1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/wordpart.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 /* 152 * Handle both empty path and copy failure in one go. 153 */ 154 if (unlikely(len <= 0)) { 155 if (unlikely(len < 0)) { 156 __putname(result); 157 return ERR_PTR(len); 158 } 159 160 /* The empty path is special. */ 161 if (!(flags & LOOKUP_EMPTY)) { 162 __putname(result); 163 return ERR_PTR(-ENOENT); 164 } 165 } 166 167 /* 168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 169 * separate struct filename so we can dedicate the entire 170 * names_cache allocation for the pathname, and re-do the copy from 171 * userland. 172 */ 173 if (unlikely(len == EMBEDDED_NAME_MAX)) { 174 const size_t size = offsetof(struct filename, iname[1]); 175 kname = (char *)result; 176 177 /* 178 * size is chosen that way we to guarantee that 179 * result->iname[0] is within the same object and that 180 * kname can't be equal to result->iname, no matter what. 181 */ 182 result = kzalloc(size, GFP_KERNEL); 183 if (unlikely(!result)) { 184 __putname(kname); 185 return ERR_PTR(-ENOMEM); 186 } 187 result->name = kname; 188 len = strncpy_from_user(kname, filename, PATH_MAX); 189 if (unlikely(len < 0)) { 190 __putname(kname); 191 kfree(result); 192 return ERR_PTR(len); 193 } 194 /* The empty path is special. */ 195 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) { 196 __putname(kname); 197 kfree(result); 198 return ERR_PTR(-ENOENT); 199 } 200 if (unlikely(len == PATH_MAX)) { 201 __putname(kname); 202 kfree(result); 203 return ERR_PTR(-ENAMETOOLONG); 204 } 205 } 206 207 atomic_set(&result->refcnt, 1); 208 result->uptr = filename; 209 result->aname = NULL; 210 audit_getname(result); 211 return result; 212 } 213 214 struct filename *getname_uflags(const char __user *filename, int uflags) 215 { 216 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 217 218 return getname_flags(filename, flags); 219 } 220 221 struct filename *getname(const char __user * filename) 222 { 223 return getname_flags(filename, 0); 224 } 225 226 struct filename *__getname_maybe_null(const char __user *pathname) 227 { 228 struct filename *name; 229 char c; 230 231 /* try to save on allocations; loss on um, though */ 232 if (get_user(c, pathname)) 233 return ERR_PTR(-EFAULT); 234 if (!c) 235 return NULL; 236 237 name = getname_flags(pathname, LOOKUP_EMPTY); 238 if (!IS_ERR(name) && !(name->name[0])) { 239 putname(name); 240 name = NULL; 241 } 242 return name; 243 } 244 245 struct filename *getname_kernel(const char * filename) 246 { 247 struct filename *result; 248 int len = strlen(filename) + 1; 249 250 result = __getname(); 251 if (unlikely(!result)) 252 return ERR_PTR(-ENOMEM); 253 254 if (len <= EMBEDDED_NAME_MAX) { 255 result->name = (char *)result->iname; 256 } else if (len <= PATH_MAX) { 257 const size_t size = offsetof(struct filename, iname[1]); 258 struct filename *tmp; 259 260 tmp = kmalloc(size, GFP_KERNEL); 261 if (unlikely(!tmp)) { 262 __putname(result); 263 return ERR_PTR(-ENOMEM); 264 } 265 tmp->name = (char *)result; 266 result = tmp; 267 } else { 268 __putname(result); 269 return ERR_PTR(-ENAMETOOLONG); 270 } 271 memcpy((char *)result->name, filename, len); 272 result->uptr = NULL; 273 result->aname = NULL; 274 atomic_set(&result->refcnt, 1); 275 audit_getname(result); 276 277 return result; 278 } 279 EXPORT_SYMBOL(getname_kernel); 280 281 void putname(struct filename *name) 282 { 283 if (IS_ERR_OR_NULL(name)) 284 return; 285 286 if (WARN_ON_ONCE(!atomic_read(&name->refcnt))) 287 return; 288 289 if (!atomic_dec_and_test(&name->refcnt)) 290 return; 291 292 if (name->name != name->iname) { 293 __putname(name->name); 294 kfree(name); 295 } else 296 __putname(name); 297 } 298 EXPORT_SYMBOL(putname); 299 300 /** 301 * check_acl - perform ACL permission checking 302 * @idmap: idmap of the mount the inode was found from 303 * @inode: inode to check permissions on 304 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 305 * 306 * This function performs the ACL permission checking. Since this function 307 * retrieve POSIX acls it needs to know whether it is called from a blocking or 308 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 309 * 310 * If the inode has been found through an idmapped mount the idmap of 311 * the vfsmount must be passed through @idmap. This function will then take 312 * care to map the inode according to @idmap before checking permissions. 313 * On non-idmapped mounts or if permission checking is to be performed on the 314 * raw inode simply pass @nop_mnt_idmap. 315 */ 316 static int check_acl(struct mnt_idmap *idmap, 317 struct inode *inode, int mask) 318 { 319 #ifdef CONFIG_FS_POSIX_ACL 320 struct posix_acl *acl; 321 322 if (mask & MAY_NOT_BLOCK) { 323 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 324 if (!acl) 325 return -EAGAIN; 326 /* no ->get_inode_acl() calls in RCU mode... */ 327 if (is_uncached_acl(acl)) 328 return -ECHILD; 329 return posix_acl_permission(idmap, inode, acl, mask); 330 } 331 332 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 333 if (IS_ERR(acl)) 334 return PTR_ERR(acl); 335 if (acl) { 336 int error = posix_acl_permission(idmap, inode, acl, mask); 337 posix_acl_release(acl); 338 return error; 339 } 340 #endif 341 342 return -EAGAIN; 343 } 344 345 /* 346 * Very quick optimistic "we know we have no ACL's" check. 347 * 348 * Note that this is purely for ACL_TYPE_ACCESS, and purely 349 * for the "we have cached that there are no ACLs" case. 350 * 351 * If this returns true, we know there are no ACLs. But if 352 * it returns false, we might still not have ACLs (it could 353 * be the is_uncached_acl() case). 354 */ 355 static inline bool no_acl_inode(struct inode *inode) 356 { 357 #ifdef CONFIG_FS_POSIX_ACL 358 return likely(!READ_ONCE(inode->i_acl)); 359 #else 360 return true; 361 #endif 362 } 363 364 /** 365 * acl_permission_check - perform basic UNIX permission checking 366 * @idmap: idmap of the mount the inode was found from 367 * @inode: inode to check permissions on 368 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 369 * 370 * This function performs the basic UNIX permission checking. Since this 371 * function may retrieve POSIX acls it needs to know whether it is called from a 372 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 373 * 374 * If the inode has been found through an idmapped mount the idmap of 375 * the vfsmount must be passed through @idmap. This function will then take 376 * care to map the inode according to @idmap before checking permissions. 377 * On non-idmapped mounts or if permission checking is to be performed on the 378 * raw inode simply pass @nop_mnt_idmap. 379 */ 380 static int acl_permission_check(struct mnt_idmap *idmap, 381 struct inode *inode, int mask) 382 { 383 unsigned int mode = inode->i_mode; 384 vfsuid_t vfsuid; 385 386 /* 387 * Common cheap case: everybody has the requested 388 * rights, and there are no ACLs to check. No need 389 * to do any owner/group checks in that case. 390 * 391 * - 'mask&7' is the requested permission bit set 392 * - multiplying by 0111 spreads them out to all of ugo 393 * - '& ~mode' looks for missing inode permission bits 394 * - the '!' is for "no missing permissions" 395 * 396 * After that, we just need to check that there are no 397 * ACL's on the inode - do the 'IS_POSIXACL()' check last 398 * because it will dereference the ->i_sb pointer and we 399 * want to avoid that if at all possible. 400 */ 401 if (!((mask & 7) * 0111 & ~mode)) { 402 if (no_acl_inode(inode)) 403 return 0; 404 if (!IS_POSIXACL(inode)) 405 return 0; 406 } 407 408 /* Are we the owner? If so, ACL's don't matter */ 409 vfsuid = i_uid_into_vfsuid(idmap, inode); 410 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 411 mask &= 7; 412 mode >>= 6; 413 return (mask & ~mode) ? -EACCES : 0; 414 } 415 416 /* Do we have ACL's? */ 417 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 418 int error = check_acl(idmap, inode, mask); 419 if (error != -EAGAIN) 420 return error; 421 } 422 423 /* Only RWX matters for group/other mode bits */ 424 mask &= 7; 425 426 /* 427 * Are the group permissions different from 428 * the other permissions in the bits we care 429 * about? Need to check group ownership if so. 430 */ 431 if (mask & (mode ^ (mode >> 3))) { 432 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 433 if (vfsgid_in_group_p(vfsgid)) 434 mode >>= 3; 435 } 436 437 /* Bits in 'mode' clear that we require? */ 438 return (mask & ~mode) ? -EACCES : 0; 439 } 440 441 /** 442 * generic_permission - check for access rights on a Posix-like filesystem 443 * @idmap: idmap of the mount the inode was found from 444 * @inode: inode to check access rights for 445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 446 * %MAY_NOT_BLOCK ...) 447 * 448 * Used to check for read/write/execute permissions on a file. 449 * We use "fsuid" for this, letting us set arbitrary permissions 450 * for filesystem access without changing the "normal" uids which 451 * are used for other things. 452 * 453 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 454 * request cannot be satisfied (eg. requires blocking or too much complexity). 455 * It would then be called again in ref-walk mode. 456 * 457 * If the inode has been found through an idmapped mount the idmap of 458 * the vfsmount must be passed through @idmap. This function will then take 459 * care to map the inode according to @idmap before checking permissions. 460 * On non-idmapped mounts or if permission checking is to be performed on the 461 * raw inode simply pass @nop_mnt_idmap. 462 */ 463 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 464 int mask) 465 { 466 int ret; 467 468 /* 469 * Do the basic permission checks. 470 */ 471 ret = acl_permission_check(idmap, inode, mask); 472 if (ret != -EACCES) 473 return ret; 474 475 if (S_ISDIR(inode->i_mode)) { 476 /* DACs are overridable for directories */ 477 if (!(mask & MAY_WRITE)) 478 if (capable_wrt_inode_uidgid(idmap, inode, 479 CAP_DAC_READ_SEARCH)) 480 return 0; 481 if (capable_wrt_inode_uidgid(idmap, inode, 482 CAP_DAC_OVERRIDE)) 483 return 0; 484 return -EACCES; 485 } 486 487 /* 488 * Searching includes executable on directories, else just read. 489 */ 490 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 491 if (mask == MAY_READ) 492 if (capable_wrt_inode_uidgid(idmap, inode, 493 CAP_DAC_READ_SEARCH)) 494 return 0; 495 /* 496 * Read/write DACs are always overridable. 497 * Executable DACs are overridable when there is 498 * at least one exec bit set. 499 */ 500 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 501 if (capable_wrt_inode_uidgid(idmap, inode, 502 CAP_DAC_OVERRIDE)) 503 return 0; 504 505 return -EACCES; 506 } 507 EXPORT_SYMBOL(generic_permission); 508 509 /** 510 * do_inode_permission - UNIX permission checking 511 * @idmap: idmap of the mount the inode was found from 512 * @inode: inode to check permissions on 513 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 514 * 515 * We _really_ want to just do "generic_permission()" without 516 * even looking at the inode->i_op values. So we keep a cache 517 * flag in inode->i_opflags, that says "this has not special 518 * permission function, use the fast case". 519 */ 520 static inline int do_inode_permission(struct mnt_idmap *idmap, 521 struct inode *inode, int mask) 522 { 523 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 524 if (likely(inode->i_op->permission)) 525 return inode->i_op->permission(idmap, inode, mask); 526 527 /* This gets set once for the inode lifetime */ 528 spin_lock(&inode->i_lock); 529 inode->i_opflags |= IOP_FASTPERM; 530 spin_unlock(&inode->i_lock); 531 } 532 return generic_permission(idmap, inode, mask); 533 } 534 535 /** 536 * sb_permission - Check superblock-level permissions 537 * @sb: Superblock of inode to check permission on 538 * @inode: Inode to check permission on 539 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 540 * 541 * Separate out file-system wide checks from inode-specific permission checks. 542 */ 543 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 544 { 545 if (unlikely(mask & MAY_WRITE)) { 546 umode_t mode = inode->i_mode; 547 548 /* Nobody gets write access to a read-only fs. */ 549 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 550 return -EROFS; 551 } 552 return 0; 553 } 554 555 /** 556 * inode_permission - Check for access rights to a given inode 557 * @idmap: idmap of the mount the inode was found from 558 * @inode: Inode to check permission on 559 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 560 * 561 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 562 * this, letting us set arbitrary permissions for filesystem access without 563 * changing the "normal" UIDs which are used for other things. 564 * 565 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 566 */ 567 int inode_permission(struct mnt_idmap *idmap, 568 struct inode *inode, int mask) 569 { 570 int retval; 571 572 retval = sb_permission(inode->i_sb, inode, mask); 573 if (retval) 574 return retval; 575 576 if (unlikely(mask & MAY_WRITE)) { 577 /* 578 * Nobody gets write access to an immutable file. 579 */ 580 if (IS_IMMUTABLE(inode)) 581 return -EPERM; 582 583 /* 584 * Updating mtime will likely cause i_uid and i_gid to be 585 * written back improperly if their true value is unknown 586 * to the vfs. 587 */ 588 if (HAS_UNMAPPED_ID(idmap, inode)) 589 return -EACCES; 590 } 591 592 retval = do_inode_permission(idmap, inode, mask); 593 if (retval) 594 return retval; 595 596 retval = devcgroup_inode_permission(inode, mask); 597 if (retval) 598 return retval; 599 600 return security_inode_permission(inode, mask); 601 } 602 EXPORT_SYMBOL(inode_permission); 603 604 /** 605 * path_get - get a reference to a path 606 * @path: path to get the reference to 607 * 608 * Given a path increment the reference count to the dentry and the vfsmount. 609 */ 610 void path_get(const struct path *path) 611 { 612 mntget(path->mnt); 613 dget(path->dentry); 614 } 615 EXPORT_SYMBOL(path_get); 616 617 /** 618 * path_put - put a reference to a path 619 * @path: path to put the reference to 620 * 621 * Given a path decrement the reference count to the dentry and the vfsmount. 622 */ 623 void path_put(const struct path *path) 624 { 625 dput(path->dentry); 626 mntput(path->mnt); 627 } 628 EXPORT_SYMBOL(path_put); 629 630 #define EMBEDDED_LEVELS 2 631 struct nameidata { 632 struct path path; 633 struct qstr last; 634 struct path root; 635 struct inode *inode; /* path.dentry.d_inode */ 636 unsigned int flags, state; 637 unsigned seq, next_seq, m_seq, r_seq; 638 int last_type; 639 unsigned depth; 640 int total_link_count; 641 struct saved { 642 struct path link; 643 struct delayed_call done; 644 const char *name; 645 unsigned seq; 646 } *stack, internal[EMBEDDED_LEVELS]; 647 struct filename *name; 648 const char *pathname; 649 struct nameidata *saved; 650 unsigned root_seq; 651 int dfd; 652 vfsuid_t dir_vfsuid; 653 umode_t dir_mode; 654 } __randomize_layout; 655 656 #define ND_ROOT_PRESET 1 657 #define ND_ROOT_GRABBED 2 658 #define ND_JUMPED 4 659 660 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 661 { 662 struct nameidata *old = current->nameidata; 663 p->stack = p->internal; 664 p->depth = 0; 665 p->dfd = dfd; 666 p->name = name; 667 p->pathname = likely(name) ? name->name : ""; 668 p->path.mnt = NULL; 669 p->path.dentry = NULL; 670 p->total_link_count = old ? old->total_link_count : 0; 671 p->saved = old; 672 current->nameidata = p; 673 } 674 675 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 676 const struct path *root) 677 { 678 __set_nameidata(p, dfd, name); 679 p->state = 0; 680 if (unlikely(root)) { 681 p->state = ND_ROOT_PRESET; 682 p->root = *root; 683 } 684 } 685 686 static void restore_nameidata(void) 687 { 688 struct nameidata *now = current->nameidata, *old = now->saved; 689 690 current->nameidata = old; 691 if (old) 692 old->total_link_count = now->total_link_count; 693 if (now->stack != now->internal) 694 kfree(now->stack); 695 } 696 697 static bool nd_alloc_stack(struct nameidata *nd) 698 { 699 struct saved *p; 700 701 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 702 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 703 if (unlikely(!p)) 704 return false; 705 memcpy(p, nd->internal, sizeof(nd->internal)); 706 nd->stack = p; 707 return true; 708 } 709 710 /** 711 * path_connected - Verify that a dentry is below mnt.mnt_root 712 * @mnt: The mountpoint to check. 713 * @dentry: The dentry to check. 714 * 715 * Rename can sometimes move a file or directory outside of a bind 716 * mount, path_connected allows those cases to be detected. 717 */ 718 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 719 { 720 struct super_block *sb = mnt->mnt_sb; 721 722 /* Bind mounts can have disconnected paths */ 723 if (mnt->mnt_root == sb->s_root) 724 return true; 725 726 return is_subdir(dentry, mnt->mnt_root); 727 } 728 729 static void drop_links(struct nameidata *nd) 730 { 731 int i = nd->depth; 732 while (i--) { 733 struct saved *last = nd->stack + i; 734 do_delayed_call(&last->done); 735 clear_delayed_call(&last->done); 736 } 737 } 738 739 static void leave_rcu(struct nameidata *nd) 740 { 741 nd->flags &= ~LOOKUP_RCU; 742 nd->seq = nd->next_seq = 0; 743 rcu_read_unlock(); 744 } 745 746 static void terminate_walk(struct nameidata *nd) 747 { 748 drop_links(nd); 749 if (!(nd->flags & LOOKUP_RCU)) { 750 int i; 751 path_put(&nd->path); 752 for (i = 0; i < nd->depth; i++) 753 path_put(&nd->stack[i].link); 754 if (nd->state & ND_ROOT_GRABBED) { 755 path_put(&nd->root); 756 nd->state &= ~ND_ROOT_GRABBED; 757 } 758 } else { 759 leave_rcu(nd); 760 } 761 nd->depth = 0; 762 nd->path.mnt = NULL; 763 nd->path.dentry = NULL; 764 } 765 766 /* path_put is needed afterwards regardless of success or failure */ 767 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 768 { 769 int res = __legitimize_mnt(path->mnt, mseq); 770 if (unlikely(res)) { 771 if (res > 0) 772 path->mnt = NULL; 773 path->dentry = NULL; 774 return false; 775 } 776 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 777 path->dentry = NULL; 778 return false; 779 } 780 return !read_seqcount_retry(&path->dentry->d_seq, seq); 781 } 782 783 static inline bool legitimize_path(struct nameidata *nd, 784 struct path *path, unsigned seq) 785 { 786 return __legitimize_path(path, seq, nd->m_seq); 787 } 788 789 static bool legitimize_links(struct nameidata *nd) 790 { 791 int i; 792 if (unlikely(nd->flags & LOOKUP_CACHED)) { 793 drop_links(nd); 794 nd->depth = 0; 795 return false; 796 } 797 for (i = 0; i < nd->depth; i++) { 798 struct saved *last = nd->stack + i; 799 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 800 drop_links(nd); 801 nd->depth = i + 1; 802 return false; 803 } 804 } 805 return true; 806 } 807 808 static bool legitimize_root(struct nameidata *nd) 809 { 810 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 811 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 812 return true; 813 nd->state |= ND_ROOT_GRABBED; 814 return legitimize_path(nd, &nd->root, nd->root_seq); 815 } 816 817 /* 818 * Path walking has 2 modes, rcu-walk and ref-walk (see 819 * Documentation/filesystems/path-lookup.txt). In situations when we can't 820 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 821 * normal reference counts on dentries and vfsmounts to transition to ref-walk 822 * mode. Refcounts are grabbed at the last known good point before rcu-walk 823 * got stuck, so ref-walk may continue from there. If this is not successful 824 * (eg. a seqcount has changed), then failure is returned and it's up to caller 825 * to restart the path walk from the beginning in ref-walk mode. 826 */ 827 828 /** 829 * try_to_unlazy - try to switch to ref-walk mode. 830 * @nd: nameidata pathwalk data 831 * Returns: true on success, false on failure 832 * 833 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 834 * for ref-walk mode. 835 * Must be called from rcu-walk context. 