2167 HASH_MIX(x, y, a); 2168 len += sizeof(unsigned long); 2169 inside: 2170 a = load_unaligned_zeropad(name+len); 2171 } while (!has_zero(a, &adata, &constants)); 2172 2173 adata = prep_zero_mask(a, adata, &constants); 2174 mask = create_zero_mask(adata); 2175 x ^= a & zero_bytemask(mask); 2176 2177 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2178 } 2179 EXPORT_SYMBOL(hashlen_string); 2180 2181 /* 2182 * Calculate the length and hash of the path component, and 2183 * return the "hash_len" as the result. 2184 */ 2185 static inline u64 hash_name(const void *salt, const char *name) 2186 { 2187 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2188 unsigned long adata, bdata, mask, len; 2189 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2190 2191 len = 0; 2192 goto inside; 2193 2194 do { 2195 HASH_MIX(x, y, a); 2196 len += sizeof(unsigned long); 2197 inside: 2198 a = load_unaligned_zeropad(name+len); 2199 b = a ^ REPEAT_BYTE('/'); 2200 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2201 2202 adata = prep_zero_mask(a, adata, &constants); 2203 bdata = prep_zero_mask(b, bdata, &constants); 2204 mask = create_zero_mask(adata | bdata); 2205 x ^= a & zero_bytemask(mask); 2206 2207 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2208 } 2209 2210 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2211 2212 /* Return the hash of a string of known length */ 2213 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2214 { 2215 unsigned long hash = init_name_hash(salt); 2216 while (len--) 2217 hash = partial_name_hash((unsigned char)*name++, hash); 2218 return end_name_hash(hash); 2219 } 2220 EXPORT_SYMBOL(full_name_hash); 2221 2222 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2223 u64 hashlen_string(const void *salt, const char *name) 2224 { 2225 unsigned long hash = init_name_hash(salt); 2226 unsigned long len = 0, c; 2227 2228 c = (unsigned char)*name; 2229 while (c) { 2230 len++; 2231 hash = partial_name_hash(c, hash); 2232 c = (unsigned char)name[len]; 2233 } 2234 return hashlen_create(end_name_hash(hash), len); 2235 } 2236 EXPORT_SYMBOL(hashlen_string); 2237 2238 /* 2239 * We know there's a real path component here of at least 2240 * one character. 2241 */ 2242 static inline u64 hash_name(const void *salt, const char *name) 2243 { 2244 unsigned long hash = init_name_hash(salt); 2245 unsigned long len = 0, c; 2246 2247 c = (unsigned char)*name; 2248 do { 2249 len++; 2250 hash = partial_name_hash(c, hash); 2251 c = (unsigned char)name[len]; 2252 } while (c && c != '/'); 2253 return hashlen_create(end_name_hash(hash), len); 2254 } 2255 2256 #endif 2257 2258 /* 2259 * Name resolution. 2260 * This is the basic name resolution function, turning a pathname into 2261 * the final dentry. We expect 'base' to be positive and a directory. 2262 * 2263 * Returns 0 and nd will have valid dentry and mnt on success. 2264 * Returns error and drops reference to input namei data on failure. 2265 */ 2266 static int link_path_walk(const char *name, struct nameidata *nd) 2267 { 2268 int depth = 0; // depth <= nd->depth 2269 int err; 2270 2271 nd->last_type = LAST_ROOT; 2272 nd->flags |= LOOKUP_PARENT; 2273 if (IS_ERR(name)) 2274 return PTR_ERR(name); 2275 while (*name=='/') 2276 name++; 2277 if (!*name) { 2278 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2279 return 0; 2280 } 2281 2282 /* At this point we know we have a real path component. */ 2283 for(;;) { 2284 struct user_namespace *mnt_userns; 2285 const char *link; 2286 u64 hash_len; 2287 int type; 2288 2289 mnt_userns = mnt_user_ns(nd->path.mnt); 2290 err = may_lookup(mnt_userns, nd); 2291 if (err) 2292 return err; 2293 2294 hash_len = hash_name(nd->path.dentry, name); 2295 2296 type = LAST_NORM; 2297 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2298 case 2: 2299 if (name[1] == '.') { 2300 type = LAST_DOTDOT; 2301 nd->state |= ND_JUMPED; 2302 } 2303 break; 2304 case 1: 2305 type = LAST_DOT; 2306 } 2307 if (likely(type == LAST_NORM)) { 2308 struct dentry *parent = nd->path.dentry; 2309 nd->state &= ~ND_JUMPED; 2310 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2311 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2312 err = parent->d_op->d_hash(parent, &this); 2313 if (err < 0) 2314 return err; 2315 hash_len = this.hash_len; 2316 name = this.name; 2317 } 2318 } 2319 2320 nd->last.hash_len = hash_len; 2321 nd->last.name = name; 2322 nd->last_type = type; 2323 2324 name += hashlen_len(hash_len); 2325 if (!*name) 2326 goto OK; 2327 /* 2328 * If it wasn't NUL, we know it was '/'. Skip that 2329 * slash, and continue until no more slashes. 2330 */ 2331 do { 2332 name++; 2333 } while (unlikely(*name == '/')); 2334 if (unlikely(!*name)) { 2335 OK: 2336 /* pathname or trailing symlink, done */ 2337 if (!depth) { 2338 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2339 nd->dir_mode = nd->inode->i_mode; 2340 nd->flags &= ~LOOKUP_PARENT; 2341 return 0; 2342 } 2343 /* last component of nested symlink */ 2344 name = nd->stack[--depth].name; 2345 link = walk_component(nd, 0); 2346 } else { 2347 /* not the last component */ 2348 link = walk_component(nd, WALK_MORE); 2349 } 2350 if (unlikely(link)) { 2351 if (IS_ERR(link)) 2352 return PTR_ERR(link); 2353 /* a symlink to follow */ 2354 nd->stack[depth++].name = name; 2355 name = link; 2356 continue; 2357 } 2358 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2359 if (nd->flags & LOOKUP_RCU) { 2360 if (!try_to_unlazy(nd)) 2361 return -ECHILD; 2362 } 2363 return -ENOTDIR; 2364 } 2365 } 2366 } 2367 2368 /* must be paired with terminate_walk() */ 2369 static const char *path_init(struct nameidata *nd, unsigned flags) 2370 { 2371 int error; 2372 const char *s = nd->name->name; 2373 2374 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2375 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2376 return ERR_PTR(-EAGAIN); 2377 2378 if (!*s) 2379 flags &= ~LOOKUP_RCU; 2380 if (flags & LOOKUP_RCU) 2381 rcu_read_lock(); 2382 2383 nd->flags = flags; 2384 nd->state |= ND_JUMPED; 2385 2386 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2387 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2388 smp_rmb(); 2389 2390 if (nd->state & ND_ROOT_PRESET) { 2391 struct dentry *root = nd->root.dentry; 2392 struct inode *inode = root->d_inode; 2393 if (*s && unlikely(!d_can_lookup(root))) 2394 return ERR_PTR(-ENOTDIR); 2395 nd->path = nd->root; 2396 nd->inode = inode; 2397 if (flags & LOOKUP_RCU) { 2398 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2399 nd->root_seq = nd->seq; 2400 } else { 2401 path_get(&nd->path); 2402 } 2403 return s; 2404 } 2405 2406 nd->root.mnt = NULL; 2407 2408 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2409 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2410 error = nd_jump_root(nd); 2411 if (unlikely(error)) 2412 return ERR_PTR(error); 2413 return s; 2414 } 2415 2416 /* Relative pathname -- get the starting-point it is relative to. */ 2417 if (nd->dfd == AT_FDCWD) { 2418 if (flags & LOOKUP_RCU) { 2419 struct fs_struct *fs = current->fs; 2420 unsigned seq; 2421 2422 do { 2423 seq = read_seqcount_begin(&fs->seq); 2424 nd->path = fs->pwd; 2425 nd->inode = nd->path.dentry->d_inode; 2426 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2427 } while (read_seqcount_retry(&fs->seq, seq)); 2428 } else { 2429 get_fs_pwd(current->fs, &nd->path); 2430 nd->inode = nd->path.dentry->d_inode; 2431 } 2432 } else { 2433 /* Caller must check execute permissions on the starting path component */ 2434 struct fd f = fdget_raw(nd->dfd); 2435 struct dentry *dentry; 2436 2437 if (!f.file) 2438 return ERR_PTR(-EBADF); 2439 2440 dentry = f.file->f_path.dentry; 2441 2442 if (*s && unlikely(!d_can_lookup(dentry))) { 2443 fdput(f); 2444 return ERR_PTR(-ENOTDIR); 2445 } 2446 2447 nd->path = f.file->f_path; 2448 if (flags & LOOKUP_RCU) { 2449 nd->inode = nd->path.dentry->d_inode; 2450 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2451 } else { 2452 path_get(&nd->path); 2453 nd->inode = nd->path.dentry->d_inode; 2454 } 2455 fdput(f); 2456 } 2457 2458 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2459 if (flags & LOOKUP_IS_SCOPED) { 2460 nd->root = nd->path; 2461 if (flags & LOOKUP_RCU) { 2462 nd->root_seq = nd->seq; 2463 } else { 2464 path_get(&nd->root); 2465 nd->state |= ND_ROOT_GRABBED; 2466 } 2467 } 2468 return s; 2469 } 2470 2471 static inline const char *lookup_last(struct nameidata *nd) 2472 { 2473 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2474 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2475 2476 return walk_component(nd, WALK_TRAILING); 2477 } 2478 2479 static int handle_lookup_down(struct nameidata *nd) 2480 { 2481 if (!(nd->flags & LOOKUP_RCU)) 2482 dget(nd->path.dentry); 2483 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2484 nd->path.dentry, nd->inode, nd->seq)); 2485 } 2486 2487 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2488 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2489 { 2490 const char *s = path_init(nd, flags); 2491 int err; 2492 2493 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2494 err = handle_lookup_down(nd); 2495 if (unlikely(err < 0)) 2496 s = ERR_PTR(err); 2497 } 2498 2499 while (!