836 * Nothing should touch nameidata between try_to_unlazy() failure and 837 * terminate_walk(). 838 */ 839 static bool try_to_unlazy(struct nameidata *nd) 840 { 841 struct dentry *parent = nd->path.dentry; 842 843 BUG_ON(!(nd->flags & LOOKUP_RCU)); 844 845 if (unlikely(!legitimize_links(nd))) 846 goto out1; 847 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 848 goto out; 849 if (unlikely(!legitimize_root(nd))) 850 goto out; 851 leave_rcu(nd); 852 BUG_ON(nd->inode != parent->d_inode); 853 return true; 854 855 out1: 856 nd->path.mnt = NULL; 857 nd->path.dentry = NULL; 858 out: 859 leave_rcu(nd); 860 return false; 861 } 862 863 /** 864 * try_to_unlazy_next - try to switch to ref-walk mode. 865 * @nd: nameidata pathwalk data 866 * @dentry: next dentry to step into 867 * Returns: true on success, false on failure 868 * 869 * Similar to try_to_unlazy(), but here we have the next dentry already 870 * picked by rcu-walk and want to legitimize that in addition to the current 871 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 872 * Nothing should touch nameidata between try_to_unlazy_next() failure and 873 * terminate_walk(). 874 */ 875 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 876 { 877 int res; 878 BUG_ON(!(nd->flags & LOOKUP_RCU)); 879 880 if (unlikely(!legitimize_links(nd))) 881 goto out2; 882 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 883 if (unlikely(res)) { 884 if (res > 0) 885 goto out2; 886 goto out1; 887 } 888 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 889 goto out1; 890 891 /* 892 * We need to move both the parent and the dentry from the RCU domain 893 * to be properly refcounted. And the sequence number in the dentry 894 * validates *both* dentry counters, since we checked the sequence 895 * number of the parent after we got the child sequence number. So we 896 * know the parent must still be valid if the child sequence number is 897 */ 898 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 899 goto out; 900 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 901 goto out_dput; 902 /* 903 * Sequence counts matched. Now make sure that the root is 904 * still valid and get it if required. 905 */ 906 if (unlikely(!legitimize_root(nd))) 907 goto out_dput; 908 leave_rcu(nd); 909 return true; 910 911 out2: 912 nd->path.mnt = NULL; 913 out1: 914 nd->path.dentry = NULL; 915 out: 916 leave_rcu(nd); 917 return false; 918 out_dput: 919 leave_rcu(nd); 920 dput(dentry); 921 return false; 922 } 923 924 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 925 { 926 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 927 return dentry->d_op->d_revalidate(dentry, flags); 928 else 929 return 1; 930 } 931 932 /** 933 * complete_walk - successful completion of path walk 934 * @nd: pointer nameidata 935 * 936 * If we had been in RCU mode, drop out of it and legitimize nd->path. 937 * Revalidate the final result, unless we'd already done that during 938 * the path walk or the filesystem doesn't ask for it. Return 0 on 939 * success, -error on failure. In case of failure caller does not 940 * need to drop nd->path. 941 */ 942 static int complete_walk(struct nameidata *nd) 943 { 944 struct dentry *dentry = nd->path.dentry; 945 int status; 946 947 if (nd->flags & LOOKUP_RCU) { 948 /* 949 * We don't want to zero nd->root for scoped-lookups or 950 * externally-managed nd->root. 951 */ 952 if (!(nd->state & ND_ROOT_PRESET)) 953 if (!(nd->flags & LOOKUP_IS_SCOPED)) 954 nd->root.mnt = NULL; 955 nd->flags &= ~LOOKUP_CACHED; 956 if (!try_to_unlazy(nd)) 957 return -ECHILD; 958 } 959 960 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 961 /* 962 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 963 * ever step outside the root during lookup" and should already 964 * be guaranteed by the rest of namei, we want to avoid a namei 965 * BUG resulting in userspace being given a path that was not 966 * scoped within the root at some point during the lookup. 967 * 968 * So, do a final sanity-check to make sure that in the 969 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 970 * we won't silently return an fd completely outside of the 971 * requested root to userspace. 972 * 973 * Userspace could move the path outside the root after this 974 * check, but as discussed elsewhere this is not a concern (the 975 * resolved file was inside the root at some point). 976 */ 977 if (!path_is_under(&nd->path, &nd->root)) 978 return -EXDEV; 979 } 980 981 if (likely(!(nd->state & ND_JUMPED))) 982 return 0; 983 984 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 985 return 0; 986 987 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 988 if (status > 0) 989 return 0; 990 991 if (!status) 992 status = -ESTALE; 993 994 return status; 995 } 996 997 static int set_root(struct nameidata *nd) 998 { 999 struct fs_struct *fs = current->fs; 1000 1001 /* 1002 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 1003 * still have to ensure it doesn't happen because it will cause a breakout 1004 * from the dirfd. 1005 */ 1006 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 1007 return -ENOTRECOVERABLE; 1008 1009 if (nd->flags & LOOKUP_RCU) { 1010 unsigned seq; 1011 1012 do { 1013 seq = read_seqcount_begin(&fs->seq); 1014 nd->root = fs->root; 1015 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 1016 } while (read_seqcount_retry(&fs->seq, seq)); 1017 } else { 1018 get_fs_root(fs, &nd->root); 1019 nd->state |= ND_ROOT_GRABBED; 1020 } 1021 return 0; 1022 } 1023 1024 static int nd_jump_root(struct nameidata *nd) 1025 { 1026 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1027 return -EXDEV; 1028 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1029 /* Absolute path arguments to path_init() are allowed. */ 1030 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 1031 return -EXDEV; 1032 } 1033 if (!nd->root.mnt) { 1034 int error = set_root(nd); 1035 if (error) 1036 return error; 1037 } 1038 if (nd->flags & LOOKUP_RCU) { 1039 struct dentry *d; 1040 nd->path = nd->root; 1041 d = nd->path.dentry; 1042 nd->inode = d->d_inode; 1043 nd->seq = nd->root_seq; 1044 if (read_seqcount_retry(&d->d_seq, nd->seq)) 1045 return -ECHILD; 1046 } else { 1047 path_put(&nd->path); 1048 nd->path = nd->root; 1049 path_get(&nd->path); 1050 nd->inode = nd->path.dentry->d_inode; 1051 } 1052 nd->state |= ND_JUMPED; 1053 return 0; 1054 } 1055 1056 /* 1057 * Helper to directly jump to a known parsed path from ->get_link, 1058 * caller must have taken a reference to path beforehand. 1059 */ 1060 int nd_jump_link(const struct path *path) 1061 { 1062 int error = -ELOOP; 1063 struct nameidata *nd = current->nameidata; 1064 1065 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 1066 goto err; 1067 1068 error = -EXDEV; 1069 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1070 if (nd->path.mnt != path->mnt) 1071 goto err; 1072 } 1073 /* Not currently safe for scoped-lookups. */ 1074 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1075 goto err; 1076 1077 path_put(&nd->path); 1078 nd->path = *path; 1079 nd->inode = nd->path.dentry->d_inode; 1080 nd->state |= ND_JUMPED; 1081 return 0; 1082 1083 err: 1084 path_put(path); 1085 return error; 1086 } 1087 1088 static inline void put_link(struct nameidata *nd) 1089 { 1090 struct saved *last = nd->stack + --nd->depth; 1091 do_delayed_call(&last->done); 1092 if (!(nd->flags & LOOKUP_RCU)) 1093 path_put(&last->link); 1094 } 1095 1096 static int sysctl_protected_symlinks __read_mostly; 1097 static int sysctl_protected_hardlinks __read_mostly; 1098 static int sysctl_protected_fifos __read_mostly; 1099 static int sysctl_protected_regular __read_mostly; 1100 1101 #ifdef CONFIG_SYSCTL 1102 static struct ctl_table namei_sysctls[] = { 1103 { 1104 .procname = "protected_symlinks", 1105 .data = &sysctl_protected_symlinks, 1106 .maxlen = sizeof(int), 1107 .mode = 0644, 1108 .proc_handler = proc_dointvec_minmax, 1109 .extra1 = SYSCTL_ZERO, 1110 .extra2 = SYSCTL_ONE, 1111 }, 1112 { 1113 .procname = "protected_hardlinks", 1114 .data = &sysctl_protected_hardlinks, 1115 .maxlen = sizeof(int), 1116 .mode = 0644, 1117 .proc_handler = proc_dointvec_minmax, 1118 .extra1 = SYSCTL_ZERO, 1119 .extra2 = SYSCTL_ONE, 1120 }, 1121 { 1122 .procname = "protected_fifos", 1123 .data = &sysctl_protected_fifos, 1124 .maxlen = sizeof(int), 1125 .mode = 0644, 1126 .proc_handler = proc_dointvec_minmax, 1127 .extra1 = SYSCTL_ZERO, 1128 .extra2 = SYSCTL_TWO, 1129 }, 1130 { 1131 .procname = "protected_regular", 1132 .data = &sysctl_protected_regular, 1133 .maxlen = sizeof(int), 1134 .mode = 0644, 1135 .proc_handler = proc_dointvec_minmax, 1136 .extra1 = SYSCTL_ZERO, 1137 .extra2 = SYSCTL_TWO, 1138 }, 1139 }; 1140 1141 static int __init init_fs_namei_sysctls(void) 1142 { 1143 register_sysctl_init("fs", namei_sysctls); 1144 return 0; 1145 } 1146 fs_initcall(init_fs_namei_sysctls); 1147 1148 #endif /* CONFIG_SYSCTL */ 1149 1150 /** 1151 * may_follow_link - Check symlink following for unsafe situations 1152 * @nd: nameidata pathwalk data 1153 * @inode: Used for idmapping. 1154 * 1155 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1156 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1157 * in a sticky world-writable directory. This is to protect privileged 1158 * processes from failing races against path names that may change out 1159 * from under them by way of other users creating malicious symlinks. 1160 * It will permit symlinks to be followed only when outside a sticky 1161 * world-writable directory, or when the uid of the symlink and follower 1162 * match, or when the directory owner matches the symlink's owner. 1163 * 1164 * Returns 0 if following the symlink is allowed, -ve on error. 1165 */ 1166 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1167 { 1168 struct mnt_idmap *idmap; 1169 vfsuid_t vfsuid; 1170 1171 if (!sysctl_protected_symlinks) 1172 return 0; 1173 1174 idmap = mnt_idmap(nd->path.mnt); 1175 vfsuid = i_uid_into_vfsuid(idmap, inode); 1176 /* Allowed if owner and follower match. */ 1177 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1178 return 0; 1179 1180 /* Allowed if parent directory not sticky and world-writable. */ 1181 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1182 return 0; 1183 1184 /* Allowed if parent directory and link owner match. */ 1185 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1186 return 0; 1187 1188 if (nd->flags & LOOKUP_RCU) 1189 return -ECHILD; 1190 1191 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1192 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1193 return -EACCES; 1194 } 1195 1196 /** 1197 * safe_hardlink_source - Check for safe hardlink conditions 1198 * @idmap: idmap of the mount the inode was found from 1199 * @inode: the source inode to hardlink from 1200 * 1201 * Return false if at least one of the following conditions: 1202 * - inode is not a regular file 1203 * - inode is setuid 1204 * - inode is setgid and group-exec 1205 * - access failure for read and write 1206 * 1207 * Otherwise returns true. 1208 */ 1209 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1210 struct inode *inode) 1211 { 1212 umode_t mode = inode->i_mode; 1213 1214 /* Special files should not get pinned to the filesystem. */ 1215 if (!S_ISREG(mode)) 1216 return false; 1217 1218 /* Setuid files should not get pinned to the filesystem. */ 1219 if (mode & S_ISUID) 1220 return false; 1221 1222 /* Executable setgid files should not get pinned to the filesystem. */ 1223 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1224 return false; 1225 1226 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1227 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1228 return false; 1229 1230 return true; 1231 } 1232 1233 /** 1234 * may_linkat - Check permissions for creating a hardlink 1235 * @idmap: idmap of the mount the inode was found from 1236 * @link: the source to hardlink from 1237 * 1238 * Block hardlink when all of: 1239 * - sysctl_protected_hardlinks enabled 1240 * - fsuid does not match inode 1241 * - hardlink source is unsafe (see safe_hardlink_source() above) 1242 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1243 * 1244 * If the inode has been found through an idmapped mount the idmap of 1245 * the vfsmount must be passed through @idmap. This function will then take 1246 * care to map the inode according to @idmap before checking permissions. 1247 * On non-idmapped mounts or if permission checking is to be performed on the 1248 * raw inode simply pass @nop_mnt_idmap. 1249 * 1250 * Returns 0 if successful, -ve on error. 1251 */ 1252 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1253 { 1254 struct inode *inode = link->dentry->d_inode; 1255 1256 /* Inode writeback is not safe when the uid or gid are invalid. */ 1257 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1258 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1259 return -EOVERFLOW; 1260 1261 if (!sysctl_protected_hardlinks) 1262 return 0; 1263 1264 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1265 * otherwise, it must be a safe source. 1266 */ 1267 if (safe_hardlink_source(idmap, inode) || 1268 inode_owner_or_capable(idmap, inode)) 1269 return 0; 1270 1271 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1272 return -EPERM; 1273 } 1274 1275 /** 1276 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1277 * should be allowed, or not, on files that already 1278 * exist. 1279 * @idmap: idmap of the mount the inode was found from 1280 * @nd: nameidata pathwalk data 1281 * @inode: the inode of the file to open 1282 * 1283 * Block an O_CREAT open of a FIFO (or a regular file) when: 1284 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1285 * - the file already exists 1286 * - we are in a sticky directory 1287 * - we don't own the file 1288 * - the owner of the directory doesn't own the file 1289 * - the directory is world writable 1290 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1291 * the directory doesn't have to be world writable: being group writable will 1292 * be enough. 1293 * 1294 * If the inode has been found through an idmapped mount the idmap of 1295 * the vfsmount must be passed through @idmap. This function will then take 1296 * care to map the inode according to @idmap before checking permissions. 1297 * On non-idmapped mounts or if permission checking is to be performed on the 1298 * raw inode simply pass @nop_mnt_idmap. 1299 * 1300 * Returns 0 if the open is allowed, -ve on error. 1301 */ 1302 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd, 1303 struct inode *const inode) 1304 { 1305 umode_t dir_mode = nd->dir_mode; 1306 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid; 1307 1308 if (likely(!(dir_mode & S_ISVTX))) 1309 return 0; 1310 1311 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular) 1312 return 0; 1313 1314 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos) 1315 return 0; 1316 1317 i_vfsuid = i_uid_into_vfsuid(idmap, inode); 1318 1319 if (vfsuid_eq(i_vfsuid, dir_vfsuid)) 1320 return 0; 1321 1322 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid())) 1323 return 0; 1324 1325 if (likely(dir_mode & 0002)) { 1326 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create"); 1327 return -EACCES; 1328 } 1329 1330 if (dir_mode & 0020) { 1331 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) { 1332 audit_log_path_denied(AUDIT_ANOM_CREAT, 1333 "sticky_create_fifo"); 1334 return -EACCES; 1335 } 1336 1337 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) { 1338 audit_log_path_denied(AUDIT_ANOM_CREAT, 1339 "sticky_create_regular"); 1340 return -EACCES; 1341 } 1342 } 1343 1344 return 0; 1345 } 1346 1347 /* 1348 * follow_up - Find the mountpoint of path's vfsmount 1349 * 1350 * Given a path, find the mountpoint of its source file system. 1351 * Replace @path with the path of the mountpoint in the parent mount. 1352 * Up is towards /. 1353 * 1354 * Return 1 if we went up a level and 0 if we were already at the 1355 * root. 1356 */ 1357 int follow_up(struct path *path) 1358 { 1359 struct mount *mnt = real_mount(path->mnt); 1360 struct mount *parent; 1361 struct dentry *mountpoint; 1362 1363 read_seqlock_excl(&mount_lock); 1364 parent = mnt->mnt_parent; 1365 if (parent == mnt) { 1366 read_sequnlock_excl(&mount_lock); 1367 return 0; 1368 } 1369 mntget(&parent->mnt); 1370 mountpoint = dget(mnt->mnt_mountpoint); 1371 read_sequnlock_excl(&mount_lock); 1372 dput(path->dentry); 1373 path->dentry = mountpoint; 1374 mntput(path->mnt); 1375 path->mnt = &parent->mnt; 1376 return 1; 1377 } 1378 EXPORT_SYMBOL(follow_up); 1379 1380 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1381 struct path *path, unsigned *seqp) 1382 { 1383 while (mnt_has_parent(m)) { 1384 struct dentry *mountpoint = m->mnt_mountpoint; 1385 1386 m = m->mnt_parent; 1387 if (unlikely(root->dentry == mountpoint && 1388 root->mnt == &m->mnt)) 1389 break; 1390 if (mountpoint != m->mnt.mnt_root) { 1391 path->mnt = &m->mnt; 1392 path->dentry = mountpoint; 1393 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1394 return true; 1395 } 1396 } 1397 return false; 1398 } 1399 1400 static bool choose_mountpoint(struct mount *m, const struct path *root, 1401 struct path *path) 1402 { 1403 bool found; 1404 1405 rcu_read_lock(); 1406 while (1) { 1407 unsigned seq, mseq = read_seqbegin(&mount_lock); 1408 1409 found = choose_mountpoint_rcu(m, root, path, &seq); 1410 if (unlikely(!found)) { 1411 if (!read_seqretry(&mount_lock, mseq)) 1412 break; 1413 } else { 1414 if (likely(__legitimize_path(path, seq, mseq))) 1415 break; 1416 rcu_read_unlock(); 1417 path_put(path); 1418 rcu_read_lock(); 1419 } 1420 } 1421 rcu_read_unlock(); 1422 return found; 1423 } 1424 1425 /* 1426 * Perform an automount 1427 * - return -EISDIR to tell follow_managed() to stop and return the path we 1428 * were called with. 1429 */ 1430 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1431 { 1432 struct dentry *dentry = path->dentry; 1433 1434 /* We don't want to mount if someone's just doing a stat - 1435 * unless they're stat'ing a directory and appended a '/' to 1436 * the name. 1437 * 1438 * We do, however, want to mount if someone wants to open or 1439 * create a file of any type under the mountpoint, wants to 1440 * traverse through the mountpoint or wants to open the 1441 * mounted directory. Also, autofs may mark negative dentries 1442 * as being automount points. These will need the attentions 1443 * of the daemon to instantiate them before they can be used. 1444 */ 1445 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1446 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1447 dentry->d_inode) 1448 return -EISDIR; 1449 1450 if (count && (*count)++ >= MAXSYMLINKS) 1451 return -ELOOP; 1452 1453 return finish_automount(dentry->d_op->d_automount(path), path); 1454 } 1455 1456 /* 1457 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1458 * dentries are pinned but not locked here, so negative dentry can go 1459 * positive right under us. Use of smp_load_acquire() provides a barrier 1460 * sufficient for ->d_inode and ->d_flags consistency. 