(err = link_path_walk(s, nd)) && 2500 (s = lookup_last(nd)) != NULL) 2501 ; 2502 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2503 err = handle_lookup_down(nd); 2504 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2505 } 2506 if (!err) 2507 err = complete_walk(nd); 2508 2509 if (!err && nd->flags & LOOKUP_DIRECTORY) 2510 if (!d_can_lookup(nd->path.dentry)) 2511 err = -ENOTDIR; 2512 if (!err) { 2513 *path = nd->path; 2514 nd->path.mnt = NULL; 2515 nd->path.dentry = NULL; 2516 } 2517 terminate_walk(nd); 2518 return err; 2519 } 2520 2521 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2522 struct path *path, struct path *root) 2523 { 2524 int retval; 2525 struct nameidata nd; 2526 if (IS_ERR(name)) 2527 return PTR_ERR(name); 2528 set_nameidata(&nd, dfd, name, root); 2529 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2530 if (unlikely(retval == -ECHILD)) 2531 retval = path_lookupat(&nd, flags, path); 2532 if (unlikely(retval == -ESTALE)) 2533 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2534 2535 if (likely(!retval)) 2536 audit_inode(name, path->dentry, 2537 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2538 restore_nameidata(); 2539 return retval; 2540 } 2541 2542 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2543 static int path_parentat(struct nameidata *nd, unsigned flags, 2544 struct path *parent) 2545 { 2546 const char *s = path_init(nd, flags); 2547 int err = link_path_walk(s, nd); 2548 if (!err) 2549 err = complete_walk(nd); 2550 if (!err) { 2551 *parent = nd->path; 2552 nd->path.mnt = NULL; 2553 nd->path.dentry = NULL; 2554 } 2555 terminate_walk(nd); 2556 return err; 2557 } 2558 2559 /* Note: this does not consume "name" */ 2560 static int filename_parentat(int dfd, struct filename *name, 2561 unsigned int flags, struct path *parent, 2562 struct qstr *last, int *type) 2563 { 2564 int retval; 2565 struct nameidata nd; 2566 2567 if (IS_ERR(name)) 2568 return PTR_ERR(name); 2569 set_nameidata(&nd, dfd, name, NULL); 2570 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2571 if (unlikely(retval == -ECHILD)) 2572 retval = path_parentat(&nd, flags, parent); 2573 if (unlikely(retval == -ESTALE)) 2574 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2575 if (likely(!retval)) { 2576 *last = nd.last; 2577 *type = nd.last_type; 2578 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2579 } 2580 restore_nameidata(); 2581 return retval; 2582 } 2583 2584 /* does lookup, returns the object with parent locked */ 2585 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2586 { 2587 struct dentry *d; 2588 struct qstr last; 2589 int type, error; 2590 2591 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2592 if (error) 2593 return ERR_PTR(error); 2594 if (unlikely(type != LAST_NORM)) { 2595 path_put(path); 2596 return ERR_PTR(-EINVAL); 2597 } 2598 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2599 d = __lookup_hash(&last, path->dentry, 0); 2600 if (IS_ERR(d)) { 2601 inode_unlock(path->dentry->d_inode); 2602 path_put(path); 2603 } 2604 return d; 2605 } 2606 2607 struct dentry *kern_path_locked(const char *name, struct path *path) 2608 { 2609 struct filename *filename = getname_kernel(name); 2610 struct dentry *res = __kern_path_locked(filename, path); 2611 2612 putname(filename); 2613 return res; 2614 } 2615 2616 int kern_path(const char *name, unsigned int flags, struct path *path) 2617 { 2618 struct filename *filename = getname_kernel(name); 2619 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2620 2621 putname(filename); 2622 return ret; 2623 2624 } 2625 EXPORT_SYMBOL(kern_path); 2626 2627 /** 2628 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2629 * @dentry: pointer to dentry of the base directory 2630 * @mnt: pointer to vfs mount of the base directory 2631 * @name: pointer to file name 2632 * @flags: lookup flags 2633 * @path: pointer to struct path to fill 2634 */ 2635 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2636 const char *name, unsigned int flags, 2637 struct path *path) 2638 { 2639 struct filename *filename; 2640 struct path root = {.mnt = mnt, .dentry = dentry}; 2641 int ret; 2642 2643 filename = getname_kernel(name); 2644 /* the first argument of filename_lookup() is ignored with root */ 2645 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2646 putname(filename); 2647 return ret; 2648 } 2649 EXPORT_SYMBOL(vfs_path_lookup); 2650 2651 static int lookup_one_common(struct user_namespace *mnt_userns, 2652 const char *name, struct dentry *base, int len, 2653 struct qstr *this) 2654 { 2655 this->name = name; 2656 this->len = len; 2657 this->hash = full_name_hash(base, name, len); 2658 if (!len) 2659 return -EACCES; 2660 2661 if (unlikely(name[0] == '.')) { 2662 if (len < 2 || (len == 2 && name[1] == '.')) 2663 return -EACCES; 2664 } 2665 2666 while (len--) { 2667 unsigned int c = *(const unsigned char *)name++; 2668 if (c == '/' || c == '\0') 2669 return -EACCES; 2670 } 2671 /* 2672 * See if the low-level filesystem might want 2673 * to use its own hash.. 2674 */ 2675 if (base->d_flags & DCACHE_OP_HASH) { 2676 int err = base->d_op->d_hash(base, this); 2677 if (err < 0) 2678 return err; 2679 } 2680 2681 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC); 2682 } 2683 2684 /** 2685 * try_lookup_one_len - filesystem helper to lookup single pathname component 2686 * @name: pathname component to lookup 2687 * @base: base directory to lookup from 2688 * @len: maximum length @len should be interpreted to 2689 * 2690 * Look up a dentry by name in the dcache, returning NULL if it does not 2691 * currently exist. The function does not try to create a dentry. 2692 * 2693 * Note that this routine is purely a helper for filesystem usage and should 2694 * not be called by generic code. 2695 * 2696 * The caller must hold base->i_mutex. 2697 */ 2698 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2699 { 2700 struct qstr this; 2701 int err; 2702 2703 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2704 2705 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2706 if (err) 2707 return ERR_PTR(err); 2708 2709 return lookup_dcache(&this, base, 0); 2710 } 2711 EXPORT_SYMBOL(try_lookup_one_len); 2712 2713 /** 2714 * lookup_one_len - filesystem helper to lookup single pathname component 2715 * @name: pathname component to lookup 2716 * @base: base directory to lookup from 2717 * @len: maximum length @len should be interpreted to 2718 * 2719 * Note that this routine is purely a helper for filesystem usage and should 2720 * not be called by generic code. 2721 * 2722 * The caller must hold base->i_mutex. 2723 */ 2724 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2725 { 2726 struct dentry *dentry; 2727 struct qstr this; 2728 int err; 2729 2730 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2731 2732 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2733 if (err) 2734 return ERR_PTR(err); 2735 2736 dentry = lookup_dcache(&this, base, 0); 2737 return dentry ? dentry : __lookup_slow(&this, base, 0); 2738 } 2739 EXPORT_SYMBOL(lookup_one_len); 2740 2741 /** 2742 * lookup_one - filesystem helper to lookup single pathname component 2743 * @mnt_userns: user namespace of the mount the lookup is performed from 2744 * @name: pathname component to lookup 2745 * @base: base directory to lookup from 2746 * @len: maximum length @len should be interpreted to 2747 * 2748 * Note that this routine is purely a helper for filesystem usage and should 2749 * not be called by generic code. 2750 * 2751 * The caller must hold base->i_mutex. 2752 */ 2753 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name, 2754 struct dentry *base, int len) 2755 { 2756 struct dentry *dentry; 2757 struct qstr this; 2758 int err; 2759 2760 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2761 2762 err = lookup_one_common(mnt_userns, name, base, len, &this); 2763 if (err) 2764 return ERR_PTR(err); 2765 2766 dentry = lookup_dcache(&this, base, 0); 2767 return dentry ? dentry : __lookup_slow(&this, base, 0); 2768 } 2769 EXPORT_SYMBOL(lookup_one); 2770 2771 /** 2772 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2773 * @mnt_userns: idmapping of the mount the lookup is performed from 2774 * @name: pathname component to lookup 2775 * @base: base directory to lookup from 2776 * @len: maximum length @len should be interpreted to 2777 * 2778 * Note that this routine is purely a helper for filesystem usage and should 2779 * not be called by generic code. 2780 * 2781 * Unlike lookup_one_len, it should be called without the parent 2782 * i_mutex held, and will take the i_mutex itself if necessary. 2783 */ 2784 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns, 2785 const char *name, struct dentry *base, 2786 int len) 2787 { 2788 struct qstr this; 2789 int err; 2790 struct dentry *ret; 2791 2792 err = lookup_one_common(mnt_userns, name, base, len, &this); 2793 if (err) 2794 return ERR_PTR(err); 2795 2796 ret = lookup_dcache(&this, base, 0); 2797 if (!ret) 2798 ret = lookup_slow(&this, base, 0); 2799 return ret; 2800 } 2801 EXPORT_SYMBOL(lookup_one_unlocked); 2802 2803 /** 2804 * lookup_one_positive_unlocked - filesystem helper to lookup single 2805 * pathname component 2806 * @mnt_userns: idmapping of the mount the lookup is performed from 2807 * @name: pathname component to lookup 2808 * @base: base directory to lookup from 2809 * @len: maximum length @len should be interpreted to 2810 * 2811 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2812 * known positive or ERR_PTR(). This is what most of the users want. 2813 * 2814 * Note that pinned negative with unlocked parent _can_ become positive at any 2815 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2816 * positives have >d_inode stable, so this one avoids such problems. 2817 * 2818 * Note that this routine is purely a helper for filesystem usage and should 2819 * not be called by generic code. 2820 * 2821 * The helper should be called without i_mutex held. 2822 */ 2823 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns, 2824 const char *name, 2825 struct dentry *base, int len) 2826 { 2827 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len); 2828 2829 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2830 dput(ret); 2831 ret = ERR_PTR(-ENOENT); 2832 } 2833 return ret; 2834 } 2835 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2836 2837 /** 2838 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2839 * @name: pathname component to lookup 2840 * @base: base directory to lookup from 2841 * @len: maximum length @len should be interpreted to 2842 * 2843 * Note that this routine is purely a helper for filesystem usage and should 2844 * not be called by generic code. 2845 * 2846 * Unlike lookup_one_len, it should be called without the parent 2847 * i_mutex held, and will take the i_mutex itself if necessary. 2848 */ 2849 struct dentry *lookup_one_len_unlocked(const char *name, 2850 struct dentry *base, int len) 2851 { 2852 return lookup_one_unlocked(&init_user_ns, name, base, len); 2853 } 2854 EXPORT_SYMBOL(lookup_one_len_unlocked); 2855 2856 /* 2857 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2858 * on negatives. Returns known positive or ERR_PTR(); that's what 2859 * most of the users want. Note that pinned negative with unlocked parent 2860 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2861 * need to be very careful; pinned positives have ->d_inode stable, so 2862 * this one avoids such problems. 