1461 */ 1462 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1463 int *count, unsigned lookup_flags) 1464 { 1465 struct vfsmount *mnt = path->mnt; 1466 bool need_mntput = false; 1467 int ret = 0; 1468 1469 while (flags & DCACHE_MANAGED_DENTRY) { 1470 /* Allow the filesystem to manage the transit without i_mutex 1471 * being held. */ 1472 if (flags & DCACHE_MANAGE_TRANSIT) { 1473 ret = path->dentry->d_op->d_manage(path, false); 1474 flags = smp_load_acquire(&path->dentry->d_flags); 1475 if (ret < 0) 1476 break; 1477 } 1478 1479 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1480 struct vfsmount *mounted = lookup_mnt(path); 1481 if (mounted) { // ... in our namespace 1482 dput(path->dentry); 1483 if (need_mntput) 1484 mntput(path->mnt); 1485 path->mnt = mounted; 1486 path->dentry = dget(mounted->mnt_root); 1487 // here we know it's positive 1488 flags = path->dentry->d_flags; 1489 need_mntput = true; 1490 continue; 1491 } 1492 } 1493 1494 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1495 break; 1496 1497 // uncovered automount point 1498 ret = follow_automount(path, count, lookup_flags); 1499 flags = smp_load_acquire(&path->dentry->d_flags); 1500 if (ret < 0) 1501 break; 1502 } 1503 1504 if (ret == -EISDIR) 1505 ret = 0; 1506 // possible if you race with several mount --move 1507 if (need_mntput && path->mnt == mnt) 1508 mntput(path->mnt); 1509 if (!ret && unlikely(d_flags_negative(flags))) 1510 ret = -ENOENT; 1511 *jumped = need_mntput; 1512 return ret; 1513 } 1514 1515 static inline int traverse_mounts(struct path *path, bool *jumped, 1516 int *count, unsigned lookup_flags) 1517 { 1518 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1519 1520 /* fastpath */ 1521 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1522 *jumped = false; 1523 if (unlikely(d_flags_negative(flags))) 1524 return -ENOENT; 1525 return 0; 1526 } 1527 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1528 } 1529 1530 int follow_down_one(struct path *path) 1531 { 1532 struct vfsmount *mounted; 1533 1534 mounted = lookup_mnt(path); 1535 if (mounted) { 1536 dput(path->dentry); 1537 mntput(path->mnt); 1538 path->mnt = mounted; 1539 path->dentry = dget(mounted->mnt_root); 1540 return 1; 1541 } 1542 return 0; 1543 } 1544 EXPORT_SYMBOL(follow_down_one); 1545 1546 /* 1547 * Follow down to the covering mount currently visible to userspace. At each 1548 * point, the filesystem owning that dentry may be queried as to whether the 1549 * caller is permitted to proceed or not. 1550 */ 1551 int follow_down(struct path *path, unsigned int flags) 1552 { 1553 struct vfsmount *mnt = path->mnt; 1554 bool jumped; 1555 int ret = traverse_mounts(path, &jumped, NULL, flags); 1556 1557 if (path->mnt != mnt) 1558 mntput(mnt); 1559 return ret; 1560 } 1561 EXPORT_SYMBOL(follow_down); 1562 1563 /* 1564 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1565 * we meet a managed dentry that would need blocking. 1566 */ 1567 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1568 { 1569 struct dentry *dentry = path->dentry; 1570 unsigned int flags = dentry->d_flags; 1571 1572 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1573 return true; 1574 1575 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1576 return false; 1577 1578 for (;;) { 1579 /* 1580 * Don't forget we might have a non-mountpoint managed dentry 1581 * that wants to block transit. 1582 */ 1583 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1584 int res = dentry->d_op->d_manage(path, true); 1585 if (res) 1586 return res == -EISDIR; 1587 flags = dentry->d_flags; 1588 } 1589 1590 if (flags & DCACHE_MOUNTED) { 1591 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1592 if (mounted) { 1593 path->mnt = &mounted->mnt; 1594 dentry = path->dentry = mounted->mnt.mnt_root; 1595 nd->state |= ND_JUMPED; 1596 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1597 flags = dentry->d_flags; 1598 // makes sure that non-RCU pathwalk could reach 1599 // this state. 1600 if (read_seqretry(&mount_lock, nd->m_seq)) 1601 return false; 1602 continue; 1603 } 1604 if (read_seqretry(&mount_lock, nd->m_seq)) 1605 return false; 1606 } 1607 return !(flags & DCACHE_NEED_AUTOMOUNT); 1608 } 1609 } 1610 1611 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1612 struct path *path) 1613 { 1614 bool jumped; 1615 int ret; 1616 1617 path->mnt = nd->path.mnt; 1618 path->dentry = dentry; 1619 if (nd->flags & LOOKUP_RCU) { 1620 unsigned int seq = nd->next_seq; 1621 if (likely(__follow_mount_rcu(nd, path))) 1622 return 0; 1623 // *path and nd->next_seq might've been clobbered 1624 path->mnt = nd->path.mnt; 1625 path->dentry = dentry; 1626 nd->next_seq = seq; 1627 if (!try_to_unlazy_next(nd, dentry)) 1628 return -ECHILD; 1629 } 1630 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1631 if (jumped) { 1632 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1633 ret = -EXDEV; 1634 else 1635 nd->state |= ND_JUMPED; 1636 } 1637 if (unlikely(ret)) { 1638 dput(path->dentry); 1639 if (path->mnt != nd->path.mnt) 1640 mntput(path->mnt); 1641 } 1642 return ret; 1643 } 1644 1645 /* 1646 * This looks up the name in dcache and possibly revalidates the found dentry. 1647 * NULL is returned if the dentry does not exist in the cache. 1648 */ 1649 static struct dentry *lookup_dcache(const struct qstr *name, 1650 struct dentry *dir, 1651 unsigned int flags) 1652 { 1653 struct dentry *dentry = d_lookup(dir, name); 1654 if (dentry) { 1655 int error = d_revalidate(dentry, flags); 1656 if (unlikely(error <= 0)) { 1657 if (!error) 1658 d_invalidate(dentry); 1659 dput(dentry); 1660 return ERR_PTR(error); 1661 } 1662 } 1663 return dentry; 1664 } 1665 1666 /* 1667 * Parent directory has inode locked exclusive. This is one 1668 * and only case when ->lookup() gets called on non in-lookup 1669 * dentries - as the matter of fact, this only gets called 1670 * when directory is guaranteed to have no in-lookup children 1671 * at all. 1672 */ 1673 struct dentry *lookup_one_qstr_excl(const struct qstr *name, 1674 struct dentry *base, 1675 unsigned int flags) 1676 { 1677 struct dentry *dentry = lookup_dcache(name, base, flags); 1678 struct dentry *old; 1679 struct inode *dir = base->d_inode; 1680 1681 if (dentry) 1682 return dentry; 1683 1684 /* Don't create child dentry for a dead directory. */ 1685 if (unlikely(IS_DEADDIR(dir))) 1686 return ERR_PTR(-ENOENT); 1687 1688 dentry = d_alloc(base, name); 1689 if (unlikely(!dentry)) 1690 return ERR_PTR(-ENOMEM); 1691 1692 old = dir->i_op->lookup(dir, dentry, flags); 1693 if (unlikely(old)) { 1694 dput(dentry); 1695 dentry = old; 1696 } 1697 return dentry; 1698 } 1699 EXPORT_SYMBOL(lookup_one_qstr_excl); 1700 1701 /** 1702 * lookup_fast - do fast lockless (but racy) lookup of a dentry 1703 * @nd: current nameidata 1704 * 1705 * Do a fast, but racy lookup in the dcache for the given dentry, and 1706 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't 1707 * found. On error, an ERR_PTR will be returned. 1708 * 1709 * If this function returns a valid dentry and the walk is no longer 1710 * lazy, the dentry will carry a reference that must later be put. If 1711 * RCU mode is still in force, then this is not the case and the dentry 1712 * must be legitimized before use. If this returns NULL, then the walk 1713 * will no longer be in RCU mode. 1714 */ 1715 static struct dentry *lookup_fast(struct nameidata *nd) 1716 { 1717 struct dentry *dentry, *parent = nd->path.dentry; 1718 int status = 1; 1719 1720 /* 1721 * Rename seqlock is not required here because in the off chance 1722 * of a false negative due to a concurrent rename, the caller is 1723 * going to fall back to non-racy lookup. 1724 */ 1725 if (nd->flags & LOOKUP_RCU) { 1726 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1727 if (unlikely(!dentry)) { 1728 if (!try_to_unlazy(nd)) 1729 return ERR_PTR(-ECHILD); 1730 return NULL; 1731 } 1732 1733 /* 1734 * This sequence count validates that the parent had no 1735 * changes while we did the lookup of the dentry above. 1736 */ 1737 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1738 return ERR_PTR(-ECHILD); 1739 1740 status = d_revalidate(dentry, nd->flags); 1741 if (likely(status > 0)) 1742 return dentry; 1743 if (!try_to_unlazy_next(nd, dentry)) 1744 return ERR_PTR(-ECHILD); 1745 if (status == -ECHILD) 1746 /* we'd been told to redo it in non-rcu mode */ 1747 status = d_revalidate(dentry, nd->flags); 1748 } else { 1749 dentry = __d_lookup(parent, &nd->last); 1750 if (unlikely(!dentry)) 1751 return NULL; 1752 status = d_revalidate(dentry, nd->flags); 1753 } 1754 if (unlikely(status <= 0)) { 1755 if (!status) 1756 d_invalidate(dentry); 1757 dput(dentry); 1758 return ERR_PTR(status); 1759 } 1760 return dentry; 1761 } 1762 1763 /* Fast lookup failed, do it the slow way */ 1764 static struct dentry *__lookup_slow(const struct qstr *name, 1765 struct dentry *dir, 1766 unsigned int flags) 1767 { 1768 struct dentry *dentry, *old; 1769 struct inode *inode = dir->d_inode; 1770 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1771 1772 /* Don't go there if it's already dead */ 1773 if (unlikely(IS_DEADDIR(inode))) 1774 return ERR_PTR(-ENOENT); 1775 again: 1776 dentry = d_alloc_parallel(dir, name, &wq); 1777 if (IS_ERR(dentry)) 1778 return dentry; 1779 if (unlikely(!d_in_lookup(dentry))) { 1780 int error = d_revalidate(dentry, flags); 1781 if (unlikely(error <= 0)) { 1782 if (!error) { 1783 d_invalidate(dentry); 1784 dput(dentry); 1785 goto again; 1786 } 1787 dput(dentry); 1788 dentry = ERR_PTR(error); 1789 } 1790 } else { 1791 old = inode->i_op->lookup(inode, dentry, flags); 1792 d_lookup_done(dentry); 1793 if (unlikely(old)) { 1794 dput(dentry); 1795 dentry = old; 1796 } 1797 } 1798 return dentry; 1799 } 1800 1801 static struct dentry *lookup_slow(const struct qstr *name, 1802 struct dentry *dir, 1803 unsigned int flags) 1804 { 1805 struct inode *inode = dir->d_inode; 1806 struct dentry *res; 1807 inode_lock_shared(inode); 1808 res = __lookup_slow(name, dir, flags); 1809 inode_unlock_shared(inode); 1810 return res; 1811 } 1812 1813 static inline int may_lookup(struct mnt_idmap *idmap, 1814 struct nameidata *restrict nd) 1815 { 1816 int err, mask; 1817 1818 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0; 1819 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC); 1820 if (likely(!err)) 1821 return 0; 1822 1823 // If we failed, and we weren't in LOOKUP_RCU, it's final 1824 if (!(nd->flags & LOOKUP_RCU)) 1825 return err; 1826 1827 // Drop out of RCU mode to make sure it wasn't transient 1828 if (!try_to_unlazy(nd)) 1829 return -ECHILD; // redo it all non-lazy 1830 1831 if (err != -ECHILD) // hard error 1832 return err; 1833 1834 return inode_permission(idmap, nd->inode, MAY_EXEC); 1835 } 1836 1837 static int reserve_stack(struct nameidata *nd, struct path *link) 1838 { 1839 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1840 return -ELOOP; 1841 1842 if (likely(nd->depth != EMBEDDED_LEVELS)) 1843 return 0; 1844 if (likely(nd->stack != nd->internal)) 1845 return 0; 1846 if (likely(nd_alloc_stack(nd))) 1847 return 0; 1848 1849 if (nd->flags & LOOKUP_RCU) { 1850 // we need to grab link before we do unlazy. And we can't skip 1851 // unlazy even if we fail to grab the link - cleanup needs it 1852 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1853 1854 if (!try_to_unlazy(nd) || !grabbed_link) 1855 return -ECHILD; 1856 1857 if (nd_alloc_stack(nd)) 1858 return 0; 1859 } 1860 return -ENOMEM; 1861 } 1862 1863 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1864 1865 static const char *pick_link(struct nameidata *nd, struct path *link, 1866 struct inode *inode, int flags) 1867 { 1868 struct saved *last; 1869 const char *res; 1870 int error = reserve_stack(nd, link); 1871 1872 if (unlikely(error)) { 1873 if (!(nd->flags & LOOKUP_RCU)) 1874 path_put(link); 1875 return ERR_PTR(error); 1876 } 1877 last = nd->stack + nd->depth++; 1878 last->link = *link; 1879 clear_delayed_call(&last->done); 1880 last->seq = nd->next_seq; 1881 1882 if (flags & WALK_TRAILING) { 1883 error = may_follow_link(nd, inode); 1884 if (unlikely(error)) 1885 return ERR_PTR(error); 1886 } 1887 1888 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1889 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1890 return ERR_PTR(-ELOOP); 1891 1892 if (!(nd->flags & LOOKUP_RCU)) { 1893 touch_atime(&last->link); 1894 cond_resched(); 1895 } else if (atime_needs_update(&last->link, inode)) { 1896 if (!try_to_unlazy(nd)) 1897 return ERR_PTR(-ECHILD); 1898 touch_atime(&last->link); 1899 } 1900 1901 error = security_inode_follow_link(link->dentry, inode, 1902 nd->flags & LOOKUP_RCU); 1903 if (unlikely(error)) 1904 return ERR_PTR(error); 1905 1906 res = READ_ONCE(inode->i_link); 1907 if (!res) { 1908 const char * (*get)(struct dentry *, struct inode *, 1909 struct delayed_call *); 1910 get = inode->i_op->get_link; 1911 if (nd->flags & LOOKUP_RCU) { 1912 res = get(NULL, inode, &last->done); 1913 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1914 res = get(link->dentry, inode, &last->done); 1915 } else { 1916 res = get(link->dentry, inode, &last->done); 1917 } 1918 if (!res) 1919 goto all_done; 1920 if (IS_ERR(res)) 1921 return res; 1922 } 1923 if (*res == '/') { 1924 error = nd_jump_root(nd); 1925 if (unlikely(error)) 1926 return ERR_PTR(error); 1927 while (unlikely(*++res == '/')) 1928 ; 1929 } 1930 if (*res) 1931 return res; 1932 all_done: // pure jump 1933 put_link(nd); 1934 return NULL; 1935 } 1936 1937 /* 1938 * Do we need to follow links? We _really_ want to be able 1939 * to do this check without having to look at inode->i_op, 1940 * so we keep a cache of "no, this doesn't need follow_link" 1941 * for the common case. 1942 * 1943 * NOTE: dentry must be what nd->next_seq had been sampled from. 1944 */ 1945 static const char *step_into(struct nameidata *nd, int flags, 1946 struct dentry *dentry) 1947 { 1948 struct path path; 1949 struct inode *inode; 1950 int err = handle_mounts(nd, dentry, &path); 1951 1952 if (err < 0) 1953 return ERR_PTR(err); 1954 inode = path.dentry->d_inode; 1955 if (likely(!d_is_symlink(path.dentry)) || 1956 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1957 (flags & WALK_NOFOLLOW)) { 1958 /* not a symlink or should not follow */ 1959 if (nd->flags & LOOKUP_RCU) { 1960 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1961 return ERR_PTR(-ECHILD); 1962 if (unlikely(!inode)) 1963 return ERR_PTR(-ENOENT); 1964 } else { 1965 dput(nd->path.dentry); 1966 if (nd->path.mnt != path.mnt) 1967 mntput(nd->path.mnt); 1968 } 1969 nd->path = path; 1970 nd->inode = inode; 1971 nd->seq = nd->next_seq; 1972 return NULL; 1973 } 1974 if (nd->flags & LOOKUP_RCU) { 1975 /* make sure that d_is_symlink above matches inode */ 1976 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1977 return ERR_PTR(-ECHILD); 1978 } else { 1979 if (path.mnt == nd->path.mnt) 1980 mntget(path.mnt); 1981 } 1982 return pick_link(nd, &path, inode, flags); 1983 } 1984 1985 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1986 { 1987 struct dentry *parent, *old; 1988 1989 if (path_equal(&nd->path, &nd->root)) 1990 goto in_root; 1991 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1992 struct path path; 1993 unsigned seq; 1994 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1995 &nd->root, &path, &seq)) 1996 goto in_root; 1997 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1998 return ERR_PTR(-ECHILD); 1999 nd->path = path; 2000 nd->inode = path.dentry->d_inode; 2001 nd->seq = seq; 2002 // makes sure that non-RCU pathwalk could reach this state 2003 if (read_seqretry(&mount_lock, nd->m_seq)) 2004 return ERR_PTR(-ECHILD); 2005 /* we know that mountpoint was pinned */ 2006 } 2007 old = nd->path.dentry; 2008 parent = old->d_parent; 2009 nd->next_seq = read_seqcount_begin(&parent->d_seq); 2010 // makes sure that non-RCU pathwalk could reach this state 2011 if (read_seqcount_retry(&old->d_seq, nd->seq)) 2012 return ERR_PTR(-ECHILD); 2013 if (unlikely(!path_connected(nd->path.mnt, parent))) 2014 return ERR_PTR(-ECHILD); 2015 return parent; 2016 in_root: 2017 if (read_seqretry(&mount_lock, nd->m_seq)) 2018 return ERR_PTR(-ECHILD); 2019 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2020 return ERR_PTR(-ECHILD); 2021 nd->next_seq = nd->seq; 2022 return nd->path.dentry; 2023 } 2024 2025 static struct dentry *follow_dotdot(struct nameidata *nd) 2026 { 2027 struct dentry *parent; 2028 2029 if (path_equal(&nd->path, &nd->root)) 2030 goto in_root; 2031 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 2032 struct path path; 2033 2034 if (!choose_mountpoint(real_mount(nd->path.mnt), 2035 &nd->root, &path)) 2036 goto in_root; 2037 path_put(&nd->path); 2038 nd->path = path; 2039 nd->inode = path.dentry->d_inode; 2040 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 2041 return ERR_PTR(-EXDEV); 2042 } 2043 /* rare case of legitimate dget_parent()... */ 2044 parent = dget_parent(nd->path.dentry); 2045 if (unlikely(!path_connected(nd->path.mnt, parent))) { 2046 dput(parent); 2047 return ERR_PTR(-ENOENT); 2048 } 2049 return parent; 2050 2051 in_root: 2052 if (unlikely(nd->flags & LOOKUP_BENEATH)) 2053 return ERR_PTR(-EXDEV); 2054 return dget(nd->path.dentry); 2055 } 2056 2057 static const char *handle_dots(struct nameidata *nd, int type) 2058 { 2059 if (type == LAST_DOTDOT) { 2060 const char *error = NULL; 2061 struct dentry *parent; 2062 2063 if (!nd->root.mnt) { 2064 error = ERR_PTR(set_root(nd)); 2065 if (error) 2066 return error; 2067 } 2068 if (nd->flags & LOOKUP_RCU) 2069 parent = follow_dotdot_rcu(nd); 2070 else 2071 parent = follow_dotdot(nd); 2072 if (IS_ERR(parent)) 2073 return ERR_CAST(parent); 2074 error = step_into(nd, WALK_NOFOLLOW, parent); 2075 if (unlikely(error)) 2076 return error; 2077 2078 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 2079 /* 2080 * If there was a racing rename or mount along our 2081 * path, then we can't be sure that ".." hasn't jumped 2082 * above nd->root (and so userspace should retry or use 2083 * some fallback). 2084 */ 2085 smp_rmb(); 2086 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 2087 return ERR_PTR(-EAGAIN); 2088 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 2089 return ERR_PTR(-EAGAIN); 2090 } 2091 } 2092 return NULL; 2093 } 2094 2095 static const char *walk_component(struct nameidata *nd, int flags) 2096 { 2097 struct dentry *dentry; 2098 /* 2099 * "." and ".." are special - ".." especially so because it has 2100 * to be able to know about the current root directory and 2101 * parent relationships. 2102 */ 2103 if (unlikely(nd->last_type != LAST_NORM)) { 2104 if (!(flags & WALK_MORE) && nd->depth) 2105 put_link(nd); 2106 return handle_dots(nd, nd->last_type); 2107 } 2108 dentry = lookup_fast(nd); 2109 if (IS_ERR(dentry)) 2110 return ERR_CAST(dentry); 2111 if (unlikely(!dentry)) { 2112 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 2113 if (IS_ERR(dentry)) 2114 return ERR_CAST(dentry); 2115 } 2116 if (!(flags & WALK_MORE) && nd->depth) 2117 put_link(nd); 2118 return step_into(nd, flags, dentry); 2119 } 2120 2121 /* 2122 * We can do the critical dentry name comparison and hashing 2123 * operations one word at a time, but we are limited to: 2124 * 2125 * - Architectures with fast unaligned word accesses. We could 2126 * do a "get_unaligned()" if this helps and is sufficiently 2127 * fast. 2128 * 2129 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2130 * do not trap on the (extremely unlikely) case of a page 2131 * crossing operation. 2132 * 2133 * - Furthermore, we need an efficient 64-bit compile for the 2134 * 64-bit case in order to generate the "number of bytes in 2135 * the final mask". Again, that could be replaced with a 2136 * efficient population count instruction or similar. 