2863 */ 2864 struct dentry *lookup_positive_unlocked(const char *name, 2865 struct dentry *base, int len) 2866 { 2867 return lookup_one_positive_unlocked(&init_user_ns, name, base, len); 2868 } 2869 EXPORT_SYMBOL(lookup_positive_unlocked); 2870 2871 #ifdef CONFIG_UNIX98_PTYS 2872 int path_pts(struct path *path) 2873 { 2874 /* Find something mounted on "pts" in the same directory as 2875 * the input path. 2876 */ 2877 struct dentry *parent = dget_parent(path->dentry); 2878 struct dentry *child; 2879 struct qstr this = QSTR_INIT("pts", 3); 2880 2881 if (unlikely(!path_connected(path->mnt, parent))) { 2882 dput(parent); 2883 return -ENOENT; 2884 } 2885 dput(path->dentry); 2886 path->dentry = parent; 2887 child = d_hash_and_lookup(parent, &this); 2888 if (!child) 2889 return -ENOENT; 2890 2891 path->dentry = child; 2892 dput(parent); 2893 follow_down(path); 2894 return 0; 2895 } 2896 #endif 2897 2898 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2899 struct path *path, int *empty) 2900 { 2901 struct filename *filename = getname_flags(name, flags, empty); 2902 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2903 2904 putname(filename); 2905 return ret; 2906 } 2907 EXPORT_SYMBOL(user_path_at_empty); 2908 2909 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2910 struct inode *inode) 2911 { 2912 kuid_t fsuid = current_fsuid(); 2913 2914 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2915 return 0; 2916 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2917 return 0; 2918 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2919 } 2920 EXPORT_SYMBOL(__check_sticky); 2921 2922 /* 2923 * Check whether we can remove a link victim from directory dir, check 2924 * whether the type of victim is right. 2925 * 1. We can't do it if dir is read-only (done in permission()) 2926 * 2. We should have write and exec permissions on dir 2927 * 3. We can't remove anything from append-only dir 2928 * 4. We can't do anything with immutable dir (done in permission()) 2929 * 5. If the sticky bit on dir is set we should either 2930 * a. be owner of dir, or 2931 * b. be owner of victim, or 2932 * c. have CAP_FOWNER capability 2933 * 6. If the victim is append-only or immutable we can't do antyhing with 2934 * links pointing to it. 2935 * 7. If the victim has an unknown uid or gid we can't change the inode. 2936 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2937 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2938 * 10. We can't remove a root or mountpoint. 2939 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2940 * nfs_async_unlink(). 2941 */ 2942 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2943 struct dentry *victim, bool isdir) 2944 { 2945 struct inode *inode = d_backing_inode(victim); 2946 int error; 2947 2948 if (d_is_negative(victim)) 2949 return -ENOENT; 2950 BUG_ON(!inode); 2951 2952 BUG_ON(victim->d_parent->d_inode != dir); 2953 2954 /* Inode writeback is not safe when the uid or gid are invalid. */ 2955 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2956 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2957 return -EOVERFLOW; 2958 2959 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2960 2961 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2962 if (error) 2963 return error; 2964 if (IS_APPEND(dir)) 2965 return -EPERM; 2966 2967 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2968 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2969 HAS_UNMAPPED_ID(mnt_userns, inode)) 2970 return -EPERM; 2971 if (isdir) { 2972 if (!d_is_dir(victim)) 2973 return -ENOTDIR; 2974 if (IS_ROOT(victim)) 2975 return -EBUSY; 2976 } else if (d_is_dir(victim)) 2977 return -EISDIR; 2978 if (IS_DEADDIR(dir)) 2979 return -ENOENT; 2980 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2981 return -EBUSY; 2982 return 0; 2983 } 2984 2985 /* Check whether we can create an object with dentry child in directory 2986 * dir. 2987 * 1. We can't do it if child already exists (open has special treatment for 2988 * this case, but since we are inlined it's OK) 2989 * 2. We can't do it if dir is read-only (done in permission()) 2990 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2991 * 4. We should have write and exec permissions on dir 2992 * 5. We can't do it if dir is immutable (done in permission()) 2993 */ 2994 static inline int may_create(struct user_namespace *mnt_userns, 2995 struct inode *dir, struct dentry *child) 2996 { 2997 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2998 if (child->d_inode) 2999 return -EEXIST; 3000 if (IS_DEADDIR(dir)) 3001 return -ENOENT; 3002 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 3003 return -EOVERFLOW; 3004 3005 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3006 } 3007 3008 /* 3009 * p1 and p2 should be directories on the same fs. 3010 */ 3011 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3012 { 3013 struct dentry *p; 3014 3015 if (p1 == p2) { 3016 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3017 return NULL; 3018 } 3019 3020 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3021 3022 p = d_ancestor(p2, p1); 3023 if (p) { 3024 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3025 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 3026 return p; 3027 } 3028 3029 p = d_ancestor(p1, p2); 3030 if (p) { 3031 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3032 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 3033 return p; 3034 } 3035 3036 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3037 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3038 return NULL; 3039 } 3040 EXPORT_SYMBOL(lock_rename); 3041 3042 void unlock_rename(struct dentry *p1, struct dentry *p2) 3043 { 3044 inode_unlock(p1->d_inode); 3045 if (p1 != p2) { 3046 inode_unlock(p2->d_inode); 3047 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3048 } 3049 } 3050 EXPORT_SYMBOL(unlock_rename); 3051 3052 /** 3053 * vfs_create - create new file 3054 * @mnt_userns: user namespace of the mount the inode was found from 3055 * @dir: inode of @dentry 3056 * @dentry: pointer to dentry of the base directory 3057 * @mode: mode of the new file 3058 * @want_excl: whether the file must not yet exist 3059 * 3060 * Create a new file. 3061 * 3062 * If the inode has been found through an idmapped mount the user namespace of 3063 * the vfsmount must be passed through @mnt_userns. This function will then take 3064 * care to map the inode according to @mnt_userns before checking permissions. 3065 * On non-idmapped mounts or if permission checking is to be performed on the 3066 * raw inode simply passs init_user_ns. 3067 */ 3068 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 3069 struct dentry *dentry, umode_t mode, bool want_excl) 3070 { 3071 int error = may_create(mnt_userns, dir, dentry); 3072 if (error) 3073 return error; 3074 3075 if (!dir->i_op->create) 3076 return -EACCES; /* shouldn't it be ENOSYS? */ 3077 mode &= S_IALLUGO; 3078 mode |= S_IFREG; 3079 error = security_inode_create(dir, dentry, mode); 3080 if (error) 3081 return error; 3082 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 3083 if (!error) 3084 fsnotify_create(dir, dentry); 3085 return error; 3086 } 3087 EXPORT_SYMBOL(vfs_create); 3088 3089 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3090 int (*f)(struct dentry *, umode_t, void *), 3091 void *arg) 3092 { 3093 struct inode *dir = dentry->d_parent->d_inode; 3094 int error = may_create(&init_user_ns, dir, dentry); 3095 if (error) 3096 return error; 3097 3098 mode &= S_IALLUGO; 3099 mode |= S_IFREG; 3100 error = security_inode_create(dir, dentry, mode); 3101 if (error) 3102 return error; 3103 error = f(dentry, mode, arg); 3104 if (!error) 3105 fsnotify_create(dir, dentry); 3106 return error; 3107 } 3108 EXPORT_SYMBOL(vfs_mkobj); 3109 3110 bool may_open_dev(const struct path *path) 3111 { 3112 return !(path->mnt->mnt_flags & MNT_NODEV) && 3113 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3114 } 3115 3116 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 3117 int acc_mode, int flag) 3118 { 3119 struct dentry *dentry = path->dentry; 3120 struct inode *inode = dentry->d_inode; 3121 int error; 3122 3123 if (!inode) 3124 return -ENOENT; 3125 3126 switch (inode->i_mode & S_IFMT) { 3127 case S_IFLNK: 3128 return -ELOOP; 3129 case S_IFDIR: 3130 if (acc_mode & MAY_WRITE) 3131 return -EISDIR; 3132 if (acc_mode & MAY_EXEC) 3133 return -EACCES; 3134 break; 3135 case S_IFBLK: 3136 case S_IFCHR: 3137 if (!may_open_dev(path)) 3138 return -EACCES; 3139 fallthrough; 3140 case S_IFIFO: 3141 case S_IFSOCK: 3142 if (acc_mode & MAY_EXEC) 3143 return -EACCES; 3144 flag &= ~O_TRUNC; 3145 break; 3146 case S_IFREG: 3147 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3148 return -EACCES; 3149 break; 3150 } 3151 3152 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 3153 if (error) 3154 return error; 3155 3156 /* 3157 * An append-only file must be opened in append mode for writing. 3158 */ 3159 if (IS_APPEND(inode)) { 3160 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3161 return -EPERM; 3162 if (flag & O_TRUNC) 3163 return -EPERM; 3164 } 3165 3166 /* O_NOATIME can only be set by the owner or superuser */ 3167 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3168 return -EPERM; 3169 3170 return 0; 3171 } 3172 3173 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3174 { 3175 const struct path *path = &filp->f_path; 3176 struct inode *inode = path->dentry->d_inode; 3177 int error = get_write_access(inode); 3178 if (error) 3179 return error; 3180 3181 error = security_path_truncate(path); 3182 if (!error) { 3183 error = do_truncate(mnt_userns, path->dentry, 0, 3184 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3185 filp); 3186 } 3187 put_write_access(inode); 3188 return error; 3189 } 3190 3191 static inline int open_to_namei_flags(int flag) 3192 { 3193 if ((flag & O_ACCMODE) == 3) 3194 flag--; 3195 return flag; 3196 } 3197 3198 static int may_o_create(struct user_namespace *mnt_userns, 3199 const struct path *dir, struct dentry *dentry, 3200 umode_t mode) 3201 { 3202 int error = security_path_mknod(dir, dentry, mode, 0); 3203 if (error) 3204 return error; 3205 3206 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3207 return -EOVERFLOW; 3208 3209 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3210 MAY_WRITE | MAY_EXEC); 3211 if (error) 3212 return error; 3213 3214 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3215 } 3216 3217 /* 3218 * Attempt to atomically look up, create and open a file from a negative 3219 * dentry. 3220 * 3221 * Returns 0 if successful. The file will have been created and attached to 3222 * @file by the filesystem calling finish_open(). 3223 * 3224 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3225 * be set. The caller will need to perform the open themselves. @path will 3226 * have been updated to point to the new dentry. This may be negative. 3227 * 3228 * Returns an error code otherwise. 3229 */ 3230 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3231 struct file *file, 3232 int open_flag, umode_t mode) 3233 { 3234 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3235 struct inode *dir = nd->path.dentry->d_inode; 3236 int error; 3237 3238 if (nd->flags & LOOKUP_DIRECTORY) 3239 open_flag |= O_DIRECTORY; 3240 3241 file->f_path.dentry = DENTRY_NOT_SET; 3242 file->f_path.mnt = nd->path.mnt; 3243 error = dir->i_op->atomic_open(dir, dentry, file, 3244 open_to_namei_flags(open_flag), mode); 3245 d_lookup_done(dentry); 3246 if (!error) { 3247 if (file->f_mode & FMODE_OPENED) { 3248 if (unlikely(dentry != file->f_path.dentry)) { 3249 dput(dentry); 3250 dentry = dget(file->f_path.dentry); 3251 } 3252 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3253 error = -EIO; 3254 } else { 3255 if (file->f_path.dentry) { 3256 dput(dentry); 3257 dentry = file->f_path.dentry; 3258 } 3259 if (unlikely(d_is_negative(dentry))) 3260 error = -ENOENT; 3261 } 3262 } 3263 if (error) { 3264 dput(dentry); 3265 dentry = ERR_PTR(error); 3266 } 3267 return dentry; 3268 } 3269 3270 /* 3271 * Look up and maybe create and open the last component. 3272 * 3273 * Must be called with parent locked (exclusive in O_CREAT case). 3274 * 3275 * Returns 0 on success, that is, if 3276 * the file was successfully atomically created (if necessary) and opened, or 3277 * the file was not completely opened at this time, though lookups and 3278 * creations were performed. 3279 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3280 * In the latter case dentry returned in @path might be negative if O_CREAT 3281 * hadn't been specified. 3282 * 3283 * An error code is returned on failure. 3284 */ 3285 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3286 const struct open_flags *op, 3287 bool got_write) 3288 { 3289 struct user_namespace *mnt_userns; 3290 struct dentry *dir = nd->path.dentry; 3291 struct inode *dir_inode = dir->d_inode; 3292 int open_flag = op->open_flag; 3293 struct dentry *dentry; 3294 int error, create_error = 0; 3295 umode_t mode = op->mode; 3296 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3297 3298 if (unlikely(IS_DEADDIR(dir_inode))) 3299 return ERR_PTR(-ENOENT); 3300 3301 file->f_mode &= ~FMODE_CREATED; 3302 dentry = d_lookup(dir, &nd->last); 3303 for (;;) { 3304 if (!dentry) { 3305 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3306 if (IS_ERR(dentry)) 3307 return dentry; 3308 } 3309 if (d_in_lookup(dentry)) 3310 break; 3311 3312 error = d_revalidate(dentry, nd->flags); 3313 if (likely(error > 0)) 3314 break; 3315 if (error) 3316 goto out_dput; 3317 d_invalidate(dentry); 3318 dput(dentry); 3319 dentry = NULL; 3320 } 3321 if (dentry->d_inode) { 3322 /* Cached positive dentry: will open in f_op->open */ 3323 return dentry; 3324 } 3325 3326 /* 3327 * Checking write permission is tricky, bacuse we don't know if we are 3328 * going to actually need it: O_CREAT opens should work as long as the 3329 * file exists. But checking existence breaks atomicity. The trick is 3330 * to check access and if not granted clear O_CREAT from the flags. 3331 * 3332 * Another problem is returing the "right" error value (e.g. for an 3333 * O_EXCL open we want to return EEXIST not EROFS). 3334 */ 3335 if (unlikely(!got_write)) 3336 open_flag &= ~O_TRUNC; 3337 mnt_userns = mnt_user_ns(nd->path.mnt); 3338 if (open_flag & O_CREAT) { 3339 if (open_flag & O_EXCL) 3340 open_flag &= ~O_TRUNC; 3341 if (!IS_POSIXACL(dir->d_inode)) 3342 mode &= ~current_umask(); 3343 if (likely(got_write)) 3344 create_error = may_o_create(mnt_userns, &nd->path, 3345 dentry, mode); 3346 else 3347 create_error = -EROFS; 3348 } 3349 if (create_error) 3350 open_flag &= ~O_CREAT; 3351 if (dir_inode->i_op->atomic_open) { 3352 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3353 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3354 dentry = ERR_PTR(create_error); 3355 return dentry; 3356 } 3357 3358 if (d_in_lookup(dentry)) { 3359 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3360 nd->flags); 3361 d_lookup_done(dentry); 3362 if (unlikely(res)) { 3363 if (IS_ERR(res)) { 3364 error = PTR_ERR(res); 3365 goto out_dput; 3366 } 3367 dput(dentry); 3368 dentry = res; 3369 } 3370 } 3371 3372 /* Negative dentry, just create the file */ 3373 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3374 file->f_mode |= FMODE_CREATED; 3375 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3376 if (!dir_inode->i_op->create) { 3377 error = -EACCES; 3378 goto out_dput; 3379 } 3380 3381 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3382 mode, open_flag & O_EXCL); 3383 if (error) 3384 goto out_dput; 3385 } 3386 if (unlikely(create_error) && !dentry->d_inode) { 3387 error = create_error; 3388 goto out_dput; 3389 } 3390 return dentry; 3391 3392 out_dput: 3393 dput(dentry); 3394 return ERR_PTR(error); 3395 } 3396 3397 static const char *open_last_lookups(struct nameidata *nd, 3398 struct file *file, const struct open_flags *op) 3399 { 3400 struct dentry *dir = nd->path.dentry; 3401 int open_flag = op->open_flag; 3402 bool got_write = false; 3403 unsigned seq; 3404 struct inode *inode; 3405 struct dentry *dentry; 3406 const char *res; 3407 3408 nd->flags |= op->intent; 3409 3410 if (nd->last_type != LAST_NORM) { 3411 if (nd->depth) 3412 put_link(nd); 3413 return handle_dots(nd, nd->last_type); 3414 } 3415 3416 if (!(open_flag & O_CREAT)) { 3417 if (nd->last.name[nd->last.len]) 3418 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3419 /* we _can_ be in RCU mode here */ 3420 dentry = lookup_fast(nd, &inode, &seq); 3421 if (IS_ERR(dentry)) 3422 return ERR_CAST(dentry); 3423 if (likely(dentry)) 3424 goto finish_lookup; 3425 3426 BUG_ON(nd->flags & LOOKUP_RCU); 3427 } else { 3428 /* create side of things */ 3429 if (nd->flags & LOOKUP_RCU) { 3430 if (!try_to_unlazy(nd)) 3431 return ERR_PTR(-ECHILD); 3432 } 3433 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3434 /* trailing slashes? */ 3435 if (unlikely(nd->last.name[nd->last.len])) 3436 return ERR_PTR(-EISDIR); 3437 } 3438 3439 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3440 got_write = !mnt_want_write(nd->path.mnt); 3441 /* 3442 * do _not_ fail yet - we might not need that or fail with 3443 * a different error; let lookup_open() decide; we'll be 3444 * dropping this one anyway. 3445 */ 3446 } 3447 if (open_flag & O_CREAT) 3448 inode_lock(dir->d_inode); 3449 else 3450 inode_lock_shared(dir->d_inode); 3451 dentry = lookup_open(nd, file, op, got_write); 3452 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3453 fsnotify_create(dir->d_inode, dentry); 3454 if (open_flag & O_CREAT) 3455 inode_unlock(dir->d_inode); 3456 else 3457 inode_unlock_shared(dir->d_inode); 3458 3459 if (got_write) 3460 mnt_drop_write(nd->path.mnt); 3461 3462 if (IS_ERR(dentry)) 3463 return ERR_CAST(dentry); 3464 3465 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3466 dput(nd->path.dentry); 3467 nd->path.dentry = dentry; 3468 return NULL; 3469 } 3470 3471 finish_lookup: 3472 if (nd->depth) 3473 put_link(nd); 3474 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3475 if (unlikely(res)) 3476 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3477 return res; 3478 } 3479 3480 /* 3481 * Handle the last step of open() 3482 */ 3483 static int do_open(struct nameidata *nd, 3484 struct file *file, const struct open_flags *op) 3485 { 3486 struct user_namespace *mnt_userns; 3487 int open_flag = op->open_flag; 3488 bool do_truncate; 3489 int acc_mode; 3490 int error; 3491 3492 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3493 error = complete_walk(nd); 3494 if (error) 3495 return error; 3496 } 3497 if (!(file->f_mode & FMODE_CREATED)) 3498 audit_inode(nd->name, nd->path.dentry, 0); 3499 mnt_userns = mnt_user_ns(nd->path.mnt); 3500 if (open_flag & O_CREAT) { 3501 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3502 return -EEXIST; 3503 if (d_is_dir(nd->path.dentry)) 3504 return -EISDIR; 3505 error = may_create_in_sticky(mnt_userns, nd, 3506 d_backing_inode(nd->path.dentry)); 3507 if (unlikely(error)) 3508 return error; 3509 } 3510 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3511 return -ENOTDIR; 3512 3513 do_truncate = false; 3514 acc_mode = op->acc_mode; 3515 if (file->f_mode & FMODE_CREATED) { 3516 /* Don't check for write permission, don't truncate */ 3517 open_flag &= ~O_TRUNC; 3518 acc_mode = 0; 3519 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3520 error = mnt_want_write(nd->path.mnt); 3521 if (error) 3522 return error; 3523 do_truncate = true; 3524 } 3525 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3526 if (!error && !(file->f_mode & FMODE_OPENED)) 3527 error = vfs_open(&nd->path, file); 3528 if (!error) 3529 error = ima_file_check(file, op->acc_mode); 3530 if (!error && do_truncate) 3531 error = handle_truncate(mnt_userns, file); 3532 if (unlikely(error > 0)) { 3533 WARN_ON(1); 3534 error = -EINVAL; 3535 } 3536 if (do_truncate) 3537 mnt_drop_write(nd->path.mnt); 3538 return error; 3539 } 3540 3541 /** 3542 * vfs_tmpfile - create tmpfile 3543 * @mnt_userns: user namespace of the mount the inode was found from 3544 * @dentry: pointer to dentry of the base directory 3545 * @mode: mode of the new tmpfile 3546 * @open_flag: flags 3547 * 3548 * Create a temporary file. 3549 * 3550 * If the inode has been found through an idmapped mount the user namespace of 3551 * the vfsmount must be passed through @mnt_userns. This function will then take 3552 * care to map the inode according to @mnt_userns before checking permissions. 3553 * On non-idmapped mounts or if permission checking is to be performed on the 3554 * raw inode simply passs init_user_ns. 3555 */ 3556 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3557 struct dentry *dentry, umode_t mode, int open_flag) 3558 { 3559 struct dentry *child = NULL; 3560 struct inode *dir = dentry->d_inode; 3561 struct inode *inode; 3562 int error; 3563 3564 /* we want directory to be writable */ 3565 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3566 if (error) 3567 goto out_err; 3568 error = -EOPNOTSUPP; 3569 if (!dir->i_op->tmpfile) 3570 goto out_err; 3571 error = -ENOMEM; 3572 child = d_alloc(dentry, &slash_name); 3573 if (unlikely(!child)) 3574 goto out_err; 3575 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3576 if (error) 3577 goto out_err; 3578 error = -ENOENT; 3579 inode = child->d_inode; 3580 if (unlikely(!inode)) 3581 goto out_err; 3582 if (!