2137 */ 2138 #ifdef CONFIG_DCACHE_WORD_ACCESS 2139 2140 #include <asm/word-at-a-time.h> 2141 2142 #ifdef HASH_MIX 2143 2144 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2145 2146 #elif defined(CONFIG_64BIT) 2147 /* 2148 * Register pressure in the mixing function is an issue, particularly 2149 * on 32-bit x86, but almost any function requires one state value and 2150 * one temporary. Instead, use a function designed for two state values 2151 * and no temporaries. 2152 * 2153 * This function cannot create a collision in only two iterations, so 2154 * we have two iterations to achieve avalanche. In those two iterations, 2155 * we have six layers of mixing, which is enough to spread one bit's 2156 * influence out to 2^6 = 64 state bits. 2157 * 2158 * Rotate constants are scored by considering either 64 one-bit input 2159 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2160 * probability of that delta causing a change to each of the 128 output 2161 * bits, using a sample of random initial states. 2162 * 2163 * The Shannon entropy of the computed probabilities is then summed 2164 * to produce a score. Ideally, any input change has a 50% chance of 2165 * toggling any given output bit. 2166 * 2167 * Mixing scores (in bits) for (12,45): 2168 * Input delta: 1-bit 2-bit 2169 * 1 round: 713.3 42542.6 2170 * 2 rounds: 2753.7 140389.8 2171 * 3 rounds: 5954.1 233458.2 2172 * 4 rounds: 7862.6 256672.2 2173 * Perfect: 8192 258048 2174 * (64*128) (64*63/2 * 128) 2175 */ 2176 #define HASH_MIX(x, y, a) \ 2177 ( x ^= (a), \ 2178 y ^= x, x = rol64(x,12),\ 2179 x += y, y = rol64(y,45),\ 2180 y *= 9 ) 2181 2182 /* 2183 * Fold two longs into one 32-bit hash value. This must be fast, but 2184 * latency isn't quite as critical, as there is a fair bit of additional 2185 * work done before the hash value is used. 2186 */ 2187 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2188 { 2189 y ^= x * GOLDEN_RATIO_64; 2190 y *= GOLDEN_RATIO_64; 2191 return y >> 32; 2192 } 2193 2194 #else /* 32-bit case */ 2195 2196 /* 2197 * Mixing scores (in bits) for (7,20): 2198 * Input delta: 1-bit 2-bit 2199 * 1 round: 330.3 9201.6 2200 * 2 rounds: 1246.4 25475.4 2201 * 3 rounds: 1907.1 31295.1 2202 * 4 rounds: 2042.3 31718.6 2203 * Perfect: 2048 31744 2204 * (32*64) (32*31/2 * 64) 2205 */ 2206 #define HASH_MIX(x, y, a) \ 2207 ( x ^= (a), \ 2208 y ^= x, x = rol32(x, 7),\ 2209 x += y, y = rol32(y,20),\ 2210 y *= 9 ) 2211 2212 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2213 { 2214 /* Use arch-optimized multiply if one exists */ 2215 return __hash_32(y ^ __hash_32(x)); 2216 } 2217 2218 #endif 2219 2220 /* 2221 * Return the hash of a string of known length. This is carfully 2222 * designed to match hash_name(), which is the more critical function. 2223 * In particular, we must end by hashing a final word containing 0..7 2224 * payload bytes, to match the way that hash_name() iterates until it 2225 * finds the delimiter after the name. 2226 */ 2227 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2228 { 2229 unsigned long a, x = 0, y = (unsigned long)salt; 2230 2231 for (;;) { 2232 if (!len) 2233 goto done; 2234 a = load_unaligned_zeropad(name); 2235 if (len < sizeof(unsigned long)) 2236 break; 2237 HASH_MIX(x, y, a); 2238 name += sizeof(unsigned long); 2239 len -= sizeof(unsigned long); 2240 } 2241 x ^= a & bytemask_from_count(len); 2242 done: 2243 return fold_hash(x, y); 2244 } 2245 EXPORT_SYMBOL(full_name_hash); 2246 2247 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2248 u64 hashlen_string(const void *salt, const char *name) 2249 { 2250 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2251 unsigned long adata, mask, len; 2252 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2253 2254 len = 0; 2255 goto inside; 2256 2257 do { 2258 HASH_MIX(x, y, a); 2259 len += sizeof(unsigned long); 2260 inside: 2261 a = load_unaligned_zeropad(name+len); 2262 } while (!has_zero(a, &adata, &constants)); 2263 2264 adata = prep_zero_mask(a, adata, &constants); 2265 mask = create_zero_mask(adata); 2266 x ^= a & zero_bytemask(mask); 2267 2268 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2269 } 2270 EXPORT_SYMBOL(hashlen_string); 2271 2272 /* 2273 * Calculate the length and hash of the path component, and 2274 * return the length as the result. 2275 */ 2276 static inline const char *hash_name(struct nameidata *nd, 2277 const char *name, 2278 unsigned long *lastword) 2279 { 2280 unsigned long a, b, x, y = (unsigned long)nd->path.dentry; 2281 unsigned long adata, bdata, mask, len; 2282 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2283 2284 /* 2285 * The first iteration is special, because it can result in 2286 * '.' and '..' and has no mixing other than the final fold. 2287 */ 2288 a = load_unaligned_zeropad(name); 2289 b = a ^ REPEAT_BYTE('/'); 2290 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) { 2291 adata = prep_zero_mask(a, adata, &constants); 2292 bdata = prep_zero_mask(b, bdata, &constants); 2293 mask = create_zero_mask(adata | bdata); 2294 a &= zero_bytemask(mask); 2295 *lastword = a; 2296 len = find_zero(mask); 2297 nd->last.hash = fold_hash(a, y); 2298 nd->last.len = len; 2299 return name + len; 2300 } 2301 2302 len = 0; 2303 x = 0; 2304 do { 2305 HASH_MIX(x, y, a); 2306 len += sizeof(unsigned long); 2307 a = load_unaligned_zeropad(name+len); 2308 b = a ^ REPEAT_BYTE('/'); 2309 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2310 2311 adata = prep_zero_mask(a, adata, &constants); 2312 bdata = prep_zero_mask(b, bdata, &constants); 2313 mask = create_zero_mask(adata | bdata); 2314 a &= zero_bytemask(mask); 2315 x ^= a; 2316 len += find_zero(mask); 2317 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT 2318 2319 nd->last.hash = fold_hash(x, y); 2320 nd->last.len = len; 2321 return name + len; 2322 } 2323 2324 /* 2325 * Note that the 'last' word is always zero-masked, but 2326 * was loaded as a possibly big-endian word. 2327 */ 2328 #ifdef __BIG_ENDIAN 2329 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8)) 2330 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16)) 2331 #endif 2332 2333 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2334 2335 /* Return the hash of a string of known length */ 2336 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2337 { 2338 unsigned long hash = init_name_hash(salt); 2339 while (len--) 2340 hash = partial_name_hash((unsigned char)*name++, hash); 2341 return end_name_hash(hash); 2342 } 2343 EXPORT_SYMBOL(full_name_hash); 2344 2345 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2346 u64 hashlen_string(const void *salt, const char *name) 2347 { 2348 unsigned long hash = init_name_hash(salt); 2349 unsigned long len = 0, c; 2350 2351 c = (unsigned char)*name; 2352 while (c) { 2353 len++; 2354 hash = partial_name_hash(c, hash); 2355 c = (unsigned char)name[len]; 2356 } 2357 return hashlen_create(end_name_hash(hash), len); 2358 } 2359 EXPORT_SYMBOL(hashlen_string); 2360 2361 /* 2362 * We know there's a real path component here of at least 2363 * one character. 2364 */ 2365 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword) 2366 { 2367 unsigned long hash = init_name_hash(nd->path.dentry); 2368 unsigned long len = 0, c, last = 0; 2369 2370 c = (unsigned char)*name; 2371 do { 2372 last = (last << 8) + c; 2373 len++; 2374 hash = partial_name_hash(c, hash); 2375 c = (unsigned char)name[len]; 2376 } while (c && c != '/'); 2377 2378 // This is reliable for DOT or DOTDOT, since the component 2379 // cannot contain NUL characters - top bits being zero means 2380 // we cannot have had any other pathnames. 2381 *lastword = last; 2382 nd->last.hash = end_name_hash(hash); 2383 nd->last.len = len; 2384 return name + len; 2385 } 2386 2387 #endif 2388 2389 #ifndef LAST_WORD_IS_DOT 2390 #define LAST_WORD_IS_DOT 0x2e 2391 #define LAST_WORD_IS_DOTDOT 0x2e2e 2392 #endif 2393 2394 /* 2395 * Name resolution. 2396 * This is the basic name resolution function, turning a pathname into 2397 * the final dentry. We expect 'base' to be positive and a directory. 2398 * 2399 * Returns 0 and nd will have valid dentry and mnt on success. 2400 * Returns error and drops reference to input namei data on failure. 2401 */ 2402 static int link_path_walk(const char *name, struct nameidata *nd) 2403 { 2404 int depth = 0; // depth <= nd->depth 2405 int err; 2406 2407 nd->last_type = LAST_ROOT; 2408 nd->flags |= LOOKUP_PARENT; 2409 if (IS_ERR(name)) 2410 return PTR_ERR(name); 2411 while (*name=='/') 2412 name++; 2413 if (!*name) { 2414 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2415 return 0; 2416 } 2417 2418 /* At this point we know we have a real path component. */ 2419 for(;;) { 2420 struct mnt_idmap *idmap; 2421 const char *link; 2422 unsigned long lastword; 2423 2424 idmap = mnt_idmap(nd->path.mnt); 2425 err = may_lookup(idmap, nd); 2426 if (err) 2427 return err; 2428 2429 nd->last.name = name; 2430 name = hash_name(nd, name, &lastword); 2431 2432 switch(lastword) { 2433 case LAST_WORD_IS_DOTDOT: 2434 nd->last_type = LAST_DOTDOT; 2435 nd->state |= ND_JUMPED; 2436 break; 2437 2438 case LAST_WORD_IS_DOT: 2439 nd->last_type = LAST_DOT; 2440 break; 2441 2442 default: 2443 nd->last_type = LAST_NORM; 2444 nd->state &= ~ND_JUMPED; 2445 2446 struct dentry *parent = nd->path.dentry; 2447 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2448 err = parent->d_op->d_hash(parent, &nd->last); 2449 if (err < 0) 2450 return err; 2451 } 2452 } 2453 2454 if (!*name) 2455 goto OK; 2456 /* 2457 * If it wasn't NUL, we know it was '/'. Skip that 2458 * slash, and continue until no more slashes. 2459 */ 2460 do { 2461 name++; 2462 } while (unlikely(*name == '/')); 2463 if (unlikely(!*name)) { 2464 OK: 2465 /* pathname or trailing symlink, done */ 2466 if (!depth) { 2467 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2468 nd->dir_mode = nd->inode->i_mode; 2469 nd->flags &= ~LOOKUP_PARENT; 2470 return 0; 2471 } 2472 /* last component of nested symlink */ 2473 name = nd->stack[--depth].name; 2474 link = walk_component(nd, 0); 2475 } else { 2476 /* not the last component */ 2477 link = walk_component(nd, WALK_MORE); 2478 } 2479 if (unlikely(link)) { 2480 if (IS_ERR(link)) 2481 return PTR_ERR(link); 2482 /* a symlink to follow */ 2483 nd->stack[depth++].name = name; 2484 name = link; 2485 continue; 2486 } 2487 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2488 if (nd->flags & LOOKUP_RCU) { 2489 if (!try_to_unlazy(nd)) 2490 return -ECHILD; 2491 } 2492 return -ENOTDIR; 2493 } 2494 } 2495 } 2496 2497 /* must be paired with terminate_walk() */ 2498 static const char *path_init(struct nameidata *nd, unsigned flags) 2499 { 2500 int error; 2501 const char *s = nd->pathname; 2502 2503 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2504 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2505 return ERR_PTR(-EAGAIN); 2506 2507 if (!*s) 2508 flags &= ~LOOKUP_RCU; 2509 if (flags & LOOKUP_RCU) 2510 rcu_read_lock(); 2511 else 2512 nd->seq = nd->next_seq = 0; 2513 2514 nd->flags = flags; 2515 nd->state |= ND_JUMPED; 2516 2517 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2518 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2519 smp_rmb(); 2520 2521 if (nd->state & ND_ROOT_PRESET) { 2522 struct dentry *root = nd->root.dentry; 2523 struct inode *inode = root->d_inode; 2524 if (*s && unlikely(!d_can_lookup(root))) 2525 return ERR_PTR(-ENOTDIR); 2526 nd->path = nd->root; 2527 nd->inode = inode; 2528 if (flags & LOOKUP_RCU) { 2529 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2530 nd->root_seq = nd->seq; 2531 } else { 2532 path_get(&nd->path); 2533 } 2534 return s; 2535 } 2536 2537 nd->root.mnt = NULL; 2538 2539 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2540 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2541 error = nd_jump_root(nd); 2542 if (unlikely(error)) 2543 return ERR_PTR(error); 2544 return s; 2545 } 2546 2547 /* Relative pathname -- get the starting-point it is relative to. */ 2548 if (nd->dfd == AT_FDCWD) { 2549 if (flags & LOOKUP_RCU) { 2550 struct fs_struct *fs = current->fs; 2551 unsigned seq; 2552 2553 do { 2554 seq = read_seqcount_begin(&fs->seq); 2555 nd->path = fs->pwd; 2556 nd->inode = nd->path.dentry->d_inode; 2557 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2558 } while (read_seqcount_retry(&fs->seq, seq)); 2559 } else { 2560 get_fs_pwd(current->fs, &nd->path); 2561 nd->inode = nd->path.dentry->d_inode; 2562 } 2563 } else { 2564 /* Caller must check execute permissions on the starting path component */ 2565 CLASS(fd_raw, f)(nd->dfd); 2566 struct dentry *dentry; 2567 2568 if (fd_empty(f)) 2569 return ERR_PTR(-EBADF); 2570 2571 if (flags & LOOKUP_LINKAT_EMPTY) { 2572 if (fd_file(f)->f_cred != current_cred() && 2573 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) 2574 return ERR_PTR(-ENOENT); 2575 } 2576 2577 dentry = fd_file(f)->f_path.dentry; 2578 2579 if (*s && unlikely(!d_can_lookup(dentry))) 2580 return ERR_PTR(-ENOTDIR); 2581 2582 nd->path = fd_file(f)->f_path; 2583 if (flags & LOOKUP_RCU) { 2584 nd->inode = nd->path.dentry->d_inode; 2585 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2586 } else { 2587 path_get(&nd->path); 2588 nd->inode = nd->path.dentry->d_inode; 2589 } 2590 } 2591 2592 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2593 if (flags & LOOKUP_IS_SCOPED) { 2594 nd->root = nd->path; 2595 if (flags & LOOKUP_RCU) { 2596 nd->root_seq = nd->seq; 2597 } else { 2598 path_get(&nd->root); 2599 nd->state |= ND_ROOT_GRABBED; 2600 } 2601 } 2602 return s; 2603 } 2604 2605 static inline const char *lookup_last(struct nameidata *nd) 2606 { 2607 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2608 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2609 2610 return walk_component(nd, WALK_TRAILING); 2611 } 2612 2613 static int handle_lookup_down(struct nameidata *nd) 2614 { 2615 if (!(nd->flags & LOOKUP_RCU)) 2616 dget(nd->path.dentry); 2617 nd->next_seq = nd->seq; 2618 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2619 } 2620 2621 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2622 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2623 { 2624 const char *s = path_init(nd, flags); 2625 int err; 2626 2627 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2628 err = handle_lookup_down(nd); 2629 if (unlikely(err < 0)) 2630 s = ERR_PTR(err); 2631 } 2632 2633 while (!(err = link_path_walk(s, nd)) && 2634 (s = lookup_last(nd)) != NULL) 2635 ; 2636 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2637 err = handle_lookup_down(nd); 2638 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2639 } 2640 if (!err) 2641 err = complete_walk(nd); 2642 2643 if (!err && nd->flags & LOOKUP_DIRECTORY) 2644 if (!d_can_lookup(nd->path.dentry)) 2645 err = -ENOTDIR; 2646 if (!err) { 2647 *path = nd->path; 2648 nd->path.mnt = NULL; 2649 nd->path.dentry = NULL; 2650 } 2651 terminate_walk(nd); 2652 return err; 2653 } 2654 2655 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2656 struct path *path, struct path *root) 2657 { 2658 int retval; 2659 struct nameidata nd; 2660 if (IS_ERR(name)) 2661 return PTR_ERR(name); 2662 set_nameidata(&nd, dfd, name, root); 2663 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2664 if (unlikely(retval == -ECHILD)) 2665 retval = path_lookupat(&nd, flags, path); 2666 if (unlikely(retval == -ESTALE)) 2667 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2668 2669 if (likely(!retval)) 2670 audit_inode(name, path->dentry, 2671 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2672 restore_nameidata(); 2673 return retval; 2674 } 2675 2676 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */ 2677 static int path_parentat(struct nameidata *nd, unsigned flags, 2678 struct path *parent) 2679 { 2680 const char *s = path_init(nd, flags); 2681 int err = link_path_walk(s, nd); 2682 if (!err) 2683 err = complete_walk(nd); 2684 if (!err) { 2685 *parent = nd->path; 2686 nd->path.mnt = NULL; 2687 nd->path.dentry = NULL; 2688 } 2689 terminate_walk(nd); 2690 return err; 2691 } 2692 2693 /* Note: this does not consume "name" */ 2694 static int __filename_parentat(int dfd, struct filename *name, 2695 unsigned int flags, struct path *parent, 2696 struct qstr *last, int *type, 2697 const struct path *root) 2698 { 2699 int retval; 2700 struct nameidata nd; 2701 2702 if (IS_ERR(name)) 2703 return PTR_ERR(name); 2704 set_nameidata(&nd, dfd, name, root); 2705 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2706 if (unlikely(retval == -ECHILD)) 2707 retval = path_parentat(&nd, flags, parent); 2708 if (unlikely(retval == -ESTALE)) 2709 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2710 if (likely(!retval)) { 2711 *last = nd.last; 2712 *type = nd.last_type; 2713 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2714 } 2715 restore_nameidata(); 2716 return retval; 2717 } 2718 2719 static int filename_parentat(int dfd, struct filename *name, 2720 unsigned int flags, struct path *parent, 2721 struct qstr *last, int *type) 2722 { 2723 return __filename_parentat(dfd, name, flags, parent, last, type, NULL); 2724 } 2725 2726 /* does lookup, returns the object with parent locked */ 2727 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path) 2728 { 2729 struct dentry *d; 2730 struct qstr last; 2731 int type, error; 2732 2733 error = filename_parentat(dfd, name, 0, path, &last, &type); 2734 if (error) 2735 return ERR_PTR(error); 2736 if (unlikely(type != LAST_NORM)) { 2737 path_put(path); 2738 return ERR_PTR(-EINVAL); 2739 } 2740 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2741 d = lookup_one_qstr_excl(&last, path->dentry, 0); 2742 if (IS_ERR(d)) { 2743 inode_unlock(path->dentry->d_inode); 2744 path_put(path); 2745 } 2746 return d; 2747 } 2748 2749 struct dentry *kern_path_locked(const char *name, struct path *path) 2750 { 2751 struct filename *filename = getname_kernel(name); 2752 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path); 2753 2754 putname(filename); 2755 return res; 2756 } 2757 2758 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path) 2759 { 2760 struct filename *filename = getname(name); 2761 struct dentry *res = __kern_path_locked(dfd, filename, path); 2762 2763 putname(filename); 2764 return res; 2765 } 2766 EXPORT_SYMBOL(user_path_locked_at); 2767 2768 int kern_path(const char *name, unsigned int flags, struct path *path) 2769 { 2770 struct filename *filename = getname_kernel(name); 2771 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2772 2773 putname(filename); 2774 return ret; 2775 2776 } 2777 EXPORT_SYMBOL(kern_path); 2778 2779 /** 2780 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair 2781 * @filename: filename structure 2782 * @flags: lookup flags 2783 * @parent: pointer to struct path to fill 2784 * @last: last component 2785 * @type: type of the last component 2786 * @root: pointer to struct path of the base directory 2787 */ 2788 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags, 2789 struct path *parent, struct qstr *last, int *type, 2790 const struct path *root) 2791 { 2792 return __filename_parentat(AT_FDCWD, filename, flags, parent, last, 2793 type, root); 2794 } 2795 EXPORT_SYMBOL(vfs_path_parent_lookup); 2796 2797 /** 2798 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2799 * @dentry: pointer to dentry of the base directory 2800 * @mnt: pointer to vfs mount of the base directory 2801 * @name: pointer to file name 2802 * @flags: lookup flags 2803 * @path: pointer to struct path to fill 2804 */ 2805 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2806 const char *name, unsigned int flags, 2807 struct path *path) 2808 { 2809 struct filename *filename; 2810 struct path root = {.mnt = mnt, .dentry = dentry}; 2811 int ret; 2812 2813 filename = getname_kernel(name); 2814 /* the first argument of filename_lookup() is ignored with root */ 2815 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2816 putname(filename); 2817 return ret; 2818 } 2819 EXPORT_SYMBOL(vfs_path_lookup); 2820 2821 static int lookup_one_common(struct mnt_idmap *idmap, 2822 const char *name, struct dentry *base, int len, 2823 struct qstr *this) 2824 { 2825 this->name = name; 2826 this->len = len; 2827 this->hash = full_name_hash(base, name, len); 2828 if (!len) 2829 return -EACCES; 2830 2831 if (is_dot_dotdot(name, len)) 2832 return -EACCES; 2833 2834 while (len--) { 2835 unsigned int c = *(const unsigned char *)name++; 2836 if (c == '/' || c == '\0') 2837 return -EACCES; 2838 } 2839 /* 2840 * See if the low-level filesystem might want 2841 * to use its own hash.. 2842 */ 2843 if (base->d_flags & DCACHE_OP_HASH) { 2844 int err = base->d_op->d_hash(base, this); 2845 if (err < 0) 2846 return err; 2847 } 2848 2849 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2850 } 2851 2852 /** 2853 * try_lookup_one_len - filesystem helper to lookup single pathname component 2854 * @name: pathname component to lookup 2855 * @base: base directory to lookup from 2856 * @len: maximum length @len should be interpreted to 2857 * 2858 * Look up a dentry by name in the dcache, returning NULL if it does not 2859 * currently exist. The function does not try to create a dentry. 