(open_flag & O_EXCL)) { 3583 spin_lock(&inode->i_lock); 3584 inode->i_state |= I_LINKABLE; 3585 spin_unlock(&inode->i_lock); 3586 } 3587 ima_post_create_tmpfile(mnt_userns, inode); 3588 return child; 3589 3590 out_err: 3591 dput(child); 3592 return ERR_PTR(error); 3593 } 3594 EXPORT_SYMBOL(vfs_tmpfile); 3595 3596 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3597 const struct open_flags *op, 3598 struct file *file) 3599 { 3600 struct user_namespace *mnt_userns; 3601 struct dentry *child; 3602 struct path path; 3603 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3604 if (unlikely(error)) 3605 return error; 3606 error = mnt_want_write(path.mnt); 3607 if (unlikely(error)) 3608 goto out; 3609 mnt_userns = mnt_user_ns(path.mnt); 3610 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3611 error = PTR_ERR(child); 3612 if (IS_ERR(child)) 3613 goto out2; 3614 dput(path.dentry); 3615 path.dentry = child; 3616 audit_inode(nd->name, child, 0); 3617 /* Don't check for other permissions, the inode was just created */ 3618 error = may_open(mnt_userns, &path, 0, op->open_flag); 3619 if (!error) 3620 error = vfs_open(&path, file); 3621 out2: 3622 mnt_drop_write(path.mnt); 3623 out: 3624 path_put(&path); 3625 return error; 3626 } 3627 3628 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3629 { 3630 struct path path; 3631 int error = path_lookupat(nd, flags, &path); 3632 if (!error) { 3633 audit_inode(nd->name, path.dentry, 0); 3634 error = vfs_open(&path, file); 3635 path_put(&path); 3636 } 3637 return error; 3638 } 3639 3640 static struct file *path_openat(struct nameidata *nd, 3641 const struct open_flags *op, unsigned flags) 3642 { 3643 struct file *file; 3644 int error; 3645 3646 file = alloc_empty_file(op->open_flag, current_cred()); 3647 if (IS_ERR(file)) 3648 return file; 3649 3650 if (unlikely(file->f_flags & __O_TMPFILE)) { 3651 error = do_tmpfile(nd, flags, op, file); 3652 } else if (unlikely(file->f_flags & O_PATH)) { 3653 error = do_o_path(nd, flags, file); 3654 } else { 3655 const char *s = path_init(nd, flags); 3656 while (!(error = link_path_walk(s, nd)) && 3657 (s = open_last_lookups(nd, file, op)) != NULL) 3658 ; 3659 if (!error) 3660 error = do_open(nd, file, op); 3661 terminate_walk(nd); 3662 } 3663 if (likely(!error)) { 3664 if (likely(file->f_mode & FMODE_OPENED)) 3665 return file; 3666 WARN_ON(1); 3667 error = -EINVAL; 3668 } 3669 fput(file); 3670 if (error == -EOPENSTALE) { 3671 if (flags & LOOKUP_RCU) 3672 error = -ECHILD; 3673 else 3674 error = -ESTALE; 3675 } 3676 return ERR_PTR(error); 3677 } 3678 3679 struct file *do_filp_open(int dfd, struct filename *pathname, 3680 const struct open_flags *op) 3681 { 3682 struct nameidata nd; 3683 int flags = op->lookup_flags; 3684 struct file *filp; 3685 3686 set_nameidata(&nd, dfd, pathname, NULL); 3687 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3688 if (unlikely(filp == ERR_PTR(-ECHILD))) 3689 filp = path_openat(&nd, op, flags); 3690 if (unlikely(filp == ERR_PTR(-ESTALE))) 3691 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3692 restore_nameidata(); 3693 return filp; 3694 } 3695 3696 struct file *do_file_open_root(const struct path *root, 3697 const char *name, const struct open_flags *op) 3698 { 3699 struct nameidata nd; 3700 struct file *file; 3701 struct filename *filename; 3702 int flags = op->lookup_flags; 3703 3704 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3705 return ERR_PTR(-ELOOP); 3706 3707 filename = getname_kernel(name); 3708 if (IS_ERR(filename)) 3709 return ERR_CAST(filename); 3710 3711 set_nameidata(&nd, -1, filename, root); 3712 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3713 if (unlikely(file == ERR_PTR(-ECHILD))) 3714 file = path_openat(&nd, op, flags); 3715 if (unlikely(file == ERR_PTR(-ESTALE))) 3716 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3717 restore_nameidata(); 3718 putname(filename); 3719 return file; 3720 } 3721 3722 static struct dentry *filename_create(int dfd, struct filename *name, 3723 struct path *path, unsigned int lookup_flags) 3724 { 3725 struct dentry *dentry = ERR_PTR(-EEXIST); 3726 struct qstr last; 3727 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3728 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3729 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3730 int type; 3731 int err2; 3732 int error; 3733 3734 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3735 if (error) 3736 return ERR_PTR(error); 3737 3738 /* 3739 * Yucky last component or no last component at all? 3740 * (foo/., foo/.., /////) 3741 */ 3742 if (unlikely(type != LAST_NORM)) 3743 goto out; 3744 3745 /* don't fail immediately if it's r/o, at least try to report other errors */ 3746 err2 = mnt_want_write(path->mnt); 3747 /* 3748 * Do the final lookup. Suppress 'create' if there is a trailing 3749 * '/', and a directory wasn't requested. 3750 */ 3751 if (last.name[last.len] && !want_dir) 3752 create_flags = 0; 3753 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3754 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags); 3755 if (IS_ERR(dentry)) 3756 goto unlock; 3757 3758 error = -EEXIST; 3759 if (d_is_positive(dentry)) 3760 goto fail; 3761 3762 /* 3763 * Special case - lookup gave negative, but... we had foo/bar/ 3764 * From the vfs_mknod() POV we just have a negative dentry - 3765 * all is fine. Let's be bastards - you had / on the end, you've 3766 * been asking for (non-existent) directory. -ENOENT for you. 3767 */ 3768 if (unlikely(!create_flags)) { 3769 error = -ENOENT; 3770 goto fail; 3771 } 3772 if (unlikely(err2)) { 3773 error = err2; 3774 goto fail; 3775 } 3776 return dentry; 3777 fail: 3778 dput(dentry); 3779 dentry = ERR_PTR(error); 3780 unlock: 3781 inode_unlock(path->dentry->d_inode); 3782 if (!err2) 3783 mnt_drop_write(path->mnt); 3784 out: 3785 path_put(path); 3786 return dentry; 3787 } 3788 3789 struct dentry *kern_path_create(int dfd, const char *pathname, 3790 struct path *path, unsigned int lookup_flags) 3791 { 3792 struct filename *filename = getname_kernel(pathname); 3793 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3794 3795 putname(filename); 3796 return res; 3797 } 3798 EXPORT_SYMBOL(kern_path_create); 3799 3800 void done_path_create(struct path *path, struct dentry *dentry) 3801 { 3802 dput(dentry); 3803 inode_unlock(path->dentry->d_inode); 3804 mnt_drop_write(path->mnt); 3805 path_put(path); 3806 } 3807 EXPORT_SYMBOL(done_path_create); 3808 3809 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3810 struct path *path, unsigned int lookup_flags) 3811 { 3812 struct filename *filename = getname(pathname); 3813 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3814 3815 putname(filename); 3816 return res; 3817 } 3818 EXPORT_SYMBOL(user_path_create); 3819 3820 /** 3821 * vfs_mknod - create device node or file 3822 * @mnt_userns: user namespace of the mount the inode was found from 3823 * @dir: inode of @dentry 3824 * @dentry: pointer to dentry of the base directory 3825 * @mode: mode of the new device node or file 3826 * @dev: device number of device to create 3827 * 3828 * Create a device node or file. 3829 * 3830 * If the inode has been found through an idmapped mount the user namespace of 3831 * the vfsmount must be passed through @mnt_userns. This function will then take 3832 * care to map the inode according to @mnt_userns before checking permissions. 3833 * On non-idmapped mounts or if permission checking is to be performed on the 3834 * raw inode simply passs init_user_ns. 3835 */ 3836 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3837 struct dentry *dentry, umode_t mode, dev_t dev) 3838 { 3839 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3840 int error = may_create(mnt_userns, dir, dentry); 3841 3842 if (error) 3843 return error; 3844 3845 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3846 !capable(CAP_MKNOD)) 3847 return -EPERM; 3848 3849 if (!dir->i_op->mknod) 3850 return -EPERM; 3851 3852 error = devcgroup_inode_mknod(mode, dev); 3853 if (error) 3854 return error; 3855 3856 error = security_inode_mknod(dir, dentry, mode, dev); 3857 if (error) 3858 return error; 3859 3860 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3861 if (!error) 3862 fsnotify_create(dir, dentry); 3863 return error; 3864 } 3865 EXPORT_SYMBOL(vfs_mknod); 3866 3867 static int may_mknod(umode_t mode) 3868 { 3869 switch (mode & S_IFMT) { 3870 case S_IFREG: 3871 case S_IFCHR: 3872 case S_IFBLK: 3873 case S_IFIFO: 3874 case S_IFSOCK: 3875 case 0: /* zero mode translates to S_IFREG */ 3876 return 0; 3877 case S_IFDIR: 3878 return -EPERM; 3879 default: 3880 return -EINVAL; 3881 } 3882 } 3883 3884 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 3885 unsigned int dev) 3886 { 3887 struct user_namespace *mnt_userns; 3888 struct dentry *dentry; 3889 struct path path; 3890 int error; 3891 unsigned int lookup_flags = 0; 3892 3893 error = may_mknod(mode); 3894 if (error) 3895 goto out1; 3896 retry: 3897 dentry = filename_create(dfd, name, &path, lookup_flags); 3898 error = PTR_ERR(dentry); 3899 if (IS_ERR(dentry)) 3900 goto out1; 3901 3902 if (!IS_POSIXACL(path.dentry->d_inode)) 3903 mode &= ~current_umask(); 3904 error = security_path_mknod(&path, dentry, mode, dev); 3905 if (error) 3906 goto out2; 3907 3908 mnt_userns = mnt_user_ns(path.mnt); 3909 switch (mode & S_IFMT) { 3910 case 0: case S_IFREG: 3911 error = vfs_create(mnt_userns, path.dentry->d_inode, 3912 dentry, mode, true); 3913 if (!error) 3914 ima_post_path_mknod(mnt_userns, dentry); 3915 break; 3916 case S_IFCHR: case S_IFBLK: 3917 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3918 dentry, mode, new_decode_dev(dev)); 3919 break; 3920 case S_IFIFO: case S_IFSOCK: 3921 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3922 dentry, mode, 0); 3923 break; 3924 } 3925 out2: 3926 done_path_create(&path, dentry); 3927 if (retry_estale(error, lookup_flags)) { 3928 lookup_flags |= LOOKUP_REVAL; 3929 goto retry; 3930 } 3931 out1: 3932 putname(name); 3933 return error; 3934 } 3935 3936 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3937 unsigned int, dev) 3938 { 3939 return do_mknodat(dfd, getname(filename), mode, dev); 3940 } 3941 3942 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3943 { 3944 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 3945 } 3946 3947 /** 3948 * vfs_mkdir - create directory 3949 * @mnt_userns: user namespace of the mount the inode was found from 3950 * @dir: inode of @dentry 3951 * @dentry: pointer to dentry of the base directory 3952 * @mode: mode of the new directory 3953 * 3954 * Create a directory. 3955 * 3956 * If the inode has been found through an idmapped mount the user namespace of 3957 * the vfsmount must be passed through @mnt_userns. This function will then take 3958 * care to map the inode according to @mnt_userns before checking permissions. 