2860 * 2861 * Note that this routine is purely a helper for filesystem usage and should 2862 * not be called by generic code. 2863 * 2864 * The caller must hold base->i_mutex. 2865 */ 2866 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2867 { 2868 struct qstr this; 2869 int err; 2870 2871 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2872 2873 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2874 if (err) 2875 return ERR_PTR(err); 2876 2877 return lookup_dcache(&this, base, 0); 2878 } 2879 EXPORT_SYMBOL(try_lookup_one_len); 2880 2881 /** 2882 * lookup_one_len - filesystem helper to lookup single pathname component 2883 * @name: pathname component to lookup 2884 * @base: base directory to lookup from 2885 * @len: maximum length @len should be interpreted to 2886 * 2887 * Note that this routine is purely a helper for filesystem usage and should 2888 * not be called by generic code. 2889 * 2890 * The caller must hold base->i_mutex. 2891 */ 2892 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2893 { 2894 struct dentry *dentry; 2895 struct qstr this; 2896 int err; 2897 2898 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2899 2900 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2901 if (err) 2902 return ERR_PTR(err); 2903 2904 dentry = lookup_dcache(&this, base, 0); 2905 return dentry ? dentry : __lookup_slow(&this, base, 0); 2906 } 2907 EXPORT_SYMBOL(lookup_one_len); 2908 2909 /** 2910 * lookup_one - filesystem helper to lookup single pathname component 2911 * @idmap: idmap of the mount the lookup is performed from 2912 * @name: pathname component to lookup 2913 * @base: base directory to lookup from 2914 * @len: maximum length @len should be interpreted to 2915 * 2916 * Note that this routine is purely a helper for filesystem usage and should 2917 * not be called by generic code. 2918 * 2919 * The caller must hold base->i_mutex. 2920 */ 2921 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2922 struct dentry *base, int len) 2923 { 2924 struct dentry *dentry; 2925 struct qstr this; 2926 int err; 2927 2928 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2929 2930 err = lookup_one_common(idmap, name, base, len, &this); 2931 if (err) 2932 return ERR_PTR(err); 2933 2934 dentry = lookup_dcache(&this, base, 0); 2935 return dentry ? dentry : __lookup_slow(&this, base, 0); 2936 } 2937 EXPORT_SYMBOL(lookup_one); 2938 2939 /** 2940 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2941 * @idmap: idmap of the mount the lookup is performed from 2942 * @name: pathname component to lookup 2943 * @base: base directory to lookup from 2944 * @len: maximum length @len should be interpreted to 2945 * 2946 * Note that this routine is purely a helper for filesystem usage and should 2947 * not be called by generic code. 2948 * 2949 * Unlike lookup_one_len, it should be called without the parent 2950 * i_mutex held, and will take the i_mutex itself if necessary. 2951 */ 2952 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2953 const char *name, struct dentry *base, 2954 int len) 2955 { 2956 struct qstr this; 2957 int err; 2958 struct dentry *ret; 2959 2960 err = lookup_one_common(idmap, name, base, len, &this); 2961 if (err) 2962 return ERR_PTR(err); 2963 2964 ret = lookup_dcache(&this, base, 0); 2965 if (!ret) 2966 ret = lookup_slow(&this, base, 0); 2967 return ret; 2968 } 2969 EXPORT_SYMBOL(lookup_one_unlocked); 2970 2971 /** 2972 * lookup_one_positive_unlocked - filesystem helper to lookup single 2973 * pathname component 2974 * @idmap: idmap of the mount the lookup is performed from 2975 * @name: pathname component to lookup 2976 * @base: base directory to lookup from 2977 * @len: maximum length @len should be interpreted to 2978 * 2979 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2980 * known positive or ERR_PTR(). This is what most of the users want. 2981 * 2982 * Note that pinned negative with unlocked parent _can_ become positive at any 2983 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2984 * positives have >d_inode stable, so this one avoids such problems. 2985 * 2986 * Note that this routine is purely a helper for filesystem usage and should 2987 * not be called by generic code. 2988 * 2989 * The helper should be called without i_mutex held. 2990 */ 2991 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2992 const char *name, 2993 struct dentry *base, int len) 2994 { 2995 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2996 2997 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2998 dput(ret); 2999 ret = ERR_PTR(-ENOENT); 3000 } 3001 return ret; 3002 } 3003 EXPORT_SYMBOL(lookup_one_positive_unlocked); 3004 3005 /** 3006 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 3007 * @name: pathname component to lookup 3008 * @base: base directory to lookup from 3009 * @len: maximum length @len should be interpreted to 3010 * 3011 * Note that this routine is purely a helper for filesystem usage and should 3012 * not be called by generic code. 3013 * 3014 * Unlike lookup_one_len, it should be called without the parent 3015 * i_mutex held, and will take the i_mutex itself if necessary. 3016 */ 3017 struct dentry *lookup_one_len_unlocked(const char *name, 3018 struct dentry *base, int len) 3019 { 3020 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 3021 } 3022 EXPORT_SYMBOL(lookup_one_len_unlocked); 3023 3024 /* 3025 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 3026 * on negatives. Returns known positive or ERR_PTR(); that's what 3027 * most of the users want. Note that pinned negative with unlocked parent 3028 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 3029 * need to be very careful; pinned positives have ->d_inode stable, so 3030 * this one avoids such problems. 3031 */ 3032 struct dentry *lookup_positive_unlocked(const char *name, 3033 struct dentry *base, int len) 3034 { 3035 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 3036 } 3037 EXPORT_SYMBOL(lookup_positive_unlocked); 3038 3039 #ifdef CONFIG_UNIX98_PTYS 3040 int path_pts(struct path *path) 3041 { 3042 /* Find something mounted on "pts" in the same directory as 3043 * the input path. 3044 */ 3045 struct dentry *parent = dget_parent(path->dentry); 3046 struct dentry *child; 3047 struct qstr this = QSTR_INIT("pts", 3); 3048 3049 if (unlikely(!path_connected(path->mnt, parent))) { 3050 dput(parent); 3051 return -ENOENT; 3052 } 3053 dput(path->dentry); 3054 path->dentry = parent; 3055 child = d_hash_and_lookup(parent, &this); 3056 if (IS_ERR_OR_NULL(child)) 3057 return -ENOENT; 3058 3059 path->dentry = child; 3060 dput(parent); 3061 follow_down(path, 0); 3062 return 0; 3063 } 3064 #endif 3065 3066 int user_path_at(int dfd, const char __user *name, unsigned flags, 3067 struct path *path) 3068 { 3069 struct filename *filename = getname_flags(name, flags); 3070 int ret = filename_lookup(dfd, filename, flags, path, NULL); 3071 3072 putname(filename); 3073 return ret; 3074 } 3075 EXPORT_SYMBOL(user_path_at); 3076 3077 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 3078 struct inode *inode) 3079 { 3080 kuid_t fsuid = current_fsuid(); 3081 3082 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 3083 return 0; 3084 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 3085 return 0; 3086 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 3087 } 3088 EXPORT_SYMBOL(__check_sticky); 3089 3090 /* 3091 * Check whether we can remove a link victim from directory dir, check 3092 * whether the type of victim is right. 3093 * 1. We can't do it if dir is read-only (done in permission()) 3094 * 2. We should have write and exec permissions on dir 3095 * 3. We can't remove anything from append-only dir 3096 * 4. We can't do anything with immutable dir (done in permission()) 3097 * 5. If the sticky bit on dir is set we should either 3098 * a. be owner of dir, or 3099 * b. be owner of victim, or 3100 * c. have CAP_FOWNER capability 3101 * 6. If the victim is append-only or immutable we can't do antyhing with 3102 * links pointing to it. 3103 * 7. If the victim has an unknown uid or gid we can't change the inode. 3104 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 3105 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 3106 * 10. We can't remove a root or mountpoint. 3107 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 3108 * nfs_async_unlink(). 3109 */ 3110 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 3111 struct dentry *victim, bool isdir) 3112 { 3113 struct inode *inode = d_backing_inode(victim); 3114 int error; 3115 3116 if (d_is_negative(victim)) 3117 return -ENOENT; 3118 BUG_ON(!inode); 3119 3120 BUG_ON(victim->d_parent->d_inode != dir); 3121 3122 /* Inode writeback is not safe when the uid or gid are invalid. */ 3123 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 3124 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 3125 return -EOVERFLOW; 3126 3127 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 3128 3129 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3130 if (error) 3131 return error; 3132 if (IS_APPEND(dir)) 3133 return -EPERM; 3134 3135 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 3136 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 3137 HAS_UNMAPPED_ID(idmap, inode)) 3138 return -EPERM; 3139 if (isdir) { 3140 if (!d_is_dir(victim)) 3141 return -ENOTDIR; 3142 if (IS_ROOT(victim)) 3143 return -EBUSY; 3144 } else if (d_is_dir(victim)) 3145 return -EISDIR; 3146 if (IS_DEADDIR(dir)) 3147 return -ENOENT; 3148 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 3149 return -EBUSY; 3150 return 0; 3151 } 3152 3153 /* Check whether we can create an object with dentry child in directory 3154 * dir. 3155 * 1. We can't do it if child already exists (open has special treatment for 3156 * this case, but since we are inlined it's OK) 3157 * 2. We can't do it if dir is read-only (done in permission()) 3158 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 3159 * 4. We should have write and exec permissions on dir 3160 * 5. We can't do it if dir is immutable (done in permission()) 3161 */ 3162 static inline int may_create(struct mnt_idmap *idmap, 3163 struct inode *dir, struct dentry *child) 3164 { 3165 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 3166 if (child->d_inode) 3167 return -EEXIST; 3168 if (IS_DEADDIR(dir)) 3169 return -ENOENT; 3170 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 3171 return -EOVERFLOW; 3172 3173 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3174 } 3175 3176 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held 3177 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2) 3178 { 3179 struct dentry *p = p1, *q = p2, *r; 3180 3181 while ((r = p->d_parent) != p2 && r != p) 3182 p = r; 3183 if (r == p2) { 3184 // p is a child of p2 and an ancestor of p1 or p1 itself 3185 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3186 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2); 3187 return p; 3188 } 3189 // p is the root of connected component that contains p1 3190 // p2 does not occur on the path from p to p1 3191 while ((r = q->d_parent) != p1 && r != p && r != q) 3192 q = r; 3193 if (r == p1) { 3194 // q is a child of p1 and an ancestor of p2 or p2 itself 3195 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3196 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3197 return q; 3198 } else if (likely(r == p)) { 3199 // both p2 and p1 are descendents of p 3200 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3201 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3202 return NULL; 3203 } else { // no common ancestor at the time we'd been called 3204 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3205 return ERR_PTR(-EXDEV); 3206 } 3207 } 3208 3209 /* 3210 * p1 and p2 should be directories on the same fs. 3211 */ 3212 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 3213 { 3214 if (p1 == p2) { 3215 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3216 return NULL; 3217 } 3218 3219 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 3220 return lock_two_directories(p1, p2); 3221 } 3222 EXPORT_SYMBOL(lock_rename); 3223 3224 /* 3225 * c1 and p2 should be on the same fs. 3226 */ 3227 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2) 3228 { 3229 if (READ_ONCE(c1->d_parent) == p2) { 3230 /* 3231 * hopefully won't need to touch ->s_vfs_rename_mutex at all. 3232 */ 3233 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3234 /* 3235 * now that p2 is locked, nobody can move in or out of it, 3236 * so the test below is safe. 3237 */ 3238 if (likely(c1->d_parent == p2)) 3239 return NULL; 3240 3241 /* 3242 * c1 got moved out of p2 while we'd been taking locks; 3243 * unlock and fall back to slow case. 3244 */ 3245 inode_unlock(p2->d_inode); 3246 } 3247 3248 mutex_lock(&c1->d_sb->s_vfs_rename_mutex); 3249 /* 3250 * nobody can move out of any directories on this fs. 3251 */ 3252 if (likely(c1->d_parent != p2)) 3253 return lock_two_directories(c1->d_parent, p2); 3254 3255 /* 3256 * c1 got moved into p2 while we were taking locks; 3257 * we need p2 locked and ->s_vfs_rename_mutex unlocked, 3258 * for consistency with lock_rename(). 3259 */ 3260 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3261 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex); 3262 return NULL; 3263 } 3264 EXPORT_SYMBOL(lock_rename_child); 3265 3266 void unlock_rename(struct dentry *p1, struct dentry *p2) 3267 { 3268 inode_unlock(p1->d_inode); 3269 if (p1 != p2) { 3270 inode_unlock(p2->d_inode); 3271 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3272 } 3273 } 3274 EXPORT_SYMBOL(unlock_rename); 3275 3276 /** 3277 * vfs_prepare_mode - prepare the mode to be used for a new inode 3278 * @idmap: idmap of the mount the inode was found from 3279 * @dir: parent directory of the new inode 3280 * @mode: mode of the new inode 3281 * @mask_perms: allowed permission by the vfs 3282 * @type: type of file to be created 3283 * 3284 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3285 * object to be created. 3286 * 3287 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3288 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3289 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3290 * POSIX ACL supporting filesystems. 3291 * 3292 * Note that it's currently valid for @type to be 0 if a directory is created. 3293 * Filesystems raise that flag individually and we need to check whether each 3294 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3295 * non-zero type. 3296 * 3297 * Returns: mode to be passed to the filesystem 3298 */ 3299 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3300 const struct inode *dir, umode_t mode, 3301 umode_t mask_perms, umode_t type) 3302 { 3303 mode = mode_strip_sgid(idmap, dir, mode); 3304 mode = mode_strip_umask(dir, mode); 3305 3306 /* 3307 * Apply the vfs mandated allowed permission mask and set the type of 3308 * file to be created before we call into the filesystem. 3309 */ 3310 mode &= (mask_perms & ~S_IFMT); 3311 mode |= (type & S_IFMT); 3312 3313 return mode; 3314 } 3315 3316 /** 3317 * vfs_create - create new file 3318 * @idmap: idmap of the mount the inode was found from 3319 * @dir: inode of the parent directory 3320 * @dentry: dentry of the child file 3321 * @mode: mode of the child file 3322 * @want_excl: whether the file must not yet exist 3323 * 3324 * Create a new file. 3325 * 3326 * If the inode has been found through an idmapped mount the idmap of 3327 * the vfsmount must be passed through @idmap. This function will then take 3328 * care to map the inode according to @idmap before checking permissions. 3329 * On non-idmapped mounts or if permission checking is to be performed on the 3330 * raw inode simply pass @nop_mnt_idmap. 3331 */ 3332 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3333 struct dentry *dentry, umode_t mode, bool want_excl) 3334 { 3335 int error; 3336 3337 error = may_create(idmap, dir, dentry); 3338 if (error) 3339 return error; 3340 3341 if (!dir->i_op->create) 3342 return -EACCES; /* shouldn't it be ENOSYS? */ 3343 3344 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3345 error = security_inode_create(dir, dentry, mode); 3346 if (error) 3347 return error; 3348 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3349 if (!error) 3350 fsnotify_create(dir, dentry); 3351 return error; 3352 } 3353 EXPORT_SYMBOL(vfs_create); 3354 3355 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3356 int (*f)(struct dentry *, umode_t, void *), 3357 void *arg) 3358 { 3359 struct inode *dir = dentry->d_parent->d_inode; 3360 int error = may_create(&nop_mnt_idmap, dir, dentry); 3361 if (error) 3362 return error; 3363 3364 mode &= S_IALLUGO; 3365 mode |= S_IFREG; 3366 error = security_inode_create(dir, dentry, mode); 3367 if (error) 3368 return error; 3369 error = f(dentry, mode, arg); 3370 if (!error) 3371 fsnotify_create(dir, dentry); 3372 return error; 3373 } 3374 EXPORT_SYMBOL(vfs_mkobj); 3375 3376 bool may_open_dev(const struct path *path) 3377 { 3378 return !(path->mnt->mnt_flags & MNT_NODEV) && 3379 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3380 } 3381 3382 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3383 int acc_mode, int flag) 3384 { 3385 struct dentry *dentry = path->dentry; 3386 struct inode *inode = dentry->d_inode; 3387 int error; 3388 3389 if (!inode) 3390 return -ENOENT; 3391 3392 switch (inode->i_mode & S_IFMT) { 3393 case S_IFLNK: 3394 return -ELOOP; 3395 case S_IFDIR: 3396 if (acc_mode & MAY_WRITE) 3397 return -EISDIR; 3398 if (acc_mode & MAY_EXEC) 3399 return -EACCES; 3400 break; 3401 case S_IFBLK: 3402 case S_IFCHR: 3403 if (!may_open_dev(path)) 3404 return -EACCES; 3405 fallthrough; 3406 case S_IFIFO: 3407 case S_IFSOCK: 3408 if (acc_mode & MAY_EXEC) 3409 return -EACCES; 3410 flag &= ~O_TRUNC; 3411 break; 3412 case S_IFREG: 3413 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3414 return -EACCES; 3415 break; 3416 } 3417 3418 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3419 if (error) 3420 return error; 3421 3422 /* 3423 * An append-only file must be opened in append mode for writing. 