3959 * On non-idmapped mounts or if permission checking is to be performed on the 3960 * raw inode simply passs init_user_ns. 3961 */ 3962 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3963 struct dentry *dentry, umode_t mode) 3964 { 3965 int error = may_create(mnt_userns, dir, dentry); 3966 unsigned max_links = dir->i_sb->s_max_links; 3967 3968 if (error) 3969 return error; 3970 3971 if (!dir->i_op->mkdir) 3972 return -EPERM; 3973 3974 mode &= (S_IRWXUGO|S_ISVTX); 3975 error = security_inode_mkdir(dir, dentry, mode); 3976 if (error) 3977 return error; 3978 3979 if (max_links && dir->i_nlink >= max_links) 3980 return -EMLINK; 3981 3982 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3983 if (!error) 3984 fsnotify_mkdir(dir, dentry); 3985 return error; 3986 } 3987 EXPORT_SYMBOL(vfs_mkdir); 3988 3989 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 3990 { 3991 struct dentry *dentry; 3992 struct path path; 3993 int error; 3994 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3995 3996 retry: 3997 dentry = filename_create(dfd, name, &path, lookup_flags); 3998 error = PTR_ERR(dentry); 3999 if (IS_ERR(dentry)) 4000 goto out_putname; 4001 4002 if (!IS_POSIXACL(path.dentry->d_inode)) 4003 mode &= ~current_umask(); 4004 error = security_path_mkdir(&path, dentry, mode); 4005 if (!error) { 4006 struct user_namespace *mnt_userns; 4007 mnt_userns = mnt_user_ns(path.mnt); 4008 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 4009 mode); 4010 } 4011 done_path_create(&path, dentry); 4012 if (retry_estale(error, lookup_flags)) { 4013 lookup_flags |= LOOKUP_REVAL; 4014 goto retry; 4015 } 4016 out_putname: 4017 putname(name); 4018 return error; 4019 } 4020 4021 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4022 { 4023 return do_mkdirat(dfd, getname(pathname), mode); 4024 } 4025 4026 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4027 { 4028 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4029 } 4030 4031 /** 4032 * vfs_rmdir - remove directory 4033 * @mnt_userns: user namespace of the mount the inode was found from 4034 * @dir: inode of @dentry 4035 * @dentry: pointer to dentry of the base directory 4036 * 4037 * Remove a directory. 4038 * 4039 * If the inode has been found through an idmapped mount the user namespace of 4040 * the vfsmount must be passed through @mnt_userns. This function will then take 4041 * care to map the inode according to @mnt_userns before checking permissions. 4042 * On non-idmapped mounts or if permission checking is to be performed on the 4043 * raw inode simply passs init_user_ns. 4044 */ 4045 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 4046 struct dentry *dentry) 4047 { 4048 int error = may_delete(mnt_userns, dir, dentry, 1); 4049 4050 if (error) 4051 return error; 4052 4053 if (!dir->i_op->rmdir) 4054 return -EPERM; 4055 4056 dget(dentry); 4057 inode_lock(dentry->d_inode); 4058 4059 error = -EBUSY; 4060 if (is_local_mountpoint(dentry) || 4061 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4062 goto out; 4063 4064 error = security_inode_rmdir(dir, dentry); 4065 if (error) 4066 goto out; 4067 4068 error = dir->i_op->rmdir(dir, dentry); 4069 if (error) 4070 goto out; 4071 4072 shrink_dcache_parent(dentry); 4073 dentry->d_inode->i_flags |= S_DEAD; 4074 dont_mount(dentry); 4075 detach_mounts(dentry); 4076 4077 out: 4078 inode_unlock(dentry->d_inode); 4079 dput(dentry); 4080 if (!error) 4081 d_delete_notify(dir, dentry); 4082 return error; 4083 } 4084 EXPORT_SYMBOL(vfs_rmdir); 4085 4086 int do_rmdir(int dfd, struct filename *name) 4087 { 4088 struct user_namespace *mnt_userns; 4089 int error; 4090 struct dentry *dentry; 4091 struct path path; 4092 struct qstr last; 4093 int type; 4094 unsigned int lookup_flags = 0; 4095 retry: 4096 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4097 if (error) 4098 goto exit1; 4099 4100 switch (type) { 4101 case LAST_DOTDOT: 4102 error = -ENOTEMPTY; 4103 goto exit2; 4104 case LAST_DOT: 4105 error = -EINVAL; 4106 goto exit2; 4107 case LAST_ROOT: 4108 error = -EBUSY; 4109 goto exit2; 4110 } 4111 4112 error = mnt_want_write(path.mnt); 4113 if (error) 4114 goto exit2; 4115 4116 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4117 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4118 error = PTR_ERR(dentry); 4119 if (IS_ERR(dentry)) 4120 goto exit3; 4121 if (!dentry->d_inode) { 4122 error = -ENOENT; 4123 goto exit4; 4124 } 4125 error = security_path_rmdir(&path, dentry); 4126 if (error) 4127 goto exit4; 4128 mnt_userns = mnt_user_ns(path.mnt); 4129 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 4130 exit4: 4131 dput(dentry); 4132 exit3: 4133 inode_unlock(path.dentry->d_inode); 4134 mnt_drop_write(path.mnt); 4135 exit2: 4136 path_put(&path); 4137 if (retry_estale(error, lookup_flags)) { 4138 lookup_flags |= LOOKUP_REVAL; 4139 goto retry; 4140 } 4141 exit1: 4142 putname(name); 4143 return error; 4144 } 4145 4146 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4147 { 4148 return do_rmdir(AT_FDCWD, getname(pathname)); 4149 } 4150 4151 /** 4152 * vfs_unlink - unlink a filesystem object 4153 * @mnt_userns: user namespace of the mount the inode was found from 4154 * @dir: parent directory 4155 * @dentry: victim 4156 * @delegated_inode: returns victim inode, if the inode is delegated. 4157 * 4158 * The caller must hold dir->i_mutex. 4159 * 4160 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4161 * return a reference to the inode in delegated_inode. The caller 4162 * should then break the delegation on that inode and retry. Because 4163 * breaking a delegation may take a long time, the caller should drop 4164 * dir->i_mutex before doing so. 4165 * 4166 * Alternatively, a caller may pass NULL for delegated_inode. This may 4167 * be appropriate for callers that expect the underlying filesystem not 4168 * to be NFS exported. 4169 * 4170 * If the inode has been found through an idmapped mount the user namespace of 4171 * the vfsmount must be passed through @mnt_userns. This function will then take 4172 * care to map the inode according to @mnt_userns before checking permissions. 4173 * On non-idmapped mounts or if permission checking is to be performed on the 4174 * raw inode simply passs init_user_ns. 4175 */ 4176 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4177 struct dentry *dentry, struct inode **delegated_inode) 4178 { 4179 struct inode *target = dentry->d_inode; 4180 int error = may_delete(mnt_userns, dir, dentry, 0); 4181 4182 if (error) 4183 return error; 4184 4185 if (!dir->i_op->unlink) 4186 return -EPERM; 4187 4188 inode_lock(target); 4189 if (IS_SWAPFILE(target)) 4190 error = -EPERM; 4191 else if (is_local_mountpoint(dentry)) 4192 error = -EBUSY; 4193 else { 4194 error = security_inode_unlink(dir, dentry); 4195 if (!error) { 4196 error = try_break_deleg(target, delegated_inode); 4197 if (error) 4198 goto out; 4199 error = dir->i_op->unlink(dir, dentry); 4200 if (!error) { 4201 dont_mount(dentry); 4202 detach_mounts(dentry); 4203 } 4204 } 4205 } 4206 out: 4207 inode_unlock(target); 4208 4209 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4210 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4211 fsnotify_unlink(dir, dentry); 4212 } else if (!error) { 4213 fsnotify_link_count(target); 4214 d_delete_notify(dir, dentry); 4215 } 4216 4217 return error; 4218 } 4219 EXPORT_SYMBOL(vfs_unlink); 4220 4221 /* 4222 * Make sure that the actual truncation of the file will occur outside its 4223 * directory's i_mutex. Truncate can take a long time if there is a lot of 4224 * writeout happening, and we don't want to prevent access to the directory 4225 * while waiting on the I/O. 4226 */ 4227 int do_unlinkat(int dfd, struct filename *name) 4228 { 4229 int error; 4230 struct dentry *dentry; 4231 struct path path; 4232 struct qstr last; 4233 int type; 4234 struct inode *inode = NULL; 4235 struct inode *delegated_inode = NULL; 4236 unsigned int lookup_flags = 0; 4237 retry: 4238 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4239 if (error) 4240 goto exit1; 4241 4242 error = -EISDIR; 4243 if (type != LAST_NORM) 4244 goto exit2; 4245 4246 error = mnt_want_write(path.mnt); 4247 if (error) 4248 goto exit2; 4249 retry_deleg: 4250 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4251 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4252 error = PTR_ERR(dentry); 4253 if (!IS_ERR(dentry)) { 4254 struct user_namespace *mnt_userns; 4255 4256 /* Why not before? Because we want correct error value */ 4257 if (last.name[last.len]) 4258 goto slashes; 4259 inode = dentry->d_inode; 4260 if (d_is_negative(dentry)) 4261 goto slashes; 4262 ihold(inode); 4263 error = security_path_unlink(&path, dentry); 4264 if (error) 4265 goto exit3; 4266 mnt_userns = mnt_user_ns(path.mnt); 4267 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4268 &delegated_inode); 4269 exit3: 4270 dput(dentry); 4271 } 4272 inode_unlock(path.dentry->d_inode); 4273 if (inode) 4274 iput(inode); /* truncate the inode here */ 4275 inode = NULL; 4276 if (delegated_inode) { 4277 error = break_deleg_wait(&delegated_inode); 4278 if (!error) 4279 goto retry_deleg; 4280 } 4281 mnt_drop_write(path.mnt); 4282 exit2: 4283 path_put(&path); 4284 if (retry_estale(error, lookup_flags)) { 4285 lookup_flags |= LOOKUP_REVAL; 4286 inode = NULL; 4287 goto retry; 4288 } 4289 exit1: 4290 putname(name); 4291 return error; 4292 4293 slashes: 4294 if (d_is_negative(dentry)) 4295 error = -ENOENT; 4296 else if (d_is_dir(dentry)) 4297 error = -EISDIR; 4298 else 4299 error = -ENOTDIR; 4300 goto exit3; 4301 } 4302 4303 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4304 { 4305 if ((flag & ~AT_REMOVEDIR) != 0) 4306 return -EINVAL; 4307 4308 if (flag & AT_REMOVEDIR) 4309 return do_rmdir(dfd, getname(pathname)); 4310 return do_unlinkat(dfd, getname(pathname)); 4311 } 4312 4313 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4314 { 4315 return do_unlinkat(AT_FDCWD, getname(pathname)); 4316 } 4317 4318 /** 4319 * vfs_symlink - create symlink 4320 * @mnt_userns: user namespace of the mount the inode was found from 4321 * @dir: inode of @dentry 4322 * @dentry: pointer to dentry of the base directory 4323 * @oldname: name of the file to link to 4324 * 4325 * Create a symlink. 4326 * 4327 * If the inode has been found through an idmapped mount the user namespace of 4328 * the vfsmount must be passed through @mnt_userns. This function will then take 4329 * care to map the inode according to @mnt_userns before checking permissions. 