3424 */ 3425 if (IS_APPEND(inode)) { 3426 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3427 return -EPERM; 3428 if (flag & O_TRUNC) 3429 return -EPERM; 3430 } 3431 3432 /* O_NOATIME can only be set by the owner or superuser */ 3433 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3434 return -EPERM; 3435 3436 return 0; 3437 } 3438 3439 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3440 { 3441 const struct path *path = &filp->f_path; 3442 struct inode *inode = path->dentry->d_inode; 3443 int error = get_write_access(inode); 3444 if (error) 3445 return error; 3446 3447 error = security_file_truncate(filp); 3448 if (!error) { 3449 error = do_truncate(idmap, path->dentry, 0, 3450 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3451 filp); 3452 } 3453 put_write_access(inode); 3454 return error; 3455 } 3456 3457 static inline int open_to_namei_flags(int flag) 3458 { 3459 if ((flag & O_ACCMODE) == 3) 3460 flag--; 3461 return flag; 3462 } 3463 3464 static int may_o_create(struct mnt_idmap *idmap, 3465 const struct path *dir, struct dentry *dentry, 3466 umode_t mode) 3467 { 3468 int error = security_path_mknod(dir, dentry, mode, 0); 3469 if (error) 3470 return error; 3471 3472 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3473 return -EOVERFLOW; 3474 3475 error = inode_permission(idmap, dir->dentry->d_inode, 3476 MAY_WRITE | MAY_EXEC); 3477 if (error) 3478 return error; 3479 3480 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3481 } 3482 3483 /* 3484 * Attempt to atomically look up, create and open a file from a negative 3485 * dentry. 3486 * 3487 * Returns 0 if successful. The file will have been created and attached to 3488 * @file by the filesystem calling finish_open(). 3489 * 3490 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3491 * be set. The caller will need to perform the open themselves. @path will 3492 * have been updated to point to the new dentry. This may be negative. 3493 * 3494 * Returns an error code otherwise. 3495 */ 3496 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3497 struct file *file, 3498 int open_flag, umode_t mode) 3499 { 3500 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3501 struct inode *dir = nd->path.dentry->d_inode; 3502 int error; 3503 3504 if (nd->flags & LOOKUP_DIRECTORY) 3505 open_flag |= O_DIRECTORY; 3506 3507 file->f_path.dentry = DENTRY_NOT_SET; 3508 file->f_path.mnt = nd->path.mnt; 3509 error = dir->i_op->atomic_open(dir, dentry, file, 3510 open_to_namei_flags(open_flag), mode); 3511 d_lookup_done(dentry); 3512 if (!error) { 3513 if (file->f_mode & FMODE_OPENED) { 3514 if (unlikely(dentry != file->f_path.dentry)) { 3515 dput(dentry); 3516 dentry = dget(file->f_path.dentry); 3517 } 3518 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3519 error = -EIO; 3520 } else { 3521 if (file->f_path.dentry) { 3522 dput(dentry); 3523 dentry = file->f_path.dentry; 3524 } 3525 if (unlikely(d_is_negative(dentry))) 3526 error = -ENOENT; 3527 } 3528 } 3529 if (error) { 3530 dput(dentry); 3531 dentry = ERR_PTR(error); 3532 } 3533 return dentry; 3534 } 3535 3536 /* 3537 * Look up and maybe create and open the last component. 3538 * 3539 * Must be called with parent locked (exclusive in O_CREAT case). 3540 * 3541 * Returns 0 on success, that is, if 3542 * the file was successfully atomically created (if necessary) and opened, or 3543 * the file was not completely opened at this time, though lookups and 3544 * creations were performed. 3545 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3546 * In the latter case dentry returned in @path might be negative if O_CREAT 3547 * hadn't been specified. 3548 * 3549 * An error code is returned on failure. 3550 */ 3551 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3552 const struct open_flags *op, 3553 bool got_write) 3554 { 3555 struct mnt_idmap *idmap; 3556 struct dentry *dir = nd->path.dentry; 3557 struct inode *dir_inode = dir->d_inode; 3558 int open_flag = op->open_flag; 3559 struct dentry *dentry; 3560 int error, create_error = 0; 3561 umode_t mode = op->mode; 3562 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3563 3564 if (unlikely(IS_DEADDIR(dir_inode))) 3565 return ERR_PTR(-ENOENT); 3566 3567 file->f_mode &= ~FMODE_CREATED; 3568 dentry = d_lookup(dir, &nd->last); 3569 for (;;) { 3570 if (!dentry) { 3571 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3572 if (IS_ERR(dentry)) 3573 return dentry; 3574 } 3575 if (d_in_lookup(dentry)) 3576 break; 3577 3578 error = d_revalidate(dentry, nd->flags); 3579 if (likely(error > 0)) 3580 break; 3581 if (error) 3582 goto out_dput; 3583 d_invalidate(dentry); 3584 dput(dentry); 3585 dentry = NULL; 3586 } 3587 if (dentry->d_inode) { 3588 /* Cached positive dentry: will open in f_op->open */ 3589 return dentry; 3590 } 3591 3592 if (open_flag & O_CREAT) 3593 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3594 3595 /* 3596 * Checking write permission is tricky, bacuse we don't know if we are 3597 * going to actually need it: O_CREAT opens should work as long as the 3598 * file exists. But checking existence breaks atomicity. The trick is 3599 * to check access and if not granted clear O_CREAT from the flags. 3600 * 3601 * Another problem is returing the "right" error value (e.g. for an 3602 * O_EXCL open we want to return EEXIST not EROFS). 3603 */ 3604 if (unlikely(!got_write)) 3605 open_flag &= ~O_TRUNC; 3606 idmap = mnt_idmap(nd->path.mnt); 3607 if (open_flag & O_CREAT) { 3608 if (open_flag & O_EXCL) 3609 open_flag &= ~O_TRUNC; 3610 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3611 if (likely(got_write)) 3612 create_error = may_o_create(idmap, &nd->path, 3613 dentry, mode); 3614 else 3615 create_error = -EROFS; 3616 } 3617 if (create_error) 3618 open_flag &= ~O_CREAT; 3619 if (dir_inode->i_op->atomic_open) { 3620 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3621 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3622 dentry = ERR_PTR(create_error); 3623 return dentry; 3624 } 3625 3626 if (d_in_lookup(dentry)) { 3627 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3628 nd->flags); 3629 d_lookup_done(dentry); 3630 if (unlikely(res)) { 3631 if (IS_ERR(res)) { 3632 error = PTR_ERR(res); 3633 goto out_dput; 3634 } 3635 dput(dentry); 3636 dentry = res; 3637 } 3638 } 3639 3640 /* Negative dentry, just create the file */ 3641 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3642 file->f_mode |= FMODE_CREATED; 3643 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3644 if (!dir_inode->i_op->create) { 3645 error = -EACCES; 3646 goto out_dput; 3647 } 3648 3649 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3650 mode, open_flag & O_EXCL); 3651 if (error) 3652 goto out_dput; 3653 } 3654 if (unlikely(create_error) && !dentry->d_inode) { 3655 error = create_error; 3656 goto out_dput; 3657 } 3658 return dentry; 3659 3660 out_dput: 3661 dput(dentry); 3662 return ERR_PTR(error); 3663 } 3664 3665 static inline bool trailing_slashes(struct nameidata *nd) 3666 { 3667 return (bool)nd->last.name[nd->last.len]; 3668 } 3669 3670 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag) 3671 { 3672 struct dentry *dentry; 3673 3674 if (open_flag & O_CREAT) { 3675 if (trailing_slashes(nd)) 3676 return ERR_PTR(-EISDIR); 3677 3678 /* Don't bother on an O_EXCL create */ 3679 if (open_flag & O_EXCL) 3680 return NULL; 3681 } 3682 3683 if (trailing_slashes(nd)) 3684 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3685 3686 dentry = lookup_fast(nd); 3687 if (IS_ERR_OR_NULL(dentry)) 3688 return dentry; 3689 3690 if (open_flag & O_CREAT) { 3691 /* Discard negative dentries. Need inode_lock to do the create */ 3692 if (!dentry->d_inode) { 3693 if (!(nd->flags & LOOKUP_RCU)) 3694 dput(dentry); 3695 dentry = NULL; 3696 } 3697 } 3698 return dentry; 3699 } 3700 3701 static const char *open_last_lookups(struct nameidata *nd, 3702 struct file *file, const struct open_flags *op) 3703 { 3704 struct dentry *dir = nd->path.dentry; 3705 int open_flag = op->open_flag; 3706 bool got_write = false; 3707 struct dentry *dentry; 3708 const char *res; 3709 3710 nd->flags |= op->intent; 3711 3712 if (nd->last_type != LAST_NORM) { 3713 if (nd->depth) 3714 put_link(nd); 3715 return handle_dots(nd, nd->last_type); 3716 } 3717 3718 /* We _can_ be in RCU mode here */ 3719 dentry = lookup_fast_for_open(nd, open_flag); 3720 if (IS_ERR(dentry)) 3721 return ERR_CAST(dentry); 3722 3723 if (likely(dentry)) 3724 goto finish_lookup; 3725 3726 if (!(open_flag & O_CREAT)) { 3727 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU)) 3728 return ERR_PTR(-ECHILD); 3729 } else { 3730 if (nd->flags & LOOKUP_RCU) { 3731 if (!try_to_unlazy(nd)) 3732 return ERR_PTR(-ECHILD); 3733 } 3734 } 3735 3736 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3737 got_write = !mnt_want_write(nd->path.mnt); 3738 /* 3739 * do _not_ fail yet - we might not need that or fail with 3740 * a different error; let lookup_open() decide; we'll be 3741 * dropping this one anyway. 3742 */ 3743 } 3744 if (open_flag & O_CREAT) 3745 inode_lock(dir->d_inode); 3746 else 3747 inode_lock_shared(dir->d_inode); 3748 dentry = lookup_open(nd, file, op, got_write); 3749 if (!IS_ERR(dentry)) { 3750 if (file->f_mode & FMODE_CREATED) 3751 fsnotify_create(dir->d_inode, dentry); 3752 if (file->f_mode & FMODE_OPENED) 3753 fsnotify_open(file); 3754 } 3755 if (open_flag & O_CREAT) 3756 inode_unlock(dir->d_inode); 3757 else 3758 inode_unlock_shared(dir->d_inode); 3759 3760 if (got_write) 3761 mnt_drop_write(nd->path.mnt); 3762 3763 if (IS_ERR(dentry)) 3764 return ERR_CAST(dentry); 3765 3766 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3767 dput(nd->path.dentry); 3768 nd->path.dentry = dentry; 3769 return NULL; 3770 } 3771 3772 finish_lookup: 3773 if (nd->depth) 3774 put_link(nd); 3775 res = step_into(nd, WALK_TRAILING, dentry); 3776 if (unlikely(res)) 3777 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3778 return res; 3779 } 3780 3781 /* 3782 * Handle the last step of open() 3783 */ 3784 static int do_open(struct nameidata *nd, 3785 struct file *file, const struct open_flags *op) 3786 { 3787 struct mnt_idmap *idmap; 3788 int open_flag = op->open_flag; 3789 bool do_truncate; 3790 int acc_mode; 3791 int error; 3792 3793 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3794 error = complete_walk(nd); 3795 if (error) 3796 return error; 3797 } 3798 if (!(file->f_mode & FMODE_CREATED)) 3799 audit_inode(nd->name, nd->path.dentry, 0); 3800 idmap = mnt_idmap(nd->path.mnt); 3801 if (open_flag & O_CREAT) { 3802 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3803 return -EEXIST; 3804 if (d_is_dir(nd->path.dentry)) 3805 return -EISDIR; 3806 error = may_create_in_sticky(idmap, nd, 3807 d_backing_inode(nd->path.dentry)); 3808 if (unlikely(error)) 3809 return error; 3810 } 3811 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3812 return -ENOTDIR; 3813 3814 do_truncate = false; 3815 acc_mode = op->acc_mode; 3816 if (file->f_mode & FMODE_CREATED) { 3817 /* Don't check for write permission, don't truncate */ 3818 open_flag &= ~O_TRUNC; 3819 acc_mode = 0; 3820 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3821 error = mnt_want_write(nd->path.mnt); 3822 if (error) 3823 return error; 3824 do_truncate = true; 3825 } 3826 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3827 if (!error && !(file->f_mode & FMODE_OPENED)) 3828 error = vfs_open(&nd->path, file); 3829 if (!error) 3830 error = security_file_post_open(file, op->acc_mode); 3831 if (!error && do_truncate) 3832 error = handle_truncate(idmap, file); 3833 if (unlikely(error > 0)) { 3834 WARN_ON(1); 3835 error = -EINVAL; 3836 } 3837 if (do_truncate) 3838 mnt_drop_write(nd->path.mnt); 3839 return error; 3840 } 3841 3842 /** 3843 * vfs_tmpfile - create tmpfile 3844 * @idmap: idmap of the mount the inode was found from 3845 * @parentpath: pointer to the path of the base directory 3846 * @file: file descriptor of the new tmpfile 3847 * @mode: mode of the new tmpfile 3848 * 3849 * Create a temporary file. 3850 * 3851 * If the inode has been found through an idmapped mount the idmap of 3852 * the vfsmount must be passed through @idmap. This function will then take 3853 * care to map the inode according to @idmap before checking permissions. 3854 * On non-idmapped mounts or if permission checking is to be performed on the 3855 * raw inode simply pass @nop_mnt_idmap. 3856 */ 3857 int vfs_tmpfile(struct mnt_idmap *idmap, 3858 const struct path *parentpath, 3859 struct file *file, umode_t mode) 3860 { 3861 struct dentry *child; 3862 struct inode *dir = d_inode(parentpath->dentry); 3863 struct inode *inode; 3864 int error; 3865 int open_flag = file->f_flags; 3866 3867 /* we want directory to be writable */ 3868 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3869 if (error) 3870 return error; 3871 if (!dir->i_op->tmpfile) 3872 return -EOPNOTSUPP; 3873 child = d_alloc(parentpath->dentry, &slash_name); 3874 if (unlikely(!child)) 3875 return -ENOMEM; 3876 file->f_path.mnt = parentpath->mnt; 3877 file->f_path.dentry = child; 3878 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3879 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3880 dput(child); 3881 if (file->f_mode & FMODE_OPENED) 3882 fsnotify_open(file); 3883 if (error) 3884 return error; 3885 /* Don't check for other permissions, the inode was just created */ 3886 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3887 if (error) 3888 return error; 3889 inode = file_inode(file); 3890 if (!(open_flag & O_EXCL)) { 3891 spin_lock(&inode->i_lock); 3892 inode->i_state |= I_LINKABLE; 3893 spin_unlock(&inode->i_lock); 3894 } 3895 security_inode_post_create_tmpfile(idmap, inode); 3896 return 0; 3897 } 3898 3899 /** 3900 * kernel_tmpfile_open - open a tmpfile for kernel internal use 3901 * @idmap: idmap of the mount the inode was found from 3902 * @parentpath: path of the base directory 3903 * @mode: mode of the new tmpfile 3904 * @open_flag: flags 3905 * @cred: credentials for open 3906 * 3907 * Create and open a temporary file. The file is not accounted in nr_files, 3908 * hence this is only for kernel internal use, and must not be installed into 3909 * file tables or such. 3910 */ 3911 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 3912 const struct path *parentpath, 3913 umode_t mode, int open_flag, 3914 const struct cred *cred) 3915 { 3916 struct file *file; 3917 int error; 3918 3919 file = alloc_empty_file_noaccount(open_flag, cred); 3920 if (IS_ERR(file)) 3921 return file; 3922 3923 error = vfs_tmpfile(idmap, parentpath, file, mode); 3924 if (error) { 3925 fput(file); 3926 file = ERR_PTR(error); 3927 } 3928 return file; 3929 } 3930 EXPORT_SYMBOL(kernel_tmpfile_open); 3931 3932 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3933 const struct open_flags *op, 3934 struct file *file) 3935 { 3936 struct path path; 3937 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3938 3939 if (unlikely(error)) 3940 return error; 3941 error = mnt_want_write(path.mnt); 3942 if (unlikely(error)) 3943 goto out; 3944 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3945 if (error) 3946 goto out2; 3947 audit_inode(nd->name, file->f_path.dentry, 0); 3948 out2: 3949 mnt_drop_write(path.mnt); 3950 out: 3951 path_put(&path); 3952 return error; 3953 } 3954 3955 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3956 { 3957 struct path path; 3958 int error = path_lookupat(nd, flags, &path); 3959 if (!error) { 3960 audit_inode(nd->name, path.dentry, 0); 3961 error = vfs_open(&path, file); 3962 path_put(&path); 3963 } 3964 return error; 3965 } 3966 3967 static struct file *path_openat(struct nameidata *nd, 3968 const struct open_flags *op, unsigned flags) 3969 { 3970 struct file *file; 3971 int error; 3972 3973 file = alloc_empty_file(op->open_flag, current_cred()); 3974 if (IS_ERR(file)) 3975 return file; 3976 3977 if (unlikely(file->f_flags & __O_TMPFILE)) { 3978 error = do_tmpfile(nd, flags, op, file); 3979 } else if (unlikely(file->f_flags & O_PATH)) { 3980 error = do_o_path(nd, flags, file); 3981 } else { 3982 const char *s = path_init(nd, flags); 3983 while (!(error = link_path_walk(s, nd)) && 3984 (s = open_last_lookups(nd, file, op)) != NULL) 3985 ; 3986 if (!error) 3987 error = do_open(nd, file, op); 3988 terminate_walk(nd); 3989 } 3990 if (likely(!error)) { 3991 if (likely(file->f_mode & FMODE_OPENED)) 3992 return file; 3993 WARN_ON(1); 3994 error = -EINVAL; 3995 } 3996 fput(file); 3997 if (error == -EOPENSTALE) { 3998 if (flags & LOOKUP_RCU) 3999 error = -ECHILD; 4000 else 4001 error = -ESTALE; 4002 } 4003 return ERR_PTR(error); 4004 } 4005 4006 struct file *do_filp_open(int dfd, struct filename *pathname, 4007 const struct open_flags *op) 4008 { 4009 struct nameidata nd; 4010 int flags = op->lookup_flags; 4011 struct file *filp; 4012 4013 set_nameidata(&nd, dfd, pathname, NULL); 4014 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 4015 if (unlikely(filp == ERR_PTR(-ECHILD))) 4016 filp = path_openat(&nd, op, flags); 4017 if (unlikely(filp == ERR_PTR(-ESTALE))) 4018 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 4019 restore_nameidata(); 4020 return filp; 4021 } 4022 4023 struct file *do_file_open_root(const struct path *root, 4024 const char *name, const struct open_flags *op) 4025 { 4026 struct nameidata nd; 4027 struct file *file; 4028 struct filename *filename; 4029 int flags = op->lookup_flags; 4030 4031 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 4032 return ERR_PTR(-ELOOP); 4033 4034 filename = getname_kernel(name); 4035 if (IS_ERR(filename)) 4036 return ERR_CAST(filename); 4037 4038 set_nameidata(&nd, -1, filename, root); 4039 file = path_openat(&nd, op, flags | LOOKUP_RCU); 4040 if (unlikely(file == ERR_PTR(-ECHILD))) 4041 file = path_openat(&nd, op, flags); 4042 if (unlikely(file == ERR_PTR(-ESTALE))) 4043 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 4044 restore_nameidata(); 4045 putname(filename); 4046 return file; 4047 } 4048 4049 static struct dentry *filename_create(int dfd, struct filename *name, 4050 struct path *path, unsigned int lookup_flags) 4051 { 4052 struct dentry *dentry = ERR_PTR(-EEXIST); 4053 struct qstr last; 4054 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 4055 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 4056 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 4057 int type; 4058 int err2; 4059 int error; 4060 4061 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 4062 if (error) 4063 return ERR_PTR(error); 4064 4065 /* 4066 * Yucky last component or no last component at all? 4067 * (foo/., foo/.., /////) 4068 */ 4069 if (unlikely(type != LAST_NORM)) 4070 goto out; 4071 4072 /* don't fail immediately if it's r/o, at least try to report other errors */ 4073 err2 = mnt_want_write(path->mnt); 4074 /* 4075 * Do the final lookup. Suppress 'create' if there is a trailing 4076 * '/', and a directory wasn't requested. 4077 */ 4078 if (last.name[last.len] && !want_dir) 4079 create_flags = 0; 4080 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 4081 dentry = lookup_one_qstr_excl(&last, path->dentry, 4082 reval_flag | create_flags); 4083 if (IS_ERR(dentry)) 4084 goto unlock; 4085 4086 error = -EEXIST; 4087 if (d_is_positive(dentry)) 4088 goto fail; 4089 4090 /* 4091 * Special case - lookup gave negative, but... we had foo/bar/ 4092 * From the vfs_mknod() POV we just have a negative dentry - 4093 * all is fine. Let's be bastards - you had / on the end, you've 4094 * been asking for (non-existent) directory. -ENOENT for you. 4095 */ 4096 if (unlikely(!create_flags)) { 4097 error = -ENOENT; 4098 goto fail; 4099 } 4100 if (unlikely(err2)) { 4101 error = err2; 4102 goto fail; 4103 } 4104 return dentry; 4105 fail: 4106 dput(dentry); 4107 dentry = ERR_PTR(error); 4108 unlock: 4109 inode_unlock(path->dentry->d_inode); 4110 if (!err2) 4111 mnt_drop_write(path->mnt); 4112 out: 4113 path_put(path); 4114 return dentry; 4115 } 4116 4117 struct dentry *kern_path_create(int dfd, const char *pathname, 4118 struct path *path, unsigned int lookup_flags) 4119 { 4120 struct filename *filename = getname_kernel(pathname); 4121 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4122 4123 putname(filename); 4124 return res; 4125 } 4126 EXPORT_SYMBOL(kern_path_create); 4127 4128 void done_path_create(struct path *path, struct dentry *dentry) 4129 { 4130 dput(dentry); 4131 inode_unlock(path->dentry->d_inode); 4132 mnt_drop_write(path->mnt); 4133 path_put(path); 4134 } 4135 EXPORT_SYMBOL(done_path_create); 4136 4137 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 4138 struct path *path, unsigned int lookup_flags) 4139 { 4140 struct filename *filename = getname(pathname); 4141 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 4142 4143 putname(filename); 4144 return res; 4145 } 4146 EXPORT_SYMBOL(user_path_create); 4147 4148 /** 4149 * vfs_mknod - create device node or file 4150 * @idmap: idmap of the mount the inode was found from 4151 * @dir: inode of the parent directory 4152 * @dentry: dentry of the child device node 4153 * @mode: mode of the child device node 4154 * @dev: device number of device to create 4155 * 4156 * Create a device node or file. 4157 * 4158 * If the inode has been found through an idmapped mount the idmap of 4159 * the vfsmount must be passed through @idmap. This function will then take 4160 * care to map the inode according to @idmap before checking permissions. 4161 * On non-idmapped mounts or if permission checking is to be performed on the 4162 * raw inode simply pass @nop_mnt_idmap. 4163 */ 4164 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 4165 struct dentry *dentry, umode_t mode, dev_t dev) 4166 { 4167 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 4168 int error = may_create(idmap, dir, dentry); 4169 4170 if (error) 4171 return error; 4172 4173 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 4174 !capable(CAP_MKNOD)) 4175 return -EPERM; 4176 4177 if (!dir->i_op->mknod) 4178 return -EPERM; 4179 4180 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 4181 error = devcgroup_inode_mknod(mode, dev); 4182 if (error) 4183 return error; 4184 4185 error = security_inode_mknod(dir, dentry, mode, dev); 4186 if (error) 4187 return error; 4188 4189 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 4190 if (!error) 4191 fsnotify_create(dir, dentry); 4192 return error; 4193 } 4194 EXPORT_SYMBOL(vfs_mknod); 4195 4196 static int may_mknod(umode_t mode) 4197 { 4198 switch (mode & S_IFMT) { 4199 case S_IFREG: 4200 case S_IFCHR: 4201 case S_IFBLK: 4202 case S_IFIFO: 4203 case S_IFSOCK: 4204 case 0: /* zero mode translates to S_IFREG */ 4205 return 0; 4206 case S_IFDIR: 4207 return -EPERM; 4208 default: 4209 return -EINVAL; 4210 } 4211 } 4212 4213 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 4214 unsigned int dev) 4215 { 4216 struct mnt_idmap *idmap; 4217 struct dentry *dentry; 4218 struct path path; 4219 int error; 4220 unsigned int lookup_flags = 0; 4221 4222 error = may_mknod(mode); 4223 if (error) 4224 goto out1; 4225 retry: 4226 dentry = filename_create(dfd, name, &path, lookup_flags); 4227 error = PTR_ERR(dentry); 4228 if (IS_ERR(dentry)) 4229 goto out1; 4230 4231 error = security_path_mknod(&path, dentry, 4232 mode_strip_umask(path.dentry->d_inode, mode), dev); 4233 if (error) 4234 goto out2; 4235 4236 idmap = mnt_idmap(path.mnt); 4237 switch (mode & S_IFMT) { 4238 case 0: case S_IFREG: 4239 error = vfs_create(idmap, path.dentry->d_inode, 4240 dentry, mode, true); 4241 if (!error) 4242 security_path_post_mknod(idmap, dentry); 4243 break; 4244 case S_IFCHR: case S_IFBLK: 4245 error = vfs_mknod(idmap, path.dentry->d_inode, 4246 dentry, mode, new_decode_dev(dev)); 4247 break; 4248 case S_IFIFO: case S_IFSOCK: 4249 error = vfs_mknod(idmap, path.dentry->d_inode, 4250 dentry, mode, 0); 4251 break; 4252 } 4253 out2: 4254 done_path_create(&path, dentry); 4255 if (retry_estale(error, lookup_flags)) { 4256 lookup_flags |= LOOKUP_REVAL; 4257 goto retry; 4258 } 4259 out1: 4260 putname(name); 4261 return error; 4262 } 4263 4264 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 4265 unsigned int, dev) 4266 { 4267 return do_mknodat(dfd, getname(filename), mode, dev); 4268 } 4269 4270 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 4271 { 4272 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4273 } 4274 4275 /** 4276 * vfs_mkdir - create directory 4277 * @idmap: idmap of the mount the inode was found from 4278 * @dir: inode of the parent directory 4279 * @dentry: dentry of the child directory 4280 * @mode: mode of the child directory 4281 * 4282 * Create a directory. 4283 * 4284 * If the inode has been found through an idmapped mount the idmap of 4285 * the vfsmount must be passed through @idmap. This function will then take 4286 * care to map the inode according to @idmap before checking permissions. 4287 * On non-idmapped mounts or if permission checking is to be performed on the 4288 * raw inode simply pass @nop_mnt_idmap. 4289 */ 4290 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4291 struct dentry *dentry, umode_t mode) 4292 { 4293 int error; 4294 unsigned max_links = dir->i_sb->s_max_links; 4295 4296 error = may_create(idmap, dir, dentry); 4297 if (error) 4298 return error; 4299 4300 if (!dir->i_op->mkdir) 4301 return -EPERM; 4302 4303 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4304 error = security_inode_mkdir(dir, dentry, mode); 4305 if (error) 4306 return error; 4307 4308 if (max_links && dir->i_nlink >= max_links) 4309 return -EMLINK; 4310 4311 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4312 if (!error) 4313 fsnotify_mkdir(dir, dentry); 4314 return error; 4315 } 4316 EXPORT_SYMBOL(vfs_mkdir); 4317 4318 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4319 { 4320 struct dentry *dentry; 4321 struct path path; 4322 int error; 4323 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4324 4325 retry: 4326 dentry = filename_create(dfd, name, &path, lookup_flags); 4327 error = PTR_ERR(dentry); 4328 if (IS_ERR(dentry)) 4329 goto out_putname; 4330 4331 error = security_path_mkdir(&path, dentry, 4332 mode_strip_umask(path.dentry->d_inode, mode)); 4333 if (!error) { 4334 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4335 dentry, mode); 4336 } 4337 done_path_create(&path, dentry); 4338 if (retry_estale(error, lookup_flags)) { 4339 lookup_flags |= LOOKUP_REVAL; 4340 goto retry; 4341 } 4342 out_putname: 4343 putname(name); 4344 return error; 4345 } 4346 4347 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4348 { 4349 return do_mkdirat(dfd, getname(pathname), mode); 4350 } 4351 4352 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4353 { 4354 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4355 } 4356 4357 /** 4358 * vfs_rmdir - remove directory 4359 * @idmap: idmap of the mount the inode was found from 4360 * @dir: inode of the parent directory 4361 * @dentry: dentry of the child directory 4362 * 4363 * Remove a directory. 4364 * 4365 * If the inode has been found through an idmapped mount the idmap of 4366 * the vfsmount must be passed through @idmap. This function will then take 4367 * care to map the inode according to @idmap before checking permissions. 4368 * On non-idmapped mounts or if permission checking is to be performed on the 4369 * raw inode simply pass @nop_mnt_idmap. 4370 */ 4371 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4372 struct dentry *dentry) 4373 { 4374 int error = may_delete(idmap, dir, dentry, 1); 4375 4376 if (error) 4377 return error; 4378 4379 if (!dir->i_op->rmdir) 4380 return -EPERM; 4381 4382 dget(dentry); 4383 inode_lock(dentry->d_inode); 4384 4385 error = -EBUSY; 4386 if (is_local_mountpoint(dentry) || 4387 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4388 goto out; 4389 4390 error = security_inode_rmdir(dir, dentry); 4391 if (error) 4392 goto out; 4393 4394 error = dir->i_op->rmdir(dir, dentry); 4395 if (error) 4396 goto out; 4397 4398 shrink_dcache_parent(dentry); 4399 dentry->d_inode->i_flags |= S_DEAD; 4400 dont_mount(dentry); 4401 detach_mounts(dentry); 4402 4403 out: 4404 inode_unlock(dentry->d_inode); 4405 dput(dentry); 4406 if (!error) 4407 d_delete_notify(dir, dentry); 4408 return error; 4409 } 4410 EXPORT_SYMBOL(vfs_rmdir); 4411 4412 int do_rmdir(int dfd, struct filename *name) 4413 { 4414 int error; 4415 struct dentry *dentry; 4416 struct path path; 4417 struct qstr last; 4418 int type; 4419 unsigned int lookup_flags = 0; 4420 retry: 4421 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4422 if (error) 4423 goto exit1; 4424 4425 switch (type) { 4426 case LAST_DOTDOT: 4427 error = -ENOTEMPTY; 4428 goto exit2; 4429 case LAST_DOT: 4430 error = -EINVAL; 4431 goto exit2; 4432 case LAST_ROOT: 4433 error = -EBUSY; 4434 goto exit2; 4435 } 4436 4437 error = mnt_want_write(path.mnt); 4438 if (error) 4439 goto exit2; 4440 4441 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4442 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4443 error = PTR_ERR(dentry); 4444 if (IS_ERR(dentry)) 4445 goto exit3; 4446 if (!dentry->d_inode) { 4447 error = -ENOENT; 4448 goto exit4; 4449 } 4450 error = security_path_rmdir(&path, dentry); 4451 if (error) 4452 goto exit4; 4453 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4454 exit4: 4455 dput(dentry); 4456 exit3: 4457 inode_unlock(path.dentry->d_inode); 4458 mnt_drop_write(path.mnt); 4459 exit2: 4460 path_put(&path); 4461 if (retry_estale(error, lookup_flags)) { 4462 lookup_flags |= LOOKUP_REVAL; 4463 goto retry; 4464 } 4465 exit1: 4466 putname(name); 4467 return error; 4468 } 4469 4470 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4471 { 4472 return do_rmdir(AT_FDCWD, getname(pathname)); 4473 } 4474 4475 /** 4476 * vfs_unlink - unlink a filesystem object 4477 * @idmap: idmap of the mount the inode was found from 4478 * @dir: parent directory 4479 * @dentry: victim 4480 * @delegated_inode: returns victim inode, if the inode is delegated. 4481 * 4482 * The caller must hold dir->i_mutex. 4483 * 4484 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4485 * return a reference to the inode in delegated_inode. The caller 4486 * should then break the delegation on that inode and retry. Because 4487 * breaking a delegation may take a long time, the caller should drop 4488 * dir->i_mutex before doing so. 4489 * 4490 * Alternatively, a caller may pass NULL for delegated_inode. This may 4491 * be appropriate for callers that expect the underlying filesystem not 4492 * to be NFS exported. 4493 * 4494 * If the inode has been found through an idmapped mount the idmap of 4495 * the vfsmount must be passed through @idmap. This function will then take 4496 * care to map the inode according to @idmap before checking permissions. 4497 * On non-idmapped mounts or if permission checking is to be performed on the 4498 * raw inode simply pass @nop_mnt_idmap. 4499 */ 4500 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4501 struct dentry *dentry, struct inode **delegated_inode) 4502 { 4503 struct inode *target = dentry->d_inode; 4504 int error = may_delete(idmap, dir, dentry, 0); 4505 4506 if (error) 4507 return error; 4508 4509 if (!dir->i_op->unlink) 4510 return -EPERM; 4511 4512 inode_lock(target); 4513 if (IS_SWAPFILE(target)) 4514 error = -EPERM; 4515 else if (is_local_mountpoint(dentry)) 4516 error = -EBUSY; 4517 else { 4518 error = security_inode_unlink(dir, dentry); 4519 if (!error) { 4520 error = try_break_deleg(target, delegated_inode); 4521 if (error) 4522 goto out; 4523 error = dir->i_op->unlink(dir, dentry); 4524 if (!error) { 4525 dont_mount(dentry); 4526 detach_mounts(dentry); 4527 } 4528 } 4529 } 4530 out: 4531 inode_unlock(target); 4532 4533 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4534 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4535 fsnotify_unlink(dir, dentry); 4536 } else if (!error) { 4537 fsnotify_link_count(target); 4538 d_delete_notify(dir, dentry); 4539 } 4540 4541 return error; 4542 } 4543 EXPORT_SYMBOL(vfs_unlink); 4544 4545 /* 4546 * Make sure that the actual truncation of the file will occur outside its 4547 * directory's i_mutex. Truncate can take a long time if there is a lot of 4548 * writeout happening, and we don't want to prevent access to the directory 4549 * while waiting on the I/O. 4550 */ 4551 int do_unlinkat(int dfd, struct filename *name) 4552 { 4553 int error; 4554 struct dentry *dentry; 4555 struct path path; 4556 struct qstr last; 4557 int type; 4558 struct inode *inode = NULL; 4559 struct inode *delegated_inode = NULL; 4560 unsigned int lookup_flags = 0; 4561 retry: 4562 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4563 if (error) 4564 goto exit1; 4565 4566 error = -EISDIR; 4567 if (type != LAST_NORM) 4568 goto exit2; 4569 4570 error = mnt_want_write(path.mnt); 4571 if (error) 4572 goto exit2; 4573 retry_deleg: 4574 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4575 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags); 4576 error = PTR_ERR(dentry); 4577 if (!IS_ERR(dentry)) { 4578 4579 /* Why not before? Because we want correct error value */ 4580 if (last.name[last.len] || d_is_negative(dentry)) 4581 goto slashes; 4582 inode = dentry->d_inode; 4583 ihold(inode); 4584 error = security_path_unlink(&path, dentry); 4585 if (error) 4586 goto exit3; 4587 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4588 dentry, &delegated_inode); 4589 exit3: 4590 dput(dentry); 4591 } 4592 inode_unlock(path.dentry->d_inode); 4593 if (inode) 4594 iput(inode); /* truncate the inode here */ 4595 inode = NULL; 4596 if (delegated_inode) { 4597 error = break_deleg_wait(&delegated_inode); 4598 if (!error) 4599 goto retry_deleg; 4600 } 4601 mnt_drop_write(path.mnt); 4602 exit2: 4603 path_put(&path); 4604 if (retry_estale(error, lookup_flags)) { 4605 lookup_flags |= LOOKUP_REVAL; 4606 inode = NULL; 4607 goto retry; 4608 } 4609 exit1: 4610 putname(name); 4611 return error; 4612 4613 slashes: 4614 if (d_is_negative(dentry)) 4615 error = -ENOENT; 4616 else if (d_is_dir(dentry)) 4617 error = -EISDIR; 4618 else 4619 error = -ENOTDIR; 4620 goto exit3; 4621 } 4622 4623 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4624 { 4625 if ((flag & ~AT_REMOVEDIR) != 0) 4626 return -EINVAL; 4627 4628 if (flag & AT_REMOVEDIR) 4629 return do_rmdir(dfd, getname(pathname)); 4630 return do_unlinkat(dfd, getname(pathname)); 4631 } 4632 4633 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4634 { 4635 return do_unlinkat(AT_FDCWD, getname(pathname)); 4636 } 4637 4638 /** 4639 * vfs_symlink - create symlink 4640 * @idmap: idmap of the mount the inode was found from 4641 * @dir: inode of the parent directory 4642 * @dentry: dentry of the child symlink file 4643 * @oldname: name of the file to link to 4644 * 4645 * Create a symlink. 4646 * 4647 * If the inode has been found through an idmapped mount the idmap of 4648 * the vfsmount must be passed through @idmap. This function will then take 4649 * care to map the inode according to @idmap before checking permissions. 4650 * On non-idmapped mounts or if permission checking is to be performed on the 4651 * raw inode simply pass @nop_mnt_idmap. 4652 */ 4653 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4654 struct dentry *dentry, const char *oldname) 4655 { 4656 int error; 4657 4658 error = may_create(idmap, dir, dentry); 4659 if (error) 4660 return error; 4661 4662 if (!dir->i_op->symlink) 4663 return -EPERM; 4664 4665 error = security_inode_symlink(dir, dentry, oldname); 4666 if (error) 4667 return error; 4668 4669 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4670 if (!error) 4671 fsnotify_create(dir, dentry); 4672 return error; 4673 } 4674 EXPORT_SYMBOL(vfs_symlink); 4675 4676 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4677 { 4678 int error; 4679 struct dentry *dentry; 4680 struct path path; 4681 unsigned int lookup_flags = 0; 4682 4683 if (IS_ERR(from)) { 4684 error = PTR_ERR(from); 4685 goto out_putnames; 4686 } 4687 retry: 4688 dentry = filename_create(newdfd, to, &path, lookup_flags); 4689 error = PTR_ERR(dentry); 4690 if (IS_ERR(dentry)) 4691 goto out_putnames; 4692 4693 error = security_path_symlink(&path, dentry, from->name); 4694 if (!error) 4695 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4696 dentry, from->name); 4697 done_path_create(&path, dentry); 4698 if (retry_estale(error, lookup_flags)) { 4699 lookup_flags |= LOOKUP_REVAL; 4700 goto retry; 4701 } 4702 out_putnames: 4703 putname(to); 4704 putname(from); 4705 return error; 4706 } 4707 4708 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4709 int, newdfd, const char __user *, newname) 4710 { 4711 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4712 } 4713 4714 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4715 { 4716 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4717 } 4718 4719 /** 4720 * vfs_link - create a new link 4721 * @old_dentry: object to be linked 4722 * @idmap: idmap of the mount 4723 * @dir: new parent 4724 * @new_dentry: where to create the new link 4725 * @delegated_inode: returns inode needing a delegation break 4726 * 4727 * The caller must hold dir->i_mutex 4728 * 4729 * If vfs_link discovers a delegation on the to-be-linked file in need 4730 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4731 * inode in delegated_inode. The caller should then break the delegation 4732 * and retry. Because breaking a delegation may take a long time, the 4733 * caller should drop the i_mutex before doing so. 4734 * 4735 * Alternatively, a caller may pass NULL for delegated_inode. This may 4736 * be appropriate for callers that expect the underlying filesystem not 4737 * to be NFS exported. 4738 * 4739 * If the inode has been found through an idmapped mount the idmap of 4740 * the vfsmount must be passed through @idmap. This function will then take 4741 * care to map the inode according to @idmap before checking permissions. 4742 * On non-idmapped mounts or if permission checking is to be performed on the 4743 * raw inode simply pass @nop_mnt_idmap. 4744 */ 4745 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4746 struct inode *dir, struct dentry *new_dentry, 4747 struct inode **delegated_inode) 4748 { 4749 struct inode *inode = old_dentry->d_inode; 4750 unsigned max_links = dir->i_sb->s_max_links; 4751 int error; 4752 4753 if (!inode) 4754 return -ENOENT; 4755 4756 error = may_create(idmap, dir, new_dentry); 4757 if (error) 4758 return error; 4759 4760 if (dir->i_sb != inode->i_sb) 4761 return -EXDEV; 4762 4763 /* 4764 * A link to an append-only or immutable file cannot be created. 