4330 * On non-idmapped mounts or if permission checking is to be performed on the 4331 * raw inode simply passs init_user_ns. 4332 */ 4333 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4334 struct dentry *dentry, const char *oldname) 4335 { 4336 int error = may_create(mnt_userns, dir, dentry); 4337 4338 if (error) 4339 return error; 4340 4341 if (!dir->i_op->symlink) 4342 return -EPERM; 4343 4344 error = security_inode_symlink(dir, dentry, oldname); 4345 if (error) 4346 return error; 4347 4348 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4349 if (!error) 4350 fsnotify_create(dir, dentry); 4351 return error; 4352 } 4353 EXPORT_SYMBOL(vfs_symlink); 4354 4355 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4356 { 4357 int error; 4358 struct dentry *dentry; 4359 struct path path; 4360 unsigned int lookup_flags = 0; 4361 4362 if (IS_ERR(from)) { 4363 error = PTR_ERR(from); 4364 goto out_putnames; 4365 } 4366 retry: 4367 dentry = filename_create(newdfd, to, &path, lookup_flags); 4368 error = PTR_ERR(dentry); 4369 if (IS_ERR(dentry)) 4370 goto out_putnames; 4371 4372 error = security_path_symlink(&path, dentry, from->name); 4373 if (!error) { 4374 struct user_namespace *mnt_userns; 4375 4376 mnt_userns = mnt_user_ns(path.mnt); 4377 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4378 from->name); 4379 } 4380 done_path_create(&path, dentry); 4381 if (retry_estale(error, lookup_flags)) { 4382 lookup_flags |= LOOKUP_REVAL; 4383 goto retry; 4384 } 4385 out_putnames: 4386 putname(to); 4387 putname(from); 4388 return error; 4389 } 4390 4391 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4392 int, newdfd, const char __user *, newname) 4393 { 4394 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4395 } 4396 4397 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4398 { 4399 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4400 } 4401 4402 /** 4403 * vfs_link - create a new link 4404 * @old_dentry: object to be linked 4405 * @mnt_userns: the user namespace of the mount 4406 * @dir: new parent 4407 * @new_dentry: where to create the new link 4408 * @delegated_inode: returns inode needing a delegation break 4409 * 4410 * The caller must hold dir->i_mutex 4411 * 4412 * If vfs_link discovers a delegation on the to-be-linked file in need 4413 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4414 * inode in delegated_inode. The caller should then break the delegation 4415 * and retry. Because breaking a delegation may take a long time, the 4416 * caller should drop the i_mutex before doing so. 4417 * 4418 * Alternatively, a caller may pass NULL for delegated_inode. This may 4419 * be appropriate for callers that expect the underlying filesystem not 4420 * to be NFS exported. 4421 * 4422 * If the inode has been found through an idmapped mount the user namespace of 4423 * the vfsmount must be passed through @mnt_userns. This function will then take 4424 * care to map the inode according to @mnt_userns before checking permissions. 4425 * On non-idmapped mounts or if permission checking is to be performed on the 4426 * raw inode simply passs init_user_ns. 4427 */ 4428 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4429 struct inode *dir, struct dentry *new_dentry, 4430 struct inode **delegated_inode) 4431 { 4432 struct inode *inode = old_dentry->d_inode; 4433 unsigned max_links = dir->i_sb->s_max_links; 4434 int error; 4435 4436 if (!inode) 4437 return -ENOENT; 4438 4439 error = may_create(mnt_userns, dir, new_dentry); 4440 if (error) 4441 return error; 4442 4443 if (dir->i_sb != inode->i_sb) 4444 return -EXDEV; 4445 4446 /* 4447 * A link to an append-only or immutable file cannot be created. 4448 */ 4449 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4450 return -EPERM; 4451 /* 4452 * Updating the link count will likely cause i_uid and i_gid to 4453 * be writen back improperly if their true value is unknown to 4454 * the vfs. 4455 */ 4456 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4457 return -EPERM; 4458 if (!dir->i_op->link) 4459 return -EPERM; 4460 if (S_ISDIR(inode->i_mode)) 4461 return -EPERM; 4462 4463 error = security_inode_link(old_dentry, dir, new_dentry); 4464 if (error) 4465 return error; 4466 4467 inode_lock(inode); 4468 /* Make sure we don't allow creating hardlink to an unlinked file */ 4469 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4470 error = -ENOENT; 4471 else if (max_links && inode->i_nlink >= max_links) 4472 error = -EMLINK; 4473 else { 4474 error = try_break_deleg(inode, delegated_inode); 4475 if (!error) 4476 error = dir->i_op->link(old_dentry, dir, new_dentry); 4477 } 4478 4479 if (!error && (inode->i_state & I_LINKABLE)) { 4480 spin_lock(&inode->i_lock); 4481 inode->i_state &= ~I_LINKABLE; 4482 spin_unlock(&inode->i_lock); 4483 } 4484 inode_unlock(inode); 4485 if (!error) 4486 fsnotify_link(dir, inode, new_dentry); 4487 return error; 4488 } 4489 EXPORT_SYMBOL(vfs_link); 4490 4491 /* 4492 * Hardlinks are often used in delicate situations. We avoid 4493 * security-related surprises by not following symlinks on the 4494 * newname. --KAB 4495 * 4496 * We don't follow them on the oldname either to be compatible 4497 * with linux 2.0, and to avoid hard-linking to directories 4498 * and other special files. --ADM 4499 */ 4500 int do_linkat(int olddfd, struct filename *old, int newdfd, 4501 struct filename *new, int flags) 4502 { 4503 struct user_namespace *mnt_userns; 4504 struct dentry *new_dentry; 4505 struct path old_path, new_path; 4506 struct inode *delegated_inode = NULL; 4507 int how = 0; 4508 int error; 4509 4510 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4511 error = -EINVAL; 4512 goto out_putnames; 4513 } 4514 /* 4515 * To use null names we require CAP_DAC_READ_SEARCH 4516 * This ensures that not everyone will be able to create 4517 * handlink using the passed filedescriptor. 4518 */ 4519 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4520 error = -ENOENT; 4521 goto out_putnames; 4522 } 4523 4524 if (flags & AT_SYMLINK_FOLLOW) 4525 how |= LOOKUP_FOLLOW; 4526 retry: 4527 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4528 if (error) 4529 goto out_putnames; 4530 4531 new_dentry = filename_create(newdfd, new, &new_path, 4532 (how & LOOKUP_REVAL)); 4533 error = PTR_ERR(new_dentry); 4534 if (IS_ERR(new_dentry)) 4535 goto out_putpath; 4536 4537 error = -EXDEV; 4538 if (old_path.mnt != new_path.mnt) 4539 goto out_dput; 4540 mnt_userns = mnt_user_ns(new_path.mnt); 4541 error = may_linkat(mnt_userns, &old_path); 4542 if (unlikely(error)) 4543 goto out_dput; 4544 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4545 if (error) 4546 goto out_dput; 4547 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4548 new_dentry, &delegated_inode); 4549 out_dput: 4550 done_path_create(&new_path, new_dentry); 4551 if (delegated_inode) { 4552 error = break_deleg_wait(&delegated_inode); 4553 if (!error) { 4554 path_put(&old_path); 4555 goto retry; 4556 } 4557 } 4558 if (retry_estale(error, how)) { 4559 path_put(&old_path); 4560 how |= LOOKUP_REVAL; 4561 goto retry; 4562 } 4563 out_putpath: 4564 path_put(&old_path); 4565 out_putnames: 4566 putname(old); 4567 putname(new); 4568 4569 return error; 4570 } 4571 4572 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4573 int, newdfd, const char __user *, newname, int, flags) 4574 { 4575 return do_linkat(olddfd, getname_uflags(oldname, flags), 4576 newdfd, getname(newname), flags); 4577 } 4578 4579 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4580 { 4581 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4582 } 4583 4584 /** 4585 * vfs_rename - rename a filesystem object 4586 * @rd: pointer to &struct renamedata info 4587 * 4588 * The caller must hold multiple mutexes--see lock_rename()). 4589 * 4590 * If vfs_rename discovers a delegation in need of breaking at either 4591 * the source or destination, it will return -EWOULDBLOCK and return a 4592 * reference to the inode in delegated_inode. The caller should then 4593 * break the delegation and retry. Because breaking a delegation may 4594 * take a long time, the caller should drop all locks before doing 4595 * so. 4596 * 4597 * Alternatively, a caller may pass NULL for delegated_inode. This may 4598 * be appropriate for callers that expect the underlying filesystem not 4599 * to be NFS exported. 4600 * 4601 * The worst of all namespace operations - renaming directory. "Perverted" 4602 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4603 * Problems: 4604 * 4605 * a) we can get into loop creation. 4606 * b) race potential - two innocent renames can create a loop together. 4607 * That's where 4.4 screws up. Current fix: serialization on 4608 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4609 * story. 4610 * c) we have to lock _four_ objects - parents and victim (if it exists), 4611 * and source (if it is not a directory). 4612 * And that - after we got ->i_mutex on parents (until then we don't know 4613 * whether the target exists). Solution: try to be smart with locking 4614 * order for inodes. We rely on the fact that tree topology may change 4615 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4616 * move will be locked. Thus we can rank directories by the tree 4617 * (ancestors first) and rank all non-directories after them. 4618 * That works since everybody except rename does "lock parent, lookup, 4619 * lock child" and rename is under ->s_vfs_rename_mutex. 4620 * HOWEVER, it relies on the assumption that any object with ->lookup() 4621 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4622 * we'd better make sure that there's no link(2) for them. 4623 * d) conversion from fhandle to dentry may come in the wrong moment - when 4624 * we are removing the target. Solution: we will have to grab ->i_mutex 4625 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4626 * ->i_mutex on parents, which works but leads to some truly excessive 4627 * locking]. 4628 */ 4629 int vfs_rename(struct renamedata *rd) 4630 { 4631 int error; 4632 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4633 struct dentry *old_dentry = rd->old_dentry; 4634 struct dentry *new_dentry = rd->new_dentry; 4635 struct inode **delegated_inode = rd->delegated_inode; 4636 unsigned int flags = rd->flags; 4637 bool is_dir = d_is_dir(old_dentry); 4638 struct inode *source = old_dentry->d_inode; 4639 struct inode *target = new_dentry->d_inode; 4640 bool new_is_dir = false; 4641 unsigned max_links = new_dir->i_sb->s_max_links; 4642 struct name_snapshot old_name; 4643 4644 if (source == target) 4645 return 0; 4646 4647 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4648 if (error) 4649 return error; 4650 4651 if (!target) { 4652 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4653 } else { 4654 new_is_dir = d_is_dir(new_dentry); 4655 4656 if (!(flags & RENAME_EXCHANGE)) 4657 error = may_delete(rd->new_mnt_userns, new_dir, 4658 new_dentry, is_dir); 4659 else 4660 error = may_delete(rd->new_mnt_userns, new_dir, 4661 new_dentry, new_is_dir); 4662 } 4663 if (error) 4664 return error; 4665 4666 if (!old_dir->i_op->rename) 4667 return -EPERM; 4668 4669 /* 4670 * If we are going to change the parent - check write permissions, 4671 * we'll need to flip '..'. 