4765 */ 4766 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4767 return -EPERM; 4768 /* 4769 * Updating the link count will likely cause i_uid and i_gid to 4770 * be writen back improperly if their true value is unknown to 4771 * the vfs. 4772 */ 4773 if (HAS_UNMAPPED_ID(idmap, inode)) 4774 return -EPERM; 4775 if (!dir->i_op->link) 4776 return -EPERM; 4777 if (S_ISDIR(inode->i_mode)) 4778 return -EPERM; 4779 4780 error = security_inode_link(old_dentry, dir, new_dentry); 4781 if (error) 4782 return error; 4783 4784 inode_lock(inode); 4785 /* Make sure we don't allow creating hardlink to an unlinked file */ 4786 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4787 error = -ENOENT; 4788 else if (max_links && inode->i_nlink >= max_links) 4789 error = -EMLINK; 4790 else { 4791 error = try_break_deleg(inode, delegated_inode); 4792 if (!error) 4793 error = dir->i_op->link(old_dentry, dir, new_dentry); 4794 } 4795 4796 if (!error && (inode->i_state & I_LINKABLE)) { 4797 spin_lock(&inode->i_lock); 4798 inode->i_state &= ~I_LINKABLE; 4799 spin_unlock(&inode->i_lock); 4800 } 4801 inode_unlock(inode); 4802 if (!error) 4803 fsnotify_link(dir, inode, new_dentry); 4804 return error; 4805 } 4806 EXPORT_SYMBOL(vfs_link); 4807 4808 /* 4809 * Hardlinks are often used in delicate situations. We avoid 4810 * security-related surprises by not following symlinks on the 4811 * newname. --KAB 4812 * 4813 * We don't follow them on the oldname either to be compatible 4814 * with linux 2.0, and to avoid hard-linking to directories 4815 * and other special files. --ADM 4816 */ 4817 int do_linkat(int olddfd, struct filename *old, int newdfd, 4818 struct filename *new, int flags) 4819 { 4820 struct mnt_idmap *idmap; 4821 struct dentry *new_dentry; 4822 struct path old_path, new_path; 4823 struct inode *delegated_inode = NULL; 4824 int how = 0; 4825 int error; 4826 4827 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4828 error = -EINVAL; 4829 goto out_putnames; 4830 } 4831 /* 4832 * To use null names we require CAP_DAC_READ_SEARCH or 4833 * that the open-time creds of the dfd matches current. 4834 * This ensures that not everyone will be able to create 4835 * a hardlink using the passed file descriptor. 4836 */ 4837 if (flags & AT_EMPTY_PATH) 4838 how |= LOOKUP_LINKAT_EMPTY; 4839 4840 if (flags & AT_SYMLINK_FOLLOW) 4841 how |= LOOKUP_FOLLOW; 4842 retry: 4843 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4844 if (error) 4845 goto out_putnames; 4846 4847 new_dentry = filename_create(newdfd, new, &new_path, 4848 (how & LOOKUP_REVAL)); 4849 error = PTR_ERR(new_dentry); 4850 if (IS_ERR(new_dentry)) 4851 goto out_putpath; 4852 4853 error = -EXDEV; 4854 if (old_path.mnt != new_path.mnt) 4855 goto out_dput; 4856 idmap = mnt_idmap(new_path.mnt); 4857 error = may_linkat(idmap, &old_path); 4858 if (unlikely(error)) 4859 goto out_dput; 4860 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4861 if (error) 4862 goto out_dput; 4863 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4864 new_dentry, &delegated_inode); 4865 out_dput: 4866 done_path_create(&new_path, new_dentry); 4867 if (delegated_inode) { 4868 error = break_deleg_wait(&delegated_inode); 4869 if (!error) { 4870 path_put(&old_path); 4871 goto retry; 4872 } 4873 } 4874 if (retry_estale(error, how)) { 4875 path_put(&old_path); 4876 how |= LOOKUP_REVAL; 4877 goto retry; 4878 } 4879 out_putpath: 4880 path_put(&old_path); 4881 out_putnames: 4882 putname(old); 4883 putname(new); 4884 4885 return error; 4886 } 4887 4888 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4889 int, newdfd, const char __user *, newname, int, flags) 4890 { 4891 return do_linkat(olddfd, getname_uflags(oldname, flags), 4892 newdfd, getname(newname), flags); 4893 } 4894 4895 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4896 { 4897 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4898 } 4899 4900 /** 4901 * vfs_rename - rename a filesystem object 4902 * @rd: pointer to &struct renamedata info 4903 * 4904 * The caller must hold multiple mutexes--see lock_rename()). 4905 * 4906 * If vfs_rename discovers a delegation in need of breaking at either 4907 * the source or destination, it will return -EWOULDBLOCK and return a 4908 * reference to the inode in delegated_inode. The caller should then 4909 * break the delegation and retry. Because breaking a delegation may 4910 * take a long time, the caller should drop all locks before doing 4911 * so. 4912 * 4913 * Alternatively, a caller may pass NULL for delegated_inode. This may 4914 * be appropriate for callers that expect the underlying filesystem not 4915 * to be NFS exported. 4916 * 4917 * The worst of all namespace operations - renaming directory. "Perverted" 4918 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4919 * Problems: 4920 * 4921 * a) we can get into loop creation. 4922 * b) race potential - two innocent renames can create a loop together. 4923 * That's where 4.4BSD screws up. Current fix: serialization on 4924 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4925 * story. 4926 * c) we may have to lock up to _four_ objects - parents and victim (if it exists), 4927 * and source (if it's a non-directory or a subdirectory that moves to 4928 * different parent). 4929 * And that - after we got ->i_mutex on parents (until then we don't know 4930 * whether the target exists). Solution: try to be smart with locking 4931 * order for inodes. We rely on the fact that tree topology may change 4932 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4933 * move will be locked. Thus we can rank directories by the tree 4934 * (ancestors first) and rank all non-directories after them. 4935 * That works since everybody except rename does "lock parent, lookup, 4936 * lock child" and rename is under ->s_vfs_rename_mutex. 4937 * HOWEVER, it relies on the assumption that any object with ->lookup() 4938 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4939 * we'd better make sure that there's no link(2) for them. 4940 * d) conversion from fhandle to dentry may come in the wrong moment - when 4941 * we are removing the target. Solution: we will have to grab ->i_mutex 4942 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4943 * ->i_mutex on parents, which works but leads to some truly excessive 4944 * locking]. 4945 */ 4946 int vfs_rename(struct renamedata *rd) 4947 { 4948 int error; 4949 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4950 struct dentry *old_dentry = rd->old_dentry; 4951 struct dentry *new_dentry = rd->new_dentry; 4952 struct inode **delegated_inode = rd->delegated_inode; 4953 unsigned int flags = rd->flags; 4954 bool is_dir = d_is_dir(old_dentry); 4955 struct inode *source = old_dentry->d_inode; 4956 struct inode *target = new_dentry->d_inode; 4957 bool new_is_dir = false; 4958 unsigned max_links = new_dir->i_sb->s_max_links; 4959 struct name_snapshot old_name; 4960 bool lock_old_subdir, lock_new_subdir; 4961 4962 if (source == target) 4963 return 0; 4964 4965 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4966 if (error) 4967 return error; 4968 4969 if (!target) { 4970 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4971 } else { 4972 new_is_dir = d_is_dir(new_dentry); 4973 4974 if (!(flags & RENAME_EXCHANGE)) 4975 error = may_delete(rd->new_mnt_idmap, new_dir, 4976 new_dentry, is_dir); 4977 else 4978 error = may_delete(rd->new_mnt_idmap, new_dir, 4979 new_dentry, new_is_dir); 4980 } 4981 if (error) 4982 return error; 4983 4984 if (!old_dir->i_op->rename) 4985 return -EPERM; 4986 4987 /* 4988 * If we are going to change the parent - check write permissions, 4989 * we'll need to flip '..'. 4990 */ 4991 if (new_dir != old_dir) { 4992 if (is_dir) { 4993 error = inode_permission(rd->old_mnt_idmap, source, 4994 MAY_WRITE); 4995 if (error) 4996 return error; 4997 } 4998 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4999 error = inode_permission(rd->new_mnt_idmap, target, 5000 MAY_WRITE); 5001 if (error) 5002 return error; 5003 } 5004 } 5005 5006 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 5007 flags); 5008 if (error) 5009 return error; 5010 5011 take_dentry_name_snapshot(&old_name, old_dentry); 5012 dget(new_dentry); 5013 /* 5014 * Lock children. 5015 * The source subdirectory needs to be locked on cross-directory 5016 * rename or cross-directory exchange since its parent changes. 5017 * The target subdirectory needs to be locked on cross-directory 5018 * exchange due to parent change and on any rename due to becoming 5019 * a victim. 5020 * Non-directories need locking in all cases (for NFS reasons); 5021 * they get locked after any subdirectories (in inode address order). 5022 * 5023 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE. 5024 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex. 5025 */ 5026 lock_old_subdir = new_dir != old_dir; 5027 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE); 5028 if (is_dir) { 5029 if (lock_old_subdir) 5030 inode_lock_nested(source, I_MUTEX_CHILD); 5031 if (target && (!new_is_dir || lock_new_subdir)) 5032 inode_lock(target); 5033 } else if (new_is_dir) { 5034 if (lock_new_subdir) 5035 inode_lock_nested(target, I_MUTEX_CHILD); 5036 inode_lock(source); 5037 } else { 5038 lock_two_nondirectories(source, target); 5039 } 5040 5041 error = -EPERM; 5042 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 5043 goto out; 5044 5045 error = -EBUSY; 5046 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 5047 goto out; 5048 5049 if (max_links && new_dir != old_dir) { 5050 error = -EMLINK; 5051 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 5052 goto out; 5053 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 5054 old_dir->i_nlink >= max_links) 5055 goto out; 5056 } 5057 if (!is_dir) { 5058 error = try_break_deleg(source, delegated_inode); 5059 if (error) 5060 goto out; 5061 } 5062 if (target && !new_is_dir) { 5063 error = try_break_deleg(target, delegated_inode); 5064 if (error) 5065 goto out; 5066 } 5067 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 5068 new_dir, new_dentry, flags); 5069 if (error) 5070 goto out; 5071 5072 if (!(flags & RENAME_EXCHANGE) && target) { 5073 if (is_dir) { 5074 shrink_dcache_parent(new_dentry); 5075 target->i_flags |= S_DEAD; 5076 } 5077 dont_mount(new_dentry); 5078 detach_mounts(new_dentry); 5079 } 5080 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 5081 if (!(flags & RENAME_EXCHANGE)) 5082 d_move(old_dentry, new_dentry); 5083 else 5084 d_exchange(old_dentry, new_dentry); 5085 } 5086 out: 5087 if (!is_dir || lock_old_subdir) 5088 inode_unlock(source); 5089 if (target && (!new_is_dir || lock_new_subdir)) 5090 inode_unlock(target); 5091 dput(new_dentry); 5092 if (!error) { 5093 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 5094 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 5095 if (flags & RENAME_EXCHANGE) { 5096 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 5097 new_is_dir, NULL, new_dentry); 5098 } 5099 } 5100 release_dentry_name_snapshot(&old_name); 5101 5102 return error; 5103 } 5104 EXPORT_SYMBOL(vfs_rename); 5105 5106 int do_renameat2(int olddfd, struct filename *from, int newdfd, 5107 struct filename *to, unsigned int flags) 5108 { 5109 struct renamedata rd; 5110 struct dentry *old_dentry, *new_dentry; 5111 struct dentry *trap; 5112 struct path old_path, new_path; 5113 struct qstr old_last, new_last; 5114 int old_type, new_type; 5115 struct inode *delegated_inode = NULL; 5116 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 5117 bool should_retry = false; 5118 int error = -EINVAL; 5119 5120 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 5121 goto put_names; 5122 5123 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 5124 (flags & RENAME_EXCHANGE)) 5125 goto put_names; 5126 5127 if (flags & RENAME_EXCHANGE) 5128 target_flags = 0; 5129 5130 retry: 5131 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 5132 &old_last, &old_type); 5133 if (error) 5134 goto put_names; 5135 5136 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 5137 &new_type); 5138 if (error) 5139 goto exit1; 5140 5141 error = -EXDEV; 5142 if (old_path.mnt != new_path.mnt) 5143 goto exit2; 5144 5145 error = -EBUSY; 5146 if (old_type != LAST_NORM) 5147 goto exit2; 5148 5149 if (flags & RENAME_NOREPLACE) 5150 error = -EEXIST; 5151 if (new_type != LAST_NORM) 5152 goto exit2; 5153 5154 error = mnt_want_write(old_path.mnt); 5155 if (error) 5156 goto exit2; 5157 5158 retry_deleg: 5159 trap = lock_rename(new_path.dentry, old_path.dentry); 5160 if (IS_ERR(trap)) { 5161 error = PTR_ERR(trap); 5162 goto exit_lock_rename; 5163 } 5164 5165 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry, 5166 lookup_flags); 5167 error = PTR_ERR(old_dentry); 5168 if (IS_ERR(old_dentry)) 5169 goto exit3; 5170 /* source must exist */ 5171 error = -ENOENT; 5172 if (d_is_negative(old_dentry)) 5173 goto exit4; 5174 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry, 5175 lookup_flags | target_flags); 5176 error = PTR_ERR(new_dentry); 5177 if (IS_ERR(new_dentry)) 5178 goto exit4; 5179 error = -EEXIST; 5180 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 5181 goto exit5; 5182 if (flags & RENAME_EXCHANGE) { 5183 error = -ENOENT; 5184 if (d_is_negative(new_dentry)) 5185 goto exit5; 5186 5187 if (!d_is_dir(new_dentry)) { 5188 error = -ENOTDIR; 5189 if (new_last.name[new_last.len]) 5190 goto exit5; 5191 } 5192 } 5193 /* unless the source is a directory trailing slashes give -ENOTDIR */ 5194 if (!d_is_dir(old_dentry)) { 5195 error = -ENOTDIR; 5196 if (old_last.name[old_last.len]) 5197 goto exit5; 5198 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 5199 goto exit5; 5200 } 5201 /* source should not be ancestor of target */ 5202 error = -EINVAL; 5203 if (old_dentry == trap) 5204 goto exit5; 5205 /* target should not be an ancestor of source */ 5206 if (!(flags & RENAME_EXCHANGE)) 5207 error = -ENOTEMPTY; 5208 if (new_dentry == trap) 5209 goto exit5; 5210 5211 error = security_path_rename(&old_path, old_dentry, 5212 &new_path, new_dentry, flags); 5213 if (error) 5214 goto exit5; 5215 5216 rd.old_dir = old_path.dentry->d_inode; 5217 rd.old_dentry = old_dentry; 5218 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 5219 rd.new_dir = new_path.dentry->d_inode; 5220 rd.new_dentry = new_dentry; 5221 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 5222 rd.delegated_inode = &delegated_inode; 5223 rd.flags = flags; 5224 error = vfs_rename(&rd); 5225 exit5: 5226 dput(new_dentry); 5227 exit4: 5228 dput(old_dentry); 5229 exit3: 5230 unlock_rename(new_path.dentry, old_path.dentry); 5231 exit_lock_rename: 5232 if (delegated_inode) { 5233 error = break_deleg_wait(&delegated_inode); 5234 if (!error) 5235 goto retry_deleg; 5236 } 5237 mnt_drop_write(old_path.mnt); 5238 exit2: 5239 if (retry_estale(error, lookup_flags)) 5240 should_retry = true; 5241 path_put(&new_path); 5242 exit1: 5243 path_put(&old_path); 5244 if (should_retry) { 5245 should_retry = false; 5246 lookup_flags |= LOOKUP_REVAL; 5247 goto retry; 5248 } 5249 put_names: 5250 putname(from); 5251 putname(to); 5252 return error; 5253 } 5254 5255 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 5256 int, newdfd, const char __user *, newname, unsigned int, flags) 5257 { 5258 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5259 flags); 5260 } 5261 5262 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 5263 int, newdfd, const char __user *, newname) 5264 { 5265 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 5266 0); 5267 } 5268 5269 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 5270 { 5271 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 5272 getname(newname), 0); 5273 } 5274 5275 int readlink_copy(char __user *buffer, int buflen, const char *link) 5276 { 5277 int len = PTR_ERR(link); 5278 if (IS_ERR(link)) 5279 goto out; 5280 5281 len = strlen(link); 5282 if (len > (unsigned) buflen) 5283 len = buflen; 5284 if (copy_to_user(buffer, link, len)) 5285 len = -EFAULT; 5286 out: 5287 return len; 5288 } 5289 5290 /** 5291 * vfs_readlink - copy symlink body into userspace buffer 5292 * @dentry: dentry on which to get symbolic link 5293 * @buffer: user memory pointer 5294 * @buflen: size of buffer 5295 * 5296 * Does not touch atime. That's up to the caller if necessary 5297 * 5298 * Does not call security hook. 5299 */ 5300 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5301 { 5302 struct inode *inode = d_inode(dentry); 5303 DEFINE_DELAYED_CALL(done); 5304 const char *link; 5305 int res; 5306 5307 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5308 if (unlikely(inode->i_op->readlink)) 5309 return inode->i_op->readlink(dentry, buffer, buflen); 5310 5311 if (!d_is_symlink(dentry)) 5312 return -EINVAL; 5313 5314 spin_lock(&inode->i_lock); 5315 inode->i_opflags |= IOP_DEFAULT_READLINK; 5316 spin_unlock(&inode->i_lock); 5317 } 5318 5319 link = READ_ONCE(inode->i_link); 5320 if (!link) { 5321 link = inode->i_op->get_link(dentry, inode, &done); 5322 if (IS_ERR(link)) 5323 return PTR_ERR(link); 5324 } 5325 res = readlink_copy(buffer, buflen, link); 5326 do_delayed_call(&done); 5327 return res; 5328 } 5329 EXPORT_SYMBOL(vfs_readlink); 5330 5331 /** 5332 * vfs_get_link - get symlink body 5333 * @dentry: dentry on which to get symbolic link 5334 * @done: caller needs to free returned data with this 5335 * 5336 * Calls security hook and i_op->get_link() on the supplied inode. 5337 * 5338 * It does not touch atime. That's up to the caller if necessary. 5339 * 5340 * Does not work on "special" symlinks like /proc/$$/fd/N 5341 */ 5342 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5343 { 5344 const char *res = ERR_PTR(-EINVAL); 5345 struct inode *inode = d_inode(dentry); 5346 5347 if (d_is_symlink(dentry)) { 5348 res = ERR_PTR(security_inode_readlink(dentry)); 5349 if (!res) 5350 res = inode->i_op->get_link(dentry, inode, done); 5351 } 5352 return res; 5353 } 5354 EXPORT_SYMBOL(vfs_get_link); 5355 5356 /* get the link contents into pagecache */ 5357 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5358 struct delayed_call *callback) 5359 { 5360 char *kaddr; 5361 struct page *page; 5362 struct address_space *mapping = inode->i_mapping; 5363 5364 if (!dentry) { 5365 page = find_get_page(mapping, 0); 5366 if (!page) 5367 return ERR_PTR(-ECHILD); 5368 if (!PageUptodate(page)) { 5369 put_page(page); 5370 return ERR_PTR(-ECHILD); 5371 } 5372 } else { 5373 page = read_mapping_page(mapping, 0, NULL); 5374 if (IS_ERR(page)) 5375 return (char*)page; 5376 } 5377 set_delayed_call(callback, page_put_link, page); 5378 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5379 kaddr = page_address(page); 5380 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5381 return kaddr; 5382 } 5383 5384 EXPORT_SYMBOL(page_get_link); 5385 5386 void page_put_link(void *arg) 5387 { 5388 put_page(arg); 5389 } 5390 EXPORT_SYMBOL(page_put_link); 5391 5392 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5393 { 5394 DEFINE_DELAYED_CALL(done); 5395 int res = readlink_copy(buffer, buflen, 5396 page_get_link(dentry, d_inode(dentry), 5397 &done)); 5398 do_delayed_call(&done); 5399 return res; 5400 } 5401 EXPORT_SYMBOL(page_readlink); 5402 5403 int page_symlink(struct inode *inode, const char *symname, int len) 5404 { 5405 struct address_space *mapping = inode->i_mapping; 5406 const struct address_space_operations *aops = mapping->a_ops; 5407 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5408 struct folio *folio; 5409 void *fsdata = NULL; 5410 int err; 5411 unsigned int flags; 5412 5413 retry: 5414 if (nofs) 5415 flags = memalloc_nofs_save(); 5416 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata); 5417 if (nofs) 5418 memalloc_nofs_restore(flags); 5419 if (err) 5420 goto fail; 5421 5422 memcpy(folio_address(folio), symname, len - 1); 5423 5424 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1, 5425 folio, fsdata); 5426 if (err < 0) 5427 goto fail; 5428 if (err < len-1) 5429 goto retry; 5430 5431 mark_inode_dirty(inode); 5432 return 0; 5433 fail: 5434 return err; 5435 } 5436 EXPORT_SYMBOL(page_symlink); 5437 5438 const struct inode_operations page_symlink_inode_operations = { 5439 .get_link = page_get_link, 5440 }; 5441 EXPORT_SYMBOL(page_symlink_inode_operations); 5442