4672 */ 4673 if (new_dir != old_dir) { 4674 if (is_dir) { 4675 error = inode_permission(rd->old_mnt_userns, source, 4676 MAY_WRITE); 4677 if (error) 4678 return error; 4679 } 4680 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4681 error = inode_permission(rd->new_mnt_userns, target, 4682 MAY_WRITE); 4683 if (error) 4684 return error; 4685 } 4686 } 4687 4688 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4689 flags); 4690 if (error) 4691 return error; 4692 4693 take_dentry_name_snapshot(&old_name, old_dentry); 4694 dget(new_dentry); 4695 if (!is_dir || (flags & RENAME_EXCHANGE)) 4696 lock_two_nondirectories(source, target); 4697 else if (target) 4698 inode_lock(target); 4699 4700 error = -EPERM; 4701 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4702 goto out; 4703 4704 error = -EBUSY; 4705 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4706 goto out; 4707 4708 if (max_links && new_dir != old_dir) { 4709 error = -EMLINK; 4710 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4711 goto out; 4712 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4713 old_dir->i_nlink >= max_links) 4714 goto out; 4715 } 4716 if (!is_dir) { 4717 error = try_break_deleg(source, delegated_inode); 4718 if (error) 4719 goto out; 4720 } 4721 if (target && !new_is_dir) { 4722 error = try_break_deleg(target, delegated_inode); 4723 if (error) 4724 goto out; 4725 } 4726 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4727 new_dir, new_dentry, flags); 4728 if (error) 4729 goto out; 4730 4731 if (!(flags & RENAME_EXCHANGE) && target) { 4732 if (is_dir) { 4733 shrink_dcache_parent(new_dentry); 4734 target->i_flags |= S_DEAD; 4735 } 4736 dont_mount(new_dentry); 4737 detach_mounts(new_dentry); 4738 } 4739 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4740 if (!(flags & RENAME_EXCHANGE)) 4741 d_move(old_dentry, new_dentry); 4742 else 4743 d_exchange(old_dentry, new_dentry); 4744 } 4745 out: 4746 if (!is_dir || (flags & RENAME_EXCHANGE)) 4747 unlock_two_nondirectories(source, target); 4748 else if (target) 4749 inode_unlock(target); 4750 dput(new_dentry); 4751 if (!error) { 4752 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4753 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4754 if (flags & RENAME_EXCHANGE) { 4755 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4756 new_is_dir, NULL, new_dentry); 4757 } 4758 } 4759 release_dentry_name_snapshot(&old_name); 4760 4761 return error; 4762 } 4763 EXPORT_SYMBOL(vfs_rename); 4764 4765 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4766 struct filename *to, unsigned int flags) 4767 { 4768 struct renamedata rd; 4769 struct dentry *old_dentry, *new_dentry; 4770 struct dentry *trap; 4771 struct path old_path, new_path; 4772 struct qstr old_last, new_last; 4773 int old_type, new_type; 4774 struct inode *delegated_inode = NULL; 4775 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4776 bool should_retry = false; 4777 int error = -EINVAL; 4778 4779 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4780 goto put_names; 4781 4782 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4783 (flags & RENAME_EXCHANGE)) 4784 goto put_names; 4785 4786 if (flags & RENAME_EXCHANGE) 4787 target_flags = 0; 4788 4789 retry: 4790 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4791 &old_last, &old_type); 4792 if (error) 4793 goto put_names; 4794 4795 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4796 &new_type); 4797 if (error) 4798 goto exit1; 4799 4800 error = -EXDEV; 4801 if (old_path.mnt != new_path.mnt) 4802 goto exit2; 4803 4804 error = -EBUSY; 4805 if (old_type != LAST_NORM) 4806 goto exit2; 4807 4808 if (flags & RENAME_NOREPLACE) 4809 error = -EEXIST; 4810 if (new_type != LAST_NORM) 4811 goto exit2; 4812 4813 error = mnt_want_write(old_path.mnt); 4814 if (error) 4815 goto exit2; 4816 4817 retry_deleg: 4818 trap = lock_rename(new_path.dentry, old_path.dentry); 4819 4820 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4821 error = PTR_ERR(old_dentry); 4822 if (IS_ERR(old_dentry)) 4823 goto exit3; 4824 /* source must exist */ 4825 error = -ENOENT; 4826 if (d_is_negative(old_dentry)) 4827 goto exit4; 4828 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4829 error = PTR_ERR(new_dentry); 4830 if (IS_ERR(new_dentry)) 4831 goto exit4; 4832 error = -EEXIST; 4833 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4834 goto exit5; 4835 if (flags & RENAME_EXCHANGE) { 4836 error = -ENOENT; 4837 if (d_is_negative(new_dentry)) 4838 goto exit5; 4839 4840 if (!d_is_dir(new_dentry)) { 4841 error = -ENOTDIR; 4842 if (new_last.name[new_last.len]) 4843 goto exit5; 4844 } 4845 } 4846 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4847 if (!d_is_dir(old_dentry)) { 4848 error = -ENOTDIR; 4849 if (old_last.name[old_last.len]) 4850 goto exit5; 4851 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4852 goto exit5; 4853 } 4854 /* source should not be ancestor of target */ 4855 error = -EINVAL; 4856 if (old_dentry == trap) 4857 goto exit5; 4858 /* target should not be an ancestor of source */ 4859 if (!(flags & RENAME_EXCHANGE)) 4860 error = -ENOTEMPTY; 4861 if (new_dentry == trap) 4862 goto exit5; 4863 4864 error = security_path_rename(&old_path, old_dentry, 4865 &new_path, new_dentry, flags); 4866 if (error) 4867 goto exit5; 4868 4869 rd.old_dir = old_path.dentry->d_inode; 4870 rd.old_dentry = old_dentry; 4871 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4872 rd.new_dir = new_path.dentry->d_inode; 4873 rd.new_dentry = new_dentry; 4874 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4875 rd.delegated_inode = &delegated_inode; 4876 rd.flags = flags; 4877 error = vfs_rename(&rd); 4878 exit5: 4879 dput(new_dentry); 4880 exit4: 4881 dput(old_dentry); 4882 exit3: 4883 unlock_rename(new_path.dentry, old_path.dentry); 4884 if (delegated_inode) { 4885 error = break_deleg_wait(&delegated_inode); 4886 if (!error) 4887 goto retry_deleg; 4888 } 4889 mnt_drop_write(old_path.mnt); 4890 exit2: 4891 if (retry_estale(error, lookup_flags)) 4892 should_retry = true; 4893 path_put(&new_path); 4894 exit1: 4895 path_put(&old_path); 4896 if (should_retry) { 4897 should_retry = false; 4898 lookup_flags |= LOOKUP_REVAL; 4899 goto retry; 4900 } 4901 put_names: 4902 putname(from); 4903 putname(to); 4904 return error; 4905 } 4906 4907 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4908 int, newdfd, const char __user *, newname, unsigned int, flags) 4909 { 4910 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4911 flags); 4912 } 4913 4914 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4915 int, newdfd, const char __user *, newname) 4916 { 4917 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4918 0); 4919 } 4920 4921 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4922 { 4923 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4924 getname(newname), 0); 4925 } 4926 4927 int readlink_copy(char __user *buffer, int buflen, const char *link) 4928 { 4929 int len = PTR_ERR(link); 4930 if (IS_ERR(link)) 4931 goto out; 4932 4933 len = strlen(link); 4934 if (len > (unsigned) buflen) 4935 len = buflen; 4936 if (copy_to_user(buffer, link, len)) 4937 len = -EFAULT; 4938 out: 4939 return len; 4940 } 4941 4942 /** 4943 * vfs_readlink - copy symlink body into userspace buffer 4944 * @dentry: dentry on which to get symbolic link 4945 * @buffer: user memory pointer 4946 * @buflen: size of buffer 4947 * 4948 * Does not touch atime. That's up to the caller if necessary 4949 * 4950 * Does not call security hook. 4951 */ 4952 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4953 { 4954 struct inode *inode = d_inode(dentry); 4955 DEFINE_DELAYED_CALL(done); 4956 const char *link; 4957 int res; 4958 4959 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4960 if (unlikely(inode->i_op->readlink)) 4961 return inode->i_op->readlink(dentry, buffer, buflen); 4962 4963 if (!d_is_symlink(dentry)) 4964 return -EINVAL; 4965 4966 spin_lock(&inode->i_lock); 4967 inode->i_opflags |= IOP_DEFAULT_READLINK; 4968 spin_unlock(&inode->i_lock); 4969 } 4970 4971 link = READ_ONCE(inode->i_link); 4972 if (!link) { 4973 link = inode->i_op->get_link(dentry, inode, &done); 4974 if (IS_ERR(link)) 4975 return PTR_ERR(link); 4976 } 4977 res = readlink_copy(buffer, buflen, link); 4978 do_delayed_call(&done); 4979 return res; 4980 } 4981 EXPORT_SYMBOL(vfs_readlink); 4982 4983 /** 4984 * vfs_get_link - get symlink body 4985 * @dentry: dentry on which to get symbolic link 4986 * @done: caller needs to free returned data with this 4987 * 4988 * Calls security hook and i_op->get_link() on the supplied inode. 4989 * 4990 * It does not touch atime. That's up to the caller if necessary. 4991 * 4992 * Does not work on "special" symlinks like /proc/$$/fd/N 4993 */ 4994 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4995 { 4996 const char *res = ERR_PTR(-EINVAL); 4997 struct inode *inode = d_inode(dentry); 4998 4999 if (d_is_symlink(dentry)) { 5000 res = ERR_PTR(security_inode_readlink(dentry)); 5001 if (!res) 5002 res = inode->i_op->get_link(dentry, inode, done); 5003 } 5004 return res; 5005 } 5006 EXPORT_SYMBOL(vfs_get_link); 5007 5008 /* get the link contents into pagecache */ 5009 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5010 struct delayed_call *callback) 5011 { 5012 char *kaddr; 5013 struct page *page; 5014 struct address_space *mapping = inode->i_mapping; 5015 5016 if (!dentry) { 5017 page = find_get_page(mapping, 0); 5018 if (!page) 5019 return ERR_PTR(-ECHILD); 5020 if (!PageUptodate(page)) { 5021 put_page(page); 5022 return ERR_PTR(-ECHILD); 5023 } 5024 } else { 5025 page = read_mapping_page(mapping, 0, NULL); 5026 if (IS_ERR(page)) 5027 return (char*)page; 5028 } 5029 set_delayed_call(callback, page_put_link, page); 5030 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5031 kaddr = page_address(page); 5032 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5033 return kaddr; 5034 } 5035 5036 EXPORT_SYMBOL(page_get_link); 5037 5038 void page_put_link(void *arg) 5039 { 5040 put_page(arg); 5041 } 5042 EXPORT_SYMBOL(page_put_link); 5043 5044 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5045 { 5046 DEFINE_DELAYED_CALL(done); 5047 int res = readlink_copy(buffer, buflen, 5048 page_get_link(dentry, d_inode(dentry), 5049 &done)); 5050 do_delayed_call(&done); 5051 return res; 5052 } 5053 EXPORT_SYMBOL(page_readlink); 5054 5055 int page_symlink(struct inode *inode, const char *symname, int len) 5056 { 5057 struct address_space *mapping = inode->i_mapping; 5058 const struct address_space_operations *aops = mapping->a_ops; 5059 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5060 struct page *page; 5061 void *fsdata; 5062 int err; 5063 unsigned int flags; 5064 5065 retry: 5066 if (nofs) 5067 flags = memalloc_nofs_save(); 5068 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5069 if (nofs) 5070 memalloc_nofs_restore(flags); 5071 if (err) 5072 goto fail; 5073 5074 memcpy(page_address(page), symname, len-1); 5075 5076 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5077 page, fsdata); 5078 if (err < 0) 5079 goto fail; 5080 if (err < len-1) 5081 goto retry; 5082 5083 mark_inode_dirty(inode); 5084 return 0; 5085 fail: 5086 return err; 5087 } 5088 EXPORT_SYMBOL(page_symlink); 5089 5090 const struct inode_operations page_symlink_inode_operations = { 5091 .get_link = page_get_link, 5092 }; 5093 EXPORT_SYMBOL(page_symlink_inode_operations); 5094